Design and testing of a position adaptation system for KUKA robots using photoelectric sensors

Abstract

This thesis presents the development and analysis of a position monitoring and adaptation system to be used in conjunction with a KUKA KR16-2 articulated robot using components readily available in most manufacturing settings. This system could be beneficial in the manufacturing sector in areas such as polymer welding and spray painting. In the former it could be used to maintain an effective distance between a welding end effector laying molten plastic and the surface area of the parts being welded, or in the case of the latter the system would be useful in painting objects of unknown shape or objects with unknown variations in the surface level. In the case of spray painting if you spray to close to an object you will get an inconsistent amount of paint applied to an area. This system would maintain the programmed distance between the robot system and target object. Typically, systems that achieve this level of control rely on expensive sensors such as force torque sensors. This research proposes to take the first step in trying to address the technical problems by introducing a novel way of adapting to a target surface deformation using comparably low cost photoelectric diffuse sensors. The key outcomes of this thesis can be found in the form of a software package to interface the photo-electric sensors to the KUKA robot system. This system is operated by a custom-built algorithm which is capable of dynamically calculating robot movements based off the sensor input. Additionally, an optimum system setup is developed with different configurations of sensor mounting and speeds of robot operation discussed and tested. The viability of the photo-electric diffuses sensors used in this application is also considered with further works suggested. Finally, a secondary application is developed for recording and analysing KUKA robot movements for use in other research activities

    Similar works