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A B S T R A C T

Robot motion can be described in several alternative representations, including

joint configuration or end-effector spaces. These representations are often used for

manipulation or navigation tasks but they are not suitable for tasks that involve

close interaction with the environment. In these scenarios, collisions and relative

poses of the robot and its surroundings create a complex planning space. To deal

with this complexity, we exploit several representations that capture the state of

the interaction, rather than the state of the robot. Borrowing notions of topology in-

variances and homotopy classes, we design task spaces based on winding numbers

and writhe for synthesizing winding motion, and electro-static fields for planning

reaching and grasping motion. Our experiments show that these representations

capture the motion, preserving its qualitative properties, while generalising over

finer geometrical detail. Based on the same motivation, we utilise a scale and

rotation invariant representation for locally preserving distances, called interac-

tion mesh. The interaction mesh allows for transferring motion between robots of

different scales (motion re-targeting), between humans and robots (teleoperation)

and between different environments (motion adaptation). To estimate the state of

the environment we employ real-time sensing techniques utilizing dense stereo

tracking, magnetic tracking sensors and inertia measurements units.

We combine and exploit these representations for synthesis and generalization

of motion in dynamic environments. The benefit of this method is on problems

where direct planning in joint space is extremely hard whereas local optimal con-

trol exploiting topology and metric of these novel representations can efficiently

compute optimal trajectories. We formulate this approach in the framework of

optimal control as an approximate inference problem. This allows for consistent

combination of multiple task spaces (e.g. end-effector, joint space and the abstract

task spaces we investigate in this thesis).

Motion generalization to novel situations and kinematics is similarly performed

by projecting motion from abstract representations to joint configuration space.

This technique, based on operational space control, allows us to adapt the motion

in real time. This process of real-time re-mapping generates robust motion, thus

reducing the amount of re-planning. We have implemented our approach as a part

of an open source project called the Extensible Optimisation library (EXOTica).
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This software allows for defining motion synthesis problems by combining task

representations and presenting this problem to various motion planners using a

common interface. Using EXOTica, we perform comparisons between different

representations and different planners to validate that these representations truly

improve the motion planning.
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1
I N T R O D U C T I O N

Humans and most animals interact with objects that surround them with aston-

ishing levels of skill and dexterity. Even the most common of everyday tasks, such

as picking up a glass of water or putting ring on a finger, are trivial for a human

but very challenging for an autonomous robotic system. The ease with which we

learn how to optimally solve a task is inspiring. For example, successfully complet-

ing the non-trivial task of carrying a glass with water and keeping it upright to

prevent the water from spilling while maintaining balance and avoiding obstacles.

The human nervous system learns and encodes these skills through a process of

trial and error. The question is: how can we endow a robot with similar level of

robust motion planning capabilities using our expertise, instead of going through

the lengthy process of teaching the robot through examples? How can we take

goals, that humans easily formulate, and translate them into a language that a

complex robot can use for motion synthesis? Some of the most advanced robotic

systems we know of today are still relatively simple when compared to biologi-

cal systems. Yet motion synthesis for such robotic platforms is notoriously hard,

especially when it involves close interactions with the environment. What makes

motion planning in the real world so challenging?

Modern robotic systems, such as robot arms and humanoid robots, have a large Curse of

dimensionalitynumber of actuators, each of which defines a degree of freedom (DoF) that has to

be controlled. A humanoid robot usually has tens of DoF1. If we aim to explore

the space of such high dimensionality to compute a motion plan, we will soon

encounter the practical problem of sufficiently covering the space with samples to

ensure that the plan is truly feasible and optimal. This phenomenon is caused by

the fact that any two points may appear close together along one dimension but

be very far apart on another, which increases the space that needs to be covered.

This problem is known as the curse of dimensionality. Planning motion for such a

high number of DoF has been studied in the context of exploring the space of

possible motions (Shkolnik and Tedrake [2009]). In the field of robotics, not only

1 The Atlas robot by Boston Dynamics has 28 DoF (without the hands) and the NASA Valkyrie robot
has 44 DoF (including the hands).
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2 introduction

the dimensionality but also the way how these degrees of freedom interact poses

another very common difficulty.

A robot usually has more DoF than it needs to perform a single task. ThisRedundancies

means that there are multiple redundant ways to complete the task, e.g. when

opening a door by pulling the door handle, we could pull the handle using the

shoulder and upper arm or we could keep the upper body stiff and take a step

back, dragging the door handle behind. Each solution has its advantages. Using

only the arm is more energy efficient, while using the weight of the whole body

when stepping back allows us to exert more force and to open heavier doors.

Redundancies have been studied on systems with low DoF (Aydin and Kocaoglan

[1995]) but more complex redundant systems still pose a challenge. One way to

address this problem is to define multiple tasks or multiple objectives that would

exploit each others’ redundancies (Kanoun et al. [2011]).

Multi-objective optimisation has been applied in many areas of science on prob-Multi-objective

optimisation lems with multiple simultaneous objectives. When the objectives are complemen-

tary to each other, they may indeed help to resolve redundancies. However, when

they are conflicting, a trade-off has to be made to find a solution that satisfies all of

the objectives optimally (da Graça et al. [2012]). For example, when reaching for an

apple on a tree, we have to make a trade-off between keeping balance and reaching

for the apple. To solve this problem, we may choose one of the two approaches: (1)

to prioritize one objective and satisfy the second one without violating the higher

priority objective (Flacco et al. [2012]), e.g. reach for the apple only as far as we can

without loosing balance; (2) to decide on relative weighting between the two objec-

tives and to satisfy both to a degree set by their respective weights (Siciliano and

Khatib [2008]). In both cases, we have to specify, either, to what degree do we care

about satisfying an objective, or on the priority of the objectives. After making this

decision, we are still faced with the problem of synthesizing a motion that fulfils

the task defined by this mixture of objectives. When dealing with multi-objective

problems, it is often the case that these objectives impose complex constraints

that prevent motion in a specific direction, e.g. if another branch prevents us from

reaching any closer to the apple. In this case, an algorithm attempting to minimize

the distance to the apple would get stuck.

Many optimization algorithms2 are based on the principle of incrementally im-Local minima

proving an existing or initial motion and are therefore susceptible to getting stuck

in a local minima. We can get around this problem by choosing a different initial

2 See Section 2.2 for overview of optimisation algorithms used for solving problems in robotics.
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motion in an attempt to converge to a globally optimal solution, e.g. instead of reach-

ing around the branch that is blocking our way to the apple, we can choose to

sit on the obstructing branch and try to reach for the apple from there. In this

scenario, we are still only considering planning the motion without accounting for

the interaction with the environment, such as the branches bending in the wind

or simply not knowing the shape of the branch.

These interactions between the robot and its surroundings often have complex Complex

dynamicsdynamics (Sentis et al. [2010]), where by complex dynamic we refer to dynamical

systems within which the tasks depend on contacts with objects, friction and colli-

sions. The complexity arises from the difficulty to model and, often, even measure

these properties using sensors, e.g. when picking up an object, the contact area

between the robot hand and the object it is grasping is difficult to estimate, which

is the reason why grasping is often performed based on predefined object shape

classes such as cylinders or spheres (Miller et al. [2003]). When synthesizing mo-

tion we may choose to define the motion relative to an object. If the object stays

static, the interaction can be evaluated without any further consideration. How-

ever, this is not always the case.

The objects around the robot may be moving. If we plan a motion in this dy- Dynamic

environmentsnamic environment, the plan will quickly become invalid. In that case, re-planning is

necessary (Gayle et al. [2007]). In some cases, the motion of the objects in the en-

vironment is known, e.g. motion of free flying objects can be efficiently estimated

using Kalman filter (Siciliano and Khatib [2008]). Not all kinds of motion can be

predicted though.

Some motion is stochastic in nature, which has to be accounted for during motion Uncertainty and

unpredictabilitysynthesis (Theodorou et al. [2010]). When interacting with a human, however, we

may not be able to model their behaviour at all, which will make any motion the

human makes unpredictable. In this case, re-planning is often necessary. Humans

are very skilled at adapting their plans when the environment changes and quickly

react to correct their actions. Reacting in this way is challenging (Kröger [2012])

and it requires a way of describing objectives that will capture the interaction with

the environment.

Tasks can be defined in terms of simple goals such as reaching for an apple or Representing

goalskeeping a hand upright to hold a glass of water. These are examples of classical

goal representations that are based on geometrical properties such as position and

orientation. Some interactions can be represented more directly, e.g. by describ-

ing how the fingers wrap around glass or how the palm envelops the apple (see
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Figure 1: Lattice showing areas of applications of exploratory motion planning algorithms
such as RRTs (orange), and optimisation techniques such as iLQG and AICO
(red). See Chapter 2 for overview of different motion planning techniques. Our
proposed methods are aimed at improving these techniques by extending their
areas of application towards the green region by exploiting alternate representa-
tions.

Sandilands et al. [2013b] and Ivan et al. [2013]). If the specific property of the

interaction is not known, we may choose preserve the spatial relationship of the

robot segments to match those of a demonstrator as proposed by Ho et al. [2010b].

There are multiple choices of goal representations for each task, which brings us

back to the problem of multi-objective optimisation. How to solve such complex

robotic problems for the real world applications then? Figure 1 shows an overview

of different classes of motion synthesis algorithms and the ways how they solve

the motion planning problem. Our work aims to improve the existing techniques

by extending their areas of application towards the green region.

We have, thus far, presented challenges that have to be addressed when solving

the problem of motion planning with close interactions in dynamic environments.

In this thesis, we address these challenges. The focus of our work is to directly

represent the task involving interactions between the robot and its surroundings.

After formalizing the task representations in this way, we investigate ways to doTask

representations planning in an abstract task representation in the changing environments before-
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hand and to then couple this abstract plan with the low level controls. This can be

viewed as computing motion plans that generalise to different situations.

The main reason for modelling the interaction directly, in a way that generalises

well to novel situations, is to improve the speed of motion synthesis and robustness

of the resulting motion. Motion planned in environments that dynamically change

often becomes invalid and it has to be recomputed. On the other hand, if our

motion is defined using an abstract task representation, we can recompute the

mapping into the space of controls when the environment changes, instead of

replanning the motion from scratch. The key assumption behind our work is that

even though planning the motion in abstract spaces may be computationally costly,

the resulting plans will then generalise over a wide variety of practical scenarios

and that the coupling between the motion in an abstract representation and the

robot controls is less costly. The nature of this coupling dictates how efficient and

robust the motion synthesis will turn out to be.

There are several properties we are aiming for when designing task representa-

tions. A task representation defines a mapping from the space of controls into an

abstract space which we treat as a task space (a classical example of a task space

is the end-effector position of a robot arm). In doing so, we define representa-

tions3 we use for transferring the motion to different environments or robots by

preserving simple metrics in the task space. The simplicity of these metrics may be

evaluated based on the gradient in the task space, which would ideally be smooth,

differentiable, continuous and in some cases even monotonous. Task spaces with

such metrics may then render complex motion in the configuration space to be

equivalent to basic interpolation in the task space4. The motion synthesis methods

differ in the way they utilise the task representations. While exploratory methods,

that we review in Section 2.1, often exploit task spaces for validity checking, op-

timisation methods, discussed in Section 2.2, heavily utilise gradients in the task

spaces. Our objective is to exploit spaces that provide gradients suitable for effi-

cient optimisation. Additionally, we propose methods that can combine multiple

different task representations at the abstract, as well as the lower (execution) level,

and plan simultaneously at these different levels to efficiently generate optimal,

collision free motion that satisfies constraints and affordances. Each representa-

tion has its own strengths and weaknesses and coupling them enables us solve a

wider range of problems than they are capable of solving individually.

3 In Chapter 3, we discuss novel task representations and evaluate their utility using experiments.
4 In Section 3.5, we discuss task space invariants based on homotopy classes, which we utilise for

motion planning.
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The representations that have the properties we are looking for are often based

on invariants that abstract away the geometry of the interaction between the robot

and its environment, and capture the topology of this interaction. The topolog-

ical invariants have a formal definition in topology, as the area of mathematics.

These invariants are, however, often impractical due to the computational cost or

the assumption of the full knowledge of the state of the environment at all times.

This is why we aim to design representations that are based on topological invari-

ants or have similar properties with respect to their ability to abstract away the

geometrical details of the interaction 5.

The contributions of this thesis are:

• The introduction of abstract representations inspired by ideas from a mathe-

matical branch called topology that directly model the interaction between

the robot and its environment: winding number, writhe, electrostatic flux,

electric coordinates and interaction mesh.

• A principled extension of a stochastic optimal control framework that admits

the capability to combine various representations for motion synthesis. This

is expressed in a graphical model that couples motion priors at different

levels of representations.

• A method for real-time motion generalization (remapping) to novel situations

using abstract representations and operational space control.

• A set of sensing techniques adapted for capturing dynamic environments: vi-

sion based detection and tracking using RGB-D features, magnetic tracking,

and inertia measurement based tracking.

• A set of experiments comparing novel and classical representations using state

of the art motion planning methods (AICO, RRT*).

• A software implementation of a framework for planning in and benchmark-

ing task representations and motion planners called EXOTica.

5 We formally define a topology-based representation in Chapter 3 and further discuss and justify the
use of topological invariants for representing robot tasks.



2
M O T I O N P L A N N I N G

Motion planning is a fundamental topic in robotics. A multitude of techniques for

solving a variety of motion planning problems have been proposed in the litera-

ture over past couple of decades. To provide a deeper insight into these problems,

we describe the motion planning process in the area of robotics, starting by intro-

ducing the building blocks of a planning algorithm.

We describe the configuration of a robot with n DoF using a n dimensional

vector x. The space of all possible configurations of the robot is then called the

configuration space: Configuration

space

x ∈ C ⊆ Rn. (1)

In our work, we consider continuous configuration spaces1 that are Rn because

they represent the continuous properties of the real world such as position, ve-

locity or rotation angle. We call the space in which the robot operates the work

space Work space

W ⊆ Rm, (2)

where m is the dimensionality of the work space. Each part2 of the robot occupies

a some subset Ai of the work space such that

A = ∪ni=1Ai ⊆W, (3)

where A is the subset of the workspace occupied by the robot as a whole. Similarly,

obstacles occupy a subset O of the same work space. The part of the space where

the robot and the obstacles are not in collision is called free space and we define it

as

Cfree = {x ∈ C|Ax ∩O = ∅}. (4)

1 Discrete spaces such as grid worlds are commonly used to approximate the real world.
2 Here, we assume that a part occupying space Ai is composed of all robot parts that are rigidly

attached to joint i which actuates them.

7



8 motion planning

Assuming that we are given an initial state x0 ∈ Cfree and a goal state3 xT ∈ Cfree,

we define motion planning as the mapping

τ : [0, 1]→ Cfree, (5)

subject to

τ(0) = x0, (6)

τ(1) = xT , (7)

where the subscript on xT denotes the final time when the robot reaches its goal.

The planning algorithms differ from one another based on how they compute

the mapping τ. We will introduce two approaches: (1) exploratory methods, that

sample random states from configuration space until a configuration that satisfies

the goal criteria is found, and (2) optimisation based methods, that iteratively

improve an initial trajectory until an optimal trajectory is found. Although these

methods are very different from each other, both can be applied on the same class

of problems.

A classical problem in robotics is to find a feasible path in the free space (LaValle

[2006]) but it is often desirable to plan a trajectory that satisfies additional con-

straints or one that minimizes a cost function in a space, different from the config-

uration space. We call this space the task space and define it as

φ : X→ Y. (8)

Function φ (the task map) is the mapping between the configuration space X and

the task space Y. We aim to exploit different task spaces to improve the performanceTask space

and robustness of motion planning, but we will start by presenting two classes of

planning algorithms to provide deeper insight into how the choice of task spaces

affects motion planning.

First, we present a class of algorithms that use exploration in the configuration

space to compute the motion plan, where the task spaces are used to bias the

exploration to improve convergence. We will then present a class of techniques that

use the task space to construct a cost function that is then used for incrementally

improving the existing plan. The contributions of this chapter are:

3 The goal state can be a single state or a set of states from a region that satisfies the goal criteria
based on some arbitrary metric.
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• A principled extension of a stochastic optimal control framework that admits the

capability to combine various representations for motion synthesis. This is

expressed in a graphical model that couples motion priors at different levels

of representations.

• Extension of the Approximate Inference Control (AICO) algorithm for real

time replanning for mobile platforms in dynamic environments (See Sec-

tion 2.2.3).

2.1 exploratory motion planning

When the exploratory motion planning was introduced in the 1990s, it enabled

solving motion planning problems that had been previously considered infea-

sible (LaValle [2006]). These techniques are build around the principle of sam-

pling robot configurations and building up a tree of possible transitions between

these configurations until one that satisfies the goal criteria is found. The tree

is then back-tracked to its root to produce the trajectory for the robot motion.

The rapidly exploring random trees (RRT) algorithm, for instance, computes feasi- RRT

ble collision-free paths given an initial state x0 and a termination criteria. RRT

builds a tree T in the configuration space as described in Algorithm 1, where

the sample_free() is a procedure returning a random configuration from the free

space. The nearest_neighbour(x,V) procedure returns the nearest neighbour of x

from within the set of existing nodes V in the tree T . The steer(x,y) procedure re-

turns a configuration that is closer4 to x than y. The collision_free(x,y) procedure

tests if the path between x and y is free of obstructions, and build_tree() assesses

the termination criteria.

Algorithm 1 RRT (x0)

1: T .V ← {x0}

2: while build_tree do
3: xrand ← sample_free()
4: xnearest ← nearest_neighbour(xrand, T .V)
5: xnew ← steer(xnearest, xrand)
6: if !collision_free(xnearest, xnew) then
7: continue
8: T .V ← T .V ∪ {xnew}

9: T .parent(xnew)← xnearest

4 If the dynamical model of the robot is known, the steer(x,y) procedure usually explots this model
to steer the robot closer to state y.
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Figure 2: Different search trees produced by RRT (left), RRT∗ (middle) and Bi-directional
KPIECE6 (right). In three figures, the root of the tree is in the middle of the maze
(under the green polygon) and the goal is under the red polygon. The KPIECE
algorithm grows a secondary tree from the goal location, which connects to the
primary tree in the middle bottom section of the maze.

Unfortunately, common exploratory algorithms such as RRT produce solutions

that are sub-optimal or even far from optimal, furthermore, Nechushtan et al.

[2011] showed that with probability one, algorithms like RRT will not produce

optimal trajectories. This means that high quality trajectories are impossible to

construct from entirely random samples, therefore, changing the sampling strat-

egy using a heuristic has been proposed by Urmson and Simmons [2003], to give

samples in certain part of the configuration spaces higher probability of being

picked. There are, however, multiple approaches to changing the sampling strat-

egy based on the characteristics of the motion planning problem (e.g. differential

constraints or complex task spaces). The performance of exploratory algorithms

can be severely compromised in the presence of kinodynamic constraints such as

planning a swing up task for an under-actuated pendulum or motion of a non-

holonomic vehicle (LaValle [2006]). Shkolnik et al. [2009] proposed to change the

sampling strategy using a feasibility set estimated based on minimum and max-

imum commands that can be applied to the robotic system. It is, however, often

the case that even a purely kinematic task is too difficult to solve, when the di-

mensionality of the configuration space is too high or the task constraints are very

restrictive. To get around this problem, Shkolnik and Tedrake [2009] proposed bias-

ing the exploration towards targets in the task space, thus creating a motion prior5Motion prior

making selection of certain configurations in this space more probable. This solu-

tion dramatically reduces the amount of exploration needed for solving problems

on high DoF robots and it indirectly biases the exploration towards more optimal

trajectories. Even in this case, the cost of the motion is still not directly optimised.

5 See Section 2.2.2 for formal definition of a motion prior.
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A strategy that modifies the tree structure itself has been proposed by Karaman

and Frazzoli [2011] to construct a tree that can be used for computing trajectories

in the configuration space that are optimal with respect to a cost function. The

modified RRT algorithm is called RRT*. The connections between the tree nodes

are modified after the new sample is added to the tree (see line 9 in Algorithm 1).

At this point, k nearest neighbours of the new node are computed, and if con-

necting the new node to the nearest node produces a trajectory with a lower cost,

the tree gets rewired. Figure 2 shows the tree computed using RRT on left and

a tree computed using RRT* in the middle. The cost function used in this exam-

ple was based on trajectory length. An arbitrary cost function can be specified

instead. Motion planning with an arbitrarily complex cost function and in a possi-

bly high dimensional configuration space requires large amount of exploration to

compute an optimal trajectory. The computational effort to do this can be reduced

by changing the sampling strategy by biasing the exploration using a task space

defined using the metric based on the the cost function. Akgun and Stilman [2011]

use the change of sampling strategy and additionally grow a second tree rooted

at the goal configuration to improve the convergence speed of RRT*. Another ap-

proach presented by Salzman and Halperin [2013] solves a similar, near-optimal,

problem by computing approximate solutions with lower bound on the error. This

method allows us to tweak the lower bound of the task cost on the scale between

unbounded (equivalent to RRT) and asymptotically optimal (equivalent to RRT*), Asymptotically

optimal

algorithms
which allows for a trade off between quality and computational cost.

Even though proofs of convergence of algorithms like RRT* exist, practical prob-

lems often require prohibitive amount of exploration to converge to an optimal

solution. The exploration can be biased towards targets in the task space but even

in this case, the motion prior in the task space is not directly used to drive the

planning. In some cases the motion prior is not available at all (e.g. contacts with

the environment). Kalakrishnan et al. [2011] proposed a method that generates

(samples) noisy trajectories to explore the space around an initial trajectory, which

are then combined to compute a trajectory with a lower cost. This is a useful fea-

ture, but even when the motion prior is available, it is not being utilised within

this technique. On the other hand, when the motion prior can be computed, and a

gradient in the task space exists, it can be used to improve the initial trajectory as

proposed by Ratliff et al. [2009]. This technique can be extended with Hamiltonian

Monte Carlo sampling scheme to approximate the gradient in the task space and to

6 The Kinodynamic Motion Planning by Interior-Exterior Cell Exploration (KPIECE) has been pro-
posed by Şucan and Kavraki [2010].
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alleviate the problem of local minima. This approach is based on gradient descent,

which is used to iteratively improve the trajectory. Such iterative improvements

are the core of trajectory optimisation algorithms.

2.2 trajectory optimisation

Trajectory optimisation is a key problem in robotics. There are two classes of meth-

ods that can be used for solving these optimisation problems: (1) using gradient

methods, typically with spline-based trajectory encoding (e.g. Yao-Chon [1991]

and Zhang and Knoll [1995]) or (2) using sequential quadratic programming (SQP)SQP

schemes. Solving SQP problems typically involves iterating linear quadratic gaus-

sian (LQG) solution methods. This approach is often used when solving stochasticLQG

optimal control (SOC) problems. Let us consider a time discrete SOC problem where

xt+1 = f(xt,ut) + ξ, ξ ∼ N(0,Qt), (9)

such that the function ft(xt,ut) computes the new deterministic configuration

xt+1 using the configuration xt and controls ut at time t. The Gaussian noise ξ

with the covariance Qt is then added to model the stochasticity. For a sequence of

configurations x0:T and controls u0:T , we define the cost as

C(x0:T ,u0:T ) =
T∑
t=0

c(xt,ut). (10)

In the case of LQG (Stengel [1986]), we approximate Equation 9 using a linear

process with gaussian noise

P(xt+1|xt,ut) = N(xt+1|Atxt + at +Btut,Qt), (11)

and the cost from Equation 10 using a quadratic cost

c(xt,ut) = x>tRtxt + 2r
>
txt + u

>
tHtut. (12)

In Equation 11 and the following, we use the notation

N(x|a,A) ∝ exp
(
−
1

2
(x− a)>A−1(x− a)

)
(13)

defining a Gaussian over x with mean a and covariance A.
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Matrices At, Bt and vector at linearly approximate the state transition7 with

the normally distributed noise with covariance Qt as in Equation 9. The matrix Ht
is used to model the control effort and the terms Rt and rt describe task specific

cost8. We can now compute the optimal control commands9

u∗t(x) = −(Ht +Bt>Vt+1Bt)−1B>(Vt+1(Atxt + at) − vt+1), (14)

such that

Vt(x) = x
>
tVxt − 2x

>
tvt + terms independent of xt, (15)

Vt = Rt + (A>t −K)Vt+1At (16)

vt = rt + (A>t −K)(vt+1 − Vt+1at) (17)

K = A>V>t+1(Vt+1 +B
−>
t HtB

−1
t )−1,

where the optimal value function Vt gives the expected future cost at time t for

the best controls, and it obeys the Bellman optimality equation

Vt(xt) = min
ut

[c(xt,ut) +Vt+1(f(xt,ut))] . (18)

The LQG allows us to define exact backward recursion to compute the value func-

tion, which will always be a quadratic form of the state xt. Equations 14-17 are

called Ricatti equations (Stengel [1986]). If we initialize this system of equations Ricatti equations

with VT = RT and vT = rT , at the final time step, we can recursively compute the

optimal value function. For non-linear systems, we can start with an initial guess

for trajectory x0:T and iteratively improve this trajectory by alternating between

computing the controls u∗t(x), that are locally optimal around current trajectory,

and evaluationg the value function after executing these controls, as described

in Algorithm 2. This method is called iLQG (Todorov and Li [2005]) and it has

been used for optimising robot motion with complex dynamics (Nakanishi et al.

[2011], Braun et al. [2012]). The iLQG method is suitable for solving non-linear

problems because a local linear approximation of the system dynamics, and a lo-

cal quadratic approximation of the system cost is computed at each time step. This

is a powerful technique but it works under the assumption that the system dynam-

ics are smooth and differentiable. Additionally, the trajectory has to be sufficiently

7 At and at describe the motion depending on the state (e.g. drift). Bt approximates the effects of
controls.

8 In Section 2.2.2 and Equation 37 we describe how we compute Rt and rt.
9 See Stengel [1986] for derivation of Ricatti equations.
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Algorithm 2 iLQG (x0:T ,H0:T ,At(x),at(x),Bt(x),Rt(x), rt(x))
1: α← convergence rate
2: repeat
3: VT ← RT (xT ), vt ← rT (xT )
4: for t = T − 1 to 0 do // backward Ricatti recursion
5: access At(xt),at(xt),Bt(xt),Rt(xt), rt(xt)
6: compute Vt and vt using equations 16 and 17

7: for t = 0 to T − 1 do // forward controls propagation
8: compute u∗t(xt) using equation 14

9: xt+1 ← (1−α)xt+1 +α [At(xt)xt + at(xt) +Bt(xt)u
∗
t(xt)]

10: until convergence

densely discretised to ensure that the local LQG approximations are accurate and

the convergence ratio α has to be set to ensure convergence without wasting re-

sources.

The stochastic optimal control problem can also be formulated as Approximate

Inference Control (AICO) as proposed by Toussaint [2009]. In this case, the sys-

tem is modelled using a graphical model and message passing is used compute

the maximum likelihood trajectory. This framework naturally leads to iterative up-

dates of local messages, rather than recursive updates of the whole trajectory, thus

creating a more flexible algorithm.

2.2.1 Approximate Inference Control

Approximate Inference Control (AICO) frames the problem of optimal control as

a problem of inference in a dynamic Bayesian network. Let xt be the state of the

system as defined in Equation 1. We will always consider the dynamic case, such

that xt = (qt, q̇t), where qt are the joint positions and q̇t are the joint velocities.

Consider the problem of minimizing (the expectation of) the cost

C(x0:T ,u0:T ) =
T∑
t=0

cx(xt) + cu(ut) (19)

where cu describes costs for the control and cx describes task costs depending on

the state (usually a quadratic error in some task space, such as in Equation 12).
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The robot dynamics are described by the transition probabilities P(xt+1 |ut, xt).

The AICO framework translates this into the probabilistic model

p(x0:T ,u0:T ) ∝ P(x0)
T∏
t=0

P(ut)

T∏
t=1

P(xt |ut-1, xt-1) (20)

·
T∏
t=0

exp{−cx(xt)}.

The task cost is reflected in the model through the exponential term exp{−cx(xt)},

which can be interpreted as “conditioning on the tasks” in the following sense:

We may introduce a binary random variable zt with P(zt= 1 | xt) ∝ exp{−cx(xt)},

that is, the probability of z = 1 is high when the task costs cx(xt) are low in

time slice t. The above defined distribution is then the posterior p(x0:T ,u0:T ) =

P(x0:T ,u0:T |z0:T = 1). In the LQG case, the costs are quadratic and the controls are

linear, we therefore translate the cost terms to a Gaussian motion prior10

P(zt=1 | xt) ∝ N[xt|rt,Rt] (21)

and the linear controls translate to

P(ut) = N[ut|0,Ht]. (22)

We can analytically integrate out the control over time, producing a simpler motion

prior

P(xt+1|xt) =

∫
u

duN(xt+1|Atxt + at +Btut,Qt)N[ut|0,Ht]

= N(xt+1|Atxt + at,Qt +BtH−1B
>
t) (23)

AICO in general tries to infer the posterior trajectory as the probability distribu-

tion P(x0:T | z0:T =1). In Toussaint [2009], this is done using Gaussian message pass-

ing (comparable to Kalman smoothing) on a factor graph, based on local Gaussian

approximations around the current belief model. Inference on a factor graph (see

Figure 3) is a standard backward-forward process, where the posterior marginal

belief over a random variable is given by the product of incoming messages. In the

10 The bracket notation N[x|a,A] ∝ e−
1
2
x>Ax+x>a denoted a Gaussian over x in canonical for with

precision matrix A and mean A−1a.
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Figure 3: AICO graphical model.

case of the graphical model described by Equation 20 and shown in Figure 3, the

belief is computed as

bi(Xi) =
∏
j

µj→i(Xi), (24)

where we define the following three messages:

µxt−1→xt(xt) = N(xt|st,St), (25)

st = at−1+At−1(S
−1
t−1+Rt−1)

−1(S−1t−1st−1+rt−1),

St = Qt +BtH
−1
t B>t +At−1(S

−1
t−1 + Rt−1)

−1A>t−1,

µxt+1→xt(xt) = N(xt|vt,Vt), (26)

vt = −A−1
t at+A

−1
t (V−1

t+1+Rt+1)
−1(V−1

t+1vt+1+rt+1),

Vt = A
−1
t [Qt +BtH

−1
t B>t + (V−1

t+1 + Rt+1)
−1]A−>

t ,

µzt→xt(xt) = N[xt|rt,Rt]. (27)

The messages are then iteratively updated as described in Algorithm 3.

In Rawlik et al. [2012], the theory of the general equivalence of this framework

with stochastic optimal control is detailed. Generally, the AICO approach is very

similar to differential dynamic programming (Murray and Yakowitz [1984]) or

iLQG (Todorov and Li [2005]). In fact, the backward message µxt+1→xt(xt) is equiv-

alent to Ricatti equations. To show this, we first define the backward message in

canonical form as

V̄t+1 = V
−1
t+1 + Rt+1, (28)

v̄t+1 = V
−1
t+1vt+1 + rt+1. (29)
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Algorithm 3 AICO (x0:T ,H0:T ,At(x),at(x),Bt(x),Rt(x), rt(x))
1: α← convergence rate
2: θ← time slice stopping threshold
3: Initialise s0 ← x0, S−10 ← 1e10, v0:T ← 0, V−1

0:T ← 0, r0:T ← 0, R0:T ← 0

4: k← 0

5: repeat
6: for t = 0 to T − 1 do // forward sweep
7: update st and St using Equation 25

8: if k = 0 then
9: x̂t ← st

10: else
11: x̂t ← (1−α)x̂t +αbt

12: access At(x̂t),at(x̂t),Bt(x̂t),Rt(x̂t), rt(x̂t)
13: update rt and Rt using Equation 27

14: update vt and Vt using Equation 26

15: update bt and Bt using Equation 24

16: if ‖x̂t − bt‖2 > θ then
17: t← t− 1 // repeat time step
18: for t = T − 1 to 0 do // backward sweep
19: ... same updates as in forward sweep.
20: k← k+ 1
21: until convergence

This allows us to rewrite the backward message using Woodbury identities as

V̄t = Rt + (A>t −K)V̄t+1At (30)

v̄t = rt + (A>t −K)(v̄t+1 − V̄t+1at), (31)

(32)

where

K = A>V̄>t+1(V̄t+1 +B
−>
t HtB

−1
t )−1, (33)

which is equivalent to the Ricatti equations 14-17. Although the backward updates

in AICO and LQG methods are equivalent, there is no counterpart for the forward

messages (“cost-to-reach functions”) in the LQG case. The forward message is,

however, necessary for computing proper posterior marginal belief. The similar-

ities and differences between AICO and other methods like iLQG and DDP are

explained in more detail in Rawlik et al. [2012] and Toussaint [2009].
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2.2.2 Expressing motion priors in task spaces

To estimate the posterior, the controls ut can be marginalized, implying the fol-

lowing motion prior:

P(xt+1 | xt) =

∫
ut

P(xt |ut-1, xt-1) P(ut) dut . (34)

This motion prior arises as the combination of the system dynamics and our choice

of control costs cu(ut); for LQ systems it is a linear Gaussian.

The motion prior is a unique view on our motivation for abstract representations.

In the introduction, we mentioned the impact of representations on the sampling

strategy, the metric, or the topology. In other terms, successful trajectories are likely

to be “simpler” (easier to find, shorter, local) in an appropriate space. In Machine

Learning terms, this is expressed in terms of a prior. In this view, task spaces are

essentially means to express priors about potentially successful trajectories—in

our case we employ the linear Gaussian prior in an abstract space to express the

belief that trajectories may appear “simple” in such space.

However, using AICO with a linear Gaussian motion prior in topology space is

not sufficient to solve general motion synthesis problems: 1) The computed pos-

terior in an abstract task space does not directly specify an actual state trajectory

or control law at the joint level. 2) We neglect the problem of minimization of con-

trol and task costs originally defined at the joint level. To address these issues, we

need mechanisms to couple inference in task space and state space. We do so by

coupling task and joint state representations in AICO’s graphical model.

Figure 4 displays the graphical model from Equation 20. The bottom layer corre-

sponds to the standard AICO setup, with the motion prior defined in Equation 34

implied by the system dynamics and control costs. Additionally it includes the task

costs represented by P(zt=1 | xt) = exp (−cx(xt)). The top layer represents a pro-

cess in task space with a prior given as a linear Gaussian motion prior P(yt+1|xt).

Both layers are coupled by introducing additional factors

f(xt,yt) = exp
(
−
1

2
ρt‖yt −φ(xt)‖2

)
, (35)

which essentially aims to minimize the squared distance between the task refer-

ence11 yt and the task coordinate computed from the joint configuration φ(xt),

11 The task reference represents the desired task space trajectory. The task reference is often set by
interpolating between start task state φ(q0) and the end-state y∗.
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Figure 4: Coupling of AICO trajectories in the configuration space and in the topology-
based space. We formally define the topology-based space in Chapter 3.

weighted by a precision constant ρ. The precision constant may also be indexed

on time. This is useful for certain tasks like grasping, where for example: collision

should be avoided during the reaching motion but contacts involving collision are

necessary during the actual grasp. Note that using a local linearisation of φ (hav-

ing the Jacobian Jt of the task space12) is sufficient for Gaussian message passing

between the task and configuration layer of the graphical model which is why we

define the cost terms13 from equation Equation 21 as

Rt = ρtJ
>
tJt, (36)

rt = ρtJ
>
t(yt −φ(xt) + Jtxt). (37)

If there are multiple weighted objectives, the resulting matrix R and vector r can

be obtained by accumulating (summing) the weighted contributions from each of

these tasks. These factors essentially treat the abstract task space configuration yt
as an additional random variable for the lower level inference. In our setup, we

generally distinguish between configuration space, task space and abstract spaces.

While the task space generally describes a space sufficient to describe cost or re-

wards the role of the abstract spaces is to provide alternative metrics (and topol-

ogy) for trajectory optimization. More precisely, we may define a task space as a

12 Here we use the shorter notation Jt = J(xt).
13 When solving the generic LQG problem, we can use equations 36 and 37 to compute the cost terms

in equations 14-17 as well.
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projection of configuration space for which we apriori know that costs (other than

transition costs) depend only on this task space.

planning in alternate spaces The choice of task spaces and their weight-

ing depends on the task — in our experiments, these are chosen manually. When

combining tasks in this way, the precision constant ρ serves the purpose of a mix-

ing factor, allowing one prior to have more effect than another. When the priors

are complementary, the convergence is improved. For example, using classical

representations, we can define a reaching task for a redundant robot and resolve

the redundancy using a null space motion which keeps the robot pose close to a

comfortable position. Here, the reaching task and comfortable pose task would be

complementary.

It is, however, possible to arbitrarily combine abstract representations as well.

For example, if the task requires both, preserving the nature of interaction as

well as planning a wrapping motion, as we proposed in Zarubin et al. [2012]. If,

however, the priors are contradictory, they may cancel each other out. An example

of this effect would be trying to reach for two objects located at opposite sides of

the manipulator at the same time.

In our experiments, we build only two layers of hierarchy between the config-

uration space and the abstract or classical task spaces. Since the abstract spaces

provide simple priors that capture the task well, there is no need for a more struc-

tured graphical model. It is, however, possible to build more complex hierarchies

by extending the graphical model.

2.2.3 AICO initialisation for re-planning in dynamic environments

The AICO algorithm, as proposed in Toussaint [2009], was designed for solving fi-

nite time horizon problems on linearly approximated system models with discrete

time. The work proposed in Rawlik et al. [2010] extended this algorithm to allow

for time optimisation.

One of the strengths of the AICO algorithm is that the convergence speed can

be greatly improved by providing a good initialisation of the graphical model. In

Rawlik et al. [2012], the authors have used a hierarchy of graphical models of dif-

ferent resolution of the time discretization. The optimisation starts by solving the

problem at a low granularity. This is essentially a one step problem. The process

then continues by using this solution to initialise the next problem with higher res-
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olution. In practice, the computational speed is decreased even though multiple

problems have to solved sequentially.

We propose another way of reusing previous graphical models to initialise a

new problem for scenarios with dynamically moving obstacles where replanning

is necessary. We initially solve the whole problem given current knowledge of

the state of the environment. When the environment changes due to unpredicted

movement of obstacles, we re-plan the trajectory, this time using the graphical

model used for computing the initial solution as initialisation of the new problem.

Since we still assume we are solving a finite horizon problem, we truncate the

graphical by removing the part of the model that corresponds to the trajectory that

the robot has already executed. The remainder of the trajectory is then optimised

using the updated information about the state of the environment.

The AICO algorithm provides the flexibility to solve motion planning problems

using alternate representation. We have, however, exploited the AICO framework

to re-plan paths for a mobile robot by initialising the probabilistic model using

beliefs computed for the previous plan that became invalid due to changes in the

environment. The aim of this experiment is to show that our system plans and

re-plans collision-free paths in dynamic environments, reaching the goal configu-

ration optimally with respect to energy consumption.

In this experiment we use the following cost function:

c(xt) = ρ‖x∗ − xt‖2 + ρcoll
t ‖φcoll(xt)‖2 , (38)

where x∗ is the desired goal location and x is the current robot position. We don’t

use the task mapping φ(x) for reaching the goal in this case because we are plan-

ning directly in the configuration space. We assume that the configuration space

is continuous but we construct a grid representation to record the position of ob-

stacles more efficiently. The collision cost term φcoll(x) then utilises this occupancy

grid to compute the reciprocal distance to the closest obstacle or occupied grid cell

in this case. AICO is initialized using the path computed from the Voronoi graph

of the environment including only static obstacles. We then use AICO to compute

the initial optimal path from start to goal positions (see Figure 5). Starting and

goal positions are marked by the green and red dots respectively. The covariance

ellipses are overlaid.

Equation 38 shows the cost function that we aim to minimize but the cost func-

tion does not, actually, appear within the AICO algorithm in this form. The cost

terms are represented using motion priors instead. The two cost terms in Equa-
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tion 38 are ρ‖x∗ − x‖2 and ρcoll‖φcoll(x)‖2. We substitute these terms into Equa-

tion 36 and Equation 37. These equations will will then take the following form:

Rxt = ρI, (39)

rxt = ρI(x∗ − xt + Ixt), (40)

Rcoll
t = ρcoll

t Jcoll
t

>
Jcoll
t , (41)

rcoll
t = ρcoll

t Jcoll
t

>
(−φcoll(xt) + J

coll
t xt). (42)

Since the first term computes cost in the configuration space, there the task map

is equal to the robot state φ(xt) = xt and the task Jacobian is an indentity matrix

Jt = I (see Equations 39 and 40). The second task term aims to minimize the

collision cost, which is why we set task space reference (which is also the desired

goal cost) to zero ycoll
t = 0 (see Equation 42). Most task cost terms will include

a task map and a task space reference, in which case the equations will have the

same form as Equation 36 and Equation 37. We compute the mean and covariance

of the task cost prior by summing the individual task terms Rt = Rxt + R
coll
t and

rt = r
x
t + r

coll
t . The resulting task terms Rt, rt are then used to define motion priors

within the AICO framework as described in Algorithm 3. Throughout this thesis,

we choose to write the down the cost terms in form of a cost function (such as

in Equation 38) because it is much easier to identify the individual terms that we

use for optimisation. However, when we implement this cost function, we actually

define motion priors analogously to the ones we defined in equations 39 to 42.

In order to compare our method to the classical obstacle avoidance algorithms

in terms of energy, we only take into account the power demand of the robot’s

motors. We assume that the rest of the equipment has constant energy consump-

tion and therefore, it cannot be improved any further. We also assume that the

power demands of the robot’s motors are based on overcoming inertia, road grade,

tyre friction, and aerodynamic loss. This road-load methodology was mainly in-

troduced by Sovran and Bohn [1981]. The power demand (in Watts) is the tractive

power as defined below:

P = mv[a(1+ ε) + gRG + gKR] +
1

2
ρKDAFv

3 (43)

where m is vehicle mass in metric tones (0.077kg in our case), v is vehicle speed

(assuming no headwind) inms−1, a is vehicle acceleration inms−2, ε is a mass fac-

tor accounting for the rotational masses, is assumed to be 0.1 (estimated according
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(a) Goal in a narrow corridor (b) Goal in an open area

Figure 5: Two examples of initial optimal paths computed using AICO in a static environ-
ment.

to Palacios [1999]), g is acceleration due to gravity (9.8m/s−2), RG is road grade

(0.0 in our case), KR is rolling resistance – this value for radial tires can range from

0.008 to 0.013 for a majority of the on-road passenger car tires but can be larger

depending on tire pressure, temperature, ground surface, and speed according to

GmbH [2004] and Gillespie [1992] (a medium value in the range ≈ 0.009 is esti-

mated based on Sovran and Bohn [1981]), ρ is air density (≈ 1.2kg/m3), KD is

aerodynamic drag coefficient (≈ 0.3 Sovran and Bohn [1981]) and AF is the frontal

area (≈ 1m2 in our case).

We have used the probabilistic model of the environment we proposed in Lla-

mazares et al. [2012] to detect the position and velocity of dynamic obstacles in

the robot coordinate frame which we have then mapped into the global coordi-

nate frame. We use this information to predict the movement of these obstacles.

AICO is then used to compute the optimal trajectory around the initial path while

using the probabilistic model predictions about the dynamic obstacles. The follow-

ing set of task variables has been used to define the optimality: distance to goal,

power demand (Equation 43), turning velocity and collision avoidance. The colli-

sion avoidance is achieved by inferring cost for reciprocal distance to the closest

obstacle. Inference-based path planning with the linearised motion model and the

holonomic constraint is difficult and suffers from problems with local minima due

to the velocity constraints. The reasoning behind this is that the Gaussian distri-

bution over the state space can potentially assign probability mass to states that

do not satisfy the holonomic constraint which either causes sideways slipping in

the model or if we constrain the Gaussian itself the distribution becomes degen-

erate. For this reason, we have excluded the orientation from the state and we

have added an additional cost term to penalise for angular velocity instead. We
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(b) Perpendicular scenario

Figure 6: Parallel and perpendicular scenarios including dynamic moving obstacles used
for experiments. The goal is yellow diamond, the vehicle crossing the robot’s
path is a blue square and the robot trajectory is red. Figure courtesy of Ángel
Llamazares.

assume that arbitrary angular velocities can be executed but optimise for low an-

gular velocities. This reduces the complexity of the state space by turning the hard

holonomic constraint into a soft constraint.

AICO works under the assumption that the full state of the world, including

the motion of the obstacles is known. This is, however, no longer true when the

prediction made by the probabilistic model that we proposed in Llamazares et al.

[2013] is inaccurate. Since we keep updating this model in real-time, we can detect

when the original prediction diverges from the actual state. We therefore update

our prediction using the new observations and discount the occupancy probability

over time. We re-plan the path if the prediction error reaches a threshold. The feed-

back loop between the planner and the sensing model therefore behaves similarly

to a Kalman filter.

We only expect small changes of the environment between two time steps. In

such situations AICO requires only a small number of iterations to converge. This

makes re-planning computationally affordable. The replanning time (3 s on aver-

age) is however too long to be used as a reactive controller.



2.2 trajectory optimisation 25

In our experiment, we compare the energy consumption on two scenarios (see

Figure 6):

• Parallel: The robot is driving along a straight corridor, trying to reach a goal

position directly in front of it. Another vehicle representing an obstacle will

then drive towards the controlled robot at a higher speed and overtake it,

creating a dangerous situation with possible collisions.

• Perpendicular: The robot is driving through a crossing, trying to reach a

goal position directly in front of it. Another vehicle will cross its path from

the side.

The task is in both cases to reach the goal safely, without colliding with the

second vehicle. This class of problems is typically solved using reactive controllers.

We have compared our method with the following state of the art methods: VHF+

(Ulrich and Borenstein [1998]), CVM (Fox et al. [1997]), LCM (Ko and Simmons

[1998]) and BCM (Fernández et al. [2004]). Our methods uses the probabilistic

sensor model we proposed in Llamazares et al. [2013]. Table 1 shows that using

the probabilistic sensor model reduces the energy consumption of each the tested

algorithms. The baseline for these experiments was computed using the raw sensor

data from the laser distance scanner. We then show that our method using AICO

and the probabilistic model is capable of further improving the performance of

the best performing reactive method in each corresponding scenario.

AICO solves the finite horizon optimisation problems which means that the

duration of the trajectory needs to be specified a priori. It is not within the scope

of this work to optimise for time, we have therefore set the trajectory duration to

the respective average durations as computed using the reactive methods with our

probabilistic sensing model.

This work shows that we can reuse previous solutions of the the AICO algo-

rithm to improve convergence during the subsequent runs. We, however, want to

approach the replanning from a different angle. In the next chapter, we will in-

troduce novel representations that will allow us to compute plans that are robust

under perturbations and geometric changes in the environment. We then use these

plans and re-map the trajectory in the abstract space into a trajectory in the con-

figuration space. This process replaces the costly re-planning by a more efficient

re-mapping at a cost of local approximation.

http://youtu.be/jtMv6V7ZvmE
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Prallel scenario Perpendicular scenario

Raw laser
data

CVM 0.2261W BCM 0.1659W
VHF+ 0.2140W VHF+ 0.1249W
BCM 0.2054W CVM 0.1045W
LCM 0.2012W LCM 0.0909W

Probabilistic
model

CVM 0.2091W CVM 0.0999W
LCM 0.2070W BCM 0.0904W
BCM 0.1904W VHF+ 0.0883W
VHF+ 0.1743W LCM 0.0835W
AICO 0.1455W AICO 0.0789W

Table 1: Summary of energy consumption results. AICO using the probabilistic sensing
model outperforms all reactive methods in both parallel and perpendicular sce-
narios.
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TA S K R E P R E S E N TAT I O N

The result of motion planning is a trajectory in configuration space that can be

executed on the robot. Although, this trajectory is constructed in the configuration

space, we often use other metrics in alternate task spaces (as defined in Equation 8)

during motion planning. Lets assume that every trajectory in configuration space

can be mapped into an arbitrary task space. This task space may have very differ-

ent properties and therefore the trajectory in this space will have a very different

shape. Figure 7 illustrates the use of a task space where a collision free trajectory is

easier to find than in the configuration space. In fact, a simple interpolation in this

task space produces a collision free trajectory in this hypothetical case. Therefore,

the way how we represent the task can have a big impact on motion planning.

There are several formal views on the implication of an alternate task representa-

tion: 1) In the context of randomized search, such representations alter the Voronoi

bias or more generally the sampling strategy and therefore, the efficiency of rapidly

exploring random trees (RRT) or probabilistic road maps (PRM). Lindemann and

LaValle [2004] demonstrate this effect in the case of RRTs. 2) An alternate represen-

tation may imply a different topology, such that a trajectory that is a complex path

in one space becomes a simple geodesic in another. 3) An alternate representation

may change the metric of the space, such that local optimization in one space is

sufficient for finding a solution whereas global optimization (randomized search)

would be needed in the other. 4) Finally, different representations may allow us

to express different motion priors, for instance, a prior preferring “wrapping-type

motions” can be expressed in one space as a simple Brownian motion or Gaussian

process prior, whereas the same Brownian motion prior in configuration space

renders wrapping motions extremely unlikely.

There are task representations that are defined purely based on the robot model.

However, many tasks require additional parameters such as positions of obstacles

or shapes of colliding objects. We assume that these parameters may be indexed

on time but they are not a function of the robot configuration. We define a notion

of a scene to be the collection of the robot model description and all parameters Scene

27
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Figure 7: Illustration of a trajectory in the configuration space (left) and a the same tra-
jectory mapped into a task space (right) with different metrics and topology.
Obstacles are red and the trajectory is a black dashed line.

external to the robot which are required for computing the task representations.

We then define the task representation as:

φ(xt,αscene) : X→ Y, (44)

where xt is the robot configuration and αscene is the set of parameters external to

the robot1 at time t. In the robotics literature, these parameters usually get treated

as part of the work space and won’t get modelled explicitly or they get added

into the configuration space as unactuated degrees of freedom. In both cases, the

motion synthesis algorithm gets presented with task representation as defined

in Equation 8, which makes the separation of the robot configuration and the

scene parameters impractical. Such separation is useful for explicitly modelling

the interaction between the robot (xt) and the scene (αscene). The parameter αscene

is treated as a constant rather than as a variable within the function φ(xt,αscene).

This allows us to use a task map in the same way, as we defined it in Equation 8 but

to model the parameter explicitly at the same time. We will now present several

task representations that model these interactions explicitly and group them based

on the type of problems they are most suitable to be applied to.

1 In Appendix A, we describe a kinematic scene which implements this functionality. Although the
scene may contain parameters that are not kinematic in nature, such as external forces, all of the
tasks that we use are based on kinematic state of the robot and other objects in the scene.
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winding and writhing Choosing correct task representation for a given

problem is a crucial part of designing motion synthesis techniques. For example,

in order to cope with problems of close interactions, we can represent the task

using spatial relations between the body parts and objects. Multiple tasks involve

wrapping and winding motion, e.g. untangling knots, wrapping fingers around a

handle or passing arm through a sleeve2. Several representations have been pro-

posed to solve this type of problems. For representing knots, Dowker and Morwen

[1983] proposed describing the configuration of a 3D strand based on its overlap

with itself, when viewed from a specific direction. This approach has been later

used by Takamatsu et al. [2006], Wakamatsu et al. [2006], Matsuno et al. [2006]

and Saha and Isto [2007] for planning knotting motion. The obvious disadvantage

of such representations is its view-dependence and the difficulty in generating

commands to actually manipulate the elements of the string.

These problems have been addressed by Bhattacharya et al. [2010] where the

authors proposed using winding numbers to compute homotopy classes of paths

to classify trajectories in 2D configuration spaces. Further work by Bhattacharya

et al. [2011] extended this work to classifying 3D paths using the Ampere’s law.

This work, however, stops at classifying configuration space paths into homotopy

groups, which limits this approach to systems with 3 DoF. Ho et al. [2010a] pro-

posed to use the same representation for describing interactions between skeletons

of robots and other (possibly articulated) objects in their workspace. This represen-

tation called topology coordinates is based on the Gauss Linking Integral and it is

suitable for representing tangling motion. In Tamei et al. [2011], the same repre-

sentation is applied for controlling the movement of a robot that puts a shirt on

a human. This type of winding and writhing motion is suitable for manipulating

string like objects and controlling the skeletons of robots. Some tasks, however,

require interaction between the surface of the robot and the object, not just be-

tween their skeletal approximations. Such representations are useful for planning

grasping motion.

enveloping an object Grasping is an active area of research within robotics

and many methods for achieving stable grasps under various constraints have

been proposed in the literature. These approaches have been successfully applied

to solve the grasping problem but they encode the interaction with the grasped ob-

ject through grasping primitives such as spheres and cylinders (Miller et al. [2003]),

2 Passing an arm through a sleeve is equivalent to wrapping the arm around the inside of the edge of
the sleeve (see Figure 28).



30 task representation

a proxy object (Gioioso et al. [2012]) or fingertip positions (Peer et al. [2008]). An-

other class of techniques uses learning from demonstration (Kang and Ikeuchi

[1994]) or the hand is controlled via teleoperation (Haiying et al. [2005]) to achieve

successful grasping motion. Common interactions between the hand the object,

such as the power grasps, usually involve enveloping the object with the surface

of the hand. In Sandilands et al. [2013b], we proposed a representation based the

electrostatic field of the virtually charged manipulated object. This method utilises

electric flux to compute how much does the surface of the hand envelop the object.

The same electrostatic field can be also used to define more generic metrics.

generic interaction representations The electrostatic field can be pro-

bed at different points around the virtually charged object. In Sandilands et al.

[2013b], we also proposed to use the field potential to create an object centric

coordinate system called electric coordinates. The potential can be tracked along

the electric field gradient to the surface of the object, which makes it possible

to compute properties, such as finger tip position on the object and force closure,

even when the hand is not in contact with the object3. This representation is useful

for grasping objects, but it is requires the knowledge of the exact shape of the

object. Many interaction with the environment can, however, be done at a more

coarse level by preserving the spacial relationships with objects surrounding the

robot.

Another representation called interaction mesh, that captures such spatial rela-

tionship, was introduced by Ho et al. [2010b]. The relationship is quantified by the

Laplacian coordinates of the volumetric mesh whose points are sampled on the

links of the robot and the objects in the scene. This methods is compatible with

the definition of the task representation as defined in Equation 44. However, it is

a discontinuous representation which is only valid in the neighbourhood of the

posture from which the volumetric mesh is computed. This is due to the way the

connectivity of the mesh is defined.

All these representations share a common property, which is, that they can ren-

der two very different motions that involve complex interaction as very similar to

each other in a analogous to the way that the topology invariants render different

geometrical shapes as topologically equivalent. In the context of this thesis, we

define the term topology-based space as any space, that in general abstracts away theTopology-based

space

3 The force closure is computed using the fingertip positions as query points in the electrostatic field
with the assumption that these points will become contact points when the hand gets closer to the
object. See Section 3.3 for more details.
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geometric detail of the work space. Not all the topology-based spaces, therefore,

strictly relate to a space with a novel topology — most of these spaces are in fact

Rn with the usual topology and they can be classified as universal covering spaces

of the joint space (Munkres [2000]). For example, the writhe scalar described in Sec-

tion 3.1 is a homology invariant (see Section 3.5) but the interaction mesh space

defined in Section 3.6 is a metric space designed to represent interaction between

objects by preserving their relative spacial relationships.

As opposed to the computer animation domain, where topology-based repre-

sentation have recently been used (Ho et al. [2010b]), synthesizing motion in such

abstract spaces for planning and control of robotic systems comes with additional

challenges. Typically, control tasks are specified in world (or end-effector) coordi-

nates, the obstacles may be observed in visual (or camera) coordinates, and the

joint limits of the actuators are typically described in configuration space. There-

fore, the general challenge is to devise motion synthesis methods that combine the

benefits of reasoning in topology-based coordinates while preserving consistency

across the control coordinates and managing to incorporate dynamic constraints

from alternate representations seamlessly. This is where the flexibility of the AICO

framework plays a crucial role. The graphical model can be easily extended with

new random variables as we discussed in Section 2.2.2. We will now introduce sev-

eral task representations that fit within this framework and create motion priors

with an interesting metric or topology.

The contributions of this chapter are:

• Applying and combining representations that directly model the interaction

between the robot and its environment. These include: winding number,

writhe, electrostatic flux, electrostatic coordinates and interaction mesh.

• A set of experiments comparing novel and classical representations using state

of the art motion planning methods (AICO, RRT*).

• Experiments showing utility of motion planning using winding numbers for

folding motion in 3D and navigation with winding constraints in 2D.

• Electric field based representations suitable for transferring reaching and

grasping motion.

• Validation that the proposed representations are simple enough so that local

optimisation methods such as AICO can be used.

• Experiments showing grasp transfer/teleoperation with different bias/style.
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• Extension of interaction mesh representation by adding per-edge weighting.

• Application of electric flux and electrostatic coordinates to problems of grasp-

ing and grasp transfer.

• A method for real-time motion generalization (re-mapping) to novel situations

using abstract representations and operational space control.

3.1 writhe representation

The writhe is a property of the configuration of two kinematic chains (or in the

continuous limit, of two strings). Intuitively the writhe describes to what degree

(and how and where) the two chains are wrapped around each other, which is a

well suited property for representing winding and wrapping motion (see Klenin

and Langowski [2000]).

Let us describe two kinematic chains by positions −→p 1,2
1:K of their joints, where

−→p ik ∈ R3 is the kth point of the ith chain. Using standard kinematics, we know

how these points depend on the configuration x ∈ Rn, that is, we have the for-

ward map φik(x) and Jacobian Jik :=
∂−→p ik
∂x for each point. The writhe is a function

of the link positions −→p 1,2
1:K. More precisely, the writhe matrix Wij describes the rel-Writhe matrix

ative configuration of two points (−→p 1i ,−→p 1i+1) on the first chain and two points

(−→p 2j ,−→p 2j+1) on the second chain where i, j are indexes of points along the first and

the second chain respectively. For brevity, let us denote two consecutive points on

the first chain by (−→a ,
−→
b ) = (−→p 1i ,−→p 1i+1) and similarly (−→c ,

−→
d ) = (−→p 2j ,−→p 2j+1) on the

second chain (see Figure 8). We then define the writhe using the task map φwrithe(x)

which computes writhe matrix

Wij=

[
sin-1

−→n>a
−→n d

|−→n a||−→n d|
+sin-1

−→n>b
−→n c

|−→n b||−→n c|
+sin-1

−→n>c
−→n a

|−→n c||−→n a|
+sin-1

−→n>d
−→n b

|−→n d||−→n b|

]
sign

[−→
ab>(−→ac×

−→
cd)
]

(45)

where −→n a,−→n b,−→n c,−→n d are normals at the points −→a ,
−→
b ,−→c ,

−→
d with respect to the

opposing segments, defined as

−→n a=−→ac×
−→
ad , −→n b=

−→
bd×
−→
bc , −→n c=

−→
bc×−→ac , −→n d=

−→
ad×
−→
bd . (46)

The above equations compute the Gauss linking integral (GLI) along two segments.

The solution of this integral is based on an analogy with the solid angle formed by
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Figure 8: Illustration of the definition of writhe for two segments.
−→
ab belongs to the ma-

nipulator skeleton (green curve) and
−→
cd is a part of the obstacle skeleton (gray

line).

all view directions in which segments
−→
ab and

−→
cd intersect multiplied by an appro-

priate sign (Klenin and Langowski [2000]). Since the writhe matrix is a function of

the link positions p1,2
1:K we can compute its Jacobian using the chain rule4.

Figure 9 illustrates two configurations together with their writhe matrix repre-

sentation. The amplitude of the writhe (shading) along the diagonal illustrates

which segments are wrapped around each other. We can derive simpler metrics

from the full writhe matrix, usually by summing over writhe matrix elements.

For instance, the Gauss linking integral, which counts the mean number of in-

tersections of two chains when projecting from all directions, is the sum of all

elements of the writhe matrix. In our experiments, we will also use the vector

φ
j
writhe(x) = wj =

∑
iWij as a representation of how much the links of the robot

wrap around the entire skeleton of an obstacle.

3.1.1 Planning winding motion with Writhe

The utility of the writhe representation is in scenarios where winding motion is

required. In the following experiment, we will demonstrate how motion planning

with a prior in the writhe space improves the performance of both exploratory and

optimisation-based planners. We simulate a generic manipulator consisting of 10

4 See Appendix B.2 for full derivation of the writhe.
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(a) Initial configuration (b) Final configuration

(c) Initial writhe matrix (d) Final writhe matrix

(e) Writhe trajectory

Figure 9: The experimental task is to grasp the object without collisions. Corresponding
writhe matrices (c, d) are depicted below the configurations (a, b) - the darkness
represents the amplitude of the writhe value. Each row in writhe space evolves
over time as shown in (e). The red boxes indicate the initial and final time slices.

segments connected together using 20 revolute joints5, making 20 DoF in total.

Initially, this snake-like manipulator is coiled two times around a pole-shaped

obstacle, giving us approximately 720
◦ of writhe density (See Figure 9a). The task

is to reach for the target rendered as a green sphere and avoid colliding with the

red cylindrical obstacle (Figure 9b show the desired final configuration). Figure 9e

illustrates an example of a unwrapping trajectory in the writhe space when all

rows of the writhe matrix are summed up into one column to representing the

configuration more compactly. This compact representation can be justified when

the skeleton of the obstacle has an uniform shape, such as the red pole in our

experiments.

5 Each pair of segments is connected through 2 revolute joint with axes perpendicular to each other.
Each pair of joints simulates a ball-socket joint.
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aico with classical representations We first solved the problem using

AICO and classical representations. In this case, we constructed the following cost

function (as the state cost part of the overall cost function defined in Equation 19)

c(xt) = ρeff‖yeff −φeff(xt)‖2 + ρcoll‖φcoll(xt)‖2 (47)

using a combination of the end-effector position cost term ‖yeff −φeff(xt)‖2 and

a collision cost term ‖φcoll(xt)‖2. Equation 47 is a cost function in the quadratic

form as the defined in Equation 35. The end-effector position cost is the distance to

the reaching target (the red sphere). We use φeff(xt) to compute the end-effector

position using forward kinematics. To achieve a smoother trajectory, we created

a reference trajectory yeff for the end-effector by interpolating between the initial

and target position in the work space coordinates. The collision cost φcoll(xt) was

computed as the reciprocal distance between the robot body and the closest ob-

stacle when the obstacle is closer than a safety distance. The collision cost term is

ignored if the obstacles are too far to cause collisions.

We combined the two cost terms by manually assigning relative weights ρeff and

ρcoll. Then, we attempted to compute an optimal trajectory6 using AICO. Our first

attempts failed because the initial large amount of coiling of the robot around the

obstacle creates a deep local minimum which caused AICO to get stuck. However,

we managed to fine tune the task weighting parameters ρ to produce a success-

ful trajectory. The resulting weights gave high importance to the collision cost

term throughout the whole trajectory. Then, we weighted the end-effector posi-

tion term using ρeff an order of magnitude lower than ρcoll, except for the last time

step which was then weighted higher than the collisions cost term. This is a very

specific weighting scheme that was fine-tuned for this particular winding prob-

lem. Since this was the only cost function that allowed us to solve the problem

using AICO and the classical representation, we have used this cost function to

also evaluate trajectories computed using the competing methods.

rrt* with classical representations The local minima that significantly

affects the local trajectory optimizers has a very different effect on exploratory

methods. In our second scenario, we used the RRT* algorithm (see Section 2.1

which explains the modifications to RRT necessary for finding asymptotically op-

timal paths) to solve the winding problem. We used collision detection for rejecting

samples that were in collision with the obstacle and we used the end-effector po-

6 We have time discretized the trajectory using 50 time steps.
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Figure 10: Comparison of AICO and RRT* algortims on an unwrapping task with and
without using the writhe representation. In case of RRT* we show statistics over
100 runs. The cumulative cost is computed using Equation 47 for all trajectories.

sition cost term and the collision cost term from Equation 47 as the optimisation

criteria for RRT*. We have additionally used the end-effector cost term to bias the

sampling as proposed by Shkolnik and Tedrake [2009]. We manually tuned the

ratio between random exploration and movement toward the goal to minimize

the computation time. Figure 10 shows the comparison of both the total cost and

the computation time of RRT* and AICO. The cumulative costs of trajectories com-

puted using RRT* are slightly lower than the cost of the trajectory computed using

AICO but the AICO trajectory performs very similar to the RRT* trajectory, show-

ing that both methods have computed trajectories close to the global optimum.

The computation time that the RRT* algorithm required was slightly higher than

the time required by AICO (see Figure 10b).

The RRT* algorithm computes the optimal trajectory as the number of samples

tends to infinity. In practice this means that we have to limit the amount of time

RRT* is allowed to use to improve the trajectory. To make the computation time

comparison more objective, we report the time RRT* required for finding the feasi-

ble solution7. We, however, continue the sampling process until the trajectory cost

converges based on the same termination criteria as AICO. The trajectory cost we

report in Figure 10 is the optimal cost, rather than the cost of the feasible trajectory.

The RRT* algorithm can be improved in multiple ways in terms of convergence

rate and cost optimality beyond the methods we selected (as we discussed in Sec-

tion 2.1). We justify comparing the planning methods using the feasible trajectory

computation time and the optimized trajectory cost by the fact that regardless of

7 This is equivalent to running the RRT algorithm.
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the choice of the exploratory algorithm, the feasible trajectory will always be the

fastest to compute and optimal trajectory will always produce the best cost. The

trade off between the time needed to compute the optimal trajectory and its cost

can be affected by the algorithm implementation and by further tuning their pa-

rameters. An exhaustive evaluation of the state of the art exploratory algorithms

is outside of the scope of this thesis. We are interested in the effect of planning in

alternate spaces instead.

aico with writhe representations In the next scenario we start with the

same setup as we used for solving the winding problem using AICO and classical

representations. We, however, replace the collision cost term in Equation 47 with

a writhe cost term

c(x) = ρeff‖yeff −φeff(x)‖2 + ρwrithe‖φwrithe(x)‖2 . (48)

Since the task requires unwinding of the robot links, we simply aim to minimize

the amount of writhe. We can afford to remove the collision term from the cost

function entirely because states that would cause collisions would also produce

high writhe values and would therefore be avoided as any other sub-optimal solu-

tions. As in the previous experiment, we have manually selected the task weights

ρ. Choosing the same weights for the end-effector position and the write was

sufficient to successfully compute a trajectory. Figure 10 shows that the cost of

this trajectory is significantly lower than the trajectory planned using classical rep-

resentations. Even though the collision cost was not optimized in this case, the

writhe motion prior rendered smooth unwinding motion away from the obsta-

cle more likely than any motion towards the obstacle. Once the robot was com-

pletely unwound, the reaching motion towards the target exploited the null space

of the writhe representation. While the trajectory cost was reduced by an order

of magnitude, the computational cost was increased only slightly. The writhe rep-

resentation is, however, more costly to compute. The small impact on the total

computational cost was due to the fast convergence of the AICO algorithm. As

a result, the number of AICO iterations was lower because the writhe prior was

fully utilised and each iteration monotonically improved the trajectory.

rrt* with writhe representations In the last set of experiments, we

replicated the same setup as in the scenario with RRT* using classical represen-

tations. In this case, we have added a sampling bias in the writhe space to the
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existing bias in the end-effector space. Analogously to the design of the cost func-

tion for AICO (see Equation 48), we used a weighted combination of the writhe

bias and the end-effector bias with equal relative weighting. We have, again, fine

tuned the ratio of random sampling and movement towards the goal. Figure 10a

shows that the trajectory cost remained the same as the cost produced by RRT*

with classical representations. On the other hand, the computation cost was signif-

icantly increased. RRT* does not fully utilise the bias in the writhe space. Certain

amount of time is always spent doing randomized exploration. Even though we

have fine tuned the ratio of exploration, the RRT* algorithm still required roughly

the same number of samples to find the feasible solution using writhe as before,

when we used classical representations. As a result, additional time was required

to compute the writhe mapping for biasing the exploration.

3.1.2 Discussion

Our experiments have shown that utilising topology-based spaces within the AICO

framework does, indeed, improve the convergence and overall cost when applied

to a suitable problem. In the case of the writhe representation, a suitable problem

would involve large amount of winding of the end effector, such as the unwrap-

ping motion of a snake like robot in our experiment, wrapping fingers around a

strap of a backpack, or passing a robot arm through a hoop. The writhe captures

the interaction between two 1D chains embedded in 3D space and it’s invariant

to the relative transformations of the two chains. This means that the chains can

deform but maintain the same amount of writhe relative to each other at the same

time. Writhe can also be used to prevent the two chains from intersecting with

each other by avoiding high amount of writhe that is generated when they get

close to each other. This is not a substitution for collision avoidance based on geo-

metric distance metrics because writhe does not take into account the actual shape

(thickness) of the objects that are being approximated by the kinematic chains.

The writhe representation has a null space that can be exploited during motion

planning. Motion which does not affect the amount of writhe, such as reaching

for a target far away from the second kinematic chain, cannot be controlled using

writhe. In such cases writhe can be used as a complementary task definition, until

the robot moves closer to the object of interest and the interaction becomes the

dominant element in the cost function.
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The computational complexity of calculating the writhe of two chains composed

of K1 and K2 linear segments respectively is O(K1K2). The computation can be

therefore parallelised to improve the computational time. The choice of K1 and K2
affects how finely the articulated or deformable object is approximated by a chain

of linear segments. In the case of articulated objects composed of rigid bodies, such

as robot links, the approximation can be rough with one linear segment per robot

link (or less in most cases). When interacting with deformable objects or with rigid

objects that have complex shapes and require multiple linear segments to capture

the shape accurately, we may require to define a higher number of linear segments.

How to approximate the objects of interest using the minimum number of linear

segments is outside of the scope of this thesis.

We have also discovered that existing implementations of motion planning al-

gorithms have been designed for benchmarking standard motion problems. Our

experiments required changing the definition of the problem by changing the cost

terms and fine tuning parameters such as task weights ρ and the exploration ra-

tio. These can be abstracted as a set of parameters defining the planning problem.

However, we have not found an existing software framework which would imple-

ment this abstraction. We have therefore developed a new motion planning library

that defines an extensible language for describing motion planning problems. See

Appendix A for more details.

In the rest of this chapter, we will present topology-based representations that

can be applied to different types of tasks. Since we have shown that a suitable

representation can improve the performance of motion planning algorithms, we

will now use experiments to demonstrate suitability of different representations

for specific problems in robotics.

3.2 winding numbers

If the problem can be simplified to planning a wrapping motion in 2D, we can use

the winding numbers to represent the interaction. The winding number is a measure

of how many times a curve is wound around a point on a 2D plane (Figure 11).

We compute the Winding number using the approximate algorithm derived by

O’Rourke [1998] which is based on calculating inverse trigonometric functions of
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pc

Figure 11: Winding number of a point pc surrounded by the doubly wound curve:
φwinding(x) = 2.

the scalar product of two normalized vectors, formed by consequent points −→p i
and −→p i+1 on a curve and a central point −→p c:

φwinding(x) =
1

2π

n−1∑
i=1

arccos
(
(−→p i −−→p c)>(−→p i+1 −−→p c)
|−→p i −−→p c| |−→p i+1 −−→p c|

)
(49)

where n is the number of points along the curve.

This scalar continuous function can be thus viewed as a simplification of a

writhe representation defined in Section 3.1.

winding in 3d We have designed a toy experiment to demonstrate how we

count winding numbers in 3D. The task is to fold a carton sheet into the shape of

a box. For simplicity, we do not consider controlling a robot to fold the carton, we

instead control the box directly by moving the carton segments. We model these

segments as six rigid bodies connected by six revolute joints. Figure 12 shows

the carton box in its initial unfolded state (left), and also half way to the goal

state (right). In this experiment with the winding numbers, we assume that all the

points −→p i are embedded in the 3D space but we project them onto a common 2D

plane. We have projected control points on the surface of the carton along the red

and green lines as shown Figure 12 and we set the position of the central point pc
to be the centre of the box (depicted as a small blue cube in Figure 12). We use the

standard kinematics to compute the positions of the points −→p i depending on the
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Figure 12: Representing carton box folding using winding numbers. The winding number
is computed using a virtual query point (blue) and a projection onto the surface
of the box (red and green). The amount of winding is simply increased from
the initial configuration (left), to a goal value (right).

configuration x ∈ Rn. We can therefore use the chain rule to compute the Jacobian

of the winding number
∂φwinding
∂x . Using this technique, we can directly control the

amount of winding.

We apply AICO to compute the carton folding trajectory using the following

cost function

c(x) = ‖ywinding −φ
red
winding(x)‖

2 + ‖ywinding −φ
green
winding(x)‖

2 , (50)

where we set the winding goal ywinding = 1 which translates into winding each of

the two curves around the central point exactly once. We have iterated AICO to

convergence producing the carton folding motion. This example is very simplistic

and the same result can be achieved by moving each of the revolute joints con-

necting the carton segments in positive direction (see video at http://youtu.be/

LOAG5VmmtO4). The utility of winding number representation is in capturing the in-

teraction between carton and the central point. This interaction may be much more

complex, such as wrapping fingers around a door handle. Winding numbers have,

however, another application in the area of mobile robotics.

path planning with winding constraints Vernaza et al. [2012] pro-

posed to use winding numbers to define winding constraints for surveillance us-

ing mobile robots. Similarly to their approach, we have used the Kuka YouBot

mobile platform (see Figure 13) and performed path planning with winding con-

straints. We have used a discrete grid to represent the configuration space of the

http://youtu.be/LOAG5VmmtO4
http://youtu.be/LOAG5VmmtO4


42 task representation

Figure 13: KUKA YouBot robot used in the path planning experiments (left) and a real
world scenario with a concave obstacle (right). Figure courtesy of Yiming Yang.

robot. We have assigned costs to each grid cell. Some areas that may be potentially

dangerous have been assigned a high cost. The task is to survey the area by driv-

ing around each of the points of interest and return to the starting position. We

have used the A* algorithm to plan an optimal path. By augmenting the connec-

tivity of the search graph, as described in Vernaza et al. [2012], we were able to

define winding constraints around obstacles in the scene. The winding constraint

is computed using the central point pc but the obstacle does not have to be a point.

In fact, the the shape of the obstacle does not affect the winding constraint as long

as we place the central point inside of the obstacle. Figure 13 (right) shows the

results of path planning with a winding constraint around a concave obstacle. We

have added another obstacle into the scene to show that the winding constraint is

satisfied in presence of other objects8.

The winding constraint can easily be combined with other metrics and cost

terms by augmenting the grid we use for approximating the environment. It is

also possible to constrain the path to wind around multiple points of interest.

There are, however, multiple solutions that satisfy this constraint when there are

two or more points of interest. Figure 14 (left and right) shows two possible solu-

tions for surveying an area with three points of interest. Without specifying any

8 The second obstacle was not used for winding constraint computation to highlight that other cost
terms affect the shape of the trajectory and that the winding constraint does not completely define
its shape.
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Figure 14: The difference between applying the winding constraint to all obstacles together
(left) and to each point of interest individually (right). The number on top of
each point of interest is the desired amount of winding. Figure courtesy of
Yiming Yang.

additional constraints, adding multiple points of interest will result in a trajectory

that winds around the whole group of points because such path is the optimal

solution to the problem with respect to the path length. If we wish to compute a

path that winds around the points of interest individually, we have to consider the

individual winding constraints and ignore the remaining points of interest.

When we plan a path that winds around each point individually, we first speci-

fied the order in which we want to visit the points. We then computed a shortest

path from current location to the point of interest. This path usually terminates

when the robot is within a specified distance from the obstacle. This is where we

defined a temporary start point. We then computed a path with a winding con-

straint around the point of interest. This paths starts and ends at the temporary

start point. We repeated this process for each point of interest in order we have

specified previously.

We ran an experiment with four points of interest as shown in Figure 15. In this

case, we constrained the path to wind around points of interest 1 and 4 individu-

ally and we have grouped points 2 and 3 together. We have used the A* algorithm

to plan a collision free path that additionally avoids high cost areas. This experi-

ment demonstrates that the winding number allows us to compute paths which

wind around areas of interest. This representation is invariant to the shape of

these areas since we define the constraint using just a single point inside the area

of interest. The winding number representation can only be used in 2D. In 3D, it is

possible to either use projection onto a surface, or to use the writhe representation.
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Figure 15: An arbitrary grouping points of interest with respect to the winding constraint.
The numbers show the desired order in which the points of interest should be
approached. The obstacles are green and the high cost area is rendered red.
Figure courtesy of Yiming Yang.

3.3 electrostatic coordinates

Synthesizing reaching and grasping motion is very challenging due to complex

contacts between the gripper and the grasped object, multiple redundant solu-

tions, grasp stability issues, and the complex shape of the open space, especially

when concave objects are involved. In this case, motion planning is computation-

ally expensive, because collision detection and global path-planning are required.

Furthermore, the movement is no longer valid once the geometry of the hand or

the shape of the object change.

Our work is based on the electrostatic parametrisation proposed by Wang et al.

[2013], which computes an object-centric curvilinear coordinate system that resem-

bles polar coordinates. Such coordinate system is useful for defining reaching and

grasping motion with respect to the object, as it gives a relative spatial relationship

between a point and an object.

In order to compute this coordinate system, we virtually charge the object as

a conductor. We use a triangulated mesh9 to approximate the surface of the ob-

ject. Using the principle of superposition and the fact that the potential around

a charged object is proportional to the charge, we can construct a dense linear

system of L equations, each representing the notion that the potential must be 1

volt at some probe point on the surface of the object. Using L number of variables

9 Uniformly triangulated surfaces produce more accurate results (Goto et al. [1992]).
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(a) Electric field lines of charged objects

(b) Spherical Mapping

Figure 16: An example of charged objects. (a) The charge is mapped from blue to red, rep-
resenting low charge and high charge respectively. (b) Projection of 2D spheri-
cal coordinates computed using electric field showing correspondence between
different objects. Figure courtesy of Peter Sandilands.

denoting the unknown charges Ql for each of the triangles, we write down the

system of linear equations
V1(~x1)Q1 + V2(~x1)Q2 + · · ·+ Vn(~x1)QL = 1

· · ·

V1(~xL)Q1 + V2(~xL)Q2 + · · ·+ Vn(~xL)QL = 1,

(51)

where Vl(~xm)Ql denotes the potential Vl at point ~xm due to the l-th triangle

carrying charge Ql in the analytical form (as defined in Goto et al. [1992]). For the

probe points ~xm, we select the barycentres of the mesh triangles10. Equation 51

defines a dense linear system that can be written down in matrix notation as

PQ = 1. This system is typically ill-conditioned, and therefore we solve it using

pseudo-inverse of P in the least squares sense.

Figure 16a visualizes the distribution of charges over the surface of different

objects and the resulting electrostatic fields around them by plotting their field

lines. In our system we calculate the potential of each control point ~pi(x) attached

to the hand (related to robot configuration x through forward kinematics). We

compute the potentials at the control points from L uniformly charged triangles

defined by points ~pk with surface charges P

φp(x) = fp(~pi(x),P,~pk) (52)

10 Any L points inside or on the surface of the object are suitable as probe points.



46 task representation

as described in Goto et al. [1992].

After completing the charge simulation, the resulting electric field can be used

to parametrise the space. Indeed, the field lines emanating from each point on the

surface never intersect (or else the conservation of energy would be violated), and

since the potential harmonically decreases with distance from the object, each pointHarmonic field

along a particular field line has a unique potential (see Figure 17a). A harmonic

field has field lines which do not intersect with each other, making it a field with

a small (minimum) number of saddle points and singularities. By following the

field lines from the surface outwards, we can map all the points on the object

to an infinitely large sphere outside, giving us a 2 dimensional parametrisation

of the surface of the object. Here we parametrise the 3D space by mapping the

spherical coordinates of the infinitely large sphere to every location in the space by

following the field lines outwards. We compute this parametrisation numerically

by evaluating the path integral of the electrostatic field along the field line C that

passes through a point ~x via

fuv(~x) =

∫∞
C

~E(~x)d~x, where ~x ∈ C. (53)

φuv(x) =


fuv(~p0(x))

fuv(~p1(x))
...

fuv(~pM(x))

 (54)

In practice the sphere is not infinite, as we follow the lines only to a low po-

tential, ensuring the endpoints are far from the object. We use the azimuth u and

elevation v (from the endpoints of projection fuv(~x)) as the first two coordinates

in our parametrisation as φuv, and the electric potential φp as the final coordinate.

Following Wang et al. [2013], we call this parametrisation electric coordinates. Ad-Electric

coordinates ditionally, we also compute the inverse map from electric coordinates φp(x) and

φuv(x) to the position on the surface ~si of the object by following the field lines in-

wards by numerically evaluating the integral ~si(x) =
∫
C−~E(~x)d~x (see Figure 17b).

This gives us a projection onto the surface of the object for any point in the outer

space of the object. This is a bijective mapping defined for all points on the surface

of the object when there are no saddle points. This mapping exists even for object

of dissimilar shapes and arbitrary topology due to the non-intersection property
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(a) Electric field lines (b) Projection of points onto the surface of
the object

Figure 17: (a) The grid (field lines and equipotentials) of our curvilinear electric coordinate
system. (b) An illustration of the projection of points ~xi onto the surface of
an object using the electric coordinates. Vx is the isosurface (surface at equal
potential, dashed line) of the electric field that ~xi lies on, ~si is the point on the
surface of the object corresponding to ~xi obtained my increasing the potential
along the electric field line that intersects ~xi (shown as a solid red line). Figure
courtesy of Peter Sandilands.

of the field lines. If the shape of the charged object has genus larger than 1, saddle

points and singularities will appear, and the map between the UV sphere and the

surface of the object will be missing the singular points where the field line at the

limit of the singularity would intersect the sphere. We compute the correspondence Object

correspondencebetween different objects by the mapping of the surface points of the first object

onto the sphere and then mapping these points back to the surface of the second

object. Figure 16b shows examples of such mapping using the colour of the mesh

surface. The mapping is fully defined between all six objects because all of these

shapes have the same topology or genus which makes them homeomorphic to a

sphere. The projection onto the surface of the object also allows us to compute

force closure directly from surface points projected using electric coordinates as Force closure

φfc(x) = ffc(~s1..M(x)). (55)

Function ffc is the force closure measure defined in Miller and Allen [1999]. Here

we assume that the projected points will become contact points when distance to

the surface of the object decreases. This is a valid assumption if the controlled

points are, for example, the fingertips of a robot hand, which will eventually be-

come contact points when we move them closer to the surface of the object by

decreasing their electric potential coordinate. When exact placement of the fingers
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is required, the points projected onto the surface of the object can be used directly

as goals. Although these projections can be computed at runtime, we pre-compute

the electric coordinates at the vertices of a 3D grid structure surrounding the ob-

ject. We then look up the electric coordinates for points ~pi(x) in the 3D grid in

order to decrease computational cost at runtime.

The electric field computational complexity is O(L) (where L is the number of

triangles comprising the object), as defined by the superposition principle and

discussed in Wang et al. [2013]. This lookup grid reduces the computational com-

plexity of the potential calculation for a single point from O(L) to an O(1) lookup

and trilinear interpolation. It also reduces the complexity of computing the cor-

responding point on the surface of the object given a point in space, as this is

performed by using the Euler method of integration along the field line until the

surface is reached. This means that φuv and φp are also precomputed and stored

in the 3D lookup grid.

interior distance field The approximation of the electric field using the

3D grid and the Equation 54 are only valid for the outer space of the object. Al-

though theoretically the field is a consistent 1 volt both on the surface and inside

of the object, sampling this field inside the object leads to values less than the sur-

face value of 1 volt due to various approximations we made while computing the

field. This not only causes a local maxima at the surface of the object but means

that the local potential value does not define whether we are ‘inside’ the object or

not.

To alleviate this problem, we post-process our computed voxel grid to store

the values of a distance field as the potential for interior points, which computes

(1+ ||~x−~b||)3 where ~x is the point in question and ~b is the closest surface point. In

this case, the post-processed field potential increases in the direction of the medial

axis of the object and decreases in the direction of the nearest surface. If a control

point is placed inside of the object, it would be able to follow the gradient of this

field towards a potential value of 1, bringing it to the closest point on the surface

of the object.

In practise we compute the interior distance field by using a physics engine to

emit a ray in an arbitrary direction from the point and return the first point on the

object we hit. If no object is hit, we can safely ignore the point as it is outside of the

object11. If the object is hit, we compute the dot product between the ray and the

11 We assume that the object is closed.
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normal vector for the triangle at the point we hit. If it is positive (the ray has hit

on the inside of the triangle), we then recalculate the potential of this point using

the interior distance field calculation as previously specified.

3.3.1 Grasp planning in electrostatic coordinates

To validate our choice of representation, we designed an experiment where we

use the electric coordinates for planning motion of KUKA LWR4 robotic arm in

combination with the Schunk hand. The object we use here is a spray bottle, which

has a standard way of holding12. We manually specify the finger placement on the

surface of the spray bottle based on a typical human grasp. Since we have specified

the finger placement based on a human grasp, we select points on the robot hand

that most closely match the corresponding locations on a human hand13 as well.

This allows us to use the electric coordinate representation for motion planning in

the AICO framework. In addition to the electric coordinates, we add collision cost

to allow the robot to avoid obstacles while reaching for the spray bottle. We use

the following cost function:

c(x) = ρp‖yp −φp(x)‖2 + ρfc‖φfc(x)‖2 + ρcoll‖φcoll(x)‖2 , (56)

where φp(x) computes the electric potential using Equation 52 with the aim to

guide the fingertips towards the surface of the object, φfc(x) computes the force

closure metric using Equation 55 which aids with optimizing the position of the

fingers on the surface of the object, such that the resulting grasp is stable, and

φcoll(x) is the reciprocal collision distance metric we have also used in our previ-

ous experiments. In this case, the collision term is used to avoid collisions of the

hand with the object during the approach. We used the reference electric potential

yp which we compute by interpolating between the initial and goal coordinate in

the electric potential space. We have manually fine tuned the task weighting pa-

rameters ρp, ρfc and ρcoll. We disable the force closure cost term by setting ρfc = 0

throughout the whole trajectory, except for the final time step where we use the

the force closure cost to evaluate the stability of the grasp.

We now add an obstacle into the environment and perform motion planning

in the electric coordinate space (see Figure 18). Since all of the task variables are

12 The fingers being wrapped around the bottle neck and one finger placed on the trigger.
13 These points are fingertips, interphalangeal joints and the wrist. Our experiments confirmed that

these points capture the motion sufficiently.
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(a) Force closure grasp (b) Precision grasp

(c) Precision grasp and pick up

Figure 18: Planning successful grasps while reaching around an obstacle. (a) Force-closure
grasp maximising stability. (b) Precision grasp with style defined using electric
coordinates. (c) Precision grasp implemented on hardware and picking up the
spray bottle.

well defined everywhere in the workspace, we were able to iterate AICO to conver-

gence. Figure 18 shows the result of successfully planning a reaching and grasping

trajectory. The planner computed a stable generic grasp for the spray bottle (see

Figure 18a).

We have then added a task cost term for computing error in the spherical coor-

dinates producing the following cost function:

c(x) = ρuv‖yuv −φuv(x)‖2 + ρp‖yp −φp(x)‖2 + ρfc‖φfc(x)‖2 + ρcoll‖φcoll(x)‖2 ,

(57)

where φuv(x) is the electrostatic UV projection and yuv goal position for the fin-

gertips that we have chosen manually based on typical human finger placement.

These spherical coordinates arise from the parametrisation of the electrostatic field

around the object as defined in Equation 54. While the electric potential allows us

to move closer and further away from the object, the spherical coordinates allow us

to move along the equipotential surfaces of the electrostatic field, thus giving a full

control over the finger placement. We specify a target in spherical coordinates only

at the last time step of the trajectory and set the task weight ρuv to zero for rest

of the time steps. This allows us to encode a bias (or a style) while the remainder
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of the trajectory relies predominantly on potential and force closure motion priors.

We have successfully computed a stable grasp using AICO. Figure 18b shows the

resulting precision grasp around the neck of the spray bottle and Figure 18c shows

the robot executing this plan and subsequently picking up the spray bottle.

The reaching and grasping motions are traditionally planned as separate tasks

(Goldfeder et al. [2007]), where a set of viable stable grasps is computed using only

the gripper, by virtually separating it from the arm at the wrist, producing a set

of targets for the wrist pose. The reaching trajectory for the arm is then planned

separately with the aim to reach one of these wrist target poses. Using electric

coordinates, we were able to represent both, the reaching and grasping motion as

a single task and plan both motions at the same time. Although the force closure

measure that ensures stability of the grasp is computed using only approximate

contact points, the resulting grasps were stable and robust as demonstrated on

the real robot (see Figure 18c). We have shown that this is a suitable technique

for planning precision grasps where the point contacts between the fingers and

the object dominate the interaction. Power grasps, however, require larger contact

surfaces, in which case, point contact are not suitable any more, and the way how

the object gets enveloped by the hand becomes more important.

3.3.2 Discussion

The electric coordinates represent the position of a point around the object of

interest using the electric potential (analogous to the distance to the surface) and

the UV coordinates on the sphere at the infinite distance (analogous to position on

the surface of the object). The electric potential decreases harmonically but non-

linearly as the distance from the object increases. This makes the electric potential

space a smooth task space suitable for motion planning. This is however the case

only when the shape of the object of interest is convex and has genus 1 (no holes).

When the shape contains concave areas, the electric field still remains harmonic

but the electric field lines starting in these areas get much closer together in the

area surrounding the object than the ones starting in the convex areas. This causes

a distortion of the UV coordinates around concave areas. In practice, controlling

an end-effector position around a concave area of the object requires a precise

motion using smaller steps. Additionally, when the shape has genus higher than

1 (the object contains holes, such as a doughnut), the electric field will contain a

singularity and the end-points of the field line passing through this singularity
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Figure 19: Illustration of Gauss’s law for a charged point (red) entirely surrounded by an
arbitrary surface (grey). Figure courtesy of Peter Sandilands.

will intercept with the sphere on which we define the UV coordinates. The UV

coordinates at these points will not be defined. During motion planning, we would

like to avoid these areas with discontinuities. In our experiments, we deliberately

choose objects of genus 1 to avoid these problems.

We have also proposed to compute the force closure measure under the assump-

tion that the fingertip contact position on the surface of the object can be approx-

imated by following the field lines towards the surface. This assumption is valid

when the fingertips are just points. The fingers of any gripper are, however, rigid

bodies and the contact positions between the fingers and the object will change

depending on the shape of the two bodies. This approximation is still reasonable

when both, the object and the fingers, are convex bodies.

The force closure measure is a function of the positions of all the fingertips

we consider for motion planning. This creates a complex, non-smooth, landscape

of the force closure cost function. This can create local minima that optimisation

planners, such as AICO, may struggle to overcome.

3.4 using electrostatics to compute coverage

This electrostatic simulation on the object can also be used to evaluate the amount

the object is surrounded by the surface of the hand using a physical property

called flux. Electric flux is the surface integral of an electric field passing through

a surface. In terms of a representation for planning, this is interesting as it encodes

the relative envelopment of a surface around an electrically charged object.



3.4 using electrostatics to compute coverage 53

Figure 20: Virtual surface (blue - negative side, green - positive side) with a triangle 4abc
and a virtually charged object (grey) with a triangle 4def.

According to Gauss’s law, a closed surface surrounding a charged object will

always have a constant flux value, no matter the relative transformation or defor-

mation of the outer surface:∮
S

~E · d~A =

∮
S

~E · ~̂ndA =
Q

ε0
= const, (58)

where ~E is the electric field being integrated over the surface S surrounding the

charged object (with charge Q). d~A is a small region of S with a vector with

magnitude dA pointing in the normal direction ~̂n, and ε0 is the electric constant

(see Figure 19). This feature makes the flux suitable for representing the coverage

of the hand around the object. Here, we use the term "electrostatics" as an analogy

to the physical phenomenon. We choose to use this term due the fact that the

property of flux was historically first modelled based on electrostatic flux and

because this analogy is easier to understand for the reader.

Examples of different configurations in which a deformable object is surround-

ing the reference object are shown together with the flux value in Figure 21. You

can observe that as the object gets more surrounded, the flux value increases.

In practice, we are interested in computing the flux of an arbitrary 2D surfaces

modeled using triangulation. Such method was first proposed in Van Oosterom

and Strackee [1983] and later used in Wang et al. [2013] to compute the flux of a

deformable surface. Given a triangulated model of the closed shape of the virtually

charged object and the triangulated open or closed surface in the vicinity of the



54 task representation

charged object, we define the approximate electric flux through triangle4abc (see

Figure 20) due to uniformly charged triangle 4def as:

φflux(x) =
| ~de× ~df|

2

4∑
i=1

g(~xi,4abc),

~x1 =
4~d+~e+ ~f

6
,~x2 =

~d+ 4~e+ ~f

6
,~x3 =

~d+~e+ 4~f

6
,~x4 =

~d+~e+ ~f

3
(59)

where g(~x,4abc) is the electric flux through triangle 4abc due to charged point

~x defined as14:

g(~x,4abc) =2 atan2(J,K),

J =( ~ax× ~bx) · ~cx,

K =| ~ax|| ~bx|| ~cx|+ ~ax · ~bx| ~cx|+ ~ax · ~cx| ~bx|+ ~cx · ~bx| ~ax|. (60)

Each triangle of the virtually charged object (4def) contributes to generating

the electric field around the object and each triangle of the virtual surface con-

tributes to the total flux. We compute the total flux using superposition. Because

of this, the flux computation has the complexity of O(lm), where l is the number

of triangles of the virtually charged object and m is the number of triangles of the

virtual surface. The flux formula and its Jacobian are ideal for implementation on

parallelized systems, such as GPUs, due to the independent contribution of each

triangle to the total flux.

We refer to the object from which we draw triangles 4def as virtually charged

object. This analogy to objects generating an electric field is useful for visualising

the concept of the virtual electric flux, but notice that we don’t any actual electrical

charges on the the surface of the object, apart from assuming that each triangle is

charged uniformly with a unit charge.

If the points a,b, c are attached to a kinematic structure of the robot and con-

trolled via joint angles q ∈ Rn, then the analytical Jacobian of the flux with respect

to the joint angles can be derived using the chain rule (see Appendix B.3). The

dimensionality of electric flux space can be chosen arbitrarily anywhere between

1 and D dimensional space, where D is the number of triangles of the hand sur-

face that we use to measure amount of flux. To obtain a lower dimensional flux

space, we simply sum the flux over multiple triangle of the hand surface. Lower

dimensional space allows for simple control, while higher dimensional flux spaces

14 We denote a triangle defined by edges a, b, and c as 4abc, a 3D vector as ~x, and a vector between
two points as ~ax = ~x− ~a.
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flux = 0.05 flux = 0.5 flux = 0.85

Figure 21: A 2 dimensional illustration of different configurations of a deformable object
and a charged reference object labelled with the corresponding flux value of the
deformable object. Figure courtesy of Peter Sandilands.

(a) The flux surface (b) Three finger grasp

Figure 22: Grasping objects using electric flux. The motion is semantically similar and
adapts gracefully to new relative positioning of the hand and the object. Figure
courtesy of Peter Sandilands.

allows us to deform parts of the hand independently. This is crucial when control-

ling style of grasping where each finger moves differently based on the style. We

then control the style by weighting each triangle separately. These weights can

either be defined manually by an expert or they can be learnt from demonstration.

The electric flux allows us to control the robot hand at a more coarse level

than electric coordinates, which makes these representations complementary to

each other. A particularly useful property of the electric flux representation is the

smoothness of the gradient in the flux space, as this space has very few local

minima, which makes it suitable for local optimisation methods or even direct

motion transfer and control.
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3.4.1 Grasp transfer between a human hand and a robotic hand

Using the electric flux representation, we can significantly reduce the complex-

ity of motion planning and transfer by offloading the computational effort onto

the mapping between spaces, which can be easily done by the electrostatic pa-

rameters. Using these methods, we transfer captured human grasping motion to

robotic hands with different kinematics, such as the KUKA LWR4 robotic arm in

combination with the Schunk hand, the Shadow hand, and the KCL Metamorphic

hand15.

First, we manually16 select control points on the surface of the hand and record

their electric coordinates from a trajectory provided by a human demonstrator.

This gives us a reference trajectory in the space of electric coordinates. In addi-

tion to this, we also compute the total flux passing through a mesh defined over

the surface of the hand, giving us a measure of coverage and overall orientation

towards the object. We define the mapping between the fingers and the different

robotic hands manually, based on anthropomorphic similarities with the human

hand. We construct the following cost function within the AICO framework:

c(x) = ρflux‖φflux(x)‖2 + ρuv‖yuv −φuv(x)‖2 + ρp‖yp −φp(x)‖2 , (61)

where φflux(x) computes the amount of flux passing through the surface of the

robot hand using Equation 59, and φuv(x) and φp(x) compute the electric coordi-

nates. In this case, we use a constant, non-zero task weight ρuv for every time step

and provide the corresponding reference coordinates yuv for every time step as

well. We then iterate AICO until it converges to a trajectory that minimises these

cost terms. To show that our method generalizes over robots of dissimilar kinemat-

ics, we transfer the motion to Shadow Dexterous Hand, KCL Metamorphic Hand

and Schunk Robot Arm (see Figure 23). The resulting motion is semantically sim-

ilar in terms of relative final grasp locations and approach to the object, which

allows us to transfer grasping motion using a natural interface such as our own

body.

We have also adapted the grasping motion to different objects. This is possible,

because we are able to define correspondences between arbitrary objects by pro-

jecting the surface points onto a virtual sphere and then following the electric field

gradient outwards of the object as described in Section 3.3 (see Figure 16b). During

15 The KCL Metamorphic hand is presented in Wei et al. [2011].
16 We use the same set of control points as in Section 3.3.1.
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(a) Schunk Grasp (b) Shadow Hand Grasp (c) KCL Metamorphic Hand
Grasp

Figure 23: Transferred motion is applicable to different robot hand morphologies. The
same electric coordinate sequence is applied to the Schunk hand (a), the Shadow
hand (b), and the KCL Metamorphic hand (c). The final grasp is shown here.
Figure courtesy of Peter Sandilands.

(a) Initial bottle grasp (front and top view) (b) Transferred grasp to soda can (front and top
view)

Figure 24: A grasp sequence transferred from a bottle to a soda can. These two objects are
different but the grasp can be transferred without any tuning of parameters.
The final grasp is shown here. Figure courtesy of Peter Sandilands.

motion transfer to a different object, the electric coordinates remain the same and

the mapping onto the surface of the new object results in similar motion adapted

to this novel shape. Figure 24 shows grasp transfer between different types of bot-

tles. Notice that the shape of these bottles is reasonably similar (e.g. none of the

bottles has a handle nor is any of the bottles significantly larger), which is why

the grasps look similar to the human observer. The correspondence does exist for

any pair of arbitrarily shaped objects, but the similarity of the actual grasp to

the demonstrated grasp and its quality is not guaranteed. The fact that the corre-

spondence can be defined for any pair of shapes is an interesting property of the

electric field, that is well known in the area of mathematics called topology.
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3.4.2 Discussion

Having an oriented surface through which we measure the flux, we can now de-

form this surface to produce three kinds of behaviour: 1) increase the flux in a

positive direction, 2) increase the flux in a negative direction, and 3) maintain zero

flux. The positive and negative flux changes can be interpreted as opposite wrap-

ping motions, i.e. wrapping and unwrapping an object with the virtual surface or

wrapping the object in clockwise and in the anticlockwise directions. Maintaining

zero flux is a bit harder to visualise, since this involves deforming the virtual sur-

face in such way, that it remains perpendicular to the surface of the charged object.

We don’t use this type of motion for grasping.

We have chosen to compute the flux as a scalar to measure the total flux over

the virtual surface generated by the whole charged object. It is also possible to

compute the the flux over a subset of the triangles making up the surface, such as

the the individual fingers. Another option is to measure flux contribution by each

triangle of the charged object. In this case, we can measure and plot the flux on

the surface and control the motion to move the flux robot hand from one side of

the object to another.

The flux through the virtual surface does not depend on transformations and

deformations of the surface which do not cause wrapping (increasing the area cov-

ered). Because of this, the flux, as a task representation for motion planning, has

a null space which we can utilise to satisfy additional constraints, such as joint

limits, collision avoidance, or end-effector position and orientation. Additionally,

the proximity of the virtual surface to the object has to be controlled using another

task term (such as the electric coordinates), otherwise the virtual surface may col-

lapse to the surface of the charged object. How the flux task gets combined with

the other tasks depends on the choice of motion planning algorithm.

3.5 homology invariants of abstract spaces

We have demonstrated how the position of control points in the electric field can

be characterized using object centric electrostatic coordinates regardless of topol-

ogy and shape of the object. Similarly, we have demonstrated that the geometric

shape of obstacles is also not affecting the winding constraints as we have utilised

it in surveillance tasks. The writhe representation is also invariant to the geomet-

ric shape shape of the robot and the obstacles as long as the relative amount of
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writhe between the two is the same. The writhe scalar is a topological invariant

Edelsbrunner and Harer [2010] based on homotopy that exists between kinematic

chains. Let us assume we have one kinematic chain pik that depends on the robot

configuration x ∈ Rn such as the skeleton of a robot arm. We define m as the

number of chains pjk that do not depend on the configuration but interact with the

robot such as skeletons of obstacles. We can now compute the writhe scalar wpi,pj

between chains pik and pjk. If there exists a homotopy between the shapes of the

skeleton of the robot at arbitrary two configurations, then we can control the robot

to smoothly move between these two configurations without intersecting with the

skeletons of the obstacles and we say that these configurations belong to the same

homotopy class. If two chains p1 and p2 describing two configurations of a robot belong

to the same homotopy class and connect the same two end-points in space then the value of

their respective writhe scalars is the same: wp1,pj = wp2,pj . To prove this we concate-

nate these two chains to create a closed loop p1 ∪−p2. Here −p2 indicates that the

orientation of the curve is reversed. The writhe scalar of wp1∪−p2,pj is non-zero

if the closed loop encloses the chain pj and it is zero otherwise. Therefore, the

writhe scalars of the chains p1 and p2 must be equal if the chains do not enclose a

third chain pj describing the obstacle. This also means that one of the chains can

be smoothly deformed into the other without intersecting pj. This argument ex-

tends to m chains describing the obstacles individually. The consequences of using

this representation for motion planning are: (1) We can constrain the planning to

a particular homotopy class (reach inside a loop as described in Section 3.6.2). (2)

Collision avoidance can also be achieved by avoiding high values of writhe that

occur near the intersecting configurations.

We call the writhe a topology-based representation because it is directly related

to homotopy classes. The writhe scalar is, however, not a homotopy invariant but

rather a homology invariant. Here we use homology as an approximation of ho-

motopy (see Rotman [1988] for more details). Homology is a weaker topological

invariant which means that if two configurations are homotopic they are also ho-

mologous but not necessarily the other way around. As a result, the statement:

"If two configurations of a kinematic chain have the same writhe scalar they belong to the

same homotopy class." is not true universally. An example of such scenario is shown

in Figure 25 where the configurations p1 (solid black) and p2 (dashed) have the

same value of writhe scalar but they belong to different homotopy classes with re-

spect to the two skeletons of the obstacles (circles). In a motion planning scenario,

if the task was to reach the goal configuration while maintaining the end-effector
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p
1

p
2

Figure 25: An example of two configurations of a kinematic chain represented by a solid
black curve (p1) and a dashed curve (p2) that are homologous but not homo-
topic with respect to both obstacles (circles). As a result it is not possible to
deform the black curve into the dashed one without intersecting at least one of
the circles. When p1 and p2 are concatenated, the three curves form Borromean
rings.

position constraint, it would be necessary to break this constraint in order to reach

the goal configuration, with a potential danger of getting stuck in a local minima.

We argue that homotopy and homology invariants are desirable properties of

task spaces but at the same time, they are not necessary for designing useful rep-

resentations. In fact, we used the winding numbers (except for defining winding

constraints), writhe and electric flux to compute amount of winding, writhing

and area coverage respectively, rather than computing the homology classes using

these methods. This also means that we can use these techniques on robots that do

not form closed curves or enveloping surfaces. The key property of these methods

which makes them suitable for motion planning is the way how they allow us to

abstract away the geometric details. For example, we will now introduce the inter-

action mesh, which is a representation that is not based on a topological property

but it allows us to preserve spacial relationships between objects in the scene in a

similar manner as do the representations derived from topological invariants.

3.6 interaction mesh

When transferring motion between two robots, we may choose to preserve the

spacial relationships between the robot and the objects around it. Since we are

interested in transferring motion that involves interactions with the environment, itInteraction

transfer is important to consider the transfer of the motion between two scenes, where the

scene is the term we use to describe the robot model together with the environ-

ment (as defined in Equation 44).
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Figure 26: Correspondence between a human model and robot model defined manually
by an expert.

First, we choose a set of landmark points from the scene. These points may

be attached to the robot or to any object on robot’s work space. The landmark

points on the robot are usually the joint and end-effector positions. The landmark

attached to the objects in the robot’s environment usually represent obstacles or

other objects that the robot may need to interact with, such as door handles, points

on the surface of a table or edges of a shelf. Same number of corresponding points

has to be chosen to perform motion transfer between two scenes, where the two

scenes may differ in type of robot that is working in them and shape and location

of obstacles. Our objective is to select corresponding landmark points such as

joint positions and obstacle centroids manually17, using expert knowledge. See

Figure 26 for example set of points on two dissimilar robots. Even though the robot

kinematics are different, a human expert can easily define the correspondence.

17 In the field of computer animation, Al-Asqhar et al. [2013] have analysed the scene throughout the
motion to automatically generate the points that the virtual character interacts with.
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The interaction mesh is a function of a graph connecting a set of the landmark

points P = {−→p i}i. Let G be a (bi-directional fully or partially connected) graph on

P. To each vertex −→p ∈ G in the graph, we associate the Laplace coordinate

LG(
−→p ) = −→p −

∑
−→r ∈∂G−→p

−→r wpr∑
−→s ∈∂G−→p wps

(62)

wpr =
Wpr

|−→r −−→p |
,wps =

Wps

|−→s −−→p |
(63)

where ∂G
−→p is the neighbourhood of −→p in the graph G and wpr is the weight

inversely proportional to the distance of points −→p ,−→r and multiplied by the man-

ually chosen edge importance weighting18 Wpr. The weights are then normalized

over the neighbouring nodes in the graph −→s ∈ ∂G−→p . The collection of Laplace

coordinates of all points,

φimesh(x) =
(
LG(
−→p )
)
−→p ∈P , (64)

is a 3|P|-dimensional vector which we denote as the interaction mesh. We assume the

Jacobian of all landmarks in P is given through forward kinematics. The Jacobian
∂φimesh
∂x of the interaction mesh is given via the chain rule (see Appendix B).

We would like to point out that the squared metric in interaction mesh space

has a deformation energy interpretation ([Ho et al., 2010b]). To see this, consider

a change of position of a single vertex −→p to a new position p ′. The deformation

energy associated with such change is defined based on the neighbourhood in a

tetrahedronisation T of the point set as

ET (
−→p ′) = 1

2
‖LT (−→p ′) − LT (−→p )‖2 (65)

where LT (
−→p ) are the Laplace coordinates of −→p w.r.t. the tetrahedronisation T . This

definition is different from our definition of the interaction mesh, because we con-

sider Laplace coordinates LG w.r.t. the fully connected graph G instead of graph

with the connectivity of T , which is a sub-graph of the fully connected graph G

computed using tetrahedronisation of points P. Since different configurations lead

to topologically different graphs T , using a fully connected graph with topology

LG has the benefit of more continuous measures (deformation energies as well as

18 The edge importance weight matrix allows us further parametrise the representation. For example,
high weighting between the target and the end-effector allows us to perform accurate reaching and
grasping. If all the elements of the edge importance matrix are set to 1, Equation 63 is identical to
the one provided in [Ho et al., 2010b]
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the Jacobians). Neglecting this difference, minimizing squared distances in inter-

action mesh space (as is implicit, e.g., in inverse kinematics approaches as well

as the optimal control approaches detailed below) therefore corresponds to mini-

mizing deformation energies. The choice of a particular graph connectivity G and

the edge importance weights Wpr reflects the desired interaction of the robot with

the environment. Similarly to selection of the mesh vertices, we choose the graph

connectivity manually19.

Transferring motion between a human and a robot or between two robotic sys-

tems is a very common problem. Solving this problem creates tools for teleoper-

ation, learning by demonstration and other practical applications. It is, however,

an ill defined problem. This is the case, because in general, it is difficult to define

objective metrics for comparing motion of two dissimilar systems, unlike trans-

ferring grasping motion, that can be evaluated based on stability of the grasp.

Additionally, different types of motion are often best defined using different soft

or hard constraints on position, orientation, proximity or other properties. These

constraints may vary within one motion as well as between motions. We use the in-

teraction mesh to approximately preserve these constraints between two kinematic

systems.

3.6.1 Motion transfer using topology-based representations

The optimal control approach presented in Section 2.2 exploits the additional

topology-based spaces to generate optimal trajectories. However, the computed

optimal trajectories may no longer be valid when there is a change in the environ-

ment, e.g. the obstacles have moved. In order to cope with this issue, we need a

dynamic replanning method. Since the topology-based representations are invari-

ant to certain changes in the environment, the replanning at the topology level is

not necessary when the representation generalizes the desired motion. We propose

a per-frame re-mapping approach in which the optimal trajectory in the topology-

based representation y∗0:T is inverse-mapped to the configuration space according

to the novel condition of the environment.

In practise, this is done by computing the configuration of the system per-frame,

such that the re-mapping error relative to the original optimal topology-based tra-

jectory y∗0:T is minimized. However, topology-based representations such as the

writhe matrix or the interaction mesh are very high-dimensional—often higher di-

19 In all our experiments, we use the fully connected graph.
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mensional than the configuration space itself. This is in strong contrast to thinking

of y∗0:T as a lower dimensional task space like end-effector position or the electric

flux space (which is an exception). Therefore, following y∗0:T exactly is generally

infeasible and requires a regularisation procedure that minimizes the 1-step cost

function:

f(xt+1) = ‖xt+1 − xt − h‖2 + ‖φ(xt+1) − y∗‖2C , (66)

argmin
xt+1

f(xt+1) = xt + J
](y∗t −φ(xt) + (I− J]J)h (67)

with J] = J>(JJ>+C-1)-1

where C describes a cost metric in y-space and h is an arbitrary motion in the

null-space of the primary task.

For the case of the interaction mesh, we mentioned the relation of a squared met-

ric C to the deformation energy. Therefore, using the per-frame re-mapping to fol-

low an interaction mesh reference trajectory y∗imesh0:T
essentially tries to minimize

the deformation energy between the reference y∗imesht and the actual φimesh(xt) at

each time step. This implies generalizing to new situations by approximately pre-

serving relative distances between interacting objects instead of directly transfer-

ring joint angles. In conjunction with the use of feedback gains, the methodology

proposed here is able to cope with dynamic environments (see Section 3.6.2) and

bounded unpredictable changes.

The bottleneck for a feedback controller using this methodology is the com-

putational cost of the forward mapping of the topology-based representations.

The forward mapping of the winding numbers has the computational complex-

ity of O(n), n being the number of linear segments approximating the curve being

wound. Computing the writhe coordinates requires O(nm) number of operations

(each operation is defined by Equation 45), where n and m are number of seg-

ments of the two kinematic chains respectively. Computing the interaction mesh

has the computational complexity of O(2n) where n is the number of vertices of

the mesh. The performance is therefore in all these cases mainly defined by gran-

ularity of the approximation of the geometry of the robot and the environment.

The experiment in Section 3.1.1 shows that computation overhead (e.g. the aver-

age running time is about 10 seconds on standard 4 core 2.40GHz computer with 4

GB memory) becomes affordable when the task is relatively complex. On the other

hand, the experiments in Section 3.6.2 and Section 3.6.3 show that an interaction
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mesh with a small number of vertices can be used in a feedback loop to provide

real time control.

3.6.2 Dynamic reaching through a loop using writhe and interaction mesh

Writhe space is a suitable representation for tasks that involve interactions with

chains or loops of obstacles. We have altered the task from Section 3.1.1 to reach-

ing through a hollow box, where the rim of the box forms a loop of segments, see

Figure 28b. Classically this problem would be addressed by exploiting the end-

effector position and collision avoidance cost terms. This is, however, a classical

example of a bug trap problem. The advantage of using writhe as a description of

the interaction is in defining the task as a relative configuration of the robot and

the loop. This relative description remains effective also when the box is moved

dynamically. The writhe matrix corresponding to the final configuration peaks

around the last link which passes through the box (see Figure 28a). This target

in writhe space does not uniquely define the task for all arbitrary positions of

the box (unlike the unwrapping task in Section 3.1.1) which allows for defining

sub-goals, such as precisely controlling the endeffector position via another task

variable. We can therefore achieve accurate manipulation within a spatially con-

strained dynamic environment. In this case, the explicit collision avoidance was

then superfluous.

The computation of the optimal trajectory using this methods required 3 to 6

AICO iterations on average using the following cost function:

c(x) = ‖ywrithe −φwrithe(x)‖2 , (68)

where ywrithe is the desired target configuration in the writhe space. We then used

the same target in writhe space and randomly displaced the hollow box. Our

method was able to plan collision-free trajectories for all test scenarios. We com-

pared our method with AICO, using only classical representations utilising the

following cost function:

c(x) = ρeff‖yeff −φeff(x)‖2 + ρcoll‖φcoll(x)‖2 . (69)

This required 20 to 30 AICO iterations on average and in 90% of the trials the

algorithm failed to find a collision-free path. The remaining 10% of trials were suc-
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Figure 27: KUKA LWR 4 robotic arm reaching through a hollow box with task being de-
fined in combined Writhe and interaction mesh space, showing an example
of planning and dynamic re-mapping using topology-based representations as
described in Section 3.6.2.

cessful because the the box was placed in a position where the bug trap problem

did not manifest, e.g. the open side of the box was facing the robot.

We have then implemented online re-mapping as described in Section 3.6.1 us-

ing the interaction mesh space, to test behaviour of the system when the box

position is changed dynamically on the fly. In this demonstration we use interac-

tion mesh to represent reaching movement originally planned in the writhe space,

while maintaining relative positions of robot links w.r.t. the obstacles. We initially

recorded the full trajectory in a static environment in the interaction mesh space,

producing reference trajectory yimesh0:T . We have then dynamically updated the

robot’s position in real time using gradient based IK as discussed in Section 3.6.1.

We used the following objective function to minimize within the IK algorithm:

c(x) = ‖yimesh −φimesh(x)‖2 , (70)

where φimesh(x) computes the interaction mesh coordinates using Equation 63. We

were able to reach inside of the hollow box without any collisions, even when

the box was moving. In this experiment, we tracked the position of the hollow

box using magnetic motion tracking system. We demonstrate successful motion

re-mapping in the following video: http://youtu.be/LOAG5VmmtO4.

http://youtu.be/LOAG5VmmtO4
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Target for entering loop in writhe space
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Figure 28: (a) Writhe space target for passing the last link of a robotic arm through a loop.
(b) The configuration corresponding to the target in Writhe space. The loop
was built by connecting the corners of the rim of the hollow box. The chains
representing the robot and the obstacle are overlaid.

This experiments shows that interaction mesh is capable of representing inter-

active motion. In this case, the reaching motion can be planned using the writhe

representation as well, but we use the interaction mesh as a substitute for real time

applications.

3.6.3 Motion generalisation using interaction mesh space

Finally, we present an experiment in which we show examples of motion generali-

sation when using topology-based representations. We use the KUKA LWR4 arm

with 7 DOF and create a scenario common for factory environment, where the task

is to reach between items moving on a conveyor belt. The obstacle is a wall with

two windows. The wall is moving in front of the robot, thus obstructing the path

to the goal (see Figure 29d). We compute the initial trajectory in the static environ-

ment using AICO and the classical representations including end-effector position

and collision avoidance (we use the cost function defined in Equation 69). These

representations are suitable for the simplified case where one of the windows is

located in front of the robot. We use the forward mapping defined in Equation 63

to compute the reference trajectory in the interaction mesh space.

motion adaptation We then use the re-mapping technique described in

Section 3.6.1 to update the motion in real time while still fulfilling the task using

Equation 70 for IK computation. Figure 29b shows that the interaction mesh gen-
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(a) (b) (c)

(d)

Figure 29: (a) Initial plan for the robot arm reaching for a goal (sphere) avoiding the wall
(striped). (b) Remapping the interaction mesh trajectory after moving the wall
to the left. (c) Replanning when the generalisation fails due to the wall being
moved too far from its original position. (d) Real time re-mapping on the real
robot.

eralizes the motion well. When the wall moves to the left, the path eventually gets

obstructed and the task cannot be fulfilled any more. We detect this by measuring

the distance of the end-effector from the goal and using collision detection20. In

this case, re-planning is necessary. Figure 29c shows the motion after re-planning

for reaching through the second window. By using the interaction mesh, we were

able to delay the re-planning until the obstacle makes it physically impossible to

reach the target through the first window. This level of generalization allows us to

increase the robustness of the robot motion against perturbations.

motion re-targeting In the second part of this experiment, we replaced the

KUKA LWR4 arm with a generic 14DOF manipulator with a different kinematic

structure. In order to demonstrate that plans in topology-based space can gener-

alize across kinematic differences, we have manually defined correspondences of

the landmarks points between the KUKA LWR4 and the generic manipulator. Fig-

ure 30 shows the result of re-using the plan in interaction mesh space. We have

used the same reference trajectory yimesh0:T as the one we used for the JUJA LWR4

20 We only use the collision detection to compute when the task cannot be completed any more. We
don’t use the collision measure to avoid collisions in this case.
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Figure 30: (left) Kinematic chain of the KUKA LWR4 robot used for planning. (right)
Remapping the reaching trajectory onto robot with different kinematics. The
points used for defining the interaction mesh and the corresponding part of the
kinematic chain of the robot are overlaid.

arm. The higher DOF manipulator is also able to perform the assigned task when

the wall/window is moving. We demonstrate successful motion re-targeting in the

following video: http://youtu.be/LOAG5VmmtO4.

Although, the interaction mesh does not exploit the well known invariants, such

as homotopy classes (which was the case with winding numbers, writhe and elec-

tric coordinates), the experimental results show that this representation generalises

the robot motion well in practise. The real-time re-mapping of the trajectory in the

interaction mesh space even allows us to react to unpredictable motion of the ob-

jects surrounding the robot. This is, however, only possible if these objects can be

tracked in real time. We address the problem of real time sensing of objects with

close interactions in the next chapter.

http://youtu.be/LOAG5VmmtO4
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S E N S I N G F O R A B S T R A C T S PA C E S

Real time motion planning and control in changing environments is only possible

if we are able to keep the state of the scene up to date. The state of the scene is pro-

vided to the planning and control algorithms through the scene parameters αscene

using the Equation 44 but we have not discussed how to obtain these parameters.

In simulated environments, we use the ground truth directly from the simulator.

However, in real world applications, we use sensors to detect and track objects in

the scene. The representations introduced in Chapter 3 rely on the parameter’s

αscene to be updated before we compute the task map. This is only possible if

we provide the full model of the environment. Occlusions and missing data often

change the context of interaction because the topology of the scene changes when

data is missing in an occluded area. For this reason, we require sensing methods

which can track the state of the whole scene and exploit any prior knowledge

about the objects in the scene, such as the shapes of the objects scanned apriori.

There is a variety of techniques capable of detecting and tracking objects in the en-

vironment using magnetic (Sandilands et al. [2013a]), inertial (Stanton et al. [2012])

or vision sensors (Pauwels et al. [2014a]). It is beyond the scope of this thesis to

address the problem of real time sensing for robotics. We will, however, describe

techniques that we have utilised in our experiments.

The contributions of this chapter are:

• Application of magnetic tracking techniques to problems of tracking human

and robot hand motion while closely interacting with objects.

• Experiments with inertial tracking systems for transfer of human motion to

robots using interaction mesh in real time.

• Experiments demonstrating the utility of combining visual cues and robot

forward kinematics for accurate real time tracking of objects with close inter-

actions with the robot.
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(a) Motion Capture (b) Correspondences

Figure 31: Motion capture for synthesizing a grasping motion. (a) An interaction of an
actor grasping the object is captured . (b) A dense correspondence between the
captured object (left) and reference object (right) is produced using the electric
field. Figure courtesy of Peter Sandilands.

4.1 magnetic tracking

An important part of real time online motion transfer is capturing the interactions

between the demonstrator and objects they interact with. In order to do this, we

use a magnetic motion-capture system called Polhemus Liberty (introduced by

Krieg [1993]), a Microsoft Kinect, and the technique proposed by Sandilands et al.

[2013a] for capturing both the hand configuration and the object’s positions. The

motivation for using this technique is it allows us to capture close interactions with

objects. Such interactions usually cause occlusions, which the magnetic sensors do

not suffer from.

First, we capture the approximate object geometry using aligned point cloud

data from the Kinect camera (see Izadi et al. [2011]). This will produce a detailed

triangulated mesh we can use for computing representations such as electrostatic

coordinates, which we presented in Section 3.3. We then attach magnetic markers

to the objects which shapes we have recorded and (see Figure 31a and Figure 31b)

compute their transformations in the scene. No further processing is required for

rigid objects, which means that we can use the computed transformations to posi-

tion the triangulated models in the scene. When tracking articulated objects, such

as the human hand, we use inverse kinematics (IK) to reconstruct the motion of

the articulated structure. For this, we use the magnetic marker transformations as

reference positions for segments of the articulated structure. In the case of hand

motion capture, we place one marker on the back of the hand and one marker on

each fingertip. Since the magnetic tracking system computes the 6D transforma-
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Figure 32: Real time motion transfer using interaction mesh. The human motion was cap-
tured using the XSens MVN Biomech system.

tion (position on rotation) of the marker and hand motion is constrained by the

human hand kinematics, there exists exactly one solution to the IK problem.

This results in a digitized scene with both geometry and motion data. See Sandi-

lands et al. [2012] and Sandilands et al. [2013a] for further details. If the geometry

of the objects in the scene is readily provided (using a CAD model or through

other means), the initial geometry capture can be skipped. Tracking objects in the

scene for problems with close interactions and occlusions is also possible using

inertial tracking systems.

4.2 inertial tracking

Inertial measurement units (IMU) are sensors that use a combination of accelerom-

eters and gyroscopes to compute velocity, orientation and gravitational forces.

Tracking motion of an object therefore involves integrating the velocities and forces

over time to provide relative object poses. Roetenberg et al. [2009] developed a sys-

tem to accurately estimate and track human motion using IMU measurements

which exploits a kino-dynamic model of the human body. We have used this

method for transferring human motion onto robots in real time (see Figure 32).

In this experiment, we used the motion re-targeting technique we presented in

Section 3.6.3. We adapted the cost function defined in Equation 70 within the IK

algorithm as follows:

c(x) = ‖φimesh(z) −φimesh(x)‖2 . (71)
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We used the human motion capture data z to compute the reference configuration

in the interaction mesh space φimesh(z).

This method is suitable for tracking the whole body human motion in real time,

without considering other objects in the environment. Although this technique is

not able to capture the state of the whole scene, it is a suitable complement to

other capture methods (such as robust vision techniques), as it does not suffer

from occlusions.

4.3 tracking of known objects using a rgb-d camera

Robust and accurate machine vision techniques have been developed for tracking

objects in real time (Romea et al. [2011], Brox et al. [2010] and Drummond and

Cipolla [2002]), but they do not scale well to problems with close interactions due

to a large amount of occlusion of the object by the manipulator. However, if we

consider the vision input as a complementary source of data for a sensor fusion

algorithm, the occlusion problem can be alleviated.

In Pauwels et al. [2014a] we propose such method combining visual cues with

any additional tracking information available through magnetic tracking, inertial

tracking or through forward kinematics of the robot. We have adopted this method

and within this approach, we consider an environment with multiple freely mov-

ing objects, such as the robot, objects for grasping, and obstacles. The RGB and

depth data is captured using a freely moving Kinect camera at a 30 Hz frame rate

and any additional tracking data and robot configuration is provided at the same

rate.

The object tracking is performed under the assumption that if we are able to

generate hypotheses of how the input data from the camera should look like, based

on estimated poses of the tracked object, we can iteratively improve this estimate.

To generate such hypotheses, we have to create a virtual scene, which contains

detailed textured 3D models1 of all the tracked objects in the scene. By rendering

the virtual scene, we obtain synthetic RGB data (see Figure 33a right) and depth

data (see Figure 33b right). We then compute visual cues, such as depth cues and

augmented reality flow based motion cues, in the synthetic image. These cues

are then compared with corresponding cues from the real image. The estimate of

1 To obtain the detailed 3D models, we either use available CAD models or capture the shape and
texture of the object using the commercial product Autodesk 123d catch as we proposed in Pauwels
et al. [2014b].

http://www.123dapp.com/catch/
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(a) RGB data

(b) Depth data

Figure 33: Object tracking using visual cues. (a) Captured RGB image (left) and synthe-
sized RGB image (right). (b) Captured Kinect depth data (left) and synthesized
depth data (right). Figure courtesy of Karl Pauwels.

objects’ poses is then iteratively improved, until the synthetic cues explain a high

enough percentage of the real image cues.

The robustness of this technique can be improved by providing additional priors

and pose constraints obtained from other motion tracking techniques or using

forward kinematics. Every pose prior or pose constraint then gets translated into a

soft constraint on the relative position of two objects in the scene. These additional

constraints bias the search for valid object pose estimates and therefore improve

both the accuracy and convergence rate of the estimation process. Figure 34 shows

that this method is robust when not all of the cues are available in the real image

(such as the depth cue) or when the occlusion is severe, and the tracked object is

barely visible.

The occlusion, which is a difficult challenge for most vision based tracking sys-

tems, is handled implicitly by our method. When producing the synthetic image,

the rendering algorithm uses the Z-buffer to remove occluded surfaces. Therefore,

the resulting synthetic image contains only the visible parts of all the objects in the
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(a) Missing depth data

(b) Occlusion

Figure 34: Motion tracking results with the outlines showing the pose estimate: (a) depth
data is missing due to the robot being close to the camera; (b) the robot arm
occludes the bottle that is being manipulated. Figure courtesy of Karl Pauwels.

scene. The comparison of the cues from the synthetic and real images then does

not need to consider occlusions at all, which results in a more robust and stable

tracking.

The estimation of the object poses is a local technique that works well for keep-

ing track of objects that have been previously detected, but it requires a reasonable

initialization when the object is lost. In this case, we compute the scale-invariant

feature transforms (SIFT) using the same detailed 3D models of the tracked ob-

jects that we used for rendering the virtual scene. We detect the approximate pose

of object by matching its SIFT features with the features computed from the real

image data. This process is an order of magnitude slower than the real time track-

ing2. Therefore, we run the object detection in parallel at a slower rate (about 1Hz).

Combination of robust vision-based object tracking with other tracking methods

allows us to capture motion with close interaction with high accuracy.

2 The real time tracking runs at 30Hz, due to the update rate of the Kinect sensor. Pauwels et al. [2013]
have demonstrated performance of this method using offline data processing at rates exceeding
60Hz.
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4.4 discussion

The representations we introduced in Chapter 3 rely on knowledge of the state

of the environment. All of these representations are robust enough to be used in

applications where the exact shape of the object is not known but an approximate

model is provided. On the other hand, this approximate model has to be provided

at all times. This is the reason why we exploit sensing methods which can track

objects in the environment in real time, such as the ones presented in Sections 4.1,

4.2, and 4.3.

In comparison, each sensing method has its advantages over the others. The

magnetic tracking based method presented in Section 4.1 provides superior accu-

racy, update rates and it does not suffer from occlusion. On the other hand, the

magnetic sensors have to be rigidly attached to the tracked objects, their position

on the object has to be measured, the sensors have to be connected to the base

station via a wire, and the position of the base station with respect to the robots

base frame must be measured. Additionally, the magnetic field gets distorted by

metal objects, such as the robot itself. For this reason, we have used this technique

mainly for recording the human motion in an environment without any metal

objects.

The XSens system is based on inertia measurement sensors. These sensors don’t

need to be connected to the base station, as they transfer the measurement data

wirelessly. Since this system also does not suffer from occlusion, the range at which

the motion can be tracked is much larger (up to 100m away from the base station).

The update rate and the accuracy of the XSens system are high, particularly for

the motion between the body parts. However, the global position suffers from

drift which accumulates over time. The drift has to be eliminated using additional

sensing. Because of these limitations, we mainly use the XSens system to record the

pose of the human for motion transfer. We integrate the data from other sensing

methods afterwards to add objects in the environment to the virtual scene.

The machine vision approach to motion tracking presented in Section 4.3 tracks

the motion in the camera frame. We translate the tracked positions to the robot

base frame by tracking the base of the robot or by calibrating for the camera posi-

tion. The tracking accuracy depends on the resolution of the camera, the distance

of the objects from the camera, the amount of occlusion and reflections, and the

lighting conditions. However, this technique does not require any modifications to
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the tracked object, as long as it’s textured richly enough and it can be modelled

beforehand.

The comparison of these methods with other state of the art techniques is out-

side the scope of this theses but you can refer to such evaluation in Sandilands

et al. [2013a] for the magnetic sensor based tracking, Roetenberg et al. [2009] for

the XSens system, and Pauwels et al. [2013] for the RGB-D camera based tracking.



5
C O N C L U S I O N

In this thesis, we demonstrated that motion planning in dynamic environments,

and for scenarios where close interaction with the environment can be made more

robust by utilising metrics in alternate task spaces. We model the interaction di-

rectly, in a way that generalises well to novel situations and improves the speed

and robustness of motion synthesis. To model such interactions explicitly, we ex-

ploited topology-based task representations, because they render two very differ-

ent motions that involve complex interaction close to each other in a similar way

the topology invariants render different geometrical shapes as topologically equiv-

alent. We utilised wining numbers, writhe, electric coordinates, electrostatic flux

and interaction mesh for solving a range of tasks involving reaching, grasping,

winding and path planning for surveillance.

To compute optimal trajectories, we formulated the motion planning problem

in the framework of optimal control as an approximate inference problem. We

demonstrated how this formulation allows us to couple the motion in the topology-

based representations with the motion in the configuration space. We also demon-

strated that fully replanning the motion in the topology-based space is not re-

quired unless the environment significantly changes. This allowed us to use re-

mapping instead of replanning to produce safe motion in dynamic environments

with objects with unpredictable motion in real time.

The re-mapping was, however, only possible because we have exploited real

time sensing techniques to update the internal model of the environment. These

techniques exploited magnetic, inertia and vision based sensors to capture motion

of objects with close interactions and occlusions, which is a difficult problem even

for state of the art sensing methods. Although it was not within the scope of this

thesis to develop novel sensing methods, we have utilized the available methods.

future work In our experiments, we have used the AICO framework to plan

robot motion that was complex in configuration space but relatively simple in the

topology-based spaces. This approach computed the trajectory in configuration

space and coupled it with the trajectory in the topology-based spaces. We have

not, however, investigated planning directly in these spaces, nor have we system-
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atically analysed the complexity of these representations. In our future work, we

would like to decouple planning in the abstract representations from the execution

in the configuration space. This will allow us to re-plan tasks in topology-based

space, with the objective of computing a reference trajectory in this space. Such

trajectory can be then used as a reference for re-mapping, in the same way as we

demonstrated in Section 3.6.3. This approach will then perform re-mapping and re-

planning in parallel, with the objective of replanning the existing abstract trajectoryParallel

re-mapping and

re-planing
before the re-mapping fails, thus improving the robustness and responsiveness.

The winding numbers, writhe and electric field invariants have been applied for

classifying trajectories in the configuration space (Bhattacharya et al. [2011]). We

have computed these representations from points and skeletons of the robot and

objects in the work space. However, we have not considered using these represen-

tations to characterize trajectories in the work space. By analysing the trajectories ofHomotopy

classes of work

space trajectories
robot links in the work space, we would be able to classify the motion of these

robot links based on which homotopy group their trajectories belong to. This will

allow us to explore the work space based on all the possible homotopy classes of

work space trajectories and optimize the motion within each of these classes, thus

finding a global solution by utilizing only a limited number of local initializations.

Lastly, the interaction mesh representation can be further developed to capture

both position and orientation of the landmark points. The relationship descriptorsPosition and

orientation

preserving

interaction mesh

proposed by Al-Asqhar et al. [2013] do consider orientation of the landmark points

in a similar way that would be useful for interaction mesh. By combining the

orientation and position preservation properties with the weighting scheme we

proposed, it will be possible to encode a much larger variety of interactions. Addi-

tionally, in the future, we intend to learn the weighting from demonstrated trajec-

tories to provide a way to further specialise a generic interaction mesh graph for

a specific task.



A
E X T E N S I B L E O P T I M I S AT I O N F R A M E W O R K

The robotics community has developed a multitude of motion planning algorithms

over couple of decades. We have reviewed some of these algorithms in Section 2.1

and Section 2.2 but very little has been said about how these algorithms are imple-

mented. Majority of the exploratory algorithms presented in Section 2.1 have been

implemented as a part of the Open Motion Planning Library (OMPL). Trajectory

optimisation techniques such as the ones proposed by Kalakrishnan et al. [2011]

and Ratliff et al. [2009] are included in the Robot Operating System’s MoveIt! pack-

age (MoveIt!). There are couple more software libraries for robotics, such as the

Open Robot Control Software (OROCOS) and Open Architecture Robot Controller

(Ford [1994]) but the implementation of algorithms used in robotics research is of-

ten confined to software developed by research labs such as Fallon et al. [2014]

and Kanehiro et al. [2002].

Integration of robotics software has been encouraged in recent years by devel-

opment of robotics tool within the Robot Operating System (ROS) but motion

planning algorithms still share very little code even within this software project.

Commonly used tools, such as kinematic solvers, distance and penetration solvers

for collision checking, robot models and task definitions, get often re-implemented

for each motion planning algorithm. Comparison of motion planning techniques

is therefore a task that requires software engineering skills to interface these tech-

niques. It is also challenging and time consuming to validate that the performance

of a motion planner is improved because of quality of the algorithm, rather than

the quality of the implementation. If we hope to compare motion planning tech-

niques objectively, we require a platform that will allow us to define motion plan-

ning problems using a common description language and present the problem to

an arbitrary motion planner together with standard tools for computing kinemat-

ics, collision queries and other task related properties.

We have developed the Extensible Optimisation Framework (EXOTica). A cen- EXOTica

tral part of this software package is a modular problem definition language that

allows us to specify a problem using a set of terms called task definitions. Our

main design objectives were modularity and extensibility, which is why new task

maps can be easily added to the framework and immediately used for motion
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planning. The EXOTica library is aimed at robotics researchers, allowing them to

experiment with novel motion planning algorithms and task representations and

running comparisons with existing techniques objectively.

Software libraries with similar functionality already exist (i.e. OMPL, OROCOS

and MoveIt!), so why is there a need for for another framework? Both the OMPL

and MoveIt! implement an interface between multiple motion planning algorithms

that allow us to run benchmarks on common navigation and pick-and-place prob-

lems. Solving such problems has practical applications but in robotics research we

often address a wider variety of problems. Software libraries such as OMPL and

MoveIt! do allow us to define arbitrary cost terms and constraints but the problem

definition is subjugated to the requirements of the motion planner implementa-

tion. For this purpose we require a common language to define arbitrary task

representations in a systematic way. The amount of software engineering required

to interface task representations with multiple implementations of motion plan-

ning algorithms is often underestimated, which why we require a modular and

extensible framework within which we make only minimal assumptions about

both the problem and solver.

We will now describe the elements of the EXOTica framework using the exper-

iment we presented in Section 3.1.1 as an example. In this experiment, we have

used a robot arm that was coiled around an obstacle and we have specified a

reaching task that required unwinding the robot arm to make the target reachable

without collisions with the obstacle. We have performed trajectory optimisation

using the AICO algorithm and the writhe task representation.

We have implemented AICO as a motion problem solver within EXOTica (seeMotion solver

system diagram Figure 35). A motion solver only requires an initial configura-

tion of the robot and a problem definition. After successfully solving the planning

problem, AICO returns a trajectory as a time discretized1 sequence of robot con-

figurations that we can command to the robot.

The motion problem that gets presented to AICO is a collection of parameters2

specific to the AICO algorithm and a collection of task definitions (see Figure 35).Task definition

The task in this experiment was to unwind the robot and reach for a target. For

this purpose, we have created a squared distance error in the work space, for min-

imizing distance between the end-effector and the target, and a squared distance

1 The AICO algorithm as described in Section 2.2.1 was designed for discrete time problems. However,
an EXOTica motion problem solver is not limited to discrete time problems.

2 E.g. number of time steps and time step duration for time discretisation, and control state transition
covariance Qt.
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Figure 35: Overview of the EXOTica framework.

error in the writhe space to create a motion prior that will render unwinding more

likely. These two cost terms are implemented using task definition objects. A task

definition object only specifies that the cost term is a squared metric3 and provides

a point of reference, such as the position of the target to reach.

The space in which the squared metric is measured is then defined within a

task map (see Figure 35). The task map implements forward task mapping we Task map

formally defined in Equation 44. The writhe task map therefore implements Equa-

tion 45 and it also computes the Jacobian using Equation 86. We handle the scene

parameters αscene using a module called kinematic scene (see Figure 35). The kine- Kinematic scene

matic scene contains the robot model as well as a representation of the robot’s

environment (e.g. the position and shape of the obstacle). Although there may be

dynamic elements in the scene, we currently only support kinematic objects and

use a module called Kinematica which handles forward kinematics (FK) and Jaco- Kinematica

bian computations of kinematic frames in the work space. The reaching task map

therefore only forwards the FK solution and the Jacobian computed by Kinematica

without any additional computations.

3 It is also possible to create task definitions for soft and hard constraints and termination criteria.
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Algorithm 3 is implemented as a problem solver which we use to solve the mo-

tion problem. We query the motion problem in each iteration of the forward sweep

loop at line 6 and the backward sweep at line 18. Within this query, we update the

kinematic scene using the configuration x̂t and we then compute rt(x̂t) and Rt(x̂t)

using task maps and task definitions. Using this seemingly complex hierarchy of

planning problems, task definitions and task maps we fully specify the motion

planning problem. Furthermore, we use this structured problem specification as

a problem definition language and we store it in an XML file (see code listing

1). The XML file is human readable and it contains an explicit definition of the

motion planning problem which allows us to clearly see all the parameters, and

objectively compare them with other problem definitions.

Notice that the problem definition is specialised for the AICO solver on line 9.

The problem definition in listing 1 can be reused for any motion planner but we

need to know the capabilities of this hypothetical algorithm and create a specifi-

cation of the motion problem that the planner can understand and use for com-

putations. Every time we design a new motion planner, we also design a motion

problem specification that will present the task definitions and task maps to the

planning algorithm. For example, the AICOProblem only accepts task definitions

that compute squared error metrics. If the problem was to contain a hard con-

straint task definition (e.g. end-effector has to always point upwards) the AICO

solver wouldn’t be able to interpret it, we therefore use the AICOProblem specifi-

cation which will notify us that hard constraints are not supported. On the other

hand, any other motion solver which supports only squared error metrics can

readily use the AICO problem. In general, all algorithms that solve the LQG class

of problems (such as iLQG) won’t require any changes to the problem definition.
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1 <EXOTicaConfiguration>
2 <AICOsolver name="MyAICOsolver"> <!--AICO solver parameters-->
3 <sweepMode>Symmetric</sweepMode>
4 <max_iterations>100</max_iterations>
5 <tolerance>1e-2</tolerance>
6 <damping>0.01</damping>
7 </AICOsolver>
8

9 <AICOProblem name="MyAICOProblem"> <!--AICO problem-->
10 <!-- AICO problem parameters -->
11 <T>100</T> <!-- Number of time steps -->
12 <duration>5.0</duration> <!-- Motion duration (seconds) -->
13 <Qrate>1e-10</Qrate> <!-- System noise amplitude -->
14 <Hrate>1.0</Hrate> <!-- Control noise amplitude -->
15 <W> 7 6 5 4 3 2 1 </W> <!-- Control effort per joint -->
16

17 <Map type="Writhe" name="WindingMap">
18 <kscene name="ExampleKinematicScene"/>
19 <!-- Map Parameters -->
20 </Map>
21

22 <Task name="Unwind" type="TaskSqrError">
23 <map name="WindingMap"/>
24 <Rho>1.0</Rho> <!-- Task precision -->
25 <Goal>0.0</Goal> <!-- Goal writhe value (unwind completely) -->
26 </Task>
27

28 <Map type="EffPosition" name="ReachingMap">
29 <kscene name="ExampleKinematicScene"/>
30 </Map>
31

32 <Task name="Reach" type="TaskSqrError">
33 <map name="ReachingMap"/>
34 <Rho>10.0</Rho> <!-- Task precision -->
35 <Goal>0.5 1.0 0.0</Goal> <!-- Target to reach (meters) -->
36 </Task>
37

38 <KScene name="ExampleKinematicScene"> <!--Kinematic scene-->
39 <Kinematica> <!--Kinematic solver-->
40 <Urdf>robot.urdf</Urdf> <!--Kinematic structure file-->
41 <Root segment="root">
42 <vector>0 0 0</vector> <!-- x y z-->
43 <quaternion>1.0 0 0 0</quaternion> <!-- w x y z-->
44 </Root>
45 <Update> <!--List of controlled joints-->
46 <joint name="jnt1"/>
47 <joint name="jnt2"/>
48 <joint name="jnt3"/>
49 <joint name="jnt4"/>
50 <joint name="jnt5"/>
51 <joint name="jnt6"/>
52 <joint name="jnt7"/>
53 </Update>
54

55 <EndEffector> <!--List of end-effectors-->
56 <limb segment="link7"></limb>
57 </EndEffector>
58 </Kinematica>
59 </KScene>
60

61 </AICOProblem>
62 </EXOTicaConfiguration> �

Listing 1: EXOTica XML configuration file.
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Figure 36: Interface between EXOTica and OMPL library. See Figure 35 for overview of
the EXOTica components.

The EXOTica framework is very flexible and easily extensible. Solvers, problems,

task definitions, task maps, even the kinematic scene and its underlying kinematic

solver can be extended. A typical user will usually design new task maps (such as

interaction, mesh, winding numbers or electric flux) and implement new motion

planning algorithms (e.g. iLQG or RRT*). Existing implementations can be reused,

for example, we have added exploratory planning algorithms implemented within

the OMPL library as motion solvers within EXOTica. By doing this, we have crated

an interface that translates EXOTica problem description into termination criteria,

goal regions, biased sampling strategies and optimisation cost functions within

OMPL (see Figure 36). We are therefore able to run comparisons between AICO

and a range of exploratory motion planners at the cost of translating problem de-

scriptions between the OMPL and EXOTica frameworks. We are yet to analyse the

performance of EXOTica but the initial experiments show no loss of performance

compared to native libraries.

EXOTica is very light weight in terms of computational overhead and depen-

dencies. The only dependencies of the core library are Eigen and Boost libraries.

However, to open up EXOTica to a wider community of users, we have written

interfaces between EXOTica and the ROS MoveIt! package. Current version of our

http://eigen.tuxfamily.org
http://www.boost.org/
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Figure 37: Interface between EXOTica and MoveIt! library.

library is fully integrated with MoveIt! at several levels. We have implemented a

motion planner plugin, an inverse kinematics solver plugin and we have tested the

code on a real time motion transfer task between human and a Baxter robot (see

Section 4.2). We have verified that the core components of the library are working

properly but we are yet to use exotica on large scale comparisons. Our next step

in developing this library is to release it to the robotics community and extend it

with implementations latest motion planning algorithms and task representations.





B
A N A LY T I C A L J A C O B I A N S O F T O P O L O G Y- B A S E D

R E P R E S E N TAT I O N S

This appendix contains analytical Jacobian derivations of interaction mesh, writhe

and electrostatic flux representations. Please refer to the corresponding sections in

Chapter 3 for more details about these representations.

b.1 interaction mesh

We have defined the Laplace coordinate of a weighted interaction mesh as

LG(
−→p ) = −→p −

∑
−→r ∈∂G−→p

−→r wpr∑
−→s ∈∂G−→p wps

, (72)

wpr =
Wpr

|−→r −−→p |
,wps =

Wps

|−→s −−→p |
. (73)

We then compute the analytical Jacobian of the interaction mesh as

δL(−→p j)
δxi

=
δ−→p j
δxi

−

M∑
l=1,l 6=j

(
δw
j
l

δxi

−→p l +wjl
δ−→p l
δxi

)

=
−→
p ′ji −

M∑
l=1,l 6=j

(
δw
j
l

δxi

−→p l +wjl
−→
p ′li), (74)

δw
j
l

δxi
= −

Wlj
δA
δxi

A2
, (75)

A =

M∑
k=1,k6=j

WkjPl

Pk
, (76)

δA

δxi
=

M∑
k=1,k6=j

Wkj
δPl
δxi
Pk − Pl

δPk
δxi

P2k
, (77)
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Pl = ‖−→p j −−→p l‖,Pk = ‖−→p j −−→p k‖, (78)

(79)

δp

δxi
=
δ
√−→p 2x +−→p 2y +−→p 2z

δxi
,

=

−→p x δ
−→p x
δxi

+−→p y δ
−→p y
δxi

+−→p z δ
−→p z
δxi√−→p 2x +−→p 2y +−→p 2z

=
−→p x
−→
p ′x +

−→p y
−→
p ′y +

−→p z
−→
p ′z√−→p 2x +−→p 2y +−→p 2z , (80)

δPl
δxi

=
(−→p jx −

−→p lx)(
−→
p ′jix −

−→
p ′lix)

‖−→p j −−→p l‖
+

(−→p jy −
−→p ly)(

−→
p ′jiy −

−→
p ′liy)

‖−→p j −−→p l‖

+
(−→p jz −

−→p lz)(
−→
p ′jiz −

−→
p ′liz)

‖−→p j −−→p l‖
, (81)

δPk
δxi

=
(−→p jx −

−→p kx)(
−→
p ′jix −

−→
p ′kix)

‖−→p j −−→p k‖
+

(−→p jy −
−→p ky)(

−→
p ′jiy −

−→
p ′kiy)

‖−→p j −−→p k‖

+
(−→p jz −

−→p kz)(
−→
p ′jiz −

−→
p ′kiz)

‖−→p j −−→p k‖
, (82)

where
−→
p ′ is the Jacobian of the of the point −→p .
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b.2 writhe

We compute the writhe matrix of two strings (γ1 and γ2) linearly approximated

by a series of vectors using the Gauss linking integral (GLI)

GLI(γ1,γ2) =
1

4π

∫
γ1

∫
γ2

dγ1 × dγ2 · (γ1 − γ2)
‖γ1 − γ2‖3

. (83)

Each element of the writhe matrix is linearly approximated as

Wij=

[
sin-1

−→n>a
−→n d

|−→n a||−→n d|
+sin-1

−→n>b
−→n c

|−→n b||−→n c|
+sin-1

−→n>c
−→n a

|−→n c||−→n a|
+sin-1

−→n>d
−→n b

|−→n d||−→n b|

]
(84)

sign
[−→
ab>(−→ac×

−→
cd)
]
,

where

−→n a=−→ac×
−→
ad , −→n b=

−→
bd×
−→
bc , −→n c=

−→
bc×−→ac , −→n d=

−→
ad×
−→
bd . (85)

Vectors −→ac,
−→
ad,
−→
bd and

−→
bc are computed from the vectors along the strings γ1

(points a and b) and γ2 (points c and d) as shown on figure 8.
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Assuming the position of vectors −→a ,
−→
b is a function of the robot configuration

and
−→
a ′,
−→
b ′ are their respective Jacobians, we derive the writhe matrix Jacobian as

JWij,qk =

−→
n ′a · −→n b +−→n a ·

−→
n ′b√

1− (−→n a · −→n b)2
+

−→
n ′b · −→n c +−→n b ·

−→
n ′c√

1− (−→n b · −→n c)2
(86)

+

−→
n ′c · −→n d +−→n c ·

−→
n ′d√

1− (−→n c · −→n d)2
+

−→
n ′d · −→n a +−→n d ·

−→
n ′a√

1− (−→n d · −→n a)2
,

−→
n ′a =

−→
A‖−→ac×

−→
ad‖− (−→ac×

−→
ad)‖

−→
A‖

‖−→ac×
−→
ad‖2

,

−→
n ′b =

−→
B ‖
−→
ad×

−→
bd‖− (

−→
ad×

−→
bd)‖

−→
B ‖

‖
−→
ad×

−→
bd‖2

,

−→
n ′c =

−→
C‖
−→
bd×

−→
bc‖− (

−→
bd×

−→
bc)‖
−→
C‖

‖
−→
bd×

−→
bc‖2

,

−→
n ′d =

−→
D‖
−→
bc×−→ac‖− (

−→
bc×−→ac)‖

−→
D‖

‖
−→
bc×−→ac‖2

,

−→
A =

δ(
−→
a ′c×

−−→
a ′d)

δxk
,
−→
B =

δ(
−−→
a ′d×

−−→
b ′d)

δxk
,

−→
C =

δ(
−−→
b ′d×

−→
b ′c)

δxk
,
−→
D =

δ(
−→
b ′c×

−→
a ′c)

δxk
,

‖
−→
A‖ =δ‖

−→
a ′c×

−−→
a ′d‖

δxk
, ‖
−→
B ‖ = δ‖

−−→
a ′d×

−−→
b ′d‖

δxk
,

‖
−→
C‖ =δ‖

−−→
b ′d×

−→
b ′c‖

δxk
, ‖
−→
D‖ = δ‖

−→
b ′c×

−→
a ′c‖

δxk
.
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b.3 electric flux

We approximate the electric flux through triangle 4abc due to uniformly charged

triangle 4def:

fflux(4abc,4def) =
|
−→
de×

−→
df|

2

4∑
i=1

g(−→x i,4abc), (87)

−→x 1 =
4
−→
d +−→e +

−→
f

6
,−→x 2 =

−→
d + 4−→e +

−→
f

6
,

−→x 3 =
−→
d +−→e + 4

−→
f

6
,−→x 4 =

−→
d +−→e +

−→
f

3
,

where g(−→x ,4abc) is the electric flux through triangle 4abc due to charged point
−→x defined as:

g(−→x ,4abc) =2 atan2(J,K), (88)

J =(−→ax×
−→
bx) · −→cx,

K =|−→ax||
−→
bx||−→cx|+−→ax ·

−→
bx|−→cx|+−→ax · −→cx|

−→
bx|+−→cx ·

−→
bx|−→ax|.

If points a,b, c are attached to a kinematic chain and controlled via joint angles

q ∈ Rn, then the Jacobian of the electric flux with respect to the joint angles can

be obtained using the chain rule:

∂f(4abc,4def)
∂x

=
|
−→
de×

−→
df|

2

4∑
i=1

∂g(−→x i,4abc)
∂x

, (89)

∂g(−→x ,4abc)
∂x

=2
∂J
∂xK− J∂K∂x
J2 +K2

, (90)

∂J

∂x
=(
∂−→ax
∂x
×
−→
bx+−→ax× ∂

−→
bx

∂x
) · −→cx+ (−→ax×

−→
bx) · ∂

−→cx
∂x

, (91)

∂K

∂x
=
∂|−→ax|
∂x

|
−→
bx||−→cx|+ |−→ax|∂|

−→
bx|

∂x
|−→cx|+ |−→ax||

−→
bx|
∂|−→cx|
∂x

+(
∂−→ax
∂x
·
−→
bx+−→ax · ∂

−→
bx

∂x
)|−→cx|+−→ax ·

−→
bx
∂|−→cx|
∂x

+(
∂−→ax
∂x
· −→cx+−→ax · ∂

−→cx
∂x

)|
−→
bx|+−→ax · −→cx∂|

−→
bx|

∂x

+(
∂−→cx
∂x
·
−→
bx+−→cx · ∂

−→
bx

∂x
)|−→ax|+−→cx ·

−→
bx
∂|−→ax|
∂x

, (92)

where the partial derivatives of all the combinations of the edges of the triangle

are computed in a similar manner as ∂
−→ax
∂x = −∂

−→a
∂x and ∂|−→ax|

∂x =
−→ax·∂

−→a
∂x

|−→ax| .
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