52 research outputs found

    Cyber-Physical Systems Technologies: Applications in Industry and Education

    Get PDF
    Industry 4.0 concept development forms new trends as cloud computing,  big data analysis, the industrial internet of things, machine-to-machine technologies. Cyber-physical systems (CPS) paradigm is based on these trends and integrates of computation, networking and physical processes. Synergy Center at Peter the Great St. Petersburg Polytechnic University works in the areas of intelligent systems for data processing and control, motion control systems for robotics, complex automation and mechatronics as components of CPS. Keywords: Industry 4.0, Cyber-physical systems, Digital twin; intelligent control system, automation, Global digitalisation, Practical-oriented online courses, Skills training, Joint international educational programmes

    Agent-based modeling and simulation of a small scale cyber-physical system using NetLogo

    Get PDF
    The Cyber-Physical System (CPS) paradigm promotes the decentralization and distribution of the logic control as well as the integration of cyber and physical counterparts. In parallel, self-organization allows the dynamic and automatic system re-configuration responding to condition and environment changes. Modeling and simulation assume a crucial importance in the design of such complex, distributed, and self-organized systems, in the way that the detected and debugged errors may be corrected before the deployment into the real system, as well different strategies can be tested and evaluated. Agent-based modeling tools are computational frameworks able to analyze, experiment and compare systems populated by cooperative agents, supporting the fast prototyping of agent-based solutions exhibiting self-* properties. In this paper, the NetLogo tool was used to model and simulate the agent-based control layer of a small scale CPS, which control uses self-organization principles.info:eu-repo/semantics/publishedVersio

    Musical phrase boundaries, wrap-up and the closure positive shift

    Get PDF
    We investigated global integration (wrap-up) processes at the boundaries of musical phrases by comparing the effects of well and non-well formed phrases on event-related potentials time-locked to two boundary points: the onset and the offset of the boundary pause. The Closure Positive Shift, which is elicited at the boundary offset, was not modulated by the quality of phrase structure (well vs. non-well formed). In contrast, the boundary onset potentials showed different patterns for well and non-well formed phrases. Our results contribute to specify the functional meaning of the Closure Positive Shift in music, shed light on the large-scale structural integration of musical input, and raise new hypotheses concerning shared resources between music and language

    The MTA SZTAKI Smart Factory: Platform for Research and Project-oriented Skill Development in Higher Education

    Get PDF
    Nowadays, the potential of learning factories as test beds and research plants is gaining recognition, and several facilities are extended or built up already with these complementing purposes in mind---among them the Smart Factory at the Fraunhofer Project Center at MTA SZTAKI currently completing a major stage of development. The paper presents the structure and key design principles of the plant, and explains how the composition and functionalities of the equipment implement focal principles of the Industry 4.0 and Cyber-Physical Systems concepts. Furthermore, it is shown how the Smart Factory provides students with challenges and resources for project-oriented development of their skills, and where these opportunities fit into technical higher education by hosting both individual student projects and courses with a specific structure of progress

    Health 4.0: Applications, Management, Technologies and Review

    Get PDF
    The Industry 4.0 Standard (I4S) employs technologies for automation and data exchange through cloud computing, Big Data (BD), Internet of Things (IoT), forms of wireless Internet, 5G technologies, cryptography, the use of semantic database (DB) design, Augmented Reality (AR) and Content-Based Image Retrieval (CBIR). Its healthcare extension is the so-called Health 4.0. This study informs about Health 4.0 and its potential to extend, virtualize and enable new healthcare-related processes (e.g., home care, finitude medicine, and personalized/remotely triggered pharmaceutical treatments) and transform them into services. In the future, these services will be able to virtualize multiple levels of care, connect devices and move to Personalized Medicine (PM). The Health 4.0 Cyber-Physical System (HCPS) contains several types of computers, communications, storage, interfaces, biosensors, and bioactuators. The HCPS paradigm permits observing processes from the real world, as well as monitoring patients before, during and after surgical procedures using biosensors. Besides, HCPSs contain bioactuators that accomplish the intended interventions along with other novel strategies to deploy PM. A biosensor detects some critical outer and inner patient conditions and sends these signals to a Decision-Making Unit (DMU). Mobile devices and wearables are present examples of gadgets containing biosensors. Once the DMU receives signals, they can be compared to the patient’s medical history and, depending on the protocols, a set of measures to handle a given situation will follow. The part responsible for the implementation of the automated mitigation actions are the bioactuators, which can vary from a buzzer to the remote-controlled release of some elements in a capsule inside the patient’s body.             Decentralizing health services is a challenge for the creation of health-related applications. Together, CBIR systems can enable access to information from multimedia and multimodality images, which can aid in patient diagnosis and medical decision-making. Currently, the National Health Service addresses the application of communication tools to patients and medical teams to intensify the transfer of treatments from the hospital to the home, without disruption in outpatient services. HCPS technologies share tools with remote servers, allowing data embedding and BD analysis and permit easy integration of healthcare professionals expertise with intelligent devices.  However, it is undeniable the need for improvements, multidisciplinary discussions, strong laws/protocols, inventories about the impact of novel techniques on patients/caregivers as well as rigorous tests of accuracy until reaching the level of automating any medical care technological initiative

    Context- and Template-Based Compression for Efficient Management of Data Models in Resource-Constrained Systems

    Get PDF
    The Cyber Physical Systems (CPS) paradigm is based on the deployment of interconnected heterogeneous devices and systems, so interoperability is at the heart of any CPS architecture design. In this sense, the adoption of standard and generic data formats for data representation and communication, e.g., XML or JSON, effectively addresses the interoperability problem among heterogeneous systems. Nevertheless, the verbosity of those standard data formats usually demands system resources that might suppose an overload for the resource-constrained devices that are typically deployed in CPS. In this work we present Context-and Template-based Compression (CTC), a data compression approach targeted to resource-constrained devices, which allows reducing the resources needed to transmit, store and process data models. Additionally, we provide a benchmark evaluation and comparison with current implementations of the Efficient XML Interchange (EXI) processor, which is promoted by the World Wide Web Consortium (W3C), and it is the most prominent XML compression mechanism nowadays. Interestingly, the results from the evaluation show that CTC outperforms EXI implementations in terms of memory usage and speed, keeping similar compression rates. As a conclusion, CTC is shown to be a good candidate for managing standard data model representation formats in CPS composed of resource-constrained devices.Research partially supported by the European Union Horizon 2020 Programme under Grant Agreement Number H2020-EeB-2015/680708 - HIT2GAP, Highly Innovative building control Tools Tackling the energy performance GAP. Also partially supported by the Department of Education, Universities and Research of the Basque Government under Grant IT980-16 and the Spanish Research Council, under grant TIN2016-79897-P

    The cyber-physical e-machine manufacturing system : virtual engineering for complete lifecycle support

    Get PDF
    Electric machines (e-machines) will form a fundamental part of the powertrain of the future. Automotive manufacturers are keen to develop emachine manufacturing and assembly knowledge in-house. An on-going project, which aims to deliver an e-machine pilot assembly line, is being supported by a set of virtual engineering tools developed by the Automation Systems Group at the University of Warwick. Although digital models are a useful design aid providing visualization and simulation, the opportunity being exploited in this research paper is to have a common model throughout the lifecycle of both the manufacturing system and the product. The vision is to have a digital twin that is consistent with the real system and not just used in the early design and deployment phases. This concept, commonly referred to as Cyber Physical Systems (CPS), is key to realizing efficient system reconfigurability to support alternative product volumes and mixes. These tools produce modular digital models that can be rapidly modified preventing the simulation, test, and modification processes forming a bottleneck to the development lifecycles. In addition, they add value at more mature phases when, for example, a high volume line based on the pilot is created as the same models can be reused and modified as required. This research paper therefore demonstrates how the application of the virtual engineering tools support the development of a CPS using an e-machine assembly station as a case study. The main contribution of the work is to further validate the CPS philosophy by extending the concept into practical applications in pilot production systems with prototype products
    corecore