674 research outputs found

    On-chip Phase Locked Loop (PLL) design for clock multiplier in CMOS Monolithic Active Pixel Sensors (MAPS)

    Get PDF
    In a detector system, clock distribution to sensors must be controlled at a level allowing proper synchronisation. In order to reach theses requirements for the HFT (Heavy Flavor Tracker) upgrade at STAR (Solenoidal Tracker at RHIC), we have proposed to distribute a low frequency clock at 10 MHz which will be multiplied to 160 MHz in each sensor by a PLL. A PLL has been designed for period jitter less than 20 ps rms, low power consumption and manufactured in a 0.35 μm CMOS process

    Design of a compact and low-power TDC for an array of SiPM's in 110nm CIS technology

    Get PDF
    Silicon photomultipliers (SiPMs) are meant to substitute photomultiplier tubes in high-energy physics detectors and nuclear medicine. This is because of their -to name a few interesting properties- compactness, lower bias voltage, tolerance to magnetic fields and finer spatial resolution. SiPMs can also be built in CMOS technology. This allows the incorporation of active quenching and recharge schemes at cell level and processing circuitry at pixel level. One of the elements that can lead to finer temporal resolutions is the time-to-digital converter (TDC). In this paper we describe the architecture of a compact TDC to be included at each pixel of an array of SiPMs. It is compact and consumes low power. It is based on a voltage controlled oscillator that generates multiple internal phases that are interpolated to provide time resolution below the time delay of a single gate. Simulation results of a 11b TDC based on a 4-stage VCRO in 110nm CIS technology yield a time resolution of 80.0ps, a DNL of ±0.28 LSB, a INL ±0.52 LSB, and a power consumption of 850μW.Ministerio de Economía y Competitividad TEC2015-66878-C3-1-RJunta de Andalucía TIC 2012-2338Office of Naval Research (USA) N00014141035

    High power-supply rejection current-mode low-dropout linear regulator

    Get PDF
    Power management components can be found in a host of different applications ranging from portable hand held gadgets to modern avionics to advanced medical instrumentations, among many other applications. Low-dropout (LDO) linear regulators are particularly popular owing to their: ease of use, low cost, high accuracy, low noise, and high bandwidth. With all its glory, however, it tends to underperform switched-mode power supplies (SMPS) when with comes to power conversion efficiency, although the later generates a lot of ripple at its output. With the growing need to improve system efficiency (hence longer battery life) without degrading system performance, many high end (noise sensitive) applications such as data converters, RF transceivers, precision signal conditioning, among others, use high efficiency SMPS with LDO regulators as post-regulators for rejecting the ripple generated by SMPS. This attribute of LDO regulators is known as power supply rejection (PSR). With the trend towards increasing switching frequency for SMPS, to minimize PC board real estate, it is becoming ever more difficult for LDO regulators to suppress the associate high frequency ripple since at such high frequencies, different parasitic components of the LDO regulator start to deteriorate its PSR performance. There have been a handful of different techniques suggested in the literature that can be used to achieve good PSR performance at higher frequencies. However, each of these techniques suffers from a number of drawbacks ranging from reduced efficiency to increased cost to increased solution size, and with the growing demand for higher efficiency and smaller power supplies, these techniques have their clear limitations. The objective of this research project is to develop a novel current-mode LDO regulator that can achieve good high frequency PSR performance without suffering from the afore mentioned drawbacks. The proposed architecture was fabricated using a proprietary 1.5 um Bipolar process technology, and the measurement results show a PSR improvement of 20dB (at high frequencies) over conventional regulators. Moreover, the proposed LDO regulator requires a small 15nF output capacitor for stability, which is far smaller than some of the currently used techniques.M.S.Committee Chair: Rincón-Mora, Gabriel; Committee Member: Ghovanloo, Maysam; Committee Member: Leach, W. Marshal

    Design of a CMOS closed-loop system with applications to bio-impedance measurements

    Get PDF
    This paper proposes a method for impedance measurements based on a closed-loop implementation of CMOS circuits. The proposed system has been conceived for alternate current excited systems, performing simultaneously driving and measuring functions, thanks to feedback. The system delivers magnitude and phase signals independently, which can be optimized separately, and can be applied to any kind of load (resistive and capacitive). Design specifications for CMOS circuit blocks and trade-offs for system accuracy and loop stability have been derived. Electrical simulation results obtained for several loads agree with the theory, enabling the proposed method to any impedance measurement problem, in special, to bio-setups including electrodes.Ministerio de Ciencia e Innovación TEC2007-6807

    Digital PLL for ISM applications

    Get PDF
    In modern transceivers, a low power PLL is a key block. It is known that with the evolution of technology, lower power and high performance circuitry is a challenging demand. In this thesis, a low power PLL is developed in order not to exceed 2mW of total power consumption. It is composed by small area blocks which is one of the main demands. The blocks that compose the PLL are widely abridged and the final solution is shown, showing why it is employed. The VCO block is a Current-Starved Ring Oscillator with a frequency range from 400MHz to 1.5GHz, with a 300μW to approximately 660μW power consumption. The divider is composed by six TSPC D Flip-Flop in series, forming a divide-by-64 divider. The Phase-Detector is a Dual D Flip-Flop detector with a charge pump. The PLL has less than a 2us lock time and presents a output oscillation of 1GHz, as expected. It also has a total power consumption of 1.3mW, therefore fulfilling all the specifications. The main contributions of this thesis are that this PLL can be applied in ISM applications due to its covering frequency range and low cost 130nm CMOS technology

    CMOS Hyperbolic Sine ELIN filters for low/audio frequency biomedical applications

    Get PDF
    Hyperbolic-Sine (Sinh) filters form a subclass of Externally-Linear-Internally-Non- Linear (ELIN) systems. They can handle large-signals in a low power environment under half the capacitor area required by the more popular ELIN Log-domain filters. Their inherent class-AB nature stems from the odd property of the sinh function at the heart of their companding operation. Despite this early realisation, the Sinh filtering paradigm has not attracted the interest it deserves to date probably due to its mathematical and circuit-level complexity. This Thesis presents an overview of the CMOS weak inversion Sinh filtering paradigm and explains how biomedical systems of low- to audio-frequency range could benefit from it. Its dual scope is to: consolidate the theory behind the synthesis and design of high order Sinh continuous–time filters and more importantly to confirm their micro-power consumption and 100+ dB of DR through measured results presented for the first time. Novel high order Sinh topologies are designed by means of a systematic mathematical framework introduced. They employ a recently proposed CMOS Sinh integrator comprising only p-type devices in its translinear loops. The performance of the high order topologies is evaluated both solely and in comparison with their Log domain counterparts. A 5th order Sinh Chebyshev low pass filter is compared head-to-head with a corresponding and also novel Log domain class-AB topology, confirming that Sinh filters constitute a solution of equally high DR (100+ dB) with half the capacitor area at the expense of higher complexity and power consumption. The theoretical findings are validated by means of measured results from an 8th order notch filter for 50/60Hz noise fabricated in a 0.35μm CMOS technology. Measured results confirm a DR of 102dB, a moderate SNR of ~60dB and 74μW power consumption from 2V power supply

    Hybrid receiver study

    Get PDF
    The results are presented of a 4 month study to design a hybrid analog/digital receiver for outer planet mission probe communication links. The scope of this study includes functional design of the receiver; comparisons between analog and digital processing; hardware tradeoffs for key components including frequency generators, A/D converters, and digital processors; development and simulation of the processing algorithms for acquisition, tracking, and demodulation; and detailed design of the receiver in order to determine its size, weight, power, reliability, and radiation hardness. In addition, an evaluation was made of the receiver's capabilities to perform accurate measurement of signal strength and frequency for radio science missions

    Time-Domain/Digital Frequency Synchronized Hysteresis Based Fully Integrated Voltage Regulator

    Get PDF
    abstract: Power management integrated circuit (PMIC) design is a key module in almost all electronics around us such as Phones, Tablets, Computers, Laptop, Electric vehicles, etc. The on-chip loads such as microprocessors cores, memories, Analog/RF, etc. requires multiple supply voltage domains. Providing these supply voltages from off-chip voltage regulators will increase the overall system cost and limits the performance due to the board and package parasitics. Therefore, an on-chip fully integrated voltage regulator (FIVR) is required. The dissertation presents a topology for a fully integrated power stage in a DC-DC buck converter achieving a high-power density and a time-domain hysteresis based highly integrated buck converter. A multi-phase time-domain comparator is proposed in this work for implementing the hysteresis control, thereby achieving a process scaling friendly highly digital design. A higher-order LC notch filter along with a flying capacitor which couples the input and output voltage ripple is implemented. The power stage operates at 500 MHz and can deliver a maximum power of 1.0 W and load current of 1.67 A, while occupying 1.21 mm2 active die area. Thus achieving a power density of 0.867 W/mm2 and current density of 1.377 A/mm2. The peak efficiency obtained is 71% at 780 mA of load current. The power stage with the additional off-chip LC is utilized to design a highly integrated current mode hysteretic buck converter operating at 180 MHz. It achieves 20 ns of settling and 2-5 ns of rise/fall time for reference tracking. The second part of the dissertation discusses an integrated low voltage switched-capacitor based power sensor, to measure the output power of a DC-DC boost converter. This approach results in a lower complexity, area, power consumption, and a lower component count for the overall PV MPPT system. Designed in a 180 nm CMOS process, the circuit can operate with a supply voltage of 1.8 V. It achieves a power sense accuracy of 7.6%, occupies a die area of 0.0519 mm2, and consumes 0.748 mW of power.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Techniques for low power analog, digital and mixed signal CMOS integrated circuit design

    Get PDF
    With the continuously expanding of market for portable devices such as wireless communication devices, portable computers, consumer electronics and implantable medical devices, low power is becoming increasingly important in integrated circuits. The low power design can increase operation time and/or utilize a smaller size and lighter-weight battery. In this dissertation, several low power complementary metal-oxide-semiconductor (CMOS) integrated circuit design techniques are investigated. A metal-oxide-semiconductor field effect transistor (MOSFET) can be operated at a lower voltage by forward-biasing the source-substrate junction. This approach has been investigated in detail and used to designing an ultra-low power CMOS operational amplifier for operation at ± 0.4 V. The issue of CMOS latchup and noise has been investigated in detail because of the forward biasing of the substrates of MOSFETs in CMOS. With increasing forward body-bias, the leakage current increases significantly. Dynamic threshold MOSFET (DTMOS) technique is proposed to overcome the drawback which is inherent in a forward-biased MOSFET. By using the DTMOS method with the forward source-body biased MOSFET, two low-power low-voltage CMOS VLSI circuits that of a CMOS analog multiplexer and a Schmitt trigger circuits are designed. In this dissertation, an adaptive body-bias technique is proposed. Adaptive body-bias voltage is generated for several operational frequencies. Another issue, which the chip design community is facing, is the development of portable, cost effective and low power supply voltage. This dissertation proposes a new cost-effective DC/DC converter design in standard 1.5 um n-well CMOS, which adopts a delay-line controller for voltage regulation

    Integrated Circuits for Programming Flash Memories in Portable Applications

    Get PDF
    Smart devices such as smart grids, smart home devices, etc. are infrastructure systems that connect the world around us more than before. These devices can communicate with each other and help us manage our environment. This concept is called the Internet of Things (IoT). Not many smart nodes exist that are both low-power and programmable. Floating-gate (FG) transistors could be used to create adaptive sensor nodes by providing programmable bias currents. FG transistors are mostly used in digital applications like Flash memories. However, FG transistors can be used in analog applications, too. Unfortunately, due to the expensive infrastructure required for programming these transistors, they have not been economical to be used in portable applications. In this work, we present low-power approaches to programming FG transistors which make them a good candidate to be employed in future wireless sensor nodes and portable systems. First, we focus on the design of low-power circuits which can be used in programming the FG transistors such as high-voltage charge pumps, low-drop-out regulators, and voltage reference cells. Then, to achieve the goal of reducing the power consumption in programmable sensor nodes and reducing the programming infrastructure, we present a method to program FG transistors using negative voltages. We also present charge-pump structures to generate the necessary negative voltages for programming in this new configuration
    corecore