24 research outputs found

    Design of CMOS PSCD circuits and checkers for stuck-at and stuck-on faults

    Get PDF
    [[abstract]]We present in this paper an approach to designing partially strongly code-disjoint (PSCD) CMOS circuits and checkers, considering transistor stuck-on faults in addition to gate-level stuck-at faults. Our design-for-testability (DFT) technique requires only a small number of extra transistors for monitoring abnormal static currents, coupled with a simple clocking scheme, to detect the stuck-on faults concurrently. The DFT circuitry not only can detect the faults in the functional circuit but also can detect or tolerate faults in itself, making it a good candidate for checker design. Switch and circuit level simulations were performed on a sample circuit, and a sample 4-out-of-8 code checker chip using the proposed technique has been designed, fabricated, and tested, showing the correctness of the method. Performance penalty is reduced by a novel BiCMOS checker circuit.[[fileno]]2030108010057[[department]]電機工程學

    LSI/VLSI design for testability analysis and general approach

    Get PDF
    The incorporation of testability characteristics into large scale digital design is not only necessary for, but also pertinent to effective device testing and enhancement of device reliability. There are at least three major DFT techniques, namely, the self checking, the LSSD, and the partitioning techniques, each of which can be incorporated into a logic design to achieve a specific set of testability and reliability requirements. Detailed analysis of the design theory, implementation, fault coverage, hardware requirements, application limitations, etc., of each of these techniques are also presented

    Testability and redundancy techniques for improved yield and reliability of CMOS VLSI circuits

    Get PDF
    The research presented in this thesis is concerned with the design of fault-tolerant integrated circuits as a contribution to the design of fault-tolerant systems. The economical manufacture of very large area ICs will necessitate the incorporation of fault-tolerance features which are routinely employed in current high density dynamic random access memories. Furthermore, the growing use of ICs in safety-critical applications and/or hostile environments in addition to the prospect of single-chip systems will mandate the use of fault-tolerance for improved reliability. A fault-tolerant IC must be able to detect and correct all possible faults that may affect its operation. The ability of a chip to detect its own faults is not only necessary for fault-tolerance, but it is also regarded as the ultimate solution to the problem of testing. Off-line periodic testing is selected for this research because it achieves better coverage of physical faults and it requires less extra hardware than on-line error detection techniques. Tests for CMOS stuck-open faults are shown to detect all other faults. Simple test sequence generation procedures for the detection of all faults are derived. The test sequences generated by these procedures produce a trivial output, thereby, greatly simplifying the task of test response analysis. A further advantage of the proposed test generation procedures is that they do not require the enumeration of faults. The implementation of built-in self-test is considered and it is shown that the hardware overhead is comparable to that associated with pseudo-random and pseudo-exhaustive techniques while achieving a much higher fault coverage through-the use of the proposed test generation procedures. The consideration of the problem of testing the test circuitry led to the conclusion that complete test coverage may be achieved if separate chips cooperate in testing each other's untested parts. An alternative approach towards complete test coverage would be to design the test circuitry so that it is as distributed as possible and so that it is tested as it performs its function. Fault correction relies on the provision of spare units and a means of reconfiguring the circuit so that the faulty units are discarded. This raises the question of what is the optimum size of a unit? A mathematical model, linking yield and reliability is therefore developed to answer such a question and also to study the effects of such parameters as the amount of redundancy, the size of the additional circuitry required for testing and reconfiguration, and the effect of periodic testing on reliability. The stringent requirement on the size of the reconfiguration logic is illustrated by the application of the model to a typical example. Another important result concerns the effect of periodic testing on reliability. It is shown that periodic off-line testing can achieve approximately the same level of reliability as on-line testing, even when the time between tests is many hundreds of hours

    A Comprehensive Fault Model for Concurrent Error Detection in MOS Circuits

    Get PDF
    Naval Electronics Sys. Comm. and Office of Naval Research / N00039-80-C-0556Ope

    Online testing in ternary reversible logic

    Get PDF
    xii, 92 leaves : ill. ; 29 cmIn recent years ternary reversible logic has caught the attention of researchers because of its enormous potential in different fields, in particular quantum computing. It is desirable that any future reversible technology should be fault tolerant and have low power consumption; hence developing testing techniques in this area is of great importance. In this work we propose a design for an online testable ternary reversible circuit. The proposed design can implement almost all of the ternary logic operations and is also capable of testing the reversible ternary network in real time (online). The error detection unit is also constructed in a reversible manner, which results in an overall circuit which meets the requirements of reversible computing. We have also proposed an upgrade of the initial design to make the design more optimized. Several ternary benchmark circuits have been implemented using the proposed approaches. The number of gates required to implement the benchmarks for each approach have also been compared. To our knowledge this is the first such circuit in ternary with integrated online testability feature

    A study of arithmetic circuits and the effect of utilising Reed-Muller techniques

    Get PDF
    Reed-Muller algebraic techniques, as an alternative means in logic design, became more attractive recently, because of their compact representations of logic functions and yielding of easily testable circuits. It is claimed by some researchers that Reed-Muller algebraic techniques are particularly suitable for arithmetic circuits. In fact, no practical application in this field can be found in the open literature.This project investigates existing Reed-Muller algebraic techniques and explores their application in arithmetic circuits. The work described in this thesis is concerned with practical applications in arithmetic circuits, especially for minimizing logic circuits at the transistor level. These results are compared with those obtained using the conventional Boolean algebraic techniques. This work is also related to wider fields, from logic level design to layout level design in CMOS circuits, the current leading technology in VLSI. The emphasis is put on circuit level (transistor level) design. The results show that, although Boolean logic is believed to be a more general tool in logic design, it is not the best tool in all situations. Reed-Muller logic can generate good results which can't be easily obtained by using Boolean logic.F or testing purposes, a gate fault model is often used in the conventional implementation of Reed-Muller logic, which leads to Reed-Muller logic being restricted to using a small gate set. This usually leads to generating more complex circuits. When a cell fault model, which is more suitable for regular and iterative circuits, such as arithmetic circuits, is used instead of the gate fault model in Reed-Muller logic, a wider gate set can be employed to realize Reed-Muller functions. As a result, many circuits designed using Reed-Muller logic can be comparable to that designed using Boolean logic. This conclusion is demonstrated by testing many randomly generated functions.The main aim of this project is to develop arithmetic circuits for practical application. A number of practical arithmetic circuits are reported. The first one is a carry chain adder. Utilising the CMOS circuit characteristics, a simple and high speed carry chain is constructed to perform the carry operation. The proposed carry chain adder can be reconstructed to form a fast carry skip adder, and it is also found to be a good application for residue number adders. An algorithm for an on-line adder and its implementation are also developed. Another circuit is a parallel multiplier based on 5:3 counter. The simulations show that the proposed circuits are better than many previous designs, in terms of the number of transistors and speed. In addition, a 4:2 compressor for a carry free adder is investigated. It is shown that the two main schemes to construct the 4:2 compressor have a unified structure. A variant of the Baugh and Wooley algorithm is also studied and generalized in this work

    Robust design of deep-submicron digital circuits

    Get PDF
    Avec l'augmentation de la probabilité de fautes dans les circuits numériques, les systèmes développés pour les environnements critiques comme les centrales nucléaires, les avions et les applications spatiales doivent être certifies selon des normes industrielles. Cette thèse est un résultat d'une cooperation CIFRE entre l'entreprise Électricité de France (EDF) R&D et Télécom Paristech. EDF est l'un des plus gros producteurs d'énergie au monde et possède de nombreuses centrales nucléaires. Les systèmes de contrôle-commande utilisé dans les centrales sont basés sur des dispositifs électroniques, qui doivent être certifiés selon des normes industrielles comme la CEI 62566, la CEI 60987 et la CEI 61513 à cause de la criticité de l'environnement nucléaire. En particulier, l'utilisation des dispositifs programmables comme les FPGAs peut être considérée comme un défi du fait que la fonctionnalité du dispositif est définie par le concepteur seulement après sa conception physique. Le travail présenté dans ce mémoire porte sur la conception de nouvelles méthodes d'analyse de la fiabilité aussi bien que des méthodes d'amélioration de la fiabilité d'un circuit numérique.The design of circuits to operate at critical environments, such as those used in control-command systems at nuclear power plants, is becoming a great challenge with the technology scaling. These circuits have to pass through a number of tests and analysis procedures in order to be qualified to operate. In case of nuclear power plants, safety is considered as a very high priority constraint, and circuits designed to operate under such critical environment must be in accordance with several technical standards such as the IEC 62566, the IEC 60987, and the IEC 61513. In such standards, reliability is treated as a main consideration, and methods to analyze and improve the circuit reliability are highly required. The present dissertation introduces some methods to analyze and to improve the reliability of circuits in order to facilitate their qualification according to the aforementioned technical standards. Concerning reliability analysis, we first present a fault-injection based tool used to assess the reliability of digital circuits. Next, we introduce a method to evaluate the reliability of circuits taking into account the ability of a given application to tolerate errors. Concerning reliability improvement techniques, first two different strategies to selectively harden a circuit are proposed. Finally, a method to automatically partition a TMR design based on a given reliability requirement is introduced.PARIS-Télécom ParisTech (751132302) / SudocSudocFranceF

    Machine learning support for logic diagnosis

    Get PDF
    corecore