
University of Lethbridge Research Repository

OPUS http://opus.uleth.ca

Theses Arts and Science, Faculty of

2011

Online testing in ternary reversible logic

Rahman, Md. Raqibur

Lethbridge, Alta. : University of Lethbridge, c2011

http://hdl.handle.net/10133/3208

Downloaded from University of Lethbridge Research Repository, OPUS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS: Open Uleth Scholarship - University of Lethbridge Research Repository

https://core.ac.uk/display/185289662?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ONLINE TESTING IN TERNARY REVERSIBLE LOGIC

MD. RAQIBUR RAHMAN
Bachelor of Science, University of Dhaka, 2004
Master of Science, University of Dhaka, 2005

A Thesis
Submitted to the School of Graduate Studies

of the University of Lethbridge
in Partial Fulfillment of the

Requirements for the Degree

MASTER OF SCIENCE

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c©Md. Raqibur Rahman, 2011

I dedicate this thesis to my family, without whose enormous support, en-
couragement and sacrifice, I could not reach my destination.

iii

Abstract

In recent years ternary reversible logic has caught the attention of researchers because of its

enormous potential in different fields, in particular quantum computing. It is desirable that

any future reversible technology should be fault tolerant and have low power consumption;

hence developing testing techniques in this area is of great importance.

In this work we propose a design for an online testable ternary reversible circuit. The

proposed design can implement almost all of the ternary logic operations and is also capable

of testing the reversible ternary network in real time (online). The error detection unit is

also constructed in a reversible manner, which results in an overall circuit which meets

the requirements of reversible computing. We have also proposed an upgrade of the initial

design to make the design more optimized. Several ternary benchmark circuits have been

implemented using the proposed approaches. The number of gates required to implement

the benchmarks for each approach have also been compared. To our knowledge this is the

first such circuit in ternary with integrated online testability feature.

iv

Acknowledgments

I would like to take the opportunity to express my sincere gratitude to my respected su-

pervisor Dr. Jacqueline E. Rice. Throughout this research work she has provided not only

enormous time and effort but also proper guidance in the time of difficulties whenever it

became intricate to reach the solution.

I was fortunate to have Dr. Howard Cheng and Dr. Sajjad Zahir in my supervisory

committee. I would like to thank my committee members for their excellent and insightful

advises, reading of the thesis and providing valuable feedbacks.

I must mention the tremendous support and inspiration of my well-wisher colleague

Noor Nayeem during my research work.

I am also thankful to Natural Sciences and Engineering Research Council of Canada

(NSERC) for funding this research.

Last but not least, I must mention my family, who have been on my path to give their

shoulder whenever I need, or even whenever I don’t.

v

Contents

Approval/Signature Page ii

Dedication iii

Abstract iv

Acknowledgments v

Table of Contents vi

List of Tables ix

List of Figures x

1 Introduction 1
1.1 General Introduction . 1
1.2 Road map . 3

2 Background 4
2.1 Reversible logic . 4

2.1.1 Importance of reversible logic . 5
2.2 Binary reversible logic gates . 6

2.2.1 Garbage Outputs . 7
2.3 Fault Models . 8
2.4 Multi-Valued Logic (MVL) . 9
2.5 MVL operators . 10
2.6 Applications of MVL . 12

2.6.1 MVL in Logic Synthesis . 12
2.6.2 Logic simulation . 13
2.6.3 Digital hardware testing . 13
2.6.4 MVL circuit design . 13
2.6.5 MVL in quantum logic . 14

2.7 Ternary reversible logic . 14
2.7.1 Ternary Galois field logic (GF3) 14

2.8 Ternary reversible gates . 15
2.8.1 1-qutrit permutative gate . 16
2.8.2 Muthukrishnan-Stroud (M-S) Gate 17
2.8.3 Ternary Shift Gates . 18
2.8.4 Ternary Feynman gate . 19
2.8.5 Ternary Toffoli gate . 21
2.8.6 Ternary controlled-controlled gate 23

vi

2.8.7 3-qutrit generalized Toffoli gate (GTG) 24
2.8.8 Construction of ternary reversible circuits 25

2.9 Online Testing in Reversible Logic Circuits 26
2.10 Online Testing . 26
2.11 Works related to online testable reversible logic gates 27

2.11.1 Binary online testing using R, R1 and R2 gates (approach 1) 27
2.11.2 Testing using a universal reversible logic gate (approach 2) 29

2.12 Summary . 31

3 Ternary Online Testable Circuits 33
3.1 Introduction . 33
3.2 Design of the online testable ternary reversible logic block 33

3.2.1 The T R1 block . 35
3.2.2 The T R2 block . 38
3.2.3 The online testable block . 39

3.3 Summary . 43

4 Ternary Two-Pair Two-Rail Checker 44
4.1 Introduction . 44
4.2 Designing the ternary rail checker circuit 44

4.2.1 Implementation of the ternary rail checker 45
4.2.2 Rejection of this design . 46

4.3 New design of the ternary rail checker . 46
4.3.1 Principle of the ternary rail checker 46
4.3.2 Elementary E gate . 47
4.3.3 Architecture of the ternary rail checker circuit 49

4.4 Sample Design . 51
4.5 Summary . 52

5 Implementation and Improvement 53
5.1 Introduction . 53
5.2 Internal designs . 53

5.2.1 The T R1 block . 53
5.2.2 The T R2 block . 56

5.3 Upgraded design of the T R1 block . 57
5.4 The T R block . 59
5.5 Limitation of the 4T R block . 60

5.5.1 Implementing copy function using the 4T R block 60
5.6 Reducing the cost of the copy function . 61

5.6.1 Method 1: 5×5 TR block (5T R) 61
5.6.2 Method 2: Combination of 4TR block and non-testable ternary

Feynman gate . 66

vii

5.6.3 Method 3: Combination of 5TR block and online testable Copy
gate (T Rc) . 66

5.6.4 Method 4: Combination of 5TR block, T Rc and online testable
Multi Copy gate (T Rmc) . 68

5.7 Summary . 70

6 Comparison and Analysis of Different Approaches 71
6.1 Introduction . 71
6.2 Comparison among the proposed methods and non testable circuits 71
6.3 Overhead analysis . 74
6.4 Summary . 75

7 Conclusion and Future Works 76
7.1 Conclusion . 76
7.2 Future Works . 77

A Appendix 79
A.1 Notation . 79
A.2 3CyG2 . 80

A.2.1 Method 0 . 80
A.2.2 Method 1 . 81
A.2.3 Method 2 . 81
A.2.4 Method 3 . 82
A.2.5 Method 4 . 82
A.2.6 Non-testable ternary gates . 83

A.3 ProdG3 . 83
A.3.1 Method 0 . 83
A.3.2 Method 1 . 84
A.3.3 Method 2 . 84
A.3.4 Method 3 . 85
A.3.5 Method 4 . 85
A.3.6 Non-testable ternary gates . 86

A.4 SumG3 . 86
A.4.1 Method 0 . 86
A.4.2 Method 1 . 87
A.4.3 Method 2 . 87
A.4.4 Method 3 . 88
A.4.5 Method 4 . 88
A.4.6 Non-testable ternary gates . 89

Bibliography 90

viii

List of Tables

2.1 Two-place MVL operators. 10
2.2 Truth table for two-place MVL operator for p = 2,3 11
2.3 One-place MVL operators [23]. 12
2.4 Truth table for one-place operator for p = 2,3 [23]. 12
2.5 Ternary Galois Field (GF3) operations [14]. 15
2.6 Operations of 1-qutrit permutative gates, also referred to Z-transformations [11].

16
2.7 Operations of the M-S gate for A = 2 [11]. 18

3.1 A subset of the truth tables for (a) the T R1 block and (b) the T R2 block. . . 41

4.1 Combination of fault-free inputs and outputs for the ternary rail checker. . 45
4.2 Truth table and transformation table of the E gates. 48
4.3 Truth table for the possible input states and the corresponding outputs of

Ea and Eb. 51

5.1 Truth table of AB. 54
5.2 Cost of the ternary gates used to realize the proposed blocks. 57
5.3 A subset of the truth tables for (a) 5T R1 Block and (b) 5T R2 Block. 63
5.4 Truth table for the MF gate. 64
5.5 Number of M-S gates required to implement the proposed blocks 70

6.1 Comparison of number of M-S gates for implementing the ternary bench-
mark circuits. 72

6.2 Overhead comparison. 74

ix

List of Figures

2.1 Binary Feynman gate. 6
2.2 (a) Binary Toffoli gate, and (b) the truth table of the binary Toffoli gate. . . 7
2.3 The ternary 1-qutrit permutative gate. (a) The commonly-used symbol as

shown in [14], (b) and the cascading operations. 17
2.4 Symbol for the ternary Muthukrishnan-Stroud (M-S) gate [14]. 18
2.5 1-qutrit ternary shift gates [12]. 19
2.6 (a) The commonly-used symbol of the ternary 2-qutrit Feynman gate, and(b)

the truth table [14]. 20
2.7 (a) The 2-qutrit copy Feynman gate, and (b) the 2-qutrit basic Feynman

gate [15]. 20
2.8 The 3-qutrit ternary Toffoli gate, (a) with I/O mapping as shown in [14],

(b) its symbol, and (c) the truth table. 22
2.9 The realization of a 3-qutrit ternary Toffoli gate using M-S gates [14]. . . . 23
2.10 Ternary controlled-controlled gate as shown in [11]. 24
2.11 (a) Symbol of the generalized Toffoli gate, (b) its block diagram [15], and

(c) its realization using the M-S gate [14]. 24
2.12 Cascading gates to construct a ternary reversible circuit implementing a⊕

b⊕ c. 25
2.13 (a) The R gate, (b) R1 gate, and (c) the R2 gate [36]. 27
2.14 Testable logic block (TLB) [36]. 28
2.15 Rail checker circuit using the R gate [36]. 29
2.16 G gate and Deduced reversible logic gate DRG (G) as in [19]. 30
2.17 Cascaded DRGs to form a TRC [19]. 30
2.18 Testable Reversible Circuit (TRC) [19]. 31
2.19 Test Cell (TC) [19]. 31

3.1 Configuration of the T R1 block. 35
3.2 AND operation in the T R1 block and the corresponding truth table. 36
3.3 Mod-sum operation in the T R1 block and the corresponding truth table. . . 36
3.4 The successor operation in the T R1 block and the corresponding truth table. 37
3.5 The negation/complement operation in the T R1 block and the correspond-

ing truth table. 37
3.6 The mod-difference operation in the T R1 block and the corresponding truth

table. 38
3.7 The T R2 block. 39
3.8 Configuration of the online testable ternary reversible block (TR). 39
3.9 Online testable ternary reversible block (TR). 39
3.10 (a) Fault-free operation, and (b) faulty operation of a circuit constructed

from the T R block. 42

4.1 Ternary two-pair two-rail checker. 45
4.2 Block diagram for the new two-pair two-rail checker. 47

x

4.3 E gate. 48
4.4 Internal structure of the E gates (a) Ea, and (b) Eb. 49
4.5 Internal architecture of the two-pair two-rail checker. 50
4.6 Online testable ternary reversible implementation of function ab⊕ cd. . . . 52

5.1 Internal diagram of the T R1 block. 53
5.2 Realization of the cascade of GTGs having output AB. 55
5.3 Internal diagram of the T R2 Block. 56
5.4 Realization of the T R2 Block. 56
5.5 Upgraded internal design of the T R1 block. 58
5.6 Further upgraded design of the T R1 block. 58
5.7 Realization of the T R1 block. 59
5.8 Internal diagram of the T R block. 59
5.9 Realization of the T R block. 60
5.10 Copy operation using the 4T R block. 61
5.11 5×5 T R1 block. 62
5.12 Internal design of 5×5 T R1 block. 62
5.13 (a) Internal design of the modified Feynman (MF) gate and (b) symbol of

the modified Feynman (MF) gate. 64
5.14 Internal design of the 5×5 T R1 block using the MF gate. 65
5.15 5T R2 block. 65
5.16 Internal design of the 5T R2 block. 65
5.17 5×5 T R (5T R) block. 66
5.18 5×5 T Rc block. 67
5.19 Internal design of the 5×5 T Rc block. 67
5.20 5×5 T Rmc block. 69
5.21 Internal design of 5×5 T Rmc block. 69

6.1 Area overhead chart [25] . 75

A.1 (a) Copy using 4TR and (b) notation used in the diagrams. 79
A.2 Realization of the benchmark 3CyG2 using 4T R blocks. 80
A.3 Realization of the benchmark 3CyG2 using 5T R blocks. 81
A.4 Realization of the benchmark 3CyG2 using 4T R blocks and Feynman gates. 81
A.5 Realization of the benchmark 3CyG2 using 5T R and T Rcblocks. 82
A.6 Realization of the benchmark 3CyG2 using 5T R, T Rc and T Rmc blocks. . . 82
A.7 Realization of the benchmark 3CyG2 using non-testable ternary gates. . . . 83
A.8 Realization of the benchmark ProdG3 using 4T R blocks. 83
A.9 Realization of the benchmark ProdG3 using 5T R blocks. 84
A.10 Realization of the benchmark ProdG3 using 4T R blocks and Feynman

gates. 84
A.11 Realization of the benchmark ProdG3 using 5T R and T Rcblocks. 85
A.12 Realization of the benchmark ProdG3 using 5T R, T Rc and T Rmc blocks. . 85
A.13 Realization of the benchmark ProdG3 using non-testable ternary gates. . . 86

xi

A.14 Realization of the benchmark SumG3 using 4T R blocks. 86
A.15 Realization of the benchmark SumG3 using 5T R blocks. 87
A.16 Realization of the benchmark SumG3 using 4T R blocks and Feynman gates.

87
A.17 Realization of the benchmark SumG3 using 5T R and T Rcblocks. 88
A.18 Realization of the benchmark SumG3 using 5T R, T Rc and T Rmc blocks. . 88
A.19 Realization of the benchmark SumG3 using non-testable ternary gates. . . 89

xii

Chapter 1

Introduction

1.1 General Introduction

The irreversible nature of today’s circuits leads to the loss of information in the form of

heat dissipation. The technical advancement of circuits in size reduction and integration

of more and more complexity may soon be saturated because of this problem. Zhirnov

et al. in [37] showed that existing Complementary Metal Oxide Semiconductor (CMOS)

technology will soon reach a point when speeding up CMOS devices will be almost im-

possible because of the problem of heat removal. Although modern technologies in circuit

design and implementation reduce the dissipation of heat dramatically [21], the best way

to reduce heat dissipation is through reversible computing which recovers energy by con-

serving information when performing logic, storage and communication operations using

reversible transformations [6]. This has been known since the 1960s, when Landauer [18]

and later Bennett [1] both proved that reversible logic would be necessary for lower power

dissipation in circuits. A gate (or circuit) is reversible whenever there exists a one-to-one

mapping between the input values and the output values; hence there is no loss of infor-

mation. Bennett’s theorem [1] also suggests that in order for any future technologies to be

reliable they must be reversible and this phenomenon holds true whether the logic model

used is two-valued or multi-valued.

While many of us are familiar with Boolean (binary, two-valued) logic, both in tra-

ditional (irreversible) circuit design and reversible models, there are many advantages to

moving to a multi-valued (MV) paradigm, or at least considering problems using a less

restricted model. Circuits can sometimes show better characteristics if multi-valued logic

(MVL) concepts are used instead of traditional binary (two-valued) concepts [6]. In this

1

thesis we focus on a three-valued logic system known as ternary logic [23]. Using a

p-valued model (p > 2) sometimes provides a simpler solution for many existing prob-

lems [23]. Much research is taking place in MVL synthesis and optimization techniques;

however the areas of modeling faults in ternary reversible circuits and real-time online fault

detection have yet to be addressed. There is a great deal of motivation to do so, in particu-

lar since quantum computing is rapidly emerging as an area of importance. Since quantum

logic operations are reversible, research on testing of ternary reversible logic has immense

significance.

The unit of information in quantum logic system is known as a quantum digit or qudit.

This unit of information is known as quantum ternary digit or qutrit in quantum ternary

logic [11]. A set of measurable quantum states of an object represents the ternary logic

values 0, 1 and 2 which are encoded into computational basis states to represent a qutrit.

In simple words we can say that the ternary logic has three different states of signal as its

input signal whereas binary has only two states [11].

In this thesis we focus on incorporating online testability in ternary logic circuits. On-

line testability is the ability of a circuit to test a portion of the circuit while the circuit

is operating [36]. Being unable to find any previous work on ternary online testability,

our research is conducted in two directions, universal testable design and variations. Our

research includes designing ternary reversible logic blocks that can be combined to imple-

ment most basic ternary logic functions and are also capable of testing the functions while

the circuit is under operation (online testing). To propagate the test result in a larger circuit

we also design a ternary rail checker circuit. We apply the novel blocks to implement some

ternary benchmark circuits. While applying our proposed novel blocks to implement the

benchmark circuits we also introduce designs for the logic blocks that have been enhanced

to improve their performance.

2

1.2 Road map

The presented work is organized as follows:

In the Background chapter, the classic objects of reversible logic theory, MVL, fault

models and ternary reversible gates used in this work are discussed. With this introductory

chapter the reader should become familiar with the objectives and notations of MVL, fault

modeling, online testing and different ternary reversible gates.

Chapter 3, Ternary Online Testable Circuits describes in detail the proposed ternary

online testable blocks and their internal design. This work has been published in [33].

Chapter 4, Two Pair Two Rail Checker Circuit discusses the design of a ternary rail

checker circuit and its implementation. A realization of a sample function using the online

testable blocks and the rail checker is also shown. This chapter has been published in [33].

The fifth chapter, Implementation and Improvement of Underlying Design, discusses the

gate level implementation of the online testable blocks. An improvement of the proposed

design is also suggested. A part of this chapter has been published in [32].

Chapter 6, Comparison of Different Approaches introduces some new designs with im-

proved efficiency. Eight benchmark circuits have been implemented using all of the pro-

posed designs and also using existing non-testable gates. A comparison among the designs

in terms of the number of gates is also discussed.

The thesis concludes with the overall discussion in chapter 7 Conclusion and Future

Works which highlights the major contributions of the work described and suggests new

directions of research in the ternary reversible testing area.

3

Chapter 2

Background

2.1 Reversible logic

In traditional logic the number of inputs to a circuit may be different from the number of

outputs. In many cases the variation is quite large. Usually the number of inputs is greater

than the number of outputs. For example, in a two-bit binary full adder the number of inputs

is three but the number of outputs is always two. As stated in [34] conservation of encoded

input information at the output is often necessary in many fields of computation such as

digital signal processing, communication and computer graphics. There are also other

issues such as energy conservation and shifting to quantum technologies, both of which

require the input signals to be restored at the outputs [34]. This concept of preserving input

signals leads us to the concept of reversible logic.

Definition 2.1.1 “A gate is reversible if the (Boolean) function it computes is bijective” [34].

As stated in [34], a reversible gate must have an equal number of inputs and outputs. If the

gate has k inputs and k outputs and there exists a one-to-one mapping between the inputs

and outputs, the circuit can be defined to be a k× k reversible gate. However, when a

reversible gate has a one-to-one mapping between the inputs and outputs, this may result

in generating some outputs that are not required for the computation. These outputs are

known as garbage outputs. Constant inputs are input lines that are set to a constant value.

To keep the number of inputs equal to the number of outputs, introducing constant inputs

and garbage outputs is sometimes unavoidable.

Logic synthesis can be considered to be the process of converting a high-level design

description into an optimized gate level representation of a circuit [28]. A logic synthesis

process using reversible gates should have the following features [7, 36]:

4

• The number of gates required in the resulting circuit should be as small as possible,

• the number of input constants should be as low as possible,

• the number of gates in the cascade should be the least possible, and

• the generation of garbage outputs should be as few as possible,

Bennett suggests that for a computation to be reversible two conditions are needed to

be satisfied [1]. These conditions are logical reversibility and physical reversibility. Log-

ical reversibility refers to the ability to reconstruct the input information from the logical

outputs. An irreversible computer can be made reversible by saving the information the ir-

reversible computer usually throws away. Therefore, all computation can be made logically

reversible if all the information in that computation is preserved [1]. Physical reversibility

refers to the ability of the device to run backward. This reversibility implies that the circuit

is thermodynamically reversible. In other words, each operation will not convert any en-

ergy to heat. The objective of the thermodynamic design is reduce the energy dissipation

and achieve thermodynamic equilibrium [1].

The ability to uniquely reconstruct the input sequence from the output sequence makes

the circuit reversible, as this is not possible in irreversible circuits. In [36], the authors refer

to a reversible circuit as being balanced as exactly half of the inputs produce ones at the

outputs.

2.1.1 Importance of reversible logic

The primary motivation towards reversible computing is based on the fact that all irre-

versible logic operations produce a fundamental amount of waste energy. This problem will

soon cause the current technological advancement to hit a roadblock in reducing the size

of components in order to continue to meet the predictions of Moore’s Law. To proceed

5

beyond this situation energy preserving and recovering techniques will be required [32].

Details are discussed in [1, 6, 18].

The other reason for carrying out research on reversible computing is its association

with quantum gates since quantum gates are reversible [34]. All reversible gates follow the

same rules independent of the input types, i.e. whether they are classical bits or quantum

states. The major attraction of quantum computing is the speed of operation but quan-

tum computing can also be thought of as a distinct case of classical reversible computing.

However in order to use reversible circuits some form of reversible logic synthesis is nec-

essary [34].

2.2 Binary reversible logic gates

There are several binary reversible logic gates discussed in [5, 7, 35]. In this section some

of the popular binary reversible gates are described.

Definition 2.2.1 A 2×2 binary Feynman gate can be defined as I = (A, B) and O = (P =

A,Q = A⊕B) where I and O are the sets of inputs and outputs respectively [5].

Figure 2.1 illustrates the binary Feynman gate as shown in [29].

Figure 2.1: Binary Feynman gate.

6

Definition 2.2.2 A 3×3 binary Toffoli gate can be defined as I = (A, B, C) and O = (P =

A,Q = B,R = AB⊕C) where I and O are the sets of inputs and outputs respectively [35].

Figure 2.2 (a) illustrates the binary Toffoli gate as shown in [29] and Figure 2.2 (b) shows

the truth table of the binary Tofolli gate as shown in [36]. Other binary reversible gates

such as the Fredkin gate and the Peres gate are discussed in [29].

Toffoli
Gate

A

C

B

P = A

Q = B

R = AB C

Input Output
A B C P Q R
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

(a) (b)

Figure 2.2: (a) Binary Toffoli gate, and (b) the truth table of the binary Toffoli gate.

2.2.1 Garbage Outputs

The binary Toffoli gate generates three outputs among which only one output (R) produces

the desired result. The other two outputs may be regarded as garbage outputs if they cannot

be used in computing the desired function. The presence of garbage outputs, however, is

sometimes necessary in a reversible circuit to maintain the reversibility. Garbage is defined

in [21] as the number of unutilized outputs required to convert a nonreversible function to

a reversible one.

7

2.3 Fault Models

Recognizing and modeling the behavior of possible defects in a circuit is known as fault

modeling. Jha and Gupta discuss how different levels of abstraction in circuit design can

result in different fault models [8]. We briefly describe these varying models.

• Viewing a system from a behavioral point of view results in a variety of behav-

ioral fault models. These types of fault models stem from the constructs used in a

behavioral description, such as language like VHDL (VHSIC hardware description

language; VHSIC: very-high-speed integrated circuit).

• Functional fault models focus on the faults in functional blocks of the system, with

the goal of ensuring fault-free behavior of the blocks. In RAM, for instance, a mul-

tiple write fault is an example of a functional fault.

• Structural fault models deal with faults that occur at the interconnections of a design.

The single stuck-at fault is a commonly used fault model in this category.

• Switch level fault models focus on the transistor level of a circuit. Two popular fault

models in this category are stuck-open and stuck-on fault models. A permanently

non-conducting faulty transistor generates a stuck-open fault while a permanently

conducting faulty transistor results in a stuck-on fault.

• Geometric fault models identify the flaws in the layout of a chip, or manufacturer

defects. Shorted lines in a chip layout are modeled by the bridging fault model which

falls into this category.

Vasudevan et al. in [36] characterize the type of fault that our technique identifies as a

single bit error. A single bit error occurs whenever the value of an output has been changed

because of an internal circuit error, and is reflected on a single output. This is referring to

a block of output values, within which the change on any one output line can be identified.

8

2.4 Multi-Valued Logic (MVL)

Multi-valued logic (MVL) refers to the logic system which utilizes variables that can take

on a discrete and finite set of values [23]. For example, the binary logic system deals with

values 0 and 1, whereas a ternary system deals with values 0,1 and 2. Besides encoding

logic values, MVL methods may also be used to design the initial logic circuits with binary

or MVL signal levels. A circuit may show better characteristics such as better performance

or reduced wiring congestion if MVL concepts are used in the design phase instead of

binary valued logic [23].

MVL requires different algebraic structures than ordinary Boolean algebra required for

binary operations. Many theorems of Boolean algebra do not support a set of values that

does not have cardinality of 2n. This situation creates a lack of completeness in Boolean

algebra for MVL. The behavior of a circuit is often described by mathematical equations or

formulas. Another requirement for the circuit implementation from the mathematical def-

initions or formulas should be an easy but efficient circuit implementation of the algebraic

operators [23]. A finite set of values including two identity elements and a set of opera-

tors are the basic elements of the algebra for MVL. These identity elements and operators

are well defined over the finite set in one-place and two-place functions. We use the term

one-place to refer to these functions that have one operand and the term two-place to refer

functions that have two operands. Usually the finite sets of logic values have cardinality

p≥ 3 in an MVL system [23].

MVL, particularly three and four valued systems, has been of interest to researchers

because of connections to ternary digital circuits and computers. This is because it has

become possible to implement the ternary logic system in computer hardware [3].

9

2.5 MVL operators

As stated earlier, a circuit’s behavior can be defined using algebraic equations. The main

focus of an MVL algebra is for the operators to have simple circuit implementations. A

circuit developed from such operators will have fewer gates, and can implement general p-

valued functions. Table 2.1 shows five such operators and their definitions as stated in [23].

Table 2.2 defines the operators for p = 2,3 as stated in [23].

Table 2.1: Two-place MVL operators.

NAME NOTATION DEFINITION
Min x.y x if x < y, y otherwise
Max x+ y x if x > y, y otherwise

Mod-sum x⊕ y (x+ y)mod p
Mod-difference x	 y (x− y)mod p
Truncated sum x+t y min(p−1,sum(x,y))

10

Table 2.2: Truth table for two-place MVL operator for p = 2,3
.

p = 2 p = 3

Min
· 0 1
0 0 0
1 0 1

· 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

Max
+ 0 1
0 0 1
1 1 1

+ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

Mod-sum
⊕ 0 1
0 0 1
1 1 0

⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Mod-difference
	 0 1
0 0 1
1 1 0

	 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Truncated sum
+t 0 1
0 0 1
1 1 1

+t 0 1 2
0 0 1 2
1 1 2 2
2 2 2 2

The number of one-place functions for a p-valued logic system is pp. For binary (p =

2) there are four one-place functions: the identity function, negation, and two constant

functions. For ternary systems (p = 3), there are 27 one-place functions including the

identity, 3 constant functions and 23 other options for one-place operators. Table 2.3 shows

some of the one-place operators as shown in [23]. Table 2.4 also shows the truth table of

the operators for p = 2,3 as shown in [23].

11

Table 2.3: One-place MVL operators [23].

NAME NOTATION DEFINITION
Cycle xk (x+ k)mod p

Successor −→x (x+1)mod p
Predecessor ←−x (x−1)mod p

Negation x (p−1)− x

Table 2.4: Truth table for one-place operator for p = 2,3 [23].

P=2
x x
0 1
1 0

P=3

x x1 x2 −→x ←−x x
0 1 2 1 2 2
1 2 0 2 0 1
2 0 1 0 1 0

There also exist MVL algebras based on logic operations for non-modular arithmetic

operations over finite set of logic values; for example Lukasiewicz logic, Post logic algebra,

Bochvar Logic, Kleene logic, Allen and Givone algebra [23]. These are out of the scope of

this work, and will not be discussed.

2.6 Applications of MVL

The use of MVL concepts in the design stage of various fields of logic design can be clearly

demonstrated from the examples in this section.

2.6.1 MVL in Logic Synthesis

A common tabular method to minimize binary sum of product (SOP) expressions is the

Quine-McClusky method. When this method is used in a computer algorithm, a don’t-care

12

value, X, in addition to logic values 0 and 1 is introduced. This new logic value converts

the system into a three valued or ternary logic system consisting of {0, 1, X} [23].

2.6.2 Logic simulation

In some applications, a MVL set is used to represent different states of the system. For

example, the Test Generation and Simulation System (TEGAS) uses a six-valued MVL set

consisting of values {0, 1, X, U, D, E} [23]. Here {0,1} represent steady state logic values,

X represents a simulator initialization value, U represents a transition signal from low to

high, D represents a transition signal from high to low, and E represents transient behavior

of the system [23].

2.6.3 Digital hardware testing

There exist different MVL algebras for detecting the presence of faults in a circuit. The

process for detecting faults is to develop a subset of input assignment values and apply

them on the circuit to determine the fault inside. One example is D-calculus algebra which

is discussed in [23].

2.6.4 MVL circuit design

Decreasing wiring congestion in the circuit is a major concern in circuit design. For this

purpose, MVL has great importance in circuit design. In MVL, it is possible to transmit

more than two voltage or current values using a single conductor. This results in reduced

wiring in the circuit [23].

13

2.6.5 MVL in quantum logic

Quantum computing uses the state of matter at the molecular, atomic or particle level to

represent information. Usually a quantum algorithm involves more than two logic levels

and hence it is easier to solve quantum problems with a MVL system than with a classical

2-valued (Boolean) system [23].

2.7 Ternary reversible logic

Ternary reversible/quantum research is introduced in [11] as a very new research area, but

with motivation based on both quantum and multi-valued computing. In [12], the author

discusses the fact that ternary functions can be easily expressed using Ternary Galois Field

Sum of Product (TGFSOP) expressions, regardless of the number of input variables. Quan-

tum 1-qutrit and 2-qutrit gates are also realizable using existing quantum technology [12].

Ternary logic, which deals with three different logic values, is the simplest introduction

of MVL . The memory unit in ternary logic is referred to as a qutrit (quantum ternary digit).

Qutrits may have logic values 0,1 or 2. In an implementation of a ternary reversible sys-

tem these logic values may be represented by different distinguishable states of a photon’s

polarization, or atomic spin [13].

2.7.1 Ternary Galois field logic (GF3)

Different works on Galois field logic show that Ternary Galois Field Sum of Products

(TGFSOP) expressions can be helpful in ternary quantum logic synthesis [15, 10, 14]. Ad-

dition (⊕) and multiplication (·) are the two principle mathematical operations in Ternary

Galois Field (GF3) logic. GF3 operates on three basic input literals, I = {0,1,2}. GF3

operations are exactly the same as the modulo 3 operations [14, 15]. The operations are

14

defined in [14] as given in Table 2.5.

Table 2.5: Ternary Galois Field (GF3) operations [14].

⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

A TGFSOP representation is mentioned as a natural choice for multi-valued quantum

logic synthesis in [15]. The author in [15] states that realization using cascades of quantum

gates can directly implement TGFSOP expressions, or at least this type of expression is

suitable for a factorization process which leads to factorized cascades of quantum gates.

Therefore, the TGFSOP representation is considered to be the most suitable representation

for ternary functions [15]. In this thesis we use “⊕” to refer to GF3 addition, and the

absence of any symbol to refer to GF3 multiplication.

2.8 Ternary reversible gates

Some common ternary reversible gates are the ternary implementation of the binary re-

versible gates such as the Feynman and Toffoli gates [5, 35]. In addition, Muthukrishnan

and Stroud demonstrated the realization of MVL for quantum computing using quantum

technologies such as ion-trap [24], which led to their proposal of the Muthukrishnan and

Stroud (M-S) gate. The M-S gate is considered to be one of the elementary gates in ternary

logic synthesis [13]. A brief description of these reversible gates is given in the follow-

ing sections, as well as an introduction to the most basic ternary gates such as the 1-qutrit

permutative gate.

15

2.8.1 1-qutrit permutative gate

1-qutrit permutative gates are discussed in [11] and [15]. These works state that any trans-

formation of the qutrit state can be represented by a 3×3 unitary matrix [11]. This trans-

formation is known as a Z-transformation. A Z-transformation shifts or permutes the input

states to generate the desired output states. For example, the (+1) Z-transformation can be

represented by the following 3×3 matrix.

Z(+1) =

∣∣∣∣∣∣∣∣∣∣
0 0 1

1 0 0

0 1 0

∣∣∣∣∣∣∣∣∣∣
This Z-transformation shifts the input qutrit by 1. There are numerous Z-transformations

that can be defined by varying 3×3 matrices, but the most useful transformations are shown

in Table 2.6. There are five ternary one-place operations corresponding to the permutation

of ternary values 0,1 and 2 and each of these can be constructed as ternary reversible gates.

These gates are known as ternary 1-qutrit permutative gates. Table 2.6 shows the operations

of these 1-qutrit permutative gates, and the symbol for the ternary 1-qutrit permutative gate

is shown in Figure 2.3 (a) [11].

Table 2.6: Operations of 1-qutrit permutative gates, also referred to Z-transformations [11].

Output
Input +1 +2 12 01 02

0 1 2 0 1 2
1 2 0 2 0 1
2 0 1 1 2 0

Two 1-qutrit permutative gates act as another 1-qutrit permutative gate if they are cas-

caded together [11]. The cascading gates have a serial effect on the input which produces

16

a resulting output that is similar to the single output of another 1-qutrit gate. Figure 2.3 (b)

shows the resultant 1-qutrit gate for two cascaded 1-qutrit gates as shown in [11].

Second 1-qutrit gate
First 1-qutrit

gate +1 +2 12 01 02
+1 +2 +0 02 12 01
+2 +0 +1 01 02 12
12 01 02 +0 +1 +2
01 02 12 +2 +0 +1
02 12 01 +1 +2 +0

(a) (b)

Figure 2.3: The ternary 1-qutrit permutative gate. (a) The commonly-used symbol as shown
in [14], (b) and the cascading operations.

2.8.2 Muthukrishnan-Stroud (M-S) Gate

The M-S gate is a 2-qutrit multi-valued gate which can be realized using ion-trap technol-

ogy. The M-S gate can be represented by the symbol shown in Figure 2.4 [14]. The value of

input A controls the value of Q, which is the Z-transformation of input B whenever A = 2,

where Z ∈ {+1,+2,12,01,10}. If A 6= 2 then input Q is passed unchanged as Q = B [14].

The cost of these elementary quantum gates is usually measured by the number of 1- and

2-qutrit transformations required to implement their behavior using some quantum realiza-

tions [22]. The M-S gate is considered to be an elementary quantum building block which

in [14] is defined to have a cost of 1. Therefore, the cost metric used in this thesis is the

number of M-S gates required to construct a ternary gate or circuit. Further details on the

Z-transformation and Galois field logic are given in [14, 15] and [30]. Table 2.7 shows how

the M-S gate generates different outputs depending on the Z-transformation applied to a

controlled input.

17

Figure 2.4: Symbol for the ternary Muthukrishnan-Stroud (M-S) gate [14].

Table 2.7: Operations of the M-S gate for A = 2 [11].

Input B Output Q
Z(+1) Z(+2) Z(12) Z(01) Z(02)

0 1 2 0 1 2
1 2 0 2 0 1
2 0 1 1 2 0

2.8.3 Ternary Shift Gates

Six 1-qutrit ternary shift gates have been proposed by [12]. These gates are based on GF3

addition and multiplication operations. Figure 2.5 shows the symbols and operation of

these six 1-qutrit ternary shift gates [12]. An example may help to clearly understand the

table. If the value of x is 1, the output of a self-dual-shift gate would be (2x+ 2) mod 3

= 1.

18

Figure 2.5: 1-qutrit ternary shift gates [12].

2.8.4 Ternary Feynman gate

Figure 2.6 (a) shows the symbol for the ternary representation of the Feynman gate [14]. A

2×2 Feynman gate has 2 inputs and 2 outputs. The first output restores the first input and

the second output provides the EXORed value of the two inputs. Figure 2.6 (b) shows the

truth table [14].

19

A B P Q = A⊕B
0 0 0 0
0 1 0 1
0 2 0 2
1 0 1 1
1 1 1 2
1 2 1 0
2 0 2 2
2 1 2 0
2 2 2 1

(a) (b)

Figure 2.6: (a) The commonly-used symbol of the ternary 2-qutrit Feynman gate, and(b)
the truth table [14].

The notations of the ternary Feynman gate that are used in this thesis are shown in

Figure 2.7 [15].

(a)

(b)

Figure 2.7: (a) The 2-qutrit copy Feynman gate, and (b) the 2-qutrit basic Feynman
gate [15].

Implementation of the ternary Feynman gate using M-S gates

Figure 2.7 (b) shows the ternary M-S gate realization of the 2× 2 ternary Feynman gate.

The operation of the ternary Feynman gate can be described using the principle of the M-S

gate. Input B of the ternary Feynman gate is Z-transformed to generate the desired output,

and this Z-transformation of the input B is controlled by input A. If input A = 0, neither

20

of the M-S gates connected to B will be activated and hence no Z-transformation will be

applied. Therefore, if A = 0 and B ∈ {0,1,2}, then Q = 0⊕B = B. Similarly if A = 1, the

second M-S gate connected to B will be activated and output Q = B⊕1 will be generated

by applying Z(+1) transformation on input B where B ∈ {0,1,2}. Finally if A = 2, the

first M-S gate connected to B will be activated and output Q = B⊕2 will be generated by

applying the Z(+2) transformation on input B [14]. As we can see in 2.7 (b) we require 4

gates to implement the Feynman gate, thus its cost is said to be 4 [24] .

2.8.5 Ternary Toffoli gate

The ternary Toffoli gate has three inputs and three outputs. The first two outputs restore the

first two inputs while the last output generates the result. If the inputs of a ternary Toffoli

gate are A,B and C, the outputs would be P = A, Q = B, R = AB⊕C. The ternary Toffoli

gate is shown in Figure 2.8 (a) while Figure 2.8 (b) shows its symbol and Figure 2.8 (c)

shows the truth table [14].

21

A
B
C

A
B
R=AB ⊕ C

A

C

B

A

B

 AB C

(a) (b)
A B C P Q R = AB⊕C
0 0 0 0 0 0
0 0 1 0 0 1
0 0 2 0 0 2
0 1 0 0 1 0
0 1 1 0 1 1
0 1 2 0 1 2
0 2 0 0 2 0
0 2 1 0 2 1
0 2 2 0 2 2
1 0 0 1 0 0
1 0 1 1 0 1
1 0 2 1 0 2
1 1 0 1 1 1
1 1 1 1 1 2
1 1 2 1 1 0
1 2 0 1 2 2
1 2 1 1 2 0
1 2 2 1 2 1
2 0 0 2 0 0
2 0 1 2 0 1
2 0 2 2 0 2
2 1 0 2 1 2
2 1 1 2 1 0
2 1 2 2 1 1
2 2 0 2 2 1
2 2 1 2 2 2
2 2 2 2 2 0

(c)

Figure 2.8: The 3-qutrit ternary Toffoli gate, (a) with I/O mapping as shown in [14], (b) its
symbol, and (c) the truth table.

Implementation of the ternary Toffoli gate using M-S gates

Figure 2.9 shows the corresponding M-S gate implementation of a 3-qutrit ternary Tof-

foli gate. The first two inputs are the controlling inputs and the last one is the controlled

input. The two controlling inputs change the value of a constant input to trigger the Z-

transformation that changes the controlled input. The output corresponding to the con-

trolled input is the Z-transformation of that input only when the values of the two control-

ling inputs are 2. Otherwise, the controlled input will be passed unchanged to the output

R. As in Figure 2.9, when A = B = 2, the output R will be the Z-transformation of C where

22

Z = +1; R = C otherwise. The M-S gate implementation also shows how the values of

controlling inputs are used to change a constant input 0 to control the Z-transformation on

the controlled input C [14]. The cost of this realization is 5 [14].

A
B

+1 +2+1

Z

0
C

P=A
Q=B
0
R

+2
x

Figure 2.9: The realization of a 3-qutrit ternary Toffoli gate using M-S gates [14].

2.8.6 Ternary controlled-controlled gate

The ternary controlled-controlled gate was also proposed in [11]. The ternary controlled-

controlled gate has two controlling inputs and one controlled output. Figure 2.10 illustrates

the symbol of a ternary controlled-controlled gate [11]. From the figure it can be seen that

the Z-transformation is applied on W only when the values of both of the inputs X and Y

are 2, otherwise W is passed unchanged. The implementation of the ternary controlled-

controlled gate is identical to the Toffoli gate. Two controlling lines are directly connected

to a constant input which trigger the Z-transformation that changes the controlled input. If

the values of both controlling inputs are 2, the Z-transformation will be triggered, otherwise

the controlled input is passed unchanged through to the output. The difference between

the Toffoli and the controlled-controlled gate is the value of the Z-transformation. In the

Toffoli gate, the value of the Z-transformation that will change the controlled input is equal

to +AB. However, in the controlled-controlled gate the value of the Z-transformation can

be anything i.e Z ∈ {+1,+2,12,01,10}.

23

Figure 2.10: Ternary controlled-controlled gate as shown in [11].

2.8.7 3-qutrit generalized Toffoli gate (GTG)

In a 3-qutrit generalized Toffoli gate there are two controlling inputs and one controlled

input. As described in Section 2.8.5, whenever the values of the two controlling inputs are

2, a Z-transformation is applied on the controlled input to generate the output. For all other

combinations of the controlling inputs, the controlled input is passed unchanged. To make

the operation more generalized, i.e. to allow the Z-transformation to be activated for other

combinations of the controlling inputs (other than only 2, 2), the author of [14] proposed a

generalized Toffoli gate. Therefore, the basic Toffoli gate can operate for the inputs A = 2

and B = 2 only, whereas the GTG can operate for the other values of A and B also, such as

for A = 1 and B = 2. The realization of the GTG is shown in Figure 2.11.

(a) (b) (c)

Figure 2.11: (a) Symbol of the generalized Toffoli gate, (b) its block diagram [15], and (c)
its realization using the M-S gate [14].

Figure 2.11 shows how the values of the controlling inputs A and B should be shifted

to trigger the Z-transformation on input C. If we assume the values of the controlling

inputs are A = a1 and B = a2 then the idea is to shift the controlling value aI (where I

24

∈ {1,2}) to 2 using the appropriate shift to activate the Z-transformation. This is illustrated

in Figure 2.11(b). The XI shift is necessary to make the value of the controlling input 2

where +(XI) = +(2− aI) and I ∈ {1,2}. The resulting values are used to activate the Z-

transformation. An inverse gate denoted by X ′I is used to restore the value of the controlling

input to its initial value. The cost of this Toffoli gate is 5+2*(number of non-2 controlling

values) [15]. The non-2 controlling values refer to the controlling inputs that are not 2 and

so require shifting to 2 to activate the Z-transformation.

As an example of its use, let us assume we wish to activate the (+2) Z-transformation

for the input combination A = 1 and B = 2. In this case A is a non-2 controlling input. To

force the value of A to be 2, we need to shift the input A by +(2−1) = +1. Input B does

not need any shift since its value is already 2 . The resultant A = 2 and B = 2 are used to

activate the Z transformation to be applied on C and generate output F = AB⊕C = 2⊕C.

2.8.8 Construction of ternary reversible circuits

In order to create a ternary reversible circuit, a cascade of ternary reversible gates is con-

structed. For example, Figure 2.12 shows how two Feynman gates can be cascaded to

implement the function a⊕b⊕ c.

+2

+1

+1

+2

+2

+1

+1

+2

A B C

A

A B

 A

 B

 C

Figure 2.12: Cascading gates to construct a ternary reversible circuit implementing a⊕b⊕
c.

25

2.9 Online Testing in Reversible Logic Circuits

Testing of a circuit is carried out to detect errors in a circuit or determine whether the

circuit is error free or not. Testing holds immense importance in the implementation phase

of circuits. Complex circuits may contain some ambiguous or faulty outputs that have been

caused by flaws in the circuit hardware or problems in the fabrication process and testing

is required to detect those flaws [8].

2.10 Online Testing

Online testability is the ability of a circuit to test a portion of the circuit while the circuit is

operating [36]. Detecting a fault in operation, the point of occurrence and in some cases,

attempting to recover from the fault are the major focuses of research in online testing [8].

Similar processes for binary reversible logic have been discussed in [8] and [9]. In [8] the

authors discuss built-in self-test (BIST) for digital circuits. BIST refers to the design of a

circuit to test itself, but not while operating, i.e. offline.

In [9] the author discusses the concept of self checking logic and three categories for

self testable circuits [17]: fault secure, self-testing and totally self-testing digital circuits.

According to the author, a fault secure digital circuit should have the characteristic that the

output will not be affected by any single bit fault. A self-testing circuit refers to a digital

circuit which generates outputs of some invalid pattern to represent a fault that occurs inside

the circuit. A totally self-testing circuit must be both fault secure and self-testing [9]. The

circuit we propose in this work falls into the self-testing digital circuit category.

26

2.11 Works related to online testable reversible logic gates

More than one approach to binary reversible online testing is found in the literature. The

existing reversible gates like Fredkin and Toffoli gates can not incorporate online testabil-

ity [36]. Hence, researchers have designed new gates with built in online testability features

in [36].

2.11.1 Binary online testing using R, R1 and R2 gates (ap-

proach 1)

In [36] the authors propose three new reversible gates R, R1 and R2 which are used to

construct online testable circuits. R and R1 are designed as the building blocks for arbitrary

functions while R2 includes the online testable feature.

The block diagrams of the 3×3 R gate, 4×4 R1 gate and 4×4 R2 gate are shown in

Figure 2.13 [36].

R

A

C

B

L = A B

M = A

N = C’ AB

R1

A

D

C

B

U = A C

V = B C AB BC

W = A B C

Q = P C AB BC

(a) (b)

R2

D

R

F

E

X = D

Y = E

Z = F

S = R D E F

(c)

Figure 2.13: (a) The R gate, (b) R1 gate, and (c) the R2 gate [36].

The 4× 4 R1 gate can be used to realize AND, OR, NAND, NOR, XNOR and XOR

operations by setting different values on different inputs. The R1 gate has a parity output at

27

Q. The R2 gate is designed to have the online testability features integrated into it. Beside

duplicating inputs, the R2 gate also generates a parity at the output S. A R1 gate is cascaded

by its first three outputs with the first three inputs of a R2 gate to construct a testable logic

block (TLB). R2 passes its three inputs unchanged through to the outputs. Figure 2.14

shows the construction of the testable logic block. The parities are compared to detect if

there is any single bit fault in the circuit. If P is set to R′, Q being a complement of S

represents a fault-free situation.

Figure 2.14: Testable logic block (TLB) [36].

Two-pair rail checker using the R gate

A rail checker circuit is used for checking the outputs of the online testable blocks and

propagating the error along a larger circuit. In [36] a two-pair rail checker has been de-

signed using R gates. Figure 2.15 illustrates the configuration of the rail checker circuit

from [36]. The two-pair rail checker defines two error checking functions as follows:

E1 = X0Y1+Y0X1

E2 = X0X1+Y0Y1

The outputs of the functions E1 and E2 depend on the inputs X0,Y 0 and X1,Y 1 which

are originally the outputs Q and S from two testable logic blocks (TLB). The outputs E1

and E2 are the complement of each other only if the inputs Xa and Ya are the complement

of each other, otherwise E1 = E2. This allows the two-pair rail checker to test the testable

28

logic blocks for any fault occurrence and as well propagate the error.

Figure 2.15: Rail checker circuit using the R gate [36].

2.11.2 Testing using a universal reversible logic gate (ap-

proach 2)

In [19], the authors proposed an approach to directly construct an online testable circuit

from a given reversible circuit. The authors propose two steps for this construction. In

the first step, every n× n reversible gate G in that circuit is transformed into a new (n+

1)× (n+1) Deduced Reversible Gate DRG (G). This can be achieved by adding an extra

input bit Pia and the corresponding output bit Poa to the reversible gate G, maintaining the

original functionality of the gate. Figure 2.16 shows the configuration.

29

Figure 2.16: G gate and Deduced reversible logic gate DRG (G) as in [19].

In the second step, a testable reversible cell of G, TRC (G) is constructed by cascading

the DRG (G) with a deduced identity gate. An identity gate is an n×n reversible gate where

all the inputs are simply copied to the outputs. For instance if X is an n× n identity gate,

then a deduced identity gate of X, DRG (X) can be easily constructed similarly from the

reversible gate X by adding an extra input bit Pib and the corresponding output bit Pob. The

DRG (G) and DRG (X) are cascaded by connecting the first n outputs of DRG (G) and the

first n inputs of DRG (X). The new (n+2)× (n+2) block is called a Testable Reversible

Cell, TRC (G) [19], which is the final online testable gate. The construction is shown in

Figure 2.17.

Figure 2.17: Cascaded DRGs to form a TRC [19].

30

Figure 2.18: Testable Reversible Circuit (TRC) [19].

The TRC (G) has two parity outputs Poa and Pob as shown in Figure 2.18. If Pia =

Pib, Poa being the complement of Pob indicates a faulty situation. Following the procedure

mentioned above every reversible gate in the circuit is replaced by the corresponding TRC.

If we assume that there are m TRCs in the circuit, then there would be 2m parity outputs in

the circuit. To check the output parities a (2m+1)× (2m+1) test cell (TC) is constructed.

The first 2m inputs of the TC are the parity outputs from the TRCs which are passed through

to the outputs. The last input is e which is set to the value 0 or 1, and the corresponding

output is T = ((Poa1⊕Pob1)+ (Poa2 +Pob2)+(Poam +Pobm)⊕ e). Here Poan and

Pobn are the parity outputs of the nth TRC. Figure 2.19 shows the configuration. A single

bit fault is detected if T = 1, provided e is set to 0.

TC

Poa1

Pob1

Poa1

Pob2

Poam

Pobm

e

.

.

.

.

.

.

.

.

Poa1

Pob1

Poa1

Pob2

Poam

Pobm

T

Figure 2.19: Test Cell (TC) [19].

2.12 Summary

A brief literature overview on reversible logic, MVL, TGFSOPs, ternary reversible gates

and the related work on binary online testable logic gates are presented in this chapter.

31

Several existing gates are defined and examples of their uses are given. These logics and

gates are the fundamental requirements for understanding the new proposed ternary online

testable block design which we discuss in the following chapters.

32

Chapter 3

Ternary Online Testable Circuits

3.1 Introduction

The area of fault detection for reversible circuits is fairly new, although works such as

[16, 31] and [38] are beginning to address this area. A great deal of effort has been engaged

in finding ways to design and build ternary reversible gates and circuits. However modeling

the faults of ternary reversible circuits and detection of the faults in real time is yet to be

addressed, despite the clear significance of these areas.

Since quantum computing is also a rapidly emerging area and quantum logic operations

are reversible, studying how to build online testable ternary reversible circuits may assist

in the development of test methods for quantum circuits.

In this chapter we present designs for two ternary blocks: one to implement basic

ternary logic functions and the other to implement online testability to detect any single

bit error. Since we are working with ternary logic, a single bit error should technically

be referred to as a single qutrit error; however for the sake of simplicity we use the term

“single bit error” through out the rest of the thesis.

3.2 Design of the online testable ternary reversible logic

block

The testable blocks that we propose are built using ternary reversible gates, and so the

resulting blocks are also reversible. The M-S gate, ternary Toffoli gate and ternary Feynman

gates are the building blocks that we use, and these gates are introduced in Chapter 2.

There are thousands of ternary one-place and two-place functions. However we are

33

most interested in those which can be easily realized in a circuit and have the ability to

represent general p-valued functions [23]. Therefore, we have chosen the following ternary

functions to be implemented in our block.

• Successor : f (x) = (x+1)mod 3

• Predecessor: f (x) = (x−1)mod 3

• Negation: f (x) = (2− x)mod 3

• Mod-Sum: f (x,y) = (x+ y)mod 3

• Mod-difference: f (x,y) = (x− y)mod 3

In our research we have found that these ternary functions can be easily represented

using ternary Galois field addition and multiplication. Therefore, these functions can be

represented using a Ternary Galois Field Sum of Products (TGFSOP) as shown below.

Here “⊕” refers to ternary addition and no operator between the variables refers to ternary

multiplication.

• Successor : f (a) = (a⊕1)

• Predecessor: f (a) = (a−1) = {a⊕ (−1)}

• Negation: f (a) = (2a⊕2)

• Mod-Sum: f (a,b) = (a⊕b)

• Mod-difference: f (a,b) = (a⊕2b)

There are two major differences between the blocks proposed in [36] and our ternary

reversible logic blocks. The first is that the successor operator is used instead of comple-

ment as will be shown in Section 3.2.3. The second is that, as will be shown in Section 5.2,

our component consists of multiple gates rather than being an individual gate. The two

blocks that compose our design are described in the following sections.

34

3.2.1 The T R1 block

The 4×4 T R1 block can be defined as I = (A,B,C,P) and O = (L = AB⊕C, M = A⊕B,

N = 2AB, Q = P⊕A⊕B⊕C), where I and O are input and output sets respectively. The

block is shown in Figure 3.1.

TR1

A

P

C

B

L = AB C

M = A B

N = 2AB

Q = P A B C

Figure 3.1: Configuration of the T R1 block.

The T R1 block has A, B, C and P as inputs where P is required for the error checking

functionality. This block generates outputs L = AB⊕C, M = AB, N = 2AB and Q. Here

the outputs L, M and N are sufficient to implement the discussed ternary operations and Q

is used for error detection. The value of Q should be equivalent to the sum of the outputs

L, M and N, and input P. The operations are independent of the input P and P is set to

an arbitrary value 0, which will be used in the testability feature. The following sections

describe how the inputs are chosen in order to implement the discussed ternary operations.

The AND operation in the T R1 block

The ternary AND operation (GF3 Multiplication) can be easily implemented using the T R1

block. To implement an AND operation, input C is set to 0 where A and B are set as the

operands of the AND operation. L provides the desired output. Figure 3.2 shows the

configuration of the T R1 block and the truth table of the ternary AND operation discussed

in [15].

35

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Figure 3.2: AND operation in the T R1 block and the corresponding truth table.

The Mod-sum (EXOR) operation in the T R1 block

The ternary mod-Sum (EXOR) operation is identical to the GF3 addition and can also be

easily implemented using a T R1 block. To implement the mod-sum operation, input C is

set to 0 where A and B are set as the operands of the mod-sum operation. M provides

the desired output. Figure 3.3 shows the configuration and the truth table of the ternary

mod-sum operation [15] respectively.

⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

Figure 3.3: Mod-sum operation in the T R1 block and the corresponding truth table.

The successor operation in the T R1 block

The ternary one-place operation successor (−→x) is defined as {(x+1)mod 3} [23] where x

is the ternary input. To implement the successor operation, input C is set to 0 and A and

B are set as the operands of the successor operation i.e. A = x and B = 1. The output M

provides the desired output. Figure 3.4 shows the configuration of the T R1 block and the

corresponding truth table to implement the successor operation.

36

x −→x = x⊕1
0 1
1 2
2 0

Figure 3.4: The successor operation in the T R1 block and the corresponding truth table.

Negation/complement operation in the T R1 block

The ternary one-place operation negation/complement is defined as {(2− x)mod 3} [23]

where x is the ternary input. We have found that the negation operation for ternary can be

described using a TGFSOP representation as f (x) = 2x⊕2. This statement can be verified

from the table in Figure 3.5.

To implement the negation operation, inputs A and C are set to 2 and B is set as the

operand of the negation/complement operation i.e B = x. L provides the desired output.

Figure 3.5 shows the configuration of T R1 to implement the negation/complement opera-

tion.

x x = 2x⊕2
0 2
1 1
2 0

Figure 3.5: The negation/complement operation in the T R1 block and the corresponding
truth table.

Mod-difference operation in the T R1 block

The ternary mod-difference operation is defined as {(x− y)mod 3} in [23] where x, y are

the ternary inputs. We have discovered that the mod-difference operation can be described

37

using a TGFSOP representation as f (x,y) = x⊕ 2y. This can be verified from the table

in Figure 3.6. To implement the mod-difference operation, input A is set to 2, B = y and

C = x. Since the commutative law is applicable on MVL operators [23], it can be verified

that x⊕2y = 2y⊕ x. L provides the desired output. Figure 3.6 shows the configuration of

T R1 to implement the mod-difference operation.

(x	 y)mod 3 = x⊕2y 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

Figure 3.6: The mod-difference operation in the T R1 block and the corresponding truth
table.

3.2.2 The T R2 block

While the T R1 block is used to implement the desired functionality the T R2 block incor-

porates the online testing features. The 4×4 T R2 block can be defined as I = (D, E, F , R)

and O = (U = D, V = E, W = F, S = R⊕D⊕E⊕F), where I and O are input and output

sets respectively.

Outputs U , V and W are the copies of inputs D, E and F , and can be used for cascading

to additional testable blocks. Input R is required for testing purposes. Output S is the

EXOR of the inputs of the T R2 block. S is used to detect any single bit error when T R2 is

cascaded with the T R1 block to form an online testable block. Figure 3.7 shows the block

diagram of the T R2 block. In an online testable block the T R2 block receives the first three

outputs of the T R1 block as inputs and generates their copies along with the error detecting

output S.

38

TR2

D

R

F

E

U = D

V = E

W = F

S = R D E F

Figure 3.7: The T R2 block.

3.2.3 The online testable block

To construct an online testable ternary reversible block (TR), T R1 and T R2 are cascaded

together. The T R1 and T R2 blocks are 4×4 blocks while the TR block that is formed by

connecting T R1 to T R2 by their first three outputs and inputs is a 5×5 block. When T R1

and T R2 blocks are used to construct an online testable block, input P of the T R1 block

and input R of the T R2 block must be set in such a way that R =
−→
P . Since we must set

R to be a successor of P, we can set P = 0 and R = 1, P = 1 and R = 2 or P = 2 and

R = 0. For regular operation we have chosen to set P = 0 and R = 1. Figure 3.8 shows the

configuration and Figure 3.9 shows the block diagram of TR.

TR2

U = D

V = E

W = F

S = R D E F

TR1

A

P

C

B

L D

M E

N F

Q R

TR

Figure 3.8: Configuration of the online testable ternary reversible block (TR).

TR

A

P=0

C

B

U

V

W

S R=1

Q

Figure 3.9: Online testable ternary reversible block (TR).

T R1 takes ternary logic values for implementing the desired functionality, as discussed

in Section 3.2.1, at A, B, C, and P is set to 0. At the Q output, T R1 generates P⊕A⊕B⊕C

39

where P = 0. T R1 has been constructed so that A⊕B⊕C can be equal to L⊕M⊕N only

if no error occurs inside T R1. T R2 transfers the input values D, E, F to outputs U , V and

W , where D = L, E = M and F = N. T R2 also generates the error detecting output at S.

The output S will be the successor of Q if no error occurs in T R1 and T R2. S is the EXOR

of the inputs of T R2 where R = 1.

The error detection principle used in T R is relatively simple. The value of output S

should be the successor of Q if the operation is not affected by any internal error. Since

3AB = 0, the value of Q is

Q = P⊕L⊕M⊕N

= P⊕AB⊕C⊕A⊕B⊕2AB

= P⊕A⊕B⊕C.

Let us assume X = A⊕ B⊕C and Y = D⊕ E ⊕ F . Then Q = P⊕ X = 0⊕ X and

S = R⊕Y = 1⊕Y since P = 0 and R = 1 during regular operation. If the operations are

error free, then

D⊕E⊕F = L⊕M⊕N

= A⊕B⊕C.

Therefore, X would be equal to Y , i.e. X = Y , which results in S =
−→
Q since R =

−→
P .

If any error occurs within the T R1 block and the fault is reflected on a single output of

the T R1 block, then the flawed values of D, E, F will be used in calculating U , V , W and

S. Therefore, A⊕B⊕C will no longer be equal to L⊕M⊕N and D⊕E⊕F . The result

40

will be the outputs Q and S not being successors, indicating a flaw. The relevant portion of

the truth tables of the T R1 and T R2 blocks are shown in Table 3.1.

Table 3.1: A subset of the truth tables for (a) the T R1 block and (b) the T R2 block.

Input Output
A B C P L M N Q
0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1
0 0 2 0 2 0 0 2
0 1 0 0 0 1 0 1
0 1 1 0 1 1 0 2
0 1 2 0 2 1 0 0
0 2 0 0 0 2 0 2
0 2 1 0 1 2 0 0
0 2 2 0 2 2 0 1
1 0 0 0 0 1 0 1
1 0 1 0 1 1 0 2
1 0 2 0 2 1 0 0
2 0 0 0 0 2 0 2
2 0 1 0 1 2 0 0
2 0 2 0 2 2 0 1
1 1 0 0 1 2 2 2
1 2 0 0 2 0 1 0
1 1 1 0 2 2 2 0
1 1 2 0 0 2 2 1
1 2 1 0 0 0 1 1
1 2 2 0 1 0 1 2
2 1 0 0 2 0 1 0
2 1 1 0 0 0 1 1
2 1 2 0 1 0 1 2
2 2 0 0 1 1 2 1
2 2 1 0 2 1 2 2
2 2 2 0 0 1 2 0

Input Output
D E F R U V W S
0 0 0 1 0 0 0 1
1 0 0 1 1 0 0 2
2 0 0 1 2 0 0 0
0 1 0 1 0 1 0 2
1 1 0 1 1 1 0 1
2 1 0 1 2 1 0 1
0 2 0 1 0 2 0 0
1 2 0 1 1 2 0 1
2 2 0 1 2 2 0 2
0 1 0 1 0 1 0 2
1 1 0 1 1 1 0 0
2 1 0 1 2 1 0 1
0 2 0 1 0 2 0 0
1 2 0 1 1 2 0 1
2 2 0 1 2 2 0 2
1 2 2 1 1 2 2 0
2 0 1 1 2 0 1 1
2 2 2 1 2 2 2 1
0 2 2 1 0 2 2 2
0 0 1 1 0 0 1 2
1 0 1 1 1 0 1 0
2 0 1 1 2 0 1 1
0 0 1 1 0 0 1 2
1 0 1 1 1 0 1 0
1 1 2 1 1 1 2 2
2 1 2 1 2 1 2 0
0 1 2 1 0 1 2 1

(a) (b)

For example, let A = 0, B = 1 and C = 2. The outputs of T R1 would be L = AB⊕C = 2,

M = A⊕B = 1, N = 2AB = 0 and Q = P⊕A⊕B⊕C = 0. Since T R2 receives the outputs

L, M, N of T R1 as its inputs i.e. D = L = 2, E = M = 1, F = N = 0, the output S would be

41

S = R⊕D⊕E⊕F = 1 since we are assuming that no error occurred in the middle of the

operation. Therefore, S being the successor of Q represents the fault-free situation.

On the other hand, let us assume that, in the middle of the operation some error occurred

in T R1 and is reflected on output N. Output N is changed to 1 due to the error. Therefore,

the outputs of T R1 become L = 2, M = 1, N = 1 and Q = 0. Since T R2 will take the flawed

L, M and N outputs as its inputs, T R2 will generate S = 1⊕ 2⊕ 1⊕ 1 = 2. S is then no

longer a successor of Q, hence the presence of an error is assumed.

The inputs and outputs for the testable block in both fault free and faulty situations are

shown in Figure 3.10.

(a)

(b)

Figure 3.10: (a) Fault-free operation, and (b) faulty operation of a circuit constructed from
the T R block.

This design is based on the concepts in [36] where a similar principle is used to detect

a single bit error in a binary block. However in our work we are working with ternary and

thus the modifications required are significant.

42

3.3 Summary

The blocks described in this chapter are the building blocks for any ternary online testable

circuit. The T R block can be used to implement any ternary function as well as ensure

testability.

43

Chapter 4

Ternary Two-Pair Two-Rail Checker

4.1 Introduction

As described in [26], error checking is often implemented using one of the two main tech-

niques, parity codes and two-pair two-rail checkers. Rail checkers compare the outputs

from more than one identical system. This process is also used to reduce the number of

error detecting outputs. The two-pair two-rail checker receives two pairs of inputs and gen-

erates a pair of outputs that indicates if the prior operations were fault-free or faulty. A

ternary two-pair two-rail checker should receive two pairs of inputs from two TR blocks,

compare them and indicate in the outputs if any flaw was identified by either of those TR

blocks [26]. This concept has also been used in the reversible context by other authors such

as in [4] and [36].

4.2 Designing the ternary rail checker circuit

During the development of our designs, we first focused on the error checking functions

for implementing the ternary two-pair two-rail checker as proposed in [36]. However, as

detailed in Section 4.2.2, these functions are not suitable for detecting ternary single bit

errors and hence are rejected afterwards. We detail our investigations here as background

for the reader. The functions are

e1 = x0y1+ y0x1 and e2 = x0x1+ y0y1

where x0 and y0 are the outputs of one testable block and x1 and y1 are the outputs of

another testable block. Table 4.1 shows possible combinations of x0,y0,x1 and y1 when

the testable blocks are fault-free. It was assumed that whenever y0 =
−→
x0 and y1 =

−→
x1, e2

44

will be the successor of e1. Hence, e2 being a successor of e1 shows that the testable blocks

are fault-free.

Table 4.1: Combination of fault-free inputs and outputs for the ternary rail checker.

Inputs Outputs
x0 y0 x1 y1 e1 e2
0 1 0 1 0 1
0 1 1 2 1 2
0 1 2 0 2 0
1 2 0 1 1 2
1 2 1 2 1 2
1 2 2 0 1 2
2 0 0 1 2 0
2 0 1 2 1 2
2 0 2 0 0 1

4.2.1 Implementation of the ternary rail checker

A ternary version of this two-pair two-rail checker can be implemented using ternary Tof-

foli and Feynman gates. The Feynman gates are referred to as F2 or as copy gates, depend-

ing on their use. The implementation of such a circuit is shown in Figure 4.1.

Figure 4.1: Ternary two-pair two-rail checker.

45

4.2.2 Rejection of this design

After thorough analysis of the design we have found that there are some input combinations

for which e2 should not be the successor of e1, although it is. Our design requires that the

outputs of the rail checker should be e2 =
−→
e1, representing the fault-free circuit, only for

the input combinations where y0 =
−→
x0 and y1 =

−→
x1. However we found that sometimes

e2 =
−→
e1 even if the inputs are not successors of each other. For example, let us assume

x0 = 1,y0 = 0,x1 = 1 and y1 = 0. This input combination clearly shows that the TR blocks

attached to the checker are not fault-free since y0 6=−→x0 and y1 6=−→x1. However the equations

mentioned in Section 4.2 generates e1 = 0 and e2 = 1, i.e. e2 =
−→
e1 for these inputs. This

result incorrectly implies that the circuit is fault-free. This illustrates that Lala’s testing

equations are not suitable for designing ternary rail checker and hence we rejected this

design.

4.3 New design of the ternary rail checker

Although the above design was rejected, a two-pair two-rail checker is still necessary to

detect and propagate errors in a large circuit. The new ternary rail checker is designed using

ternary 1-qutrit permutative gates and ternary controlled-controlled gates. The operational

principle and the implementation is discussed in the following sections.

4.3.1 Principle of the ternary rail checker

The purpose of the rail checker is to detect the existence of a flaw, if there is any, in the TR

blocks attached to the rail checker. This is achieved by checking whether the outputs of the

blocks are successors or not. The rail checker generates two outputs where one is successor

to another if the attached blocks are fault-free. Since these outputs may be used afterwards

46

to cascade additional rail checkers, successor outputs are generated to represent the fault-

free situation. Otherwise, if the rail checker detects any flaw in the attached T R blocks, the

design guarantees that the outputs generated will never be successors. Figure 4.2 shows the

block diagram of a general rail checker.

The rail checker is designed in such a way that if the inputs are successors, i.e. y0 =
−→
x0

and y1 =
−→
x1, the rail checker will generate X3 = 1 and X4 = 2, so that X4 =

−→
X3, otherwise

it generates outputs where X4 6= −→X3. There is no specific reason for choosing X3 = 1 and

X4 = 2. Any two successors could have been used, for example X3 = 0 and X4 = 1 or

X3 = 2 and X4 = 0.

Figure 4.2: Block diagram for the new two-pair two-rail checker.

Example

Let us assume x0 = 1, y0 = 2, x1 = 0 and y1 = 1. Then the two-pair two-rail checker will

generate X3 = 1 and X4 = 2 as its outputs. Alternatively let us assume x0 = 1, y0 = 2,

x1 = 2 and y1 = 1. Then the rail checker will generate X3 = 0 and X4 = 0 as its outputs.

Since here y1 6=−→x1 , the rail checker generates X4 6=−→X3 and represents the faulty situation.

4.3.2 Elementary E gate

To implement the rail checker discussed above, an elementary gate (E) with two controlling

inputs and one controlled input has been designed. The design of the E gate is based on

the architecture of the 1-qutrit ternary comparator circuit proposed in [11]. Figure 4.3

47

shows the block diagram of the E gate. The behavior of the Z-transformation depends on

whether the second input (y) is successor to the first input (x) or not. If the second input is a

successor of the first input, the Z-transformation changes the controlled input, as previously

described, to either a 1 or a 2. Otherwise, 0 is passed unchanged through to K. There are

actually two E-gate designs, one with an output of 1 if x0 =
−→y 0 and one with an output of

2 if x1 =
−→y 1 where x0,y0 and x1, y1 are outputs from two attached T R blocks. The E-gate

with an output of 1 is denoted by Ea and the E-gate with an output of 2 is denoted by Eb.

Figure 4.3: E gate.

1-qutrit permutative gates and ternary controlled-controlled gates are used to design our

E gates. Table 4.2 shows all possible input combinations for any E gate, the desired output

for that combination, and shifts required to generate that output.

Table 4.2: Truth table and transformation table of the E gates.

Input Output Shift Required Output Shift Required
00 0
01 1 +1 2 +2
02 0
10 0
11 0
12 1 +1 2 +2
20 1 +1 2 +2
21 0
22 0

As shown in Table 4.2, there are only three input combinations where a transforma-

tion is applied on the controlled input. For the input combinations for which the output

48

should be 1 or 2, the controlling inputs must be shifted to 2 by applying the appropri-

ate Z-transformation (Z(+1) or Z(+2)). The shifted values are then used to trigger the

Z-transformation (Z(+1) or Z(+2)) of the ternary controlled-controlled gate and shift the

controlled input to generate K = 1 or K = 2 at the output. Figure 4.4 shows the realization

of this gate.

(a) (b)

Figure 4.4: Internal structure of the E gates (a) Ea, and (b) Eb.

For example, if the input combination is x = 0 and y = 1, transformations +2 and +1

are needed to shift both the input values to 2. Thus a (+2) gate is placed along the x in-

put and a (+1) gate is placed along the y input as shown in Figure 4.4 (a). The outputs

of these gates are used to trigger the Z-transformation placed along the controlled input.

Other transformations are applied by placing appropriate gates along x and y and the con-

trolled input in a similar way. To clarify the example we show in Figure 4.4 the effective

transformations at the controlling points. In Figure 4.4 the reader can see that the number

of M-S gates required to realize an E gate is 9.

4.3.3 Architecture of the ternary rail checker circuit

The controlling inputs (x,y) of the two E-gates comprise the four inputs of the rail checker

circuit and the controlled outputs Ka and Kb comprise the two outputs of the rail checker.

Each controlled input is a constant input set to the value zero. One each of Ea and Eb are

used to construct the ternary rail checker.

49

The first E-gate (Ea) receives x0 and y0 as its inputs and generates Ka = 1. This is

generated by the Z(+1) transformation on the controlled input, but only if y0 =
−→
x0.

The second E-gate (Eb) that takes x1 and y1 as inputs generates Kb = 2 at the output

by applying the Z(+2) transformation on the controlled input in the case where y1 =
−→
x1.

Figure 4.5 shows the block diagram of the internal architecture of the ternary rail checker.

Figure 4.5: Internal architecture of the two-pair two-rail checker.

Figure 4.5 shows the internal design of the ternary rail checker. From this figure we

can see that since error detecting signals X3 and X4 are generated out of two physically

separated E-gates any single bit error in internal lines will affect one of the two outputs,

but not both. As shown in Table 4.2 any single bit error in the internal lines will result in

generating non-successor outputs and thus will signal the occurrence of an error.

The operation of the rail checker can be verified by examining all possible input com-

binations of the blocks. Let us define the state of an E-gate to be “True” if the inputs of that

gate are successors of each other and “False” otherwise. Table 4.3 shows the truth table for

all possible input states and the corresponding outputs for Ea and Eb.

50

Table 4.3: Truth table for the possible input states and the corresponding outputs of Ea and
Eb.

Ea Eb X3 X4 Successors
True True 1 2 Yes
True False 1 0 No
False True 0 2 No
False False 0 0 No

Table 4.3 demonstrates that the rail checker generates X3 = 1 and X4 = 2, (i.e. X4 =

−→
X3) at the output only when both Ea and Eb have the true state i.e. both the input sets

have successive (y0 =
−→
x0 and y1 =

−→
x1) values. In all other cases, the rail checker circuit

generates X4 6= −→X3. The number of M-S gates required to realize the ternary two-pair

two-rail checker is 18 and the rail checker has four garbage outputs.

4.4 Sample Design

We implement the GFSOP expression F = ab⊕cd to demonstrate that the proposed blocks

in this work can successfully implement a ternary GFSOP. Figure 4.6 shows the realization

of function F using the proposed online testable ternary reversible blocks. Use of a variable

more than once is implemented by using duplicating circuits which can also be realized by

cascading multiple T R blocks. The final outputs of the second rail checker can be used for

cascading if the function needs to be further extended.

51

TR1 TR2 TR1 TR2

TR1 TR2

Two Pair Two
Rail Checker

Two Pair Two
Rail Checker

a
b

0

P = 0

L = ab

Q

U =ab

c
d

0

x

P = 0

L = cd

Q

R=1 R=1

R=1

QP = 0

U=cd

1
cd

L = ab cd
ab cd

S

S

S

x0
x0

x1 x1

y0
y0

y1 y1

X3

X4

Figure 4.6: Online testable ternary reversible implementation of function ab⊕ cd.

4.5 Summary

No other design for a ternary rail checker has been found in the literature, thus we present

this design as the first proposal for a ternary reversible rail checker. Use of a rail checker is

sometimes unavoidable, as they are required for cascading and error propagating. There-

fore, designing a novel ternary rail checker is a noteworthy contribution of this research.

52

Chapter 5

Implementation and Improvement

5.1 Introduction

In this chapter we introduce approaches for implementing the T R1 and T R2 blocks using

ternary Feynman, Toffoli and 1-qutrit permutative gates. Various approaches discussed in

this chapter illustrate how we improved the design in various ways from our first attempt.

5.2 Internal designs

5.2.1 The T R1 block

Ternary Toffoli and Feynman gates are used in the initial T R1 design. The internal archi-

tecture of the T R1 block is shown in Figure 5.1. One major highlight of the design is the

distinctive use of one copy of the inputs to generate Q and the other copies for L, M and N

outputs. This is to avoid propagating erroneous input to circuits for calculating both {L, M,

N} and Q, since that may cause failure in the error detection.

Figure 5.1: Internal diagram of the T R1 block.

The Feynman gates used in the T R1 block can be implemented by M-S gates as de-

53

scribed in Chapter 2. The reader can see that the output functions of the TR1 block have

one common minterm, AB. We would normally use a straightforward ternary Toffoli gate

to implement this, but the basic ternary Toffoli gate will not operate in the manner we desire

if the inputs are changed arbitrarily. Therefore, we need to build a version of the Toffoli

gate that will always provide the minterm AB even when the inputs are changed arbitrarily.

Generalized Toffoli gates (GTG) can generate minterms for different input combinations,

although not if the inputs are changed arbitrarily. Therefore, the following cascade of gen-

eralized Toffoli gates (GTG) is designed for this use, and is shown in Figure 5.2.

We use this cascade of GTGs to generate the minterm AB. Table 5.1 shows the truth

table for two ternary inputs, A and B, and the desired output for the minterm AB, using GF3

multiplication.

Table 5.1: Truth table of AB.

A B AB
0 0 0
0 1 0
0 2 0
1 0 0
1 1 1
1 2 2
2 0 0
2 1 2
2 2 1

The truth table shows that the output AB is 1 only for the input combinations {1,1} and

{2,2}, the output is 2 for the combinations {1,2} and {2,1} and 0 for the rest of the input

combinations. The GTGs are used to realize the cascade of input combinations for which

the output AB should be non-zero. The controlled input C is initialized to 0. This value will

be passed through to the outputs unchanged for all other input combinations.

Figure 5.2 shows the realization for the function AB. In the GTGs only control values

54

of 2 trigger a Z-transformation, thus shifts are needed to change the inputs for the desired

functionality. The internal structure and the computation of the gate count for each GTG

are discussed in Chapter 2. We use the symbol showing the values of controlling inputs of

each GTG in Figure 5.2.

The cost to realize this cascade of GTGs can be easily calculated:

• the first generalized Toffoli gate has no non-2 controlled input; hence it requires

5+2∗(number of non-2 controlled inputs)= 5+2∗0 = 5 gates;

• the second generalized Toffoli gate has one non-2 controlled input; hence it requires

5+2(1) = 7 gates; and lastly,

• the third and fourth generalized Toffoli gates require 7 and 9 M-S gates correspond-

ingly.

Therefore, the total number of M-S gates required to realize this cascade of GTGs is 28.

Figure 5.2: Realization of the cascade of GTGs having output AB.

Now that we have generated the minterm AB, the outputs A and B of the constructed

Toffoli gate can be reused to generate outputs A⊕B and 2AB as shown in Figure 5.1. There

are two 3× 3 Toffoli gates and nine 2× 2 Feynman gates in the initial T R1 block. The

3× 3 Toffoli gates are implemented by the cascade of GTGs. As shown in Table 5.2 the

number of M-S gates required for one 3×3 Toffoli gate is 28 and for one 2×2 Feynman

gate is 4 [15]. Hence the total number of M-S gates required to construct the T R1 block

is (28 ∗ 2)+ (9 ∗ 4) = 92. The outputs A, AB, A⊕B and A⊕B⊕C are the outputs which

55

are neither the desired outputs nor the restoration of any input. They are only required to

maintain the reversibility and as such they are considered garbage outputs. The number of

garbage outputs is 4 in this design. It can be argued that the first output A is not a garbage

output since the initial input is A and it is passed unchanged as an output [7, 20].

5.2.2 The T R2 block

Three 2× 2 Feynman gates are cascaded to implement the T R2 block as shown in Fig-

ure 5.3. The realization of the T R2 block is shown in Figure 5.4 In the T R2 block, each

Figure 5.3: Internal diagram of the T R2 Block.

Figure 5.4: Realization of the T R2 Block.

Feynman gate passes the input of T R2 unchanged through to the output. The Feynman

gates also generates the final output S = R⊕D⊕E⊕F . If any of the inputs is changed due

to an error, it will be reflected in the value of S and the error can be detected if S 6=−→Q .

56

Table 5.2: Cost of the ternary gates used to realize the proposed blocks.

cost

Basic Gates
GTG with no non-2 controlled input 5
GTG with one non-2 controlled input 7
GTG with two non-2 controlled input 9

1-qutrit permutative gate 1
2×2 Feynman Gate 4

Shift gate 1
Constructed gates Cascade of GTGs 28

5.3 Upgraded design of the T R1 block

The design of the T R1 block can be simplified to reduce the cost (the number of M-S gates).

The Feynman gate is always less costly than the Toffoli gate in terms of the number of M-S

gates and so using the Toffoli gate only to generate the common minterm AB will result in

cost savings. The outputs (A,B and AB) of the Toffoli gate can be reused to generate A⊕B,

2AB and AB⊕C. Output AB must be copied by a Feynman gate because of the fan-out

limitation in reversible logic. One of the copies of AB is EXORed with C using a ternary

Feynman gate to generate AB⊕C and the other copy is passed through a dual shift gate

to generate 2AB. Since only one Toffoli gate has been used and the remaining gates are

Feynman gates and dual shift gates, the cost will reduce dramatically. Figure 5.5 shows the

new design of the T R1 block.

One Toffoli gate, eight Feynman gates and one dual shift gate are required for the new

design. The cost to realize this design is 28+(8 ∗ 4)+ 1 = 61. The outputs A, A⊕B and

A⊕B⊕C are considered to be garbage outputs. The number of garbage outputs is reduced

to 3 in this design. Hence the cost is reduced by 33.7% and the garbage is reduced by 25%.

57

Figure 5.5: Upgraded internal design of the T R1 block.

We can further reduce the cost by excluding the copy gates and reorganizing the Feyn-

man gates as shown in Figure 5.6. The cost to realize this design is 28+(5∗4)+1 = 49.

The reduction of cost is 46.7% compared to the first design and 19.67% compared to the

second design. However the most significant achievement of this design is the number of

garbage outputs, which is zero for this design. However it should be mentioned here that

when this block is used to realize a ternary circuit, some of the outputs of the T R block

may become garbage outputs if they are not used in any further operation.

Figure 5.6: Further upgraded design of the T R1 block.

Figure 5.7 shows the cascade of gates to form the T R1 block using one cascade of

GTGs and Feynman gates for the new design.

58

Figure 5.7: Realization of the T R1 block.

5.4 The T R block

The T R1 block and the T R2 block are cascaded together to construct the T R block. Fig-

ure 5.8 shows the internal diagram of the T R block and Figure 5.9 shows its realization.

Since two 4× 4 ternary blocks are cascaded together using their first three inputs, the re-

sultant T R block is a 5×5 testable block. We will refer to this T R block as 4T R since this

block has been constructed from two 4× 4 blocks. The number of M-S gates required to

implement the T R1 block is 49 and the number required for the T R2 block is 12. Hence,

the total number of M-S gates required to implement the 4T R block is (49+12) = 61.

Figure 5.8: Internal diagram of the T R block.

59

Figure 5.9: Realization of the T R block.

5.5 Limitation of the 4T R block

Implementing the benchmark circuits from [2] for ternary GF3 operations exposes a prob-

lem in the current 4T R design. Since fan out is limited to one in reversible logic, generating

copies of inputs is essential. In the current design of T R1, generating a copy of an input is

possible but the overhead cost is huge in terms of the required number of M-S gates. The

following discussion presents how a copy function can be implemented using 4T R and the

cost of this operation.

5.5.1 Implementing copy function using the 4T R block

In ternary GF3 logic, adding 3 to a variable leaves the variable unchanged, e.g., A⊕ 3 =

A⊕1⊕1⊕1 = A. Let us assume that a copy of the input A is required. If inputs B and C

are set to 1, then we have U = A⊕ 1 and V = A⊕ 1 at the outputs of a 4T R. If we repeat

this process thrice using three T R blocks, each time providing A = A⊕1 from the previous

block and B =C = 1, at the end of the third operation we have U = A⊕1⊕1⊕1 = A and

V = A⊕1⊕1⊕1 = A. Thus we have produced a copy of input A. Figure 5.10 shows the

60

configuration.

TR TR TR

RC RC

A

P

C=1
B=1

R

B=1

C=1
P

R

A+1

Q

S

A+2

B=1

C=1

P

R

Q

S

A+2+1=A

A+2+1=A

Q

S

Figure 5.10: Copy operation using the 4T R block.

In this design five 4T R blocks and two Rail Checkers (RC) are required to generate a

single copy. Each T R block requires 61 M-S gates and each RC requires 18 M-S gates.

Therefore, the number of gates required for a single copy operation is 3∗61+2∗18 = 219

which is huge. This inefficiency of the 4T R block can be improved in four different ways,

as discussed in the following sections.

5.6 Reducing the cost of the copy function

The copy function can be implemented using the four approaches discussed in this section.

The primary objective of each approach is to reduce the number of M-S gates required to

implement a ternary function.

5.6.1 Method 1: 5×5 TR block (5T R)

The 4× 4 T R1 block can be changed into a 5× 5 block by adding an additional constant

input 0 and an output O = A. The output function Q will also be changed. To distinguish

between the 4× 4 T R1 block and the 5× 5 T R1 block in this work we refer to them as

61

4T R1 and 5T R1 correspondingly. The 4× 4 T R2 block is addressed as 4T R2 in the rest

of the work. It can be verified from Table 5.3(a) that all the properties of the 4T R1 block

have been preserved in the 5T R1 block. Figure 5.11 shows the block diagram of the 5T R1

block.

5TR1

A

0

C

B

R Q = P 2A B C

O = A

L = AB C

M = A B

N = 2AB

Figure 5.11: 5×5 T R1 block.

Figure 5.12: Internal design of 5×5 T R1 block.

The internal design of the 4T R1 block must be changed somewhat since the output

function Q is changed to

Q = P⊕L⊕M⊕N⊕O

= P⊕AB⊕C⊕A⊕B⊕2AB⊕A

= P⊕2A⊕B⊕C

One way to realize 2A in Q is to use two Feynman gates to add 2A to P, but that will

increase the number of M-S gates in the 5T R1 block. Figure 5.12 shows the internal design

62

of 5T R1 using one additional Feynman gate. The number of M-S gates required for this

design of 5T R1 is 53, however intelligent use of Feynman gates can reduce the number of

M-S gates.

Table 5.3: A subset of the truth tables for (a) 5T R1 Block and (b) 5T R2 Block.

Input Output
A B C 0 P L M N O Q
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 1
0 0 2 0 0 2 0 0 0 2
0 1 0 0 0 0 1 0 0 1
0 1 1 0 0 1 1 0 0 2
0 1 2 0 0 2 1 0 0 0
0 2 0 0 0 0 2 0 0 2
0 2 1 0 0 1 2 0 0 0
0 2 2 0 0 2 2 0 0 1
1 0 0 0 0 0 1 0 1 2
1 0 1 0 0 1 1 0 1 0
1 0 2 0 0 2 1 0 1 1
2 0 0 0 0 0 2 0 2 1
2 0 1 0 0 1 2 0 2 2
2 0 2 0 0 2 2 0 2 0
1 1 0 0 0 1 2 2 1 0
1 2 0 0 0 2 0 1 1 1
1 1 1 0 0 2 2 2 1 1
1 1 2 0 0 0 2 2 1 2
1 2 1 0 0 0 0 1 1 2
1 2 2 0 0 1 0 1 1 0
2 1 0 0 0 2 0 1 2 2
2 1 1 0 0 0 0 1 2 0
2 1 2 0 0 1 0 1 2 1
2 2 0 0 0 1 1 2 2 0
2 2 1 0 0 2 1 2 2 1
2 2 2 0 0 0 1 2 2 2

Input Output
D E F G R U V W X S
0 0 0 0 1 0 0 0 0 1
1 0 0 0 1 1 0 0 0 2
2 0 0 0 1 2 0 0 0 0
0 1 0 0 1 0 1 0 0 2
1 1 0 0 1 1 1 0 0 0
2 1 0 0 1 2 1 0 0 1
0 2 0 0 1 0 2 0 0 0
1 2 0 0 1 1 2 0 0 1
2 2 0 0 1 2 2 0 0 2
0 1 0 1 1 0 1 0 1 0
1 1 0 1 1 1 1 0 1 1
2 1 0 1 1 2 1 0 1 2
0 2 0 2 1 0 2 0 2 2
1 2 0 2 1 1 2 0 2 0
2 2 0 2 1 2 2 0 2 1
1 2 2 1 1 1 2 2 1 1
2 0 1 1 1 2 0 1 1 2
2 2 2 1 1 2 2 2 1 2
0 2 2 1 1 0 2 2 1 0
0 0 1 1 1 0 0 1 1 0
1 0 1 1 1 1 0 1 1 1
2 0 1 2 1 2 0 1 2 0
0 0 1 2 1 0 0 1 2 1
1 0 1 2 1 1 0 1 2 2
1 1 2 2 1 1 1 2 2 1
2 1 2 2 1 2 1 2 2 2
0 1 2 2 1 0 1 2 2 0

(a) (b)

The number of M-S gates can be kept unchanged at 49 by modifying the structure of

the ternary Feynman gate to generate P⊕ 2A instead of P⊕A for inputs P and A. This

63

modified Feynman gate can be used to add 2A to output Q = P⊕2A⊕B⊕C . Figure 5.13

(a) show the structure and Figure 5.13 (b) shows the symbol of the modified Feynman gate.

We refer to this modified Feynman gate as the MF gate.

+1 +2

+2+1

A

P

A

P 2A

(a)

A

P

A

P 2A

MF

(b)

Figure 5.13: (a) Internal design of the modified Feynman (MF) gate and (b) symbol of the
modified Feynman (MF) gate.

Table 5.4: Truth table for the MF gate.

Inputs Outputs
A P A P⊕2A
0 0 0 0
0 1 0 1
0 2 0 2
1 0 1 2
1 1 1 0
1 2 1 1
2 0 2 1
2 1 2 2
2 2 2 0

The behavior of the MF gate can be verified from the truth table shown in Table 5.4.

The internal structure of the 5T R1 block using a MF gate is shown in Figure 5.14. Copying

can be achieved by setting A to the value we wish to copy and B = 0. The number of M-S

gates required for this design of 5T R1 is 49 and thus the number of M-S gates remains

unchanged compared to 4T R1.

64

Figure 5.14: Internal design of the 5×5 T R1 block using the MF gate.

Table 5.3 shows the all possible input combinations and outputs of 5T R1. Since 5T R1

now turns into a 5× 5 block, T R2 must also be changed into a 5× 5 block to receive the

new input O = A from the 5T R1 block. An extra ternary Feynman gate can be added to

incorporate the new input into the error checking output. Hence, the new 5×5 T R2 block

(5T R2) can be implemented using 16 M-S gates. Figures 5.15 and 5.16 show the block

and internal diagrams for the 5T R2 block.

5TR2

D

G

F

E

R S = R D E F G

X = G

U = D

V = E

W = F

Figure 5.15: 5T R2 block.

Figure 5.16: Internal design of the 5T R2 block.

Figure 5.17 shows the new T R block consisting of 5T R1 cascaded with 5T R2 and

addressed as the 5T R block. The total number of M-S gates required to construct this 5T R

block is (49+16) = 65.

65

5TR2

U = D

V = E

W = F
5TR1

A

P

C

B

L D

M E

N F

Q R

5TR

0
O G

S = R D E F G

X = G

Figure 5.17: 5×5 T R (5T R) block.

5.6.2 Method 2: Combination of 4TR block and non-testable

ternary Feynman gate

Another approach to implement the copy function is to use a ternary Feynman gate for

the copy operation, which requires only 4 extra M-S gates for each copy operation. For

all other ternary operations we will use a 4T R1 block. Although we can use a 5T R block

for a copy operation, using a ternary Feynman gate will reduce the number of M-S gates

dramatically. But this will also affect the testability feature since a ternary Feynman gate

is not online testable. The probability of detecting a single bit fault in the circuit will be

decreased. If any error occurs while copying using the non-testable ternary Feynman gates,

the error will not be detected.

5.6.3 Method 3: Combination of 5TR block and online testable

Copy gate (T Rc)

The limitation of Method 2 where a non-testable Feynman gate is used for the copy opera-

tion can be resolved by designing a testable block designated for copy operation. In other

words, we can design an online testable block using ternary Feynman gates exclusively for

the copy operation. This block can be used for generating copies of a single input but will

also incorporate the online testability feature. In a 5× 5 block, the maximum number of

66

outputs excluding the error checking output is four. Therefore four copies of a single input

can be generated using the online testable copy gate. However, generating four copies will

increase the number of M-S gates as well as the number of garbage outputs if only two

copies are required, as in most of the cases. Thus, we have limited our design of T Rcopy

to generate only three copies of the input, although the flexibility of designing a copy gate

for four copies still exists. Figures 5.18 and 5.19 show the block and internal design of

the online testable copy gate. For the copy operation 5T R1 is replaced with the new 5×5

T Rcopy block and cascaded with a 5T R2 block for the online testability feature. The new

5T R block constructed from T Rcopy and 5T R2 is referred as T Rc which generates three

copies of a single input.

TRC

A

A

A

R S

Q

A

0

0

P

0 0

Figure 5.18: 5×5 T Rc block.

+2

+1

+1

+2

+2

+1

+1

+2

0

A

0

P

A

A

A

Q

5TR2

A

A

A

R S

TRcopy

00

Figure 5.19: Internal design of the 5×5 T Rc block.

The operation of T Rcopy is very simple. Two 2× 2 ternary Feynman gates are used to

generate the copies. Similar to the 5T R1 block, output Q is the sum of P and the other

outputs of T Rcopy . Since in ternary Galois Field logic 3A = 0, we have the following:

67

Q = P⊕A⊕A⊕A

= P⊕3A

= P⊕0

= P

Hence P is directly passed through to Q. The error detection policy is identical to that

used in both the 4T R and 5T R blocks. T Rcopy requires 8 and 5T R2 requires 12 M-S gates.

Therefore, a T Rc block requires 24 M-S gates in total. Hence if a T Rc block is used to

make a copy of a single input instead of using multiple 4T R blocks, only 24 M-S gates are

required compared to 219 M-S gates. Moreover, a T Rc block generates three copies of an

input which will minimize the number of copy gates required in a large function.

5.6.4 Method 4: Combination of 5TR block, T Rc and online

testable Multi Copy gate (T Rmc)

Sometimes copies of multiple variables are required. For example, two copies of A, two

copies of B and two copies of C are required for the benchmark 3CyG2 which is defined

as ab⊕ bc⊕ ca. We need three T Rc blocks for the copy operation to be implemented for

this benchmark. To avoid this situation the design of T Rcopy can be modified to generate

two copies of two different variables. Figures 5.20 and 5.21 show the configuration. We

refer to this multi copy gate as T Rmulticopy. 16 M-S gates are required to realize this gate.

Online testability is incorporated by cascading the T Rmulticopy and the 5T R2 block. We

68

refer to the new cascaded block as T Rmc. Therefore, a T Rmc block requires 32 M-S gates

in total to generate one copy for each of the two variables whereas T Rc would require 48

M-S gates to perform the same operation. Although the number of M-S gates is increased

in T Rmc, this block can reduce the number of M-S gates to 33% where copies for multiple

variables are necessary. In the 3CyG2 benchmark function, we require 24 ∗ 3 = 72 M-S

gates to implement the copy functions, whereas 56 M-S gates if one T Rc and one T Rmc are

used. Again, in another benchmark circuit, 4CyG2, which is defined as ab⊕bc⊕ cd⊕da,

24∗4 = 96 M-S gates are required if T Rc is used whereas implementation using two T Rmc

requires only 64 M-S gates. For the best result we can use a combination of T Rc and T Rmc

blocks according to the circuit’s behavior.

The operation principle of T Rmc is identical to that used in the 4T R, 5T R and T Rc

blocks. We set P = 0 and R = 1 in T Rmc and at the end of the operation S being the

successor of Q represents the fault-free operation.

TRmc

A

A
B

R S

Q

A

0

B

P

0 B

Figure 5.20: 5×5 T Rmc block.

A

A

B

Q = P 2A 2B

5TR2

A

A

B

R S

TRmulticopy

B
+1 +2

+2 +1

+2

+1

+1

+2

+1

+1

+2

+2

+1

+1

+2

+2

B

A

B

0

0
P

Figure 5.21: Internal design of 5×5 T Rmc block.

69

Table 5.5: Number of M-S gates required to implement the proposed blocks

Blocks
4T R 5T R T Rc T Rmc RC

4T R1 4T R2 Total (4T R) 5T R1 5T R2 Total (5T R) T Rcopy 5T R2 Total (T Rc) T Rmulticopy 5T R2 Total (T Rmc)
Number of

49 12 61 49 16 65 8 16 24 16 16 32 18
M-S gates

5.7 Summary

In this chapter we have discussed the implementation of the 4T R1 and 4T R2 blocks as

well as their limitation. We have also proposed here four different approaches to reduce

the cost of implementing the copy function. The testable blocks designed in this work use

basic ternary building blocks to incorporate the online testing feature which can construct

complex and larger circuit blocks, although a priority is to keep the number of gates and

garbage values at a minimum. Table 5.5 shows the number of M-S gates required to im-

plement the proposed blocks. To keep the number of garbage values to a minimum, the

garbage output of one ternary gate is used as an input to another gate. Because of the

fan-out limitation of reversible logic circuits, Feynman gates are used to create copies of

variables where needed.

70

Chapter 6

Comparison and Analysis of Different Approaches

6.1 Introduction

The methods proposed in Chapter 5 exhibit different performance for different types of

ternary benchmarks. In this chapter some benchmark circuits are implemented using the

proposed approaches and comparisons among them are presented in terms of the overall

number of M-S gates required to implement the benchmarks. We also compare the cost of

the proposed approaches with the cost of implementing the benchmarks using non-testable

ternary gates.

6.2 Comparison among the proposed methods and non

testable circuits

Table 6.1 presents the number of M-S gates, which we are using as our cost metric, required

to realize the benchmark circuits [2] using the five design methods discussed so far. Since

the concept of an online testable reversible ternary circuit is first proposed in this thesis,

no other testable designs are available for comparison. Hence, the cost of implementation

using the online testable blocks are compared with the cost to design the benchmark cir-

cuits with non testable ternary gates as discussed in [14]. The comparison is presented in

Table 6.1. The cost includes the number of M-S gates required to implement the testable

blocks as well as the rail checkers. The realization of the benchmarks 3CyG2, ProdG3

and SumG3 using the five proposed methods and non-testable ternary gates are shown in

Appendix A.

71

Table 6.1: Comparison of number of M-S gates for implementing the ternary benchmark
circuits.

Benchmarks
Proposed Methods Non-testable Lowest

Method 0 Method 1 Method 2 Method 3 Method 4 ternary gates overhead
4TR & RC 5TR & RC 4TR, Feynman & RC 5TR, T Rc & RC 5TR, T Rc, T Rmc & RC

2CyG2 (2ab) 61 65 61 65 65 37 164%

3CyG2 (ab+bc+ ca) 1088 646 389 523 489 92 531%

a2bccG (a2 +bc+ c) 772 480 306 398 364 96 379%

ProdG2 (ab) 61 65 61 65 65 28 217%

ProdG3 (abc) 140 148 140 148 148 56 250%

SumG2 (a⊕b) 61 65 61 65 65 4 1525%

SumG3 (a⊕b⊕ c) 140 148 140 148 148 8 1750%

Table 6.1 shows that the fewest of M-S gates are required when using the non-testable

ternary gates. This is unsurprising because incorporating testability features always adds

some overhead to the circuit. However testable circuits are far more robust and fault tolerant

than the non-testable circuits; hence, the tradeoff between the overhead and testability is

justifiable.

In Method 0, 4T R and RC blocks are used to implement the benchmarks. In this method

4T R blocks are also used to copy variables, thus the overhead of using Method 0 is very

high. For example, 1088 M-S gates are required to realize the benchmark 3CyG2. However

whenever no copy is required, Method 0 uses the lowest number of gates in the testable

design such as for benchmarks ProdG2 and SumG2.

Method 1 uses 5T R blocks and rail checkers to realize the benchmarks. This method

does not require a separate block for copying as in Methods 3 and 4, and the cascades

of 5T R blocks are sufficient to implement any ternary benchmark function represented by

a GF3 sum of product. It can be seen from Table 6.1 that Method 1 requires more M-S

gates than the other method for benchmarks 2CyG2, 2CyG3, and a2bccG but almost equal

numbers of gates for the remaining benchmarks.

Apart from the non-testable designs, Method 2 described in Section 5.6.2 requires the

72

lowest number of M-S gates. Unfortunately this method does not assure online testability

when copies are required, since the ternary Feynman gates used in these designs are not

testable. Hence, a function which requires copies will not be completely online testable if

realizing using Method 2. Table 6.1 illustrates that Method 2 requires the lowest number

of M-S gates for benchmarks 2CyG2, 3CyG2 and a2bccG and equal or fewer gates as

compared to other methods for the remaining benchmarks.

Method 3 described in Section 5.6.3 generates the best result whenever the circuit re-

quires more than two copies of an input variable. The design of T Rc can be easily upgraded

to generates 4 copies of a single input variable, although the upgraded design will require

8 more additional M-S gates. If the function consists of several variables which require 4

copies each, the upgraded design would be the best solution. The proposed design is the

best for functions consisting of variables which require at most 3 copies each. However

Method 3 requires a higher number of M-S gates than Method 4 for benchmarks 3CyG2

and a2bccG, each of which requires at most 2 copies of each input variables. The cost is

the same as for other methods for the reminder of the benchmarks.

Among the designs that provide complete online testability, Method 4 described in

Section 5.6.4 requires the lowest number of M-S gates. This method is the most efficient

since it uses both T Rc and T Rmc to achieve the best result. This method is most efficient

if the design requires at most two copies of the input variables and also requires copies for

a large number of variables. This can be easily verified from Table 6.1 where Method 4

requires a lower number of M-S gates for benchmarks 2CyG2, 2CyG3 and a2bccG and an

equal number of gates as compared to Method 3 for the remaining benchmarks.

It can also be noticed from Table 6.1 that the 4T R block requires the lowest number of

M-S gates compared to the other testable methods for the benchmark circuits that do not

require any copy operation.

73

6.3 Overhead analysis

In this work overhead can be approximated as the total number of extra elementary gates

required to be added for the realization of the ternary online testable circuit as compared

to the original gate count of the non-testable realization of the same circuit. The methods

discussed in this work are the first ever proposed approaches in the area of ternary online

testing and hence the overhead is compared with the binary online reversible testing ap-

proaches discussed in [27]. The cost metric used in both the binary and ternary online

testing approaches is the number of elementary gates required to realize a logic function.

Table 6.2 shows the comparison of average overheads among the two binary and our pro-

posed ternary online testing approaches.

Table 6.2: Overhead comparison.

Approaches Average overhead for testability
[36] 312.28% [27]
[4] 388.67% [27]

Our approach 688%

Although the average overhead of our approach is higher than the other two binary

approaches, the following fact should be considered:

• From the last column of Table 6.1 we can see that the overhead costs for the bench-

marks SumG2 and SumG3 are significantly higher than the other overheads. These

costs are significant in increasing the average overhead of our approach. If we calcu-

late the average overhead excluding the benchmarks SumG2 and SumG3, the average

overhead for our approach is lowered down to 308%. We note that the non-testable

approaches for benchmarks SumG2 and SumG3 required less than 8 gates whereas

the minimum number of gates required for a ternary online testable design is 61.

Therefore, we can say that our approach is likely to minimize the overhead costs for

74

larger circuits.

We also briefly mention area overhead in current technologies. Nepal el al. in [25]

discussed the area overhead for their three proposed error detection techniques on existing

non-reversible binary technology. Figure 6.1 shows their chart presenting the area over-

heads for their parity code technique [25]. Details of these techniques are out of scope of

this thesis, however the chart shows that the highest area overhead can be around 170%.

Unfortunately, it is impossible to measure the area overhead for ternary online testable

circuits since the technology to be used is still unknown.

Figure 6.1: Area overhead chart [25] .

6.4 Summary

Method 4 generates the lowest possible result in terms of the number of M-S gates in

realizing the benchmark circuits. Where multiple copies of variable are needed Methods

2 and 3 provide the best solution. If no copy is required the 4TR block can be used to

minimize the cost but using the 5T R block will provide more tolerance and robustness.

75

Chapter 7

Conclusion and Future Works

7.1 Conclusion

In this thesis we propose designs for online testable ternary reversible logic blocks. In

Chapter 3 two basic testable blocks are used in conjunction, one of which implements

ternary logic functions and the other incorporates the online testability feature. As far as

we are aware this is the only online testable design currently in the literature for ternary

reversible logic. In Chapter 4, we also propose a design for ternary rail checker which

can be used in conjunction with multiple ternary online testable blocks to implement any

ternary reversible circuit. Our work is based on a single-bit fault model which means that

any single error in a block can be detected and will be propagated to the outputs through

the use of the rail checkers.

In Chapter 5, to implement ternary circuits we propose five online testable approaches

which use combinations of 4T R, 5T R, T Rc, T Rmc and ternary Feynman gates depending

on behavior of the circuit. These approaches improve on the initial design by reducing the

number of M-S gates. In Chapter 6, we show comparisons of the five proposed approaches,

based on the implementation cost of benchmark circuits from [2]. Fan-out is limited to

one in reversible logic, and so we need to generate copies of the inputs which are required

more than once in the circuit. In Chapter 5 we propose two online testable copy blocks

which will preserve the online testability feature of the circuit as well as reduce the number

of gates required for copy operations. We can further upgrade T Rc to generate 4 copies

depending on the requirements of the function. Using T Rmc intelligently in larger circuits

where copies of multiple inputs are required can also prove to be extremely cost-effective.

In our research we also focus on the implementation level to improve the preliminary

76

design. A number of different modifications to the basic blocks are also suggested, with

discussion as to how each modification might best be utilized. Although the overhead is

higher than for the Boolean reversible online testable circuits, the overhead is quite reason-

able, and in fact our designs require zero garbage lines to realize the ternary online testable

blocks.

One of the major concerns of reversible logic synthesis is to keep the number of the

input constants as few as possible. In our proposed designs, we have only one constant

input. The other two major concerns of reversible logic synthesis are to keep the number

of garbage outputs and the length of gate cascades as small as possible. In our designs

we minimize the number of garbage outputs by using the internal gates as intelligently as

possible. The length of cascaded gates is also kept at a minimum by replacing 4T R or 5T R

blocks with T Rc and T Rmc blocks, which are designated for copy operations, whenever

required.

7.2 Future Works

As a completely new research area, ternary online testing is yet to be explored. Online

testing includes fault detection, finding the point of occurrence of the fault and in some

cases fault recovery. Fault localization is the process to identify the first failure node by

backtracking the signal. Detecting the failure point is necessary to identify the root cause

of the failure. Fault localization research is also going on in binary reversible logic and

binary quantum circuits. However, research on fault localization in ternary reversible logic

has not yet been addressed. The last aspect of testing is fault recovery which is the most

difficult aspect to achieve in testing. In this thesis we focus only on fault detection in

ternary reversible logic. Hence, a lot of research opportunities exist in the other fields of

online testability.

77

For binary reversible logic, there exist different fault models. In [31], fault models for

binary reversible quantum circuits are discussed, however these fault models are not clearly

defined for ternary reversible logic. Our design in this thesis is based on the single bit stuck

at fault model and is capable of detecting single bit errors. Designing online testable circuits

for different fault models or designing a universal testability approach would be a major

research concern in our future work.

In this thesis basic ternary gates (e.g. Toffoli, Feynman) are used to realize the proposed

online testable blocks. Because of this the blocks require large numbers of constructing

gates and connections among them. If it is possible to design a single online testable

gate instead of a block with a similar objective, the number of constructing gates would

be radically reduced. Thus our future work also includes the design of an online testable

reversible ternary gate.

Lastly, although we have presented a comparison among the different proposed ap-

proaches, we have used hand computation to realize the benchmark circuits. Therefore,

a synthesis algorithm needs to be developed for our design methodology. Since we have

proposed multiple blocks, the algorithm must include a heuristic to select the lowest cost

alternative block in order to implement large circuits.

78

Appendix A

Appendix

A.1 Notation

• The copy function can be implemented using four 4T R blocks and three RCs as

shown in Figure A.1 (a). Using these 4T R blocks and RCs it is possible to generate

only one copy of an input. For the simplicity of the diagram we will use the notation

shown in Figure A.1 (b) to represent the copy function implemented by 4T R. 219

M-S gates are required to implement the copy function using the 4T R blocks.

• The error detecting outputs Q and S of the T R, 4T R, 5T R, T Rc and T Rmc blocks are

represented by dashed lines. The inputs to the rail checker from a testable block and

the outputs of the rail checker are also represented by dashed lines.

TR TR TR

RC RC

A

P

C=1
B=1

R

B=1

C=1
P

R

A+1

Q

S

A+2

B=1

C=1

P

R

Q

S

A+2+1=A

A+2+1=A

Q

S

(a)

A A

A

4TR Copy
(Three 4TR,

Two RC)

(b)

Figure A.1: (a) Copy using 4TR and (b) notation used in the diagrams.

79

A.2 3CyG2

The following sections illustrate the realization of the benchmark 3CyG2 using the five

proposed methods and non-testable ternary gates.

A.2.1 Method 0

4TR Copy
(Three 4TR,

Two RC)

RC

4TR Copy
(Three 4TR,

Two RC)

4TR Copy
(Three 4TR,

Two RC)

4TR

4TR

c

4TR

4TR

4TR

RC

RC

RC

RC

RC RC

a

b

c

a

a

b

b

c

ab

bc

ca

ab bc ab bc ca

RC

RC

RC

Figure A.2: Realization of the benchmark 3CyG2 using 4T R blocks.

80

A.2.2 Method 1

5TR

RC

5TR

5TR

5TR

5TR

c

5TR

5TR

5TR

RC

RC

RC

RC

RC RC

a

b

c

a

a

b

b

c

ab

bc

ca

ab bc ab bc ca

5TR

5TR

RC

RC

Figure A.3: Realization of the benchmark 3CyG2 using 5T R blocks.

A.2.3 Method 2

2 × 2
Feynman

2 × 2
Feynman

2 × 2
Feynman

4TR

4TR

c

4TR

4TR

4TR

RC

RC

RC RC

a

b

c

a

a

b

b

c

ab

bc

ca

ab bc ab bc ca

RC

RC

Figure A.4: Realization of the benchmark 3CyG2 using 4T R blocks and Feynman gates.

81

A.2.4 Method 3

5TR

RC

TRc

TRc

5TR

5TR

c

5TR

5TR

5TR

RC

RC

RC

RC

RC RC

a

b

c

a

a

b

b

c

ab

bc

ca

ab bc ab bc ca

TRc

5TR

RC

RC

Figure A.5: Realization of the benchmark 3CyG2 using 5T R and T Rcblocks.

A.2.5 Method 4

TRmc

RC

TRc

5TR

5TR

c

5TR

5TR

5TR

RC

RC

RC

RC RC

a

b

c

a

a
b
b

c

ab

bc

ca

ab bc ab bc ca

RC

RC

RC

RC

RC

Figure A.6: Realization of the benchmark 3CyG2 using 5T R, T Rc and T Rmc blocks.

82

A.2.6 Non-testable ternary gates

2 × 2
Feynman

2 × 2
Feynman

2 × 2
Feynman

Cascade of
GTGs

Cascade of
GTGs

c

Cascade of
GTGs

2 × 2
Feynman

2 × 2
Feynman

a

b

c

a

a

b

b

c

ab

bc

ca

ab bc ab bc ca

Figure A.7: Realization of the benchmark 3CyG2 using non-testable ternary gates.

A.3 ProdG3

The following sections illustrate the realization of the benchmark ProdG3 using the five

proposed methods and non-testable ternary gates.

A.3.1 Method 0

4TR

RC

a

b

c

ab abc
4TR

RC

Figure A.8: Realization of the benchmark ProdG3 using 4T R blocks.

83

A.3.2 Method 1

5TR

RC

a

b

c

ab abc
5TR

RC

Figure A.9: Realization of the benchmark ProdG3 using 5T R blocks.

A.3.3 Method 2

The realization of ProdG3 using Method 2 is identical to that using 4T R blocks since no

copy function is required.

4TR

RC

a

b

c

ab abc
4TR

RC

Figure A.10: Realization of the benchmark ProdG3 using 4T R blocks and Feynman gates.

84

A.3.4 Method 3

The realization of ProdG3 using Method 3 is identical to that using 5T R blocks since no

copy function is required.

5TR

RC

a

b

c

ab abc
5TR

RC

Figure A.11: Realization of the benchmark ProdG3 using 5T R and T Rcblocks.

A.3.5 Method 4

The realization of ProdG3 using Method 4 is identical to that using 5T R blocks since no

copy function is required.

5TR

RC

a

b

c

ab abc
5TR

RC

Figure A.12: Realization of the benchmark ProdG3 using 5T R, T Rc and T Rmc blocks.

85

A.3.6 Non-testable ternary gates

3-qutrit
Generalized
Toffoli Gate

a

b

c

ab abc
3-qutrit

Generalized
Toffoli Gate

Figure A.13: Realization of the benchmark ProdG3 using non-testable ternary gates.

A.4 SumG3

The following sections illustrate the realization of the benchmark SumG3 using the five

proposed methods and non-testable ternary gates.

A.4.1 Method 0

4TR

RC

a

b

c

a b a b c
4TR

RC

Figure A.14: Realization of the benchmark SumG3 using 4T R blocks.

86

A.4.2 Method 1

5TR

RC

a

b

c

a b a b c
5TR

RC

Figure A.15: Realization of the benchmark SumG3 using 5T R blocks.

A.4.3 Method 2

The realization of SumG3 using Method 2 is identical to that using 4T R blocks since no

copy function is required.

4TR

RC

a

b

c

a b a b c
4TR

RC

Figure A.16: Realization of the benchmark SumG3 using 4T R blocks and Feynman gates.

87

A.4.4 Method 3

The realization of SumG3 using Method 3 is identical to that using 5T R blocks since no

copy function is required.

5TR

RC

a

b

c

a b a b c
5TR

RC

Figure A.17: Realization of the benchmark SumG3 using 5T R and T Rcblocks.

A.4.5 Method 4

The realization of SumG3 using Method 4 is identical to that using 4T R blocks since no

copy function is required.

5TR

RC

a

b

c

a b a b c
5TR

RC

Figure A.18: Realization of the benchmark SumG3 using 5T R, T Rc and T Rmc blocks.

88

A.4.6 Non-testable ternary gates

2 × 2
Feynman

a

b

c

a b a b c2 × 2
Feynman

Figure A.19: Realization of the benchmark SumG3 using non-testable ternary gates.

89

Bibliography

[1] C. H. Benett. Logical reversibility of computation. IBM Journal of Research and
Development, 17:525–532, 1973.

[2] N. Denler, B. Yen, M. Perkowski, and P. Kerntopf. Synthesis of reversible circuits
from a subset of Muthukrishnan-Stroud quantum realizable multi-valued gates. In
Proceedings of IWLS 2004, Tamecula, California, USA, June 2004.

[3] G. Epstein. A summary of investigation into three and four valud logic. In Proceed-
ings of the 8th International Symposium on Multi Valued Logic, Rosemont, Illinois,
United States, page 257, 1978.

[4] N. Farazmand, M. Zamani, and M. B. Tahoori. Online fault testing of reversible logic
using dual rail coding. In Proceedings of the IEEE 16th International On-Line Testing
Symposium (IOLTS), pages 204 – 205, 2010. Corfu, 5-7 July.

[5] R. Feynman. Quantum mechanical computers. Optical News, pages 11–20, 1985.

[6] M. P. Frank. Introduction to reversible computing: Motivation, progress, and chal-
lenges. In Proceedings of the 2nd conference on computing frontiers, Ischia, Italy,
May 4-6, 2005.

[7] E. Fredkin and T. Toffoli. Conservative logic. Int. Journal of Theoretical Physics,
21:219–253, 1982.

[8] N. Jha and S. Gupta. Testing of Digital Systems. The Press Syndicate of the University
of Cambridge, 2003.

[9] B. W. Johnson. Design and Analysis of Fault-tolerant Digital Systems. Prentice-Hall
International, 1985.

[10]] M. H. A. Khan, M. A. Perkowski, and P. Kerntopf. Multi-output galois field sum
of products synthesis with new quantum cascades. In Proceedings of the 33rd Inter-
national Symposium on Multiple-Valued Logic, pages 146–153, 2003. Tokyo, May
16-19.

[11] M. H. A. Khan. Design of reversible/quantum ternary comparator circuits. Engineer-
ing Letters, 16:2:178–184, May 2008.

[12] M. H. A. Khan. Quantum realization of ternary Toffoli gate. In Proceedings of the 3rd
International Conference on Electrical and Computer Engineering, pages 264–266,
28-30 December, 2004. Dhaka, Bangladesh.

[13] M. H. A. Khan and M. A. Perkowski. Genetic algorithm based synthesis of multi-
output ternary functions using quantum cascade of generalized ternary gates. vol-
ume 2, pages 2194 – 2201, 19-23, June 2004.

90

[14] M. H. A. Khan and M. A. Perkowski. Quantum ternary parallel adder/subtractor with
partially-look-ahead carry. Journal of Systems Architecture, 53:453–464, 2007.

[15] M. H. A. Khan, M. A. Perkowski, and M. R. Khan. Ternary Galois field expansions
for reversible logic and Kronecker decision diagram for ternary GFSOP minimization.
In Proceedings of the 34th International Symposium on Multiple-Valued Logic, pages
58–67, 2004. Toronto, Canada, 19-22 May.

[16] D. K. Kole, H. Rahman, D. K. Das, and B. B. Bhattacharya. Synthesis of online
testable reversible circuit. In Proceedings of the IEEE 13th International Symposium
on Design and Diagnostics of Electronic Circuits and Systems (DDECS), pages 277
– 280, 2010. Vienna, 14–16 April.

[17] P. K. Lala. Fault-Tolerant and Fault Testable Hardware Design. Prentice-Hall Inter-
national, 2003. London, UK.

[18] R. Landauer. Irreversibility and heat generation in the computing process. IBM Jour-
nal of Research and Development, 5:183–191, 1961.

[19] S. N. Mahammad and K. Veezhinathan. Constructing online testable circuits using
reversible logic. IEEE Transaction on Instrumentation and Measurement, 59(1):101–
109, January 2010.

[20] D. Maslov and G. W. Dueck. Reversible cascades with minimal garbage. In IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, page
23(11):1497 1509, 2004.

[21] D. Maslov and G. W. Dueck. Garbage in reversible design of multiple output func-
tions. In 6th International Symposium on Representations and Methodology of Future
Computing Technologies, pages 162–170, March, 2003.

[22] D. M. Miller, D. Maslov, and G. W. Dueck. Synthesis of quantum multiple-valued
circuits. In Journal of Multiple-Valued Logic and Soft Computing, volume 12, pages
431 – 450, 2006.

[23] D. M. Miller and M. A. Thornton. Multiple Valued Logic: Concepts and Representa-
tions. ISSN 1932-3174. The Morgan and Claypool Publishers, 2008.

[24] A. Muthukrishnan and C. R. Stroud Jr. Multivalued logic gates for quantum compu-
tation. Phys. Rev. A, 62(5):1–8, 2000.

[25] K. Nepal, N. Alves, J. Dworak, and R. I. Bahar. Using implications for online error
detection. In Proceedings of the International Test Conference, pages 1–10, 2008.
Santa Clara, CA.

[26] D. Nikolos. Self-testing embedded two-rail checkers. Journal of Electronic Testing:
Theory and Applications, 12:6979.

91

[27] N.M.Nayeem. Synthesis and testing of reversible toffoli circuits. Master’s thesis,
University of Lethbridge, 2011.

[28] S. Palnitkar. Verilog HDL:a guide to digital design and synthesis. Prentice-Hall
International, 2003.

[29] B. Parhami. Fault-tolerant reversible circuits. In In Proceedings 40th Asilomar
Conf. Signals, Systems and Computers, Pacific Grove, CA, pages 1726–1729, Oc-
tober, 2006.

[30] M. A. Perkowski, A. Al-Rabadi, and P. Kerntopf. Multiple-valued quantum logic
synthesis. In Proceedings of the Int. Symposium on New Paradigm VLSI Computing,
pages 41–47, 2002. Sendai, Japan, 12-14 December.

[31] I. Polian, T. Fiehn, B. Becker, and J. P. Hayes. A family of logical fault models for
reversible circuits. In Proceedings of the 14th Asian Test Symposium, pages 422–427,
Los Alamitos, CA, USA, 2005. IEEE Computer Society.

[32] M. R. Rahman and J. E. Rice. On designing a ternary reversible circuit for online
testability. In Proceedings of the IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing (PACRIM), pages 119–124, 2011. August 23–26,
Victoria, Canada.

[33] M. R. Rahman and J. E. Rice. Online testable ternary reversible circuit. In Proceed-
ings of the Reed-Muller Workshop, pages 71–79, 2011. May 25–26, Tuusula, Finland.

[34] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Synthesis of reversible
logic circuits. IEEE transectios on computer aided design of integrated circuits and
systems, 22:6, June,2003.

[35] T. Toffoli. Reversible computing. In Proceedings of the 7th Colloquium on Automata,
Languages and Programming, Springer-Verlag London, UK, pages 632–644, 1980.

[36] D. P. Vasudevan, P. K. Lala, J. Di, and J. P. Perkerson. Reversible logic design with on-
line testability. IEEE Transaction on Instrumentation and Measurement, 55(2):406–
414, April 2006.

[37] V. V. Zhirnov, R. K. Kavin, J. A. Hutchby, and G. I. Bourianoff. Limits to binary logic
switch scaling - a gedanken model. In Proceedings of the IEEE, volume 91:11, pages
1934–1939, November, 2003.

[38] J. Zhong and J. C. Muzio. Analyzing fault models for reversible logic circuits. In
Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pages 2422
– 2427, 2006. Vancouver, BC.

92

