
Machine Learning Support
for Logic Diagnosis

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart

zur Erlangung der Würde eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Laura Isabel Rodríguez Gómez

aus Madrid, Spanien

Hauptberichter: Prof. Dr. Hans-Joachim Wunderlich
Mitberichter: Prof. Dr. Sybille Hellebrand

Tag der mündlichen Prüfung: 13. Juli 2017

Institut für Technische Informatik
der Universität Stuttgart

2017





To my grandpa Jesús





Contents

Acknowledgments xiii

Abstract xv

Zusammenfassung xvii

1 Introduction 1

2 Defects, faults and errors 9
2.1 Defect mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Fault models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Stuck-at faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Delay faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Transistor faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.5 Non-determinism in fault models . . . . . . . . . . . . . . . . . 20

2.3 Reliability and yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Yield ramping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Lifetime tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Test, diagnosis and fault classification 27
3.1 Test algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Logic simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Test generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Logic diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Manufacturing test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Test flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Test infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Test and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Online test and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Concurrent and non-concurrent structural test . . . . . . . . . 48

v



Contents

3.3.2 Software-based self-test . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.3 Automotive in-system test . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Test data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5 Fault classification and physical failure analysis . . . . . . . . . . . . . 63

4 Circuit uncertainty and machine learning 67
4.1 Machine learning and indeterminism . . . . . . . . . . . . . . . . . . . . 68
4.2 Sources of circuit uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Noise and environmental conditions . . . . . . . . . . . . . . . 69
4.2.2 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2.3 Inaccurate modeling . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.1 Graphical models . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3.3 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Root cause identification and yield learning . . . . . . . . . . . . . . . . 82

5 Bayesian networks for identifying critical defects 85
5.1 Adaptive test and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Immediate critical fault discrimination . . . . . . . . . . . . . . . . . . . 89
5.3 Bayesian networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Probabilities in Bayesian networks . . . . . . . . . . . . . . . . 91
5.3.2 Bayesian network structure . . . . . . . . . . . . . . . . . . . . . 92
5.3.3 Inference in Bayesian networks . . . . . . . . . . . . . . . . . . 93

5.4 Critical fault discrimination with Bayesian networks . . . . . . . . . . 96
5.5 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5.1 Injected faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.2 Intermittent fault classification . . . . . . . . . . . . . . . . . . . 100
5.5.3 Transient fault classification . . . . . . . . . . . . . . . . . . . . 102
5.5.4 Intermittent fault with background noise classification . . . . 104

6 Neural networks for defect classification 107
6.1 Faults to be distinguished . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.1 Failing pattern information . . . . . . . . . . . . . . . . . . . . . 112
6.2.2 Passing pattern information . . . . . . . . . . . . . . . . . . . . . 118

vi



Contents

6.3 Artificial neural networks for fault classification . . . . . . . . . . . . . 120
6.3.1 Artificial neural networks: structure . . . . . . . . . . . . . . . 120
6.3.2 Artificial neural networks: learning . . . . . . . . . . . . . . . . 123
6.3.3 Metrics for neural network based classifiers . . . . . . . . . . . 124
6.3.4 Artificial neural networks for fault classification . . . . . . . . 127

6.4 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4.1 Fault classification after test . . . . . . . . . . . . . . . . . . . . . 129
6.4.2 Fault classification based exclusively on failing information . 133
6.4.3 Fault identification without product knowledge . . . . . . . . 136
6.4.4 Identification of intermittent faults . . . . . . . . . . . . . . . . 140

7 Conclusions and future work 147
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography 151

Index 171

Publications of the Author 173

vii





List of Figures

Chapter 1

1.1 Test and diagnosis flow after manufacturing . . . . . . . . . . . . . . . . . . 5
1.2 Test and diagnosis flow after manufacturing: proposed flow . . . . . . . . 6

Chapter 2

2.1 nMOS transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 CMOS NOR cell: transistor structure . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Bridge fault models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3

3.1 Pessimism in three-valued simulation . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Zero-delay vs timing annotated simulator . . . . . . . . . . . . . . . . . . . 31
3.3 Metrics for logic diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Rollback test flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Circuit and detectability table . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Concurrent vs non-concurrent test . . . . . . . . . . . . . . . . . . . . . . . 50
3.7 Intrusive concurrent testers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.8 In-system structural test integration . . . . . . . . . . . . . . . . . . . . . . . 58
3.9 BIST diagnostic architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Chapter 4

4.1 Indeterminism in timing faults . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Indeterminism in static faults . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 5

5.1 Diagnosis flow with critical fault identification . . . . . . . . . . . . . . . . 86
5.2 Adaptive flow for critical fault identification . . . . . . . . . . . . . . . . . . 87
5.3 Joint and marginal probabilities . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 Bayesian network structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

ix



Figures

5.5 Bayesian network for critical fault classification . . . . . . . . . . . . . . . 97
5.6 Topological neighborhood N(2) of victim line f . . . . . . . . . . . . . . . . 100

Chapter 6

6.1 Observed test response for different fault classes . . . . . . . . . . . . . . . 108
6.2 Complete diagnosis flow with early fault class identification . . . . . . . . 109
6.3 Structure of the fault classifier . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4 Driving gate inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.5 Multilayer feedforward ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.6 Classification outcome: prediction vs actual category . . . . . . . . . . . . 125
6.7 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.8 Classification distribution per fault class . . . . . . . . . . . . . . . . . . . . 132
6.9 Classification distribution for classification based on failing information. 136
6.10 Classification distribution per fault class (without product knowledge) . 138
6.11 Distribution for classification based on failing information and without

product knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.12 Recall evolution for decreasing activation rates of intermittent faults in test 142
6.13 Precision evolution for decreasing activation rates of intermittent faults

in test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.14 Classification distribution for intermittent faults after test . . . . . . . . . 143
6.15 Recall evolution for decreasing activation rates of intermittent faults in test 144
6.16 Precision evolution for decreasing activation rates of intermittent faults

after online error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.17 Classification pattern for p35k intermittents with λact = 0.5 . . . . . . . . 145

x



List of Tables

Chapter 5

5.1 Codes for test sessions depending on the outcome of rollback test for
Rmax = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Classification results for intermittents with Rmax = 2 and Tmax = 10. . . . 101
5.3 Bayesian classification for intermittents. . . . . . . . . . . . . . . . . . . . . 102
5.4 Classification results for transients with Rmax = 2 and Tmax = 21. . . . . . 103
5.5 Bayesian classification for transients. . . . . . . . . . . . . . . . . . . . . . . 103
5.6 Classification results for intermittents in presence of background noise

with Rmax = 2 and Tmax = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.7 Bayesian classification for intermittents in presence of background noise. 105

Chapter 6

6.1 Activation conditions for all fault classes . . . . . . . . . . . . . . . . . . . . 113
6.2 Accuracy results for classification after test, with product knowledge . . 129
6.3 Classification recall results after test, with product knowledge . . . . . . 130
6.4 Precision results for classification after test, with product knowledge . . 131
6.5 Classification accuracy results after online error detection, with product

knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.6 Classification recall results after online error detection, with product

knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.7 Precision results for classification with failing information . . . . . . . . . 135
6.8 Classification recall results after test, without product knowledge . . . . 137
6.9 Precision results for classification after test, with no product knowledge 138
6.10 Recall results after online error detection, without product knowledge . 139
6.11 Precision results for classification with failing information . . . . . . . . . 139

xi





Acknowledgments

This work would have never been possible without the contribution of many people,
and I am happy to have the chance to express my gratitude.

I would like to thank Prof. Hans-JoachimWunderlich for the opportunity to work at his
department, where I found the space to grow and to learn how to approach scientific
work, and also for the interesting discussions that greatly contributed to this thesis.
I want to thank Prof. Sybille Hellebrand for her always constructive feedback and
questions. Special thanks go to Marcus Eggenberger for his help with the German
summary of this work.

A big thanks is due to my colleagues at the Institut für Technische Informatik for many
insightful discussions. I am particularly grateful to those with whom I had the pleasure
of sharing my teaching responsabilities: Rafał Baranowski, Chang Liu, Alejandro Cook,
Dominik Ull, Eric Schneider, Claus Braun, Alexander Schöll and Ahmed Atteya. I
am also thankful to Mirjam Breitling, Helmut Häfner and Lothar Hellmeier for their
administrative and technical assistance.

I am greatly indebted to Willi Kessler, Gert Schley, Marcus Eggenberger, Manuel Strobel,
Adrià Sales, Anto Levatino, Edu Ferrera and Max Schwilk, for sharing their experi-
ences as PhD students in various universities and disciplines and providing me with
continuous support.

Finally, my biggest debts of gratitude. To Pablo, for his patience and for his encourage-
ment throughout the rockiest parts of the way. And to my parents and sisters, whose
love and support in all of my adventures and undertakings are invaluable.

Stuttgart, July 2017

Laura Rodríguez Gómez

xiii





Abstract

Tiny feature sizes in deep submicron technologies pose both a yield and reliability
threat. Imperfections in the manufacturing process may introduce systematic defects,
especially as the first devices are produced when the process is not yet mature. The
identification and correction of systematic process problems calls for efficient test and
diagnosis techniques. Due to the increasing amount of variations introduced in the
process parameters, however, these techniques must also tolerate a certain degree of
indeterminism.

Chips that pass manufacturing test are then shipped to the customer and integrated in
their target system. During the lifetime of a circuit wearout mechanisms can cause some
of the structures to degrade. As a result, defects may appear in originally healthy chips.
To avoid catastrophic consequences, many systems include in-the-field test techniques,
which allow the detection of such problems. After detection, the defective parts must
be diagnosed to identify any possible systematic degradation patterns, which point to
weak structures. In addition to the indeterminism introduced by variations, the exact
environmental conditions are unknown when in the field. Thus, test and diagnosis in
the field must also handle uncertainty.

Whether after manufacturing or after online test, defective parts undergo logic diagnosis
to locate the fault, and then physical failure analysis (PFA) to characterize the fault.
However, PFA is a costly procedure because it requires physical inspection of the
chip area. It benefits from logic diagnosis, which performs fault localization and
narrows down the suspect area. PFA also benefits from a fast identification of the
problem that would allow a prioritization of costly physical analysis procedures. Such
a characterization is especially interesting in the case of faults which disappear when
analyzed in the lab, either because they were only affected by noise or because the
underlying fault is partially reversible. This thesis presents a fast characterization
method which can be integrated in the diagnosis flow. It takes advantage of machine
learning techniques, which can handle inaccurate or ambiguous information. The
method incurs minimal overhead, and characterizes faults detected in manufacturing
test as well as online.

xv





Zusammenfassung

Die fortschreitende Skalierung von Prozesstechnologien gefährdet sowohl die Pro-
duktionsausbeute als auch die Zuverlässigkeit. Gerade bei neuen Fertigungsprozessen
können Herstellungsfehler zu systematischen Defekten in Schaltungen führen. Um
solche Defekte zu finden und den Fertigungsprozess zu überarbeiten, werden effiziente
Test- und Diagnoseverfahren benötigt. Eine zunehmende Variabilität in den Prozesspa-
rametern führt zu Indeterminismen in den Fertigungsergebnissen, und die eingesetzten
Test- und Diagnoseverfahren müssen diese tolerieren können.

Chips, die den Fertigungstest bestehen, werden an Kunden ausgeliefert und ins Zielsys-
tem eingebaut. Über die Lebensdauer des Chips hinweg kommen allerdings Alterungser-
scheinungen zum Tragen, die zum Verschleiß einzelner Strukturen und damit wiederum
zu Defekten führen können. Daher werden in der Praxis häufig sogenannte Online-
tests während des Betriebs eingesetzt, um solche Probleme frühzeitig zu erkennen und
größere Schäden zu verhindern.

Nachdem ein Problem erkannt wurde, müssen die fehlerhaften Chips untersucht wer-
den, um die Strukturen zu identifizieren, die für Alterung anfällig sind. Hierbei muss
die Diagnose einen weiteren Indeterminismusfaktor berücksichtigen, da die genau-
en Umgebungsbedingungen, die den Fehler aktiviert haben, zum Diagnosezeitpunkt
zumeist nicht bekannt sind.

Um systematische Defekte zukünftig zu vermeiden und den Fertigungsprozess zu über-
arbeiten, muss nach der Diagnose noch eine physikalische Analyse (PA) durchgeführt
werden. Da diese Analyse sehr aufwändig ist, wird die Fehlerregion zunächst durch
eine Logikdiagnose eingeschränkt. Die Logikdiagnose kann allerdings nicht zwischen
systematischen und unsystematischen Defekten unterscheiden, so dass keine priori-
sierte physikalische Analyse für Chips mit systematischen Defekten vorgenommen
werden kann.

Diese Doktorarbeit stellt ein Verfahren vor, das eine schnelle Fehlerklassifikation und
damit eine priorisierte physikalische Analyse ermöglicht. Das Verfahren basiert auf
maschinellem Lernen, und kann mit Indeterminismus umgehen. Sowohl Herstellungs-
als auch Alterungsdefekte werden sehr schnell charakterisiert. Dabei sind die Kosten
des Verfahrens sehr gering und es kann problemlos in bestehende Diagnoseprozesse
integriert werden.

xvii





C
h
a
p
t
e
r

1
Introduction

Short time-to-market requires the semiconductor industry to produce high quality
electronic devices as efficiently as possible. The time constraint requires efficient
test and diagnosis procedures, as well as fast systematic problem identification to
speed up yield learning. Manufacturing and test are complex processes which deal
with increasing degrees of uncertainty as technology evolves and moves in the deep
submicron regime. Uncertainty affects also the diagnostic process, which can only
confirm the nature of the problem after costly physical analysis of the defective parts.

An electronic device is printed on a silicon wafer by doping different regions of the
semiconductor with different donors and forming transistors, which are, in turn, con-
nected with polysilicon or metal wires to form cells. Cells are finally connected by
metal wires and conform the complete structure of the circuit. The production process
is, however, error prone. It tends to introduce excess or voids in the material, causing
circuits to deviate from their functional or performance specification. For instance, an
accidental connection between two metal wires or a void in an interconnect cause the
circuit to implement a different function. A crack in an interconnect, on the other hand,
increases the resistance in the wire and may potentially introduce an additional delay.
These distortions in the physical structure of the chip are referred to as point defects.

Due to limitations in the manufacturing tools, chips fabricated in recent technologies
are affected by variations. Variations cause different devices that implement the same



2 Chapter 1 ● Introduction

design to exhibit diverging timing behaviors. Thus, each instance of a design may have
a different maximum frequency and minimum supply voltage that ensure its correct
operation. If exercised in conditions over its performance capacity, the device will
produce incorrect output values.

To screen out defective chips, all devices must undergo manufacturing test. Tests are
performed on all produced chips to ensure high product quality. The objective of test is
to exercise the structure of the circuit thoroughly in a short time, uncovering a large
number of point defects effectively. Test checks the observed responses against the
expected ones and splits the chips in two groups: pass and fail.

The pass/fail categories do not correspond exactly to healthy/faulty chips. Devices
which passed all tests are deemed healthy and can be shipped to the customer, the
faulty ones must be further analyzed, and not just discarded. A careful analysis must
be performed to distinguish those circuits affected by point defects from those only
affected by variations, and which could work in different environmental conditions.
This is so for two reasons: it allows early correction of systematic problems and avoids
unnecessary yield loss. Moreover, the tiny structures in deep submicron technologies
are sensitive to noise. In addition to distinguishing errors caused by point defects
from those caused by performance limitations, a mechanism is needed to identify
incorrect behavior caused by transient noise. Correctly identifying all cases allows to
ship high-quality devices while avoiding discarding healthy chips.

While a process is not mature, it renders low yield values, that is, a high rate of the
produced chips is defective. Identifying the systematic problems and its root cause
allows correcting the process and enhances yield ramp-up. An early systematic problem
detection is hence crucial to ensure the efficiency of the manufacturing process.

Detecting systematic problems requires identifying the location, nature and size of
the point defect. The goal is to correct the process as soon as possible to fabricate
larger numbers of fault-free devices. The diagnosis procedure is responsible for the
problem identification task. Diagnosis is applied only to failing chips, and often includes
logic diagnosis, a second diagnostic pass and physical failure analysis. Logic diagnosis
locates the faulty line in the device. The algorithms typically take the results of test
as a starting point. However, test detects the problem, but its goal does not include
diagnostic resolution. Diagnosis benefits from larger amounts of information than
those provided by test. For this reason, a second diagnostic test pass is often performed
to extract more information about the possible underlying cause. The diagnostic pass



3

may include adaptively generating new test patterns which guide the diagnosis more
precisely. This process can be performed for every faulty device. Because additional
information may help discard or confirm candidate locations, its application is costly
but extremely useful to narrow down the defect location.

After diagnosis, failure analysis physically analyzes the chip to confirm the location and
identify the nature of the problem. With nowadays size and complexity, the analysis
would need to cover a large surface. Also, since the process may be partially destructive,
targeting the correct location in the first attempt is a requirement. The analysis of
the location reveals the underlying physical distortion. A large number of defective
chips affected by the same distortion indicates a systematic problem. Early correction
of systematic problems can succeed if systematic problems are detected and correctly
identified in a timely manner. By using as an input the outcome of logic diagnosis,
the area to be studied can be reduced to a few locations, which eases and speeds up
physical analysis. The nature of the problem, however, must be identified by physical
failure analysis.

Although effective, the root cause identification procedure presents some problems.
The first is its time consuming nature. Chips are analyzed in no particular order. As the
chip is detected to malfunction, it undergoes diagnosis and is then queued for physical
failure analysis. This is a suboptimal strategy: not only are the checks for different
defect types heterogeneous, but also an earlier exam of devices affected by systematic
problems would confirm the root cause sooner and hence speed up yield ramp-up. The
second is the nature of some of the problems present in devices. High-frequency power
droop or crosstalk effects are not as easily visible as additional metal connecting two
independent wires. They are only active in specific conditions and may sometimes
indicate a problem in the design or in operating conditions rather than in manufacturing.
Even worse, if the chip was only affected by noise, it does not present any weak or
defective structures, and so physical analysis will not be able to draw any conclusion.

The need for defect detection and diagnosis is not exclusive of manufacturing test.
Fault-free devices at the time of shipping may still fail in their intended environment.
This can be caused by noise in the environment that affects the nanometer structures, or
due to degradation. Wearout mechanisms can cause the transistors and interconnects
in a digital device to degrade until permanent malfunction. Defects can hence also
appear online after a certain time. For this reason, and very particularly in safety critical
applications, online tests are introduced.



4 Chapter 1 ● Introduction

Like for manufacturing test, structural tests are highly effective to uncover defects.
However, to be applicable online, they need to be carefully integrated in the system
in order not to disrupt its function and performance properties. If the integration is
successful, online test has the advantage that some faults are only detectable in this sce-
nario, as their activation conditions may only be fulfilled in very specific environments
or configurations.

Devices detected to be faulty during operational mode are returned to the manufac-
turer, who must analyze them to detect any possible generalized degradation profiles.
Diagnosis and physical failure analysis are again performed. However, the amount of
information gathered and stored in a safety critical system is typically limited due to
cost or scheduling constraints. The available test data after online test is hence more
limited than after manufacturing test. A second diagnostic pass could solve the problem
and provide more results. Still, on top of being costly, some of the problems that may
appear online disappear again if the stress conditions are removed. Very often the
automotive and aerospace industry face the so-called no-trouble-found problem: field
returns of safety-critical systems produced erroneous outputs which were detected
by online test but which, upon further analysis in the laboratory, no longer behave
erroneously and hence provide no information. The reason for this may be either
random noise which caused the problem, partially reversible changes in the circuit
caused by degradation, or temporary extreme environmental conditions unknown at
the time of diagnosis. The lack of diagnosability leaves physical analysis with very
limited information as a starting point, hence slowing the process down.

Figure 1.1 depicts the complete flow. Chips from manufacturing are passed on to test,
which divides them into passing and faulty. The first are integrated in the target system
and undergo online test, while the latter are diagnosed and analyzed. Field returns
detected to be faulty during operation are also returned for diagnosis and analysis. In
case of a systematic problem, the process or design are corrected.

Field return analysis faces the same problems as manufacturing defect analysis, and
most of them aggravated. The lack of information complicates the analysis, the exact
timing behavior is unpredictable, and also the characteristics of the problem (whether
noise or defect, the location, size and nature in case of the latter) are unknown. Because
environmental conditions play a role in the activation of some defects, this additional
degree of uncertainty poses an added challenge to the already complicated defect
analysis.



5

▲ Figure 1.1 — Test and diagnosis flow

To increase yield and reliability, systematic defects and structures systematically af-
fected by wearout mechanisms must be identified as soon as possible. To succeed, the
identification approach must be robust with respect to uncertainty, given the number
of factors that cause the device to deviate from its intended characteristics. Time and
cost optimization are also mandatory requirements. Hence, prioritization of physical
analysis according to the underlying fault type would be beneficial. The prioritization
scheme must be integrated in the test and diagnosis flow. A low cost scheme is re-
quired, since test and diagnosis already represent a big part of the costs of producing
electronics.

This thesis presents a low overhead modification in the traditional flow that helps
prioritize the application of costly diagnostic procedures, and guides physical analysis
even in the case of reversible faults. Figure 1.2 depicts the resulting flow. The block



6 Chapter 1 ● Introduction

highlighted in orange is the proposed modification, which distinguishes noise from
critical defects and classifies the latter.

▲ Figure 1.2 — Test and diagnosis flow after manufacturing: proposed flow

The approach makes use of machine learning because of its robustness even in the
presence of uncertainty, such as caused in this problem by variations and the physical
characteristics of defects. Its overhead in the complete flow is negligible, and it per-
forms a fast classification to prioritize costly analysis resources, hence speeding up the
identification of systematic problems, introduced during manufacturing or as a result
of wearout.



7

This work is organized as follows: chapter 2 includes a description of defects and their
corresponding fault models, as well as their relation with yield and reliability. Chapter
3 presents the algorithms for manufacturing and online test, diagnosis and preliminary
fault characterization state-of-the-art. Chapter 4 presents the challenges introduced
by variations and at the same time the potential of machine learning algorithms to be
deployed in this context. The following chapters contain the contribution to the field.
Chapter 5 presents a Bayesian network-based approach to distinguish transient noise
from intermittent or permanent critical faults. Chapter 6 introduces a method for fault
classification that can further guide physical analysis without requiring costly second
diagnostic passes. Finally, chapter 7 presents the conclusions and directions for further
research.





C
h
a
p
t
e
r

2
Defects, faults and errors

Malfunctioning of a circuit has a wide range of sources. During the manufacturing
process, imperfections in the fabrication introduce physical distortions in the structure.
Depending on the size and nature of the distortion, it may cause the circuit to deviate
from its intended functional specification, potentially introducing risks for the system.
Also, as the circuit degrades, wearout mechanisms may cause defects to appear during
the lifetime of the device. Finally, devices fabricated in nanometer technologies are very
sensitive to environmental conditions. Some devices only malfunction under certain
external conditions.

Defects introduced in manufacturing impact yield levels negatively. A test escape or
the appearance of lifetime defect mechanisms can compromise the reliability of the
system. Both for test and reliability assessment, fault models are used which abstract
the defect behavior. Targeting defects adds complexity to the approaches and would
make them, for the best part, unfeasible for nowadays circuits.

This chapter presents the most common defect mechanisms that may appear both
in manufacturing and during the lifetime of the circuit. It then introduces the fault
models with which the defects are represented at higher abstraction levels, and finally
concludes with an introduction to the reliability threat defects introduce and their
relation with yield.



10 Chapter 2 ● Defects, faults and errors

2.1 Defect mechanisms

In complementary metal oxide semiconductor (CMOS) technology, the basic units,
also referred to as gates or cells, are formed by transistors. The physical properties of
transistors determine the functional and performance properties of the chip. Moreover,
they are responsible for the sensitivity to noise of chips, and explain some of the fault
models considered in this work. For this reason, this section explains the basic structure
and function of a transistor, its implications on the design with CMOS technology, and
the defects that can affect transistors and interconnects.

A transistor [Weste11] is a four terminal device which conducts depending on the
voltage differences of its terminals. To form a transistor, some regions of the silicon are
doped with an electrons (n) or holes (p) donor. Figure 2.1 sketches an nMOS transistor:
a transistor which conducts based on electron mobility. The four terminals are marked
on the figure: gate, bulk (body), source and drain. The body of the transistor is p-doped
silicon, while the source and drain are of type n. The gate is usually polysilicon, and is
separated of the body by a thin oxide layer. When the voltage between the gate and
bulk terminals VGB is greater than the threshold voltage Vn

t , a channel is formed along
which the transistor can conduct a current between the source and drain terminals.

▲ Figure 2.1 — nMOS transistor

The pMOS transistor is its complementary structure: it sits on an n-doped silicon, and
its source and drain are p-doped. Its body is usually connected to power, and for a
given threshold voltage Vp

t , it conducts when VGB < Vp
t .

Both types of transistors are combined to form CMOS cells [Weste11]. A CMOS cell is
formed by complementary p (or pull-up) and n (or pull-down) networks. The disposition
of the transistors is such that for any input values, only one of the networks will be
active. This ensures that the output terminal of the cell is connected either to power or to
ground. Figure 2.2 depicts the CMOS cell which implements a logic NOR function. The



2.1 ● Defect mechanisms 11

figure shows the active path for each input pattern (indicated below the corresponding
illustration). Note that the expected logic output value can be interpreted as 0 or 1
because the networks are complementary and prevent an intermediate value of being
placed at the output.

▲ Figure 2.2 — CMOS NOR cell: transistor structure

To implement complex logic functions, cells are connected by wires. The wires are
organized in layers of metal, and with aggressive scaling and increasing transistor
density, the amount of interconnect infrastructure, including wires and vias, has also
increased [Weste11].

This section describes the defects that can be introduced in cells and interconnects, not
only during manufacturing, but also during the lifetime of a digital circuit.

2.1.1 Manufacturing

Imperfections in the manufacturing process complicate the fabrication of nanometer
technology devices. In particular, spot defects such as excesses or voids in the material,
and parametric variations, such as transistor channel length or doping, cause the
fabricated circuit to deviate from the layout specification. This deviation of the physical
structure with respect to the intended layout may modify the properties of the system.
Depending on the nature, size and shape of the deviation, it may eventually lead to
erroneous behavior.



12 Chapter 2 ● Defects, faults and errors

Shorts

One of the most common defects introduced during the fabrication of chips are intercon-
nect bridging defects [Segur04]. A bridge or shorting defect is the unwanted connection
of two or more neighboring lines in the integrated circuit (IC). Such a problem can be
caused by metal slivers between two lines or by larger blobs of material that short two
or more lines. The electrical properties of the metal connecting both lines, as well as
the properties of the surrounding circuit, translate into an effect on the circuit behavior.

A bridge will cause the circuit to malfunction if its resistance Rbridge value is below a
certain critical value Rcritical . In such case, the value of the connected lines depends
on the strengths of the pull-up and pull-down networks. A bridge is activated if the
pull-up network is active for the driving gate of one of the lines while the other line
is pulled down. The resulting voltage of the bridge depends on the properties and
strengths of the conducting elements: if the pull-up network is stronger, then a logic 1
will be interpreted, and 0 otherwise. The relative strengths of the driving gates are also
patten-dependent. In [Segur04], the authors summarize in a table the Rcritical values of
a defect bridge between a three-input NAND gate and a two-input NAND gate. The
value varies depending on the logic state, i.e., on the input values of both gates.

Bridges can introduce non deterministic behavior in the circuit if the two affected lines
are dependent. Two lines are dependent if one of them is function of the other, for
instance the input and the output of a gate. A feedback bridge is a short between two
dependent lines which introduces an undesired loop in the combinational part of the
design. Depending on the structure of the circuit and the applied pattern, an oscillating
behavior may be introduced [Chess98a].

Opens

An open [Wunde10] is a void or crack in the material which alters its physical properties.
In interconnects, the resistance introduced by the void determines the impact on the
system behavior. If the open defect causes the line to be interrupted, leaving one of
the ends floating, it is called a full open. On the other hand, if the current can still flow
although the region has a higher resistance value than designed, it is a resistive open.
Resistive opens impact the timing behavior and introduce and additional delay. If a full
open appears, the line is interrupted, and the value of the floating end depends on the
capacitance between the line and the adjacent neighbors, and the voltage values of the



2.1 ● Defect mechanisms 13

latter. The trapped charged in the floating line is Q0. The total parasitic capacitance to
power is denoted as CUP, and those tied to ground, CDOWN . The voltage of the floating
line VFL can then be calculated as [Wunde10]:

VFL =
CUP

CUP +CDOWN
VDD +

Q0
CUP +CDOWN

so VFL is mainly determined by the trapped charge and the ratio of the parasitic
capacitance tied to power.

Finally, an intragate open causes two terminals inside a cell to be disconnected [Wadsa78].
It is also caused by a crack or void in the material, and it restricts the conductivity
capacity of the affected path. In the worst case, there is a full open which causes the path
not to conduct. This again breaks the CMOS principle that always one path conducts,
either to power or to ground. As a result, for those patterns that should activate the
affected path the output is left in high impedance. It has been observed [Wadsa78]
that the output keeps the previous value, introducing sequential behavior in purely
combinational parts of the circuit.

Parametric failures

In nanometer technologies, parameter variation has become a major issue. With aggres-
sive scaling, the factor by which the manufactured devices differ from the designed ones
has increased. This leads to a different kind of problem: in contrast to the previously
introduced spot defects, parametric variations induce often a timing problem under
certain given conditions. The relevant parameters may be divided into intrinsic and
extrinsic [Segur04]. The intrinsic parameters include channel width and length, random
doping fluctuations, different ratios between the nMOS and pMOS devices, and effective
gate oxide thickness variations. Extrinsic parameters include temperature and supply
voltage. These parametric variations affect the conducting behavior of transistors, and
hence the timing of the logic cells. For instance, the power fed to a transistor gate
controls the formation of the channel [Weste11]. Temperature, on the other hand,
impacts carrier mobility [Wolpe12]. Intrinsic parameters, especially channel length,
also impact the threshold voltage. A shift the threshold affects the formation of the
channel, which impacts the timing behaviour [Segur04]. The challenge in parametric
failures, however, is that one parameter variation on its own need not be fatal. It is



14 Chapter 2 ● Defects, faults and errors

rather a combination of them that leads to failure, making the prediction, test and
diagnosis of such problems extremely hard.

2.1.2 Lifetime

The environmental conditions in which a device works, sensitivity to noise and aging
may cause a chip to malfunction, even if it passed all manufacturing tests. The term
noise refers to a temporal malfunction caused by external conditions. An example is
the radiation in aerospace industry [Dodd03], where heavy ions hit the microelectronic
designs, causing memory and logic elements for a cycle or small number of cycles.

Problems during lifetime may also appear in the power supply [Chen98]. For instance,
erroneous behavior may be caused by several transistors fed by the same power line
and switching at the same time, causing spikes. Variations in the power supply may
cause timing deviations, which in turn may cause an observable error [Segur04]. Also,
if many neighbors switch in the same direction, some may suffer of power starvation
and propagate an incorrect value to the outputs. This phenomenon is referred to as
high-frequency power droop [Polia06].

A problem of different nature may arise if two interconnects are too close and run
parallel for a long distance. In this case, the activity of one line may affect a neighboring
line, i.e., interferences may happen. In particular, coupling capacitance or crosstalk
causes a delay [Chen02] in the victim line transition if the aggressor(s) switch in the
opposite direction. The induced delay can be expressed as a function of the distance
(in time) between the transition in the aggressor and the transition in the victim. The
largest delay is introduced when both transitions are aligned [Kahng00].

Another source of lifetime problems is wearout, also referred to as aging. Due to
workload, temperature and voltage conditions along the life of the chip, the structures in
it degrade. Wearoutmechanisms cause defects to appear during the lifetime of the device.
With scaling of CMOS technology, the sensitivity to wearout effects has become more
severe [Segur04]. The most important wearout mechanisms include electromigration,
hot carrier injection, bias temperature instability and dielectric breakdown.

Electromigration

Electromigration [Lieni05] is an aging mechanism which affects the interconnect infras-
tructure: wires, vias and contacts. It is caused by high current densities, which often



2.1 ● Defect mechanisms 15

appear in integrated circuits. Unidirectional high current densities cause the metal
atoms to gradually move. Eventually, this shift of the material can cause voids in the
metal, or hillocks that can potentially cause a short. The mean time to failure (MTTF)
of a wire can be estimated from Black’s Equation [Maric13]:

MTTF =
A
Jn exp (

Ea
kT
)

where A is a constant that depends on the cross-section of the wire, k is the Boltzmann
constant, Ea is the activation energy of thematerial, J is the current density, n is a scaling
factor and T is the temperature. Electromigration requires particular attention to be paid
when designing the vias, since they are more prone to suffering this effect [Weste11].
With the introduction of copper, wires became more resistant to electromigration. Tin
has also been identified as a good solution to mitigate the problem, but electromigration
is still a problem in CMOS circuits [Maric13].

Negative bias temperature instability

Negative bias temperature instability (NBTI) [Weste11] affects pMOS transistors which
have a negative bias and work in high temperature. The stress conditions over a long
period of time cause some of the charges to be trapped, deriving in a shift of the
transistor parameters, such as the threshold voltage. The total degradation induced by
NBTI was found to have two components: a permanent and a recoverable one [Maric11].
The permanent component is caused by defects near the silicon/oxide interface, and
increases with the time the device is under stress conditions (i.e., negative bias). The
recoverable component, on the other hand, disappears in the relaxation time, that is,
when the stress conditions are removed. The permanent component accumulates over
time and is never reduced, which leads to eventual non-recoverable degradation after
some time. Although NBTI mainly affects pMOS transistors, an analogous effect is
observed in some technologies for nMOS devices under positive bias [Maric13].

Due to the recoverable component, NBTI is partially reversible when the permanent
component is not yet significant [Maric13]. For this reason, upon later analysis the faulty
behavior of the device cannot always be reproduced. This is known as the no-trouble-
found (NTF) problem, a well known issue in automotive or avionic industries [LiVol11].



16 Chapter 2 ● Defects, faults and errors

Hot carrier injection

A hot carrier is a particle (electron or hole) with high energy that allows it to overcome
the interface state and deviate from its intended trajectory [Maric13]. In CMOS tech-
nology, hot carrier injection (HCI) injects these high energy particles in the gate oxide
region near the drain. The effects of HCI translate into a shift of the threshold voltage
in the affected transistor. This increase in the threshold voltage is often modeled as a
function of time in which the device is under stress conditions. Temperature and the
length of the channel also have an impact on the wearout effects: some of the possible
causes of HCI include higher than specified voltage supplies, short effective channels or
accidental peaks in the power rail that increase the power supply [Segur04]. Although
HCI primarily affects nMOS transistors, it can also affect pMOS devices and enhance
other wearout effects such as NBTI [Maric13].

Dielectric breakdown

Gate oxide or dielectric breakdown [Weste11] occurs when a large electric field is
applied to the dielectric material, causing it to lose its insulating properties. If the
electric field is very large, a so-called hard breakdown occurs. A hard breakdown causes
severe local damage and may short the transistor, bonding the silicon substrate to
the polysilicon of the gate in extreme cases [Segur04]. In CMOS technologies, this
situation arises only with high voltage supply values [Maric13]. For weaker electric
fields and thin oxides the degradation is partial, and is referred to as soft breakdown.
In soft breakdown, the gate current or voltage may increase slightly. However, the
clearest indication of breakdown is an increase in the gate current noise. For ultra-thin
oxides, soft breakdown appears first. Then, if the chip endures the stress condition for
a long time, soft breakdown is followed by progressive breakdown, which induces an
increase of the gate current. Although soft breakdown does not always imply a final
hard breakdown, it favors it as it weakens the oxide structure.

The time to the appearance of dielectric breakdown is a function of voltage, temperature
and oxide thickness. The degradation of the dielectric material is not reversible.



2.2 ● Fault models 17

2.2 Fault models

Test pattern generation, test pattern quality assessment and diagnosis, among other
tasks, deploy an abstraction of the defects in the physical structure of the circuit. The
behavior of defects is represented with fault models, which abstract the effect of the
physical distortion at a higher level. Logic level is a higher abstraction level that
represents the voltages of the lines as binary variables. In other words: it interprets low
voltage values as a logic 0 and high voltage values (close to VDD) as a logic 1. With
this transformation, faults can be represented using the conditional line flip (CLF) fault
model [Wunde10]. A CLF has the form sv ⊕ [cond], where the variable sv identifies
the victim signal to be flipped and cond are the activation conditions, expressed as a
Boolean formula. The CLF calculus allows the description of all fault models.

2.2.1 Stuck-at faults

The stuck-at model [Bushn13] has been widely used in many applications. It assigns a
fixed value to a victim line sv of 0 (sv@0) or 1 (sv@1). For a long time the stuck-at has
been the state-of-the-art representation for test pattern generation or diagnosis. In CLF,
a stuck-at-1 fault can be represented as sv ⊕ [¬sv]. The condition that triggers a flip in
the line is simply that the value of the victim is 0. As a result, the line is permanently
fixed to 1. Analogously, a stuck-at-0 can be represented as sv ⊕ [sv]. The stuck-at
model can represent a short to power or ground. However, it is not flexible enough to
represent defects with sophisticated activation conditions.

2.2.2 Delay faults

As mentioned in 2.1, defects can cause a circuit to deviate from its intended timing
specification. In a fault free circuit each gate has an expected delay, derived from
nominal delay and variations (cf. section 4.2.2). The timing specification of the complete
circuit can be derived from the delay of its components. A delay fault is a model that
assumes a mismatch between the expected delay and the actual delay of a component
due to a defect. There exist different delay faults, the most important of which are path
delay fault, transition fault and small delay fault [Wang06].

A transition fault [Bushn13] assumes that the time for the rising or falling transition
deviates from the expected transition time. Each gate may thus have a slow-to-rise
(str) and slow-to-fall (st f ) fault. In the transition fault model, the delay is bigger than



18 Chapter 2 ● Defects, faults and errors

the slack of the shortest path, i.e., all outputs to which the fault can be structurally
propagated are affected. The activation condition for this kind of fault is hence a
transition at the inputs of the gate that generates a transition at the output. Another
model is the path delay fault model [Wang06]. A path is a set of gates and signals
which connect a primary input or a flip-flop to a primary output or a flip-flop. Unlike
the transition fault model, the path delay fault model considers the cumulative delay
along a complete path instead of that of an individual gate. The number of paths in a
circuit may be exponentially large, which makes the path delay model less practical
than the transition model [Wunde10]. Finally, small delay faults [Tehra11] introduce
small additional delays in the circuit. They reflect the behavior induced by small sized
defects, and pose a challenge for test, since they can only be detected with a long path
that crosses the fault site.

Crosstalk-induced delay can also be modeled in CLF calculus [Wunde10]. The aggressor
line is denoted as sa, and its value in the previous time unit as s−1a . The same applies
for the victim line sv and its evaluation in the previous time unit s−1v . The transition in
the victim signal is delayed if the condition that both lines flip in opposite direction
is fulfilled: sv ⊕ [(sv ⊕ s−1v )∧ (sa ⊕ s−1a )∧ (sa ⊕ sv)]. Note that for simplicity the time
is considered discrete in the above formula. However, the time points can be easily
substituted by a time point in the continuous time for a more exact representation of
the actual defect.

2.2.3 Bridges

Different bridge models exist to reflect the effects of bridge defects [Wang06]. The com-
mon activation condition to all of them is that the two affected lines have different logic
values. However, the resulting value of the line differs depending on the assumptions
made by the fault model.

The affecting line is referred to as aggressor, while the affected one receives the name
of victim. In some fault models, both lines may be at the same time aggressor and
victim. So-called wired bridges [Wunde10], for instance, consider that the two lines are
affected and get the same value. These models assume a zero-resistance bridge, and
the resulting logic value of the signals is calculated by combining the two fault-free
values with a logic operation. Wired bridges come in two flavors: the AND-wired
bridges, which model n-networks stronger than their p counterparts, and OR-bridges,



2.2 ● Fault models 19

which assume the opposite. This model was developed for technologies in which one
net clearly dominates over the other.

More realistic for CMOS technologies, the dominant bridge models [Wang06] were
developed. They assume one of the driving cells dominates over the other: the victim
line takes the value of the aggressor always. To reflect the behavior of resistive bridges,
the dominant AND- and OR-bridges were developed: the victim takes the value of the
aggressor only for a certain value. In a dominant AND-bridge, for instance, the victim
line will be driven to 0 if the aggressor is 0. However, if the aggressor is 1, the victim
maintains its fault-free value [Wang06]. Figure 2.3 shows the difference between the
wired and the dominant fault models (in the AND variant).

▲ Figure 2.3 — Bridge fault models. Adapted from [Wang06]

The byzantine bridge model [Cheun07] causes either of the two lines, or both, to flip
upon fulfilling the activation condition that their values are different. This model
accounts for the fact that in a bridge, intermediate voltage levels may be generated
which are, in turn, interpreted differently by the gates fed by the affected lines. The
more realistic fault models take into account the driving strengths of the involved wires.
More sophisticated models, such as the voting model [Acken91], were proposed. Also,
depending on the resistance of the connection, the bridge may even present a timing
component, introducing a delay when the activation condition is met [Li03].

The CLF calculus is also able to represent all of these fault models. A dominant-and
bridge, for instance, would be written as sv ⊕ [¬sa ∧ (sv ⊕ sa)]. In other words: the
fault is activated if the aggressor and victim have opposite values and the fault-free
value of the aggressor is a 0.



20 Chapter 2 ● Defects, faults and errors

2.2.4 Transistor faults

Transistor defects are also represented at higher abstraction levels. The most relevant
fault models are the stuck-on and stuck-off [Wang06]. The stuck-on model assumes
the affected transistor is always conducting. Hence, for some patterns a path will be
created from the power supply to ground. In a CMOS inverter, for instance, if the nMOS
transistor is stuck-on and a logic 0 is applied at the input, the voltage at the output is
an intermediate value. It can be interpreted as a 0 or a 1 by the subsequent gates.

A stuck-off, on the other hand, assumes a permanent disconnection between the drain
and source terminals of a transistor. A stuck-off transistor introduces a memory effect
in the cell. The value of the output signal is calculated as the logic function implemented
by the cell for all patterns except for those which exercise the affected path between a
power line and the output. In the example of the inverter, if the nMOS is affected by a
stuck-open, it never conducts. Hence, for the patterns that exercise that path (input =
1) the cell retains the previous output value. For the rest of the patterns (in this case
only input = 0), the power-up net is active and the cell produces the correct value.

2.2.5 Non-determinism in fault models

While the activation conditions of faults are known, modeling still poses a challenge.
Due to variations, the exact physical structure of the circuit is unknown. On top of
that, the size and nature of the defect cannot be predicted, either. With unpredictable
exact timing behavior due to variations, shrinking feature sizes and more complex fault
activation conditions appearing, the degree of uncertainty increases. It is not realistic to
expect deterministic behavior at logic level. Physical parameters and the nature of the
problem influence the activation rate, causing the activation to look random for those
patterns in which the logic activation conditions are met. As an example, the NBTI
effects may appear random at logic level since they depend on the temperature, which is
not taken into account in logic simulation. Thus, an additional classification [Const03]
of the faults into permanent, intermittent or transient is introduced. The category
depends on their activation rate and location:

• Permanent faults are those which are activated in the same location(s) and have a
deterministic behavior.

• Intermittent faults are those activated in the same location(s), but whose activation
appears random. They are characterized by an activation rate, which determines



2.3 ● Reliability and yield 21

for which patterns, among those which satisfy the logic condition, the fault is
activated.

• transient faults represent random noise. They affect random locations and have a
low activation rate.

In new technologies, both intermittent and transient faults are gaining importance.

Permanent, intermittent and transient faults can also be represented using the CLF
model by introducing additional conditions. A permanent fault is activated always,
and needs no further specification. However, intermittents and transients are activated
with a certain rate. Let sv ⊕ cond be the CLF expression for a fault. If the fault is
actually intermittent, its activation is not static but depends on a rate λa. To account
for the indeterminism introduced by the lack of accuracy of the models and the lack of
knowledge of the exact physical parameters, it is enough to generate a random number
r within a range [rmin, rmax]. Then, the condition r < λ(rmax − rmin) is added to the
activation. As a result, the CLF model for the intermittent fault is sv ⊕ [cond ∧ (r <
λ(rmax − rmin))]. Analogously for a transient fault with activation rate µa.

2.3 Reliability and yield

The goal of manufacturing is to efficiently mass-produce high quality circuits [May06].
Many aspects of manufacturing impact that goal, including costs, yield and reliability.
Yield is an important indicator of the maturity of the production process. It measures
the proportion of fault-free devices among all produced ones. The cost per device and
yield are inversely related: for a given global manufacturing cost, the higher the yield,
the lower the cost per circuit and viceversa.

Reliability measures the probability that a chip will continue to function correctly over
time. Both yield and reliability are threatened by continuous scaling: in nanometer
technologies the manufacturing process must come up with solutions to print structures
smaller than the used wavelength, and chips become increasingly sensitive to wearout
mechanisms and noise [McPhe06].

2.3.1 Yield ramping

When the production of a new design is started, yield levels are generally low. Yield
losses come mainly in three different flavors: parametric, systematic and random



22 Chapter 2 ● Defects, faults and errors

[Madge05]. Each yield loss class is caused by different factors and has varying impact
on the final total yield. The corresponding corrective actions to tackle the problem are
also heterogeneous.

Parametric yield losses are those circuits which are functional, but do not comply with
the non-functional specification. For instance, due to process variations, the timing
of the circuit and hence its maximum operating frequency are not fixed. Instead, the
longest path delay follows a distribution [Kim03]. Depending on the target frequency,
the slowest circuits may easily fall out of the non-functional specification. For example,
they may deviate from the intended frequency requirements, and require a longer clock
cycle to correctly perform the function.

Systematic yield loss is caused by errors in the production flow. A process which is not
yet mature may systematically introduce voids or cracks in the interconnects, or dope
the silicon incorrectly, or have misaligned masks. The undesired effect will be injected
in a high number of devices, drastically reducing yield.

Finally, random yield losses are defects introduced arbitrarily, and can be caused by
spurious contamination during production [Wali09].

The process of increasing the yield levels to a significantly higher value, proper of a
mature process, is referred to as yield ramping or learning. Yield learning requires first
the identification of the problem, and then the correct countermeasure for each yield
loss type.

Parametric yield losses

Parametric yield losses can be avoided with techniques such as binning. Binning
separates the ICs in different categories instead of merely labeling them as passed or fail.
It is a well-established industrial practice, and industry reported selling microprocessors
in up to six different speed grades already at the beginning of the 2000s [Belet02]. The
categories are based on the performance of the device with respect to different non-
functional aspects, for instance speed [Kim03] or voltage [Shen12]. With shrinking
technologies, however, the variation has increased and a careful selection of test patterns,
infrastructure and configuration must be made to keep the technique affordable.

The simplest versions of binning applied functional tests to the devices under dif-
ferent configurations to pick out the maximum frequency or minimum voltage they
need [Bushn13]. However, testing all possible configurations of parameters is not



2.3 ● Reliability and yield 23

feasible, and different approaches have been proposed to minimize test time while being
able to predict circuit performance. The authors in [Zeng04] demonstrate the corre-
lation between structural delay tests and functional testing frequencies. In [Belet02],
experiments are performed on a microprocessor to compare the correlation of struc-
tural and functional tests. They conclude that path-based test correlates better than
transition based test, with the limitation that the test generator must be improved to
infer a high path-coverage test sequence which meets the test cost requirements in
terms of time and memory. In [Paul07], some long paths are chosen at design time.
They can be configured as ring-oscillators, and the authors measure the timing in a
small subset of voltage and frequency configurations. The differences in the timing
measure the sensitivity of the circuit, and this sensitivity is used to extrapolate for other
configurations, which allows to predict the maximum frequency at different operating
points for the design.

Binning may also be performed based on the supply voltage. In [Shen12], the authors
infer an optimal number of bins given a low bound for yield and the corresponding
binning algorithm. They take the test measurements of a population, and represent
the voltage intervals as horizontal lines on a graph. Then, the optimal number of
bins is inferred. The algorithm requires that each fault-free chip falls in at least one
bin, hence, the problem is a cover of vertical lines which crosses all voltage intervals
of the population. The authors in [Licht13] take advantage of the relation between
performance and leakage to propose their binning approach. In particular, and given
that systems have a power budget, they propose to reduce the supply voltage to the
fastest circuits. That way, leakage is reduced but the chips’ performance is not affected.
This reduces yield losses since it rescues the fastest chips, which would be discarded by
a leakage screen.

Systematic yield losses

To reduce systematic yield losses, the root cause must be identified to correct the
imperfection in the process as soon as possible. Often, process monitors are introduced
in the wafers in order to control the development of manufacturing. Process monitors
are special test structures manufactured in the same technology as the chips, and probed
by the test equipment to check the existence of systematic defects. The original snake
and comb test structures introduced were able to detect a short or an open. However,
they could not provide information about the size of the introduced defects. More



24 Chapter 2 ● Defects, faults and errors

recent structures haven been proposed. An example is the NEST structure presented
in [Hess01], which is formed by a set of serpentine-shaped nested wires. Each wire
is connected to two pads, and electrical measurements on them allow the detection
of systematic problems. For instance, the resistance between two pads may give an
indication of opens or shorts. Moreover, depending on the measurements, it is possible
to infer which lines are affected and hence the defect size distributions. The NEST
structure requires only one mask and can be implemented in one layer. However, other
structures can be introduced to monitor the introduction of defects between different
layers. The authors of [Khare94] propose to use the double bridge test structure to
extract defect densities and sizes between two layers, while in [Hamam04] the structure
includes open and short monitors, which allow not only the detection but also the
location of the defect through the electrical measurements.

Despite careful design based on knowledge about previous processes, test structures
cannot always reflect the diversity of production IC structures [Blant12]. For this
reason, defective ICs are also deployed as a source of systematic yield loss information.
In order to increase yield levels, two approaches are possible [Bushn13]. The first is
known as diagnosis and repair, and it consists of performing a thorough diagnosis
for the defective parts, which are then repaired. Although yield values increase, so
does manufacturing cost. The economic costs make diagnosis and repair less attractive
to correct systematic problems. Process diagnosis and correction, on the other hand,
tries to find the source of the problem and correct it. Once the systematic problem is
corrected, the defect density decreases, causing yield to increase.

In order for the process diagnosis and correction approach to succeed in rapidly ramp-
ing yield, the identification of the root cause of the problem must also be a fast process.
Ideally, it should not impose a high overhead on the already costly test flow. Other-
wise, handling many chips affected by defects will get prohibitively expensive. A fast
and cheap failure analysis diagnostics approach combined with process imperfection
correction becomes the crucial step for yield learning [Madge05].

The general definition of yield is the ratio of fault-free dies per wafer. However, some
authors go one step further and point out that the fault-free devices discarded by
mistake also constitute yield loss [Madge05]. This could apply to parametric yield
losses, which have been tackled with binning techniques. However, it also applies to
those circuits affected by spurious noise during test. If the noise affects a component in
the device and propagates an incorrect value to the outputs, then the chip will be labeled



2.3 ● Reliability and yield 25

as faulty and discarded. Also, chips for which the outputs were sampled incorrectly
due to the resolution of the test equipment may be identified as faulty. These categories
will not only pose a problem for the analysis, since no defect will be found, but will
also contribute to the number of unnecessary yield losses. Hence, careful analysis
needs to be conducted to avoid this situation. However, due to sensitivity to noise and
sophisticated defect mechanisms, in nanometer technologies the distinction between
noise and systematic problems is not yet resolved.

2.3.2 Lifetime tests

After manufacturing and passing test, a device can be shipped to the customer. However,
test escapes as well as aging mechanisms can lead to system failure. In order to ensure
the reliability throughout the complete life cycle of the device, two kinds of strategies
are deployed, namely, circuit failure prediction and online tests.

Circuit failure prediction attempts to anticipate the time in which degradation will have
affected the system and will lead to failure. The main advantages of this technique are
the early failure detection, before the system actually degrades and ends up in an unsafe
state, and that it is generally an inexpensive approach [Agarw07]. However, the success
of the prediction is determining, and a careful selection of features must be performed
for prediction. Prediction methods are based on online collecting information about
the workload or timing properties of the system combined with a prediction model,
generally implemented in software and which can run online, hence preventing the
system of degrading with catastrophic consequences.

In [Baran15], the authors propose to monitor the workload of some representative cells
in the circuit. The selection of the set of cells is crucial, as they need to characterize the
whole circuit. The choice is based on feature selection with a wrapper method [Hall99],
which extracts relevant features well correlated with the corresponding expected output
even if they are uncorrelated among them. The resulting set is then monitored online,
and a software evaluator which contains a model of the expected aging pattern checks
for the consistency of the signals.

The authors from [Agarw07] propose the design of special monitors which are provided
with a guardband. When the guardband is violated, it means that one of more paths have
aged enough to delay the signal arrival into the guardband. However, the functional
flip-flops of the circuit still capture the correct value. Consequently, the degradation of



26 Chapter 2 ● Defects, faults and errors

the system is detected in advance while the system itself is fully functional and within
performance specification. The monitors are combined with a self-adjusting model
based on the degradation registered after small periods of time.

Other methods try to identify degradation by monitoring the timing performance of the
circuit. In [Agarw08], the authors propose a method to calculate a maximum bound for
degradation. Based on the results of this prediction, they choose the optimal placement
for the set of monitors at the end of long critical paths. The costs are reduced with the
approach presented in [Liu15b], in which the authors consider path segments instead
of whole paths, hence increasing the path coverage. To avoid the clocking problems
of placing the monitors in arbitrary nets, the monitors are controlled by the inverted
clock.

Unlike failure prediction, online error detection can only discover errors once they have
already happened. The disadvantage is, of course, that some errors can lead to system
failures. However, with good fault coverage and latency values, it only needs a fault
tolerant design to allow for graceful degradation while detecting any problem. To this
end, many architectures have been proposed which involve an observer, who predicts
the fault-free outputs of the module and detects any mismatches [Kocht10] [Sharm88]
[Drine03]. Some test approaches are developed so that no additional hardware is
needed [Psara10], while other techniques [Wunde98] can be integrated as part of a
system-level online strategy [Reima14], [Abele14].

Online error detection techniques are crucial not only because they identify fault
occurrences, but also because this instant detection allows the system to collect data
about the patterns which activated the fault and also about the obtained response. This
information is relevant for later analysis, particularly for faults which are partially
reversible or only activated under specific environmental conditions. Without online
error detection and information registration, the analysis of such faults is extremely
complex.



C
h
a
p
t
e
r

3
Test, diagnosis and fault

classification

Test is the procedure in which input stimuli are applied to a unit, and its responses
checked against the expected ones. In case of a mismatch, the circuit is deemed faulty.
The goal of test is to detect faulty devices as early as possible. Hence, the first step
of test is the generation of input patterns which uncover the defects in the device
effectively. In order to test a device, the target fault model is first established. Then, a
test set is generated which attempts to activate and propagate to the outputs as many
of the considered faults as possible. Finally, the test patterns are applied to the device. If
the obtained response deviates from the expected output pattern, the chip is identified
as faulty and discarded.

To ensure high product quality and reliability, tests are performed throughout the
complete lifetime of a circuit. Manufacturing test sorts out the failing devices, which
undergo the fault location phase, and finally physical failure analysis (PFA). Although
the last step is particularly costly, it is key to yield ramp up: PFA identifies systematic
defects so that they can be corrected as soon as possible. PFA cost is partially reduced
by applying logic diagnosis. Narrowing down the suspected defect area reduces the
time required for PFA.

After a chip is shipped to the customer and integrated in its target system, in-the-field



28 Chapter 3 ● Test, diagnosis and fault classification

test are performed to detect any possible degradation effects. Should any problem be
detected, the chip must go through the diagnosis and PFA procedure to identify weak
structures systematically affected by degradation. Due to the lack of insight into the
defect mechanism, physical analysis is performed without the possibility of prioritizing
it and hence saving time and resources.

This chapter gives an overview of the test flow and the involved steps. The work at hand
will be integrated in this flow and provide the base for a prioritized physical analysis.
First, section 3.1 introduces the basic algorithms involved in test and diagnosis. Section
3.2 explains the basic manufacturing flow, and how test algorithms are deployed to
ensure high product quality. Section 3.3 introduces the online test strategies that make
it possible to ensure reliability and which gather information about any possible faults
in the system for later analysis. In section 3.4 an overview of all available test data sets
is presented, and finally section 3.5 presents available fault classification techniques
and how PFA benefits from them.

3.1 Test algorithms

Detecting defective chips requires tailored test pattern generation to uncover problems
at any possible location. Test pattern generation is performed based on a fault model,
i.e., a representation at a higher abstraction level of the physical distortion in the chip.
Test generation algorithms proceed to choose input combinations that activate the fault
and make it observable at a primary (or pseudo-primary) output. Approaches based on
fault models scale with nowadays circuit complexities, since higher abstraction levels
require less computational effort.

The quality of a test set can be assessed according to some metrics, with fault coverage
being one of the most often used. Fault coverage measures the percentage of targeted
faults which are detected by a certain test set. The fault detection estimation is per-
formed by means of fault simulation: given a fault model, all possible faults in the
circuit are simulated and the manufacturer can assess the quality of the test patterns.

3.1.1 Logic simulation

The simulation of a circuit is the evaluation of a model that represents the circuit.
Simulation is required for many of the test and diagnosis flow tasks. Fault dropping,



3.1 ● Test algorithms 29

test pattern fault coverage validation and diagnosis are some of the tasks that depend
on simulation. The methods presented in this thesis make use of logic simulation
results. The accuracy and performance of logic simulation are of great importance for
the precision and overhead of the method, and are thus discussed in this section.

The so-called simulation level indicates the detail level of the model. Some of the
most used circuit simulation levels are register-transfer level (RTL), logic, switch and
layout [Wang06] [Bushn13]. RTL is the most abstract structural description of a de-
sign. Registers in RTL correspond to the sequential elements in the design, while the
logic implemented by the system is represented as a Boolean function instead of a
netlist. Logic level represents the circuit as a gate-level netlist, that is, as cells with
interconnections. Switch level is a step below gate level, and represents the circuit as
interconnected transistors, which behave as ideal switches. Finally, at the layout level,
the representation includes all geometrical details. Lower abstraction level simulation
renders more accurate results. However, precision also increases the complexity of
model evaluation, making layout simulation often unaffordable for very large circuits.
Gate level is a widely spread representation level, since much has been achieved to
optimize simulation. Also, fault models have been developed for logic representation.

Gate level simulation of a circuit requires firstly a representation of the structure: a
netlist of interconnected cells. Often, the circuit is levelized. Levelization is the process
of assigning a level to each cell, so that a cell’s level is always higher than the level of
its predecessors. A relevant property for simulation of levelized circuits is that all gates
in one level are independent of one another. This can be exploited in simulators.

In logic simulation, the voltages in the lines of the circuit are abstracted as logic 0 or 1.
A voltage under the threshold voltage is interpreted as 0, and a value over the threshold
is interpreted as a logic 1. The simulation in which only these two values are possible is
designated two-valued logic simulation. It is, however, not always possible or desirable
to give a 0 or 1 value to all signals. Storage elements, such as flip-flops, which have
not been initialized have an undefined value. Also input bits which are not specified,
or intermediate voltage values. Three valued simulation includes the value X, which
represents unknown or undefined values.

Three-valued simulation often introduces a degree of pessimism. Figure 3.1 depicts a
circuit in which unknown values introduce pessimism. Signal s1 feeds both the AND
cell and the inverter. As a result, s2 is the inverted form of s1, that is s2 = ¬s1. The
output signal, s3, is the AND logic function of s1 and s2, s3 = s2 ∧ s1. When an X is



30 Chapter 3 ● Test, diagnosis and fault classification

assigned to s1, the simulator inverts the value. The inverse value of X is typically also
undefined, hence assigning a value of X also to s2. When propagated forward to the
AND cell, the same problem arises: the AND function of two undefined values is also
undefined. However, reconvergence may cause the value of the signal to be defined. In
fact, the circuit calculates the output of the function s3 = s2 ∧ s1. Substituting s2 for ¬s1,
the function can be rewritten as s3 = ¬s1 ∧ s1, that is, 0. The simulator is pessimistically
assigning unknown values, and propagating them in the subsequent logic.

▲ Figure 3.1 — Pessimism in three-valued simulation

Logic simulation has different granularity possibilities for timing annotation. Zero-
delay logic simulation evaluates the circuit values from input to output without timing
considerations. It assumes that every cell immediately propagates the new value to the
output without a delay. Timing-annotated logic simulators, on the other hand, consider
that every cell has a delay. The unit delay model, for instance, considers that all cells
have a delay of one time unit. According to this scheme, the longest topological path
(in the sense of the path with the highest number of cells) is also the longest in terms
of timing. This does not, however, reflect the properties of manufactured designs, in
which the delays among cells and even pin-to-pin delays withing a cell vary. Further
extensions of timing-annotated simulation allow the annotation of a different delay for
each cell and line.

Figure 3.2 illustrates the difference between a zero-delay and a timing-annotated logic
simulator. The simulated circuit is represented at the top of the figure. Two input
patterns are applied, and the simulation is presented in the lower half of the figure.
On the left side, the zero-delay logic simulator result is presented. Since the simulator
considers there is no delay in the calculation of a cell output, it is as if the signals’ values
propagated without delay and stayed stable during the whole clock cycle. The right
side, however, shows a different picture. To begin with, signals in deeper levels (i.e.
closer to the outputs) have not been initialized. The figure shows them as undefined by
not assigning them a value. They are initialized after the corresponding delay, when
the values of the previous signals propagate through the gates. For instance, signal s4,



3.1 ● Test algorithms 31

which is driven by an inverter fed by s2, only gets assigned a value after a delay dinv,
which represents the delay of an inverter gate. In the same way, signal s5 only gets
assigned a value when the preceding signals have been assigned and after the and gate
delay, dand. The vertical dashed lines represent the clock cycle. The outputs propagate
in time, and so at multiples of T, the values match those of the zero-delay simulator. In
the figure, the values of the gate delays have been left as variables. Note that this is
representative for any delay model assumed in the simulation, and is easy extensible to
different delays for rising and falling transitions.

▲ Figure 3.2 — Zero-delay vs timing annotated simulator

From the implementation point of view, a simulator can be plain or event-based. Event-
based simulators manage a data structure that orders the upcoming events, and only
evaluates those cells for which a change at the output has been observed. Plain simula-
tors, on the other hand, evaluate every cell for every pattern. A plain simulator can
take advantage of a parallel pattern evaluation: instead of evaluating one bit at a time,
the complete word length is used to evaluate more than one pattern in parallel. Al-
though intuitively event-based simulators are more efficient in terms of computational
effort, the regularity of plain simulators makes them more suitable to be mapped onto
high-throughput architectures such as graphics processing units [Schne17]. Simulation
algorithms on parallel architectures parallelize pattern simulation. They also take



32 Chapter 3 ● Test, diagnosis and fault classification

advantage of levelization, since all gates in the same level are independent and can
be simulated in parallel. This reduces the cost of logic simulation dramatically, hence
making it affordable even with nowadays circuit complexities.

Fault simulation

Simulation with fault injection is the base of many efficiency assessment techniques for
test and diagnosis. With growing complexities and number of transistors, evaluating
precise models is often unaffordable for today’s circuits. Logic simulation is faster by
several orders of magnitude than simulation at lower abstraction levels, and faults can
be injected with any of the fault models introduced in section 2.2.

Like logic fault-free simulation, logic fault simulation can be performed using the values
0 and 1. These values serve as the logic interpretation of the voltage values of the lines
in the circuit: over a given threshold voltage the value is interpreted as a 1, and below
it as a 0. The inclusion of faults slightly modifies the structure of the circuit, but this
resulting new model can also be evaluated with simulation.

The simulation of faults which only involve one component, such as slow gates, requires
the simplest strategy. In [Waicu87], the authors describe the slow-to-rise and slow-to-
fall gate fault models, generally referred to as transition faults. Thanks to a ranking
of the gates, they are able to evaluate the faulty instance of the circuit in just one
pass. Although levels are not formally introduced, the proposed ranking is similar to
levelization in that a gate can only be evaluated if its predecessors have already been
evaluated, too. The authors point out that both patterns, the initialization and transition
propagation patterns, are necessary to simulate a transition fault. To optimize simulation
time, the authors propose a fault collapsing strategy, which does not allow such a high
compression as for stuck-at faults, since transition faults have less equivalences. They
also take advantage of parallelism at the pattern level, by using the complete word
length to simulate more than one pattern at a time. This extension was proposed to
enhance stuck-at simulators for transition faults. When integrated in a zero-delay logic
simulator, this technique only allows the representation of faults that cause a large
delay.

Faults which involve more than one signal pose a challenge for simulators, because
dependencies appear that were not present in the original structure. Bridge fault
simulation, for instance the approach presented in [Chess98b], must distinguish between
the two involved lines. For a dominant bridge between an aggressor and a victim line,



3.1 ● Test algorithms 33

the situation of both in the levelized graph plays a relevant role in the simulation
strategy. The authors refer to the line involved in the bridge that is closer to the inputs
as back wire, while the line closer to the outputs is the front wire. For a dominant bridge,
if the aggressor is the back wire, the simulation can be performed in one pass. When
the simulation reaches the victim line, it will simply read the value of the aggressor
and manipulate the victim line signal accordingly. However, in the opposite case, the
simulator must evaluate in the first pass until the level of the aggressor, and then go
back to the victim level, manipulate the signal and propagate it to the output. One
additional consideration must be made in this case: if the aggressor belongs to the
output cone of the victim, a feedback loop is established. Feedbacks in bridges exceed
the capability of most simulators, because they may cause oscillating behavior and
their evaluation is hence imprecise in high-level simulators. If the bridge model is a
byzantine bridge, then the restriction holds for both lines: if either of them belongs
to the output cone of the other, the faults may only be inaccurately simulated. The
strategy in [Chess98b] can be extrapolated to any fault model involving more than one
line if the manipulation of the signal values is adjusted to the desired fault model.

Just like in logic simulation, the timing granularity of the simulator has a big impact on
the optimism or pessimism introduced in the simulation. Zero-delay logic simulation
allows only a coarse representation of faults related to timing. It can only represent
those faults bigger than the delay of the circuit [Schne17], which leads to mismatches
between the expected and the observed outputs.

Simulators able to evaluate a timing annotated circuit [Holst15] also allow fault injection
by manipulating waveforms instead of one single value for the complete cycle. Timing-
annotated fault simulation can identify glitches and hazards, which may potentially
activate a fault that would be overlooked by a zero-delay logic simulator. As a key
component of quality assessment procedures, timing annotated simulation presents a
huge advantage due to its increased accuracy with respect to simpler logic simulators.

The lack of accuracy of zero delay logic simulators, and particularly if faults need to
be injected, limits the precision of fault coverage estimations or of logic diagnosis
techniques. Another significant advantage of timing annotated simulators is that, with
a simple manipulation at the preprocessing stage, factors such as variations can also be
represented.



34 Chapter 3 ● Test, diagnosis and fault classification

3.1.2 Test generation

The purpose of test generation is twofold. On the one hand, to ensure high product
quality, the test set must exercise all parts of the design in order to uncover the highest
possible number of defects. On the other, test time increases time to market and
production costs. Thus, the generated test set must be as short as possible, i.e., contain
few patterns. The properties of the generated test set are determining for the quality
of diagnosis and impact also the methods presented in this thesis. Hence, this section
describes the different possibilities and highlights their advantages and disadvantages.

Generating tests for all possible defects in a circuit is not feasible for nowadays design
complexities. Automated test pattern generation (ATPG) approaches often tackle fault
models. The universe of all candidates of the fault model is generated and a test set is
derived which detects as many as possible. The ratio of detected faults is referred to as
fault coverage [Bushn13], and is a quality metric for a given test set. Fault coverage can
be validated via simulation: all faults in the set are injected and the test set is provided
as stimuli. An ATPG algorithm will try to generate at least one pattern to detect every
fault.

Due to increasing circuit complexity, the size of the fault universe can become too large.
However, some faults are indistinguishable or equivalent [McClu71], i.e., they cause
the same behavior in the circuit. A pattern which detects one is guaranteed to detect
also the other. An example of structurally equivalent faults are the stuck-at faults at
the input and output of an inverter. The stuck-at-0 fault at the input is equivalent to
having a stuck-at-1 at the output. An ATPG algorithm need not consider both faults
in the initial fault universe, so ATPG algorithms first perform fault collapsing, that
is, they remove structurally equivalent faults, leaving only one representative of each
equivalent class.

Even after fault collapsing, generating one pattern specifically for each fault would not
only take long, but also result in undesired long tests. Test generation algorithms hence
usually perform fault dropping: once a pattern is generated, all remaining faults are
simulated. If any of them are detected by the pattern, then they are dropped from the
list, hence saving test time generation.

The line or cell affected by a fault has an input and an output cone. The input cone is
the set of cells and lines whose value propagates along a path to the affected compo-
nent. Conversely, the set of cells and interconnects to which the value of the affected



3.1 ● Test algorithms 35

component propagates is the output cone. A pattern can detect a fault if it fulfills two
conditions: the fault is a) activated and b) propagated to an observable output. The
activation implies assigning the component affected by the fault the opposite value
than expected, and needs to be complemented by the justification of the line: setting
the correct values at the input so that the desired activation values will get propagated
along the input cone. Propagation requires transmitting the value through the output
cone which causes the test output to differ from the fault-free response. It is sufficient
if one of the outputs differs: the fault is already detected.

The complexity of nowadays circuits calls for automated methods to generate high-
quality test patterns. Designs have generally a combinational and a sequential part.
The sequential part defines the state of the circuit. Sequential ATPG [Bushn13] ap-
proaches exist for test generation which consider the sequential behavior of the circuit.
Unfortunately, sequential test generation may be a highly complex process depending
on the amount of sequential elements of the design and their sequential depth. In
particular, the justification of the line and the propagation to an observable output turn
test generation into a non-trivial process. Justification implies generating a sequence
of patterns which set the system into the correct state to activate the fault. Propagation
requires also a sequence of patterns to make the difference observable at an output of
the design. Sequential ATPG often results in long test sequences, contradicting the goal
of minimizing test costs. For this reason, often instead of deploying sequential ATPG,
special test infrastructure is introduced (see section 3.2.2) and combinational ATPG is
used instead.

Test generation for combinational circuits can be tackled following so called structural
test techniques. The D-algorithm [Roth66] uses a five-valued representation. Addi-
tionally to 0 and 1, the values X (don’t care), D (fault-free value is 1, faulty is 0) and
¬D (fault-free value is 0, faulty value is 1) are included. The algorithm first activates
the fault. For a stuck-at 0, for instance, this means setting the line to D. Then, the
algorithm propagates the value to the output. Finally it justifies the lines so that the
propagation and activation are possible. The algorithm terminates when all lines have
been justified. The D-Algorithm works in one single pass for reconvergence-free cir-
cuits. However, in a circuit with reconvergence, however, conflicting assignments may
be required and the algorithm needs to backtrack. The path-oriented Decision Making
(PODEM) [Goel81] algorithm is an improvement over the D-Algorithm which restricts
the decisions to the inputs, hence reducing the search space. It can be further reduced



36 Chapter 3 ● Test, diagnosis and fault classification

by introducing the concept of headlines, which mark reconvergence fan-ins. Headlines
are an improvement of FANout-oriented test pattern generation (FAN) [Fujiw83] over
PODEM. The identification of headlines helps the algorithm take better decisions to
justify the lines, optimizing the test generation time.

ATPG may also be formulated as a satisfiability problem [Larra92] [Sauer12]. The first
step is to build a model of a Miter structure. A Miter structure consists of an instance
of the fault-free (or reference) circuit, a faulty instance and a comparator which detects
differences between the responses of both circuits. The Tseitin transformation allows
to model the Miter structure with a set of clauses in CNF form. This representation can
be then supplied to a Boolean satisfiability solver, which finds an assignment to detect
the faults. The method is explained in detail for stuck-at faults in [Larra92], and can
be extended for other fault models. Even timing faults, which require a pattern pair
for detection (the first for initialization and the second for activation) can be targeted
with such as approach. SAT-based ATPG has been deployed for path delay [Egger07]
or small delay faults [Sauer12].

SAT-based ATPG can be performed to generate a manufacturing test pattern set if
no further constraints are allowed. Despite manufactuing test’s efficiency to detect
faults, its usefulness when it comes to identifying the underlying fault is limited. For
this reason, different kinds of tests with enhanced diagnostic properties must also be
generated. SAT-based offers the flexibility to encode different conditions as clauses
and can be hence deployed not only for detection, but also for diagnostic test pattern
generation (cf. 3.1.3).

The generation of test data is a complex task, since test deals with two major factors
responsible for uncertainty. On the one hand, the physical parameters of a defect
cannot be foreseen. It is unaffordable to model all possible defects with all possible
physical parameter combinations for a circuit. Inductive fault analysis [Shen85] is
a technique which takes into account the technology and gathers information from
previous production to create a list of faults likely to appear in the circuit. With
this information at cell level, it is possible to create test patterns that target intragate
defects [Hapke14]. On the other hand, variations include a certain degree of uncertainty
with respect to the timing behavior of the circuit. To generate more efficient test patterns
in these these circumstances, variation-aware test pattern generators have also been
developed [Sauer14].



3.1 ● Test algorithms 37

3.1.3 Logic diagnosis

Diagnosis has the objective of identifying the location and nature of underlying defects
in order to improve yield or performance [Jha03]. The first step of diagnosis is the
localization of the fault. Usually, this first step is based on a logic representation of the
circuit, from which the defective component (cell or interconnect) is identified. Logic
diagnosis receives the result from test as input, that is, the passed and failed patterns.
It also requires the netlist of the design, which it uses to simulate the patterns. Fault
localization or logic diagnosis is performed after test and its result is used to guide the
physical failure analysis procedure.

Logic diagnosis can be performed following a cause-effect or an effect-cause approach.
Cause-effect approaches [Wunde07] assume a fault model and generate the universe
of all possible candidates based on a fault model. For the stuck-at fault model, for
instance, the universe would include the stuck-at 0 and at 1 for every line in the design.
The expected output for each candidate can be computed with simulation. However,
the simulation of the complete test set for all candidates may take too long. To save
the computation time for every diagnosis, a dictionary can be generated in which the
expected faulty responses are stored along with the candidates which can cause them.
Due to circuit complexity, however, the number of patterns and faults grows very large
and the dictionary may explode. The most significant effort in these techniques has
been invested in reducing the size of the dictionary.

One example of cause-effect technique is presented in [Yamaz13], where resistive open
faults are diagnosed. Themethod first performs path tracing, and discards the candidates
which do not propagate to the affected output pins. Then, diagnosis is performed using
the small delay fault model as reference. Although effective, this approach has the
unrealistic prerequisite that the tool knows the defect class beforehand. Additionally,
the lack of fault simulation precision due to unpredictable electrical parameters may
cause such approaches to lose precision, since they look for candidates whose simulated
responses match the observed test output.

Effect-cause approaches, on the other hand, reason about the structure of the circuit.
The simplest approaches tend to consider the presence of a single fault, also known as
single fix condition [Wunde07]. This translates into a search for a single line which
explains all failing patterns. The single fix condition does not hold for some defects, such
as bridges, because it is possible to have more than one culprit in the circuit. However,
based on a dictionary for stuck-at faults, that is, a set of precomputed responses if a



38 Chapter 3 ● Test, diagnosis and fault classification

stuck-at fault is present, it is possible to diagnose more complex fault models. The
composite model for bridges is described in [Millm90]. An output pattern computed in
the dictionary will not always match the observed response. However, a composition of
dictionary entries of the stuck-at faults at the involved signals allows a more accurate
prediction and enhances the diagnosis of more complex fault models.

In [Venka01], the authors propose a diagnosis method for sequential circuits. As a first
step, they extract the input cone of each output, that is, the set of cells in the device
through which values propagate from the inputs to the considered output. Whether
the output is a primary output or scan element is irrelevant, they are both considered.
This reduces the suspect lines to those contained in the topological input cones of the
points where a faulty value was observed. The candidates contained in the input cones
of scan elements are eliminated as suspects, since shifting in a scan pattern makes the
value contained in the flip flop independent of the logic which feeds it. The cones can
be further reduced deploying path tracing. Since the assumption is that one single
line caused all failing patterns, only the elements contained in the intersection of all
the input cones are considered. Composite faults as presented in [Millm90] are also
constructed. The authors perform fault simulation of all candidates, and rank them
according to three types of evidence: intersections, mispredictions and nonpredictions.
An intersection is an error observed both in the fault simulator and in the tested design.
A misprediction is a pattern (or slice thereof) predicted to fail by the fault simulator but
for which the tested design renders the correct output. A nonprediction is a pattern (or
slice) expected to be fault-free, that is, the fault simulator propagated no fault to the
outputs, but for which an incorrect value was observed in the tested circuit. Based on
the coincidences between the response obtained from fault simulation and test output,
the candidates are ranked. Candidates with full pattern intersection, that is, perfect
match with the observed behavior, are ranked first. The second criteria is the number
of partial intersections: a larger number of pins matching the observed response is
ranked higher. Finally, a low number of mispredictions ranks higher.

The fix condition assumption must be relaxed for more complex fault models, particu-
larly those for which more than one culprit is possible. The single location at a time
(SLAT) assumption determines for each pattern a location that explains the observed
behavior. Then, a composition of those faults can be used to derive more complex fault
models. For instance, for a bridge in which signals s1 and s2 are connected, if s1 is
flipped for a certain pattern pi and s2 is flipped for another pattern pk, a SLAT based



3.1 ● Test algorithms 39

diagnosis will come up with both faults. The limitation is, however, that only patterns
for which a perfect match is found are considered. Given the lack of predictability of the
defective region and its physical characteristics, assuming a perfect match between the
observed output and the one calculated with the stuck-at as culprit limits the approach.
In [Chen09], bridge diagnosis is performed based on the SLAT assumption combined
with layout information. A list of fault candidates is generated for the SLAT patterns,
and a cover which takes physical information into account is generated to diagnose the
underlying bridge fault.

In the approach presented in [Desin06], lTk
v denotes a line l, which, if at faulty value v,

explains the subset of patterns Tk. This model receives the name of TSL fault (temporary
stuck line fault). The method constructs a so-called forest of TSL faults. The forest
is formed by trees whose nodes are the TSL faults extracted from the SLAT patterns.
Two faults l1Tk1

v1 and l2Tk2
v2 are ordered when one of the sets of explained faulty patterns

is contained in the other. For instance, Tk2 ⊂ Tk1 implies that the first fault is better
ranked than the second. There may exist disjoint trees if the sets of explained patterns
for each fault cannot be ordered. Passing patterns are then used to prune the tree:
any TSL fault for which the line and its neighborhood are in the same state as in a
faulty pattern is pruned from the tree. The localization is then a covering problem, in
which a set of candidates must be found which, together, explain all observed faulty
patterns. The authors combine it with additional diagnostic test generation to improve
the precision and accuracy of the diagnostic result.

Other approaches, such as [Holst09], further relax the SLAT assumption. Instead of
requiring a perfect match, a metric is established to quantify to what degree a location
explains the observed faulty behavior. In the approach, the fault simulator or fault
machine flips the candidate line. The output response is compared to the observed
behavior, and the candidate locations are ranked according to the correlation between
the expected and the observed responses. The correlation for a certain test pattern p is
measured based on a tuple including four different metrics: (δσp

, διp
, δτp

, δγp
), where

δσp
is the number of pins which were faulty and were expected to exhibit a faulty value

according to the fault machine, διp
is the number of pinswhichwere expected to be faulty

but rendered a correct value, and δτp
those pins which were expected to be correct but

had the wrong value during test. Finally, δγp
= min{δσp

, διp
}, which serves to measure

if the fault fully explains the behavior. This value is different than 0 for faults such
as delays, when only a subset of the outputs are affected. The metrics are illustrated



40 Chapter 3 ● Test, diagnosis and fault classification

in figure 3.3. A tuple (σ, ι, τ, γp) = (∑p δσp
,∑p διp

,∑p δτp
,∑p δγp

) summarizes the
evidence for a certain candidate. The candidate lines are ranked so that the number of
outputs which match the predicted output is maximized, while the deviation from the
output predicted by the fault machine is minimized.

▲ Figure 3.3 — Metrics for logic diagnosis [Holst09]

The method in [Holst09] uses both the passing and the failing patterns as information.
Moreover, it integrates an adaptive approachwhich combines diagnosis with test pattern
generation to enhance precision and resolution.

In [Wen04], the authors propose to include one symbol per line, and propagate them to
the outputs by means of partial symbolic propagation. Depending on the quality of the
match, a score is given to each fault for each failing pattern. Then, the diagnosis table is
constructed with one row per pattern and one column per fault. The outcome of the
algorithm is a multiplet: a set of faults which explains all observed failing patterns. The
multiplet allows the approach to localize defects which influence more than one line.

The reported approaches make use of a comparison between the uncompressed expected
output pattern and the observed one. This applies only in the case in which the ATE or
other test equipment has full accessibility to the complete output response. However,
many designs are equipped and tested with self-test infrastructure, and in many cases
the output is compressed in the form of a signature. This reduces the required bandwidth
and still guarantees fault detection. However, as a result, the diagnosis algorithm is
provided with less information. This restriction applies also for online test, since non-
instrusive execution often implies limited storage space, and test responses are also often
compressed. Diagnosis approaches are required, in both contexts, to handle signatures
instead of full patterns. To overcome this limitation, approaches such as [Cook11] have
been presented. The test set is partitioned in windows, and for each window a signature
is extracted. The authors propose building a system of linear equations where the



3.2 ● Manufacturing test 41

activation of a fault and its signature are on one side of the equation, and the observed
response on the other. The solution of the system gives back the deviation patterns
(which represent fault activations), which best explain the observed faulty signature.
After identifying this, a similar ranking procedure to the one presented in [Holst09]
is deployed. This method was even extended to cover more complex fault model in
which more than one line are involved. To this end, in [Cook14] a pivot variable is
added which allows the identification of more than one fault.

While many of these approaches report high precision diagnosis, they have only been
validated with permanent faults. At logic level, and with new technologies introducing
more complex activation mechanisms, it is not a realistic assumption. The real size of
the devices or the defects in the circuit cannot be predicted beforehand, and introduces
indeterminism in the behaviour of the faults. This poses a problem because most
diagnosis approaches rank the candidates depending on the number of perfect matches,
whose number decreases if an intermittent fault is present. Since most real defects will
appear intermittent, diagnosis calls for robust approaches with respect to intermittent
problems.

3.2 Manufacturing test

The goal of manufacturing test is to screen out as many defective parts as possible.
Test patterns are applied to the device under test, and the responses compared to the
reference output vectors. If they do not match, the circuit is deemed faulty.

Additional infrastructure is introduced in the designs to reduce the complexity of test
and test-related tasks. The infrastructure comes at the cost of additional area overhead,
but succeeds in reducing test generation complexity and increasing observability. As a
consequence, fault coverage is also increased.

Faulty chips must be further analyzed to find out the cause of the faulty behavior.
Such analysis is divided in two steps: fault localization and fault characterization. In
the manufacturing flow, fault localization is performed by means of logic diagnosis.
Its quality is, however, limited by the test set. This section presents the basic flow,
infrastructure and diagnosis limitations of relevance for this work.



42 Chapter 3 ● Test, diagnosis and fault classification

3.2.1 Test flow

Produced chips are affected by defects and variations. The manufacturer tries to avoid
delivering defective parts, while highly performant parts can be sold more expensive
than those which are defect-free but only perform in a narrower range of temperature
or supply voltage conditions. For this reason, test has two main objectives [Segur04].
The first one is the identification of introduced manufacturing defects. The second is
the assessment of the range of environmental conditions in which each chip can work.

Tests can be categorized as voltage- or current-based [Segur04]. In voltage-based test
the ATE probes the output pins and interprets the output as a logic value. Voltage-
based test is the main form of digital device testing, but because of CMOS technology
properties, current-based testing is also performed. Defects in CMOS technologies that
introduce intermediate values in the signals change the quiescent current of the device,
but are often masked by subsequent gates and no out-of-range values are observed
at the output. Therefore, so-called IDDQ tests are used as parametric tests for CMOS
technologies.

The first step is so-called characterization test [Bushn13]. Characterization is performed
before a design is sent to mass production, and extracts the conditions in which the
design works. Functional tests are applied to a statistically significant set of devices.
The conditions under which test is performed are changed, conducting test under every
combination of two or more environment variables. This information is used to correct
design errors and check the final specifications of the design.

Manufacturing test is performed after production [Egger12] [Bushn13]. It assumes the
correctness of the design, and its objective is to avoid shipping defective parts to the
customers. To do so, manufacturing test tries to exercise the circuit in order to uncover
the possible introduced defects. The automated test equipment (ATE) applies values to
the primary inputs of the design and monitors the outcome of the primary outputs. The
number of possible patterns depends exponentially on the number of input pins. Given
that all manufactured chips must be tested, exhaustive test is not a feasible strategy
for this step. Instead, a subset of input patterns is chosen to detect as many defects as
possible. The subset must guarantee a certain fault coverage, and is generated with any
of the techniques explained in section 3.1.2, and most often targets stuck-at and delay
faults [Segur04]. The chips are sorted as passing or failing. The distinction is made by
applying a test set at normal operating conditions and comparing the obtained output
to the expected response: if any of the values returned by the chip differs from the



3.2 ● Manufacturing test 43

expected one, the chip is deemed faulty.

Production test is not able to distinguish among the different performance profiles of
the passing circuits. To do so, circuits are put under stress in order to discard, mainly,
those which contain unstable hardware structure which may lead to early life failures.
Burn-in [Bushn13] is the most notable of these approaches. Some circuits fail due
to an unlucky combination of variations in the device and interconnect parameters
and unstable structures. These cases often lead to infant mortality: chips which fail
after a short time of actual use. Infant mortality can be prevented by testing chips at
higher temperatures, causing them to fail and avoiding their delivery. During burn-in,
chips undergo a combination of production test under high temperature or over voltage
conditions.

3.2.2 Test infrastructure

The naive approach to test digital devices consists of setting the values of the primary
input to the ATPG generated input patterns. The responses are collected at the out-
put of the device and compared with the expected output patterns. This approach
achieves poor fault coverage values due to the lack of controllability and observability
of the internal nodes [Bushn13]. In particular for circuits which contain sequential
elements, that is, flip-flops and registers, limiting the control and observations to the
primary inputs and outputs, respectively, severely limits the efficiency of the test set.
Test generation for sequential circuits is extremely complex and achieves lower fault
coverage levels than test generation for combinational circuits. Design-for-test (DfT)
infrastructure is introduced in the designs to overcome these limitations. This section
includes a revision of techniques and infrastructure relevant to the work presented in
this thesis.

Scan chains [Eiche77] are one of the most popular DfT structures. A scan chain is a
large shift register formed by sequential elements of the circuit. To introduce them in a
design, its standard flip-flops are substituted with special cells which can work in two
different modes: system and test. Scannable cells function as standard storage elements
when in system mode. In other words, in system mode no difference is appreciated
with respect to the normal behavior. However, if the test mode is activated they are
configured as large shift registers, that is, the scan chains. The input of a scan chain is
accessible from a primary input of the design, and the values are shifted out through
one of the primary outputs.



44 Chapter 3 ● Test, diagnosis and fault classification

Scan configurations can be full or partial. Full scan transforms all flip-flops in scannable
elements. This results in full observability and controllability, but also in long shifting
sequences to set and read out the state of the core. Partial scan only substitutes a subset
of the flip-flops in the design, reducing the area overhead. By choosing the elements to
be changed for their scannable counterparts so that dependency loops among flip-flops
are broken [Kiefe00], the area overhead with respect to full scan is reduced, as is the
complexity of the circuit in the context of test.

Although scan chains introduce some hardware overhead, the increased observability
and controlability reduce test generation and application time. The sequential depth
increases the complexity for test pattern generation algorithms [Bushn13], which must
find an assignment that activates and propagates the fault to an observable output. Scan
chains allow to shift in values and hence set the state of the memory elements. The cells
included in the scan chains are considered pseudo-primary inputs/outputs, eliminating
the need of long test sequences to justify the state or propagate fault effects to a primary
output. The desired state is shifted in when test mode is enabled. Then, in system mode,
a functional pattern is applied. Finally, the values of the new state are shifted out in
test mode. To reduce time when multiple test patterns must be applied, the shift-in and
-out phases of subsequent patterns are superposed. The test time is proportional to the
length of the scan chain and to the number of test patterns. Including all scannable
elements in one long scan chain would require time proportional to the number of
sequential elements in the design to shift in one state. In nowadays designs, this is not
practical. Instead of one scan chain, it is possible to consider the sequential elements
into multiple shorter scan chains. The test time is so reduced, although at the cost of
higher required bandwidth to transfer the data to all scan chains.

To overcome this problem, architectures for structural (BIST) [Wunde98] have been
proposed. One of the most popular architectures for BIST is the STUMPS architecture
[Barde82], in which the module under test is equipped with a test controller, a test
pattern decompressor and a response compactor. The decompressor receives an encoded
seed from the ATE and decompresses and distributes the the bits to the scan chains. It is
often implemented as a linear-fase shift register (LFSR) which can be characterized by
its so-called characteristic polynomial, based on which it can generate pseudo-random
sets of patterns. The response compactor, on the other hand, transforms the output
vector into a smaller vector which is transmitted back to the ATE.

The patterns provided to the circuit under test can be generated in a pseudo-random



3.2 ● Manufacturing test 45

fashion by feeding a seed to the LFSR. However, random patterns do not always
render high fault coverage values. Test point insertion [Wang06] places control or
observation points in signals with limited testability. Another solution to achieve
acceptable fault coverage values is to combine random patterns with deterministic test
pattern generation, referred to as mixed-mode BIST. To keep the hardware overhead
low, it is possible to generate a set of seeds which, when unfolded, will generate a
sequence of test patterns that cover the original deterministic test set [Liang02]. Both
techniques can be integrated in scan-based BIST [Vrank02]. Provided the core can be
set for as long as the test requires in test mode, scan-based BIST techniques can not
only be used during manufacturing, but also allow their integration in system-level
test [Qian09] [Vo06].

Although manufacturing test is performed under controlled environmental conditions,
some noise may still affect the chip, causing it to return an incorrect pattern despite
containing no defect. A fail in test caused by noise is a sign of sensitivity to noise,
but the chip can still be integrated in robust designs which can tolerate some errors
without degradation. Discarding healthy chips which fail test because of noise leads
to unnecessary yield losses. Thus, robust circuits can be tested following a rollback
strategy. In [Amgal08], the authors propose to divide the test in sessions. Then, a
threshold R of repetitions is set. If the device under test delivers a faulty response
for a test session, then the session is repeated. This may go on until R repetitions are
reached. If this happens, the device is discarded. On the contrary, if the chip delivers
the correct response before R repetitions are conducted, then it is considered fault-free
and need not be discarded. Figure 3.4 shows the signature rollback test flow for a test
of k test sessions.

▲ Figure 3.4 — Rollback test flow

With increasing complexity of SoCs, the number of scan chains and control registers



46 Chapter 3 ● Test, diagnosis and fault classification

for test structures grows, and debug and calibration infrastructure was also integrated
in the system. Making all the infrastructure accessible with affordable complexity
called for a more flexible approach than merely configuring the segments of interest
in one or more large shift registers. Reconfigurable scan networks [Reari05] (RSNs)
emerged as the solution to this problem. An RSN is a structure formed by scannable
segments, connected in a network-like structure. The input of the network is connected
to a primary input, and the output to a primary output. An active scan path is formed
between the input and the output. The active scan path can be configured dynamically,
by writing specific values in some of the scannable elements, known as configuration
registers. The rest of the scannable elements are called data registers, and read or write
data to the instruments in the system. RSNs allow the reconfiguration of the scan path
by shifting in different sequences to the configuration registers. Hence, the complexity
of the accesses is held within reasonable limits, enhancing the use of structural test
strategies.

3.2.3 Test and diagnosis

In the first stages diagnosis is deployed to find design problems, while during volume
diagnosis the goal is to identify systematic defects as soon as possible. The fault
identification goal has very different requirements from those of test, and a whole set of
challenges appear to correctly identify the underlying cause of the erroneous behavior.

The results of test are provided as input to the diagnosis algorithm, along with a model
of the circuit. Based on it, as explained in section 3.1.3, the diagnosis algorithm tries to
find a location in the netlist that explains the faults. The resolution of diagnosis may
be strongly limited by the test set from which the information is extracted [Holst09]
[Zhang10a].

Since test must be executed for every manufactured chip, one of the goals of test is to
limit the costs. Costs include test time, which is directly dependent on the length of the
test pattern set. The other goal of test is, naturally, achieving high fault detection values,
that is, fault coverage. However, it is not necessary to have different test patterns for
each fault, and it is actually beneficial for the objective of test time minimization if the
test patterns for one fault also uncover other faults.

This collides with the needs of diagnosis. Localization techniques would actually benefit
of disjoint failing behaviors to identify every fault. To illustrate this problem, consider



3.2 ● Manufacturing test 47

the circuit depicted in figure 3.5. The circuit contains three fault locations, f1, f2, f3.
Their output cones include the same set of primary outputs. On the right of the circuit,
the detectability table shows which fault patterns detect what faults.

▲ Figure 3.5 — Circuit and detectability table

For test, the ideal pattern combination only includes p0, because it is able to detect all
faults. However, this information is insufficient for logic diagnosis, as it does not allow
to distinguish between different faults. Without further information, the best result
logic diagnosis can give back is a list that contains all three faults. On the other hand,
if the pattern set includes any pair of patterns (p1, p2), (p2, p3) or (p1, p3), all faults
are still detected and it is now possible to draw a conclusion about the underlying fault
location. Because of this difference, the information generated in test may not always
suffice for diagnosis. To overcome this limitation, many diagnosis techniques include
an adaptive approach [Holst09], which translates into on-the-fly diagnosis pattern
generation. In the example, this would mean that after observing the results for p0,
which was the pattern included in the test set, the diagnosis tool generates another
pattern, for instance p1. If the test is passed, then the diagnosis tool can conclude the
fault location is f1, while if it fails it can remove f1 from the candidate list. Either
way, diagnosis resolution is improved so and the tool can keep generating new test
patterns until an acceptable resolution is achieved. Other approaches include specific
diagnostic test pattern generation [Flenk15] [Zhang10a]. However, diagnostic pattern
generation is extremely costly. Diagnostic test pattern generation may not always be
applicable for high volume, since it increases test time. On-the-fly generation, on the
other hand, targets specific devices under diagnosis, and may also become costly and
not applicable for large numbers of devices under diagnosis. Even worse, for equivalent
faults there is no pattern that can distinguish them, which poses an unresolved challenge
for logic diagnosis. The quality of diagnosis is limited by the topology of the circuit,



48 Chapter 3 ● Test, diagnosis and fault classification

the characteristics and outcome of test, and, if applicable, the quality of the diagnostic
test patterns.

3.3 Online test and diagnosis

Passing manufacturing test does not ensure quality throughout the complete lifetime
of the system. Some faults, particularly those with rare activation conditions, may not
be detected during manufacturing test. These test escapes may pose a danger during
the lifetime of the chip. On top of this, hardware structures can be affected by noise
or aging mechanisms, some of which cause a no-trouble-found problem [LiVol11].
Such problems are not always repeatable in the lab, so their detection and gathering
information for later diagnosis must be performed when the fault is activated, in other
words, online. The application of online tests is crucial because when the system is
functioning in its intended environment, the external conditions are not under control.
Some defects can only then be detected, and when the physical structure begins to
deteriorate due to aging, online tests can detect the problem. For this reason, the
research community has developed a wide range of online test strategies, which allow
for the system to be tested in the field and sometimes even without interrupting the
functional tasks running.

Online test presents some additional problems to those of manufacturing test. This
section highlights the online test properties which are relevant for this work, particularly
those which will pose a challenge for the techniques presented in this thesis.

3.3.1 Concurrent and non-concurrent structural test

Online test aims to detect underlying faults before they have catastrophic consequences,
i.e., in time to allow for graceful degradation or repair. Functional tests can be deployed
to this end, however, they rarely exercise the design sufficiently. As a consequence,
structural online test techniques and infrastructure have been developed to detect
the faults with a certain latency. Latency is the maximum time slot allowed from the
occurrence of the fault until its detection.

Online test approaches can be categorized as intrusive or not intrusive [Touba97].
Intrusive techniques modify the target module and integrate the testing infrastructure



3.3 ● Online test and diagnosis 49

in it. Non-intrusive techniques, on the other hand, assume the module under test is
already optimized and synthesized and may not be modified.

Finally, online test may be performed concurrent or non-concurrently [Kocht10]. The
concurrency refers to the test and the system functionality. Non-concurrent test includes
those techniques which require an interruption of the functional mode, generally
because they provide the testing input patterns and must interrupt the functional mode.
BIST is an example of such techniques. Not only must the system enter the special
test mode in order to shift the values into the scan chains, but when switched back to
the functional mode the state of the circuit is either unknown or must be initialized or
restored. Non-concurrent test techniques can be applied online provided the core is idle
sufficient time, which is not always feasible in systems with hard real-time constraints.
More importantly, the core must be able to resume functional mode.

In real-time systems with tight time constraints, non-concurrent approaches can only
be integrated after careful analysis, if possible at all. However, aging and dormant
faults still need to be tackled. The term concurrent test englobes those techniques
which do not disrupt the functionality of the system to perform fault detection, but can
be deployed at the same time as system functionality. The main difference between
concurrent and non-concurrent test architectures is the role of the additional hardware.
While for non-concurrent test a data source is included, as well as a switch to start
the test mode, the hardware in concurrent test architectures acts as a mere observer
and checker of pattern-output pairs. Figure 3.6 illustrates the aforementioned main
difference. On the left side of the picture, a non-concurrent tester is depicted. The
circuit under test (CUT) has a multiplexer at the input which controls what inputs
are provided: the system functional inputs of the test patterns generated by the tester.
Given that they are exclusive conditions, to activate the test mode the functional mode
must necessarily be disabled. On the contrary, for concurrent testers such as depicted
on the right side of the figure, there is no activation of test mode. The tester simply
observes the patterns and checks that the output values match the expected ones.

The trivial implementation of concurrent test is a duplication of the observed circuit
with a comparator. This approach maximizes fault coverage and minimizes latency.
However, this is only possible at the cost of hardware overhead. Not only the area
of the circuit copy must be accounted for, but also that of the comparator, incurring
in an overhead of over 100%. A duplication of the manufactured area, with not only
the additional design effort but also validation and test increases the cost to a point in



50 Chapter 3 ● Test, diagnosis and fault classification

▲ Figure 3.6 — Concurrent vs non-concurrent test [Kocht10]

which it is impractical, especially in cost-sensitive markets.

To reduce the overhead, the so-called non-intrusive techniques try to reduce the area
overhead of the predictor. Non-intrusive refers to the assumption that the targeted
design may not be modified. One such technique is presented in [Sharm88]. The
proposedmethod requires first an ATPG to target the faults in the system. The generated
test patterns are then used to infer a logic function for each pin. In other words, the
predictor is able to calculate the correct value for every pin whenever one of the test
patterns is applied to the circuit. To avoid false alarms, additional logic is implemented
to mask the mismatch signal if the applied pattern does not belong to the test set.
Although it reduces the additional overhead, the improvement is only about 15% with
respect to duplication. Further area reduction is achieved in [Drine03]. The authors
relax the assumption of [Sharm88] that the width of the predictor output needs to
match the width of the circuit output. Instead of predicting the value of all outputs for
all patterns generated by the ATPG, only a subset of pins is observed for each output.
This requires an addressing logic which chooses, for each pattern, which are the output
pins of the circuit to be compared. Depending on the complexity of this mapping, the
overhead gain of the reduced output width predictor can be lost by overly complex
addressing logic. Hence, the algorithm selects the output pins so that the required
mapping will be simple and the addressing logic is reduced. With this method, the
authors claim to be able to reduce the area overhead of duplication by 40% to 50%.

However, there is another important parameter to be considered additionally to the fault



3.3 ● Online test and diagnosis 51

coverage. With the aforementioned methods, latency is not guaranteed and depends
on the applied input patterns. Assuming a uniform probability distribution for all input
patterns, for a test set T of size ∣T∣, the probability that a test pattern will be applied
to the input of the CUT of input width iwidth is ∣T∣/2iwidth . For most patterns, however,
not all bits must have a specific value. For instance, if the output of a NAND-gate must
be set to 1, it is enough to set one of the inputs to 0, while the other one can be left as
an X. This partial specification of test pattern bits increases the probability that the
test pattern will be provided, and can be taken advantage of to further optimize the
hardware overhead of concurrent testers. In [Kocht10], a method is presented which
limits the number of specified bits, extracts an input-output relation and synthesizes it in
hardware. This module is the online tester. The authors report lower hardware overhead
than other approaches, with the exception of circuits containing large XOR-trees, which
require large numbers of specified bits to ensure fault detection.

Intrusive techniques assume the design can still be modified. That is, error detection is
implemented as part of the design, and not as an additional observant module. These
approaches are suitable for early design stages, where the detecting hardware can still
be integrated in the module. The general scheme of an intrusive concurrent tester is
depicted in figure 3.7. A systematic code generator is built in parallel to the circuit under
test (CUT). It receives the same inputs as the CUT. Based on the inputs, the generator
appends some bits to the functional output in order to make it fulfill a certain property.
For instance, parity checkers [Koren07] append bits to make the parity of the final
output always even or always odd. If a fault flips an odd number of bits, then it will be
detected. Finally, the checker receives the functional output and the generated code
and examines if the property holds.

▲ Figure 3.7 — Intrusive concurrent testers [Touba97]

In [Touba97], a method is presented for the synthesis of multilevel circuits to provide
them with concurrent fault detection. The method considers the overhead of both the



52 Chapter 3 ● Test, diagnosis and fault classification

systematic code generator and the checker to choose an optimal configuration. The two
extremes of parity checkers are the cases in which there is only one parity group, and
when each output is included in a different parity group. The first approach requires
less area overhead, but the portions of logic shared by the output bits may cause a fault
to flip an even number of bits, hence masking the effect. As a consequence, the fault
would go undetected. On the other hand, including one parity group per output, i.e.,
duplicating the output length, minimizes the probability of fault masking, but increases
the hardware cost of the additional logic, that is, the systematic code generator and
the checker. The authors in [Touba97] present an optimization of the number of
parity groups in order to minimize the area overhead incurred by the concurrent fault
detection mechanism. The algorithm tries to optimize a cost function which includes a
penalization for added hardware resources: the number of literals saved by merging
groups, the complexity reduction of the checker due to parity group merging, and the
additional literals needed in the control logic to account for the dependencies between
output pins.

The authors in [Vemu08] identify assertions which must always hold if the output is
fault-free. These assertions have the form of implications, where some values of the
inputs imply certain values at some of the outputs. The assertions are then synthesized
and included in the module. The approach aims to keep the overhead low. To achieve
this, instead of generating assertions to ensure 100% fault detection, the authors study
the distribution of the input patterns from the traces of real programs instead of
assuming a uniform distribution. The reason is that some of the bit combinations for
the input are not valid functional inputs, and, as a result, some paths are more exercised
than others. Also, this skewed distribution causes the faults to be propagated with
uneven probability. The proposed method identifies the elements more vulnerable
to faults and protects those. An assertion is generated for all patterns. The detected
patterns by the assertion are extracted with fault simulation. Finally, the authors employ
a greedy approach to extract a minimum number of assertions that cover the maximum
possible number of faults.

Online fault detection techniques can identify incorrect outputs. To diagnose the device,
however, the chip may either be sent back to the manufacturer and tested, or it can be
diagnosed based on the information gathered online by the online tester. Diagnosing
on the available information of online test presents the advantage of minimizing the
probability of no-trouble-found problems. This is particularly relevant for defects caused



3.3 ● Online test and diagnosis 53

by wearout mechanisms at the beginning of degradation and for noise. Unfortunately,
in real systems the storage space is limited, and registering all outputs for all applied
patterns is too costly in terms of memory requirements and often also data transfer.
Registering the failing patterns, however, is possible, as they are identified by the online
checkers presented. Hence, it is sufficient to provide the system with a small memory,
in which the writing is enabled by the error/assertion signal and where the input and
output patterns for which an error was observed is stored. The information about
failing patterns is certainly helpful for diagnosis.

3.3.2 Software-based self-test

Concurrent testing techniques require additional hardware which implements the
redundant logic. BIST techniques require area overhead only for the test data source
and sink, and the application of scan test may drastically increase power consumption
due to the high switching activity caused by the shifting of values. Also, BIST cannot
be applied concurrently to system functionality, since its application switches the
tested module out of functional mode. To overcome these limitations in those contexts
in which the aforementioned methods cannot be applied, the community developed
software-based self-test (SBST).

Software-based self-test (SBST) [Psara10] makes use of the instruction set of a processor-
like component to perform the test. It is a widely accepted technique for testing
processors. An SBST test is a sequence of valid instructions. More specifically, it is a
valid program, although carefully generated to uncover as many faults as possible.

SBST eliminates some of the limitations of structural testing techniques [Psara10]. Since
the SBST program can be executed like any other task, SBST requires no hardware
overhead with the exception of low cost test equipment to load the program onto
on-chip memory. Also, some storage space for the program is required. The observable
outputs in the case of SBST are memory locations or registers, and the result must
also be stored for later analysis. SBST also minimizes overtesting, since it is executed
in functional mode and only valid patterns are applied. Moreover, this allows SBST
tests to be executed at-speed, which is not always the case with structural scan-based
techniques. Finally, it does not require the shift of values along chains of scannable
elements, which makes it appropriate to avoid the high power consumption caused by
scan test.



54 Chapter 3 ● Test, diagnosis and fault classification

The first approaches for SBST were based on a functional approach. In one of the
first SBST approaches [Thatt80], the authors represent the functionality of a CISC
processor as a graph in which the nodes are registers and the edges are annotated
by the instruction which transmits information from one to the other. Then, they
generate the test program based on functional fault models, choosing the operands
of the instructions arbitrarily. They report a stuck-at coverage of over 90% and a 1K
program for the 2000 cell processor used. Other functional approaches such as [Shen98]
allow the user to specify which instructions are to be validated. Based on this, the
method generates sequences of instructions which load data, execute instructions, and
propagate the result to an observable output. The operands can be chosen manually
or generated randomly. The authors report a stuck-at coverage of around 90% for
the same processor as in [Thatt80]. Some newer approaches include functional test
generationwith genetic algorithms [Corno04]. Genetic algorithms generate a population
which survives discrete steps of evolution called epochs depending on a fitness metric.
In [Corno04] the population is a set of test programs, which in every epoch evolve by
changing instructions or operands. Their survival probability increases the higher the
RTL statement coverage is, which is used as fitness metric.

Purely functional SBST generation approaches have the disadvantage of achieving
insufficient fault coverage values or of needing large programs to reach high fault
coverage levels. For this reason, methods which target structural faults have also been
developed. In [Chen03], the authors propose the use of constrained ATPG. The processor
is divided in modules, for each of which ATPG is performed. The preceding and
succeeding modules are modeled as virtual constraint circuits. The virtual constraints
represent not only the valid instruction codes, but also the propagation constraints.
The authors can in this way generate structural tests for each module which are still
valid programs. Results report a fault coverage of functionally testable faults of almost
10% higher. The required time to execute the program is reduced to approximately 65%
of the functional one.

Another possibility to generate structural SBST is to deploy pre-computed test sets.
The approach of such techniques is to extract tests for the different modules. Then, a
SAT-based ATPG justifies the inputs, that is, it finds the way to propagate the values
to the input of the module. In [Linga07], in addition to this the unsatisfiable instances
are extracted to propose improvements for the DfT infrastructure. RTL-based test
generation achieves up to 85% fault coverage, reported in [Linga07].



3.3 ● Online test and diagnosis 55

SBST can also be deployed to test the peripherals of an SoC. In [Bolza07], the authors
deploy evolutionary algorithms to automatically generate a test for different cores than
the processor. The full automation of the process renders suboptimal fault coverage
values, but guarantees high efficiency in terms of test generation time. In [Apost07],
the authors generate a deterministic test for different cores. Although they report
higher fault coverage values than [Bolza07], the manual generation effort is very high.
In [Apost09], the authors combine both approaches by providing the evolutionary
core with the manually generated constraints. They succeed in generating test sets
with higher fault coverage values, close (and even better) than with the deterministic
approach. At the same time, the test generation effort is kept low, exploiting the
advantages of both techniques.

SBST has the additional advantage that it can be used inmore than one test scenario. The
advantages with respect to to some structural DfT techniques make it suitable not only
for manufacturing testing. SBST test can be executed online if the output is propagated
to an observable point (mainly memory). This could lead to significant hardware
overhead, but the authors in [Shen98] propose a software method to compress the test
results in signatures, reducing the impact of this disadvantage. The online execution of
SBST is however subject to certain system requirements and properties. To be executed
online, the program must make use of the idle slots of the components and not intrude
with the functionality of the core. This generally requires short test programs which
can be executed in limited time slots. SBST must also be generated according to the
criticality of the tested core. Critical components have harder requirements, which
translate into higher fault coverage requirements and shorter latency to uncover the
fault. In [Pasch05], the authors propose a method which takes system properties,
criticality of the cores and allowed latency into account to generate and schedule SBST
accordingly.

3.3.3 Automotive in-system test

Automotive systems integrate an increasing number of electronic control units (ECUs).
The failure of one of them can lead to catastrophic consequences if not dealt with in a
timely manner. Hence, online tests and diagnostic tasks are crucial to ensure safety.
In [Reima14] and [Abele14], a technique is proposed where the author of this thesis
contributed to a non-intrusive integration of structural tests at system level. This
section presents the approach.



56 Chapter 3 ● Test, diagnosis and fault classification

The integration of online test strategies at system level is a non-trivial task. In general,
the requirements to integrate test and diagnostic features in a system include the non-
disturbance of system functionality. The non-interference of the test and diagnostic
features refers not only to the functionality of the semiconductor devices, but also to
the communication among them. In safety critical applications, such as the automotive,
this is particularly important and involves tight timing constraints to perform test and
diagnosis. Moreover, with the automotive domain being such a cost sensitive market,
the overhead must be kept to a minimum while the integrated test and diagnostic
capabilities are maximized.

In the automotive domain, the availability of the resources and safety requirements
varies depending on the scenario. In particular, it is relevant if the component is
functionally active in the required scenario. Other aspects such as power or time
constraints or additional hardware overhead are equally important. To take advantage
of this, four different scenarios have been identified:

• in the field: the most critical of the scenarios. The system is in full functional
mode and safety constraints must be met.

• power-up/ power-down: the system is booting or shutting down, but is not safety
critical. Timing constraints are relaxed in comparison to in the field, but must
still reflect the limit from which the user will perceive long boot or shutdown
times.

• workshop: in the workshop, the system is no longer in functional mode and only
overhead is a limiting factor.

• partial networking is a technique introduced to save power in automotive systems
[Yi15]. It offers the possibility of selectively communicating with one module
over the CAN bus, hence allowing selectively turning on and off some of the
ECUs.

Unlike functional tests, structural test methods guarantee high fault coverage values.
Some structural self testing infrastructure is integrated in the design for manufacturing
test. Hence, reusing this infrastructure incurs in little or no additional hardware
overhead. Only careful analysis of the timing costs and consequent planning is needed
to include the tests of the different modules in the overall system design.

Scan design has become a general approach for all kinds of electronic devices, and very
often a logic BIST controller is included in the infrastructure. STUMP-like architectures



3.3 ● Online test and diagnosis 57

are available for a number of electronic devices in a car, and their testing capabilities
can be taken into consideration to integrate in the system. This kind of self test is,
however, non-concurrent. Consequently, the test must be partitioned in sessions which
can then be scheduled when the device is idle. Moreover, since the device is switched
to test mode, it cannot be switched back to system mode if a task arrives that is more
urgent. That means each test session will run uninterrupted. Also, because BIST erases
the state of the device to conduct the test, it cannot be reused online without further
consideration. Some scenarios of safety critical applications allow to deploy BIST
without endangering the system or the environment. In the automotive scenario, BIST
can be reused in the workshop. If test length allows to execute the task in a reasonable
time, it can also be used in the startup and shutdown phases. Finally, those electronic
components which support partial networking can also be tested while they are off -
although this conflicts with the power saving goal.

SBST is also developed and sometimes deployed in manufacturing test. Especially the
structural SBST approaches can be useful for online detection of latent or wearout
induced defects. Since the test is a valid program, it can be executed as an additional
task, provided the system has idle slots for it. The portions of SBST programs that must
be executed atomically are kept extremely short. Hence, if a task with higher priority
must be executed, the SBST context can be saved like for any other task, the high
priority code executed, and then the SBST task resumed. Since SBST is integrated as an
additional task or routine, only a change of context is required to restore the system
state. Structural SBST requires overhead to store the test program and eventually
the responses, and idle time to comply with the latency objectives for fault detection.
SBST can be deployed in all scenarios but partial networking, in which the electronic
component is off and cannot execute a task.

Such test sets can be integrated at system level. Figure 3.8 presents a scheme of
integration of both approaches in all four contexts. During workshop revisions, the
functional tasks of the system are not active. Hence, BIST and SBST can be executed
in long slots, without need for interrupt. In startup and shutdown phases, however,
the perception of delay by the user and the power consumption restrictions limit the
application of long test and diagnostic sessions. Both approaches can be used, if their
execution time is kept reasonably short.

To integrate diagnostic tasks in the system, a model is developed which represents
the system functionality, the diagnostic tasks and the different objectives. The next



58 Chapter 3 ● Test, diagnosis and fault classification

▲ Figure 3.8 — In-system structural test integration [Reima14]

subsections introduce the model and characteristics of each component.

System modeling

An automotive system includes functional tasks in addition to the aforementioned
diagnostic tasks. Communication resources complete the functional model of such a
system. In addition, the hardware resources must be modeled, and a mapping between
the functional tasks and the components must be found. To do so, the system is modeled
as a graph based specification based on [Lukas09].

The specification is formed by an application and an architecture. The architecture
describes the hardware resources, such as processing units, buses or memories. It
is represented by a directed graph GR(R, ER), where the vertices R represent the
resources and the directed edges ER represent the available communication interfaces
between resources.

The application is the functional model of the system, and is represented by a bipartite
directed graph GT(T, ET). The functional tasks, represented by the edges T, include
both process tasks P and communication tasks C. The directed edges connect one
element of the first set with one of the second set, in either direction. This graph
represents the data dependencies among tasks. A process task may receive data from
more than one communication task. A communication task, however, only has one
incoming edge, but may have more than one successor to represent broadcasting.
Communication tasks are routed to a communication resource, and process tasks to
processing resources.

An allocation GA(A, EA) is a directed graph which represents a subset of the resources
and dependencies of the resources graph GR. An allocation represents hence a hardware



3.3 ● Online test and diagnosis 59

configuration of the system, i.e., a possible architecture. Tasks (both process and
communication) must be bound to the allocated resources respecting the dependencies
among them. For instance, a process task can only be mapped to a processing resource
if its predecessors and successors are mapped to communication resources with an
interface to the allocated processing resource. More than one task may be mapped to
one resource.

An implementation includes an allocation of the hardware infrastructure and a mapping
of the tasks to the resources in the allocation.

Diagnostic tasks modeling

The structural set of diagnostic tasks D to be integrated is formed by SBST and scan-
based BIST tasks. They are characterized by different parameters, and modeled as tasks
with different properties.

The BIST infrastructure integrated in the system is depicted in figure 3.9. This infras-
tructure compresses the core under test (CUT), a test pattern generator and the response
evaluator. The included BIST follows a mixed-mode scheme, which includes random
patterns and some deterministic test data, specifically generated to target harder to
detect faults. The encoded test patterns are stored on-chip, and reconstructed when the
test is to be applied. The pattern response evaluator compresses the output patterns in
a signature. However, in this particular architecture the goal is to exploit the diagnostic
capabilities of the proposed techniques. Since it has been shown that it is possible to
perform diagnosis from the signatures of faulty test sessions [Cook11] [Cook14], the
STUMPS architecture has been adapted. To this end, the BIST controller partitions the
test in sessions and one signature per session is generated. The generated signatures
are compared with the corresponding expected signature, stored in the response data
module. If there is a mismatch, the incorrect signature is stored in the fail data module.

A BIST execution on a unit is divided in two tasks: the BIST execution task itself,
bT

r ∈ B ⊂ D, and the data storage task, bD
r ∈ D. BIST is characterized by three factors:

the fault coverage v(bT
r ), the runtime t(bT

r ) and the memory size m(bD
r ). The fault

coverage is measured w.r.t the stuck-at fault model, and it is crucial to ensure the
diagnostic capabilities of the system. The runtime includes not only the time to apply
the test, but also the performance of the test access mechanism and also how long it
takes to restore the state of the device to a functional state. Finally, the memory size
is calculated based on the number of seeds to be stored for the deterministic patterns



60 Chapter 3 ● Test, diagnosis and fault classification

▲ Figure 3.9 — BIST diagnostic architecture [Abele14]

and the amount of reference signatures to be stored. The values of all characteristics
depend on the proportion of deterministic and random test patterns, as well as on the
decision to store the seeds and response data locally or transmit them via a functional
bus.

An SBST task on a unit r is represented as sr ∈ S ⊂ D. To execute an SBST task it is
necessary to check if it is possible to schedule the routines during normal operation
of the unit. To guarantee a fault detection latency, both the execution time required
by the SBST routine and how often it can be executed are crucial. An SBST routine is
characterized by the factors fault coverage v(sr), the execution time t(sr) and the size
m(sr). The fault coverage is also measured with respect to the stuck-at fault model.
The execution time takes into account the setting of the processor to a known state
from which the SBST routine will be effective. This phase includes, for instance, register
initialization or pipeline flushing. Performance features must typically be controlled to
ensure a deterministic execution that guarantees fault detection. Finally, the memory
size can easily be measured from the assembly code of the SBST routine.

The set of diagnostic tasks D must be integrated in the system without disrupting its
execution of communication tasks.

Diagnostic tasks integration

An implementation is said to be feasible if an allocation and mapping are found so that
all dependency conditions are fulfilled. In the original work [Lukas09], the problem
is formulated with the constraint that each process task is bound exactly once. Addi-
tionally, the mapping of communication tasks and process tasks with dependencies
must be performed so that the allocated resources also communicate with each other.



3.3 ● Online test and diagnosis 61

A communication task may only be bound to one allocated resource. The problem of
finding a feasible implementation is encoded with binary variables, and solved with a
hybrid approach involving integer linear program and evolutionary algorithms.

To integrate the diagnostic tasks, the encoding remains the same but now includes the
diagnostic tasks along with the functional ones. The functional tasks, represented by
the set F, and the diagnostic tasks, D, form the complete set of all tasks in the system,
represented as T = F ∪D.

The constraints or the problem are relaxed to find a feasible implementation in this
scenario. The priority is the non-disruption of the functional tasks. For this reason, the
problem is formulated so that diagnostic tasks are allowed to be bound at most once
instead of exactly once. That is, an implementation may leave some of the diagnostic
tasks out of the functionality included in the system if that collides with the non-
disruption objective, while functional tasks must still be mapped exactly once.

Although the mapping of diagnostic tasks is optional, if a diagnostic task is mapped,
then its associated data storage task(s) must also be mapped. For instance, for every bT

r

mapped, the corresponding bD
r must also be include in the implementation. Conversely,

if bT
r is not mapped, the mapping of bD

r should be avoided, since it will only imply an
unnecessary overhead in the system. The objectives of safety (that is, fault coverage)
and costs (in terms of hardware resources and of time) are included in the optimization
problem.

The method is able to identify a set of feasible implementations at different costs. The
monetary costs are reduced when the test data is stored in the gateway and can be
shared among different resources, although this increases the test time due to the
transmission overhead. SBST implies in general a small overhead in terms of hardware
costs, The hybrid approach succeeds in evaluating 25000 implementations in roughly
one hour. Infeasible implementations were discarded. The results allow the designer to
choose an implementation considering the safety and cost objectives additionally to the
functional ones. The integration of structural test methods for in-system in-the-field
test is hence possible at a reasonable cost and increases the safety properties of the
system.



62 Chapter 3 ● Test, diagnosis and fault classification

3.4 Test data

The available test information after test varies, as discussed in the previous sections,
depending on system parameters and test scenario. The amount of available test data
depends on the generated test set, the output response format, and the application
scenario. Diagnosis may be severely limited by the amount of available information.

Diagnostic test pattern generation [Flenk15] [Zhang10a] enhances diagnosis, but it is
costly and generally requires longer generation and application time. Manufacturing
and online tests usually only aim at detection for economic reasons. They often provide
limited diagnostic capabilities, but this information is available for all chips.

In manufacturing test [Bushn13], test techniques which deploy no compression observe
all outputs for all patterns. The passing and failing patterns are identified, and after the
test run all responses are available marked as pass or fail. Hence, the complete set of
responses marked as correct or incorrect is available.

When compression is deployed, for instance in BIST [Wunde98], only signatures are
returned by the device under test instead of the uncompressed version of the responses.
The number of signatures may vary: to maximize the diagnostic capabilities of such
a set, the complete test set may be divided into windows or sessions [Cook11], and
even the number of times one test session is applied can vary [Amgal08]. If BIST is
performed during manufacturing, the information about all passing and failing sessions
are available. Consequently, after BIST the available test results are the signatures
resulting from the test sessions.

If the test is applied online, then storage limitations apply. Typically, a real system
cannot register all outputs to all patterns applied during its lifetime. Moreover, the
communication slots and runtime limitations discussed in previous sections apply. The
space is generally limited and only failing patterns are stored.

In the case of BIST, for instance, this translates into availability only of faulty ses-
sions [Abele14]. If the applied patterns are known, however, such as in the case of
deterministic BIST, then the passing sessions are also known, because they can be
deducted from the total set and the failing signatures.

The same applies for SBST [Psara10], where the applied test set is known a priori since
it is precomputed and loaded on the system in advance. Although only the failing
patterns and responses are stored, the passing ones can be easily deducted from the
complete test set.



3.5 ● Fault classification and physical failure analysis 63

Other online techniques, however, do not include a test pattern generator. In other
words, the applied patterns are unknown, and the only information available is the
one explicitly stored. Such is the case of the aforementioned discussed concurrent test
techniques [Touba97] when the tester merely observes the input patterns but does not
act as test pattern generator. Because of the online storage limitation, in such cases only
failing pattern information is available. The rest of the applied patterns are unknown,
and no information can be deducted about the passing patterns. Any technique which
does not include a known test set suffers from this limitation, which in turn complicates
the diagnostic analysis.

3.5 Fault classification and physical failure analysis

Physical failure analysis (PFA) benefits from the result of logic diagnosis. The localiza-
tion of the faulty component in the netlist reduces the suspect area, speeding physical
analysis up. However, transient faults and some intermittents with very specific ac-
tivation conditions may pose challenge for PFA if no defective structure is present in
the circuit. For instance, faults activated by noise do not distort the physical structure
of the chip. Neither do some intermittent faults, such as crosstalk-induced delays.
Ruling out chips affected by noise and guiding PFA to look for specific structures (such
as long parallel lines too close to each other) is beneficial to perform a faster defect
identification.

The identification of chips affected only by noise allows the deployment of such chips
in so-called robust designs, which are developed in such a way that they integrate
fault-tolerance mechanisms and can overcome the effects of sporadic transient faults.
Separating the chips affected by critical defects from those affected only by transient
noise avoids unnecessary yield losses. Although devices which are sensitive to noise
may not be suitable for critical applications, they can still work in robust systems
where sporadic faults can be tolerated and do not lead the system to a dangerous state.
Careful analysis is necessary to distinguish transient faults from intermittent faults that
indicate the presence of unstable hardware structures or faults with complicated trigger
functions. Chips affected by intermittent faults must be sorted out, as the problem will
not disappear and can even worsen due to, for instance, aging mechanisms. For this
reason, early classification of chips affected by a critical problem (i.e., a permanent



64 Chapter 3 ● Test, diagnosis and fault classification

or intermittent fault) vs. those affected only by noise is essential to ensure yield and
safety.

Some methods have been developed for transient fault discrimination. In [Pizza98],
the authors propose to distinguish permanent from transient faults by making use of
the Bayes’ theorem. The conditional probabilities of a failure given the assumption of
a permanent, transient or no fault are set analytically. Then, the a posteriori proba-
bilities for each fault type are extracted. This approach distinguishes only permanent
from transient faults. Since intermittent faults are becoming more apparent in new
technologies [Gil T12], they must be taken into account in transient fault discrimi-
nation. Some approaches to tackle this problem considering intermittent faults are
threshold-based, that is, they assume under a certain threshold a transient fault, and a
critical one otherwise. An example of such techniques is presented in [Bonda00]. The
method assumes that each component of the system is equipped with a fault detecting
mechanism. The technique is based on the assumption that permanent faults cause
an error in every time step, intermittent faults cause an error in each time step with a
certain probability, and transient faults cause spurious errors, with very low probability.
Each component has an associated score, which is increased when an error is detected
in the component. Because of the assumption that intermittent faults are active with a
high probability after their first activation, a high number of errors in a time window
indicates a permanent or intermittent fault. To account for this, the score is multiplied
by a constant lower than 1 after every time step. As a result, older errors are weighed
down, and more recent errors gain importance, hence succeeding in implementing a
simple system able to identify high frequency errors. A threshold is established for
each component which, if surpassed, is considered to indicate the presence of a critical
fault. Otherwise, the fault is considered to be transient. The method is limited by
the fact that, in newer technologies, intermittent faults are introduced with very rare
activation conditions, and hence also low activation rates. On the contrary, the tiny
structures of nanometer devices are more sensitive to noise, consequently presenting
higher transient error rates. A hard to detect permanent or intermittent fault or an
intermittent with a low activation rate may easily be mistaken for a transient if only
the number of observed errors is monitored.

The method in [De Kl09] deploys probabilistic reasoning about intermittent faults in
a logic circuit. The author proposes a probing strategy to gather more information
for diagnosis and distinguish intermittent faults. However, to deploy the method, full



3.5 ● Fault classification and physical failure analysis 65

observability of internal nodes and signals of the circuit is required. This diminishes
the applicability to realistic cases.

Critical faults, i.e., permanent and intermittent, must undergo physical analysis. After
PFA, it is possible to detect which faults are present with a higher frequency and indicate
the presence of a systematic defect. However, PFA is a costly process, and its application
time can be reduced if the category of the defect can be identified in advance. The
benefits of an early identification are twofold: first, chips identified to belong to the
same category can be analyzed first, confirming the presence of a systematic fault and
thus allowing the correction of the problem earlier, avoiding further production of
defective chips. Also, if the nature of the problem is identified in advance, PFA may use
this information to change its target defective structure.

Some methods have been proposed that complement logic diagnosis and try to extract
the activation function of the fault. The extraction of the activation conditions allows
the human expert to infer what kind of problem is present in the circuitry. In [Desin06],
the authors extract the neighboring lines of the victim and simulate the test patterns.
By monitoring the activity of the neighbors and their logic values, they construct
a Karnaugh map for each candidate. This Karnaugh map is deployed to extract the
activation function. The considered variables of the function are the neighboring
lines. Those combinations observed in passing patterns are marked with a 0, and those
observed for failing patterns are marked with a 1. Finally those not induced by any
test pattern are marked as X (don’t care). This method assumes the faults behave in
a deterministic way and does not contemplate the case of intermittent faults, which
could cause an entry of the Karnaugh map to have 1 and 0 at the same time. This limits
the method heavily, since intermittent faults are common in the nanometer regime,
particularly due to the unpredictability of the physical characteristics of the circuit and
the defect.

In [Maxwe16], a method is presented to diagnose intracell defects. Based on the concept
of inductive fault analysis [Shen85] [Hapke14], a technology node and defect size are
provided to the tool, which, in turn, simulates defects likely to be introduced and ranks
them according to the number of matches. The simulation is performed at physical level
to characterize the cells at the beginning of the process, and is the same as deployed for
cell-aware test. The identification of the defect is achieved here by deploying a very low
abstraction fault machine. The results obtained in test are compared to a fault machine
where no fault model is assumed, but rather the physical distortion is simulated. As



66 Chapter 3 ● Test, diagnosis and fault classification

a result, the outcome of the tool is a list of locations with an associated defect type.
The paper states that some defects may be indistinguishable from test results, and, if
necessary, test should be complemented with more specific cell-aware patterns. Both
the circuit and the defect have physical characteristics which cannot be foreseen in
advance to provide the simulator with precise data. For this reason, this approach
incurs significant computational effort to consider all the possible combinations.



C
h
a
p
t
e
r

4
Circuit uncertainty and machine

learning

Due to imperfections in the manufacturing process, the resulting chip may differ from
the specification despite the fact that point defects such as shorts or opens are not
introduced. These imperfections cause the performance parameters of the produced
chips to vary, limiting the success of deterministic techniques for certain tasks. Different
approaches are needed for test and diagnosis which can relax the assumption that the
behavior of the circuit is perfectly specified beforehand, that is, deal with a certain
degree of uncertainty.

During manufacturing test and diagnosis, a tremendous amount of information is
gathered. The research community has identified it thus as a suitable scenario for
data mining: the automated extraction of knowledge from this information can vastly
accelerate root cause identification and yield ramp-up.

This chapter presents an overview of selected machine learning techniques and the
reasons why they are suitable and powerful tools to be deployed in volume test and
diagnosis. Section 4.1 introduces briefly some scenarios in which indeterminism is
inherent and machine learning techniques have been successful. Section 4.2 presents
an overview of the most popular machine learning algorithms depending on the nature
and objective of information extraction. Then, section 4.3 introduces the approaches



68 Chapter 4 ● Circuit uncertainty and machine learning

developed by the community to take advantage of the available information volume.

4.1 Machine learning and indeterminism

The main goal of artificial intelligence is to produce artificial agents that can learn from
the environment regardless of the inevitable uncertainty [Sucar15], and eventually
make decisions [Schai15]. Any agent, understood as an entity that interacts with
its environment, must make decisions based on the information it can extract from
the environment. The process is known as data mining, and it involves the steps of
extraction and inference. The sampling process can be limited by the equipment or
human that perform the collection, and as a result, information gathered from real-world
data is often partially incorrect or unreliable [Bisho06]. The inaccuracy in the gathered
data introduces indeterminism, and so every inference process needs to tolerate a
certain degree of uncertainty in order to make decisions.

Machine learning [Bisho06] is the name to design a set of algorithms which approximate
solutions to problems that cannot be solved in an if-then-else fashion, but rather a more
complex function is necessary. Such algorithms receive data from the real world, which
is usually affected by three main issues: missing data, incorrect or imprecise data, and
unnecessary information, and perform the inference step. These methods are deployed
when there is data uncertainty, the environment introduces indeterminism, or the most
suitable model for the data is unknown [Schai15].

Machine learning was typically deployed in problems such as image processing and
speech recognition, which involve noisy inputs. Image processing, for instance, needs
to recognize certain scenarios regardless of the relative position of the observation
with respect to the target and also, to a certain extent, despite the quality of the
image. One of the first complex problems tackled with machine learning was the
recognition of handwritten digits to automate partially the ordering task of the post
service [Gench68] [Pawli88]. The indeterminism in this problem is introduced by
the specific traces each of the samples uses to configure a certain number, which
differ among them, and also because of the location. The number may be situated in
any position in the square. The problem was first tackled by dividing the image into
sections and matching the observed traces to previously computed patterns [Gench68].
Given combinations of known traces form a number. Several years later, the authors
of [Pawli88] tackled the problem with machine learning. The obtained results were



4.2 ● Sources of circuit uncertainty 69

comparable to the ones obtained with pattern matching. Soon the results were vastly
improved with more sophisticated machine learning approaches: in [Botto94], the
digits are represented as 28× 28 pixels images. The paper shows that machine learning
methods are able to successfully solve the problem, and have been proved to be robust
against indeterminism. This crucial property has been enhanced [Schai15] to the point
that somemethods have been developed and deployed as denoisers for images [Vince08].

The same problem was identified early on in the field of speech recognition. A system
involving speech recognition rarely operates in isolation conditions: most often, back-
ground noise is received along with the target sound. Consequently, the unnecessary
information or its impact on the deviation of the target signal have to be identified for
correct speech recognition. Also in this scenario, machine learning was taken advantage
of and features are enhanced to achieve robust speech recognition [Seltz13] [Hanse96].

Both robustness and generalization are desirable and crucial properties that allow
spreading the use of machine learning out of the traditional fields.

4.2 Sources of circuit uncertainty

With decreasing feature sizes of the devices in nanometer technologies, variations
account for a big part of the circuit’s exact behavior. Adding the nature and size of
an a priori unknown defect only worsens matters: the impact of the defect depends
on its physical properties and the relation to the physical properties of the circuit.
Moreover, the external environmental conditions, which cannot be foreseen, may also
disrupt the behavior of the system because nanometer devices are more sensitive. On
top of that, the main test and diagnosis tasks rely on models of the circuit, which are
generally constructed at a higher abstraction level and hence, per definition, inaccurate.
This section presents the main three sources of uncertainty in a circuit: noise and
environmental conditions, variations and inaccurate modeling.

4.2.1 Noise and environmental conditions

Testing is performed under controlled environmental conditions. However, when
the module is integrated in its target system and environment, the exact setting is
unpredictable in most cases. Decreasing feature sizes and variations make the designs
more sensitive to noise and environmental factors. The conditions inwhich an electronic



70 Chapter 4 ● Circuit uncertainty and machine learning

device works, as well as the random noise in the environment which may affect the
state of the components, make it impossible to foresee the resulting performance of the
chip.

Heavy particles and radiation may hit the semiconductor material, and, as they lose
energy, free some of the electron-hole pairs along their way [Zhao06]. As a result,
random memory bits may be flipped (single event upset) or, if the drain of a transistor
is hit (single event transient), a delay may be introduced eventually propagating and
causing an error [Mochi15]. The occurring rate depends on which environment the
system runs in and the technology the chip is fabricated in, as particle strike effects
are more frequent at higher altitudes and lower technology nodes [Shiva02]. Initially,
memory cells were considered to be more susceptible to particle strike, but logic
has also been shown to be increasingly affected as feature sizes and supply voltage
decrease [Shiva02], even causing multiple transient faults [Huang16].

Noise can appear also in the power supply, that is, in the power and ground grids.
Power supply noise is introduced for two reasons [Segur04]: due to the resistance of
the power lines and due to inductive coupling with the logic lines. In the first case, if a
large number of devices in the chip switches, the current demand increases. Because
of the resistance of the line, it is possible that the ground or power values of two
different cells differ. As a consequence, the output values will also no longer correspond
to voltages VGND or VDD, but rather to some intermediate value. Depending on the
physical characteristics of the devices fed by the resulting signal, a wrong value may
be propagated. The second effect arises when the necessary current for the transition
of a gate causes an inductive voltage drop at the power and ground values observed
by the gate. The performance of the gate can be affected in that its rising and falling
transition times increase. If the delay is large enough and gets propagated, an error
may be observed.

The target applications also influence the range of temperature in which a system
must function. Temperature has a direct impact on the performance of both cells and
interconnects. In particular, carrier mobility, threshold voltage and transistor saturation
are affected and degrade with higher temperatures [Segur04]. External temperature
may cause a system to malfunction if it exceeds the range of minimum and maximum
temperatures indicated in the specification. Temperature may also vary within a chip.
The switching activity is related to the workload, which is often not exactly predictable
for a system. Not all devices across all the chip switch uniformly, since some structures



4.2 ● Sources of circuit uncertainty 71

are more often exercised than others. Power dissipation caused by localized high
switching activity can increase the temperature in some parts of the chip, causing
so-called hotspots [Mukhe12]. These areas can see their performance affected because
of the increased temperature.

Design techniques have been proposed to minimize the impact of noise and environ-
mental conditions [Zhao06] [Das15] [Mukhe12]. However, it is impossible to monitor
every environmental parameter continuously for every chip integrated in its target
environment. In case of an error, this poses a problem for test and diagnosis techniques.
For test of field returns, because the conditions in which the fault was activated are
unknown. Hence, the target fault is unknown and the problem may be deactivated by
the time the chip gets to the lab or may go undetected because the test set targets the
wrong kind of fault. For diagnosis, because an exact model of the circuit cannot be
built, since it depends on the unknown environmental conditions.

4.2.2 Variations

As technology evolves and devices are manufactured in deep submicron technology,
variations become an apparent problem for the digital device industry [Becke10]. Many
of the steps that conform the complete manufacturing process can only be performed
with limited accuracy, and small deviations in many of the settings result in heteroge-
neous performance profile across all produced chips. Predicting the exact behavior of a
manufactured device can only be done with limited precision, as uncertainty increases
during manufacturing in the nanoscale era.

As opposed to environmental variations, variations caused by changes in the manu-
facturing process are called process variations. This kind of variation is induced by the
conditions in the manufacturing environment and the characteristics of the manufac-
turing equipment, and may affect interconnects as well as devices.

Sources of variations

Manufacturing of digital devices is performed with photolitography [Weste11]. The
process consists of a set of steps in which a photoresist is placed on the wafer, then the
mask which marks the relevant areas for the current step is placed, and finally light
is applied. The photoresist then uncovers only the areas of interest. For instance, in
the first step, the n- or p-donors are injected in the substrate. To print a well of type n,



72 Chapter 4 ● Circuit uncertainty and machine learning

for instance, a mask is created which leaves only the well region exposed. Then, the
n-donors are introduced in the substrate, only in the desired region.

With decreasing feature sizes, uncertainty in the manufacturing process cannot be
further neglected. Variations are introduced in every step of manufacturing, and affect
the final performance of the chip.

Ion implantation is usually deployed to dope the material with electron or hole donors.
The process actually involves two steps: the implantation itself and an annealing step
[Shin16b]. During the introduction of impurities, donors are accelerated and penetrate
the silicon, until they lose energy due to collisions and finally stop. The annealing step
is meant to repair the possible damage introduced by implantation, for instance the
irregularities introduced by donors which form no covalence bonds with the substrate
atoms and hence do not work as donors at all. The collisions and the annealing process
cannot be totally controlled, and, as a consequence, doping fluctuations are introduced.
The resulting doping concentration plays a role in the resulting performance: the
doping of silicon may not be heterogeneous or the concentration of donor atoms may
deviated from the intended value.

Although the donor concentration has increased in new technologies, the miniatur-
ization of the corresponding features has caused the absolute value of charges in the
channel to decrease [Shin16b]. In very small devices, a small fluctuation in the number
of donors may cause a large relative deviation in the performance of the design. A
deviation of the dopant profile can shift the nominal threshold voltage of the transistor,
and even change the effective gate oxide thickness [Sriva05]. The threshold voltage of
a transistor may also be shifted due to mobile charge in the gate oxide [Bonin01].

Among the variations which affect the devices in the circuit, line edge roughness
(LER) [Shin16a] is one of themain concerns. LER refers to variations between the pattern
printed in the mask, that is, the intended pattern, and the actual feature size printed
on the die. Often, the sensitivity to light of the photoresist is amplified chemically.
Such chemically treated photoresists contain photoacid generators which, upon light
exposure, remain as acid anions and diffuse in the resistor layer to deprotect the area.
This diffusion, however, cannot be precisely steered, and the acids may diffuse out of
the target area. LER accumulates the variations of all photolitography steps: roughness
in the masks, fluctuations in time of light exposure, the extent of acid diffusion and the
roughness of the photoresist itself. As a result, the critical dimensions of devices on the
chip may vary, introducing yet another degree of uncertainty about the performance



4.2 ● Sources of circuit uncertainty 73

of the final chip. Techniques such as optical proximity correction (OPC) are deployed
to compensate the effects of diffraction and interference [Segur04]. This is achieved
by slightly modifying the mask. Although some variations are reduced, the resulting
structures still deviate significantly from the expected shape and size.

Gate oxide thickness fluctuations can also affect the final performance. However, oxide
thickness is a well-controlled parameter [Weste11], and in comparison to the previously
explained parameters, barely introduces variation.

Interconnects can also be affected by imperfections in the manufacturing process and
deviate from their intended specification [Bonin01]. In particular, the aforementioned
fluctuations related to the photolitography process affect their geometry, which in turn
changes their electrical properties and hence the expected performance. Photolitogra-
phy may introduce fluctuations in the line width of electrical interconnects and on the
spacing among wires. A change in the width of a line causes the resistance to deviate
from the intended value, potentially changing the conductivity of the interconnect. A
change in the separation between the interconnects poses a risk to signal integrity,
because it can violate layout design rules [Weste11]. Depending on the deviation, it
may lead to increased interferences between signals.

The height of interconnect structures may also suffer from fluctuations. Variations
in the metal an dielectric thickness can be introduced by polishing or deposition
profiles [Bonin01]. Similarly to the effects of deviation on the width of a wire, the
height affects the size of a conductor element, and, consequently, its resistance. Another
cause for resistance fluctuation is the contact and via size, which are affected by process
variations [Bonin01].

Types of variations

Not all sources of variations affect all produced chips evenly. Some parameters, such as
gate oxide thickness, only vary from wafer to wafer [Bonin01]. The time of exposure to
light in the photolitography process affects also all devices in a wafer equally [Shin16a].
Metal thickness is generally well controlled, but can vary betweenwafers and also across
a single wafer, that is, affect different dice unevenly [Bonin01]. Other deviations, such
as random dopant fluctuations, affect devices even within a single die heterogeneously
[Shin16b].

To model the parameters of a chip, variations are modeled differently depending on
the areas they affect. Variations are classified in different types depending on the



74 Chapter 4 ● Circuit uncertainty and machine learning

distribution of the variation throughout the produced chips. Fluctuations observed
from lot to lot, from wafer to wafer and even across a wafer, but which affect all devices
on one single die homogeneously are referred to as inter-die variations. Inter-die
variations capture deviations from lot to to, wafer to wafer and die to die. A parameter
P is estimated as the mean, that is, the expected value in the nominal case PNOM plus
a deviation which depends on the die, PINTER. The parameter hence has the value
P = PNOM + PINTER.

Complex manufacturing processes include, however, also intra-die variations, that is,
fluctuations in some parameters within one single chip with heterogeneous deviations
of the nominal profile. Intra-die variations are subdivided in two different classes
[Sriva05]: spatial and so-called random. Spatial variations are those which depend on
the layout location within the die, such as contact and via size [Bonin01]. Random
variations include factors which are hard to control, such as dopant profile fluctuations
[Shin16b]. These deviations are also included in the parameter of the model. Spatial
deviations are denoted PINTRA(xi, yi) because they depend on the layout position,
indicated by coordinates (xi, yi). Random variations are different from every die
i, and are expressed as PRANDOM,i. As a result, a parameter is expressed as P =
PNOM + PINTER + PINTRA(xi, yi)+ PRANDOM,i [Bonin01].

To calculate the expected performance of one die, however, not only the expected value
(including variations) of the parameters needs to be calculated, but also the interaction
among them. How the fluctuation of all parameters comes together will determine the
performance of the chip. Generally speaking, the variations in all parameters finally
affect the threshold voltage of the devices, which translates into differences in the
timing, leakage currents, or electrical properties of the interconnects which affect also
timing. The performance characteristics most importantly affected by variations are
power and timing behavior [Liou03] [Bonin01] [Weste11]. Process variations were
reported to account for 30% leakage variability and 20% frequency deviations already
for 90nm technologies [Borka03].

Variations introduce an increasing degree of uncertainty, and cause a more and more
important mismatch between the nominal properties and the final produced population.
The deviation across the population is not biased, that is, chips are produced with
better and worse performances than expected. To ensure high quality products, the
uncertainty introduced must be accounted for in test generation, timing analysis and
circuit simulation [Becke10], which are determinant for test and diagnosis success.



4.2 ● Sources of circuit uncertainty 75

4.2.3 Inaccurate modeling

The accumulation of variations accounts for a large degree of uncertainty when mod-
eling a circuit. An instance of a manufactured design cannot be precisely modeled
because three factors influence its actual performance: the lack of predictability from
design to manufacture, process variations and environmental variations. Moreover, for
a defective chip, inaccuracies in fault modeling must also be taken into consideration.

Uncertainty appears as early as with the first post-silicon prototype. After design,
steps such as logic synthesis and place and route are mandatory to produce an IC.
Logic synthesis models the functions in the design as a set of cells allowed in the
manufacturing process, while place and route decides the coordinates on the layout
where each component must be placed, as well as fixing the interconnects. To optimize
the chip, these functions often rely on cost functions which take diverse aspects into
account, for instance, area and timing performance. However, to estimate timing before
an actual implementation is available, models of the interconnects and cells are used.
The analysis is imprecise not only because of the inherent approximation, which can for
instance only estimate parasitics, but also because it may overlook false paths. Hence,
from the prediction based on the design to the actual silicon circuit there is a degree of
indeterminism introduced [Blaau08].

In addition to this, not all manufactured silicon devices have exactly the same physical
properties, nor do they all perform equally in the presence of environmental variations.
Given that process variations may account for as much as a 20% frequency deviation
[Borka03], an additional uncertainty caused by environmental conditions worsens
predictability expectations. The evaluation of the circuit model cannot be performed
with traditional techniques. Timing analysis has shifted from static timing analysis to
statistical static timing analysis [Blaau08]. With statistical timing analysis it is possible
to make an estimation for a population of chips by considering probability distributions
for the arrival times of the signals. However, this requires the simulation of a large
population. The increasing number of devices and interconnects combined with the
number of parameters and all of their variations calls for extremely efficient simulation
algorithms [Schne17]. Provided such algorithms are available, Montecarlo techniques
can be used to perform statistical analysis of the expected performance. However,
although these techniques help draw conclusions about the population, predicting the
exact behavior of one instance is still unrealistic. This can impact diagnosis, since the
device under diagnosis has specific timing characteristics unknown for diagnosis.



76 Chapter 4 ● Circuit uncertainty and machine learning

Finally, in defective parts, fault modeling introduces even more uncertainty. The nature
and size of the defect impact the physical parameters of the affected chip. Consider a
crack in an interconnect at a certain fault location. The fault propagates along different
paths for a certain activation pattern pair. The slack of a path in the circuit is the
difference between the specified circuit delay and the propagation time along that path.
The slack is thus equivalent to the time margin the path has to propagate and stabilize
the signal. If the defect causes a timing specification deviation smaller than the slack
of the path, the fault will not be detected. If the location feeds more than one path,
each path with a different slack, then only those paths with a slack smaller than the
introduced delay will be affected by the fault.

Figure 4.1 illustrates this situation. The transition propagates to the fault location
at time point ti

prop. The length (in terms of time) of each of the propagating paths
from the location to the outputs is denoted to

prop, where o marks the identifier of the
output. A defect in location fl with size fs causes a delay of fd. The defect will be
detected, for this particular instance with a clock period of t, in those output pins
for which fd > (t − (t

o
prop + ti

prop)). The detection hence depends on the size of the
defect, which cannot be predicted. Neither can an order between the propagation times
be established, nor can their exact value be predicted, as it depends on variations. It
follows that, depending on the physical properties of the chip (and hence depending on
to

prop and ti
prop, fault coverage for the same defect size may vary from one instance to

another [Schne17].

▲ Figure 4.1 — Indeterminism in timing faults

Indeterminism is not exclusive of timing faults. Static faults, i.e., faults with only func-
tional behavior, may also be optimistic or pessimistically modeled without knowledge
about the physical parameters of the circuit. Assuming an or-dominant bridge between
victim signal sv and aggressor signal sa, for instance, the fault is activated whenever the
lines have opposing values. In the situation depicted in figure 4.2, the lines of timing



4.3 ● Machine learning 77

instance a never fulfill the activation condition and hence the fault is not triggered.
For another instance b, variations shift the transitions in the lines. In the time interval
between t1 and t2, the fault is activated. For circuits in which this happens at a critical
time and is propagated to the output, a fault is observed. A bridge model in which both
signals are affected needs to take the output cones and their overlapping sections, as
well as the input cones and their overlapping section. Even for static faults the degree
of indeterminism in the behavior of the chip is considerable.

▲ Figure 4.2 — Indeterminism in static faults

The consequence of all this uncertainty is that deterministic approaches have limited
success guarantees. Test generation and diagnosis, in particular, rely on models and
techniques that do not consider the probability of inaccurate on ambiguous information.
However, with all the aforementioned uncertainty culprits, it no longer makes sense
to ignore the increasing need of techniques robust with respect to indeterminism
[Becke10].

4.3 Machine learning

The term machine learning includes all algorithms which build a model from a set of
inputs to make predictions on new, unseen data. It is closely related to statistics, and
many machine learning techniques deploy statistical methods of information. The set
of data from which the model is built is generally referred to as training set, and its
composition also depends on the tackled problem.

For some problems, a model can be automatically constructed on which inference can
be performed with probabilistic reasoning. However, often the model is unknown.
Machine learning can adjust model parameters or infer a pattern from the data set.
We refer to these problems as supervised and unsupervised learning, respectively. In
supervised learning, the algorithm tries to approximate a function from a known data
sample. Unsupervised learning, on the other hand, tries to infer a pattern or structure
from a data set.



78 Chapter 4 ● Circuit uncertainty and machine learning

The most suitable technique for each problem varies greatly depending on the goal.
The following subsections give an overview into the main methods of inference with
graphical models (section 4.3.1), supervised learning (section 4.3.2) and unsupervised
learning (4.3.3). The last section in this chapter includes a survey of the state-of-the-art
diagnosis techniques which deploy machine learning.

4.3.1 Graphical models

Probabilistic reasoning is a well-established technique to infer probabilities even in
the presence of uncertainty. However, naive marginal probability computation may
easily become infeasible as the number of variables in a problem grows. For this reason,
probabilistic graphical models were introduced. Probabilistic graphical models are a
set of strategies which allow probabilistic reasoning in a computationally feasible way
[Sucar15]. Based on probabilities, they optimize the calculation of marginal probabilities
even in the presence of uncertainty.

There are three aspects according to which graphical models can be classified [Su-
car15]. A graph can be directed or undirected if the dependencies among variables are
asymmetrical or symmetrical, respectively. These graphic models can also be static or
dynamic, depending on if the graph represents the relation among variables at one point
of time or for more than one different points of time. Finally, they can be categorized
as probabilistic or decisional. The first include only random variables, while the latter
include decision variables, i.e., variables for which a value must be chosen.

Bayesian networks [Pearl09] are an example of probabilistic directed graphs. They
model the joint distribution of a set of variables, and can come in static or dynamic
flavor, which represent a static relation among the variables or a time-dependent one.
More sophisticated variants of BNs are able to learn the distributions and even the
structure [Bisho06]. Markov chains represent dynamic processes. They are modeled as
a state machine, and assume the Markov property: given a state Si, the next state Si+1

is independent of the previous history Sj,where j < i [Sucar15]. Hidden Markov models
can reason in presence of unobservable states, and Markov random fields are undirected
probabilistic graphs that generalize Markov chains. They are similar to Bayesian
networks in that a variable’s probability depends on its neighboring variables. However,
unlike Bayesian networks, Markov random fields can represent cyclic dependencies.



4.3 ● Machine learning 79

4.3.2 Supervised learning

In supervised learning the algorithm is provided with a set of tuples (x, y) where x is a
point in the input space, x ∈ Ψ, and y is a point in the output space, y ∈ Ω. The goal
of a supervised learning algorithm is to find the mapping function F ∶ Ψ → Ω so that
F(x) = y for the given input-output pairs. The term supervised refers to the fact that
the algorithm learns from a data set in which the expected output y is provided a priori.

An input vector x is an f -dimensional vector of real numbers, because Ψ = R f . Hence,
points x have f components: x = (x0, ..., x f−1

). Depending on the output universe,
supervised learning solves mainly two different types of problems: regression and
classification. In regression the predicted value is a real number, so Ω = R. In a
classification problem, on the other hand, a set of c labels L = {l0, l2, ..., lc−1} conforms
the range of the predicted variable, Ω = L.

The function F ∶ Ψ → Ω is approximated with a model M with adjustable parameters
(m0, ..., mn−1). The model produces an output M(x) for a given input vector. The
optimization algorithm adjusts the parameters of the model to minimize a loss function.
The loss function includes an error metric, for instance the difference between the
output value predicted by the model, M(x), and the expected one, y. It may also include
other terms to ensure good learning properties. The minimization of the loss function
is done for all elements of the so-called training set, Dtrain = (x0, y0), ..., (xt, yt).

One of the simplest and best known models to approximate a function is linear regres-
sion [Bisho06]. Often deployed in statistics, it is a supervised prediction method which
approximates the output as a linear combination of the inputs. The inferred variable is
a real number, and the model has the form LR(x) = m0x0

+ ...+m f x f
+m f+1. In this

case, the model parameters mi are the linear coefficients, which are set to minimize
the sum of the squared error between the value LR(xi) provided by the model and
the correct value yi provided in the training set. The loss function thus has the form
E(Dtrain) = ∑(xi,yi)∈Dtrain

(LR(xi)− yi)
2. The simplicity of the method and the ease

to understand the outcoming model has made it very popular. However, for many
problems the output cannot be expressed as a linear combination of the inputs, and
thus techniques which consider non-linear functions must be chosen instead.

Decision trees [Wu08] are a supervised learning technique which may be used for
classification or regression. The internal nodes in a decision tree contain a test on one
of the variables xi

∈ x, while the leaves are annotated with an output value y ∈ Ω.



80 Chapter 4 ● Circuit uncertainty and machine learning

To predict the output value for a vector x, the graph is traversed from the root to
the leaves. In each internal node, the corresponding test is performed and a branch
is taken accordingly. The structure of a decision tree can also be learned from a
training set. To obtain a compact tree, the most important factor is the ordering of
the variables. Different techniques may be used for this, such as information gain,
which tries to minimize the entropy of the resulting subsets [Wu08]. Decision trees are
most often used in contexts in which the result of a test determines the next test to be
performed. Medical diagnostics are a good example, where the expert (doctor) orders
tests depending on the result of the previously obtained ones.

Artificial neural networks (ANNs) [Lippm87] are able to infer non-linear functions.
ANNs are formed by processing elements or neurons which transmit impulses along
directed edges. Neurons are organized in levels or layers. The jth neuron of the
ith layer is denoted as n

(i,j). Each directed connection between neurons n
(i,j) and

n
(i+1,k) is annotated with a weight w

(i,j),(i+1,k). The weights of all connections between
layers i and i + 1 can be represented in a matrix Wi+1, where each element Wk,j is the
weight w

(i,j),(i+1,k). The ability to infer non-linear functions is due to the non-linear
transformation applied at every layer to the linear combination of the values received
from the previous layer. ANNs compute a function of the form:

ANN(x) = (φout(W
T
out⋯ ...φ2(W

T
2 ⋯φ1(W

T
1 ⋯x))...)

where φ is a non-linear function. ANNs iteratively adjust the model parameters, in this
case the weight matrices, to minimize the loss function. The loss function includes a
measure of the error between the obtained outputs and the labels in the training set,
but it may also contain other terms such as weight decay, which penalizes big absolute
values in the weights and thus ensures better learning properties. The non-linear
function of the output layer may be changed to deploy ANNs for both regression and
classification.

Support vector machines (SVMs) [Corte95] are a supervised classification algorithm
which generate a hyperplane to divide the data. The hyperplane has the form m0x0

+

... +m f x f
+m f+1 maximizes the margin to the closest sample points, which receive

the name of support vectors. This hyperplane, however, separates only two linearly
separable classes. If the data is not linearly separable, then a kernel function is introduced.
A kernel function calculates the similarity of two points in a higher dimensional space.
The SVM uses the kernel function to infer the linear hyperplane in this new space,



4.3 ● Machine learning 81

which may be non-linear in the original feature space. For problems in which ∣L∣ > 2
classes exist, the SVM generates ∣L∣− 1 classifiers following a 1 vs all scheme. The loss
function of SVM includes a misprediction metric with an associated cost. By adjusting
the misprediction cost, SVMs can have hard or soft margins, i.e., are less or more flexible
with respect to outliers. A vector machine adjusts the hyperplane parameters, while the
cost parameter and the kernel function must be provided to the algorithm. Although
mostly used as supervised method often used for classification problems, deploying
SVMs for regression is also possible [Stein08]. Both ANNs and SVMs are deployed in
classification problems. Unlike BNs or decision trees, information about all features
must be available to perform classification.

4.3.3 Unsupervised learning

Unsupervised learning methods extract information from the training data set. Their
training set consists only of points in the parameters space, but does not include an
associated output, i.e., Dtrain = {x0, x1, ..., xt}. Unsupervised learning methods include
clustering, in which the data is divided into different subsets or classes. In clustering, a
similarity metric is established. According to it, the unsupervised algorithm divides
the data points so that points contained in one class are similar. On the contrary,
points which belong to different classes must also be different from each other. k-means
clustering [Wu08] is an example of a clustering algorithm, in which the user gives the
number of classes into which the data set should be partitioned, k. Random data points
are randomly chosen as the initial centroids, and the algorithm then partitions the data
set, associating every data point to the closest centroid. The mean of every class is
calculated, and the algorithm repeats the two steps iteratively until convergence, i.e.,
until the centroids do not move.

Another interesting application of unsupervised learning is the identification of relevant
structures in the data set to reduce the dimensionality of the problem, extracting sets of
relevant features and discarding noisy ones. An example of an unsupervised method for
dimensionality reduction is principal component analysis (PCA) [Bisho06]. PCA is an
orthogonal linear transformation which maps the original g-dimensional input space
into a new d-dimensional space with d < g. The linear transformation is optimized so
that the information loss is minimal, i.e., the variance in the output space is maximized.

ANNs may also be used for this dimensionality reduction [Hinto06]. Although not
strictly an unsupervised method, it is categorized as such because no labels are provided



82 Chapter 4 ● Circuit uncertainty and machine learning

or needed. The learning problem is formulated as a regression problem, in which a
multilayer ANN learns a lossy identity function. Such an ANN is called an autoencoder
[Goodf16], and it can be seen as a network which implements two functions: an
encoding one, e ∶ R f

→ Ra, and a decoding one, d ∶ Ra
→ R f , so that d(e(X)) ≈ X.

The dimension a of the encoder output may be different than the original vector size
f . Thus, the encoder renders an overcomplete or compacted version of the features,
which captures important properties extracted by the ANN. This encoded version of
the features is then deployed instead of the original vector.

4.4 Root cause identification and yield learning

In early manufacturing stages, yield levels are generally low. Manufacturers must polish
the process as they learn about the systematic problems that appear in the produced
chips. Diagnosis is thus a key step for yield learning: the sooner the defects are correctly
identified, the easier it is to distinguish and correct systematic problems. Very often,
however, the results of diagnosis merely give back a location at logic level, and, at best,
a fault model. Due to the tremendous amount of information gathered during test and
diagnosis, root cause analysis is a particularly well suited scenario to deploy machine
learning techniques. In particular, the costly physical analysis procedures can benefit
of any approach able to pinpoint in advance to the root cause.

Machine learning is deployed as early as post-silicon validation. Since the amount of
data is not so big at this stage, unsupervised learning can be taken advantage of to
perform diagnosis. A clustering technique is presented in [DeOri13] to detect bugs
in post-silicon. A subset of signals is monitored, and the activity in those lines (more
specifically, the ratio of time the signals are at 1) is deployed as feature. The passing
tests are labeled as passing, while the label of examples that fail the test is marked
as unknown. The passing examples are then included as training set and k-means
clustering is applied. The obtained clusters represent the healthy examples. Then, the
authors check if the failing examples fall out of the clusters. In that case, an anomaly is
detected. When the number of anomalies exceeds a threshold, a bug warning is issued.

More approaches exist to analyze a big population of failing chips to extract the root
cause from volume data. In particular, a technique is proposed in [Benwa12] to construct
a BN in which the syndromes are represented by observed nodes and the diagnosis
candidate and root cause are the hidden nodes. Thus, by observing the test outcome and



4.4 ● Root cause identification and yield learning 83

inferring the probability of the hidden nodes, the authors extract the root cause. Based
on [Desin06], [Xue13] proposes to deploy machine learning in order to improve the
resolution of logic diagnosis. The authors propose two classifiers to discard candidates
of the list. The first classifier discards any candidate with inconsistent activations, that
is, for a configuration of neighboring signals, two tests have a different result (one
passes and the other fails, for instance). The candidates remaining on the list undergo
a second classifier, which consists of a soft-margin SVM. The authors propose line
entropy and unique outputs as features. Line entropy represents the relation between
the value of the considered line and its neighbors. The unique output feature accounts
for failing outputs which only the considered line can explain. To apply classification,
candidates are initially marked as good or bad. A good candidate is, for instance, the
diagnosis candidate when the list contains only one element. On the other hand, for
chips with diagnosis lists containing over twenty candidates, the authors assume that
candidates after position twenty are bad candidates. Typically, such a training set will
be unbalanced, since there are many more bad candidates than good ones. To balance
the training set, the authors duplicate the points with "good" activation patterns, and
then infer with the SVM a classifier into good and bad candidates. The candidates
classified as bad can then be discarded.

Since the fault model deployed in fault location may differ from the actual underlying
defect, hence not reflecting the behavior accurately, logic diagnosis can be comple-
mented with physical analysis and machine learning to identify systematic defects.
In [Blant12], "snapshots" of the layout surrounding the logic diagnosis candidate are
taken an processed. The snapshots are transformed into pixel-based images, and clus-
tering is performed to group similar images together. Big clusters (i.e., cluster with a
high number of members) are expected to contain systematic defects, and thus machine
learning can also be used for yield learning.

At higher abstraction levels, functional board-level diagnosis has also been tackled
with machine learning algorithms. The technique in [Zhang10b] is based on Bayesian
inference. The conditional probabilities are calculated from previous observations,
and they allow inference about the belief that a certain fault is present in the system.
In [Ye13], diagnosis is conducted using ANNs and SVMs. Based on information of
previous diagnosed chips, a one-layer ANN is built per component which has been
replaced in past production. The input features are the syndromes and the output is
encoded as a binary variable which expresses the probability of the component actually



84 Chapter 4 ● Circuit uncertainty and machine learning

being defective. The component whose ANN has a higher output probability is identified
as the failing part. The authors also follow a similar approach with SVMs, and model
the problem as a classification problem in which the classes are the faulty components.
Then, the ANN and SVM are averaged with weights inversely proportional to their
training error rates. The outcome of this voter is the final diagnosis. Similarly, board
diagnosis is performed with decision trees in [Ye12]. The variables in the problem are
the syndromes, and each internal node evaluates if the syndrom was observed or not.
The leaves are annotated with the component which is deemed to be the cause.

Finally, some information can also be extracted to predict customer returns. Especially
in the automotive industry, where the required DPPM (defective parts per million) is so
low, identifying potential customer returns is crucial. In [Sumik12], the authors model
the test set as a multivariate space. They extract the principal components and allow for
a certain variance. Any point falling out of this margin is considered an outlier, and the
authors succeed in predicting customer returns from the results of the manufacturing
tests. In [Lin14], the authors predict test escapes from test data. They generate residual
vectors of test measurements, which represent the difference between the obtained
value and the expected one. The expected value accounts for systematic variations,
which makes the approach robust. Then, they use PCA-like analysis to project their
vectors onto a new space in which they separate using an SVM.

Given the large volume of information available to the manufacturers from production,
test results and diagnosis, machine learning techniques are gaining importance to
analyze and predict production results.



C
h
a
p
t
e
r

5
Bayesian networks for identifying

critical defects

Circuits may fail not only because of physical distortions in their structure, but also
because they are affected by external factors such as noise or particle strikes. Robust
designs incorporate fault tolerance mechanisms to mitigate the effect of random noise.
Thus, a chip exhibiting erroneous behavior or test fail caused by transient errors need
not always be discarded. Doing so causes an unnecessary yield loss, since a transient
error indicates merely sensitivity to noise and robust designs are equipped to overcome
their effects. An intermittent fault, on the other hand, is a sign of unstable hardware
structures, and must be identified and discarded to avoid threats to safety.

Chips affected by intermittent faults, particularly if they are the result of a systematic
problem, must be analyzed to find the root cause. An early classification to rule out
circuits affected by noise helps not only avoid unnecessary yield loss, but also prioritize
the deployment of costly physical analysis resources. The critical defect identifier
presented in this section is a fast classifier that can be integrated in the traditional test
flow, as depicted in figure 5.1

Intermittent faults can be caused by phenomena like high frequency power droop,
which induces a fault in the victim line only if there is high switching activity in the
neighborhood. The activation rate of such faults is very low, since the conditions



86 Chapter 5 ● Bayesian networks for identifying critical defects

▲ Figure 5.1 — Diagnosis flow with critical fault identification

for the fault to be triggered are so specific. Transient errors, on the other hand, are
caused by noise or particle strikes, and tend to happen in random locations, and with
low error rates. Distinguishing between intermittent and transient faults is extremely
hard because their observed error rates may be similar. Traditional methods have
tried to establish a fixed threshold to discriminate between intermittent and transient
faults. If the number of observed faults surpasses said threshold, then the fault is
considered intermittent, and if it does not then it is considered transient. However,
merely considering the error rate and not reasoning about the activation rate limits
the success of such approaches. An error may only be observed if both conditions are
met: the activation conditions are fulfilled and the fault can propagate to an observable



87

output. Some faults may be activated more often, but not propagated to the outputs
because some other signal masks them. Hence, it is possible that an intermittent fault
has a high activation rate but does not get propagated often to the outputs, resulting
in a narrow error rate. Establishing an absolute threshold ignores the impact that
observability of the fault may have on the error rate.

The work at hand proposes a hybrid approach to distinguish critical (permanent or
intermittent) from non critical (transient) faults. The first filter identifies permanent
or intermittent faults with high activation rates based on the results of rollback test.
For the rest of the cases, i.e. to distinguish intermittent faults with low activation rates
from random noise, Bayesian inference is deployed. Figure 5.2 depicts the steps of the
approach.

Rollback test

chips affected 
by critical defects: 
I with low λ 

Bayesian classification

chips affected 
by noise: T 

chips affected 
by critical defects: 
P or I with high λ 

▲ Figure 5.2 — Adaptive flow for critical fault identification

The content in this section is organized as follows: section 5.1 presents the adopted test
strategy and the diagnosis approach deployed. Section 5.2 illustrates how immediate
critical fault classification is performed based on the results of test. Section 5.4 explains
the structure and inference of a Bayesian network, and is followed by the explanation
on how they can be applied to distinguish between noise and critical defects (section
5.4). Finally, section 5.5 presents the experimental validation of the whole approach.



88 Chapter 5 ● Bayesian networks for identifying critical defects

5.1 Adaptive test and diagnosis

The adaptive method proposed, which was first presented in [Rodri14], takes advantage
of the testing technique for robust circuits presented in [Amgal08]. The technique
partitions the test set in w different sessions of pw patterns each. Test sessions are
applied with BIST, and the corresponding responses are compacted in a signature. The
ith test session is said to have detected a fault if the observed signature si is incorrect,
that is, differs from the expected signature for the session sre f

i . In such case, rollback
test is triggered and the session is repeated. Repetitions go on until a correct signature
is observed or the maximum number of repetitionsRmax is reached.

If the fault is permanent, then the repeated test sessions are expected to render the same
signature. On the other hand, for transient faults the error is expected to disappear.
For intermittent faults, the behavior of the fault in the following repetition cannot be
predicted: the fault may disappear, or it may repeat the same behavior hence rendering
the same faulty signature. For an intermittent fault ci, the set of patterns that can detect
a fault in the candidate location is denoted as Tci

d . If its cardinality is higher than 1,
in other words, if more than one pattern in the session can detect the fault, then an
intermittent fault can also cause the chip to output a signature which faulty and at the
same time different from the first faulty signature.

For a given test window with expected signature sre f
i , the observed signature is si. The

following applications of the same test window are denoted as primes: s′i represents
the first repetition, s′′i represents the second, an so on. For a failed test window where
si ≠ sre f

i , three different outcomes may be caused by the underlying fault:

• fault-free session (s′ = sre f
i ): ci is not activated and the chip gives back the

expected response.

• repeated faulty signature (s = s′): ci follows the same activation pattern and the
same faulty signature is observed.

• different faulty signature (s ≠ s′ ∧ s′ ≠ sre f
i ): ci followed a different activation

pattern and rendered a faulty signature, however different from the first one.

Each test window is marked with a code depending on the result of test. Table 5.1
summarizes the possible codes for a test window for Rmax = 2, with si being the obtained
signature, s′i the signature obtained from the second pass, and sre f

i the golden model
signature. The first column determines the observed behavior in test: the fault-free



5.2 ● Immediate critical fault discrimination 89

▲ Table 5.1 — Codes for test sessions depending on the outcome of rollback test for
Rmax = 2.

Behavior Code Interpretation
si ≠ sre f

i s′i = sre f
i 10 Transient or intermittent fault

si ≠ sre f
i s′i ≠ sre f

i , si = s′i 00 Permanent or intermittent fault
si ≠ sre f

i s′i ≠ sre f
i , si ≠ s′i 01 a) Intermittent problem activated by different pat-

terns or affecting several nodes b) More than one
transient fault in a row

repeated session, the repeated faulty signature, and the case in which a different faulty
signature is observed after repeating the test session. The second column, labeled as
code, is how the rollback tester registers the test session. The last column summarizes
the possible faults that could cause the corresponding behavior.

Logic diagnosis is performed after the rollback test is finished. To handle state-of-
the-art compression and compaction mechanisms used in the industry, the diagnosis
from [Cook11] has been deployed. This approach can handle signatures instead of the
uncompressed responses. By constructing and solving a system of linear equations to
explain the observed signature, logic diagnosis can be performed and a list of candidate
locations is obtained. No information is given, however, about the criticality of the fault.
The remainder of the chapter explains how critical fault identification is performed.

5.2 Immediate critical fault discrimination

The proposed adaptive test scheme allows early detection of some critical defects. The
first filter, or immediate critical fault discrimination, discards chips which cause test
sessions to be coded as 00 or 01. The reason is that permanent faults or intermittent
faults with a very high activation rate can cause repeated faulty signatures. For tran-
sients, however, the probability of a repeated signature to be observed is extremely
low. Thus, observing si = s′i during test indicates the presence of a critical fault, and the
circuit can thus be discarded in this first step.

In case of observing s′i ≠ sre f
i , si ≠ s′i, i.e., two different faulty signatures were observed

when rerunning the test session, an intermittent fault is assumed. Although this
situation can also be caused by transient faults in a row, this conservative approach
is considered to ensure high product quality. However, should this assumption be too
pessimistic for the target application, the number of repetitions for a test session when



90 Chapter 5 ● Bayesian networks for identifying critical defects

a faulty signature is observed can be increased. With this measure, the probability that
several transients in a row may cause a code 01 decreases, and the pessimistic effect is
reduced.

Finally, the absolute number of wrong signatures also allows early discrimination.
Assuming a transient error rate of µ, the probability that the outcome of a test session
with p test patterns is corrupted by noise is 1− (1− µ)p. The probability that some w f

out of w sessions are faulty can be calculated accordingly as

(
w
w f )(1− (1− µ)p

)
w f ((1− µ)p

)
w−w f

Depending on the desired reliability level, the user may define a probability threshold
which is acceptable for the application. The maximum number Tmax of acceptable
faulty sessions is adjusted accordingly.

The proposed immediate critical fault discrimination thus discards any chip with be-
havior that reproduces faulty signatures or causes a high number of them.

5.3 Bayesian networks

The remaining group of devices may still be affected by a critical defect or a transient.
Immediate critical fault classification only rules out permanent and intermittent faults
with a high activation rate, but the problem of distinguishing low activation intermittent
faults from transients remains. At this level classification calls for a more sophisticated
approach.

The problem at hand is finding an explanation for the observed faulty signatures. The
candidates to explain the test responses are the locations returned by logic diagnosis
and random noise. Both the signatures and the causes can be modeled as variables. The
relation between a cause and an observed signature can be quantified in the form of a
conditional probability, which can be extracted analytically. Bayesian networks (BNs)
are a well-suited strategy to reason about the probabilities of the cause variable.

In the following subsections, the general structure and inference strategies for BNs
are described. The information in this section has been extracted from [Sucar15] and
[Pearl09]. This section only includes the aspects of Bayesian networks with relevance
for this work. Readers already familiar with BNs can find the application of BNs to
noise rule-out in section 5.4.



5.3 ● Bayesian networks 91

5.3.1 Probabilities in Bayesian networks

Bayesian networks reason about the probability of events. Events can be represented by
random variables, which can have different ranges to represent the occurrences of the
event. For instance, to represent the occurrence or not occurrence of an event, a binary
variable is enough. If the event has more than two states, the corresponding variable
will have a range of discrete values. This would be the case of a variable that represents
a traffic light, which can possibly take four values: {r, y, g, o} to represent that the
red, yellow or green light is on, or that the traffic light is off, respectively. Finally, it is
also possible to have variables with continuous ranges. A continuous range makes the
representation of variables such as account status or physical measurements possible.

The probability of an event can be expressed with the marginal, conditional and joint
probabilities. Given two events represented by variables v1 and v2, the marginal
probability of their occurrence is expressed as P(v1) and P(v2), respectively. The
marginal probability of an event quantifies its unconditional probability, that is, the
probability for each value irrespective of other events. The conditional probability
P(vi

1∣v2 = vj
2) quantifies the probability of v1 taking the value vi

1 given that v2 takes its
value vj

2. Finally, the joint probability P(v2 ∩v1) quantifies how often each combination
of values for both events happens. These concepts are illustrated in figure 5.3 for two
variables. Variable v2 can take any of three discrete values v1

2, v2
2, v3

2, while v1 is a
binary variable. The bottom row and rightmost column of the table show the marginal
probability for variables v1 and v2, respectively. The joint probability of both variables
is registered in the cells of the table: for every combination of values, the probability of
occurrence is annotated in the corresponding cell. Finally, the conditional probability
P(v1

1∣v2 = v1
2) is extracted from the table.

For problems which involve many variables, however, the chain rule allows to compute
the joint probability of a set of variables based on the conditional probabilities. Given
an ordering of the variables indicated by the subindex, the chain rules states that

P(v1, .., vn) =
n
∏
i=1

P(vi∣v1, ..., vi−1)

The chain rule can be simplified if there is independence among the variables. A set
of variables V1 is said to be independent of another set of variables V2 given a third
set V3 if P(V1∣V2, V3) = P(V1∣V3). Consequently, the terms P(vi∣v1, ..., vi−1) can be
simplified if vi is independent of a subset of the variables vj, j < i. The vj, j < i which



92 Chapter 5 ● Bayesian networks for identifying critical defects

▲ Figure 5.3 — Joint and marginal probabilities

do not influence the probability of vi need not be included in the calculation of the
conditional probability.

A distinction is made in a Bayesian network between prior and posterior probabilities.
The prior probabilities are the marginal probabilities annotated before any knowledge
about the rest of the variables is introduced. The posterior probabilities, on the other
hand, are the marginal probabilities of the variables when new evidence has been
propagated in the network.

5.3.2 Bayesian network structure

Bayesian networks (BNs) are static directed probabilistic acyclic graphs. BNs model
the joint distribution of the variables in the problem, and can also represent causality
relations among the variables. BNs allow the computation of marginal probabilities
efficiently even for large sized problems. Given the structure and necessary condi-
tional probabilities are provided, they allow the inference of the posterior probability
distribution for some variables when some new evidence is presented.

BNs are formed by a set of nodes N, which represent the variables V in the problem.
Nodes can be connected by edges. An edge e = (v1, v2), where v1 is the origin and
v2 is the destination node, represents a cause-effect relation in which v1 is the cause



5.3 ● Bayesian networks 93

of v2. In a Bayesian network, each arc e = (v1, v2) is annotated with the conditional
probability, P(v2∣v1). Such probabilities quantify the impact of the values of v1 on
those of v2. Root variables, i.e., roots represented by nodes which do not have parents,
are annotated with an a priori probability distribution. The a priori distribution is an
initial estimation of how probable the occurrence of each value of the variable is. These
a priori probabilities can be either adjusted from expert knowledge, or assumed to be
uniform if no previous observations are available to allow an estimation.

The structure of a BN and the implied independence between variables is what simplifies
the calculation of the marginal probabilities. A set of nodes A is independent from
a set of nodes B given the set C if P(A∣C, B) = P(A∣C). In a Bayesian network, this
implies the D-separation criteria to be met: there is no trajectory from A to B so that
convergent nodes are or have descendants in C and all other nodes are outside C.

In figure 5.4, a small BN with variables N1, ..., N6 is depicted. Node N6 is independent
from N1..., N4 given N5. Hence, P(N6∣N1, ..., N5) = P(N6∣N5). This property is taken
advantage of to query about the value of a variable.

N1

N3

N4

N2

N5

N6

▲ Figure 5.4 — Bayesian network structure

5.3.3 Inference in Bayesian networks

BNs take advantage of the rule chain and of the structure of the network. Inference
in BNs takes advantage of the chain rule, that is, uses the conditional probabilities to
calculate the joint probability of all variables. The calculation can be simplified: the
conditional probability of a variable only needs to take into account the variables on



94 Chapter 5 ● Bayesian networks for identifying critical defects

which it depends for. In a BN, the structure of the BN already implies independence
among some variables: given the parents of a node, the node is independent from the
predecessors of its parents.

The structure of the BN on which inference is to be performed determines the infer-
ence algorithm to be used. Queries on trees and polytrees can be easily solved with
exact belief propagation. However, more complex structures may require approaches
such as variable elimination or conditioning to reduce the complexity of the network.
Approximate approaches exist, too, and are often used iteratively for loopy structures.
Since the BN used in the work at hand is a singly connected network, Pearl’s belief
propagation algorithm suffices to query about hidden variables. Hence, this section
explains the belief propagation algorithm.

In BNs, the nodes which provide evidence are called observed, while variables queried
about are referred to as hidden. When the values of the observed variables are known,
the new evidence E is propagated along the network to update the values for the hidden
variables H, P(H∣E). The most frequently performed form of inference on a BN is
single query inference, i.e., the user inquires about the marginal probability of one
single variable.

Message-passing based probability propagation [Pearl09] [Sucar15] is based on the
Bayes rule. The belief propagation algorithm was developed for singly connected
networks. In a singly connected network, a node B divides the network in two subtrees:
the subtree rooted in B, and all other nodes.

The algorithm applies the Bayes rule to find out the probability for each value hi of the
hidden variable H when evidence E is provided, that is, H’s posterior distribution:

P(hi∣E) =
P(E∣hi)P(hi)

P(E)
.

However, the evidence can be decomposed according to the topological decomposition
of the network by B: evidence obtained from the subtree rooted in B is denoted E−,
and all other evidence is denoted E+.

P(hi∣E) =
P(E+, E−∣hi)P(hi)

P(E)
,

but because E+ and E− are independent, the queried posterior probability can be
reformulated as:

P(hi∣E) =
P(E+∣hi)P(E

−
∣hi)P(hi)

P(E)
.



5.3 ● Bayesian networks 95

The evidence collected from the children of B is denoted λ(B) = P(E−∣B). Evidence
collected from the parents of B is π(B) = P(E+∣B). The probability of B is expressed
as: P(B∣E) = απ(B)λ(B) where α is a normalization constant. The messages should
be interpreted as probabilities, hence, the summation of the belief of all possible values
of a variable should add to 1. Normalization can be performed at the end, that is, when
the hidden variable is reached. However, it can be performed in every step to avoid
overflow when the tree is deep and the number of multiplications of λ-messages is
high.

To compute λ, information is transmitted from the leaves to the root. Every node
composes a λ-message which it sends to its parents. The vector represents the belief
about the parents’ value given the information available at the child, and is based on
the conditional probabilities and a λ-vector calculated by the node.

Evidence nodes compose a λ-vector which is a one hot encoding, where the only
active value is the observed value, and all others are set to 0. For evidence node Ne,
λ(Ne) = [0, 0, ..., 0, 1, 0, ..., 0]. Leaf nodes with no evidence information available simply
compose an all-1 vector, λ(Nne) = [1, 1, .., 1]. All other nodes compose their λ-vectors
with an element-wise multiplication of the λ-messages of their children. For a node
Np with children NC, λ(Ni

p) =∏n∈NC λn(N
i
p).

A child Nc composes a λ-message for its parent Np according to

λNc
(Ni

p) =∑
j

P(N j
c∣N

i
p)λ(N

j
c)

that is, for every value Ni
p of the parent, the child computes a belief estimation based

on the information it has received, and sends it up. All nodes multiply the λ-vector
and their conditional probability table and propagate the result up towards the root of
the tree.

From the roots to B, π-messages are propagated. A π-message is computed based
on the prior marginal and the conditional probabilities. An evidence node will form
a π-vector as a one-hot vector, where the active value is the observed one, π(Ne) =

[0, 0, ..., 0, 1, 0, ..., 0]. If there is no evidence and the node is a root, its prior marginal
probability forms its π-vector, π(Nne) = P(Nne). Otherwise, the π-vector of a node
depends on the information received from its parents. It is calculated as the product of



96 Chapter 5 ● Bayesian networks for identifying critical defects

the message received from the parents and the conditional probability table. For a node
Nc with parents NP, each component of the π(Nc) vector is calculated:

π(Ni
c) =∑

N j
p

P(Ni
c∣N

j
p) ∏

Np∈NP
π(N j

p)

The π-message from a parent node Np to one of its children Nc comprises information
about all neighbors of Np except Nc itself. It is calculated by multiplying the π- and
λ-vectors and normalizing:

πNc
(Ni

p) = απ(Ni
p) ∏

n∈(NC−Nc)

λi(Ni
p)

When all nodes have been updated, each one contains the posterior probability of the
corresponding variable under the given evidence.

5.4 Critical fault discrimination with Bayesian net-
works

In the problem at hand, the involved variables are the results of test and the underlying
cause. The assumption is that either there is one intermittent fault in the circuit
(regardless of if there was noise or not), or the circuit is defect-free, i.e., only affected
by transient noise. Transient noise may appear randomly, both in fault-free and faulty
circuits.

For this reason, the variable representing the cause of test fail is a single multivalued
variable, c. The range of c comprises all candidates returned by logic diagnosis, plus one
candidate for the fault-free circuit or transient noise case. If logic diagnosis returned
candidates c1, ..., cd, then the range of the fault variable c = {c1, ..., cd, cnoise}.

The variables that represent the signatures are denoted si, and those representing the
signatures of rollback sessions are marked s′i. Their range includes all possible values
that a signature can take. In theory, a signature could get any combination of bits, i.e.,
for a signature of length m, there are 2m possible results.

In this particular problem, the automation of the BN construction is possible. The
resulting Bayesian network is depicted in figure 5.5. The underlying fault has a causal
relation with the observed signatures. In the figure, variable c is represented with the



5.4 ● Critical fault discrimination with Bayesian networks 97

node in the higher level. The nodes in the bottom represent the signatures obtained from
test, S. The number of nodes on the second level may vary due to the number of repeated
sessions. For R = 2, all sessions are run at least once, and at most twice. In figure 5.5,
the repeated test sessions, marked with a dashed contour, are only represented if the
first session was faulty. Thus, the number of nodes for the test sessions ∣S∣ ∈ [w, 2w].
All 2m values conform the range of the test session variables.

Since the presence of a fault has an impact on the obtained signature, the fault node is
connected with edges to all test session nodes. Variable c is cause for the observed test
sessions s1, ..., sw, where the fault node is the origin and the test session nodes are the
destination. Note that the probability distributions of two signatures are independent
given an underlying fault. Thus, no relation is included among signatures: the BN
structure reflects the independence of their values given a fault.

▲ Figure 5.5 — Bayesian network for critical fault classification

The conditional probabilities for critical defect identification are calculated analytically
based on the expected activation rates and the detectability of the faults. For every
intermittent fault c1, ..., cd the set of patterns Tci

d is divided in two different sets according
to the observed activation of the fault. The set of patterns dci

s comprises those patterns
for which the fault was active, i.e., an error was observed. The set ndci

s , on the other
hand, is formed by all patterns that could potentially detect the fault, but no error
was observed. In other words, a permanent fault at the same location would have
propagated an error, but the intermittent fault was inactive.

Intermittent faults are activated with a certain rate λ. Transient noise, on the other
hand, is characterized by an error rate µ. The error rate µ of transient noise is the
product of the activation µa and propagation rates µp, µ = µa ∗ µp.

An intermittent fault at location ci can explain an observed signature if its effect was
not masked by a transient. This means the probability of observing signature si = s,



98 Chapter 5 ● Bayesian networks for identifying critical defects

where s is a signature that can be explained by ci, is calculated as a product of three
probabilities:

• the intermittent fault was active at location ci for the detecting patterns,

• it was not active in the non-detecting patterns,

• and there was no random noise.

An intermittent fault is active for one detecting pattern with probability λ. Hence, it is
active for all detecting patterns with probability λ∣d

ci
s ∣. The probability of no activation

for non-detecting patterns, on the other hand, is quantified as (1 − λ)∣nd
ci
s ∣. Finally,

noise produces an error with probability µ. A signature is free of random noise effect if
no transients were active in the p patterns. The probability of a noise-free signature is
(1− µ)p.

As a result, the conditional probability for signature s under the assumption of ci, with
ci being able to explain the signature, is:

P(si = s∣c = ci) = λd
ci
s ∗ (1− λ)nd

ci
s ∗ (1− µ)p

If the candidate is not able to explain the signature, then its effect must have been
masked by noise. Regardless of the fault being activated or not, the probability for an
unexplained signature under the assumption of ci is:

P(si = s∣c = ci) = 1− (1− µ)p

Under the assumption that no critical fault is present in the circuit, i.e., candidate cnoise

is considered,

P(si = sre f ∣c = cnoise) = (1− µ)p

and
P(si ≠ sre f ∣c = cnoise) = 1− (1− µ)p

express the probability that the signature is correct and incorrect, respectively, assuming
the presence of background noise.



5.5 ● Experimental validation 99

Once the structure of the Bayesian network is ready and annotated with the necessary
conditional probabilities, a query can be performed to inquire about the posterior belief
in the values of variable c: P(c∣si = sobserved

i ∀i).

In this work, we assume that no information is available about previous occurrences.
Thus, both for the fault node and for the signature nodes, a uniform probability is set
as the a priori probability. The a priori probability for each value of the fault variable is
1/(d + 1). All nodes representing test sessions are evidence nodes, since the result of
test is known and the observed value of the signature can be set to 1 in the vector. The
nodes representing the test sessions S will only propagate λ-messages up to the fault
node. The fault node receives all the messages and calculates the final belief according
to the formulas presented previously. The fact that this is such a naive structure allows
to use the simple message-passing algorithm, and simplifies the usual complexity of
BNs, which is generally NP-hard, to linear for this case.

5.5 Experimental validation

For the validation of the method, three different scenarios are considered. In the
first, only intermittent faults have been injected. In the second, only transient noise
is assumed. For the third case, intermittent faults have been injected along with
background noise.

5.5.1 Injected faults

The injected intermittent faults are modeled as high-frequency power droop. Power
droop is a phenomenon which affects a node in the circuit depending on the activity
of the neighboring lines, and has been aggravated with new technologies. Transistors
have been consistently scaled down, and each power segment now feeds an increasing
number of devices. If a high number of neighboring lines is switching in the same
direction as the victim line, then the victim line may suffer of power starvation and
propagate an incorrect value.

For a certain victim node v, we define the neighborhood N(r) topologically, and based
on a radius r. The radius defines the maximum topological distance for neighbors, i.e.,
any neighbor with distance lower than r is considered a neighbor. Figure 5.6 depicts
the neighborhood of victim v for r = 2.



100 Chapter 5 ● Bayesian networks for identifying critical defects

G2

G1

G4

G3

victim line: f 

a

b

c

d
e

f

g

h

i

N(2) = {c,d,e,h,g,i}

▲ Figure 5.6 — Topological neighborhood N(2) of victim line f

The activation of the fault is based on two conditions: an activation rate λactivation,
and that a minimum number of neighbors switchmin switches in the same direction
as v. In CLF notation, the fault model would be expressed as v ∧ (switches(N(r)) >
switchmin ∧ z < λactivation), where z is a random number, z ∈ [0, 1].

Transient noise is modeled as a random activation at a node chosen randomly. The
activation lasts no longer than one cycle. The victim line is flipped for one cycle
with a certain probability µactivation. This results in an error rate µerror, which is the
product of the activation and propagation rates, i.e., µerror = µactivation ∗ µpropagation.
The activation rates can be adjusted to represent different scenarios: transient errors
caused by radiation happen less frequently than when caused by noise from the power
supply or from variations.

5.5.2 Intermittent fault classification

In the first set of experiments, only intermittent faults were injected. To ensure a
variety of activation profiles among the intermittent faults, different combinations of
neighborhood radius, switching activity threshold and activation rates were considered.
Experiments were conducted for radius r = 1, r = 2, r = 3. The number of neighbors
which had to switch for the fault to be activated was determined by a percentage.
Values 15%, 30% and 50% were considered, and the absolute threshold was calculated
accordingly. To introduce non-determinism in the behavior, the intermittent activation
rate λactivation was set to 0.5. As a result, the final intermittent activation rate λexp

ranges from values higher than 0.5 to rates in the order of 10−13.



5.5 ● Experimental validation 101

▲ Table 5.2 — Classification results for intermittents with Rmax = 2 and Tmax = 10.

Circuit EF CFimmediate CFBayes CF Accuracy
p45k 873 833 11 844 0.967
p100k 947 918 13 931 0.983
p141k 898 870 7 877 0.977
p239k 966 945 15 960 0.994
p259k 912 890 13 903 0.990
p267k 997 970 10 980 0.983
p269k 890 860 12 872 0.980
p279k 817 779 17 796 0.974
p286k 790 762 10 772 0.977
p295k 776 723 17 740 0.954

The number of maximum faulty sessions was set to 10. For a transient error µ = 10−5,
this ensures that the possibility of observing more than 10 faulty signatures lies in the
order of 10−13.

Table 5.2 shows the results of the adaptive test and diagnosis approach combined with
Bayesian reasoning. The first column indicates the circuit to which the experiments cor-
respond. Given that no diagnosis is possible if no error was observed, only experiments
with failure are considered. Their number is given in column 2, which is labeled EF.
According to the criteria for immediate classification, some faults could be identified as
critical (CFimmediate) from the test results (column 3). For the rest, Bayesian inference
was deployed. The number of faults identified as critical by the Bayesian analysis is
indicated in column CFBayes. As a result, a total number of failures identified as critical
is reported in column CF, which gives as result the classification accuracy reported in
column 6. The accuracy of the method is over 0.95 for all circuits. The combination of
the immediate and Bayesian analysis is hence able to identify the critical faults.

A closer look into the classification of the circuits which undergo Bayesian classification
draws some interesting conclusions. Table 5.3 shows the classification of the experi-
ments which needed to undergo Bayesian classification. The first column denotes the
circuit, and the second, EBayesian, indicates the number of experiments analyzed with
the network. Then, the table distinguishes between those experiments which caused
only 1 faulty session, and those in which more than 1 faulty session is observed. For
both cases the total number of experiments E, the number of classified as transient T
and those classified as intermittent I are stated.

The accuracy of Bayesian reasoning is very high for those cases in which two or more



102 Chapter 5 ● Bayesian networks for identifying critical defects

▲ Table 5.3 — Bayesian classification for intermittents.

Circuit EBayesian
1 faulty session 2 to 9 faulty sessions
E T I E T I Accuracy

p45k 40 29 29 0 11 0 11 1.000
p100k 29 15 15 0 14 1 13 0.929
p141k 28 21 21 0 7 0 7 1.000
p239k 21 6 6 0 15 0 15 1.000
p259k 22 9 9 0 13 0 13 1.000
p267k 27 17 17 0 10 0 10 1.000
p269k 30 18 18 0 12 0 12 1.000
p279k 38 21 21 0 17 0 17 1.000
p286k 28 18 18 0 10 0 10 1.000
p295k 53 34 34 0 19 2 17 1.000

sessions were faulty. However, for only one session, the network fails to classify the
intermittents correctly. Although incorrect, this is a reasonable result because the
considered intermittents have an extremely low activation rate, thus behaving de facto
as transients.

5.5.3 Transient fault classification

Transient fault experiments were conducted with varying activation rates µexp. Values
2 ∗ 10−3, 2 ∗ 10−4 and 2 ∗ 10−5 are considered. These probabilities are higher than
the transient rates reported for radiation. However, they have been included because
they reflect transient errors caused by noise in power supply, or because of parameter
variations. Higher rates of transient faults make it harder to differentiate between
problems caused by an intermittent fault with low activation rate and a transient
problem.

The injected fault rates µexp are chosen to assess the robustness of the method when
µexp and µ do not match. However, if such high transient activation rates are expected,
the maximum number of faulty sessions must be adjusted accordingly. In this case, we
assume a µ of 10−4, and so the maximum number of faulty signatures is set to 21.

Table 5.4 summarizes the results of the experiments. The first column indicates the
circuit for which the experiments were performed. The second one is the number
of experiments with failures, i.e. experiments for which a problem was detected and
classification was performed. The number of faults identified as critical is stated in



5.5 ● Experimental validation 103

▲ Table 5.4 — Classification results for transients with Rmax = 2 and Tmax = 21.

Circuit EF CFimmediate CFBayes CF Accuracy
p45k 129 43 1 44 0.659
p100k 125 15 4 19 0.848
p141k 124 22 1 23 0.815
p239k 127 36 1 37 0.709
p259k 126 15 2 17 0.865
p267k 126 22 1 23 0.817
p269k 127 32 2 34 0.732
p279k 124 31 0 31 0.750
p286k 124 14 0 14 0.887
p295k 127 14 0 14 0.890

▲ Table 5.5 — Bayesian classification for transients.

Circuit EBayesian
1 faulty session 2 to 9 faulty sessions
E T I E T I Accuracy

p45k 86 6 6 0 80 79 1 0.988
p100k 110 6 6 0 104 100 4 0.962
p141k 102 6 5 1 96 96 0 1.000
p239k 91 3 3 0 88 87 1 0.989
p259k 111 4 4 0 107 105 2 0.981
p267k 104 2 1 1 102 102 0 1.000
p269k 95 5 4 1 90 89 1 0.989
p279k 93 1 1 0 92 92 0 1.000
p286k 110 6 6 0 104 104 0 1.000
p295k 113 6 6 0 107 107 0 1.000

column CFimmediate. The number of faults classified as intermittent by the Bayesian
network is specified in the fourth column. Finally, the overall number of critical failures
and the final classification precision are indicated in the last two columns.

The overall accuracy is now lower than for the previous experiments, due to the high
number of sessions with a faulty signature in the rollback session. A closer analysis of
the results of the Bayesian classification is shown in table 5.5. In it, the experiments
EBayesian for which Bayesian classification was deployed are divided into two categories:
experiments with only one faulty session on the left, and those with more than one
session up to the threshold. For each category, the number of experiments E and those
classified as transient T and intermittent I are specified.

The reported results can be explained by the detectability of the considered intermittent



104 Chapter 5 ● Bayesian networks for identifying critical defects

▲ Table 5.6 — Classification results for intermittents in presence of background noise
with Rmax = 2 and Tmax = 10.

Circuit EF CFimmediate CFBayes CF Accuracy
p45k 993 878 20 898 0.904
p100k 1744 1643 47 1690 0.969
p141k 978 924 30 954 0.975
p239k 1019 992 12 1004 0.985
p259k 934 901 13 914 0.979
p267k 988 945 27 972 0.984
p269k 987 951 19 970 0.983
p279k 971 865 55 910 0.947
p286k 834 779 19 798 0.957
p295k 967 791 28 819 0.847

candidates: if a fault is hard to detect (very few patterns would propagate an error
to the output), then even a few failing patterns will suffice for the Bayesian network
to conclude that it was an intermittent fault. The table also shows that the accuracy
of the Bayesian classification is much higher than the overall classification reported
in table 5.2. The cause for this behavior is the estimation of the transient rate in the
network, which is, as already explained, different than the injection rate in some of the
experiments. However, this is easy to solve: if the number of repetitions is increased,
then fault-free signatures will appear at the end of the run and the pessimistic effect of
immediate classification is mitigated.

5.5.4 Intermittent fault with background noise classification

The last set of experiments combines intermittent and transient faults. The aim is to
identify the critical faults even if the presence of noise distortions the results of test. To
estimate the precision of the adaptive test approach in this case, the neighborhood radius
and intermittent activation rates from section 5.5.2 have been injected concurrently to
transient faults with the rates specified in 5.5.3.

The results show again a high overall accuracy. However, the Bayesian classification
performed worse than before: table 5.7 shows the results of the classification for
experiments with less faulty sessions than the threshold. These results are the result
of having high-rate noise masking intermittents with a low activation rate or which
are hard to detect, thus causing a very low number of failing sessions which cannot be
distinguished from those caused by the noise. This problem cannot be solved by any



5.5 ● Experimental validation 105

▲ Table 5.7 — Bayesian classification for intermittents in presence of background
noise.

Circuit EBayesian
1 faulty session 2 to 9 faulty sessions
E T I E T I Accuracy

p45k 115 8 8 0 107 87 20 0.187
p100k 101 7 7 0 94 47 47 0.500
p141k 54 2 2 0 52 22 30 0.577
p239k 27 4 4 0 23 11 12 0.522
p259k 33 4 4 0 29 16 13 0.448
p267k 43 2 2 0 41 14 27 0.659
p269k 36 4 4 0 32 13 19 0.594
p279k 106 3 3 0 103 48 55 0.534
p286k 55 8 8 0 47 28 19 0.404
p295k 176 10 10 0 166 138 28 0.169

method, and remains the corner case of intermittent/transient distinction. Nevertheless,
the Bayesian classification is able to distinguish about half of the cases, which, combined
with the adaptive test and diagnosis approach renders an accuracy of over 84%.





C
h
a
p
t
e
r

6
Neural networks for defect

classification

Approaches for logic diagnosis are able to extract information from the test results
to locate the fault. However, they do not provide sufficient information about the
fault mechanism. Chapter 5 explained how chips affected by noise are ruled out.
Among the remaining chips, affected by a critical fault, some could be affected by a
systematic problem. However, there is not enough information to distinguish fault
classes and prioritize for PFA. The test output provides only little insight into the
underlying root cause: faults which belong to different classes may cause the same test
response [Maly03].

Figure 6.1 shows a small sample circuit, in which this effect can be observed. The
upper part of the figure depicts the fault-free instance of the circuit, where the patterns
p0 = 000 and p1 = 011 are simulated. The correct output is computed by the fault-free
circuit. After applying p0, a 0 is observed at the output. For p1, the correct output value
is 1. The values are indicated on the picture as 10 at the output value. In the bottom
left instance, the circuit is affected by a bridge defect. Due to this unwanted connection
(depicted as a resistor in red), the victim line in the bottom is driven to an incorrect
value by the aggressor. This causes a faulty output to be sampled in the second test
cycle, and so the observed sequence is 11. The same behavior is observed in case of



108 Chapter 6 ● Neural networks for defect classification

crosstalk between two lines, where the bottom line is again the victim. If both signals
switch in opposite directions, the transition at the victim line gets delayed by a certain
amount of time d. When the induced delay is bigger than the slack of the node, then an
incorrect value is propagated to the output. In the example, it once again leads to an
output sequence of 11.

▲ Figure 6.1 — Different faults cause same output patterns

An output sequence of 11 is good news from the test point of view. Because it differs
from the expected fault free response 10, the problem is detected. However, from
the output values no deduction can be made about the underlying root cause. This
limitation is overcome in manufacturing test by applying a costly second diagnostic test
to the affected parts, and then physical failure analysis. This process is both resources
and time consuming, and may lead to the no-trouble-found problem if the activation
conditions are not fulfilled during the second diagnostic pass.

Some techniques have been developed for fault identification, as described in section
3.5. Their accuracy is limited for intermittent faults. However, intermittent faults
appear often, since the reference fault model rarely reflects the behavior of the defect
deterministically. This reduces the applicability of these methods for real designs. In
this chapter, a technique for fault classification is presented, and can be applied to



109

circuits affected by critical defects. It was first presented in [Rodri16]. This section
expands the scenarios and applicability of the method.

Figure 6.2 depicts the flow now completed with the fault classification approach.

▲ Figure 6.2 — Complete diagnosis flow with early fault class identification

The benefit is twofold. The proposed modification of the traditional flow uses the defect
classifier as an early warning issuer. On the one hand, it is a fast way to point out
systematic defects, thus allowing prioritizing the application of later costly analysis
techniques. But manufacturing test is not the only scenario where the method can be
applied. An analysis of test responses of field returns may point to timing problems,
guiding the analysis process. Thus, it helps reduce the no-trouble-found problem, since



110 Chapter 6 ● Neural networks for defect classification

it identifies the fault from the online test data. The disappearance of stress conditions
when removing the chip from the system does not affect our method, since the test
output was collected in presence of stress conditions.

The proposed method receives as input the test result and the result of logic diagnosis,
i.e., the fault location or victim line. Due to the lack of information to be extracted from
the test responses alone, the idea behind the method is to monitor some representative
values from the simulation which give a hint about the activation conditions. Some
carefully chosen values are gathered which help to identify the cause of the observed
errors. Figure 6.3 shows the structure of the classifier. It is formed by two main blocks:
a so-called feature collector and a mapping function. The feature collector receives
the inputs and contains a logic simulator and a model of the design. It simulates
the test patterns and obtains the set of relevant numbers or features to identify the
activation condition. The second block, which contains an artificial neural network,
maps the features to a fault class. This chapter explains in detail which fault classes
were considered, how the relevant values for classification were identified, and the
internal structure of both blocks which conform the classifier.

▲ Figure 6.3 — Structure of the fault classifier

6.1 Faults to be distinguished

The proposed method is conditioned by the fault classes to be considered. In this work,
a selection of categories is proposed which covers some of the usual problems in digital
manufacturing. However, the method can be easily extended for other fault classes.
The considered categories in this work include problems that may appear both during
manufacturing or as a consequence of aging. In deep submicron technology nodes,



6.1 ● Faults to be distinguished 111

the interconnect density is increasing. The size of interconnects is decreasing, and
the imperfections in the manufacturing process make them prone to errors such as
bridges. Moreover, due to phenomena such as electromigration, unwanted connections
may appear as a result of degradation after the fault-free chip has been shipped to the
customer. In CMOS technology, the dominant bridges are widely used as a fault model.
However, the dominant bridge model considers only the case in which the pull-up
or -down network is stronger. The situation in which the bridge causes intermediate
voltages in the affected lines, which may be interpreted differently by the succeeding
gates, is better represented by byzantine bridges. In this work, all three classes have
been included: band, bor and bbyz. Recall that the activation and flip of the affected
line(s) can be expressed in CLF calculus. For the band class, given a victim sv and an
aggressor sa, the model is sv⊕ ((sv⊕ sa)∧ sv). Analogously, for bor faults the expression
is sv ⊕ ((sv ⊕ sa)∧¬sv). The lines s1 and s2 affected by byzantine bridges are randomly
flipped whenever the condition s1 ⊕ s2 is fulfilled. For the class bbyz, the specific value
of each line is irrelevant and does not determine if the fault is activated.

Interconnects are subject to faults also caused by the activity in the neighborhood.
Capacitive coupling or crosstalk also poses a challenge since its activation happens only
in very specific circumstances. The dynamic nature of these faults and the fact that
they are not visual, i.e., the layout does not necessarily deviate from the specification,
make these problems even harder to identify during physical analysis. The possibility
of deploying a fast fault classifier that could accelerate physical analysis even in these
particularly hard cases makes the inclusion of crosstalk-induced delay (ct) relevant for
this work. Crosstalk-induced delay can be expressed logically for an aggressor sa and
victim sv. As introduced in 2.2, the CLF expression that considers the values in the
previous time unit (s−1v and s−1a for victim and aggressor, respectively) is sv ⊕ ((sv ⊕

s−1v )∧ (sa ⊕ s−1a )∧ (sv ⊕ sa)).

Faults in the cells of the circuit must also be taken into consideration. Cells may deviate
from their intended timing specification both due to imperfections and variations in the
manufacturing process, or due to wearout induced by NBTI or HCI. The identification
of this category is extremely important not only for early identification of systematic
defects, but also for those observed behaviours which are not always repeatable in
the lab and any additional information to pinpoint the problem is useful. Hence, the
gate transition fault model is also included: both the slow to rise srise and the slow to
fall s f all classes. They can be represented in CLF form as sv ⊕ [(sv ⊕ s−1v )∧ sv] for the



112 Chapter 6 ● Neural networks for defect classification

rising case and sv ⊕ [(sv ⊕ s−1v )∧¬sv] for the falling case.

This work considers the set of classes L as the possible outcome of the tool, where
L = {srise, s f all, bbyz, band, bor, ct}

6.2 Features

Given that the test outcome provides little information to identify the underlying fault
class, the main focus of the approach is the identification of the activation mechanism.
In particular, certain values in logic simulation which are related to the fault activation
are monitored. These numbers, also referred to as features, will form a vector which
is the input to our classification function. To ensure the success of the approach, the
features must be representative of the labels. Their quality is one of the main factors
which impact the accuracy of the method.

Feature collection requires the patterns applied to the circuit to be simulated once. For
this purpose, zero-delay logic simulation is used. Logic simulation has been optimized
and accelerated and can be deployed even for big circuits with negligible costs. Since
logic simulation is the most expensive step for the fault classification of a failing chip,
this ensures that the overhead introduced is extremely low.

Manufacturing and even online test know beforehand the input stimuli to be applied.
This implies that, based on test results, the test set T can be divided in two sets: the
failing patterns Tf and the passing patterns Tp. Tf is the set of test patterns for which
the observed response deviates from the fault-free one. Tp is the set of patterns for
which the observed response equals the expected one. When an online error detection
technique is applied, and it only consists of a detector and not of a test pattern generator,
only the faulty patterns can be recorded. In this case, the only known stimuli are the
faulty patterns Tf .

6.2.1 Failing pattern information

The set Tf is formed by the patterns for which an error was observed. The implication
is that the fault was both activated and propagated to an observable output. This is an
important characteristic of these patterns: relevant information about the activation
mechanism can be extracted here.



6.2 ● Features 113

The fault is triggered if the activation condition is fulfilled. The activations of the
different fault classes for a victim line sv and an aggressor sa are summarized in table
6.1. In previous sections, the activation condition of all classes was expressed as a
product of terms. Table 6.1 presents the terms aligned in different columns, according
to the lines involved in the condition. Terms which depend only on the affected signal
belong to the category victim line. A further distinction may be made: some conditions
only depend on the value of the signal during the considered time step, while others
require a transition. The table shows the victim line conditions separated in static and
dynamic. This is the case of the activation condition for a slow to rise gate, whose
activation is subject to fulfilling (sv ⊕ s−1v ) ∧ sv, that is, the static condition sv and
the dynamic transition required, sv ⊕ s−1v . All variables in the condition represent
exclusively the victim line. Other conditions involve the activity of an aggressor line,
such as sa ⊕ s−1a for crosstalk. Finally, some involve the values in the neighborhood
with respect to the victim line, such as sv ⊕ sa in bridges. Again, the conditions which
depend on the neighborhood may be static or dynamic. Table 6.1 shows that for four
classes, the value of the victim line is relevant for its activation. Three of the four
classes require a transition in the victim line, while four depend on transitions in the
neighborhood to be activated. Only one class requires dynamic activation conditions in
the neighborhood to trigger the fault. Characteristic values of the behavior of the victim
line and that of the neighboring lines may serve well as features for this classification
problem.

▼ Table 6.1 — Activation conditions for all fault classes
victim line conditions neighborhood conditions
static dynamic static dynamic

band sv - sv ⊕ sa -
bor ¬sv - sv ⊕ sa -
bbyz - - sv ⊕ sa -
srise sv sv ⊕ s−1v - -
s f all ¬sv sv ⊕ s−1v - -
ct - sv ⊕ s−1v sv ⊕ sa sa ⊕ s−1a

An additional consideration must be made. The feature extractor is based on a zero-
delay logic simulator. As a result, some transitions that can trigger the fault, such as
glitches, are not accurately represented in a zero-delay logic simulator. For instance,
assume a circuit in which the and gate depicted in figure 6.4, fed by signals s1 and s2.



114 Chapter 6 ● Neural networks for defect classification

▲ Figure 6.4 — Driving gate inputs

A given failing pattern pi propagates values s1 = 0 and s2 = 1, while the preceding (not
necessarily failing) pattern pi−1 drove s1 = 1 and s2 = 0. The expectation is that, since
both inputs flipped, the output value remains stable at 0. However, because differences
in the paths from the primary inputs to each of the signals, the new value may arrive
at different times, causing a glitch. In some fault classes, for instance slow gates which
induce a delay d as shown in the figure, this may pose a problem if the signal is delayed
to a later time than its slack allows. The inclusion of information about the inputs of
the driving gate is related to the identification of transitions in the victim line.

Finally, the effect of the fault must also be considered. Byzantine bridges involve two
signals as potential victims. In the case in which both lines are flipped, the victim line
provided by logic diagnosis cannot have caused all the erroneous bits observed. Hence,
the output of the test must also be observed.

To sum up, four aspects can be considered relevant to identify the root cause: the
activity in the victim line, the activity in the inputs of the driving gate, the activity in
the neighborhood and the test outcome.

This section presents the information gathered from each of this aspects and how it is
transformed into features.

Victim line information

The information about the victim line is the first considered aspect. The activation
conditions of the considered classes include static and dynamic variants. If the line is
at 0 or 1 during the fault-free simulation characterizes the activation of the fault. The
transitions in the victim line are also relevant. The condition can be more fine-grained
and distinguish between rising and falling transitions, since (sv ⊕ s−1v )∧ sv can also be
expressed as sv ∧¬s−1v . Analogously, (sv ⊕ s−1v )∧¬sv equals ¬sv ∧ s−1v . However, some
challenges need to be solved to condense this information in the form of features.



6.2 ● Features 115

The features vector has a fixed length. All collected information must be represented in
a vector of numbers whose length does not vary. The first challenge appears when the
activity in the victim line needs to be condensed: the number of failing patterns is a
priori unknown and changes with every test set and fault combination. Thus, collecting
the value of the victim line for every failing pattern and feeding that vector as input to
the ANN is not feasible.

Instead, different sets of patterns are defined based on the activity in the victim line. Let
us define T0

f ⊂ Tf , where T0
f is formed by those failing patterns for which the victim line

has a value of 0 in the fault-free simulation, i.e. T0
f = {ti ∈ Tf ∣vl(ti) = 0}. Analogously

for 1: T1
f = {ti ∈ Tf ∣vl(ti) = 1}.

T f all
f is the set of failing patterns for which the victim line was observed to have a falling

transition. Formally, T f all
f = {ti ∈ Tf ∣vl(ti) = 0 ∧ vl(ti−1) = 1}. Note that ti ∈ Tf , but

not necessarily ti−1 ∈ Tf . Analogously, we define Trise
f 1 as the set of failing patterns for

which the victim line had a rising transition, i.e., Trise
f = {ti ∈ Tf ∣vl(ti) = 1∧ vl(ti−1) =

0}.

The information relevant to the victim line is compressed in the following numbers:

• victim line at 0: vl@0 = ∣T0
f ∣/∣Tf ∣

• victim line at 1: vl@1 = ∣T1
f ∣/∣Tf ∣

• rising transitions at victim line: vlrise ∶ ∣T
rise
f ∣/∣Tf ∣

• falling transitions at victim line: vl f all ∶ ∣T
f all
f ∣/∣Tf ∣

The victim line features provide relevant information for some of the fault classes. The
relevant features to identify each fault class correspond to the relevant characteristics
marked in Table 6.1 for each fault class. If the line had a value of 0 in the fault-free
simulation of the failing patterns then the fault mechanism must have driven the line
to 1. This hints towards the presence of faults such as a slow-to-fall or an or-bridge
problem. Hence, a high ratio of such patterns would strongly indicate that the culprit is
one of the two classes. Analogously, should vl@1 have a high value, it is an indication
for slow-to-rise faults or and-bridges.

If for Tf many patterns are observed to induce a falling transition in the fault-free
simulation, this means that the fault activation mechanism possibly has to do with
the signal switching. For example, while vl@1 was an indication of slow-to-rise faults



116 Chapter 6 ● Neural networks for defect classification

or and-bridges, if vlrise is also high then the belief in the presence of a slow-to-rise
problem increases. On the other hand, since an and-bridge is activated statically, a high
vlrise is not unrealistic for a bridge, but has a low probability of occurring for many of
such faults. The feature vl f all would indicate the presence of a slow-to-fall gate.

Driving gate inputs

The inputs of the driving gate also provide important information about the activation
of the fault. They allow a more fine-grained identification of possible glitches, hence
reducing the noise introduced by the abstraction level of the simulator representation.

The sets of patterns for which at least one input signal changed but the output was
expected to remain stable at 0 or 1 are denoted Tc0 and Tc1, respectively. Likewise, the
sets of patterns for which the inputs were stable and the output remained at 0 or 1 are
Ts0 and Ts1. Finally, Tt f and Ttr are identified. These are the sets of patterns for which
a change at the input caused a falling or rising transition at the output. Formally:

• Tc0
f = {ti ∈ Tf ∣g(ti) = g(ti−1) = 0∧ I(ti) ≠ I(ti−1)}

• Tc1
f = {ti ∈ Tf ∣g(ti) = g(ti−1) = 1∧ I(ti) ≠ I(ti−1)}

• Ts0
f = {ti ∈ Tf ∣g(ti) = g(ti−1) = 0∧ I(ti) = I(ti−1)}

• Ts1
f = {ti ∈ Tf ∣g(ti) = g(ti−1) = 1∧ I(ti) = I(ti−1)}

• Tt f
f = {ti ∈ Tf ∣g(ti) = 1∧ g(ti−1) = 0∧ I(ti) ≠ I(ti−1)}

• Ttr
f = {ti ∈ Tf ∣g(ti) = 0∧ g(ti−1) = 1∧ I(ti) ≠ (ti−1)},

where g(tk) is the logic value at the output of gate g given pattern tk, and I(tk) is the
value at the input of the gate when pattern tk is applied.

The cardinality of each set is then divided by the number of failing patterns to extract
the features, i.e.,

f c0
f = ∣Tc0

f ∣/∣Tf ∣

f c1
f = ∣Tc1

f ∣/∣Tf ∣

f s0
f = ∣Ts0

f ∣/∣Tf ∣

f s1
f = ∣Ts1

f ∣/∣Tf ∣

f t f
f = ∣Tt f

f ∣/∣Tf ∣

f tr
f = ∣Ttr

f ∣/∣Tf ∣,



6.2 ● Features 117

are the values added to the feature vector.

These values identify transitions in the line, even those which are not represented
in the zero-delay logic simulator. As a result, they identify the conditions for faults
activated by a transition in the victim line. Features f s0

f and f s1
f have low values for

faults activated by a transition. A slow-to-rise gate will have higher values for f tr
f and

f c1
f . A slow-to-fall gate, on the other hand, is expected to have high f t f

f and f c0
f .

Activity in the neighborhood

Another important source of information is the switching activity in the neighboring
lines. As noted in table 6.1, the relevant information comprises both the static and the
dynamic values. The static information is defined in relation to the victim line, that
is, in the form of sv ⊕ sa. Hence, the distance of the aggressor neighbor is the relevant
characteristic. The dynamic part requires transitions in the aggressor line, sa ⊕ s−1a .
However, the aggressor line is unknown a priori. The tool cannot sample the values
of a certain line and check if they match the activation conditions. The number of
neighbors varies with the victim line, so the features that represent the activity in the
neighborhood must be reduced from a matrix with dimensions ∣n(vl)∣ ⋅ ∣Tf ∣ to a vector
of fixed length.

For the switching activity, this is achieved by calculating for every neighbor the number
of opposite transitions with respect to the victim line. First, the set of lines N(vl) that
conform the neighborhood of the victim line is extracted from the layout information.
For a neighbor n ∈ N(vl), n(t) represents the logic value for pattern t. Then, for every
neighbor n ∈ N(vl), the set of failing test patterns for which a transition was observed
is calculated:

transn
f = ∣{ti ∈ Tf ∣(vl(ti) ≠ n(ti))∧ (vl(ti−1) ≠ vl(ti))∧ (n(ti−1) ≠ n(ti))}∣.

The feature ftrans is the maximum rate of transitions observed in the neighborhood:

f trans
f =

max{transn
f ∣n ∈ N(vl)}

∣Tf ∣
.

A high value for ftrans is a strong indicator of the presence of crosstalk effects.

Another feature, f dist
f , monitors the values of the neighbors. f dist

f is a measure of
distance between the values of the neighboring lines and the victim line. In other words,



118 Chapter 6 ● Neural networks for defect classification

it tries to identify the activation condition of a bridging fault, which requires one of the
neighbors to have opposite value. The distance for a certain neighbor n is defined as

distn
f =
∣{ti ∈ Tf ∣vl(ti) ≠ n(ti)}∣

Tf
.

The feature is then calculated as the average for the complete neighborhood N(vl),

f dist
f =

∑n∈N(vl)
distn

f

∣N(vl)∣
.

Test outcome

Finally, the test outcome may provide some insight into the underlying cause. Logic
diagnosis compares the observed results in test with the expected responses of the fault
machine. We will define the unexplained set Tu as the set of patterns whose observed
response cannot be explained by a flip in the victim line. The feature u f = ∣Tu∣/∣Tf ∣ also
forms part of our feature vector. It indicates the presence of a fault for which there is
more than one culprit, i.e., a byzantine bridge.

6.2.2 Passing pattern information

Passing patterns are those for which the tested circuit did not exhibit faulty behavior,
i.e., the fault was either not activated or not propagated. The passing patterns set is
denoted as Tp. Extracting values from Tp and comparing them to that of Tf indicates
the presence or absence of some fault types. The expectation is that, for each fault
class, the columns marked as irrelevant (−) in table 6.1 will keep a random distribution.
However, the relevant features for each fault class will present different values for the
Tp set.

For example, a byzantine bridge is independent of the value of the signal. Its activation
condition is that the bridged signals have opposite values, but whether the victim line
is 0 or 1 is irrelevant. If a set of patterns T0

p is defined so that T0
p = {t ∈ Tp∣vl(t) = 0},

the feature vl@0p
= ∣T0

p ∣/∣Tp∣ can also be extracted. For the byzantine bridge fault class,
the distributions of vl@0 and vl@0p are independent. However, for the or-bridge class
there is no independence: vl@0 is expected to be substantially higher than vl@0p. On
the other hand, for the and-bridge class vl@0 is expected to be low, while vl@0p may
take any value.



6.2 ● Features 119

The mapping function will be fed with analogous features to those described for the
failing patterns. Except for the unexplained patterns, which have no correspondence
in the fault-free set, the rest of the features are calculated as described in the previous
section.

The following sets of patterns are defined:

• T0
p = {ti ∈ Tp∣vl(ti) = 0}

• T1
p = {ti ∈ Tp∣vl(ti) = 1}

• T f all
p = {t ∈ Tp∣vl(ti) = 0∧ vl(ti−1) = 1}

• Trise
p = {t ∈ Tp∣vl(ti) = 1∧ vl(ti−1) = 0}

• Tc0
p = {ti ∈ Tp∣g(ti) = g(ti−1) = 0∧ I(ti) ≠ I(ti−1)}

• Tc1
p = {ti ∈ Tp∣g(ti) = g(ti−1) = 1∧ I(ti) ≠ I(ti−1)}

• Ts0
p = {ti ∈ Tp∣g(ti) = g(ti−1) = 0∧ I(ti) = I(ti−1)}

• Ts1
p = {ti ∈ Tp∣g(ti) = g(ti−1) = 1∧ I(ti) = I(ti−1)}

• Tt f
p = {ti ∈ Tp∣g(ti) = 1∧ g(ti−1) = 0∧ I(ti) ≠ I(ti−1)}

• Ttr
p = {ti ∈ Tp∣g(ti) = 0∧ g(ti−1) = 1∧ I(ti) ≠ I(ti−1)}

to extract the set of features:

• vl0p = ∣T
0
p ∣/∣Tp∣

• vl1p = ∣T
1
p ∣/∣Tp∣

• vlrise
p ∶ ∣Trise

p ∣/∣Tp∣

• vl f all
p ∶ ∣T f all

p ∣/∣Tp∣

• f c0
p = ∣T

c0
p ∣/∣Tf ∣

• f c1
p = ∣T

c1
p ∣/∣Tp∣

• f s0
p = ∣T

s0
p ∣/∣Tp∣

• f s1
p = ∣T

s1
p ∣/∣Tp∣

• f t f
p = ∣T

t f
p ∣/∣Tp∣

• f tr
p = ∣T

tr
p ∣/∣Tp∣



120 Chapter 6 ● Neural networks for defect classification

The features related to the distance and maximum rate of transitions in the neighbor-
hood are also included, i.e.,

f dist
p =

∑n∈N(vl)
distn

p

∣N(vl)∣

, where N(vl) is the physical neighborhood of the line and

distn
p =
∣{ti ∈ Tp∣vl(ti) ≠ n(ti)}∣

Tp
.

Finally, f trans
p =

max{transn
p∣n∈N(vl)}

∣Tp∣
, where N(vl) represents the lines in the neighbor-

hood and

transn
p = ∣{ti ∈ Tp∣vl(ti) ≠ n(ti)∧ vl(ti−1) ≠ vl(ti)∧ n(ti−1) ≠ n(ti)}∣.

6.3 Artificial neural networks for fault classification

The definition of the problem we consider is the mapping of a feature vector to one of
the six classes defined, i.e., we want to find a function fclass ∶ R

f
Ð→ l ∈ L where f is

the number of features from 6.2 and L is the set of classes in 6.1. Fault classification is a
supervised classification problem. Given that the classes are not linearly separable, it
calls for a non-linear supervised classifier. Artificial neural networks (ANNs) [Bisho06]
are well suited for the problem. By observing a correctly labelled data set, they can infer
(or learn) complex functions which may even be non-linear. This section explains the
different topologies (6.3.1) and learning strategies (6.3.2) of ANNs. Finally, subsection
6.3.4 explains the ANN deployed as fault classifier.

6.3.1 Artificial neural networks: structure

An ANN is a structure composed of several processing elements or neurons. A neuron
transmits an impulse to the ones in the following layer. This impulse is a real number
which receives the name of activation, and is based on the linear combination of the
information received from preceding neurons. More specifically, a neuron is associated
with a vector of real numbers known as weights. The neuron receives a vector of real
numbers, which it multiplies element-wise with the weights vector, and then applies a
non-linear function to the sum of the elements in the vector. This result is the activation
of the neuron.



6.3 ● Artificial neural networks for fault classification 121

Neurons are organized in layers. There are three kinds of layers in an ANN: input, output
and hidden. Input layers receive the input vector itself, formed by the features. The
output layer encodes the prediction of the ANN. Hidden layers perform the non-linear
transformation that allows a mapping between the features and the outputs.

The simplest ANN topology is a feedforward ANN such as depicted in figure 6.5. The
features are provided to the input layer lin, which propagates the values to the next layer,
that is, the first hidden layer. The activation value of the input layer, ain, is hence just
the original feature vector X. A hidden layer lh receives an activation vector of numbers,
ah−1 ∈ R

∣lh−1∣, from its predecessor layer lh−1. The predecessor of the first hidden layer
is the input layer. Each hidden layer lh has a weights matrix, Wh, of size ∣(lh−1)∣× ∣lh∣,
where each element ej,k corresponds to the weight Wlh(j, k) connecting neuron j in
layer lh−1 and neuron k in layer lh. The product of activation ah−1 and weight matrix
Wh gives as result vector vl ∈ R

∣lh∣. A non-linear function φh is applied to vh, obtaining
activation function al . Generally, for hidden layers a non-linear function such as the
sigmoid or hyperbolic tangent is chosen. For the output layer, in a classification problem
the function is the softmax, which transforms the outputs into probabilities. The final
outcome of an ANN is obtained by applying this layer per layer from the input layer to
the output:

ANN(W, X) = (φout(W
T
out⋯ ...φ2(W

T
2 ⋯φ1(W

T
1 ⋯X))...)

for a given input vector X and a configuration of weights W.

These basic ANNs can be slightly tuned by introducing a sparsity factor [Liu15a]:
instead of allowing all connection to be activated, a restriction is imposed so that the
activation of a neuron is penalized.

A higher number of hidden layers allows for more complex models. ANNs with a
very high number of layers are referred to as deep networks, and have been reported
to improve pattern recognition results [Krizh12] [Girsh14]. The depth is not only
associated with a more complex mapping function between features and output. Deep
networks are often taken advantage of to infer structures in the data set. A deep ANN
with this goal is called an autoencoder [Goodf16]. Autoencoders have been successfully
deployed in domains such as image recognition.

Convolutional networks [LeCun98] were designed to exploit the spatial properties of
images. Two new types of hidden layers are introduced: feature maps and subsamplers.



122 Chapter 6 ● Neural networks for defect classification

▲ Figure 6.5 —Multilayer feedforward ANN

In a feature map, each unit is fed by a small subset of n neighbors. Thus, each unit
has n trainable coefficients. However, convolutional networks also use weight sharing,
i.e., all the units in a feature map share the same n coefficients. Feature maps feed
the second new type of hidden layer: the subsamplers. These layers are introduced
to reduce the resolution of feature maps, thus reducing also the sensitivity of the
output to particularities of the training set. The dimensionality reduction is achieved by
averaging the incoming values of a small subset of neighbors. The underlying idea of
convolutional networks is that, if a feature is detected, its exact location is irrelevant. For
instance, if an edge is detected, whether the digit was written perfectly centered or not
is unimportant. Its relative position to the other detected features is what determines
the digit. The the LeNet-5 network, originally introduced in [LeCun98] to recognize
the handwritten digits of the MNIST database, vastly improved the performance of
previous existing ANNs. The first layers are feature maps and subsampling layers,
followed by a regular ANN for classification.

Feedforward networks -both the simple multilayer ANN and the convolutional variant-
include connections from a unit in a layer li to a unit in another layer lj, where j > i. The
functions these nets represent are static, in that they do not consider time dependencies.
Recurrent networks (RNNs), however, include such dependencies in the representation:
the activation of a processing unit can depend on the activation of any unit in the net
in a past time. Hence, recurrent networks are different from feedforward networks in
that cycles are allowed. RNNs have been successfully deployed for speech recognition



6.3 ● Artificial neural networks for fault classification 123

[Grave13].

6.3.2 Artificial neural networks: learning

To learn a function given a data set, the ANNmay adjust the weights in order to produce
an output as close as possible to the provided label for all elements in the set. In order to
do so, the training set Dtrain is partitioned into a number b of batches, D0

train, ..., Db−1
train.

The error or difference between the expected output and the one provided by the ANN
for a data set S is calculated as:

E(W, S) = ∑
(x,y)∈S

(y − ANN(W, x))2

where W is the configuration of the weights in the ANN. The resulting error function
only depends on the parameters of the model, i.e., the weights, for a given data set.

A more general function, refered to as loss function (J(W)), is defined. The loss function
is the base of the learning process. In its simplest version, it only includes the error
function. However, often additional terms are also integrated to ensure good learning
properties.

The ANN adapts the weights W in the system iteratively. For each batch, first a
feedforward pass is performed and the associated error is calculated. The error is
propagated back to the inputs, and the weights are updated along the network. Then,
the next batch is evaluated. This process is refered to as backpropagation [Pearl09].
Backpropagation is generally based on gradient descent. The weights are modified by
taking steps in the direction in which the error decreases:

W =W − α∇(J(W))

The direction in which the function decreases is the opposite of the gradient ∇(J(W)),
and the size of these learning steps is set by a parameter: the learning rate α. This
process is repeated until a number of repetitions over the complete training set (epochs)
is reached.

The values of the hyperparameters of an ANN impact its learning power. A low learning
rate may cause the ANN to converge very slowly. A high learning rate, on the other
hand, can cause the ANN to diverge.



124 Chapter 6 ● Neural networks for defect classification

A large number of epochs may cause the ANN to overfit: it infers a too complex function
tailored to the training data set, but which extrapolates poorly. On the contrary, a low
number of epochs may be the reason for underfitting. In this case, the model is too
simple to map the features to the labels.

The size of the batches may also impact the learning process. The original gradient
descent algorithm employed only one batch, i.e., Dtrain = D0

train. However, depending
on the initialization values of the weights, this approach may cause the algorithm
to get stuck in a suboptimal local minimum. Varying the value of the batch size and
performing an update of the weights after each batch is preferable to avoid local minima.
This variant of gradient descent is referred to as stochastic.

To ensure better learning properties, the loss function may include penalization terms or
modifications. One of the most commonly included is weight decay [Bisho06]. Weight
decay consists of penalizing large absolute values in the weights to prevent overfitting.
The loss function then includes a term which adds the absolute value of the weights
(l1 norm) or its squared value (l2 norm) to the function. The multiplier γ indicates
the weight of the penalization in the loss function. Hence, for a set of data S, the loss
function including l2 weight penalization is calculated as:

J(W) = E(W, S)+γ ∑
w∈W

w2.

Another technique, which modifies the weight update function is to use momentum
[Bisho06]. Momentum is a technique which combines the update of the weights with
the direction of the gradient in the last steps. In this way, momentum prevents the
descent of oscillating due to divergences in the training set (for instance, if in stochastic
gradient descent the error of every batch does not decrease in the same direction).

6.3.3 Metrics for neural network based classifiers

The capability of the network to generalize when faced with new data is evaluated with
a test set Dtest. The test set is independent of the training set. If the performance of the
network differs greatly from the training to the test set, then the ANN has a problem
of overfitting. If the performance of the ANN for the training data set is low, then the
problem faced is underfitting. The hyperparameters can be adjusted to mitigate both
problems, from adapting the complexity of the model by increasing or reducing the
number of layers to adding data to the training set. If the problem persists, the ANN
must be discarded.



6.3 ● Artificial neural networks for fault classification 125

The evaluation of an ANN may be performed according to different criteria. The most
popular metrics for multiclass classification problems are accuracy, error rate, precision
and recall [Sokol09]. Their values reflect the ability of the ANN to identify the members
of a class, and also the probability that the class was correctly predicted.

The outcome of the classification tool can be considered a true positive, true negative
(tn), false positive ( fp) or false negative ( fn). The category depends on the class of the
experiment (class(e)) and the one predicted by the tool (pred(e)). For each class l, the
count of true positives tl

p reflects the number of experiments for which the tool predicts
the correct class of the element, i.e., tl

p = ∣{e∣class(e) = pred(e) = l}∣. True negatives of
a class tl

n are those experiments for which the tool predicts a different class than l for an
experiment that does not belong to class l. Formally, tl

n = ∣{e∣class(e) ≠ l∧ pred(e) ≠ l}∣.
The false categories correspond to the experiments for which the tool output was
incorrect: false positives are those cases for which the tool incorrectly predicted class
l ( f l

p = ∣{e∣class(e) ≠ l ∧ pred(e) = l}∣), while false negatives are those for which the
tool predicts a different class than c ( f l

n = ∣{e∣class(e) = l ∧ pred(e) ≠ l}∣). The four
categories are illustrated in figure 6.6 for class l.

▲ Figure 6.6 — Classification outcome: prediction vs actual category (adapted from
the matrix in [Sokol09])

The quality of the multiclass classification can be quantified based on these values.
Accuracy measures the overall effectiveness of the classifier. The accuracy for class l is
calculated as

Al
=

tl
p + tl

n

tl
p + tl

n + f l
p + f l

n



126 Chapter 6 ● Neural networks for defect classification

and the overall accuracy is obtained by averaging the per-class accuracy:

AL
=
∑l∈L Al

∣L∣
.

Accuracy is a metric that remains invariant if the positives are changed with the
negatives. It does not distinguish if the accuracy of the method is guaranteed because
the tool correctly identifies the elements that belong to the class or rather because the
number of true negatives is high. Hence, the metric precision is included too. The
precision of the tool with respect to a class estimates the probability that an element
belongs to a class l if the tool classified it as such. The formula for precision for a given
class l is thus

Pl
=

tl
p

tl
p + f l

p

and the overall precision of the classifier is calculated as

PL
=
∑l∈L tl

p

∑l∈L tl
p + f l

p
.

Finally, the metric recall is introduced. Recall measures the effectiveness of the classifier
to correctly extract as positives the elements which indeed belong to the class. The
recall of the classifier for class l is

Rl
=

tl
p

tl
p + f l

n

and it can be generalized for all classes as

RL
=
∑l∈L tl

p

∑l∈L tl
p + f l

n
.

The combination of all three metrics is sensitive to changes in the number of positives
and negatives, and also to the relation between false and true results. It thus provides a
comprehensive view of the effectiveness of the classifier [Sokol09].



6.4 ● Experimental validation 127

6.3.4 Artificial neural networks for fault classification

The aim of the approach presented in this chapter is to issue a warning if a fault class
appears very often. Thus, the main goal of the critical fault identifier presented is to
classify the underlying fault in one of the expected fault classes. The availability of data
from past production in the manufacturing flow makes it possible to train the algorithm
from previous observations. Hence, the problem at hand is a supervised classification
problem.

Although more sophisticated flavours of ANNs exist, a simple feedforward ANN suffices
for this purpose. The output is encoded with one neuron per class ci ∈ C, described in
section 6.1. Output neurons are activated by a softmax function, and thus the output of
the network can be read as a vector of probabilities. The final output of each neuron in
the output layer is the probability that the fault class is the one corresponding to the
neuron. The label in the training set is encoded as a one-hot vector of length C.

Two different sets of features are considered: only failing information and both failing
and passing. Given that the features, previously introduced in subsection 6.2.1 and
subsection 6.2.2 are already normalized and belong in the range [0, 1], no further
manipulation is performed on them.

The optimizer algorithm is Adadelta [Zeile12], which combines stochastic gradient
descent with a dynamically changing learning rate. The learning rates changes faster
with decreasing slopes of the function, and slow in steep regions. The algorithm
optimizes the error based on the categorical cross-entropy function.

6.4 Experimental validation

The approach has been validated on ten circuits, five of which belong to the ITC99
benchmark. The rest are industrial circuits kindly provided by NXP. They have all been
synthesized using the NanGate 45nm library, and the neighborhood of each line has
been extracted from the layout information.

The test set data was generated with a commercial tool targeting transition faults. Be-
cause only manufacturing test sets have been considered, and hence the cost constraint
is relevant, the ATPG will try to produce as few patterns as necessary. The test set
has the typically low diagnostic resolution of manufacturing tests, and was in no way
manipulated to include patterns with diagnosis enhancement.



128 Chapter 6 ● Neural networks for defect classification

The tested devices were simulated using fault injection in a timing annotated logic
simulator. Over 250 faults of each class conform the labelled set of each circuit. The
location was chosen randomly. The feature collector only contains a zero-delay logic
simulator, without timing information. Thus, the diagnosis tool does not have an exact
representation of the faulty behavior, and must be tolerant to some deviation. This is
intentional, since the method is expected to be robust despite this typical diagnosis
limitation.

The data set was divided into balanced training and test sets, i.e., both training and test
sets have roughly the same amount of faults of each class. In this way, learning will
not be biased and the global results are meaningful.

The classifier has been written using Keras [Choll15], based on Theano [Bergs10].
Figure 6.7 sketches the experimental setup.

▲ Figure 6.7 — Experimental setup

Only fully connected ANNs were considered, and the number of hidden layers and
cells per layer is considered part of the parameter space. Different configurations have
been investigated. This chapter presents one network per circuit, chosen for the best
generalization, i.e., the configuration which resulted in the smallest difference between
the accuracies for the training and the test set. In case of a draw, the configurations
were ranked with the ANNs with a smaller difference in the loss functions. If two or
more configurations are still in the same position, the network with the simplest model
(less layers, then less cells per layer) is chosen.



6.4 ● Experimental validation 129

6.4.1 Fault classification after test

In a manufacturing test environment, the complete set of patterns applied to the design
is known. Moreover, the responses to all patterns can be recorded. Thus, detailed
information is available for the fault classifier: the complete test set can be simulated
and hence information about passing and failing patterns can be gathered. Consequently,
both sets of features presented in 6.2.1 and 6.2.2 can be extracted. The method takes
advantage of all the available information in this scenario, and so a vector of length 25
is built which serves as feature vector.

The ANN topology parameter space considered ranges from 1 to 3 hidden layers and
6 to 14 cells per layer. For the sake of clarity, only one configuration is presented per
circuit: the one with the smallest difference between training set and test set results.
In this scenario, the assumption was made that data of the same design was available
from previous production. As a consequence, the ANN was trained with data from the
same design, in other words, with product knowledge.

The classification accuracy is presented in table 6.2. The first column indicates the
circuit for which the experiments were performed. Columns ls and cs indicate the
number of layers and cells, respectively, of the configuration with the best generalization
properties. The following six columns show the accuracy for each of the fault classes,
and the last one shows the overall accuracy of the classifier.

▲ Table 6.2 — Accuracy results for classification after test, with product knowledge

circuit ls cs Abor Aband Abbyz Asrise As f all Act AL

b18 2 8 0.9549 0.9495 0.9737 0.9623 0.9501 0.9899 0.9634
b19 1 10 0.9592 0.9627 0.9866 0.9683 0.9613 0.9972 0.9725
b20 2 7 0.9527 0.9414 0.9694 0.9500 0.9520 0.9933 0.9598
b21 2 11 0.9626 0.9525 0.9726 0.9586 0.9525 0.9940 0.9655
b22 1 6 0.9542 0.9603 0.9758 0.9670 0.9414 0.9872 0.9643
p35k 1 13 0.9568 0.9641 0.9827 0.9674 0.9502 0.9874 0.9681
p45k 1 12 0.9778 0.9798 0.9876 0.9856 0.9739 0.9935 0.9830
p78k 1 9 0.9876 0.9974 0.9980 0.9974 0.9869 0.9987 0.9943
p141k 1 9 0.9730 0.9829 0.9835 0.9888 0.9651 0.9895 0.9805
p330k 2 7 0.9789 0.9717 0.9862 0.9809 0.9690 0.9868 0.9789

The accuracy of the method is over 0.94 for all cases. However, as previously discussed,
the accuracy metric is insensitive to a change between positives and negatives. A high
accuracy may be caused by a large proportion of true positives, but also by a large



130 Chapter 6 ● Neural networks for defect classification

number of true negatives. For this reason, recall and precision results are presented
also here. Although the accuracy results are similar for all configurations, the results
following are presented for the optimal configuration indicated in table 6.2.

Table 6.3 summarizes the recall results, that is, the rate of elements of one fault class
which were predicted to belong to the class. The first column indicates the circuit on
which the experiments were performed. The following six columns indicate the recall
for each fault class. Finally, the last column, labeled as L, shows the overall recall of the
classifier.

▲ Table 6.3 — Classification recall results after test, with product knowledge

circuit Rbor Rband Rbbyz Rsrise Rs f all Rct RL

b18 0.8940 0.8834 0.8697 0.8736 0.8429 0.9770 0.8902
b19 0.9280 0.9119 0.9175 0.8821 0.8659 0.9962 0.9176
b20 0.9149 0.8438 0.8423 0.8544 0.8269 0.9923 0.8794
b21 0.9193 0.8922 0.8726 0.8697 0.8346 0.9923 0.8964
b22 0.9083 0.9052 0.8889 0.8880 0.7854 0.9847 0.8929
p35k 0.8725 0.9048 0.9073 0.8959 0.8659 0.9770 0.9043
p45k 0.9798 0.9710 0.9349 0.9464 0.8769 0.9885 0.9491
p78k 0.9801 0.9918 0.9880 0.9924 0.9464 0.10000 0.9830
p141k 0.9177 0.9658 0.9272 0.9655 0.8880 0.9847 0.9414
p330k 0.9661 0.9370 0.9195 0.9349 0.8846 0.9808 0.9367

With an overall recall of over 0.87 for all circuits, the method overcomes the typical
diagnosis limitation of inaccurate circuit and fault model. Some of this inaccuracy
is due to the fact that the feature collector, unlike the simulated circuit under test,
deploys zero-delay logic simulation. The mismatch between both introduces noise
in the features. However, this is a realistic scenario since the diagnosis tools cannot
predict the exact behavior of the defective chip.

Given that there is misclassification, it is important to find out the precision in the
classification. For instance, a biased network could predict always a fault class l f . The
recall for this fault class would be 1. However, the diagnosis would be useless since
when the ANN returns fc as answer the user cannot trust that the present fault indeed
belongs to said category. To evaluate the ANN, the precision in a fault class l f , Pl f ,
is defined as the ratio of faults which were identified by the tool to belong to l f and
indeed the injected fault is of type l f . Table 6.4 summarizes the precision for each fault
class in the corresponding six columns. The precision in the output of the tool is over



6.4 ● Experimental validation 131

0.8 for almost all cases. Hence, a prioritization of PFA according to this classification
would imply that out of every 5 defective chips, PFA would confirm the systematic
problem for 4 of them.

▲ Table 6.4 — Precision results for classification after test, with product knowledge

circuit Pbor Pband Pbbyz Psrise Ps f all Pct PL

b18 0.8151 0.8008 0.9784 0.9084 0.8696 0.9659 0.8902
b19 0.8423 0.8625 0.9895 0.9182 0.9187 0.9886 0.9176
b20 0.8083 0.7810 0.9777 0.8577 0.8884 0.9700 0.8794
b21 0.8436 0.8182 0.9658 0.8902 0.8857 0.9737 0.8964
b22 0.8157 0.8502 0.9707 0.9068 0.8686 0.9449 0.8929
p35k 0.8690 0.8837 0.9916 0.8839 0.8496 0.9515 0.9043
p45k 0.8930 0.9070 0.9919 0.9686 0.9661 0.9736 0.9491
p78k 0.9462 0.9918 1.0000 0.9924 0.9763 0.9924 0.9830
p141k 0.9139 0.9262 0.9758 0.9692 0.9055 0.9554 0.9414
p330k 0.9048 0.8884 1.0000 0.9531 0.9312 0.9446 0.9367

The question that raises next is if there is a pattern of misclassification. In particular, it
is interesting to identify which classes cannot be easily differentiated, or if there is any
relation between classes. To analyze this, figure 6.8 shows the classification distribution
for each fault class. The figure only presents the results for circuit p35k. This is, however,
representative, since all circuits tend to mistake the same fault classes and follow the
same trend. The horizontal axis has six labels, and represents the injected fault class.
Each of the bars shows the percentage of faults that were classified as each of the six
fault classes. The leftmost bar, for instance, represents the injected bor faults. Almost
up to 90% are correctly classified. An additional set, slightly over 10%, is misclassified
as s f all . Finally, not observable on the graph because the percentage is so small, a few
experiments were classified as byzantine bridges (bbyz).

The chart shows the trends of misclassification. Dominant and bridges, for instance,
are most often mistaken for slow to rise gates. The misclassifications are related to the
structure of table 6.1. Classes which are often mistaken have overlapping activation
conditions. On the other hand, classes with disjoint characteristic feature sets are harder
to misclassify. For instance, the slow gates and the dominant bridges overlap in the
victim line static condition. Hence, the misclassification bor ↔ s f all and band ↔ srise

is a classification pattern. Crosstalk, on the other hand, is not only more often better
classified, but there is also no observable bias for the misclassified examples.



132 Chapter 6 ● Neural networks for defect classification

It is important to note that a diagnostic test generator may include test patterns which
minimize the coincidence. However, these results have been obtained from circuits
tested with a manufacturing test set, hence not fine-tuned to enhance diagnosis reso-
lution. For the example case with a slow-to-rise gate and a dominant-and bridge, the
common condition is sv. The bridge requires also distance to the neighbors, and the
slow gate requires a transition. In the best case (for test), one pattern will satisfy all
conditions. However, as discussed in section 3.2.3, this conflicts with diagnostic proper-
ties, because it does not allow the distinction of fault classes with partially overlapping
activation conditions. The limited diagnostic properties of the test patterns limit the
distinction of some faults. Yet the results show high accuracy, precision and recall
values, providing the manufacturer with a useful guide for PFA application.

From the analysis of all circuits, roughly the same trends are observed. There are,
however, some spurious misclassifications, suggesting that the circuit topology and/or
the randomly generated training sets have a noticeable impact on the distribution of
the features.

▲ Figure 6.8 — Classification distribution per fault class

The results still allow onemore conclusion. For the faults whichwere correctly classified,
the average observed error rate is about 0.1. That means that for around 10% of the test
patterns, an erroneous value was observed at the output. However, for faults which
were misclassified, this average drops down to a value around 0.02. In average, only
about 2% of the test patterns were able to activate and propagate the fault. A low



6.4 ● Experimental validation 133

number of detecting patterns helps increase the probability that don’t care fields in the
activation conditions of one fault class may match the pattern of another fault class.
Consequently, the tool may misclassify. However, this seems to confirm that, the better
the fault detection quality and the more information available, the better diagnosis
quality can be achieved.

6.4.2 Fault classification based exclusively on failing informa-
tion

For online error detection, if any online test strategy is applied, the patterns are also
known and the approach of the previous section can be reused. However, for some
components in a system, no test strategy can be integrated in the system without
interfering with the system functionality. In those cases, the module can be equipped
with online error detection, for instance error detecting codes. Such techniques do
not include a test pattern source. If the applied patterns are a priori unknown and
only the failing ones have been registered, the set of features deployed in 6.2.2 cannot
be reused. However, early classification is still highly advantageous for field returns:
troubles which are not repeatable in the lab do not allow a second diagnostic pass, and
physical failure analysis can still benefit from additional information that pinpoints the
fault class. To apply the method in this scenario, a set of features is needed where the
passing information is not considered. For this reason, this section presents the results
of classification when only failing information is available. The feature vector is hence
formed only by the features presented in 6.2.1, and is thereby formed by thirteen real
numbers.

Table 6.5 reports the optimal configuration and the accuracy results for each circuit.
The first column indicates the circuit, the next two the layers and cells in the optimal
configuration. The accuracy per class follows, and the rightmost column is the overall
accuracy of the classifier. The accuracy levels are lower than in the previous case,
although it is still over 0.9 for all cases.

The recall and precision results give an insight into what caused the mispredictions.
Recall results are presented in table 6.6. For each circuit, the recall for each class is
indicated in the corresponding column. The last column indicates the global recall
value.



134 Chapter 6 ● Neural networks for defect classification

▲ Table 6.5 — Classification accuracy results after online error detection, with product
knowledge

circuit ls cs Abor Aband Abbyz Asrise As f all Act AL

b18 1 9 0.9245 0.9232 0.9697 0.9360 0.9292 0.9710 0.9423
b19 2 9 0.9282 0.9380 0.9859 0.9415 0.9324 0.9824 0.9514
b20 2 7 0.9154 0.9247 0.9734 0.9280 0.9034 0.9860 0.9385
b21 1 9 0.9278 0.9258 0.9746 0.9318 0.9225 0.9860 0.9447
b22 2 14 0.9320 0.9232 0.9737 0.9320 0.9246 0.9805 0.9443
p35k 3 14 0.9349 0.9515 0.9854 0.9515 0.9262 0.9807 0.9550
p45k 1 6 0.9138 0.9366 0.9850 0.9491 0.8994 0.9726 0.9427
p78k 3 14 0.9758 0.9699 0.9987 0.9699 0.9725 0.9980 0.9808
p141k 1 12 0.9473 0.9487 0.9822 0.9526 0.9335 0.9789 0.9572
p330k 2 6 0.9354 0.9407 0.9848 0.9565 0.9222 0.9756 0.9525

▲ Table 6.6 — Classification recall results after online error detection, with product
knowledge

circuit Rbor Rband Rbbyz Rsrise Rs f all Rct RL

b18 0.7143 0.7623 0.8467 0.8314 0.7893 0.9885 0.8268
b19 0.8220 0.8634 0.9078 0.7729 0.7778 0.9808 0.8542
b20 0.6936 0.7946 0.8692 0.7778 0.7923 0.9502 0.8155
b21 0.7713 0.7974 0.8726 0.8008 0.7962 0.9540 0.8342
b22 0.8515 0.8017 0.8736 0.7718 0.7625 0.9310 0.8330
p35k 0.8207 0.8413 0.9228 0.8597 0.8084 0.9349 0.8651
p45k 0.7935 0.8216 0.9234 0.8506 0.6885 0.8889 0.8282
p78k 0.9363 0.9098 0.9920 0.9084 0.9195 0.9885 0.9424
p141k 0.8848 0.8333 0.9080 0.8851 0.7915 0.9234 0.8716
p330k 0.8517 0.8613 0.9195 0.8621 0.7423 0.9080 0.8576

The misclassification pattern is consistent with the classification based on test: lower
recall values correspond to the dominant bridges and slow gate classes. Crosstalk-
induced delay and byzantine bridges, on the other hand, are identified in all cases. The
misprediction problems are now aggravated because only half of the information is
available. Not only is the test set a non-diagnostic set, but also the information of the
passing patterns is unavailable in this scenario. Nevertheless, with this limitation and
reduced amount of information compared to the results for the manufacturing fault
classification, the method correctly identifies over 82% of the faults for every circuit.
For our target, i.e., systematic problem identification, this is statistically significant.



6.4 ● Experimental validation 135

Table 6.7 summarizes the levels of precision for all fault classes and circuits. The
precision per fault class, as well as the overall precision, are presented for every circuit.

▲ Table 6.7 — Precision results for classification with failing information

circuit Pbor Pband Pbbyz Psrise Ps f all Pct PL

b18 0.7561 0.7359 0.9779 0.8097 0.8047 0.8658 0.8268
b19 0.7638 0.7747 0.9947 0.8510 0.8423 0.9275 0.8542
b20 0.7477 0.7265 0.9741 0.8024 0.6936 0.9688 0.8155
b21 0.7511 0.7430 0.9784 0.8069 0.7667 0.9651 0.8342
b22 0.7443 0.7323 0.9744 0.8017 0.7992 0.9567 0.8330
p35k 0.7954 0.8653 0.9917 0.8190 0.7757 0.9531 0.8651
p45k 0.7076 0.7857 0.9877 0.8506 0.7103 0.9469 0.8282
p78k 0.9180 0.9024 1.0000 0.9154 0.9195 1.0000 0.9424
p141k 0.8052 0.8333 0.9875 0.8462 0.8135 0.9526 0.8716
p330k 0.7614 0.7824 0.9917 0.8824 0.7910 0.9480 0.8576

Here, too, byzantine bridges and crosstalk-induced delay problems are identified with
higher precision levels. This is related to their very specific activation conditions, which
are rarely met when a fault of a different class is active. For the classes with lower
recall levels, the precision is also lower, as they get mistaken more often for other fault
classes. The most characteristic feature for a slow-to-rise gate, for instance, is a large
number of failing patterns which cause a rising transition. However, this can easily be
the case too for a dominant or bridge, particularly if it is hard to detect and many of
the detecting patterns also happen to cause a rising transition.

Although the recall and precision levels are lower than in the previous section due to the
lower amount of information available, the method would still allow a fast classification
that prioritizes and guides the physical analysis procedure.

Figure 6.9 shows the classification rates. These rates describe the distribution of clas-
sification for an injected fault of class l f . Interestingly, the results confirm the need
for the driving gate input features: the classes most often mistaken are dominant or
and slow to fall gates, and dominant and and slow to rise gates. The introduction of
f c1

f and f c0
f mitigates the problem, and these results point to glitches as the main issue

for misprediction. This suggests that collecting the features with a zero delay logic
simulator limits the recall of the method.



136 Chapter 6 ● Neural networks for defect classification

▲ Figure 6.9 — Classification distribution for classification based on failing informa-
tion.

6.4.3 Fault identification without product knowledge

The previous sections require a trained ANN. Unfortunately, it is not always the case
that information about the handled product is available. For this reason, this subsection
presents the results of ANN reuse, i.e., an ANN originally trained with data that belongs
to a certain design d is deployed to classify faults observed in chips of type d′.

At the beginning of production, when there is no knowledge about the product, no
information is available about previous faults and the method is not directly applicable.
To train the ANN, large amounts of data need to be available. However, in a technology
node the defects and their activation conditions are the same regardless of the functional
design of the circuit. Thus, training the ANN with data from one design to predict the
class for faults present in another design is reasonable.

Table 6.8 reports the classification recall of a network trained with data from the design
circuit. The recall is measured with the test sets of all other nine circuits. The network
configuration is the same as reported in subsection 6.4.1. Columns bor through ct report
the recall for each fault class. The last column indicates the obtained overall recall.

The results follow a pattern similar to that observed for fault classification with product
knowledge: the slow to rise gates are still the class most prone to misclassification,
while crosstalk and byzantine bridges have high recall values. Interestingly, circuit



6.4 ● Experimental validation 137

▲ Table 6.8 — Classification recall results after test, without product knowledge

circuit Rbor Rband Rbbyz Rsrise Rs f all Rct RL

b18 0.8708 0.8964 0.9034 0.8884 0.8088 0.9774 0.8911
b19 0.8898 0.8642 0.8499 0.9004 0.8348 0.9766 0.8863
b20 0.8861 0.8479 0.9004 0.8831 0.8161 0.9881 0.8876
b21 0.8788 0.8917 0.9008 0.9043 0.8404 0.9625 0.8967
b22 0.8527 0.8870 0.9043 0.9021 0.7781 0.9817 0.8846
p35k 0.9239 0.9422 0.8973 0.8290 0.7909 0.9723 0.8914
p45k 0.9514 0.9274 0.8986 0.8419 0.7440 0.9600 0.8857
p78k 0.8101 0.8364 0.8702 0.7483 0.6675 0.9408 0.8121
p141k 0.8734 0.9006 0.9113 0.8822 0.7676 0.9349 0.8778
p330k 0.9076 0.9085 0.8704 0.8596 0.8242 0.9804 0.8916

p78k, which rendered the best results in the scenario with product knowledge now
performs worse than the other circuits, with an overall recall value 0.07 lower than
the other circuits. Regardless of this, although there was no information available
to train the ANN and the training was performed with data belonging to the circuit
indicated in the first column of table 6.9, the precision results reported show that there
is potential for ANN reuse. The method yields an overall accuracy of over 0.8 for
all circuits, and is applicable from the beginning of production with still very high
precision in the classification of the tool. This classification allows for very early critical
defect identification and rapid yield ramp up.

The precision results, reported in table 6.9, also confirm the potential for reuse. Although
slightly lower than in the previous case, the lowest precision value in the table is 0.7275,
with this value being almost an outlier since most of the results are over 0.8. Here, too,
the lower performance of p78k is visible. The confidence in the outcome of the ANN
trained with its data is lower than that of all other circuits.

Figure 6.10 shows the distribution of classification for each class of injected fault for
the ANN trained with data of circuit p35k. The test data of all other circuits has been
deployed as test set. Like in previous results, the misclassifications seem to follow
the same trend, with mistakes being more numerous for those classes with related
characteristic features. Here again slow gates are often confused with the dominant
bridge classes, and crosstalk is the easiest class to spot. However, more spurious
misclassification can be observed in this chart, where a yellow fringe, although small,
is observable in all columns. Also, more faults are classified as byzantine. This spurious
effects confirm the influence of the topology and the random sampling of the faults.



138 Chapter 6 ● Neural networks for defect classification

▲ Table 6.9 — Precision results for classification after test, with no product
knowledge

circuit Pbor Pband Pbbyz Psrise Ps f all Pct

b18 0.8244 0.8511 0.9753 0.9061 0.8378 0.9535
b19 0.8313 0.8327 0.9895 0.8628 0.8427 0.9679
b20 0.8686 0.8257 0.9491 0.8902 0.8751 0.9131
b21 0.8743 0.8507 0.9643 0.8976 0.8484 0.9456
b22 0.8276 0.8586 0.9502 0.9017 0.8313 0.9325
p35k 0.8299 0.7852 0.9543 0.9380 0.9004 0.9605
p45k 0.7992 0.8216 0.9530 0.9192 0.8804 0.9567
p78k 0.7646 0.7275 0.8799 0.8279 0.7959 0.8742
p141k 0.8007 0.8365 0.9368 0.9059 0.8261 0.9627
p330k 0.8255 0.8223 0.9807 0.9151 0.8652 0.9517

Nevertheless, their impact on the recall and precision is negligible, and the approach is
hence robust to a product change.

▲ Figure 6.10 — Classification distribution per fault class (after test, without product
knowledge)

The experiments with lack of knowledge have also been performed based solely on
online error detection results, that is, only based on failing patterns. Table 6.10 sum-
marizes the recall values for this scenario without previous product knowledge. The
first column, circuit, determines to what design the training data belongs. The follow-



6.4 ● Experimental validation 139

ing columns indicate the recall for each fault class and the global one. The recall is
calculated for the test sets of all other nine circuits.

▲ Table 6.10 — Recall results after online error detection, without product knowledge

circuit Rbor Rband Rbbyz Rsrise Rs f all Rct RL

b18 0.7187 0.7491 0.8911 0.8291 0.7601 0.9957 0.8264
b19 0.8311 0.8354 0.8679 0.7913 0.7951 0.9711 0.8494
b20 0.6826 0.7843 0.9122 0.8363 0.7867 0.9259 0.8236
b21 0.7329 0.7603 0.8912 0.8547 0.8178 0.9425 0.8356
b22 0.7302 0.7210 0.8972 0.8608 0.7785 0.9000 0.8169
p35k 0.8238 0.8434 0.8947 0.7315 0.6419 0.9170 0.8077
p45k 0.8392 0.7773 0.8911 0.8432 0.6088 0.8995 0.8094
p78k 0.7874 0.8440 0.8506 0.7031 0.7883 0.7327 0.7835
p141k 0.8979 0.8154 0.8999 0.8446 0.7058 0.8897 0.8415
p330k 0.8204 0.8127 0.8652 0.7768 0.6583 0.8799 0.8016

Due to the limited information the recall results are, as expected, below the recall
obtained with product knowledge. The precision results are reported in table 6.11, and
confirm the trend observed: the less information available (less features and no product
knowledge) complicates the analysis with ANNs. However, although the results are
not so accurate, the method shows tolerance towards noisy data.

The precision results are, accordingly to the recall, lower than for those scenarios with
more knowledge. However, as observed in figure 6.11, the classification trend is still
maintained. Only spurious effects of byzantine and crosstalk classification appear, but
the classification patterns stay otherwise robust.

▲ Table 6.11 — Precision results for classification with failing information

circuit Pbor Pband Pbbyz Psrise Ps f all Pct

b18 0.7916 0.7679 0.9859 0.7777 0.7846 0.8530
b19 0.7989 0.7578 0.9936 0.8207 0.8093 0.9257
b20 0.8111 0.7854 0.9497 0.8182 0.6858 0.9119
b21 0.8095 0.7757 0.9907 0.7894 0.7373 0.9303
b22 0.7794 0.7733 0.9569 0.7748 0.7073 0.9272
p35k 0.6918 0.7099 0.9559 0.8330 0.7373 0.9447
p45k 0.6627 0.7966 0.9544 0.8116 0.7233 0.9312
p78k 0.7700 0.6346 0.9924 0.8375 0.6490 0.9598
p141k 0.7344 0.7907 0.9570 0.8277 0.7938 0.9676
p330k 0.6714 0.7291 0.9944 0.8181 0.7059 0.9387



140 Chapter 6 ● Neural networks for defect classification

▲ Figure 6.11 — Distribution for classification based on failing information and
without product knowledge

The scenarios with a more accute lack of knowledge highlight interesting effects about
the method. The training and data sets were generated randomly, making the distri-
bution of the location of victims also random. Signals located closer to the outputs
are generally more prone to experience glitches, which cause mismatches between
logic and timing annotated simulation. The features are noisier the closer the victim
line is to the outputs. As a result, circuits which had a wider range of values for the
features generalized from a more heterogeneous training set. Consequently have less
difficulty to predict the class of data from other circuits. On the other hand, circuits
which predicted very well for their own data, such as p78k, are now less capable of
generalizing for data from other circuits.

The results suggest that ANN reuse is possible, at least for the first phases when there
is no data available. If necessary, an ANN can be trained as production goes by and
data can be sampled. In the worst case, however, at least a coarse prediction can be
made using existing ANNs which already identifies systematic problems.

6.4.4 Identification of intermittent faults

In the previous sections, only permanent faults were considered. However, as discussed
in 3.5, supporting the diagnosis of intermittent faults is extremely important. This
section takes the results presented previously as the baseline, and compares the recall of
the method when intermittent faults are injected instead of permanent. It is important



6.4 ● Experimental validation 141

to note that the ANN has only been trained with permanent faults. The motivation
behind this is twofold. In the first place, the goal is to assess the robustness of the
method with respect to intermittent faults, i.e., imperfections in the fault modeling.
In the second, it is interesting to mitigate the impact of information gathering. In
order to train the ANN, a balanced training set must be available. However, it would
be extremely rare that in production all six classes of faults appeared evenly. Thus,
the results in this section are a first attempt to explore the possibility of generating
synthetic data for the training, and hence saving this first obstacle for machine learning
techniques.

The experiments performed consider four different values for the activation rate:
λa ∈ 0.7, 0.5, 0.3, 0.1. The reference experiments are permanent faults, which can
be expressed as λa = 1.0.

The first set of experiments is performed for the test scenario, that is, both passing and
failing information are available. The results show that recall and precision decrease
as the activation rate deviates from that of the training set. Since the training set is
formed by features collected from permanent faults, the less often a fault gets activated,
the more its behavior differs from that of the training data set elements. Figure 6.12
shows the evolution of the recall as the activation decreases. The baseline is the test set
formed by permanent faults. The X-axis indicates the intermittent activation rate. In
average, the recall value for intermittents decreases by 0.1, rendering an overall recall
RL of around 0.85 in the worst scenario with a high behavior deviation.

The precision decreases also as the activation rate decreases. Its evolution is presented
in figure 6.13 for each of the six fault classes. The value of the overall recall and the
overall precision are the same, RL

= PL. Despite the descending curves, the absolute
precision value remains over 0.85 for an activation rate of 0.1, and it is over 0.75 for all
classes.

Figure 6.14 shows the classification distribution for an ANN trained with data of
permanent faults in circuit p35k and tested with intermittent faults activated with a 0.5
probability. The horizontal axis represents the injected fault class. The ratio of colored
areas of each class represents the output of the ANN, i.e., how the injected faults of
each class were classified. Despite the difference of the activation rate, the trend is still
consistent with the previously observed scenarios: permanent faults both with and
without product knowledge.

This result suggests that the method can tolerate a high degree of uncertainty also



142 Chapter 6 ● Neural networks for defect classification

▲ Figure 6.12 — Recall evolution for decreasing activation rates of intermittent faults
in test

▲ Figure 6.13 — Precision evolution for decreasing activation rates of intermittent
faults in test

in the fault modeling, which is promising with the modeling uncertainty expected in
nanometer regimes.

A similar tendency is observed for the ANNs trained only with failing pattern informa-
tion. However, for the online detection scenario the average recall reduction is half of
the average recall reduction in the former case. For classification after test, the value of
recall for the intermittents with rarest activation λ = 0.1 was in average 0.371 lower
than the recall value from the reference case with λ = 1.0 . Figure 6.15 shows the impact



6.4 ● Experimental validation 143

▲ Figure 6.14 — Classification distribution for intermittent faults after test

of the activation rate on the recall. Although the recall loss can also be observed for
the online error detection scenario, this ANNs seem more robust against these varia-
tions: the average recall difference between the reference case and the intermittents
with the lowest activation rate is only 0.176. The difference is hence less than half of
the difference for the experiments with passing information. The reason is that the
passing patterns, which are now noisier because the fault was not always activated,
are not considered for the online detection scenario. The failing patterns, on the other
hand, always require the activation of the fault, and for this reason the results do not
deteriorate like when both passing and failing patterns are considered. Less detecting
patterns, however, also lead to decreased diagnostic ability, because the probability that
a large rate of the failing patterns satisfies the activation conditions of more than one
fault class also increases.

The impact of decreasing activation rates on the precision results is illustrated in figure
6.16. The effect is the same as on recall: the method loses accuracy, but the average
loss of precision in this case is 0.0009, while for the scenario with passing and failing
pattern information it is 0.0353.

The classification patterns also remain unchanged. Figure 6.17 shows the classification
distribution for each class of injected fault. The results belong to circuit p35k, and
represent the injected faults with a rate of 0.5. The classes ct and bbyz are now more
often the outcome of the tool, because with lower number of failing patterns the
probability that the activation patterns will fulfill the activation conditions of these
faults is higher. For example, in the extreme case of a bridge activated by just one



144 Chapter 6 ● Neural networks for defect classification

▲ Figure 6.15 — Recall evolution for decreasing activation rates of intermittent faults
in test

▲ Figure 6.16 — Precision evolution for decreasing activation rates of intermittent
faults after online error detection

pattern, it is likely that one of the neighbors will switch and render a high value of the
feature ftrans, which is characteristic of crosstalk. As a result, the fault may be classified
as crosstalk. The more restricted the information is, the less quality the diagnostic
process has.

In the online error detection scenario, the diminished recall is mainly caused by a
lower number of failing patterns. As discussed in previous sections, a lower error rate
leads to less recall in the method. In the test scenario, this is aggravated because a
lower activation rate changes the distribution of the values for the features related



6.4 ● Experimental validation 145

▲ Figure 6.17 — Classification pattern for p35k intermittents with λact = 0.5

to the passing patterns. For this reason, classification after test is less robust than
classification after online error detection. Nevertheless, the recall and precision values
for both scenarios show that there is potential for machine learning application in
this field. The presented method is applicable in all presented scenarios for volume
prediction. It is robust even when the production of a new design is initiated, and
also in presence of intermittent faults. Moreover, it requires no special test set, as
even with a manufacturing test without diagnostic properties it allows for a fast prior
fault classification. Neural networks and their robustness against uncertainty are
thus promising in the context of CMOS nanometer technologies, where uncertainty
dominates the modeling on which most test and diagnosis techniques rely.





C
h
a
p
t
e
r

7
Conclusions and future work

The manufacturing process of nanometer technologies introduces variations, which
translate into deviations from the expected performance specification. On top of that,
chips manufactured in these technologies are sensitive to environmental variations and
noise. If a defect is introduced, it may impact the behavior of the device in different
ways depending on their size and nature. Growing uncertainty in the deep submicron
regime calls for test and diagnosis techniques which are robust against indeterminism.

While test detects the defects, diagnosismust locate and characterize the defect. Variation-
aware test pattern generation techniques exist, but diagnosis must still make progress to
handle indeterminism. Although logic diagnosis location techniques have been broadly
investigated, only a few techniques exist to characterize the problem. Unfortunately,
they are either too costly, such as physical analysis, or do not handle intermittent faults.

This work has presented two machine learning based techniques for fast fault char-
acterization. The approaches incur in minimal overhead in the manufacturing flow,
but succeed in classifying the faults correctly with a precision sufficient to identify
systematic problems during manufacturing. As a consequence, costly physical analysis
procedures can be prioritized, speeding up yield ramp-up.

The first of the approaches is based on Bayesian networks, and identifies the chips
affected by critical defects from those affected only from noise. Not only does this result



148 Chapter 7 ● Conclusions and future work

help in prioritization, but it also avoids unnecessary yield losses, since chips affected
by noise are not really faulty and can be deployed in robust circuits.

The second method is based on artificial neural networks. It monitors some values
from logic simulation which represent the activation conditions, and maps them to one
of the fault classes. The information obtained in this second step of the classification
can be deployed to issue a warning when one of the fault classes appears with higher
frequency. The approach can be applied to the chips after manufacturing test, but also
succeeds in identifying the fault classes in online test, despite the restricted amount
of information available. It can also be deployed from the beginning of production by
reusing the neural network of another product.

7.1 Future work

The main limitation of machine learning techniques is often the lack of a suitable
training set from which to extrapolate patterns. Possible extensions of this work
include exploring the possibility of deploying a completely synthetic training set, that
is, based on simulation, and evaluate the effectiveness of the method on chips affected
by variations and with different fault sizes. Another open problem is differentiating
between slow circuits, i.e., affected by variations and which belong to the slower classes,
from devices which are affected by a defect and consequently produce incorrect outputs.
Distinguishing between both cases is a far from trivial task, and will generally require
additional test and physical analysis. Speeding up this process with an extension to
this work would accelerate a correct identification of design problems or defect prone
processes.







Bibliography

[Abele14] U. Abelein, A. Cook, P. Engelke, M. Glaß, F. Reimann, L. Rodríguez Gómez,
T. Russ, J. Teich, D. Ull, and H.-J. Wunderlich. Non-Intrusive Integration
of Advanced Diagnosis Features in Automotive E/E-Architectures. In
Proceedings of the Conference on Design, Automation and Test in Europe
(DATE’14). 2014. [pages 26, 55, 60, and 62]

[Acken91] J. A. Acken and S. D. Millman. Accurate modeling and simulation of
bridging faults. In Proceedings of the IEEE 1991 Custom Integrated Circuits
Conference, pages 17.4/1–17.4/4. May 1991. [page 19]

[Agarw07] M. Agarwal, B. C. Paul, M. Zhang, and S. Mitra. Circuit failure prediction
and its application to transistor aging. In Proceedings of the 25th IEEE VLSI
Test Symposium (VTS’07), pages 277–286. May 2007. [page 25]

[Agarw08] M. Agarwal, V. Balakrishnan, A. Bhuyan, K. Kim, B. C. Paul, W. Wang,
B. Yang, Y. Cao, and S. Mitra. Optimized circuit failure prediction for
aging: Practicality and promise. In Proceedings of the IEEE International
Test Conference (ITC’08), pages 1–10. Oct 2008. [page 26]

[Amgal08] U. Amgalan, C. Hachmann, S. Hellebrand, and H. J. Wunderlich. Signature
rollback - a technique for testing robust circuits. In Proceedings of the 26th
IEEE VLSI Test Symposium (VTS’08), pages 125–130. April 2008. [pages 45,
62, and 88]

[Apost07] A. Apostolakis, M. Psarakis, D. Gizopoulos, and A. Paschalis. Functional
processor-based testing of communication peripherals in systems-on-chip.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 15(8):971–
975, Aug 2007. [page 55]



152 Bibliography

[Apost09] A. Apostolakis, D. Gizopoulos, M. Psarakis, D. Ravotto, and M. S. Reorda.
Test program generation for communication peripherals in processor-
based soc devices. IEEE Design & Test of Computers, 26(2):52–63, March
2009. [page 55]

[Baran15] R. Baranowski, F. Firouzi, S. Kiamehr, C. Liu, M. Tahoori, and H.-J. Wun-
derlich. On-Line Prediction of NBTI-induced Aging Rates. In Proceedings
of the Conference on Design, Automation and Test in Europe (DATE’15),
pages 589–592. 2015. [page 25]

[Barde82] P. H. Bardell and W. H. McAnney. Self-testing of multichip logic modules.
In Proceedings of the IEEE International Test Conference (ITC’82), pages
200–204. Nov 1982. [page 44]

[Becke10] B. Becker, S. Hellebrand, I. Polian, B. Straube, W. Vermeiren, and H. J.
Wunderlich. Massive statistical process variations: A grand challenge
for testing nanoelectronic circuits. In 2010 International Conference on
Dependable Systems and Networks Workshops (DSN-W), pages 95–100. June
2010. [pages 71, 74, and 77]

[Belet02] D. Belete, A. Razdan, W. Schwarz, R. Raina, C. Hawkins, and J. Morehead.
Use of dft techniques in speed grading a 1 ghz+ microprocessor. In Pro-
ceedings of the International Test Conference (ITC’02), pages 1111–1119.
2002. [pages 22 and 23]

[Benwa12] B. Benware, C. Schuermyer, M. Sharma, and T. Herrmann. Determining
a failure root cause distribution from a population of layout-aware scan
diagnosis results. IEEE Design & Test of Computers, 29(1):8–18, 2012.
[page 82]

[Bergs10] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,
J. Turian, D. Warde-Farley, and Y. Bengio. Theano: a CPU and GPU math
expression compiler. In Proceedings of the Python for Scientific Computing
Conference (SciPy). June 2010. Oral Presentation. [page 128]

[Bisho06] C. M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006. ISBN 0387310738. [pages 68, 78, 79, 81, 120, and 124]



Bibliography 153

[Blaau08] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer. Statistical timing
analysis: From basic principles to state of the art. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
27(4):589–607, April 2008. [page 75]

[Blant12] R. D. Blanton, W. C. Tam, X. Yu, J. E. Nelson, and O. Poku. Yield learning
through physically aware diagnosis of ic-failure populations. IEEE Design
& Test of Computers, 29(1):36–47, Feb 2012. [pages 24 and 83]

[Bolza07] L. Bolzani, E. Sanchez, M. Schillaci, M. S. Reorda, and G. Squillero. An au-
tomated methodology for cogeneration of test blocks for peripheral cores.
In Proceedings of the 13th IEEE International On-Line Testing Symposium
(IOLTS 2007), pages 265–270. July 2007. [page 55]

[Bonda00] A. Bondavalli, S. Chiaradonna, F. di Giandomenico, and F. Grandoni.
Threshold-based mechanisms to discriminate transient from intermit-
tent faults. IEEE Transactions on Computers (TC), 49(3):230–245, 2000.
[page 64]

[Bonin01] D. Boning and S. Nassif. Models of Process Variations in Device and In-
terconnect, pages 98–115. Wiley-IEEE Press, 2001. ISBN 9780470544365.
[pages 72, 73, and 74]

[Borka03] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De.
Parameter variations and impact on circuits and microarchitecture. In
Proceedings of the 40th annual ACM/IEEE Design Automation Conference
(DAC’03), pages 338–342. 2003. [pages 74 and 75]

[Botto94] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel,
Y. LeCun, U. A. Muller, E. Sackinger, P. Simard, and V. Vapnik. Comparison
of classifier methods: a case study in handwritten digit recognition. In
Proceedings of the 12th IAPR International Conference on Pattern Recognition,
Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5), volume 2,
pages 77–82 vol.2. Oct 1994. [page 69]

[Bushn13] M. Bushnell and V. Agrawal. Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits. Springer Publishing Company,



154 Bibliography

Incorporated, 2013. ISBN 1475781423, 9781475781427. [pages 17, 22, 24,
29, 34, 35, 42, 43, 44, and 62]

[Chen98] H. H. Chen and J. S. Neely. Interconnect and circuit modeling techniques
for full-chip power supply noise analysis. IEEE Transactions on Compo-
nents, Packaging, and Manufacturing Technology, 21(3):209–215, Aug 1998.
[page 14]

[Chen02] L. H. Chen and M. Marek-Sadowska. Incremental delay change due to
crosstalk noise. In Proceedings of the 2002 International Symposium on
Physical Design, ISPD ’02, pages 120–125. ACM, New York, NY, USA, 2002.
ISBN 1-58113-460-6. [page 14]

[Chen03] L. Chen, S. Ravi, A. Raghunathan, and S. Dey. A scalable software-based
self-test methodology for programmable processors. In Proceedings of
the 40th annual ACM/IEEE Design Automation Conference (DAC’03), pages
548–553. June 2003. [page 54]

[Chen09] P. J. Chen, J. C. M. Li, and H. J. Chao. Bridging fault diagnosis to identify
the layer of systematic defects. In Proceedings of the IEEE 18th Asian Test
Symposium (ATS’09), pages 349–354. Nov 2009. [page 39]

[Chess98a] B. Chess and T. Larrabee. Logic testing of bridging faults in cmos inte-
grated circuits. IEEE Transactions on Computers, 47(3):338–345, Mar 1998.
[page 12]

[Chess98b] B. Chess and T. Larrabee. Logic testing of bridging faults in cmos inte-
grated circuits. IEEE Transactions on Computers, 47(3):338–345, Mar 1998.
[pages 32 and 33]

[Cheun07] H. Cheung and S. K. Gupta. Accurate modeling and fault simulation
of byzantine resistive bridges. In Proceedings of the 25th International
Conference on Computer Design, pages 347–353. Oct 2007. [page 19]

[Choll15] F. Chollet. Keras. https://github.com/fchollet/keras, 2015.
[page 128]

[Const03] C. Constantinescu. Trends and challenges in vlsi circuit reliability. IEEE
Micro, 23(4):14–19, 2003. [page 20]

https://github.com/fchollet/keras


Bibliography 155

[Cook11] A. Cook, M. Elm, H.-J. Wunderlich, and U. Abelein. Structural In-Field
Diagnosis for Random Logic Circuits. In Proceedings of the 16th IEEE
European Test Symposium (ETS’11), pages 111–116. IEEE Computer Society,
2011. [pages 40, 59, 62, and 89]

[Cook14] A. Cook and H.-J. Wunderlich. Diagnosis of Multiple Faults with Highly
Compacted Test Responses. In Proceedings of the 19th IEEE European Test
Symposium (ETS’14), pages 27–30. 2014. [pages 41 and 59]

[Corno04] F. Corno, E. Sánchez, M. S. Reorda, and G. Squillero. Automatic test
program generation: A case study. IEEE Design & Test of Computers,
21(2):102–109, 2004. [page 54]

[Corte95] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995. [page 80]

[Das15] S. Das, D. M. Bull, and P. N. Whatmough. Error-resilient design techniques
for reliable and dependable computing. IEEE Transactions on Device and
Materials Reliability, 15(1):24–34, March 2015. [page 71]

[De Kl09] J. De Kleer. Diagnosing multiple persistent and intermittent faults. In
Proceedings of the 21st International Joint Conference on Artifical intelli-
gence (IJCAI’09), pages 733–738. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2009. [page 64]

[DeOri13] A. DeOrio, Q. Li, M. Burgess, and V. Bertacco. Machine learning-based
anomaly detection for post-silicon bug diagnosis. In Proceedings of the
ACM/IEEE Conference on Design, Automation Test in Europe (DATE’13),
pages 491–496. 2013. [page 82]

[Desin06] R. Desineni, O. Poku, and R. D. Blanton. A logic diagnosis methodology
for improved localization and extraction of accurate defect behavior. In
Proceedings of the IEEE International Test Conference (ITC’06), pages 1–10.
Oct 2006. [pages 39, 65, and 83]

[Dodd03] P. E. Dodd and L. W. Massengill. Basic mechanisms and modeling of
single-event upset in digital microelectronics. IEEE Transactions on Nuclear
Science, 50(3):583–602, June 2003. [page 14]



156 Bibliography

[Drine03] P. Drineas and Y. Makris. Concurrent fault detection in random combi-
national logic. In Fourth International Symposium on Quality Electronic
Design, 2003. Proceedings., pages 425–430. March 2003. [pages 26 and 50]

[Egger07] S. Eggergluss, G. Fey, and R. Drechsler. Sat-based atpg for path delay faults
in sequential circuits. In 2007 IEEE International Symposium on Circuits
and Systems, pages 3671–3674. May 2007. [page 36]

[Egger12] S. Eggersglüß and R. Drechsler. Circuits and Testing. Springer-Verlag New
York, 2012. ISBN 978-1-4419-9976-4. [page 42]

[Eiche77] E. B. Eichelberger and T. W. Williams. A logic design structure for lsi
testability. In Proceedings of the 14th Design Automation Conference, DAC
’77, pages 462–468. IEEE Press, Piscataway, NJ, USA, 1977. [page 43]

[Flenk15] T. Flenker, A. Sülflow, and G. Fey. Diagnostic tests and diagnosis for delay
faults using path segmentation. In Proceedings of the 24th IEEE Asian Test
Symposium (ATS’15), pages 145–150. Nov 2015. [pages 47 and 62]

[Fujiw83] H. Fujiwara and T. Shimono. On the acceleration of test generation
algorithms. IEEE Transactions on Computers, 32(12):1137–1144, December
1983. [page 36]

[Gench68] H. Genchi, K. Mori, S. Watanabe, and S. Katsuragi. Recognition of hand-
written numerical characters for automatic letter sorting. Proceedings of
the IEEE, 56(8):1292–1301, Aug 1968. [page 68]

[Gil T12] D. Gil-Tomas, J. Gracia-Moran, J.-C. Baraza-Calvo, L.-J. Saiz-Adalid, and
P.-J. Gil-Vicente. Analyzing the impact of intermittent faults on micro-
processors applying fault injection. IEEE Design & Test of Computers,
29(6):66–73, 2012. [page 64]

[Girsh14] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In 2014 IEEE
Conference on Computer Vision and Pattern Recognition, pages 580–587.
June 2014. [page 121]

[Goel81] P. Goel. An implicit enumeration algorithm to generate tests for com-
binational logic circuits. IEEE Transactions on Computers, 30(3):215–222,
March 1981. [page 35]



Bibliography 157

[Goodf16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
[pages 82 and 121]

[Grave13] A. Graves, A. r. Mohamed, and G. Hinton. Speech recognition with deep
recurrent neural networks. In 2013 IEEE International Conference on Acous-
tics, Speech and Signal Processing, pages 6645–6649. May 2013. [page 123]

[Hall99] M. A. Hall. Correlation-based Feature Selection for Machine Learning. Ph.D.
thesis, 1999. [page 25]

[Hamam04] Y. Hamamura, T. Kumazawa, K. Tsunokuni, A. Sugimoto, and H. Asakura.
An advanced defect-monitoring test structure for electrical screening and
defect localization. IEEE Transactions on Semiconductor Manufacturing,
17(2):104–110, May 2004. [page 24]

[Hanse96] J. H. Hansen. Analysis and compensation of speech under stress and noise
for environmental robustness in speech recognition. Speech Communica-
tion, 20(1):151 – 173, 1996. [page 69]

[Hapke14] F. Hapke, W. Redemund, A. Glowatz, J. Rajski, M. Reese, M. Hustava,
M. Keim, J. Schloeffel, and A. Fast. Cell-aware test. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
33(9):1396–1409, Sept 2014. [pages 36 and 65]

[Hess01] C. Hess, D. Stashower, B. E. Stine, L. H. Weiland, G. Verma, K. Miyamoto,
and K. Inoue. Fast extraction of defect size distribution using a single
layer short flow nest structure. IEEE Transactions on Semiconductor Manu-
facturing, 14(4):330–337, Nov 2001. [page 24]

[Hinto06] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507, 2006. [page 81]

[Holst09] S. Holst and H.-J. Wunderlich. Adaptive Debug and Diagnosis Without
Fault Dictionaries. Journal of Electronic Testing: Theory and Applications
(JETTA), 25(4-5):259–268, 2009. [pages 39, 40, 41, 46, and 47]

[Holst15] S. Holst, M. E. Imhof, and H.-J. Wunderlich. High-Throughput Logic
Timing Simulation on GPGPUs. ACM Transactions on Design Automation
of Electronic Systems (TODAES), 20(3):1–22, 2015. [page 33]



158 Bibliography

[Huang16] H. M. Huang and C. H. P. Wen. Layout-based soft error rate estimation
framework considering multiple transient faults from device to circuit
level. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 35(4):586–597, April 2016. [page 70]

[Jha03] N. K. Jha and S. Gupta. Testing of Digital Systems. Cambridge University
Press, Cambridge, UK, 2003. ISBN 0521773563. [page 37]

[Kahng00] A. B. Kahng, S. Muddu, and E. Sarto. On switch factor based analysis of cou-
pled rc interconnects. In Proceedings 37th Design Automation Conference
(DAC’00), pages 79–84. June 2000. [page 14]

[Khare94] J. B. Khare, W. Maly, and M. E. Thomas. Extraction of defect size dis-
tributions in an ic layer using test structure data. IEEE Transactions on
Semiconductor Manufacturing, 7(3):354–368, Aug 1994. [page 24]

[Kiefe00] G. Kiefer and H.-J. Wunderlich. Deterministic bist with partial scan.
Journal of Electronic Testing, 16(3):169–177, 2000. [page 44]

[Kim03] K. S. Kim, S. Mitra, and P. G. Ryan. Delay defect characteristics and
testing strategies. IEEE Design & Test of Computers, 20(5):8–16, Sept 2003.
[page 22]

[Kocht10] M. A. Kochte, C. G. Zoellin, and H.-J. Wunderlich. Efficient concurrent
self-test with partially specified patterns. Journal of Electronic Testing:
Theory and Applications (JETTA), 26(5):581–594, 2010. [pages 26, 49, 50,
and 51]

[Koren07] I. Koren and C. Krishna. Chapter 3 - information redundancy. In I. Koren
and C. M. Krishna, editors, Fault-Tolerant Systems, pages 55 – 108. Morgan
Kaufmann, Burlington, 2007. ISBN 978-0-12-088525-1. [page 51]

[Krizh12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems, NIPS’12,
pages 1097–1105. Curran Associates Inc., USA, 2012. [page 121]

[Larra92] T. Larrabee. Test pattern generation using boolean satisfiability. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
11(1):4–15, Jan 1992. [page 36]



Bibliography 159

[LeCun98] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
November 1998. [pages 121 and 122]

[Li03] Z. Li, X. Lu, W. Qiu, W. Shi, and D. M. H. Walker. A circuit level fault
model for resistive opens and bridges. In Proceedings of the 21st VLSI Test
Symposium (VTS’03), pages 379–384. April 2003. [page 19]

[Liang02] H.-G. Liang, S. Hellebrand, and H.-J. Wunderlich. Two-Dimensional Test
Data Compression for Scan-Based Deterministic BIST. Journal of Electronic
Testing: Theory and Applications (JETTA), 18(2):159–170, 2002. [page 45]

[Licht13] S. Lichtensteiger and J. P. Bickford. Using selective voltage binning to max-
imize yield. IEEE Transactions on Semiconductor Manufacturing, 26(4):436–
441, Nov 2013. [page 23]

[Lieni05] J. Lienig and G. Jerke. Electromigration-aware physical design of inte-
grated circuits. In 18th International Conference on VLSI Design held jointly
with 4th International Conference on Embedded Systems Design, pages 77–
82. Jan 2005. [page 14]

[Lin14] F. Lin, C. K. Hsu, and K. T. Cheng. Feature engineering with canonical
analysis for effective statistical tests screening test escapes. In Proceedings
of the IEEE International Test Conference (ITC’14), pages 1–10. Oct 2014.
[page 84]

[Linga07] L. Lingappan and N. K. Jha. Satisfiability-based automatic test program
generation and design for testability for microprocessors. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, 15(5):518–530, May
2007. [page 54]

[Liou03] J.-J. Liou, A. Krstic, Y.-M. Jiang, and K.-T. Cheng. Modeling, testing, and
analysis for delay defects and noise effects in deep submicron devices.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 22(6):756–769, June 2003. [page 74]

[Lippm87] R. Lippmann. An introduction to computing with neural nets. IEEE ASSP
Magazine, 4(2):4–22, 1987. [page 80]



160 Bibliography

[Liu15a] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy. Sparse convolu-
tional neural networks. In 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 806–814. June 2015. [page 121]

[Liu15b] C. Liu, M. A. Kochte, and H.-J. Wunderlich. Efficient Observation Point
Selection for AgingMonitoring. In Proceedings of the 21st IEEE International
On-Line Testing Symposium (IOLTS’15), pages 176–181. 2015. [page 26]

[LiVol11] R. LiVolsi, K. McCormick, M. Torres, J. Velamala, R. Zheng, and Y. Cao.
Correlation of no trouble found errors to negative bias temperature in-
stability. In Proceedings of the IEEE Aerospace Conference (AeroConf’11),
pages 1–8. March 2011. [pages 15 and 48]

[Lukas09] M. Lukasiewycz, M. Streubühr, M. Glaß, C. Haubelt, and J. Teich. Combined
system synthesis and communication architecture exploration for mpsocs.
In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE’09), DATE ’09, pages 472–477. European Design and Automation
Association, 3001 Leuven, Belgium, Belgium, 2009. ISBN 978-3-9810801-5-
5. [pages 58 and 60]

[Madge05] R. Madge. New test paradigms for yield and manufacturability. IEEE
Design Test of Computers, 22(3):240–246, May 2005. [pages 22 and 24]

[Maly03] W. Maly, A. Gattiker, T. Zanon, T. Vogels, R. Blanton, and T. Storey. De-
formations of ic structure in test and yield learning. In Proceedings of the
IEEE International Test Conference (ITC’03), volume 1, pages 856–865. Sept
2003. [page 107]

[Maric11] E. Maricau, L. Zhang, J. Franco, P. Roussel, G. Groeseneken, and G. Gielen.
A compact nbti model for accurate analog integrated circuit reliability
simulation. In 2011 Proceedings of the European Solid-State Device Research
Conference (ESSDERC), pages 147–150. Sept 2011. [page 15]

[Maric13] E. Maricau and G. Gielen. CMOS Reliability Overview, pages 15–35.
Springer New York, New York, NY, 2013. ISBN 978-1-4614-6163-0.
[pages 15 and 16]



Bibliography 161

[Maxwe16] P. Maxwell, F. Hapke, and H. Tang. Cell-aware diagnosis: Defective
inmates exposed in their cells. In Proceedings of the 21st IEEE European
Test Symposium (ETS’16), pages 1–6. May 2016. [page 65]

[May06] G. S. May and C. J. Spanos. Introduction to Semiconductor Manufacturing,
pages 1–24. John Wiley & Sons, Inc., 2006. ISBN 9780471790280. [page 21]

[McClu71] E. J. McCluskey and F. W. Clegg. Fault equivalence in combinational logic
networks. IEEE Transactions on Computers, C-20(11):1286–1293, Nov 1971.
[page 34]

[McPhe06] J. W. McPherson. Reliability challenges for 45nm and beyond. In Proceed-
ings of the 43rd Annual Design Automation Conference, DAC ’06, pages
176–181. ACM, New York, NY, USA, 2006. ISBN 1-59593-381-6. [page 21]

[Millm90] S. D. Millman, E. J. McCluskey, and J. M. Acken. Diagnosing cmos bridging
faults with stuck-at fault dictionaries. In Proceedings of the IEEE Interna-
tional Test Conference (ITC’90), pages 860–870. Sep 1990. [page 38]

[Mochi15] A. Mochizuki, N. Onizawa, A. Tamakoshi, and T. Hanyu. Multiple-event-
transient soft-error gate-level simulator for harsh radiation environments.
In TENCON 2015 - 2015 IEEE Region 10 Conference, pages 1–6. Nov 2015.
[page 70]

[Mukhe12] R. Mukherjee, P. Ghosh, and A. Pal. Hotspot minimization using fine-
grained dvs architecture at 90 nm technology. In 2012 Asia Pacific Con-
ference on Postgraduate Research in Microelectronics and Electronics, pages
13–18. Dec 2012. [page 71]

[Pasch05] A. Paschalis and D. Gizopoulos. Effective software-based self-test strate-
gies for on-line periodic testing of embedded processors. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
24(1):88–99, Jan 2005. [page 55]

[Paul07] S. Paul, S. Krishnamurthy, H. Mahmoodi, and S. Bhunia. Low-overhead
design technique for calibration of maximum frequency at multiple operat-
ing points. In 2007 IEEE/ACM International Conference on Computer-Aided
Design, pages 401–404. Nov 2007. [page 23]



162 Bibliography

[Pawli88] T. F. Pawlicki, D.-S. Lee, J. J. Hull, and S. N. Srihari. Neural network
models and their application to handwritten digit recognition. In IEEE
1988 International Conference on Neural Networks, pages 63–70 vol.2. July
1988. [page 68]

[Pearl09] J. Pearl. Causality: Models, Reasoning and Inference. Cambridge Univer-
sity Press, New York, NY, USA, 2009. ISBN 052189560X, 9780521895606.
[pages 78, 90, 94, and 123]

[Pizza98] M. Pizza, L. Strigini, A. Bondavalli, and F. di Giandomenico. Optimal
discrimination between transient and permanent faults. In Proc. 3rd IEEE
Int’l High-Assurance Systems Engineering Symposium, pages 214–223. 1998.
[page 64]

[Polia06] I. Polian, A. Czutro, S. Kundu, and B. Becker. Power droop testing. In 2006
International Conference on Computer Design, pages 243–250. Oct 2006.
[page 14]

[Psara10] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. S. Reorda. Microprocessor
software-based self-testing. IEEE Design Test of Computers, 27(3):4–19,
May 2010. [pages 26, 53, and 62]

[Qian09] J. Qian, X. Wang, Q. Yang, F. Zhuang, J. Jia, X. Li, Y. Zuo, J. Mekkoth, J. Liu,
H. J. Chao, S. Wu, H. Yang, L. Yu, F. Zhao, and L. T. Wang. Logic bist
architecture for system-level test and diagnosis. In Proceedings of the 18th
IEEE Asian Test Symposium (ATS’09), pages 21–26. Nov 2009. [page 45]

[Reari05] J. Rearick, B. Eklow, K. Posse, A. Crouch, and B. Bennetts. Ijtag (internal
jtag): a step toward a dft standard. In Proceedings of the IEEE International
Test Conference (ITC’05), pages 8 pp.–815. Nov 2005. [page 46]

[Reima14] F. Reimann, M. Glaß, J. Teich, A. Cook, L. Rodríguez Gómez, D. Ull, H.-J.
Wunderlich, U. Abelein, and P. Engelke. Advanced Diagnosis: SBST and
BIST Integration in Automotive E/E Architectures. In Proceedings of the
51st ACM/IEEE Design Automation Conference (DAC’14), pages 1–9. 2014.
[pages 26, 55, and 58]

[Rodri14] L. Rodríguez Gómez, A. Cook, T. Indlekofer, S. Hellebrand, and H.-J. Wun-
derlich. Adaptive Bayesian Diagnosis of Intermittent Faults. Journal of



Bibliography 163

Electronic Testing: Theory and Applications (JETTA), 30(5):527–540, 2014.
[page 88]

[Rodri16] L. Rodríguez Gómez and H.-J. Wunderlich. A Neural-Network-Based Fault
Classifier. In Proceedings of the 25th IEEE Asian Test Symposium (ATS’16),
pages 144–149. 2016. [page 109]

[Roth66] J. P. Roth. Diagnosis of automata failures: A calculus and a method. IBM
J. Res. Dev., 10(4):278–291, July 1966. [page 35]

[Sauer12] M. Sauer, A. Czutro, I. Polian, and B. Becker. Small-delay-fault atpg
with waveform accuracy. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD’12), pages 30–36. Nov 2012.
[page 36]

[Sauer14] M. Sauer, I. Polian, M. E. Imhof, A. Mumtaz, E. Schneider, A. Czutro,
H. J. Wunderlich, and B. Becker. Variation-aware deterministic atpg. In
Proceedings of the 19th IEEE European Test Symposium (ETS’14), pages 1–6.
May 2014. [page 36]

[Schai15] M. Schain. Machine Learning Algorithms and Robustness. Ph.D. thesis, Tel
Aviv University, 2015. [pages 68 and 69]

[Schne17] E. Schneider, M. A. Kochte, S. Holst, X. Wen, and H.-J. Wunderlich.
GPU-Accelerated Simulation of Small Delay Faults. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
36(5):829–841, 2017. [pages 31, 33, 75, and 76]

[Segur04] J. Segura and C. H. Hawkins. CMOS electronics. How it works, how it fails.
John Wiley and Sons, 2004. [pages 12, 13, 14, 16, 42, 70, and 73]

[Seltz13] M. L. Seltzer, D. Yu, and Y.Wang. An investigation of deep neural networks
for noise robust speech recognition. In 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 7398–7402. May 2013.
[page 69]

[Sharm88] R. Sharma and K. K. Saluja. An implementation and analysis of a con-
current built-in self-test technique. In [1988] The Eighteenth International
Symposium on Fault-Tolerant Computing. Digest of Papers, pages 164–169.
June 1988. [pages 26 and 50]



164 Bibliography

[Shen85] J. P. Shen, W. Maly, and F. J. Ferguson. Inductive fault analysis of mos
integrated circuits. IEEE Design Test of Computers, 2(6):13–26, Dec 1985.
[pages 36 and 65]

[Shen98] J. Shen and J. A. Abraham. Native mode functional test generation for
processors with applications to self test and design validation. In Proceed-
ings of the International Test Conference 1998, pages 990–999. Oct 1998.
[pages 54 and 55]

[Shen12] R. Shen, S. X. D. Tan, and X. X. Liu. A new voltage binning technique
for yield improvement based on graph theory. In Thirteenth International
Symposium on Quality Electronic Design (ISQED), pages 243–248. March
2012. [pages 22 and 23]

[Shin16a] C. Shin. Line edge roughness (LER), pages 19–35. Springer Netherlands,
2016. ISBN 978-94-017-7597-7. [pages 72 and 73]

[Shin16b] C. Shin. Random Dopant Fluctuation (RDF), pages 37–52. Springer Nether-
lands, 2016. ISBN 978-94-017-7597-7. [pages 72, 73, and 74]

[Shiva02] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi. Modeling
the effect of technology trends on the soft error rate of combinational
logic. In Proceedings International Conference on Dependable Systems and
Networks, pages 389–398. 2002. [page 70]

[Sokol09] M. Sokolova and G. Lapalme. A systematic analysis of performance
measures for classification tasks. Information Processing & Management,
45(4):427 – 437, 2009. [pages 125 and 126]

[Sriva05] A. Srivastava, D. Sylvester, and D. Blaauw. Statistical Analysis and Op-
timization for VLSI: Timing and Power. Integrated Circuits and Systems.
Springer, 2005. ISBN 9780387257389. [pages 72 and 74]

[Stein08] I. Steinwart and A. Christmann. Support Vector Machines. Springer Publish-
ing Company, Incorporated, 1st edition, 2008. ISBN 0387772413. [page 81]

[Sucar15] L. E. Sucar. Probabilistic Graphical Models: Principles and Applications.
Springer, London, 2015. ISBN 978-144-716-699-3. [pages 68, 78, 90, and 94]



Bibliography 165

[Sumik12] N. Sumikawa, J. Tikkanen, L. C. Wang, L. Winemberg, and M. S. Abadir.
Screening customer returns with multivariate test analysis. In 2012 IEEE
International Test Conference, pages 1–10. Nov 2012. [page 84]

[Tehra11] M. Tehranipoor, K. Peng, and K. Chakrabarty. Test and Diagnosis for
Small-Delay Defects. Springer New York, 2011. ISBN 9781441982971.
[page 18]

[Thatt80] S. M. Thatte and J. A. Abraham. Test generation for microprocessors. IEEE
Transactions on Computers, C-29(6):429–441, June 1980. [page 54]

[Touba97] N. A. Touba and E. J. McCluskey. Logic synthesis of multilevel circuits
with concurrent error detection. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 16(7):783–789, Jul 1997.
[pages 48, 51, 52, and 63]

[Vemu08] R. Vemu, A. Jas, J. A. Abraham, S. Patil, and R. Galivanche. A low-cost con-
current error detection technique for processor control logic. In Proceed-
ings of the Conference on Design, Automation and Test in Europe (DATE’08),
pages 897–902. March 2008. [page 52]

[Venka01] S. Venkataraman and S. Drummonds. Poirot: Applications of a logic fault
diagnosis tool. IEEE Design & Test, 18(1):19–30, January 2001. [page 38]

[Vince08] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings
of the 25th International Conference on Machine Learning, ICML ’08, pages
1096–1103. ACM, New York, NY, USA, 2008. ISBN 978-1-60558-205-4.
[page 69]

[Vo06] T. Vo, Z. Wang, T. Eaton, P. Ghosh, H. Li, Y. Lee, W. Wang, H. Jun, R. Fang,
D. Singletary, and X. Gu. Design for board and system level structural
test and diagnosis. In Proceedings of the IEEE International Test Conference
(ITC’06), pages 1–10. Oct 2006. [page 45]

[Vrank02] H. Vranken, F. Meister, and H.-J. Wunderlich. Combining Deterministic
Logic BIST with Test Point Insertion. In Proceedings of the 7th European
Test Workshop (ETW’02), pages 105–110. IEEE Computer Society, 2002.
[page 45]



166 Bibliography

[Wadsa78] R. L. Wadsack. Fault modeling and logic simulation of cmos and mos
integrated circuits. Bell System Technical Journal, 57(5):1449–1474, May
1978. [page 13]

[Waicu87] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, and V. S. Iyengar. Transition
fault simulation. IEEE Design Test of Computers, 4(2):32–38, April 1987.
[page 32]

[Wali09] F. Wali, M. Knotter, A. Mud, and F. Kuper. Impact of particles in ultra pure
water on random yield loss in {IC} production. Microelectronic Engineering,
86(2):140 – 144, 2009. The 10th annual {SEMATECH} Surface Preparation
and Cleaning Conference (SPCC). [page 22]

[Wang06] L.-T. Wang, C.-W. Wu, and X. Wen. VLSI Test Principles and Architectures:
Design for Testability (Systems on Silicon). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2006. ISBN 0123705975. [pages 17, 18, 19,
20, 29, and 45]

[Wen04] X. Wen, T. Miyoshi, S. Kajihara, L.-T. Wang, K. K. Saluja, and K. Kinoshita.
On per-test fault diagnosis using the x-fault model. In Proceedings of
the 2004 IEEE/ACM International Conference on Computer Aided Design
(ICCAD’04), pages 633–640. IEEE Computer Society, Washington, DC,
USA, 2004. ISBN 0-7803-8702-3. [page 40]

[Weste11] N. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems
Perspective. Addison Wesley, 2011. ISBN 9780321547743. [pages 10, 11, 13,
15, 16, 71, 73, and 74]

[Wolpe12] D. Wolpert and P. Ampadu. Temperature Effects in Semiconductors, pages
15–33. Springer New York, New York, NY, 2012. ISBN 978-1-4614-0748-5.
[page 13]

[Wu08] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand,
and D. Steinberg. Top 10 algorithms in data mining. Knowledge and
Information Systems, 14(1):1–37, 2008. [pages 79, 80, and 81]

[Wunde98] H.-J. Wunderlich. Bist for systems-on-a-chip. Integr. VLSI J., 26(1-2):55–78,
December 1998. [pages 26, 44, and 62]



Bibliography 167

[Wunde07] H.-J. Wunderlich, M. Elm, and S. Holst. Debug and diagnosis: Mastering
the life cycle of nano-scale systems on chip (invited paper). In Proceedings
of 43rd International Conference on Microelectronics, Devices and Material
with the Workshop on Electronic Testing (MIDEM’07), pages 27–36. MIDEM,
2007. [page 37]

[Wunde10] H.-J. Wunderlich, editor. Models in Hardware Testing, volume 43. Springer-
Verlag Heidelberg, 2010. [pages 12, 13, 17, and 18]

[Xue13] Y. Xue, O. Poku, X. Li, and R. D. Blanton. Padre: Physically-aware diag-
nostic resolution enhancement. In Proceedings of the IEEE International
Test Conference (ITC’13), pages 1–10. Sept 2013. [page 83]

[Yamaz13] K. Yamazaki, T. Tsutsumi, H. Takahashi, Y. Higami, H. Yotsuyanagi,
M. Hashizume, and K. K. Saluja. Diagnosing resistive open faults us-
ing small delay fault simulation. In Proceedings of the 22nd IEEE Asian Test
Symposium (ATS’13), pages 79–84. Nov 2013. [page 37]

[Ye12] F. Ye, Z. Zhang, K. Chakrabarty, and X. Gu. Adaptive board-level functional
fault diagnosis using decision trees. In Proceedings of the 21st IEEE Asian
Test Symposium (ATS’12), pages 202–207. Nov 2012. [page 84]

[Ye13] F. Ye, Z. Zhang, K. Chakrabarty, and X. Gu. Board-level functional fault
diagnosis using artificial neural networks, support-vector machines, and
weighted-majority voting. IEEE Trans. on Computer-Aided Design of Inte-
grated Circuits and Systems, 32(5):723–736, 2013. [page 83]

[Yi15] C. H. Yi and J. W. Jeon. Power saving using partial networking in auto-
motive system. In 2015 IEEE International Conference on Information and
Automation, pages 148–152. Aug 2015. [page 56]

[Zeile12] M. D. Zeiler. Adadelta: An adaptive learning rate method. CoRR,
abs/1212.5701, 2012. [page 127]

[Zeng04] J. Zeng, M. S. Abadir, G. Vandling, L. C.Wang, S. Karako, and J. A. Abraham.
On correlating structural tests with functional tests for speed binning of
high performance design. In Microprocessor Test and Verification (MTV’04),
Fifth International Workshop on, pages 103–109. Sept 2004. [page 23]



168 Bibliography

[Zhang10a] Y. Zhang and V. D. Agrawal. A diagnostic test generation system. In 2010
IEEE International Test Conference, pages 1–9. Nov 2010. [pages 46, 47,
and 62]

[Zhang10b] Z. Zhang, Z. Wang, X. Gu, and K. Chakrabarty. Board-level fault diagnosis
using bayesian inference. In 2010 28th VLSI Test Symposium (VTS), pages
244–249. April 2010. [page 83]

[Zhao06] C. Zhao and S. Dey. Evaluating and improving transient error tolerance of
cmos digital vlsi circuits. In 2006 IEEE International Test Conference, pages
1–10. Oct 2006. [pages 70 and 71]



List of Abbreviations

Abbreviation Meaning

Ψ input space of a machine learning function
λa activation rate of an intermittent fault
Ω output space of a machine learning function
µa activation rate of a transient fault
ANN artificial neural network
bor dominant or bridge fault class
band dominant and bridge fault class
bbyz byzantine bridge fault class
BIST built-in self-test
ct crosstalk induce delay fault class
dci

s set of detecting patterns for fault ci

IC integrated circuit
CLF Conditional line flip
CMOS complementary metal oxide semiconductor
L set of labels in a classification problem
N(vl) set of lines which conform the neighborhood of vl

ndci
s set of non-detecting patterns for fault ci

Rbridge Resistance of an interconnect bridge defect
Rcritical Critical resistance value of a bridge
SBST software-based self-test
sa aggressor signal in a fault
s f all slow-to-fall gate fault class
srise slow-to-rise gate fault class
sv victim signal in a fault
VDD Supply voltage



170 Bibliography

Abbreviation Meaning

VGB Voltage between the gate and body terminals of a transistor
VGND Ground voltage
Vp

t Threshold voltage of a pMOS transistor
Vn

t Threshold voltage of an nMOS transistor



Index

a priori distribution, 93
activation, 120
activation conditions, 17
artificial neural networks, 80

backpropagation, 123
Bayesian networks, 92
built-in-self-test, 44

chain rule, 91
classification problem, 79
concurrent test, 49
conditional probability, 91

design-for-test, 43

epochs, 123
equivalent faults, 34
evidence, 94

fault coverage, 34

input cone, 34
intermittent fault, 21

joint probability, 91

latency, 48
layers, 121
learning rate, 123

logic diagnosis, 37

manufacturing test, 41
marginal probability, 91

neurons, 120
non-concurrent test, 49

online test, 48
output cone, 35
overfit, 124

permanent fault, 21
posterior distribution, 94
precision, 126
Propagation, 35

recall, 126

SBST, 53
structural test, 35
supervised learning, 77
systematic yield loss, 22

timing-annotated logic simulator, 30
transient faults, 21

underfitting, 124

variations, 71



172 Index

weights, 120

yield, 21

zero-delay logic simulation, 30



Publications of the Author

• Specification and Verification of Security in Reconfigurable Scan Net-
works Kochte, M.A., Sauer, M., Rodríguez Gómez, L., Raiola, P., Becker, B.
and Wunderlich, H.-J. Proceedings of the 22nd IEEE European Test Symposium
(ETS’17), Limassol, Cyprus, 22-26 May 2017

• A Neural-Network-Based Fault Classifier Rodríguez Gómez, L. and Wun-
derlich, H.-J. Proceedings of the 25th IEEE Asian Test Symposium (ATS’16),
Hiroshima, Japan, 21-24 November 2016

• Adaptive Bayesian Diagnosis of Intermittent Faults, Rodríguez Gómez, L.,
Cook, A., Indlekofer, T., Hellebrand, S. and Wunderlich, H.-J. Journal of Electronic
Testing: Theory and Applications (JETTA) Vol. 30(5), 30 September 2014, pp.
527-540

• Advanced Diagnosis: SBST and BIST Integration in Automotive E/E Ar-
chitectures, Reimann, F., Glaß, M., Teich, J., Cook, A., Rodríguez Gómez, L.,
Ull, D., Wunderlich, H.-J., Abelein, U. and Engelke, P. Proceedings of the 51st
ACM/IEEE Design Automation Conference (DAC’14), San Francisco, California,
USA, 1-5 June 2014, pp. 1-9 HiPEAC Paper Award

• Non-Intrusive Integration of Advanced Diagnosis Features in Automo-
tive E/E-Architectures, Abelein, U., Cook, A., Engelke, P., Glaß, M., Reimann,
F., Rodríguez Gómez, L., Russ, T., Teich, J., Ull, D. and Wunderlich, H.-J. Proceed-
ings of the Design, Automation and Test in Europe (DATE’14), Dresden, Germany,
24-28 March 2014



174



Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

Laura Rodríguez Gómez



176


	Title Page
	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Zusammenfassung
	1 Introduction
	2 Defects, faults and errors
	2.1 Defect mechanisms
	2.1.1 Manufacturing
	2.1.2 Lifetime

	2.2 Fault models
	2.2.1 Stuck-at faults
	2.2.2 Delay faults
	2.2.3 Bridges
	2.2.4 Transistor faults
	2.2.5 Non-determinism in fault models

	2.3 Reliability and yield
	2.3.1 Yield ramping
	2.3.2 Lifetime tests


	3 Test, diagnosis and fault classification
	3.1 Test algorithms
	3.1.1 Logic simulation
	3.1.2 Test generation
	3.1.3 Logic diagnosis

	3.2 Manufacturing test
	3.2.1 Test flow
	3.2.2 Test infrastructure
	3.2.3 Test and diagnosis

	3.3 Online test and diagnosis
	3.3.1 Concurrent and non-concurrent structural test
	3.3.2 Software-based self-test
	3.3.3 Automotive in-system test

	3.4 Test data
	3.5 Fault classification and physical failure analysis

	4 Circuit uncertainty and machine learning
	4.1 Machine learning and indeterminism
	4.2 Sources of circuit uncertainty
	4.2.1 Noise and environmental conditions
	4.2.2 Variations
	4.2.3 Inaccurate modeling

	4.3 Machine learning
	4.3.1 Graphical models
	4.3.2 Supervised learning
	4.3.3 Unsupervised learning

	4.4 Root cause identification and yield learning

	5 Bayesian networks for identifying critical defects
	5.1 Adaptive test and diagnosis
	5.2 Immediate critical fault discrimination
	5.3 Bayesian networks
	5.3.1 Probabilities in Bayesian networks
	5.3.2 Bayesian network structure
	5.3.3 Inference in Bayesian networks

	5.4 Critical fault discrimination with Bayesian networks
	5.5 Experimental validation
	5.5.1 Injected faults
	5.5.2 Intermittent fault classification
	5.5.3 Transient fault classification
	5.5.4 Intermittent fault with background noise classification


	6 Neural networks for defect classification
	6.1 Faults to be distinguished
	6.2 Features
	6.2.1 Failing pattern information
	6.2.2 Passing pattern information

	6.3 Artificial neural networks for fault classification
	6.3.1 Artificial neural networks: structure
	6.3.2 Artificial neural networks: learning
	6.3.3 Metrics for neural network based classifiers
	6.3.4 Artificial neural networks for fault classification

	6.4 Experimental validation
	6.4.1 Fault classification after test
	6.4.2 Fault classification based exclusively on failing information
	6.4.3 Fault identification without product knowledge
	6.4.4 Identification of intermittent faults


	7 Conclusions and future work
	7.1 Future work

	Bibliography
	List of Abbreviations
	Index
	Publications of the Author

