
REPORT CSG-25 DECEMBER 1983

11 COORDINATED SCIENCE LABORATORY -
COMPUTER SYSTEMS GROUP

I LOAN COPY

A COMPREHENSIVE FAULT
MODEL FOR CONCURRENT
ERROR DETECTION IN
MOS CIRCUITS

DAN I EL LEE HALPERIN

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

U IVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Unclassified
i u r t t y c l a s s i f i c a t i o n o f t h i s p a g e

REPORT DOCUM ENTATION PAGE
a. R E P O R T S E C U R I T Y C L A S S I F I C A T I O N

Unclassified
1b. R E S T R IC T IV E M A R K IN G S

None*
I 2a. S E C U R IT Y C L A S S IF IC A T IO N A U T H O R IT Y

N/A
3. O E C LA S S l F I C A T I O N /O O W N G R A D IN G S C H E D U L E

N/A

3. O IS T R I8 U T 1 0 N /A V A I L A B IL IT Y OF R E PO R T

Approved for public release, distribution
unlimited

P E R F O R M IN G O R G A N IZ A T IO N R E P O R T N U M B E R IS)

CSG-25

5. M O N IT O R IN G O R G A N IZ A T IO N R E P O R T N U M B E R (S)

N/A
ia. N A M E OF P E R F O R M IN G O R G A N IZ A T IO N
1 Coordinated Science Lab.
/University of Illinois

6b. O F F IC E S Y M B O L
(If applicable}

N/A

7a. N A M E O F M O N IT O R IN G O R G A N IZ A T IO N

Office of Naval Research

16c. A D D R E S S (City. State and ZIP Codel
■■j 1101 W. Springfield Avenue
^'Urbana, Illinois 61801

t
\r

7b. A D D R E S S (City. State and ZIP Code)

2511 Jefferson Davis Highway
Arlington, Virginia 22202

i. N A M E OF F U N D IN G /S P O N S O R IN G
o r g a n i z a t i o n

Naval Electronics Syst. Comm.

8b . O F F IC E S Y M B O L
(If applicable)

N/A
9. P R O C U R E M E N T IN S T R U M E N T ID E N T IF IC A T IO N N U M B E R

N00039-80-C-0556
. A D D R E S S (City. State and ZIP Code)

2511 Jefferson Davis Highway
Arlington, Virginia 22202

10. S O U R C E OF F U N D IN G NOS.

!■

7 t i i Lc Include Security Classification) A COMPREHENSIVE FAULT
MODEL FOR CONCURRENT ERROR DECT. IN MOS CIRCUITS

P R O G R A M P R O JEC T T A S K W O R K U N IT
E L E M E N T NO. NO. NO. NO.

N/A N/A
s

N/A N/A

12. P E R S O N A L A U T H O R (S) Daniel Lee Halperin
a. T Y P E OF R EPO R T 13b. T IM E C O V E R E D 14. O A T 5 OF R E P O R T iYr.. Mo.. Day> 15. PAG E C O U N T

Technical F R O M TO December 10, 1983 206l S U P P L E M E N T A R Y N O T A T I O N

N/A

r C O S A T I COOES 1 a S U B JE C T T E R M S 1 Continue on reverse if necessary and identify by block num ber)
IE L O 1 G R O U P I SUB. GR. Concurrent Error Detection, Fault Models, Indeterminate Faults.,;

■ ' MOS Circuits, Physical Failure Modes, Separable Codes, Ternary f
1 l 1 Algebra, Totally Self-Checking Circuits *

A B S T R A C T iContinue on reverse tf necessary and identify by block number)
i A comprehensive fault model is developed for concurrent error detection in MOS
integrated circuits. This fault model is based on a thorough examination of physical

\ failures in MOS integrated circuits. Models of MOS circuits are also developed which
are used to determine the behavior of these circuits under failure. It is found from
this analysis that many types of physical failures may result in Logic signals that are
not well-defined. In particular, it is shown that physical failures may lead to constant
values that are neither logic 0 nor logic 1, timing failures, or oscillation. The concept
of indeterminate faults is developed to describe the behavior of such failures. It is
shown that most traditional fault models are unable to model the behavior of a circuit
with an indeterminate fault correctly.

i Ternary algebra is used to facilitate the analysis of circuits which receive
[indeterminate value inputs. Using ternary algebra, necessary conditions are developed

for the propagation of indeterminate values through a circuit. It is shown that in (over) \
j 20. O I S T R I 0 U T I O N / A V A I L A B I L l T Y O F A B S T R A C T

| tdft - — _
C L A S S I F I E D / U N L I M I T E D -X S A M E AS RPT. _ j O T IC USERS □

* 2 a . N A M E O F R E S P O N S I B L E I N D I V I D U A L

21. A B S T R A C T S E C U R I T Y C L A S S I F I C A T I O N

Unclassified
1

2 2b . T E L E P H O N E N U M B E R
(In c lu d e .- i rec C o d e)

| 22=. O F F I C E S Y M B O L

NOME
U n c 1 a s sFORM 1473, 82 APR E D I T I O N o f 1 j A N 73 is O B S O L E T E . i f i. e d

t'.Jnclassifierl
:uFIITY C:..ASS l l= ICATI C N 01' Tl-4 15 PAGE

I REPORT DOCUMENTATION PAGE
•· Fl-ePCRT SECURI TY C~SSI F ICA TION 1b. R EST R ICTI V E MARKINGS

Unclassified None •

• 11. SECU RITY C L ~ SSIFICATION AUTHORIT Y 3. OIST R l 8UTlO N / A VAI LAB l l.l TY O F REPORT

N/A
,. o ecu ss11= ICAT I ON, OOVIINGFI A OING SCHeCUl.E

Approved fo r public release , d i s t ribution
I
I NIA unlimited

PERFO RMING ORGANI ZATION REPORT NUMSEFIISI 5. M ONIT ORI N G O AG A N IZA T I ON R EPO R T NUMSEFl(Sl

L CSG- 25 N/A

- , .._ llaAM E O F PERFO RMING Of'IGANIZATION l&b. OFFICE SYM80L 7e. NAME OF MONITORING ORGANIZATION
\Coo rdinate d Scien ce Lab . I If opt,lfcabi. > Off ice of Naval Re s earch

l .! Unive r s ity of 111 i no i s N/A

•~c. 11,CCPIIESS ICily. Sien <Ind ZIP Cod.> 7b. A OORfSS (Cit y. S tat• and ZIP Cod•>
~ 110 1 W. Springfield Avenue 2511 Jefferson Davis Highway

/Urba na, Illino i s 6180 1 Arl ington, Vi r g i nia 22202 t ·
1- N AME O F F UNOlNG/ Sf'ONSOAINQ 8tl. O l'll'ICE SYMBOi.. 9. PROCUAEMENT INSTR UMENT I DENTIFICATION NUMBER

ORGANI ZAT ION It/ applu:ab/6 J

t Naval Elect r on ics Sys t . Comm. N/A N00039- 80- C- 0556
~ .

. A.OOAESS iCit y. Stat• and Z IP Coa.1 10. SOURCE 0 1' F UNCING N OS .

2511 Jefferson Davis Highway Pl'IOGFtAM flAOJE.CT TASK WORK UNIT

I Arlington. Virgin i a 22202 E 1.11.M&NT NO. N O . NO. N O.

N/A ~/A NIA N/A
. 1"1 Tl.: l ncuuu :,~,:11,,i ry i;t4a1fi'-'Gllo ,a, A {.;UMPRt:.ttENS 1 VE FAULT

I MODEL FOR CONCURRENT ERROR DECT . lN MJS CIRCUITS .
I

I 12. f' E ~ SONA L. .a.UT MOR(S I
Daniel Lee Halpe r in

• . ,

.a. TYPE O F "IE;tQ RT

Technica l
13 b. T I ME CO VEFIEO

l' i'IO ~ T O

14 . OAT E OF .. ePC RT ,Yr .. . lfo .. Da,,,
December 10, 1983

15 , PAGE CO UNT
206

___ "?"' __ c_O-'-S'-A-T__,.1-"'CO..;;..;.O_E_S ______ -11 a S Ul!JJE CT TERMS 1Co11tu11,11 011 ry1111rtt 1('11!CU""~ ond 1d."h{y by blo'-'11 number!

1e;;.:..;::....o.,...._a_;;i_o'"""'u-P __ l __;s;..u ... e_._c:.;:;.~------iConcurrent Er ror Detection, Fault Mode l s , lndeterrnina:.e Faul::s.;-
• HOS Circuits, Physical Failure Modes, S~parab l e Codes, Te rnary l
1•_----~---~----------1Algebra, Total l y Self-Check i ng Circuits

I

I

I

I

ASS,l'IACT •Co,uinuc on ,.,,v~rH •f "•cewa,.,, 011d idln ti{y by btoclt num b••1

A comprehensive fault model is developed for concurrent er ror de tection in MOS
integrated circui t s . This fault model is based on a thorough examination of physical

, failures in MOS i n teg rated circui t s. Models of MOS c ircuits are also deve l oped which
are used to determine the behavio r of these circ~its under failure. lt is found from
this ar.alysi s that many types of physica l failure s may result i n l ogic sig~als that are
not well-defined. ln particular, it is shown chat physical failures may L~ad to const~nt
values that are neither Logic O nor logic 1, ti~ing fai '. u~es, or oscill a t ion. The concept
of indete rminate fau l ts is developed to describe the behavior of such failures. le is
shown that mos~ t r aditional fault models are unab l e to model the behavior of a c i r cuit
with an inde t erminat e fault correctly .

Ternary a~gebra is used to f~cili tate the analysis of ci:cui~s wh i ch receive
inde.t~rminate va l ue inpu(s. Csing t ernary algebra, necessary conditions are devel oped
Eor the propagation of i~deter~inate values through a c irc uit . l~ is shown that in (over i

1
:,0. !)1S, R I BUTIO l'<1,ol.VA 1L.A8ll. ;T Y 0 1' ~ BS T R,.CT

,.,.. - -
c :..,>.SSI F• E !J/UN I.JMtTEO 1' SAIi/iE AS RPTJ CT I C USERS 0

,, . ..o.aS"TAA CT SECUR ITY c1..,;.SSI FICATION

Unc lassi fied
I
I

1
,:a. :',!AME ~F R ESi"ONSI B L..!a JNO I VIDUAL

'
,., FORM 1473. 83 APR

1

22b. f'E :.. EP'-'CNE N UMB E ~
1/,1cu,de .~,.,,c: Ca de i

;;;;)1T10N 01' 1 , AN 1'.) 1$ OBSCLE:E.

~., . OFFIC: $YM!'l01.

>=OME

i.:;iclc1ssi.fi,•O

Unclassified__________________
S E C U R IT Y C L A S S IF IC A T IO N O F T H IS PAG E

many cases, an indeterminate value can propagate through a circuit even when a Boolean valt
cannot propagate.

The methodology of totally self-checking systems is used to provide concurrent error

11nclassified
SECURITY Cl.ASSIPICATIOPII oi; THIS l"AGE

many cases, an indeterminat e val ue can propagate through a circuit even when a Boolean val1
cannot propagate,

The methodology of totally self-checking systems is used to provide concurrent error
detection. It is shown that the tradit i onal definitions of the totally self-checking
property are inappropriate for failures which include i ndeterminate faults. A new definition
of the totall y self-checking property is developed which is compatible with i ndeterminate i
faults. It is shown that under our fault models, duplication may be used to provide a
totally self-checking implementation for any function. Procedures are developed to deter- ·
mine if a function has an implementation using a separable code which may provide concurrent ..
error detection at a lower cost than duplication. Issues involved in the interconnection tj;_
of several totally self-checking circuits are considered , as well as the requirements for fJ' .
checkers in systems which may experience indeterminate failures. -I I

' ~- '

I

-!
I

I '

·1
I

--, 1

I

m \jnrrnn C0MPREHENSIVE FAULT MODEL FOR
CONCURRENT ERROR DETECTION IN MOS CIRCUITS

BY

DANIEL LEE HALPERIN

B.S., University of Tennessee, 1978
University of Illinois, 1981

THESIS

Submitted in partial fulfillment of the requirements
in Electrical Engineering m the Graduate College of the g

for the degree of Doctor of Philosophy in El

University of 1 1 1 inois at Urbana-Champaign, 1984

Urbana, Illinois

I

A COMPREHENSIVE FAULT MODEL FOR
CONCURRENT ERROR DETECTION IN MOS CIRCUITS

BY

DANIEL LEE HALPERIN

B.S., Un i versity of Tennessee, 1978
M.S., University of Illinois, 1981

THESIS

Submitted in partial fulfillment of the requirements
f or the degree of Doctor of Philosophy in Electrical Engineering

in tho Graduate College of the
University of Illinois at Urbana- Champaign, 1984

Urbana, Illinois

A COMPREHENSIVE FAULT MODEL FOR
CONCURRENT ERROR DETECTION IN MOS CIRCUITS

Daniel Lee Halperin, Ph.D.
Department of Electrical Engineering

University of Illinois at Urbana-Champaign, 1984

A comprehensive fault model is developed for concurrent error

detection in MOS integrated circuits. This fault model is based on a

thorough examination of physical failures in MOS integrated circuits.

Models of MOS circuits are also developed which are used to determine

the behavior of these circuits under failure. It is found from this

analysis that many types of physical failures may result in logic sig­

nals that are not well-defined. In particular, it is shown that physi­

cal failures may lead to constant values that are neither logic 0 nor

logic 1, timing failures, or oscillation. The concept of indeterminate

faults is developed to describe the behavior of such failures. It is

shown that most traditional fault models are unable to model the

behavior of a circuit with an indeterminate fault correctly.

Ternary algebra is used to facilitate the analysis of circuits

which receive indeterminate value inputs. Using ternary algebra, neces­

sary conditions are developed for the propagation of indeterminate

values through a circuit. It is shown that in many cases, an indeter­

minate value can propagate through a circuit even when a Boolean value

cannot propagate.

The methodology of totally se1f—checking systems is used to provide

concurrent error detection. It is shown that the traditional defini­

tions of the totally self—checking property are inappropriate for

I

A COMPREllENSIVE FAULT MODEL FOR
CONCURRENT ERROR DETECTION IN MOS CIRCUITS

Daniel Lee Halperin, Ph.D.
Department of Electrical Engineering

University of Illinois at Urbana-Champaign, 1984

A comprehensive fault model is developed for concurrent error

detection in MOS integrated circuits. This fault model is based on a

thorough examination of physical failures in MOS integrated circuits.

Models of MOS circuits are also developed which are used to determine

the behavior of these circuits under failure. It is found from this

analysis that many types of physical failures may result in logic sig­

nals that are not well-defined. In particular. it is shown that physi­

cal failures may lead to constant values that are neither logic O nor

logic 1, timing failures , or oscillation. The concept of indeterminate

fan! ts is developed to describe the behavior of such failures. It is

shown that most traditional fault models are unable to model the

behavior of a circuit with an indeterminate fault correctly .

Ternary algebra is used to facilitate the analysis of circuits

which receive indetenllinate value inputs. Using ternary algebra, neces­

sary conditions are developed for the propagation of indeterminate

values through a circuit. It is shown that in 111any cases, an indeter­

minate value can propagate through a circuit even when a Boolean value

cannot propagate.

The methodo logy of totally self-checking systems is used to provide

concurrent error detecti on. It is shown that the traditional de fini-

tions of the t o tally self-checking property are inappropriate f o r

failures which include indeterminate faults. A new definition of the

totally self-checking property is developed which is compatible with

indeterminate faults. It is shown that under our fault models* duplica­

tion may be used to provide a totally self-checking implementation for

any function. Procedures are developed to determine if a function has

an implementation using a separable code which may provide concurrent

error detection at a lower cost than duplication. Issues involved in

the interconnection of several totally self-checking circuits are con­

sidered* as well as the requirements for checkers in systems which may

experience indeterminate failures.

failures which include indeterminate faults. A new definition of the

totally self-checking property is developed which is compatible with

indeterminate faults. It is shown that under our fault models, duplica­

tion may be used to provide a totally self-checking implementation for

any function. Procedures are developed to determine if a function has

an implementation using a separable code which may provide concurrent

error detection at a lower cost than duplication. Issues involved in

the interconnection of several totally self-checking circuits are con­

sidered, as well as the requirements for checkers in systems which may

experience indeterminate failures.

iii

Acknowledgment

The author wishes to express deepest thanks to his advisor. Dr. Ed

Davidson, for his support, encouragement, and advice throughout this

thesis project. He is deeply appreciative for the many long hours Dr.

Davidson spent assisting with this thesis. The author would also like

to thank Dr. Janak Patel, Dr. Jacob Abraham, and Dr. Dan Gajski for

serving on his final committee. Finally, the author would like to thank

his colleagues in the Computer Systems Group for their support, ideas,

and friendship.

The author would like to dedicate this thesis to his parents,

Joseph and Sita Halperin, and to his wife, Beverly. The support, sacri­

fices, and understanding provided by the author's family have made his

education in general and this thesis in particular possible.

iii

Acknowledgment

The author wishes to express deepest thanks to his advisor, Dr. Rd

Davidson, for his support, encouragement, and advice throughout this

thesis project. He is deeply appreciative for the many long hours Dr.

Davidson spent assisting with this thesis. The author would also like

to thank Dr. Janak Patel, Dr. Jacob Abraham. and Dr. Dan Gaj ski for

serving on his final committee. Finally, the author would like to thank

his colleagues in the Computer Systems Group for their support, ideas,

and friendship.

The author would like to dedicate this thesis to his parents,

Joseph and Sita Halperin, and to his wife, Beverly. The support, sacri­

fices, and understanding provided by the author's family have made his

education in general and this thesis in particular possible.

iv

Chapter
TABLE OF CONTENTS

1* Introduction
1.1. Error Detection Strategies
1*2. Fault Models „

1.2.1. Single Stuck-At Fault Model ...
1.2.2. Unidirectional Fault Model
1.2.3. Bridging Fault Model
1.2.4. Stuck-Open Fault Model

1.3. Overview of Research

2. Physical Failure Modes for MOS Integrated Circuits
2.1. Interconnect Failures

2.1.1. Metal Interconnect Failures
2.1.2. Polysilicon Interconnect Failures ___
2.1.3. Diffusion Interconnect Failures
2.1.4. Dielectric Failures

2.2. Transistor Failures
2.2.1. Parameter Shift Failures
2 .2 .2 . Breakdown Failures

2.3. Radiation-Induced Soft Failures

3 . Behavior of Failed Circuits
3.1. Summary of Failure Mechanisms ___
3.2. Circuit Models

3.2.1. Static NMOS Inverter Model
3.2.2. Static CMOS Inverter Model
3.2.3. Dynamic NMOS Inverter Model

3.3. Response of Failed Circuits
3.3.1. Response of Circuits with Shorts
3.3.2. Response of Circuits with Opens
3.3.3. Response of Circuits to Noise

3.4. Response of Good Circuits to the Output of a Failed
circuit ••••••••■»«

3.4.1. Metastable Operation
3.4.2. Response of Combinational Logic

4. Concurrent Error Detection of Physical Failures
4.1. Indeterminate Faults

4.1.1. Ternary Algebra

Page

1
1
4
6
6
7
9

12

14
15
17
21
22
24
27
27
29
30

32
32
36
41
53
57
63
63
76
79

80
81
88

102
102
104

1'9'

TABLE OF CONTENTS

Chapter Page

1. Introduction . 1

1.1. Error Detection Strategies •. ••.•.•••••••••..•.•..••.•••. • 1

1.2. Fault .Models··•·••·•·••·••··•··•··•··•··••••···•·••·••··• 4
1.2.1. Single Stuck-At Fault Model •••• . • •• 6
1.2 .2. Unidirectional Fault Model • .. • • • • • • • • .. • • .. • • 6
1.2.3. Bridging Fault Model •.•• 7

1.2.4. Stuck-Open Fault Model......................... .. . 9

1.3. Overview of Research ..•........• , •..... ,.. •• 12

2. Physical Failure Modes for MOS Integrated Circuits ..•.•••.••.. 14

2 .1. Interconnect Failures , •.••• , .•••. , ••• , •••.••..•.• , •• , . • • . 15

2 .l .1. Metal Interconnect Failures • . .. • . • • • • . • • .. • • 17

2.1.2. Polysilicon Interconnect Failures •.•••••.•••••..•• 21
2.1,3. Diffusion Interconnect Failures••.••• ,........ 22

2.1.4, Dielectric Failures ···•••·····•·••·· ·· ·•··•·····•· 24
2 • 2 . Tr ans i st or Fa i 1 ur es ••• , ••..•. , ••••••••• , •••••••• , • . • • . • • • 2 7

2 .2.1. Parameter Shift Failures.......................... 27

2,2.2. Breakdown Failures ••••••. ,............ 29

2.3. Radiation-Induced Soft Fa i 1 ur es . . •.... ••..•... 30

3. Behavior of Failed Circuits 32

3 .1. Summary of Failure Mechanisms . . • ••• .• , . • • • . . • • • . • • • . . . • • . 32

3.2. Circuit Models • •••• •. • • ••• •• •.•• .• • . •••••• •. •• .• •.•• .•• •• 36

3 .3 .

3 .2 .1. Static NMOS Inverter Model . . . • . . • . . . • . • • • • . • • • . • • . 41

3.2.2, Static CMOS Inverter Model •.••••••.•.••••••.••..•. 53

3 . 2 .3 . Dynamic NMOS Inverter Model • ...•.•.• . . , ..••. ,

Response of Failed

3.3.1. Response of

3.3.2. Response of

Circuits

Circuits with Shorts • •.•••..•.•.• , •..•

Circuits with Opens •• • .••••••••.••••••

57
63

63

76
3.3.3. Response of Circuits to Noise .•.• .• ... •• .• . .• ..•• • 79

3 .4. Response of Good Circuits to the Output of a Failed
C i r cu i t . • • • 80

3,4.1. Metastable Operation . •. . , . • , . .•..•.•...... , .• ••... 81

3.4.2. Response of Combinational Logic .•.•. ,, .••.•• , . . .•. 88

4. Concurrent Error Detection of Physica l Failures .•••.•......•.. 102

4 . 1. Indeterminate Faults, .•••••• • ••.••. , .• , ..•..•••...•..•.•. 102

4 .1 .1. Ternary Algebra ..•.....••...•....•.•..•.•. , . . • . . • . 104

V

TABLE OF CONTENTS (cont.)

Chapter Page

4.1,2. The Effects of Hazards on Sensitization 109
4.2. Concurrent Error Detection 114

4.2.1. Totally Self-Checking Circuits 114
4.2.2. Checker Strategy 121

4.3. CED under a Simplified Indeterminate Fault Model 128
4.3.1. Fault Model Assumptions 128
4.3.2. Separable Codes 134
4.3.3. Finding Economical Totally Self-Checking Imple­
mentations ... 140
4.3.4. Check Vector Generation..... 156

4.4. CED Under a General Single Failure Indeterminate Fault
Model 168

4.4.1. Fault Model Assumptions and Properties 168
4.4.2. Economical Implementations for the General In­
determinate Fault Model 173
4.4.3. Check Vector Generation 178

4.5. Checker Requirements 179

5. Conclusion 185
5.1. Evaluation of Fault Model 185

5.1.1. Fault Model Accuracy 185
5.1.2. Ease of Analysis 189
5.1.3. Cost of Fault Tolerance 191

5.2. Summary .. 194
5.3. Suggestions for Future Research 197

References ... 199

Vita ... 206

-------------------------------- ---- - - -- - --- .. - - - -

V

TABLE OF CONTENTS (cont .)

Chapter

4.1.2. The Effects of Hazards on Sensitization •..••••.•••
4 .2. Concurrent Error Detection •••• , ••.••..••.. • ••.•••••••••••

Page

109

114

114

121
4 .2 .1. Totally Self-Checking Circuits

4.2,2. Checker Strategy•••••·••••·······•··········•••·••

4,3. CED under a Simplified Indeterminate Fault Model ·••·••••· 128
4 .3 ,1. Fault Model Assumptions • • . .. • • • . • • • .. • • . • • • • • • .. • • 128

4.3.2, Separable Codes ·•••·•···•··•••••······•·••·····••• 134
4.3,3, Finding Economical Totally Self-Checking Imple-
mentations . . . • • . • • . . • .. • • . . 140
4.3 .4. Check Vector Generation • • • • • • . • • • • • • • . • • • • . • . . • • • • 156

4.4. CED Under a General Single Failure Indeterminate Fault
Mode 1 • . . • • • • . • . • • . . • . . • • • • . . • . . • . . • • . . . • • . . • . . . • • . • • . • 16 8

4.4.1. Fault Model Assumptions and Properties ·•••••···•·· 168
4 .4 .2. Economica.l Implementations for the General In­
determinate Fault Model •••••• , • • . • • • • • . • . • • . • . • • . • • . . • • • • 173
4.4.3. Check Vector Generation •••••••••.•••••• , , •••.•• , • . 178

4 .S. Checker Requirements ••...• , • • • . . • . . . • • • • • • • • • • • • • • • • • . • • • 179

S. Conclusion•·••••••••••••··•••••••••••••••• • •·•················ 185

5.1. Evaluation of Fault Model ••••.•••• ••••·•···••••••·•• ••••• 185

5.1.1, Fault Model Accuracy •. .••• .. ••. . . .•. •.••• •• 185

5.1.2, Ease of Analysis •···•···•··•············•··••••••• 189
5 .1.3. Cost of Fault Tolerance • • • • • . • • .. • • • • • • 191

S • 2 . Summary •.•..•..•...•.....• , . • • • . . • • 194

S .3. Suggestions for Future Research • , • •• •••.••• • ••••. , • • • . . • • 197

References • • • • . . . • 199

Vita • • • . . • . • • . . • • • • . . . • 2 06

vi

LIST OF FIGURES
Figure

1.1.
1*2, : w i" - a n d *■*«.*.............

Page

1.3. A n Z s T C W U h * StnCt- ° ^ n F- lt
S Clrcnit a Stuck-Open Fault

2,1. Summary of Scaling Factors ..
3.1.
3 ,2. MOS Transistor Symbols

3.3.
3 .4 Inverter Circuit

3.5. Resistive Model of I„verter ..

3 6
3.7. W a g e Switching Tia,e vs. 2 Ratio

CMOS Inverter Circuit3.8.
3.9. Dynamic Shift Register 55

3.10. ™ l 1StlTe..M!del °f Transistor
59

3 .11. 1US and CM0S Inverters • 62

3.12. tput Node to Input Node Short 64

3.13. Resistive Model of Failed Inverter • 67

3.14. M: ; i r : i % MOdeI °f TW0 Shorted 1 odel of inverter String ogether .,
69
7 A

3 .15 / 4

3.16
Small Noise .°... * ~ ° VS* Number of Inverters for

91

Large N o l s l ^ 1 ° vs* N™ b*r of Inverters for
94

4.1.
4.2. Ternary Algebra Truth Tables

96

4.3 . Example of a Static Hazard 106

4.4. ally Sell Checking Module - 110

4.5. Metastable Detection Circuit 118

4.6. T yp es of Bridging Fanlts .. 124

4.7. xrcuit Implementation .. 130

4.8. 133
1354.9.

4.10. Fanlt Behavior of Full Adder 143

4.11. ^erger Diagram for Fnll Adder Example 146

4,12
ector AND Example ... 150

4.13. TVo-Bi^Adder E ^ ^ -
157

4.14 it Adder Example . 159
Behavior of Input-Output Fanlts in Two^BU Adder ...

* * 174
176

Figure

1.1.

1.2.

1.3.

2.1.

3 .1.

3 .2.

3 . 3.

3.4 .

3 • S.

3 .6 .

3. 7.

3.8.

3 . 9.

3 .10.

3 .11.

3.12.

3.13.
3.14.
3.15 .

3 .16 .

4.1.

4 .2.

4 .3.

4.4.

4.S.
4 .6.

4 . 7.
4.8.
4 . 9.
4 .10.

4 .11.

4.12 .
4 .13.

4 .14 .

LIST OF FIGURES

An Ex .. ple of a Wired-AND Bridging Faolt • •.• • ..
A CMOS NAND Ga te with a Stuck-Open Fault ••••••••••••••••

An NJIOS Circuit •itb a Stuck-Open Fault ••••. • ••.••••••••

SUJDJ11ary of Scaling Factors ··•· •· ·•··•·····•····•··•·•··•

MOS Transistor Symbols • • •••••••••••••••••.••••••••••••••

Detini tiona of Vo1ta1u and Polar! ties • , •••••••••••.••.•

NlfOS Inverter Circuit

Resistive Model of an Inverter ••• , , • , •• , ••••••.••••••••.

Volt•s• Limits va . Z •.••..•••••••..• •. .• . ••••.••.•••••••

Average Switching Time vs. Z Ratio •.•••••••••••••.••••••

CM.OS Inverter Circu.i t•...........•....• .

Dynamic Shift Register•.. , .. ,•.. . ..•..

Resi1tive Hodel of Couplina Transistor ••••••••••••.•••.•

NMOS and CMOS Inverters ••••..•.• • .••..•• • •••.••.•.• , •.••

Output Node to Input Node Short •• • ••••••.•• .• •• • ••••••.•

Resist i ve Model of Failed I nverter

Resistive Model of Two Outputs Shorted Together • • •••• • ••

Model of Inverter String • ••.••••••••••..••..•• . •••••.•••

ProbabU ity of hi l a v s . Number of Inverters for
Saa 11 Noise•...........•..

Prob•bility of lyl 2. a vs. N1111ber of Inverters for
Large Noise•....•........

Ternary

Example

Totally

Algebra Truth Tables ••..••..••..•••••..••... , •..

of a Static Hazard •••.••. .• .•••••.•..••.•.••..••

Self-Checking Module

Metastable Detection Circuit ·•·•·••··•·••··•·•··•••··•• ·
T,ro Types of Bridging Faults ••• ••.•• . ••.••••..•.•• • • . • • •

Poss i ble Circuit Implementation •.••.••.•....•..•.•••.••.

Circuit laphmentation with Shared Logi c .. ••....• . ..•...
Full Adder EJt .. pl••.....•..•••..
Fan! t Behavior of Full Adder •••• • •••••• •• .•••• •• •••••.••

Merger Di agram for Ful 1 Adder Example ••••••.•••••.•••• • •

Vector ~D Example•...........•.... .. .

Three Me thods of Check Vector Generation•.........
Two-Bi t Adder Example . . ••••.•••.•..•.••..•.•••.•• , .• , •. •

Behav i or of Input-Output Faults in T,ro- Bit Adder .• • •..•.

Page

8

10
11

16

37

39
42
50
51

H
ss
59

62

64
67
69

74
91

94

96

106

110

118
124
13 0

133
135

143

146

150

157

159

174

176

1

CHAPTER 1

Introduction

i*i* Error Detection Strategies

As integration levels increase and more and more devices are placed

on an integrated circuit, it becomes increasingly difficult to insure

that a circuit and the system it is part of are operating properly.

There are two basic approaches to this problem: off-line testing and

concurrent error detection.

In off-line testing, the system is stopped periodically and a test

procedure is performed. This test may be performed by the system

itself, or an external tester may be used to stimulate the circuit and

check its results. If the system successfully completes the test, then

the assumption is made that the system is operating correctly. If the

system fails the test, then the system is faulty. In this approach,

since it is unknown exactly when the system failed, all computations

performed since the last successful test procedure must be presumed

erroneous.

The main advantage of using off-line testing is its simplicity. In

most cases, only a very modest amount of additional on-chip hardware is

required. Unfortunately, there are also many disadvantages. Because of

the poor observability and controllability of VLSI circuits, it is very

difficult to derive a test procedure that will completely test an entire

1

CHAPI'ER 1

Introduction

1-1• &nu Detection Strate~ie~

As integration levels increase and more and more devices are placed

on an integrated circuit, it becomes increasingly difficult to insure

that a circuit and the system it is part of are operating properly .

There are two basic approaches to this problem: off-line testing and

concurrent error detection.

In off-line testing, the system is stopped periodically and a test

procedure is performed. This test may be performed by the system

itself, or an external tester may be used to stimulate the circuit and

check its results. If the system successfully completes the test, then

the assnmption is made that the system is operating correctly. If the

system fails the test, then the system is faulty. In this approach,

since it is unknown exactly when the system failed, all computations

performed since the last successful test procedure must be presumed

erroneous.

The main advantage of using off-line testing is its simplicity . In

most cases, only a very modest lllllount of additional on-chip hardware is

required. Unfortunately, there are also many disadvantages. Because of

the poor observability and controllability of VLSI circuits, it is very

difficult to derive a test procedure that will completely test an entire

2

integrated circuit. Often it is necessary to add additional logic on

the integrated circuit to increase its controllability and/or observa­

bility [13* In addition, during the time the system is off-line for

testing, it cannot perform any useful computation and thus system

throughput is degraded. Since there is no way of pinpointing exactly

when a failure has occurred# all results produced since the last suc­

cessful testing procedure must be discarded. Alternatively some type of

check-pointing scheme can be used. This approach involves saving enough

of the system state and data so that all computations performed since

the last successful test procedure can be repeated. The most serious

drawback of off-line testing# however# is its inability to protect

against intermittent errors. It has been reported [2] that between 90

and 98 percent of failures in computers are nonpermanent in nature.

Off-line testing gives little if any protection against nonpermanent

failures. Therefore, for any system in which we must immediately know

when a failure has occurred (i.e.# any type of real-time system) or for

any system in which we expect a major fraction of errors to be intermit­

tent, off-line testing is inadequate.

The second approach to this problem is concurrent error detection.

In this approach# the system is divided up into one or more blocks

called modules. The inputs (including both data and control vectors)

and outputs of each module must be encoded with an appropriate code.

Obviously# such encoding requires additional logic. These codes are

selected so that when most failures occur# the result of a computation

will either be correct or a non-codeword. Checkers are placed at the

2

integrated circuit . Often it is necessary to add additional logic on

the integrated circuit to increase its controllability and/or observa-

bility [1]. In addition. during the time the system is off-line for

testing, it cannot perform any useful computation and thus system

throughput is degraded. Since there is no way of pinpointing exactly

when a failure has occurred. al 1 results produced since the last suo­

ces sful testing procedure must be discarded. Alternatively some type of

check-pointing scheme can be used. This approach involves saving enough

of the system state and data so that all computations performed since

the last successful test procedure can be repeated, The most serious

drawbact of off-line testin1. however. is its inability to protect

against intermittent errors. It has bee1 reported [2] that between 90

and 98 percent of failures in computers are nonpermanent in nature.

Off-line testing gives little if any protection against nonpermanent

failures. Therefore. for any system in which we must immediately know

when a failure has occurred (i.e., any type of real-time system) or for

any system in which we expect a major fraction of errors to be intel'111it­

tent, off-line testing is inadequate .

The second approach to this problem is concurrent error detection.

In this approach, the system is divided ap into one or more blocks

called modules. The inputs (including both data and control vectors)

and outputs of each module must be encoded with an appropriate code.

Obviously, such encoding requires additional logic . These codes are

selected so that when most failures occur, the result of a computation

will either be correct or a non-codeword, Checkers are placed at the

3

output of each module. These checkers are used to detect non-codewords

and thus indicate an error.

Concurrent error detection has several advantages. When an error

occurs, the checkers immediately provide an error indication. With

off-line testing, an error indication is only given after the off-line

test procedure is performed. The lack of information concerning the

precise time at which the failure occurred requires computations to be

repeated. An immediate error indication eliminates the need to repeat

computations. Protection is also provided against intermittent

failures. If an intermittent failure results in an error, it will be

detected. Therefore, concurrent error detection is well suited for real

time systems and any system in which intermittent failures are a signi­

ficant percentage of total failures.

The presence of checkers can greatly increase the observability of

the circuit. If enough checkers are used, it is possible to completely

or very nearly completely test a circuit simply by normal operation.

Complete testing during normal operation prevents a buildup of

undetected failures (the so-called "latent faults" problem). Since any

concurrent error detection technique can only handle a limited number of

failures, a buildup of latent faults can result in an error not being

detected. If the checkers do not provide enough observability to detect

all possible faults during normal operation, periodic testing must be

used to detect any latent faults.

The major disadvantage of concurrent error detection is the addi­

tional logic required. The codes used for data and control vectors

3

output of each module. These checkers are used to detect non-codewords

and thus indicate an error.

Concurrent error detection has several advantages. When an error

occurs, the checkers immediately provide an error indication. With

off-line testhig, an error indication is only given after the off-line

test procedure is performed. The lack of information concerning the

precise time at which the failure occurred requires computations to be

repeated. An immediate error indication eliminates the need to repeat

computations. Protection is al so provided against intend ttent

failures. If an intermittent failure results in an error, it will be

detected. Therefore, concurrent error detection is well suited for real

time systems and any system in which intermittent failures are a signi­

ficant percentage of total failures.

The presence of checkers can greatly increase the observability of

the circuit . If enough checkers are used, it is possible to completely

or very nearly completely test a. circuit simply b y normal operation.

Complete testing during normal operation prevents a buildup of

undetected failures (the so-called "latent faults" problem). Since any

concurrent error detection technique can only handle a limited number of

failures, a buildup of latent faults can result in an error not being

detected. If the checkers do not provide enough observability to detect

all possible faults during normal operation, periodic testing must b e

used to detect any latent faults.

The major disadvantage of concurrent error detection is the addi-

tional logic required. The codes used for data and control vectors

4 i

require redundant bits. Extra logic is needed to process these bits.

Additional logic is also needed for checkers. The logic which must be

added to implement concurrent error detection can be significant.

Depending on exactly which concurrent error detection scheme is used*

the additional logic required may be more than 100 percent of the origi­

nal system. Whether this type of extra cost is justified is obviously

an engineering judgment. It is possible to use only concurrent error

detection for those parts of the system which are either judged most

likely to fail or whose failure would be most serious. Depending on

what portions of the circuit are protected, significant savings of

hardware are possible. A technique has been developed recently for

various arithmetic computations [3]. This technique employs time redun­

dancy rather than logic redundancy. Although it is not applicable to

all functions, time redundancy, where it is applicable, can provide con­

current error detection with only a very modest amount of additional

logic but at the cost of additional time.

1.2. FapU Models

The purpose of a fault model is to describe the behavior of a phy­

sical failure in a manner that will allow us to predict the logical

behavior of the failed system. Since in general, a physical failure

affects the analog behavior of a circuit (i.e., gain, time constants,

etc.) it may be very difficult to describe exactly how the failure will

alter the logical behavior of the system. A fault model has three

important attributes: accuracy, ease of analysis, and cost of fault

tolerance.

require redundant bits. E%tra logic is needed to process these bits.

Additional logic is also needed for checkers. The logic which must be

added to implement concurrent error detection can be si1nificant.

Depending on exactly which concurrent error detection scheme is used,

the additional logic required may be more than 100 percent of the origi­

nal system. Whether this type of extra cost is justified is obviously

an engineering judgment. It is possible to use only concurrent error

detection for those parts of the system which are either judged most

likely to fail or whose failure would be most serious. Depending on

what portions of the circuit are protected, significant savings of

hardware are pouible. A technique has been developed recently for

various arithmetic computations [3]. This technique employs time redun­

dancy rather than logic redundancy. Al though it is not applicable to

all functions, time redundancy. where it is applicable, can provide con­

current error detection with only a very modest amount of additional

logic but at the cost of additional time.

1 ,l , F.&.ull Models

The purpose of a fault model is to describe the behavior of a phy­

sical failure in a manner that will allow us to predict the logical

behavior of the failed system. Since in general, a physical failure

affects the analog behavior of a circuit (i.e •• gain, time constants,

etc.) it may be very difficult to describe exactly how the failure Yill

alter the logical behavior of the system. A fault model has three

important attributes: accuracy, ease of analysis, and cost of fault

tolerance.

5

If the fault model does not accurately describe the logical

behavior of physical failures, then it is of little use. The quality of

an error detection scheme is measured by the fraction of faults in the

fault model which are detectable. Clearly, if the model does not accu­

rately describe the behavior of physical failure, this measure is of

little use.

Two factors contribute to the ease of analysis of a fault model:

the number of faults which must be considered, and the complexity of the

fault behavior. Any system which contains many thousands of logic ele­

ments will also have a large number of possible faults. The behavior

described by the fault model must be simple enough to allow analysis of

the system. For off-line testing, we must determine whether the test

procedure will detect each fault. For concurrent error detection, we

must insure that the encoding used will allow detection of an incorrect

result. If the fault model is too complex, this analysis will be too

difficult to perform and the fault model will be impractical. One tech­

nique which can greatly reduce the number of faults is fault collapsing.

Fault collapsing can be done when two or more faults are indistinguish­

able. Fault collapsing makes it is possible to reduce significantly the

number of faults which need to be considered.

Cost of fault tolerance is a very important consideration since it

strongly affects system cost. For off-line testing, cost of fault

tolerance determines how large the test procedure must be. It may also

influence the complexity of the tester hardware. For concurrent error

detection, cost of fault tolerance determines how much extra logic must

If the fault model does not accurately describe the logical

behavior of physical failures, then it is of little use. The quality of

an error detection scheme is measured by the fraction of faults in the

fault model which are detectable. Clearly, if the model does not accu­

rately describe the behavior of physical failure, this measure is of

little use.

Two factors contribute to the ease of analysis of a fault model:

the nlll!1ber of faults which must be considered, and the complexity of the

fault behavior. Any system which contains many thousands of logic ele­

ments will also have a large n11.111ber of possible faults. The behavior

described by the fault model must be simple enough to allow analysis of

the system. For off-line testing, we must determine whether the test

procedure will detect each fault. For concurrent error detection, we

must insure that the encoding used will allow detection of an incorrect

result. If the fault model is too complex, this analysis will be too

difficult to perform and the fault model will be impractical. One tech­

nique which can greatly reduce the number of faults is fault collapsing.

Fault collapsing can be done when two or more faults are indistinguish­

able. Fault collapsing makes it is possible to reduce significantly the

number of faults which need to be considered.

Cost of fault tolerance is a very important consideration since it

strongly affects system cost. For off-line testing, cost of fault

tolerance determines how large the test procedure must be. It may also

influence the complexity of the tester hardware. For concurrent error

detection. cost of fault tolerance determines bow much extra logic must

6

be added to tbe original system. Cost of fault tolerance is usually

highly dependent on the exact nature of the error detection scheme and

the target system.

The selection of a fault model requires a tradeoff between accu­

racy* ease of analysis* and cost of fault tolerance. Since these

requirements are usually conflicting* the choice is never easy. In the

past* a variety of fault models have been proposed.

1.2.1. Single Stuck-At Fault Model

The single stuck-at fault model assumes that any physical failure

will cause one node (wire) of the circuit to become permanently either a

logic 1 or a logic 0. This model is extremely easy to use and is by far

the most common fault model in use. It was first proposed when logic

elements were built from discrete devices and is generally accurate in

describing the behavior of failures in such devices [4]. Unfortunately,

its accuracy is much poorer for the highly integrated logic elements

which make up most of today's systems.

1.2.2. Unidirectional Fault Mpflel

The unidirectional fault model assumes that a failure causes any

number of nodes in the circuit to be either stuck-at 1, or alternatively

any number stuck-at 0. Smith [5] has shown that a unidirectional fault

model implies the use of an unordered code (i.e., no codeword covers any

other codeword) for concurrent error detection. He also showed that in

most cases, concurrent error detection of unidirectional faults requires

an inverterless implementation. Since nearly all logic families are

'
be added to tho original system. Cost of fault tolerance is usually

highly dependont on the exact nature of the error detection scheme and

the target system.

The selection of a fault model requires • tradeoff between accu-

racy, ease of analysis, and cost of fault tolerance, Since these

requirements are usually conflictina, the choice is never easy. In tho

past, a variety of fault models have been proposed.

l•l-1. Sin1le Stuck-M. Fault Model

The sinaie .lllld-.&1 fault .llli2..lk..l assumes that any physical failure

will cause one node (wire) of the circuit to become permanently either a

logic 1 or a logic 0. Thia model is extremely easy to use and is by far

the most common fault model in use. It was first proposed when logic

elements were built from discrete devices and is generally accurate in

describing tho behavior of failures in such devices [4]. Unfortunately,

its accuracy is •nch poorer for the highly integrated logic elements

which make up most of today's systems.

1 -1-l - Unidirectional Eull Model

The unidirectional .f..a.D.ll model assumes that a failure causes any

number of nodes in the circuit to be either stuck-at 1, or alternatively

any number stuck-at 0, Smith [SJ has shown that a unidirectional fault

model implies the use of an unordered code (i.e., no codeword covers any

other codeword) for concurrent error detection. Ho also sbowed that in

most cases, concurrent error detection of unidirectional faults requires

an inverterless implementation. Since no arly al 1 logic families are

7

inherently inverting, this restriction severely limits the usefulness of

this fault model.

A related fault model which is quite popular assumes that any phy­

sical failure results in a unidirectional error at the module's output.

In general, inverter-free implementations are not required to allow con­

current error detection for such a system. An unordered code, however,

is still required. This fault model has been very popular for various

structured elements such as memories and programmed logic arrays. We

will refer to this fault model as the unidirectional error fault model.

1.2.,3. Bridging Fault Model

The bridging fault model assumes that a short between any two or

more lines results in some sort of wired logic function. For NMOS and

CMOS logic families, the wired logic operation is usually taken to be

the AND operation. It is assumed that if any of the lines which are

shorted together are a logic 0, then all the shorted lines will take on

the value of a logic 0. If all lines have a value of logic 1, then the

lines will retain a value of logic 1. Figure 1.1 shows an example of a

bridging fault between two input lines resulting in a wired AND opera­

tion.

The behavior of a circuit under failure is much more complicated

with this model than with the stuck-at fault model. A bridging fault

results in an additional gate being added to the circuit. More impor­

tantly, a bridging fault can transform combinational logic into sequen­

tial logic. The bridging fault model is only useful for modeling shorts

7

inherently inverting, this restriction severely limits the usefulness of

this fault model.

A related fault model which is quite popular assumes that any phy­

sical failure results in a unidirectional error at the module's output.

In general, inverter-free implementations are not required to allo~ con­

current error detection for such a system. An unordered code, however.

is still required. This fault model has been very popular for various

structured elements such as memories and programmed logic arrays. We

will refer to this fault model as the unidirectional m .Ll.llll model.

!-1 -1- Brid1in1 Fault Model

The b r id2 in 1: fault mode I as sll]l1e s that a short be tween any two or

more lines results in some sort of wired logic function. For NMOS and

CMOS logic funilies, the wired logic operation is usually taken to be

the AND operation. It is assumed that if any of the lines which are

shorted together are a logic 0. then all the shorted lines will take on

the value of a logic 0. If all lines have a value of logic 1, then the

lines will retain a value of logic 1. Figure 1.1 shows an example of a

bridging fault between two input lines resulting in a wired AND opera­

tion.

The behavior of a circuit under failure is much more complicated

with this model than with the stuck- at fault model. A bridging fault

results in an additional gate being added to the circuit. More impor­

tantly, a bridging fault can transform combinational logic into sequen­

tial logic. The bridging fault model is only useful for modeling shorts

F (A , B , C)

F(A,B, C)

T
WIRED AND

Figure 1.1. An Example of a Wired-AND Bridging Fault.

A

B

C

-------F(A,B,C)
A----~

B---~---1
BRIDGING
FA I LURE --> .
C---~------l

1'
WIRED AND

r-----
F(A,B,C)

Figure 1.1. An Example of a Wired-AND Bridging Fault,

a

9

between lines. For this reason, it is usually combined with another

fault model such as the stuck-at fault model.

1.2.4. Stnck-Open Fault Model

The st?gk~QP.£h fault is peculiar to MOS logic families. A stuck-

open fault results from a physical failure in which some node in the

circuit is prevented from having a DC path to ground or power for cer­

tain input combinations.

Figure 1.2 shows an example of a stuck-open fault in a CMOS NAND

circuit. Due to a physical failure, the pullup transistor corresponding

to input A is permanently in the nonconducting state. Whenever input A

is a logic 0 and input B is a logic 1, there is no DC path from the out­

put node to either power or ground. The output node therefore remains

at its previous value until the inputs are changed to re-establish a DC

path to power or ground or until the charge leaks off the output node.

The time required for a significant amount of charge to leak off the

output node is usually much longer than the system clock period.

Static NMOS and PMOS gates are not subject to stuck-open faults.

However, if pass transistors are utilized to implement certain logic

functions, stuck-open faults can occur. Figure 1.3 shows an NMOS

inverter whose input is loaded by a multiplexer with two pass transis­

tors. The pass transistor corresponding to input A is permanently non­

conducting due to a physical failure. If the control input is a logic

1, then there is no DC path from the gate of the inverter to power or

ground (note that this path is normally provided by the gates that drive

9

between lines, For this reason, it is usually combined with another

fault model such as the stuck-at fault model.

The .ll.W.1-rn fault is peculiar to MOS logic families. A stuck­

open fault results from a physical failure in which some node in the

circuit is prevented from having a DC path to ground or power for cer­

tain input combinations.

Figure 1 .2 shows an example of a stuck-open fault in a CMOS NAND

circuit, Due to a physical failure, the pullup transistor corresponding

to input A is permanently in the nonconducting state. Whenever input A

is a logic 0 and input Bis a logic 1, there is no DC path from the out­

put node to either power or ground. The output node therefore remains

at its previous value until the inputs are changed to re-establish a DC

path to power or ground or until the charge leaks off the output node.

The time required for a significant amount of charge to leak off the

output node is usually much longer than the system clock period.

Static NMOS and PMOS gates are not subject to stuck-open faults.

However, if pass transistors are utilized to implement certain logic

functions, stuck- open faults can occur. Figure 1.3 shows an NMOS

inverter whose input is loaded by a multiplexer with two pass transis­

tors. The pass transistor corresponding to input A is permanently non­

conducting due to a physical failure. If the control input is a logic

l, then there is no DC p11th from the gate of the inverter to power or

ground (note that this path is normally provided by the gates that dr i ve

10

A

Figure 1.2. A CMOS NAND Gate with a Stuck-Open Fault.

10

A

I 1--------L..----

_[
B

Figure 1.2. A CMOS NAND Gate with a Stuck-Open Fault.

CONTROL

A /\

OPEN

B

CONTROL

Figure 1.3. A NMOS Circuit with a Stuck-Open Fault.

11

CONTROL

A _ Jt
OPEN

B l _
T

CONTRO _

Figure 1.3. A NMOS Circuit with a Stuck-Open Fault.

12

inputs A and B). Once again* tie output remains unchanged from its pre­

vious value.

For both CMOS and NMOS circuits, a stuck-open fault can transform a

combinational circuit into a sequential circuit (under failure, the

present output is a function of a previous input). Therefore, the

stuck-open fault model suffers from the same deficiencies as the bridg­

ing fault model. It is difficult to use because of the possibility of

sequential operation. It also needs to be combined with some other

fault model since it can only model transistors that have permanently

failed in a nonconducting state.

13. Overview o l Research

The choice of a fault model is of crucial importance to any error

detection scheme. Most of the fault models that have been proposed,

were proposed long before the advent of large scale MOS integrated cir­

cuits. It is important that any fault model reflects the technology

with which it is used.

We begin the presentation of our research in Chapter 2, by

thoroughly reviewing the types of physical failures which are possible

in present day MOS integrated circuits. We also examine the effects of

scaling of device dimensions, voltages, and doping levels on the proba­

bility that a failure occurs.

In Chapter 3, models of several types of MOS inverters are

developed. These models are used to study the effects of physical

failures on MOS logic circuits.

12

inputs A and B). Once again. the output remains unchanged from its pre­

vious value.

For both CMOS and NMOS circuits. a stuck-open fault can transform a

combinational circuit into a sequential circuit (under failure. tbe

present output is a function of a previous input}. Therefore. the

stuck-open fault model suffers from the same deficiencies as the bridg­

ing fault model. It h difficult to use because of the possibility of

sequential operation. It also needs to be combined with some other

fault model since it ean only model transistors that have permanently

failed in a nonconducting state.

1 .1.. Overview Q.f Research

The choice of a fault model is of crucial importance to any error

detection scheme. Most of the fault models that have been proposed.

were proposed long before the advent of large scale MOS integrated cir­

cuits. It is important that any fault model reflects the technology

with which it is used.

We begin tho presentation of our research in Chapter 2. by

thoroughly reviewing the types of physical failures which are possible

in present day MOS integrated circuits. We also examine the effects of

scaling of device dimensions, voltages. and doping levels on the proba­

bility that a failure occurs.

In Cb.apter 3, models of several types of)f()S inverters are

developed. These models are used to study the effects of phyaical

failures on MOS logic circuits,

13

In Chapter 4, fault models are defined based on the results from

Chapters 2 and 3. The techniques required to analyze a circuit's con­

current error detection capabilities are also developed in Chapter 4.

Finally, the hardware requirements of implementing concurrent error

detection for our fault model are examined.

The purpose of this research is to find fault models for MOS cir­

cuits which are better than the traditional fault models. We have

already defined the criteria for judging a fault model: accuracy, ease

of analysis, and cost of fault tolerance. The results of Chapters 2 and

3 can be used to judge a fault model's accuracy for MOS logic circuits.

The results of Chapter 4 are useful for judging the ease of analyses and

the cost of fault tolerance for our fault model. The results of' this

research show that fault models that are much more accurate than the

traditional fault models are possible to use without sacrificing ease of

analysis and cost of fault tolerance.

13

In Chapter 4, fault models are defined based on the results from

Chapters 2 and 3. The techniques required to analyze a circuit's con­

current error detection capabilities are also developed in Chapter 4.

Finally, the hardware requirements of implementing concurre~t error

detection for our fault model are examined,

The purpose of this research is to find fault models for MOS cir-

cuits which are better than the traditional fault models. We have

already defined the criteria for judging a fault model: accuracy, ease

of analysis. and cost of fault tolerance. The results of Chapters 2 and

3 can be used to judge a fault model's accuracy for MOS logic circuits.

The results of Chapter 4 are useful for judging the ease of analyses and

the cost of fault tolerance for our fault model, The results of' this

research show that fault models that are much more accurate than the

traditional fault models are possible to use without sacrificing ease of

analysis and cost of fault tolerance.

14

CHAPTER 2

Physical Failure Modes for MOS Integrated Circuits

In this chapter* we examine the various physical failure modes for

MOS integrated circuits. We restrict our study to MOS circuit technolo­

gies because of its wider use in VLSI circuits.

One important consideration in analyzing failure mechanisms is the

effect of future changes in technology. One such change is called scal­

ing. Scaling is the process of reducing integrated circuit dimensions*

doping* and voltages. Generally scaling results in denser integrated

circuits that operate at a higher speed and consume less power. Most of

the improvements in MOS integrated circuits over the past 15 years are

due to' scaling. There is every reason to believe that in the future,

devices will continue to be scaled even further. As a result* effects

which were unimportant in the past, will become of much greater concern.

The simplest scaling scheme is to reduce all dimensions* both hor­

izontal and vertical* by a factor of K. Power supply voltages are also

reduced by the same factor K while doping densities are increased by K.

Because of this, the size of any device is reduced by a factor of K2 .

Therefore, the number of devices which can be placed on an integrated

circuit of a given size can be increased by a factor of K2 . The power

consumed by a scaled device is also reduced by a factor of K2 and the

propagation delay is reduced by a factor of K. Current density in con­

ductors, however, increases by a factor of K. This type of scaling is

1-i

CHAPTER. 2

Phyaic•l Failure Modes for MOS Integrated Circuits

In this chapter. we examine the various physical failure modes for

MOS integrated circuits. Ye restrict our study to MOS circuit technolo­

gies because of its wider use in VL~I circuits.

One important consideration in analyzing failure mechani&ms is the

effect of future changes in technology, One such change is called scal­

ing, Scaling is the process of reducing inte1rated circuit dimensions,

doping, and voltages, Generally scaling results in denser integrated

circuits that operate at a higher speed and cons111De less power. Most of

the improvements in MOS integrated circuits over the past 15 years are

due to• sealing, There is every reason to believe that in the future.

devices will continue to be scaled even further. As a result, effects

which were unimportant in the past. will become of much greater concern.

The simplest scaling scheme ls to reduce all dimensions, both hor­

izontal and vertical. by a factor of K. Power supply voltages are also

reduced by the same factor I while doping densities are increased by X.

Because of this. the size of any device is reduced by a factor of K2 ,

Therefore. the number of devices which can be placed on an integrated

circuit of a given size can be increased by a factor of 12 • The power

consumed by a scaled device is also reduced by a factor of i:2 and the

propagation delay is reduced by a factor of I, Current density in con­

ductors. ho-wever, increases by a factor of I:. This type of scaling is

15

referred to as constant field scaling since the magnitude of all elec­

tric fields remains approximately constant.

A majority of integrated circuits are designed to operate with a

power supply of 5 volts. Since adding an additional power supply to a

system is quite expensive, it is usually considered to be impractical to

scale the power supply voltage. If all dimensions are reduced by a fac­

tor of K, but the power supply voltage is held constant, power per dev­

ice increases by a factor of K while current density increases by a fac­

tor of . If we take advantage of the fact that we can place times

as many devices on an integrated circuit of the same size, total power

increases by a factor of also. Clearly, as devices are scaled down,

power and current density will be of concern. This type of scaling is

referred to as constant voltage scaling. Figure 2.1 gives a summary of

the scaling factors for both constant voltage and constant field scal­

ing .

2 . 1 . Interconnect Failures

Interconnect is that part of the circuit which connects transistors

to other transistors and the input or output pads. Most MOS integrated

circuit processes provide one or more levels of metal, a layer of

polysilicon, and a layer of diffusion. All of these layers may be used

for interconnect although polysilicon cannot be allowed to cross diffu­

sion since an unwanted transistor will be formed. If, however, the pro­

cess also provides for an enhancement transistor with a low enough

threshold voltage, then the unwanted transistor may be made into an

enhancement transistor. This allows polysilicon interconnect to cross

15

referred to as constant field sealing since the magnitude of all elec­

tric fields remains approximately constant.

A majority of integrated circuits are designed to operate with a

power supply of 5 volts . Since adding an additional power supply to a

system is quite expensive, it is usually considered to be impractical to

scale the power supply voltage. If all dimensions are reduced by a fac­

tor of K, but the power supply voltage is held constant, power per dev­

ice increases by a factor of K while current density increases by a fac­

tor of 1 3 . If •e take advantage of the fact that we can place K2 times

as many devices on an integrated circuit of the same size, total power

increases by a factor of 13 also, Clearly, as devices are scaled down,

power and current density will be of concern, This type of scaling is

referred to as constant voltage scaling. Figure 2.1 gives a summary of

the scaling factors for both constant voltage and constant field scal­

ing.

l,1, Interconnect Failures

Interconnect is that part of the circuit which connects transistors

to other transistors and the input or output pads. Most MOS integrated

circuit processes provide one or more levels of metal. a layer of

polysilicon, and a layer of diffusion. All of these laye rs 1uy be used

for interconnect although polysilicon cannot be allowed to cross diffu­

sion since an unwanted transistor will be formed. If, however, the pro­

cess also provides for an enhancement transistor with a low enough

threshold voltage, then the unwanted transistor may be made into an

enhancement transistor. This allows polysilicon interconnect t o cross

CONSTANT
FIELD

CONSTANT
VOLTAGE

DIMENSIONS r 1 XT1

VOLTAGE ET1 1

DOPING
CONCENTRATION K K

NUMBER
OF DEVICES K2 K2

POWER PER DEVICE K”2 K

TOTAL POWER 1 K3

CURRENT DENSITY K K3

CONTACT RESISTANCE K2 K2

NORMALIZED CONTACT
VOLTAGE DROP K K2

Figure 2,1 Summary of Scaling Factors

1,

CONSTANT CONSTANT
FIELD VOLTAGE

DIMENSIONS rl rl

VOLTAGE 1-1 1

DOPING
CONCENTRATION X:

NUMBER
OF DEVICES i:2 i:2

POWER PER DEVICE i::-2 (

TOTAL POWER 1 1:3

CURRENT DENSITY (1:3

CONTACT RESISTANCE x:2 ,2

NORMALIZFJ> CONTACT
VOLTAGE DROP I: x:2

Figure 2 .1 Summary of Scaling Factors .

17

diffusion interconnect* although the capacitance of the polysilicon line

and the resistance of the diffusion line is significantly increased.

This in turn increases the delay of a signal propagating on either line.

The ability of polysilicon to cross diffusion is very important when

only one layer of metal is available. As we will see in the next

chapter, a sufficiently low enhancement transistor threshold voltage

will have an impact on system performance.

2.1.1. Metal Interconnect Failures

It is well known that any metalization subjected to a high current

density is susceptible to electromigration [6] . Electromigration typi­

cally occurs where there is a slight constriction in the conductor. The

current density is highest at the constriction. The high current den­

sity causes metal ions to diffuse away from the constriction. This dif­

fusion further narrows the conductor which in turn raises the current

density and thus continuously accelerates the process. Eventually, the

conductor fails. Lines subjected to DC current are most susceptible

while lines subjected to AC current are essentially immune to electromi­

gration. Nanosecond pulses of current (all pulses of the same polarity)

two orders of magnitude higher than the DC case may be safely carried by

metal conductors. CMOS and dynamic NMOS circuits which dissipate no

static power are thus less likely to suffer electromigration failure.

A variety of factors affects the mean time to failure of a metal

line. These include materials, grain size and orientation, and relative

width and length of the conductor [7]. The most important factor, how­

ever, is current density. The mean time to failure for a line is given

17

diffusion interconnect , although the capacitance of the polysilicon line

and the resistance of the diffusion line is significantly increased .

This in turn increases the delay of a signal propagating on either line .

The ability of polysilicon to cross diffusion is very important when

only one layer of metal is available. As we will see in the next

chapter, a sufficiently low enhancement transistor threshold voltage

will have an impact on system performance,

l ,1,1, ~ Interconnect Failures

It is well tnown that any ~etalization subjected to a high current

density is susceptible to electromigration [6]. Electromigration typi­

cally occurs where there is a slight constriction in the conductor. The

current density is highest at the constriction. The high current den­

sity causes metal ions to diffuse away from the constriction. This dif­

fusion further narrows the conductor which in turn raises the current

density and thus continuously accelerates the process. Eventually, the

conductor fails. Lines subjected to DC current are most susceptible

while lines subjected to AC current are essentially immune to electromi­

gration. Nanosecond pulses of current (all pulses of the same polarity)

two orders of magnitude higher than the DC case may be safely carried by

mets! conductors. CMOS and dynamic NMOS circuits which dissipate no

static power are thus less likely to suffer electromigration failure.

A variety of factors affects the mean time to failure of a meta l

line. The se include materials, grain size and orientation, and relative

width and length of the conductor [7] . The most important factor, how­

ever, is current density. Tho mean time to failure for a line is given

18

by the formula:

M T F = . J"N exptfj/T)

where an(j X2 are constants* J is the current density* N is a material

dependent constant, and T is temperature. The value of N for aluminum

is generally considered to be 2 (there is some disagreement on this

point, see [7]). Therefore, the mean time to failure is inversely pro­

portional to the current density squared and exponentially related to

the reciprocal of temperature. For this reason, scaling will have an

important (and unfortunately negative) impact on the reliability of

metal conductors. If the power supply voltage is not scaled (constant

voltage scaling), we have already stated that both power consumption and

current density will increase by a factor of as the dimensions are

scaled by a factor of K. Due to the current density alone, the mean

time to failure for aluminum will scale down by a factor of . Since

we also increase the number of metal interconnects by a factor of by

scaling, then the mean time to failure for the entire integrated circuit

will decrease by an additional factor of . Therefore, ignoring the

effects of temperature, we can expect the mean time to failure of an

entire integrated circuit to decrease by a factor of K* if aluminum

metalization is used.

The temperature that an integrated circuit operates at is highly

dependent on power consumption, packaging, and external cooling. Reduc­

ing the temperature by packaging improvements or adding external cooling

tends to be expensive. Therefore, if power consumption is increased by

a factor of during the scaling process, it is reasonable to expect at

18

by the formula:

lrITF • 1 1 • .r-N exp(~/T)

where 11 and 12 are constants • .Tis the current density. N is a material

dependent constant, and Tis temperature. Tho value of N for alumin'Oll

is generally considered to be 2 (there is soae disagreement on thil

point, see [7]), Therefore. the mean time to failure is inversely pro­

portional to the current density squared and exponentially related to

the reciprocal of temperature . For this reason. sealing will have an

important (and unfortunately negative) impact on the reliability of

metal conductors , If the power supply voltage is not scaled (constant

voltage scaling). we have already stated that both power consllJlption and

current density will increase by a factor of t 3 as the dimensions are

scaled by a factor of I:. Due to the current density alone , the mean

time to failure for aluminwa will scale do,rn by a factor of r , Since

we also increase the n'lllllber of metal interconnects by a factor of r2 by

scaling, then the mean time to failure for the entire integrated circuit

wil 1 decrease by an additional factor of il . Therefore. ignoring the

effects of temperature. we can expect the mean time to failure of an

entire integrated circuit to decrease by a factor of 1:8 if allllDinum

metalization is used.

Tho temperature that an integrated circuit operates at is highly

dependent on power consmnption. packaging. and external cooling , Reduc­

ing the temperature by packaging improvements or adding external cooling

tends to be expensive. Therefore, if power consUBSption is increased by

a factor of (3 during the scaling process, it is reasonable to expect at

19

least some increase in integrated circuit temperature. Since the rela­

tionship between temperature and conductor lifetime is exponential,

relatively small increases in temperature will drastically reduce mean

time to failure. One should note that if the power supply voltage is

scaled along with the dimensions, the integrated circuit mean time to

failure only decreases by a factor of Also, since total power

remains constant, the integrated circuit temperature should also remain

constant.

Accumulation of metal from electromigration presents another prob­

lem. This metal can form hillocks or whiskers [6]. Whisker formation

tends to occur where there is a high electric field between conductors.

The formation of hillocks and whiskers can result in shorting between

adjacent metalization and cracking of the passivation level.

Ohmic contacts are formed where metalization must provide an

electrical connection to a diffused area. Ohmic contacts ideally should

produce no rectification or other asymmetry in the response to positive

and negative waveforms. In addition, the resistance of contacts should

be as low as possible. Ohmic contacts are used extensively in

integrated circuits. Unfortunately, they appear to be a major problem

area for future integrated circuits. Since the resistance of a contact

is proportional to its area, the contact resistance will increase by a

factor of K2 during scaling. If supply voltage is reduced by the pro­

cess of scaling, then normalized contact voltage drop (i.e., signal vol­

tage divided by supply voltage) increases by a factor of K2 . If the

power supply voltage remains constant, then normalized contact voltage

19

least some increase in integrated circuit temperature . Since the rela­

tionship between temperature and conductor lifetime is exponential,

relatively small increases in temperature will drastically reduce mean

time to failure . One should note that if the power supply voltage is

scaled along with the dimensions, the integrated circuit 111ean time to

failure only decreases by a factor of c• . Also, since total power

remains constant, the integrated circuit temperature should also remain

constant .

Accumulation of metal from electromigration presents another prob­

lem, This metal can form hillocks or whiskers {6]. Whisker formation

tends to occur where there is a high electric field between conductors.

The formation of hillocks and whiskers can result in shorting between

adjacent metalization and cracking of the passivation level.

Orunic contacts are formed where metalization must provide an

electrical connection to a diffnsed area. Ohmic contacts ideally should

produce no rectification or other asymmetry in the response to positive

and negative waveforms. In addition, the resistance of contacts should

be as low as possible. Ohmic contacts are used extensively in

integrated circuits. Unfortunately, they appear to be a major problem

area for future integrated circuits. Since the resistance of a contact

is proportional to its area. the contact resistance will increase by a

factor of K2 during sealing. If supply voltage is reduced by the pro­

cess of scaling, then normalized contact voltage drop (i.e., signal vol­

tage divided by supply voltage) increases by a factor of K2. If the

power supply voltage reinains constant, then normalized contact voltage

20

increases by a factor of K (see Figure 2,1) „ Any mask misalignment dur­

ing processing will aggravate this situation since the effective area of

the contact will be further reduced.

In addition to these scaling problems* a variety of effects due to

electromigration can also lead to failures [6]. At fairly high tempera­

tures* it is possible for silicon to leave the substrate and form an

alloy with the aluminum. This depletion of silicon decreases the effec­

tive junction depth and thus makes it easier for spikes of the

aluminum-silicon alloy to extend through the junction and into the sub­

strate. This results in a short from the metal and diffusion to the

substrate. It should be noted that junction depth is one of the dimen­

sions which is reduced in the scaling process. Thus, scaling makes it

easier for a spike to penetrate past the junction. The metalization of

the contact is also susceptible to electromigration resulting in open

contacts [8].

For most integrated circuit processes, metal forms the top layer.

For this reason* the metalization will tend to be three dimensional as

it crosses over features on lower layers. Any time metal has to go up

or down steps on the surface of an integrated circuit* there is the pos­

sibility of either a break in the line, or a constriction. Obviously

such a constriction is a prime site for electromigration to occur. A

defect in the metalization mask can cause either a short or open in the

metal interconnect depending on the defect.

Many of the metals used in integrated circuits are subject to cor­

rosion (particularly alnminum) and accelerated electromigration from any

20

increases by a factor of I (see Figure 2 .1) , Any mask misalignment dur­

ing processing will aggravate this situation since the effective area of

the contact will be further reduced.

In addition to these scaling problems, a variety of effects due to

electromigration can also lead to failures [6]. At fairly high tempera­

tures. it ia possible for silicon to leave the substrate and form an

alloy with the aluminum. This depletion of silicon decreases the effec­

tive jUD.ction depth and thus makes it easier for spikes of the

aluminum-silicon alloy to extend through the junction and into the sub­

strate, This results in a short from the metal and diffusion to the

substrate. It should be noted that junction depth is one of the dimen­

sions which is reduced in the scaling process. Tb.us, scaling makes it

easier for a spike to penetrate past the junction, The metalization of

the contact is also susceptible to electrom.igration resulting in open

contacts [8].

For most integrated circuit processes. metal forms the top layer.

For this reason. the metalization will tend to be three dimensional as

it crosses over features on lower layers. Any time metal has to go up

or down steps on the surface of an integrated circuit, there is tho pos­

sibility of either a break in the line, or a constriction. Obviously

such a constriction is a prime site for electromigration to occu.r. A

defect in the metalization mask can cause either a short or open in the

metal interconnect depending on the defect,

Many of the metals used in integrated circuits are subject to cor­

rosion (particularly aluminum) and accelerated electromigration from any

I
I •

21

moisture or other contaminants [9]. Ideally, packaging should provide

an almost impervious barrier to such contaminants. If the packaging

should fail to perform this task, all metal on the integrated circuit is

subject to failure.

2.1.2. Pg,lys_i,ll.g.Qn Interconnect Failures

Polysilicon also appears to be vulnerable to electromigration [103.

The physical mechanism, however, seems to be somewhat different than for

metal. In polysilicon, a high current density usually causes the dopant

atoms to migrate rather than the silicon atoms. This migration results

in areas with a lower concentration of dopant atoms. The resistance of

polysilicon is very sensitive to doping levels. Therefore, the resis­

tivity of the polysilicon increases in the areas where electromigration

has left low concentrations of dopants. This leads to the formation of

local hot spots which can further accelerate the electromigration pro­

cess. Eventually, thermal runaway causes the line to fail. It should

be noted that at extremely high temperatures which can occur with ther­

mal runaway (temperatures greater than 1000 °C have been observed in

polysilicon test structures [10]), silicon atoms start to migrate as

well as dopant atoms. Usually silicon migration only occurs immediately

before conductor failure.

It appears that electromigration becomes an important source of

failures at current densities of 10^ A/cm^ [11] (approximately the same

as for metal lines). Fortunately, when polysilicon is used as intercon­

nect, it will seldom be subjected to DC current densities of this magni­

tude. It must be kept in mind, however, that just as for metal, current

21

moisture or other contaminants [9]. Ideally, packaging should provide

an almost impervious barrier to such contaminants. If the packaging

should fail to perform this tast. all metal on the integrated circuit is

subject to failure .

1-l •l• Polysilicon Interconnect Failures

Polysilicon also appears to be vulnerable to electromigration 110).

The physical mechanism, however, seems to be somewhat different than for

metal. In polysilicon, a high current density usually causes the dopant

atoms to migrate rather than the silicon atoms . This migration results

in areas with a lower concentration of dopant atoms. The resistance of

polysilicon is very sensitive to doping levels. Therefore. the resis­

tivity of the polysilicon increases in the areas where electromigration

has left low concentrations of dopants. This leads to the formation of

local hot spots which can further accelerate the electromigration pro­

cess. Eventually, thermal runaway causes the line to fail. It should

be noted that at extremely high temperatures which can occur with ther­

mal runaway (temperatures greater than 1000 °C have been observed in

polysilicon test structures [10]), silicon atoms start to migrate as

well as dopant atoms . Usually silicon migration only occurs immediately

before conductor failure .

It appears that electromigration becomes an important source of

failures at current densities of 106 A/cm2 [11) (approximately the same

as for metal lines). Fortunately, when polysilicon is used as intercon­

nect. it will seldom be subjected to DC current densities of this magni­

tude. It must be kept in mind, however, that just as for metal, current

22

density scales by a factor of K or , depending on wbicb scaling rules

are used. Contacts between metal and polysilicon are subject to the

same type of difficulties as the metal-diffusion contacts we have

already discussed. Once again* since the currents will tend to be lower

than for metal-diffusion contacts* there should be fewer problems.

2.1.3. Diffusion Iat9?.S.<lhh-3.<?t F&i.lPtSS

When diffusion areas are formed on an integrated circuit, we are

depending on a reverse biased pn junction to prevent the diffused area

from shorting to either the substrate or other diffused areas. With a

properly designed and manufactured integrated circuit, the breakdown

voltage of the pn junctions is well above any voltage difference which

the circuit will be subjected to. It is possible for various anomalies

to result in significantly lower breakdown voltages. Possible causes

include local crystal defects, changes in doping concentration, exposure

to radiation and excessively shallow diffusions. Radiation can also

increase the leakage current of a pn junction. Leakage current also has

an exponential dependence on temperature. Regardless of the cause, if

the pn junction should break down or if leakage current should become

excessive, the diffusion area will become shorted to the substrate.

It is also possible for two closely spaced diffusion areas to

become shorted together. This occurs if the depletion regions of the

reverse biased pn junctions should happen to overlap. In this case,

charge carriers in one diffusion area will be swept by any potential

difference across the overlapped depletion regions, to the other diffu­

sion area. The width of a depletion region is approximately

22

density scales by a factor of Kor 13• depending on which scaling rules

are used . Contacts between metal and polysil icon are subject to the

same type of difficnlties as the metal-diffusion contacts we have

already discussed. Once again. since the currents will tend to be lower

than for metal-diffusion contacts. there should be fewer problems.

1,1,1, Diffusion Interconnect Failuros

When diffusion areas are formed on an integrated circuit, we are

depending on a reverse biased pn junction to prevent the diffused area

from shorting to el ther the substrate or other diffused areas. With a

properly designed and manufactured integrated circuit, the breakdown

voltage of the pn junctions is well above any voltage difference which

the circuit will be subjected to. It is possible for various anomalies

to result in significantly lower breakdown voltages. Possible causes

include local crystal defects, changes in doping concentration, exposure

to radiation and excessively shallow diffusions. Radiation can also

increase the leakage current of a pn junction. Leakage current also has

an exponential dependence on temperature. Regardless of the cause, if

the pn junction should break down or if leakage current should become

excessive, the diffusion area will become shorted to the substrate.

It is also possible for two closely spaced diffusion a:reas to

become shorted together. Tb.is occurs if the depletion regions of the

reverse biased pn junctions should happen to overlap. In this case,

charge carriers in one diffasion area will be swept by any potential

difference across the overlapped depletion regions, to the other diffu-

sion area, The width of a depletion region is approximately

23

proportional to the reverse bias voltage. Therefore, the depletion

regions of two adjacent diffusion areas are most likely to overlap when

they are at their most positive voltage (most negative voltage for

PMOS). In this case, however, both areas will be at the same potential.

Snch a short should have little effect except on circuits which are

highly dependent on the relative capacitances of nodes (snch as dynamic

circuits). A more serious although less likely problem occurs if the

two adjacent areas are at significantly different potentials. In this

case, if the depletion regions overlap, it will be possible for signifi­

cant currents to flow between the two areas. It is becoming more common

to use a recessed field oxide. Recessed field oxide has several advan­

tages which include lower capacitance and improved surface planar ity.

In addition, since a pn junction is only formed at the bottom of a dif­

fusion area, it is virtually impossible for the depletion regions of two

adjacent diffusion regions to overlap. If an insulating substrate is

used, then isolation failures should not be an issue.

It is often the case that interconnect will run over the oxidized

substrate between two diffusion areas. The result is a parasitic MOS

transistor. The diffusion areas form the source and drain while the

interconnect forms the gate. If the parasitic MOS transistor is allowed

to turn on, an unwanted current flows between the two diffusion regions.

In other words, the diffusion regions are shorted together by the

parasitic transistor. To prevent this from happening, the field oxide

is made thick enough to prevent the parasitic transistor from turning

on. Similarly, the substrate under the field oxide is often implanted

to make a channel even harder to form. If enough charge (due to

I

13

proportional to the reverse bias voltage. Therefore, the depletion

regions of two adjacent diffusion areas are most likely to overlap when

they are at their most positive voltage (most negative voltage for

PMOS). In this case, however, both areas will be at the same potential .

Snch a short should have little effect except on circuits which are

highly dependent on the relative capacitances of nodes (such as dynamic

circuits). A more serious although less likely problem occurs if the

two adjacent areas are at significantly different potentials. In this

case. if the depletion regions overlap. it will be possible for signifi­

cant currents to flow between the two areas. It is becoming more common

to use a recessed field oxide . Recessed field oxide has several advan­

tages which include lower capacitance and i mproved surface planarity.

In addition, since a pn junction is only formed at the bottom of a dif­

fusion area, it is virtually impossible for the depletion regions of two

adjacent diffusion regions to overlap. If an insulating substrate is

used. then isolation failures should not be an issue.

It is often the case that interconnect will run over the oxidized

substrate between two diffusion areas . The result is a parasitic MOS

transistor. The diffusion areas form the source and drain while the

interconnect forms the gate. If the parasitic MOS transistor is allowed

t o turn on. an unwanted current flows between t he two diffusion regi ons .

In other words, the diffusion regions are shorted t ogether by the

parasitic transistor. To prevent this from happening , the field oxide

is made thick enough to prevent the parasitic transistor from turning

on. Similarly , the substrate under the field oxide is often implanted

to make a channel even harder to form. If enough charge (due to

24

radiation* mobile ions* etc.) becomes trapped in the field oxide* a

channel may still form* especially when the interconnect is at its most

positive voltage (most negative voltage for PMOS) [12].

2.1.4. Dielectric Failures

In B«)S integrated circuits* silicon dioxide (SiC^) is the most com­

mon dielectric* although silicon nitride (Sî ify) is also used occasion­

ally. The dielectric material is used for two important purposes: insu­

lation and protection.

The dielectric must separate any two conducting layers from each

other. One very important use of a dielectric is in the gate oxide

which insulates a transistor's channel from its gate electrode. Almost

all BTOS circuits depend on the extremely high gate impedance of a BIOS

transistor. The smallest pinhole in the gate oxide can result in a

short from the gate electrode to either the source diffusion* channel*

or drain diffusion (depending on where the pinhole is). Gate electrodes

which are connected to Input/Output pins are of particular concern.

Simply handling an integrated circuit will subject the pins to electros­

tatic discharge. Three sources of electrostatic discharge as reported

in [13] are:

(1) A charged person touches a device and discharges the stored
charge to or through the device to ground.

(2) The device itself* acting as one plate of a capacitor* can
store charge. Upon contact with an effective ground the
discharge pulse can create damage. 3

(3) An electrostatic field is always associated with charged ob­
jects. Under particular circumstances* a device inserted in
this field can have a potential induced across an oxide that
creates breakdown.

14

radiation, mobile ions. etc.) becomes trapped in the field oxide , a

channel may still form. especially when the interconnect is at its most

positive voltage (most negative voltage for PMOS) [12].

l•l•i• Dielectric Failures

In MOS integrated cirouits. 1ilicon dio%ide (Si02) is the most com­

mon dielectric. although silicon nitride (Si3N4) ia also used occasion­

ally. The dielectric material is used for two important purposes: insu­

lation and protection.

The dielectric must separate any two conductin1 layers from each

other. One very important use of a dielectric h in the gate oxide

which insulates a transistor's channel from its gate electrode, Almost

all MOS circuits depend on the extremely hish sate impedance of a MOS

transistor. The smallest pinhole in the gate oxide can result in a

short from the gate electrode to either the source diffusion, channel.

or drain diffusion (depending on where the pinhole is). Gate electrodes

which are connected to Input/Output pins are of particular concern.

Simply handling an integrated circuit will subject the pins to electros­

tatic discharge. Three sources of electrostatic discharge as reported

in [13] are:

(1) A charged person touches a device and discharges the stored
charge to or through the device to ground.

(2) The device itself, acting as one plate of a capacitor. can
store charge. Upon contact with an effective ground the
discharse pulse can create damage.

(3) An electrostatic field is always associated with charsed ob­
jects. Under particular circumstances, a device inserted in
this field can have a potential induced across an oxide that
creates breakdown.

I .

25

Clearly, electrostatic discharge is not limited to situations where the

device is being handled. It may also occur while the integrated circuit

is in use. An electrostatic discharge can easily generate a potential

difference of 1000 or more volts [13] . Due to the high input impedance

of a MOS transistor, there is no way for the static charge to leave the

gate electrode. Since the gate oxide typically has a breakdown voltage

on the order of 100 volts or less, electrostatic discharge leads to

breakdown of the gate oxide. Since the gate oxide thickness is typi­

cally reduced during the scaling process, it is reasonable to expect

gate oxide breakdown to occur at even lower voltages. For silicon diox­

ide, this breakdown is permanent resulting in either a resistive short

or a diode short between the gate and source, drain, or channel. The

type of short is determined by whether the gate is of the same type or

opposite type as the material it is shorted to [14] . If both materials

are of the same type, the short will be resistive. If they are of oppo­

site types, the short will be a diode.

Due to the susceptibility of MOS to electrostatic discharge, it is

standard practice to use protective circuits on all Input/Output pins.

Many different circuits have been proposed, but they typically use two

diodes (or the functional equivalent). These diodes are biased so that

any time the pin voltage goes significantly outside the range of ground

to power supply, one of the two diodes conducts providing a path for

charge to leak off the gate. Even though such circuits lower the proba­

bility that electrostatic discharge will destroy a transistor, they do

not provide complete protection.

25

Clearly, electrostatic discharge is not limited to situations where the

device is being handled. It may also occur while the integrated circuit

is in use. An electrostatic discharge can easily generate a potential

difference of 1000 or more volts [13]. Due to the high input impedance

of a MOS transistor, there is no way for the static charge to leave the

gate electrode. Since the gate oside typically has a breakdown voltage

on the order of 100 vol ts or less. electrostatic discharge leads to

breakdown of the gate oxide. Since the gate oxide thickness is typi­

cally reduced during the scaling process. it is reasonable to expect

gate oxide breakdown to occur at even lower voltages. For silicon diox­

ide, this breakdown is permanent resulting in either a resistive short

or a diode short be tween the gate and source, drain, or channel. The

type of short is determined by whether the gate is of the same type or

opposite type as the material it is shorted to [14]. If both materials

are of the same type, the short will be resistive. If they are of oppo­

site types, the short will be a diode.

Due to the susceptibility of MOS to electrostatic discharge, it is

standard practice to use protective circuits on all Input/Output pins.

Many different circnits have been proposed. but they typically use two

diodes Cor the functional equivalent). These diodes are biased so that

any time the pin voltage goes significantly outside the range of ground

to power supply, one of the two diodes conducts providing a path for

charge to leak off the gate. Even thongb such circuits lower the proba­

bility that electrostatic discharge will destroy a transistor, they do

not provide complete protection.

26

Studies have examined the susceptibility of gate oxide* both with

and without protection circuits* to electrostatic discharge[14,15] . In

both cases* the failure mechanism appears to be cumulative. That is*

the more stress the oxide has been exposed to in the past* the higher

the failure rate.

As we have previously discussed* electromigration may result in the

accumulation of metal which can crack dielectric layers. Another possi­

ble source of failure is due to differences in the coefficient of expan­

sion of the dielectric and substrate or interconnect.

Usually* one of the last steps in fabrication before dicing and

packaging is covering the integrated circuit with a thick layer of

dielectric material. This layer is called the passivation layer and

along with the other packaging is responsible for protecting the

integrated circuit both mechanically and chemically. It must protect

the surface of the integrated circuit from scratches during the packag­

ing procedure and seal out any moisture or other chemicals which could

cause corrosion of the metalization. In addition* it must prevent ions

from diffusing close to the substrate. Any such ions can change the

threshold of a transistor or allow the substrate under the field oxide

to invert. If metal interconnect crosses any two diffusion areas* A

parasitic MOSFET is formed. Normally this transistor will be off. If

the substrate under the field oxide should invert, then the MOSFET is

turned on and the two diffusion regions are now shorted together by the

parasitic MOSFET.

2,

Studies have u:amined the susceptibility of gate oxide, both with

and •ithout protection circuits, to electrostatic discharge[14,15], In

both cases, the failure mechanism appears to be cumulative. That h,

the 111ore stress the oxido has been exposed to in the past, the higher

the failure rate.

As we have previously discussed, electromigration may result in the

acc11JDulation of metal which oan crack dielectric layers. Another possi­

ble source of failure is due to differences in the coefficient of expan­

sion of the dielectric and substrate or interconnect.

Usually, one of the last steps in fabric& tion before dicing and

packaging h covering the intesrated circuit with a thick layer of

dielectric material. This layer is called the passivation layer and

along with the other packaging is responsible for protecting the

integrated circuit both mechanically and chemically. It must protect

the surface of the integrated circuit from scratches during the packag­

ing procedure and seal out any moisture or other chemicals which could

cause corrosion of the metalization. In addition. it must prevent ions

from diffusing close to the substrate. Any such ions can change tho

threshold of a transistor or allow the substrate under the field oxide

to invert. If metal interconnect crosses any two diffusion areas, A

parasitic MOSFET is formed. Normally this transistor will be off. If

the substrate under the field odde should invert, then the MOSFET is

turned on and the two diffusion regions are now shorted together by tho

parasitic MOSFET.

27

2.2.. Transistor Failures

Transistors are responsible for providing the switching action

which allows a circuit to implement a Boolean function. There are a

variety of parameters which control the operation of a transistor. Any

change in these parameters affects the ability of circuits to perform a

desired switching operation. If a transistor is allowed to break down,

uncontrolled currents will flow through the transistor. This also leads

to circuit failure.

2.2.1.. Parameter Shift Failures

The two most important parameters of a MOS transistor are threshold

voltage and transconductance. The threshold voltage is the gate to

source voltage which causes an enhancement mode transistor to go from

the nonconducting state to the conducting state. The transconductance

is a measure of how much the transistor's conductance changes due to a

change in the gate to source voltage. Transconductance is defined as

the partial derivative of drain current with respect to gate to source

voltage. Both of these parameters are of great importance to the tran­

sient and steady state responses of MOS logic circuits.

An important source of parameter shifts in a MOS transistor is hot

electron injection. Electrons in a high electric field can be

accelerated to a very high velocity. Because of the direction of the

electric field in the area of the channel pinch-off region, any hot

electrons generated in this area will be directed toward the gate oxide.

Some of these electrons will have a sufficient energy to overcome the

potential barrier between the silicon and silicon dioxide. Of these

27

1-1· Transistor Failnres

Transistors are responsible for providing the switching action

which allows a circuit to implement a Boolean function. There are a

variety of parameters which control the operation of a transistor. Any

change in these parameters affects the ability of circuits to perform a

desired switching operation. If a transistor is allowed to break down,

uncontrolled currents will flow through the transistor. This also leads

to circuit failure.

l-1-1, Parameter Shift Failures

The two most important parameters of a MOS transistor are threshold

voltage and transconductance. The threshold voltage is the gate to

source voltage which causes an enhancement mode transistor to go from

the nonconducting state to the conducting state. The transconductance

is a measure of how much the transistor's conductance changes due to a

change in the gate to source voltage. Transconductance is defined as

the partial derivative of drain current with respect to gate to source

voltage. Both of these parameters are of great importance to the tran­

sient and steady state responses of MOS logic circuits.

An important source of parameter shifts in a MOS transistor is hot

electron injection. Electrons in a high electric field can be

accelerated to a very high velocity. Because of the direction of the

electric field in the area of the channel pinch-off region, any hot

electrons generated in this area will be directed toward the gate oxide .

Some of these electrons wil 1 have a sufficient energy to overcome the

potential barrier between the silicon and silicon dioxide. Of these

28

electrons, a fraction will be trapped in tbe oxide as the remaining

electrons proceed to tbe gate electrode. Whether or not an electron

will enter the oxide and the fraction of such electrons that become

trapped depends on a variety of factors. Such factors include tempera­

ture, electrode potentials, doping levels, and device dimensions

[16,17]. The buildup of negative charge in the gate oxide will eventu­

ally cause a shift in both threshold voltage and transconductance

[18,19]. Scaling will increase the likelihood of hot electron failures.

If constant voltage scaling is used, the higher electric fields will

increase the number of electrons injected into the oxide. If constant

field scaling is used, circuits will be more sensitive to parameter

shifts.

Mobile ions can be introduced during processing or by a packaging

failure. These ions will move in response to electric fields which will

result in threshold voltage and transconductance varying with age.

Moisture in the passivation layer has been found to cause similar

results [20].

Another cause of parameter shifts is exposure to ionizing radia­

tion. Snch radiation can be of many different forms including X-rays,

alpha particles, cosmic rays, and high energy sub-atomic particles such

as electrons, protons, and neutrons. The effects of such radiation

includes damage to the crystal lattice, photo currents, and most impor­

tantly, the accumulation of static charge in the oxide [21,22]. This

charge leads to threshold voltage shifts and decreases in transconduc­

tance. It has also been shown [23] that radiation can increase the

21

electrons, a fraction will be trapped in the oiide as the remaining

electrons proceed to the sate electrode. Whether or not an electron

will enter the oxide and tho fraction of such electrons that become

trapped depends on a variety of factors. Such factors include tempera­

ture, electrode potentials, doping levels, and device dimensions

[16,17]. The buildup of negative charge in tho gate Oiide will eventu­

ally cause a shift in both threshold voltage and transconductance

[18,19]. Scaling will increase tho likelihood of hot electron failures.

If constant voltage scaling is used, tho higher electric fields will

increase tho number of electrons injected into the oxide. If constant

field scaling ii used, circuits will be more sensitive to parameter

shifts,

Mobile ions can be introduced during processing or by a packaging

failure. These ions will move in response to electric fields which will

result in threshold voltage and transconductance varying with age.

Moisture in the passivation layer has been found to cause similar

results [20].

Another cause of l)aramoter shifts is oxposuro to ionizing radia­

tion. Such radiation can be of many different forms including X-rays.

alpha particles. cosmic rays, and high energy sub-atomic particles such

as electrons, protons, and neutrons. The effects of such radiation

includes damage to tho crystal lattice, photo currents, and most impor­

tantly, tho accumulation of static charge in the oxide [21,221. This

charge leads to threshold voltage shifts and decreases in transconduc-

tance. It has also been shown (23] that radiation can increase the

29

noise level in transistors long before any shift in threshold voltage or

transconductance is observable.

2.2.2. Breakdown Failures

MOS integrated circuits are subject to a variety of breakdown

mechanisms. The drain of a MOS transistor forms a reverse biased junc­

tion with the channel. One limit to maximum power supply voltage is the

breakdown voltage of the drain channel junction. Another type of break­

down is punch—through. Punch—through occurs when the drain depletion

region extends all the way across the channel to the source depletion

region. Punch-through results in a large uncontrolled current flowing

between drain and source.

Another source of failures is due to parasitic bipolar transistors.

A NMOS transistor has a parasitic lateral npn bipolar transistor. The

collector and emitter are formed by the source and drain areas while the

base is made up of the channel. A substrate current caused by impact

ionization will eventually lead to a voltage drop between the substrate

and source. This drop forward-biases the emitter-base junction of the

parasitic bipolar transistor, which turns on the bipolar transistor

causing drain breakdown at a much lower voltage. Short channel devices

aggravate the situation. The shorter the channel, the more efficient

the bipolar transistor will be due to the thinner base. It has been

reported [24] that trapped charge in the gate oxide can make the bipolar

transistor easier to turn on. Since the current flow due to bipolar

action increases hot electron injection, this is a regenerative process.

29

noise level in transistors long before any shift in threshold voltage or

transconductance is observable.

l-1·1• Breakdown Failures

MOS integrated circuits are subject to a variety of breakdown

mechanisms. The drain of a MOS transistor forms a reverse biased junc­

tion with the channel. One limit to maximum power supply voltage is the

breakdown voltage of the drain channel junction. Another type of break-

down is punch-through. Punch-through occurs when the drain depletion

region extends all the way across the channel to the source depletion

region, Punch-through results in a large uncontrolled current flowing

between drain and source.

Another source of failures is due to parasitic bipolar transistors.

A NMOS transistor has a parasitic lateral npn bipolar transistor. The

collector and emitter are formed by the source and drain areas while the

base is made up of the channel. A substrate current caused by in:pact

ionization will eventually lead to a voltage drop between the substrate

and source. This drop forward-biases the emitter-base junction of the

parasitic bipolar transistor, which turns on the bipolar transistor

causing drain breakdown at a much lower voltage. Short channel devices

aggravate the situation. The shorter the channel, the more efficient

the bipolar transistor will be due to the thinner base. It has been

reported (241 that trapped charge in the gate oxide can make the bipolar

transistor easier to turn on. Since the current flow due to bipolar

action increases hot electron injection. this is a regenerative process.

30

Latchup is a similar, although more serious problem, that can occur

in bulk CMOS circuits. An n-tub CMOS process results in a lateral npn

parasitic bipolar transistor (as in the NMOS case) and a vertical pnp

parasitic bipolar transistor. Together, these two transistors form a

npnp semiconductor controlled rectifier. If the product of the two

parasitic bipolar transistor's current gains exceed 1, then a transient

pulse or exposure to radiation may result in the semiconductor con­

trolled rectifier turning on. This results in a large current flowing

from power to ground. If this current is large enough, the circuit may

be damaged. A thorough discussion of the transient conditions necessary

for latchup is given in [25].

2.3. Rad.is.ti.ojy-Ijadn.c.g.4 Soft Faiiassj.

Soft failures are random non-recurring errors. These errors are

caused by radiation striking integrated circuits and generating

electron-hole pairs. The failure rate will depend on the amount of

radiation striking the integrated circuit at any given time. By con­

trast, the radiation failure modes discussed previously depend on the

total dose the integrated circuit has received. The higher the dose,

the more the circuit is damaged. Soft errors, however, are caused by

euccess carriers, not damage to the device. Since dynamic devices are

n-ote-T&estoring, they are most susceptible to soft errors but static cir­

cuits may also be affected by high radiation environments.

The two major causes of soft errors are alpha particles and cosmic

rays. The alpha particles are due to small amounts of radioactive

material (usually uranium or thorium) in the packaging. The radioactive

30

Latchup is a similar. although more serious problem, that can occur

in bulk CMOS circuits. An n-tub CMOS process results in a lateral npn

parasitic bipolar transistor (as in tho NMOS caso) and a vertical pnp

parasitic bipolar transistor. Together1 those two transistors form a

npnp semiconductor controlled rectifier. If the product of the two

parasitic bipolar transistor's current gains e%ceed 1, then a transient

pulse or e.zposure to radiation may result in the semiconductor con­

trolled rectifier turning on. This results in a larae current flowing

from power to ground, If this current is lar1e enough, the circuit may

be damaged. A thorough discussion of tho transient conditions necessary

for latchup is given in (25).

1.1. Radiation-Induced~ Failures

Soft failures are random non-recurring errors. These errors are

caused by radiation striking integrated circuits and generating

electron-hole pairs. Tho failure rate will depend on the amount of

radiation striking the integrated circuit at any given time. By con­

trast. the radiation failure modes discussed previously depend on the

total dose the integrated circuit has received . The higher the dose,

the more the circuit is damaged. Soft errors, h01Jever. are caused by

e.xcess carriers, not damage to the device. Since dynamic devices are

D<llt:"""Destoring. they are most susceptible to soft errors but static cir­

cuit• ~ also be affected by high radiation environments.

The two major causes of soft errors are alpha particles and cosmic

rays. The alpha particles are due to smal 1 amounts of radioactive

material {usually uraniUJD or thorium) in the packaging. The radioactive

31

material emits high energy alpha particles. If these particles are gen­

erated close enough to the surface of the integrated circuit, they will

enter the substrate and generate electron-hole pairs which can then be

collected by a reverse-biased junction. A thorough discussion of

electron-hole pair generation and subsequent collection is given in

[26]. Information in dynamic circuits is represented by charge stored

on a node. Therefore, excess carriers generated by ionizing radiation

can erase information stored in the circuit. In the scaling process,

the amount of charge used to store information is reduced. An error

only occurs if the amount of excess charge generated is at least of the

same order as the amount of charge used to store information. There­

fore, the scaling process will make circuits more susceptible to soft

errors. Steps can be taken to protect a circuit from alpha particles

[273 . Unfortunately, it is very difficult to shield an integrated cir­

cuit from cosmic rays.

I
,....
' I

31

material emits high energy alpha particles . If these particles are gen­

erated close enough to the surface of the integrated circuit, they will

enter the substrate and generate electron-hole pairs which can then be

collected by a reverse-biased junction. A thorough discussion of

electron-hole pair generation and subsequent collection is given in

{261. Information in dynamic circuits is represented by charge stored

on a node. Therefore, excess carriers generated by ionizing radiation

can erase information stored in the circuit. In the scaling process,

the amount of charge used to store information is reduced. An error

only occurs if the amount of excess charge generated is at least of the

same order as the amount of charge used to store information. There­

fore , the scaling process will make circuits more susceptible to soft

errors . Steps can be taken to protect a circuit from alpha particles

[27]. Unfortunately, it is very difficult to shield an integrated cir-

cuit from cosmic rays.

32

CHAPTER 3

Behavior of Failed Circuits

In order to develop an accurate fault model* it is necessary to

have a good understanding of the behavior of circuits that have failed.

In addition* if it is possible for a failed circuit to produce an output

which is not a valid logic value* then we must also have an understand­

ing of the behavior of a good circuit given such invalid logic values as

inputs. In this chapter* we develop an understanding of both cir­

cumstances.

3.1. Summary &£ Failmg. M.e..ohjftnisffs

In Chapter 2* we arrived at the following list of possible failure

mechanisms:

(1) Interconnect failures: Opens in metal and polysilicon lines
due to electromigration. Shorts between metal lines due to
electromigration. Shorts between diffusion lines due to junc­
tion failure and parasitic field transistors. Shorts between
diffusion lines due to junction failure and parasitic field
transistors. Shorts between diffusion contacts and substrate
due to spike formation. Open polysilicon contacts due to elec­
tromigration. Shorts between diffusion and substrate due to
junction failure. Shorts between metal or polysilicon and other
interconnect layers (including transistor channels) due to
dielectric failure.

(2) Transistor failures: Parameter shifts due to hot electron
injection* radiation exposure* and exposure to contaminants.
Increased noise due to radiation exposure. Drain breakdown due
to junction failure and parasitic bipolar transistors. Latchup
due to parasitic bipolar transistors. 3

(3) Soft failures: Soft failures due to ionizing radiation and
other environmental sources of interference.

32

CBAPI'ER 3

Behavior of Failed Circuits

In order to develop an accurate fault model. it is necessary to

have a good understanding of the behavior of circuits that have failed.

In addition. if it is possible for a failed circuit to produce an output

which is not a valid logic value. then we must also have an understand­

ing of the behavior of a good circuit given such invalid logic values as

inputs. In this chapter. we develop an understanding of both cir-

cumstances,

i.1. Smuna~v tl Failure Mechanisms

In Chapter 2, we arrived at the following list of possible failure

mechanisms:

(1) Interconnect failures: Opens in metal and polysilicon lines
due to electromigration. Shorts between metal lines due to
electromigration. Shorts between diffusion lines due to junc­
tion failure and parasitic field transistors. Short!I between
diffusion lines due to junction failure and parasitic field
transistors. Shorts between diffusion contacts and substrate
due to spike formation, Open polysilicon contacts due to elec­
tromigration. Shorts between diffusion and substrate due to
junction failure. Shorts between metal or polysilicon and other
interconnect layers (including transistor channels) due to
dielectric failure.

(2) Transistor failures: Parameter shifts duo to hot electron
injection, radiation ezposure, and exposure to contaminants,
Increased noise due to radiation exposure, Drain breakdown due
to junction failure and parasitic bipolar transistors . Latchup
due to parasitic bipolar transistors.

(3) fu2..f.1 failures: Soft failures due to ionizing radiation and
other environmental sources of interference.

I

,,..

33

Two prior research studies have evaluated the likelihood of partic­

ular failure mechanisms for integrated circuits. Galiay et al. studied

the failures of a 4-bit microprocessor [28] . The microprocessor was

fabricated using a metal gate PMOS process. Failed microprocessors were

examined under an optical and scanning electron microscope. The

microprocessors were also probed directly. The study found the follow­

ing distribution of failures:

Short between metallization 39%
Open metallization 14%
Short between diffusions 14%
Open diffusion 6%
Short between metallization and substrate 2%
Inobservable [sic] 10%
Insignificant 15%

The failures labeled inobservable [sic] were those failures which

resulted in incorrect behavior but for which no physical failure could

be found. Insignificant failures were those failures which resulted

from "large imperfections" such as a scratch across the entire

integrated circuit. Galiay et al. felt that such failures were insigni­

ficant since they should be easily detected by almost any test sequence.

Another study by Banerjee [4] was based on Texas Instruments'

experience with MOS circuit failures. Failures are listed as either

device failures or interconnect failures. The following failures were

listed, divided into groups based on their likelihood of occurrence:

Most likely:
Device failures:

Gate to drain short
Gate to source short

Interconnect failures:
Short between diffusion lines

I

33

Two prior research studies have evaluated the likelihood of partic­

ular failure mechanisms for integrated circuits . Gal iay et al. studied

the failures of a 4-bit microprocessor [28}. The microprocessor was

fabricated using a metal gate PMOS process. Failed microprocessors were

examined under an optical and scanning electron microscope. The

microprocessors were also probed directly. The study found the follow­

ing distribution of failures:

Short between metallization
Open metallization 14~
Short between diffusions 14%
Open diffusion 6%
Short between metallization and substrate 2~
Inobservable {sic] 10,,
Insignificant 15~

The failures labeled inobservable [sic] were those failures which

resulted in incorrect behavior but for which no physical failure could

be found . Insignificant failures were those failures which resulted

from "large imperfections" such as a scratch across the entire

integrated circuit. Galiay et al. felt that such failures were insigni­

ficant since they should be easily detected by almost any test sequence.

Another Stl!.dy by Banerjee [4] was based on Texas Instruments'

experience with MOS circuit failures. Failures are listed as either

dev ice failures or interconnect failures. The fol lowing failures were

listed, divided into groups based on their likelihood of occurrence:

Most likely:
Device failures :

Gate to drain short
Gate to source short

Interconnect failur e s :
Short between diffusion lines

34

Moderately likely:
Device failures:

Drain contact open
Source contact open

Interconnect failures:
Aluminum-polysilicon crossover broken

Least likely:
Device failures:

Gate to substrate short
Floating gate

Interconnect failures:
Short between aluminum lines

From these two studies and the results of Chapter 2, it appears that

interconnect failures will be a major failure mechanism. The Galiay et

al. study attributed all significant observable faults to interconnect

failures. If we enlarge the concept of interconnect failures to include

all failures that result in an open or short, then all the failures men­

tioned in the Banerjee study are also interconnect failures. The idea

of classifying transistor failures that result in opens or shorts as

interconnect failures is quite reasonable for MOS circuits. MOS

transistors are formed by one level of interconnect (polysilicon) cross­

ing over another layer of interconnect (diffusion) [29]. For this rea­

son, the transistor itself may simply be considered another type of

interconnect.

Reviewing our summary of physical failure mechanisms listed at the

beginning of the chapter reveals that all interconnect and transistor

failures with the exception of parameters shifts and noise result in

either opens or shorts. It must be kept in mind, however, that many of

the failures (especially transistor failures) result in resistive shorts

whose impedance depends on the voltage of various nodes in the vicinity

Moderately likely:
Device failures:

Drain contact open
Source contact open

Interconnect failures:
AllllDinam-polysilicon crossover broken

Least likely :
Device failures :

Gate to substrate short
Floating gate

Interconnect failures:
Short between al11JDu111111 lines

34

From these two studies and the results of Chapter 2. it appears that

interconnect failures will be a major failure mechanism. The Galiay et

al. study attributed all significant observable faults to interconnect

failures . If we enlarge the concept of interconnect failures to include

all failures that result in an open or short, then all the failures men­

tioned in the Banerjee study are also interconnect failures. The idea

of classifying transistor failures that result in opens or shorts as

interconnect failures is quite reasonable for MOS circuits. MOS

transistors are formed by one level of interconnect (polysilicon) cross­

ing over another layer of interconnect (diffusion) [29]. For this rea­

son, the transistor itself may simply be considered another type of

interconnect.

Reviewing our sllll!lllary of physical failure mechanisms listed at the

beginning of the chapter reveals that all interconnect and transistor

failnres with the exception of parameters shifts and noise result in

either opens or shorts. It must be kept in mind, however, that many of

the failures (especially transistor failures) result in resistive shorts

whose impedance depends on the voltage of various nodes in tho vicinity

(_1

..

~
I

j

.,..
I

35

of the failure. Radiation-induced soft errors have no correspondence to

shorts or opens. Nevertheless, it is possible to model the effect of

such an error as a transient short. The short creates a "wire" which

carries the current that flows due to excess carriers generated by the

radiation.

From the above discussion, it is possible to account for nearly all

of the listed physical failures by considering only opens or shorts. A

short results when a failure causes an anomalous impedance to occur

between two nodes. This impedance may depend on the voltages of neigh­

boring nodes (as is the case for many transistor failures) and may also

be time dependent (as is the case for radiation-induced soft errors).

An open results when a failure causes an anomalous impedance to occur in

series with an existing element between two nodes. This impedance may

not be infinite since many failures (such as electromigration) tend to

occur gradually. As was the case for shorts, the open impedance may be

voltage and time dependent. The only failures which we haven't

accounted for by our enlarged class of interconnect failures are parame­

ter shifts and noise. Parameter shifts of transistors will affect both

the steady state and transient performance of a circuit. These effects

are due to changes in the conductance of a transistor with a given bias.

If the conductance of the channel increases, we may model this failure

as an impedance placed in parallel with the channel. If the conductance

of the channel decreases, we may model this as an impedance in series

with the channel. These two situations correspond to our definition of

a short and open, respectively.

··-

I

J

j

35

of the failure. Radiation-induced soft errors have no correspondence to

shorts or opens. Nevertheless, it is possible to model the effect of

such an error as a transient short. The short creates a "wire" which

carries the current that flows due to e:r.cess carriers generated by the

radiation .

From the abo~e discussion, it is possible to account for nearly all

of the listed physical failures by considering only opens or shorts. A

short results when a failure causes an anomalous impedance to occur

between two nodes. This impedance may depend on the voltages of neigh­

boring nodes (as is the case for many transistor failures) and may also

be time dependent (as is the case for radiation-induced soft errors).

An open results when a failure causes an anomalous impedance to occur in

series with an e:r.isting element between two nodes. This impedance may

not be infinite since many failures (such as electromigration) tend to

occur gradually. As was the case for shorts, the open impedance may be

voltage and time dependent, The only failures which we haven't

accounted for by our enlarged class of interconnect failures are parame-

ter shifts and noise. Parameter shifts of transistors will affect both

the steady state and transient performance of a circuit. These effects

are due to changes in the conductance of a transistor with a given bias .

If the conductance of the channel increases, we may model this failure

as an impedance placed in parallel with the channel. If the conductance

of the channel decreases, we may model this as an impedance in series

with the channel. These two situations correspond to our definition of

a short and open, respectively.

36

Now that we have classified failures as being either interconnect

failures or noise, we are ready to study the effects that physical

failures have on the behavior of various circuits. We begin by modeling

transistors and the basic circuits used to process digital signals. We

then use these models to study the behavior of such circuits under phy­

sical failure.

3.2. Circuit Models

The basic building block for MOS circuits is the MOS transistor.

Figure 3.1 shows the symbols we use for enhancement and depletion

transistors. The MOS transistor is a four terminal device. The four

terminals are drain, gate, source, and body. For proper operation, the

body terminal of all n channel transistors must be connected to the most

negative voltage in the integrated circuit. A p channel transistor must

have its body connected to the most positive voltage. Unless the body

terminal is pertinent to the discussion, it will be ignored.

The exact relationship between drain current i^ and the voltages

of the four terminals is quite complex. The MOS transistor has three

regions of operation. In the off region, the drain current is approxi­

mately zero. In the nonsaturated region, the drain current increases as

the drain to source voltage increases. Operation in the nonsaturated

region is often approximated by replacing the channel of the transistor

with a resistor. In the saturated region drain current is roughly

independent of the drain to source voltage. Saturation is sometimes

approximated as a current source between the drain and source terminals.

A simplified model which is accurate enough for a variety of purposes

36

Now that we have classified failures as being either interconnect

failures or noise. we are ready to study the effects that physical

failures have on the behavior of various circuits. Yo begin by modeling

transistors and the basic circuits used to process digital signals. Yo

then use these models to study the behavior of such circuits under phy­

sical failure,

1-1· Circuit Models

The basic building block for MOS circuits is the MOS transistor.

Figure 3.1 shows the symbols we use for enhancement and depletion

transistors. Tho .MOS transistor is a four terminal device, The four

terminals are drain. sate. source. and body. For proper operation. the

body terminal of all n channel transistors must be connected to the most

negative voltage in the integrated circuit. A p channel transistor must

have its body connected to tho most positive voltage. Unless the body

terminal is pertinent to the discussion, it will be ignored.

The o:r.act relationship between drain current i da • and the voltages

of the four terminals is quite compln. The MOS transistor has three

regions of operation. In the ill region, the drain current is approxi­

mately zero. In the D,Qnsaturat~d region, the drain current increases as

the drain to source voltage increases. Operation in the nonsa turated

region is often approximated by replacing the channel of the transistor

with a res is tor. In the saturated region drain current is roughly

independent of the drain to source voltage. Saturation is sometimes

approximated as a current source between the drain and source terminals.

A simplified model which is accurate enough for a variety of purposes

-
I ,.,

' J •

-

DEPLETI ON ENHANCEMENT

D E P L E T I O N ENHANCEMENT

Figure 3.1. MOS Transistor Symbols.

37

N C~IANNt L

7
I DEP LETI ON ENHANCEM ENT

P CHANNEL
I

DEPLETI ON ENH ANC EM EN T

Figure 3.1 . MOS Trans istor Symbols.

38

gives the following equations:

ds

0

4 « vg, - vtk)2i

±Vgs < ±Vth (off)

±VgS 2 ±Vth. ±Vgd 2 ±Vth (nonsat o)

±vgd < ±Vti < ±Vg» <s,t,)

The voltages are defined in Figure 3.2. p is a constant which depends

on processing parameters and the geometry of the device, 0 is equal to

f*̂ oxW/L where p is the mobility of the charge carriers* CQX is the gate

oxide capacitance per unit area* and W and L represent the width and

length of the channel* respectively. In the above equations* where the

sign is ±, the plus signs are for n channel devices while the minus

signs are for p channel devices. If the threshold voltage V ^ £s

greater than zero* then an n channel transistor is operating in the

enhancement mode while a p channel transistor is operating in the deple­

tion mode. For a negative threshold* an n channel transistor is in the

depletion mode while a p channel transistor is in the enhancement mode.

The MOS transistor is symmetric with respect to its drain and source

terminals. It is customary to assign the drain and source terminals by

their voltages. For an n channel device* the drain voltage is greater

than the source voltage. For a p channel device, the source voltage is

greater than the drain voltage.

This model fails to take into account several factors. In particu­

lar, if the transistor is saturated, then the model predicts that i^g

will be constant with respect to vd,- This is approximately true for

long channel devices. For shorter channel devices* an effect known as

38

gives tho following equations :

0 ±Vgs < ±Vth (off)

I ds z

(sat .)

Tho vol tagos are defined in Figure 3 .z. ~ is a constant which depends

on processing parameters and the geometry of the device. ~ is equal to

µCoxY/L whereµ is the mobility of the charge carriers, C0 x is tho gate

oxide capacita:11ce per unit area, and 'I and L represent the width and

length of the channel, respectively, In tho above equations, where the

si1n is ±, the plus si1ns are for n channel devices while the minus

signs are for p channel devices . If the threshold voltage V t h is

greater than zero, then Ul n channel transhtor is operating in the

enhancement mode while a p channel transistor is operating in the deple­

tion mode, For a negative threshold, an n channel transistor is in the

depletion mode while a p channel transistor is in the enhancement mode .

The MOS transistor is symmetric with respect to its drain and source

terminals. It is customary to assign the drain and source terminals by

their voltages. For an n channel device , the drain voltage is greater

than the source voltage, For a p channel device. the source voltage is

greater than the drain voltage.

This model fails to take into accoUllt several factors. In particu­

lar, if the transistor is saturated. then tho model predicts that ids

will be constant with respect to Vds. This is approximately true for

long channel devices. For shorter channel devices, an effect kno,rn as

39

D R A
R

GA

VGD

RR

VDS

R

VGS

7T\

VBS

SOURCE

BODY

Figure 3.2. Definitions of Voltages and Polarities.

39

ORA I i\l

VGD
VOS

GA TE ~---t IE---K -----...-1' BODY
VBS

VGS

SOURCE

Figure 3.2. Definitions of Voltages and Polarities.

40

channel length modulation occurs [30]. Channel length modulation causes

*ds t0 increase slightly as Vds increases. The shorter the channel, the

more pronounced the effect* The simplified model also fails to account

for the influence of V^g on drain current [30] * This is the so-called

body effect. If the body to source voltage is relatively large* then

the change in threshold voltage is approximately proportional to the

square root of the body to source voltage. A change in threshold vol­

tage causes drain current to vary.

Ve use a small signal model of the saturated transistor in those

situations where these effects are important. The model we use is basi­

cally the same as the model developed in [31] . Drain current is a func­

tion of V # V^s, and Vbs. We assume that the transistor is at some

operating point represented by Vgg, vds, and Vbs. The drain current of

the transistor at this operating point is defined to be I. We may now

use the Taylor's series to represent the drain current:

3ids
\is = I + 0Vgs Vds. Vbs

i k a
^gs ” ^gs^+ 3Vds - <vds - Vds>

v V. gs' bs
+ ai<?saybs _ (Vbs - Vbs) +

gs* Vds
Following standard convention, we define g^ (transconductance), gd, and

Smb as follows:

d i& Z
gm = 3V

gs|vds’ Vbs
21

^g s Vtb

aid*
gd = avd̂s

XI
V Vk 1 + XV, gs' Tbs ds

-to

channel length modulation occurs [30]. Channel length modulation causes

ids to increase slightly as Vds increases . The shorter the channel, the

more pronounced the effect. The simplified model also fails to account

for the influence of Vbs on drain current (30]. This h the so-called

body effect. If the body to source voltage is relatively large, then

the change in threshold voltage is approximately proportional to the

square root of the body to source voltage . A change in threshold vol­

tage causes drain current to vary.

Ye use a small signal model of the saturated transistor in those

situations where these effects are important. The model we use is basi­

cally the same as the model developed in [31]. Drain current is a func-

tion of V ••• and Vbs, Ye assume that the transistor is at some

operating point represented by V V d v gs• ds• an bs• The draiu. current of

the transistor at this operating point is defined to be I. We may now

use the Taylor's series to represent the drain current:

ids = I + ~1
av slV

g ds•

+ • ••

Following standard convention. we define gm (transconductance), gd, and

gmb as follows :

gm = ~ 1 21 av -gslV
4 Vbs V gs - Vth s•

Id ::, ~1 - 2,I
avdslV - +).Vds gs• Vbs 1

41

d ids
gmb = av.bs

= ___________yi . ________
Vgs- Vds (Vgs - Vt h)(2<Sf - vb s) 1 /2

X, is the channel length modulation parameter. Its value is given by the

formula:

X = _!.
vLV f H"'sub ds

qN v ds ■ (vgs ■ vth^

where represents the substrate doping concentration. In the

expression for gm^ , 6 f is the Fermi level of the substrate and y is the

bulk threshold parameter and is given by the formula,

_ ^esjq^sub
Y Cox

For more information on the derivation of gffl, g(J, and gmb, see [31].

The significance of the various device parameters is discussed in [30].

The Taylor series expansion of ids can now be rewTitten as *

*ds - I + SmfVgj - Vgs) + gd(Vds - Vds) + gnbf^bs ” ^bs^ + •"
For a very small change from the operating point, we can ignore the

higher order terms in the expansion giving us

*ds ̂+ ®m^gs Vgs) + Sd^ds ^ds^ + Smb^bs ^bs^

3_.2.1. St at ic NMOS Inverter Model

Figure 3.3 shows the circuit diagram for a standard NMOS inverter

using a depletion load transistor. One of the attributes of this cir­

cuit we are interested in is the input-output transfer characteristics.

In particular, we are interested in the gain of the inverter at its

transition point. The transition point occurs when the voltage at the

a ids I
8mb "° ~

bslV'
gs•

41

I
=

Vds (Vgs - Vth> (2tlf - Vbs}l/2

~ is the channel length modulation parameter. Its value is given by the

formula:

where Maub represents the substrate doping concentration. In the

expression for gmb• 6f is the Fermi level of the substrate and y is the

bulk threshold parameter and is given by the formula,

y s

For more information on the derivation of gm• gd, and gmb• see (31].

The significance of the various device parameters is discussed in [30],

The Taylor series e%pansion of ids can now be rewritten as

For a very smal 1 change from the opera ting point, we can ignore the

higher order terms in the expansion giving us

J_.z_.1. Static NMOS Inverter Model

Figure 3 .3 shows the circuit diagram for a standard NMOS inverter

using a depletion load transistor. One of the attributes of this cir­

cuit we are interested in is the input-output transfer characteristics.

In particular, we are interested in the gain of the inverter at its

transition point. The transition point occurs when the voltage at the

42
v-/

V *

Figure 3.3. NMOS Inverter Circuit.

VIN VOUT

,.
I

\

J -

Figure 3 ,3. NMOS Inverter Circuit.

43

A

output of the inverter, is equal to V^n, the voltage at its inputs

The gain is the derivative of VQut with respect to Vin.

It is quite easy to find the steady state transfer characteristics

of an inverter by equating the drain to source current of the load

transistor with the drain to source current of the driver transistor.

If the inverter is at its transition point, then the voltage at the gate

of the driver transistor must be equal to the voltage at the drain of

the driver transistor. This equality implies that V ^ 0£ (jriver

transistor is zero. Since the driver transistor is an enhancement

transistor, the driver transistor is saturated. Depending on the param­

eter and geometry of the transistors as well as the supply voltage,

the load transistor may be either saturated or nonsaturated. It can be

shown that the load transistor is saturated at the transition point when

/

Vdd
thL 1 1 + p -1/2 Hr

Pj. is the ratio of Pd to J3l * If the threshold voltage of the enhance­
ment transistor is low enough to allow polysilicon to cross diffusion,

then the load transistor must be nonsaturated at the transition point.

If the load is nonsaturated, then the equation for Vout 1S

Vout = (VthL + Vdd) + [V ^ 2 - (Sr(Vin - VthD>2]1/2

By taking the derivative of with reSpect to Vin,

gain A is:
we find that the

43

output of the inverter, V0 ~t• is equal to Vin• the voltage at its input.

The gain is the derivative of Vout with respect to Vin·

It is quite easy to find the steady state transfer characteristics

of an inverter by equating the drain to source current of the load

transistor with the drain to source current of the driver transistor.

If the inverter is at its transition point, then the voltage at the gate

of the driver transistor must be equal to the voltage at the drain of

the driver transistor. This equality implies that V
1

d of the driver

transistor is zero. Since the driver transistor is an enhancement

transistor, the driver transistor is saturated. Depending on the param­

eter and geometry of the transistors as well as the supply voltage, Vdd•

the load transistor may be either saturated or nonsaturated. It can be

shown that the load transistor is saturated at the transition point when

V i
thL 1 + ~ -1/2

r

~r is the ratio of ~D to ~L· If the threshold voltage of the enhance­

ment transistor is low enough to allow polysilicon to cross diffusion,

then the load transistor must be nonsaturated at the transition point.

If the load is nonsaturated, then the equation for V 1• 5 out

V = (Vth + Vdd) + [V h 2 - ~ (V · - V h)2]1/2 out L t L r 1n t D

By taking the derivative of Voot with respect to Vin• we find that the

gain A is:

44

or

d(V0ttt>

d(vi»)

~Pr^in ~

- Pr(vin - vtiD>2]1/2

~Pr^in ^th.^
A =

v0«t - VthL - Vdd

Recognizing that at the transition point Vin = Vont* we find that the

gain at the transition point A* is:

A* = -P<
in th,

m (Vthj " vdd>

where is the input voltage at the transition point. Its value may

be found from the following formula*

vin = p;-TTtf!rvthD + Vdd + vthL + [VthL2 + 2Pr(Vdd(VthD - VthL)

+ V - y } _ o (Vjj + V vthjjVthLJ Pr^dd thp
If we attempt to substitute V*^ into the equation for A, we find that

the relationship between A and Pr is quite complex. An approximation

for V? given in [29] is: in ®

VthT
V* a y . - ----
ln thD a U 2 *r

Substituting this value into the expression for A*, we find

A* »
VthLpi/2

thD - Vthl(l + pr1/2> - vdd

From this expression* we can see that for large p^, a* is approximately

or

- ~r<Vin - Vu .D)
A•----------------

AC

[V 2 A (V V)2]1/2
thL - .., r in - thD

-Pr (Vi:n. - VthD)

Vout - VthL - Vdd

44

Roco3nizing that at tho transition point Vin = Vout• ,re find that the

gain at tho transition point A• is:

A• "' -p
r

where V~n is the input voltage at the transition point. Its valuo may

be found from the following formula,

~
ln

If we attempt to substitute v ; n into the equation for A. we find that

the relationship between A and Pr is quite complos:. An approximation

for V! given in [29] is :
1D

Vth v• __ L
i n =:: Vth -

D ~1/2
r

Substituting this value into the expression for A*, we find

VthLPi
12

A• ::: --------------

V th - V (1 + p- 1/2) - Vdd
D thL r

From this expression, we can see that for lar3e P , A• is approximately
r

-

45

proportional to 0^/^, while for small 0f, A* is approximately propor­

tional to 0r> Therefore, to achieve a large value for A * 0r must be as

large as possible. Scaling will have little effect on A*.

If we assume the load transistor is saturated at the transition

point and equate the currents through the load and driver transistors,

we f ind

VthL

This equation implies that at the transition point, not depen­

dent on jn other words, A* is infinite. This anomaly is due to

the fact that in our simplified transistor model, when a transistor is

saturated, its current is independent of # The model also entirely

ignores the body effect. By using the simplified transistor model when

both transistors are saturated, we have implied that the currents

through the transistors are totally independent of Vq # The dependence

^out on a saturated transistor's drain current is fairly small. When

one of the two transistors is nonsaturated, ignoring the effect of Vout
on the saturated transistor's drain current only results in a small

error. When both transistors are saturated, however, the error becomes

quite large, and we are forced to use the small signal model of the

transistor.

Using the small signal model, if we equate the currents, we find

• I

45

proportional to 13;1 2, while for small ~r' A• is approdmately propor­

tional to f3r. Therefore, to achieve a large value for A•, f3r must be as

large as possible. Scaling will have little effect on A•.

If we assume the load transistor is saturated at the transition

point and equate the currents through the load and driver transistors,

we find

via.=
VthL

.,112
~

This equation implies that at the transition point, Vout ia not depen-

dent on Vin· In other words, A• is infinite. This anomaly is due to

the fact that in our simplified transistor model, when a transistor is

saturated, its current is independent of Vds · The model also entirely

ignores the body effect. By using the simplified transistor model when

both transistors are saturated, we have implied that the currents

through the transistors are totally independent of Vout · The dependence

of Vout on a saturated transistor's drain current is fairly small. When

one of the two transistors is nonsaturated, ignoring the effect of V
out

on the saturated transistor's drain current only results in a small

error . When both transistors are saturated, however, the error becomes

quite large, and we are forced to use the small signal model of the

transistor.

Using the small signal model, if we equate the currents, we find

46

L + gdj^vdd “ ^out ^ds^ + 8®bj^ “^out ” ^ s\]

= ID + Snip (V in ^ g S r? + gd^^out«SD da

Note that the load current lacks a gffi term since Vfffi - 0 and the driverg«i
current lacks a term since Vj,{ If we solve for Vont* we get

out gmbT + gd,
■ itmbTvbsT ~ gdT(Vdd “ vdsT >

®dDVdsD + gnD<Vin " V*SD,]
To find A*, we can take the derivative of witi reSpect to Vin giv­

ing us

A* = ----------------
®dL + gnbL + gdD

For devices with moderately long channel lengths (L > 10”^m), one typi­

cally finds that

S >> gmbL 1 gdD > gdL
This relation allows one to build inverters of reasonably high gain

(gains between 5 and 20 are typical) . Due to the complexity of the

expressions for gffl> g^, and gm|j, it is difficult to predict the precise

behavior of A* during the scaling process. A careful analysis shows

that depending on the scaling rules used, some of the terms in A*

increase and others decrease — all at varying rates. In general, it

appears that A* is pretty much invariant to scaling although it may

decrease slightly if constant voltage scaling is used. If it is neces­

sary to have an inverter with a very high value of A*, the best one can

do is to use very long channel devices. This strategy minimizes the

Note that the load current lacks a gm term since v,s • O and the driver
L

current lacks a •■b term since Vb, • o. If we solve for Vout• we get
D

V
out ldL + lmbL + ldD[gmbLVbsL - ldL(Vdd - VdaL)

- 1d Vds + Im (Vin - YgsD)]
D D D

. -

To find A•, ~ h d i i f V we can ta ... e t e er vat ve o out with respeet to Vin giv-

ing us

1 dL + 8mbL + ldD

For devices with moderately long channel len1ths (L > 10-Sm), one typi­

cally finds that

This relation allows one to build inverters of reasonably high gain

(gains bet1reen S and 20 are typical) • Due to the complexity of tho

expressions for gm• Id• and 8mb• it is difficult to predict the precise

behavior of A• during the scaling process. A careful analysis shows

that depending on the scaling rules used, some of the terms in A•

increase and others deerease -- all at varying rates. In general, it

appears that A* is pretty much invariant to sealing al though it 11.ay

decrease slightly if constant voltage scaling is used. If it is neces-

• sary to have an inverter with a very high value of A, the best one can

do is to use very long channel devices. This strategy mini mizes the

47

"nes g<j and gdn * The gain will still be limited by gmj, which is
not a function of channel length. Although making the channels longer

increases the gain, it also decreases the circuit's density (each

transistor requires more area) and in general decreases the circuit's

speed of operation. As we will later see, speed of operation is

severely limited if the value of is large. For this reason, invert­

ers with saturated loads are preferred over inverters with nonsaturated

loads when large values of A* are required.

Another parameter of interest is the propagation delay of an

inverter. It is shown in [6] that the propagation delay of an inverter,

is approximately

4CL(Vm - Vth>
X d ~ 3g y®mvm

where is t ^ e voltage swing and CL is the capacitance of the load on

the output of the inverter. If we make the simplifying assumption that

>> then we can write

4CL
Td " 3gm

Actually, this equation is only valid for the output switching from a

logic 1 to a logic 0. It also ignores the fact that the driver transis­

tor must not only sink the current flowing from the discharging load

capacitance but also the current sourced by the load.

An alternate approach may be taken where an on transistor is

modeled as a resistor. Glasser [32] develops a Thevenin equivalent cir­

cuit for an inverter. The Thevenin equivalent circuit is formed by two

47

values of gd and 8d . The gain will still be limited by gmbL which is
L D

not a function of channel length. Although making the channels longer

increases the gain, it also decreases the circuit's density (each

transistor requires more area) and in general decreases the circuit's

speed of operation. As we will later see, speed of operation is

severely limited if the value of ,r is large. For this reason, invert­

ers with saturated loads are preferred over inverters with nonsaturated

loads when large values of A• are required.

Another parameter of interest is the propagation delay of an

inverter. It is shown in [6] that the propagation delay of an inverter,

~d is approximately

-cd ...
4CL(Vm - Vth)

3gmvm

where V& is the voltage swing and CL is the capacitance of the load on

the output of the inverter. If we make the simplifying assumption that

Vm)) Vth• then we can write

4CL ... --
3g

rn

Actually, this equation is only valid for the output switching from a

logic 1 to a logic 0. It also ignores the fact that the driver transis-

tor must not only sink the current flowing from the discharging load

capacitance but also the current sourced by the load.

An alternate approach may be taken where an on transistor is

modeled as a resistor. Glasser [32] develops a Thevenin equivalent cir­

cuit for an inverter. The Thevenin equivalent circuit is formed by two

48

resistors* two voltage sources* and two switches. The switches open and

close represent the transistors turning on and off. Each resistor

represents the resistance of one of the two transistors which make up an

inverter. Hoyte [333 implemented a simulator based on a resistive model

of the transistor. Hoyte claimed the simulator had an accuracy in the

range of 10 to 15 percent compared to an accuracy range of 5 to 10 per­

cent for the SPICE circuit simulator. Mead and Conway [29] also used a

resistive model for delay calculations of MOSFET circuits.

In the resistive model of a MOSFET, the channel resistance is

assumed to be proportional to the length to width ratio of the transis­

tor. This model in turn implies that the resistance of a transistor is

also inversely proportional to p. We are now able to estimate the time

for both rising and falling transitions. Let us define £0 the

highest voltage the circuit output is able to obtain, and jje

lowest voltage the circuit output is able to obtain. V® is the highest

voltage that other gates will reliably interpret as a logic 0, while V*

is the lowest voltage that other gates will reliably interpret as a

logic 1. for a circuit is the difference between Vj^ and Vi0.

Finally, let us define the following

V. _ V1 m ~ v

48

resistors, two voltage sources. and two switches . Tho switches open and

close represent the transistors turning on and off. Each resistor

represents the resistance of one of tho two transistors which make up an

inverter . Hoyte (33] implemented a simulator based on a resistive model

of the transistor. Boyte claimed the simulator had an accuracy in tho

range of 10 to 15 percent compared to an accuracy ranae of 5 to 10 per­

cent for tho SPICE circuit simulator. ••ad and Conway [291 also used a

resistive model for delay calculations of MOSFET circuits.

In the resistive model of a MOSFET • tho channel resistance is

assumed to be proportional to the len1th to width ratio of the transis­

tor. This model in turn implies that the resistance of a transistor is

also inversely proportional to ~. We are now able to estimate the time

for both rising and fa! ling transl tions. Let us define V.hi to be the

highest voltage the circuit output is able to obtain, and v10 to be the

lowest voltage tho circuit output is able to obtain. VO is the highest

voltage that other gates will reliably interpret as a logic 0, while vl

is the lowest voltage that other gates will :reliably interpret as a

logic 1. V• for a circuit is tho difference between Vhi and V1o ·

Finally, let us define the followin1

z ..

z'.

RLI
Rn 1v.

1n

0. - -4--1

49

* 7 + 1a =
Z 1

Figure 3.4 shows the resistive model for a NMOS inverter

the node equation for V (t), we get

Writing

^dd Vput (* ̂ _ p ^o u t ̂*) ^out ̂ ^
*L = L « *D

We are interested in solving this differential equation for two sets of

initial conditions. One set is for a falling transition while the other

is for a rising transition. Solving for the falling transition, we get

out^t) = ^lo + ^me

- n g t -■Set
Solving for the rising transition, we get

Vont<t) = Vhi + V„e

Inspection of Figure 3.4 shows that the load and driver transistors form

a voltage divider. Therefore, the voltage limits are

lo Z + 1
and

vu -
Vddz
z' + 1

This information may be used to solve for V .m ■

V = y r— ^ m vddL„»Z + 1
igure 3.5 is a graph of V1q an(j Vhi versus Z and Z > respectively. As

49

a
, + 1 "' ... z~-'---=-
z'

Figure 3.4 shows the resistive model for a NMOS inverter . Writing

the node equation for Vout <t). we get

We are interested in solving this differential equation for two sets of

initial conditions. One set is for a falling transition while the other

is for a rising transition, Solving for the falling transition, we get

Solving for the rising transition, we get

Inspection of Figure 3.4 shows that the load and driver transistors form

a voltage divider. Therefore, the voltage limits are

and

V
lo

_!.dL
= Z + 1

,
vddz

z' + 1

This information may be used to solve for V .
m·

V
m

,
Vdd[,z - r¼,-J

Z + 1 +

F igure 3.S is a graph of V10 and yhi versus z and z ' , respectively . As

50

RD

Figure 3.4. Resistive Model of an Inverter.

50

I•

RL

VOUT

RO
CL

Figure 3.4. Resistive Model of an Inverter.

51

Vhi vio

Voltage (Vdd)

Figure 3„5» Voltage Limits vs. Z.

Sl

Vhi Vlo

Voltage (Vdd)

.8

.6

.4

.2

------ -- - - -
0

0 2 4 6 8 10 12 14 16 18 20
Z or Z'

Figure 3.5. Voltage Limit s vs . z.

52

Z and Z are increased# decreases and increases until Vj0 and

^hi eventually approach the ground and power supply voltages. Since Vm

is defined as the difference between Vj^ and ylo, large values of Z and

Z will maximize For the NMOS inverter, Z is proportional to 0r.

In order to make Z large enough to provide proper separation between

logic levels, it is necessary to make 0D greater than 0L . This is usu­

ally done by having the W/L ratio of the driver transistor much larger

than the W/L ratio of the load transistor. Unfortunately, this restric­

tion requires extra area. Z* is infinite for an NMOS inverter since the

driver transistor is off during the rising transition.

We are now in a position to calculate the switching time, The

switching time is the time taken to switch between V® and V*. To calcu­

late the rising switching time, set the equation for vout(t) (rising

transition) equal to V*- and solve for t. This value of t is x ^ m i^e
r

falling switching time, is found by setting the equation for

vont(t) (falling transition) equal to V°» and once again solving for t.

The following values for and Tgw „ „ tbus obtained

RdCl , r jj! ,,
Tsw. = - — lnto V^T -i dd

r SV = -ZRDCLln[o (1 - V)] r dd
The average switching time, tg^ , is the average of the rising and

ave
falling switching times. It is given by the following formula

rDcL
SWave

aa

For small values of Z, the

ln[a + Zln[a (1 - ^~)])
dd dd

average switching time is dominated by the

52

Z and Z ' are increased. V10 decreases and Vhi increases until V1
0

and

Vhi eventually approach the ground and power supply voltages , Since Vm

is defined as the difference between Vhi and v10 , large values of Zand

Z ' will maximize v.. For the NJfOS inverter. Z is proportional to ~r·

In order to make Z largo enough to provide proper separation between

logic levels, it la necessary to mate ~D ireater than ~L- This is usu­

ally done by haviug the YI/L ratio of tho driver transistor much larger

than tho W/L ratio of tho load transistor, Unfortunately, this restric­

tion requires eztra area, Z' is infinite for an NMOS inverter since the

driver transistor is off during the rising transition.

Ye are now in a position to calculate the switching time, ~SW• The

switching time is the time taken to switch between v0 and v1 • To calcu­

late the rising switching time, set the equation for Vout (t) (rising

transition) equal to v1 and solve fort. This value oft is ~SW. The
r

falling switching time, ,:SW , is found by setting the equation for
t

Vout(t) (falling transition) equal to v0 , and once again solving fort.

The following values for ~SW and ~sw are thus obtained
f t

~SW
f

= -
RDCL ln[a ~ - 'ZlJ

a vdd

The average switching time. "'SW , is the average of the rising and
ave

falling switching times. It is given by the following formula

"'sw ave

RoCL 1 ~ 1 ~ • - - 2 - {4 ln[a V - zl + Zln[a (1 - V)]}
dd dd

For small values of z. the average switching time is dominated by the

53

falling transition. For large values of Z, the average switching time

is dominated by the rising transition. Figure 3.6 shows a graph of

average switching time (in units of RCL) as a function Qf Z. In the

graph, it is assumed that the ratio of V° to Vdd is q .4 , while the ratio

of V* to Vdd £s assumed to be 0 .6 . Notice how the average switching

time rapidly approaches ® as approaches V ° • For this example, the

minimum average switching time occurs when Z is approximately 2.

Although a value of Z = 2 may optimize the average switching time, such

a low value is usually unacceptable due to the resulting inverter's low

gain and low noise margin. Therefore,a larger Z ratio is typically

used.

In this section, we have dealt with a NMOS inverter. The analysis

of a PMOS inverter is identical. Equations for gain, voltage limits,

output voltage, and switching time are all the same except that the sign

of supply and threshold voltages must be changed to be appropriate for

PMOS devices.

3.2.2. SfcjL tic CMOS Inverter Model

Figure 3.7 shows the circuit model for a CMOS inverter. The load

transistor is a p channel MOS transistor while the driver transistor is

an n channel MOS transistor. At the transition point, both transistors

have a Vds 0f o volts. Therefore, since is positive and is
D L

negative, both transistors are saturated. If we attempt to use the sim­

plified transistor model we would once again arrive at the result that

A* is infinite. For this reason, we immediately proceed to the small

signal model. Equating currents, we find that

S3

falling transition. For large values of Z, the average switching time

is dominated by the rising transition. Figure 3 .6 shows a graph of

average switching time (in units of RCL) as a function of z. In the

graph, it is assumed that the ratio of yO to Vdd is 0,4, while the ratio

of vl to Vdd is asstuned to be 0 .6. Notice how the average switching

time rapidly approaches "° as V lo approaches v0 For this example, the

minimum average switching time occurs when Z is approximately 2,

Although a value of Z = 2 may optimize the average switching time, such

a low value is usually unacceptable due to the resulting inverter's low

gain and low noise margin,

used.

Therefore, a larger Z ratio is typically

In this section, we have dealt with a NMOS inverter. The analysis

of a PMOS inverter is identical. Equations for gain, voltage limits,

output voltage, and switching time are all the same except that the sign

of supply and threshold voltages must be changed to be appropriate for

PMOS devices,

1.2.~. Static CMOS Inverter W.U

Figure 3.7 shows the circuit model for a CMOS inverter. The load

transistor is a p channel MOS transistor while the driver transistor is

an n channel MOS transistor. At the transition point, both transistors

have a Vds of O volts. Therefore, since Vth is positive and Vth is
D L

negative, both transistors are saturated. If we attempt to use the sim-

plified transistor model we would once again arrive at the result that

A• is infinite. For this reason , we immediately proceed to the small

signal model. Equating currents, we find that

54

Average switching time (RC)
7

Figure 3.6. Average Switching Time vs. Z Ratio

Average switching time (RC)
7

6

5

3

2

1
1 2 4 5 6

z
7 8 9

Figure 3.6. Average Switching Time vs. Z Ratio .

54

10 11 I -

gure 3,7. CMOS Inverter Circuit.

55

V I N

Figure 3 .7. OIOS Inverter Circuit,

56

D 4 gm^'^in ^gs^ 4 gd^^out ^ds^

L “ g m ^ ^ in ~ ^dd “ ^ g s ^ “ S d ^ ^ o tit ~ ^dd ” ^ds-^

The load current terms are all negative since the drain to source

current of the load transistor flows in a direction opposite to the

drain to source current of the driver transistor * Also there is no body

effect term for either transistor since the body to source voltage is

always 0 for both transistors. This equation can be solved for Vout
giving us

out “ g
dD + gdL

[*dDVdsD + gdL<vdd + vd,L) - g ^ V ^ - Vdd - vgSL)

v v< W 1
To find A*, we take the derivative of with respect t0 v in giving

A*
ga>L + 8mD

In many situations# the load and driver transistors are designed to have

identical characteristics so that the circuit response will be symmetri­

cal and v in = Vdd/2. In such situations, gm^ ~ gd^. If this is the

case, then A* simply becomes:

A*
gmD

'“d
The value of A* is only dependent on the values of gffl and gd of the two

transistors. For this reason, CMOS inverters can be built with higher

gain than NMOS inverters. By making the channels very long, can be

made quite small. For driver transistors of the same size, the gain of

56

The load current terms are all negative since tho drain to source

current of the load transistor flows in a direction opposite to the

drain to source current of the driver transistor. Also there is no body

effect term for either transistor since the body to source vol ta1e is

always O for both transistors. This equation can be solved for Vout

giving us

Im (ViA - V11)]
D D

To find A•, we take the derivative of Voot with respect to Vin giving

In many situations. the load and driver transistors are designed to have

identical characteristics so that the circuit response will be symmetri-

cal and ~ in : Vdd/2. In such situations, g~ - ldL. If this is the

case, then A• simply becomes:

The value of A• is only dependent on the values of gm and gd of the two

transistors. For this reason, CMOS inverters can be built with higher

aain than NllOS inverters. By making the channels very long. Id can be

made quite small. For driver transistors of the same size, the gain of

I

57

a CMOS inverter is typically 3 to 4 times greater. During the scaling

process, A* decreases slightly regardless of whether constant voltage or

constant field scaling is used.

If the response of a CMOS inverter is to he symmetric, then .

This implies that the rising and falling propagation delays are roughly

equal. Also, except when the inverter is near its transition point,

only one of the two transistors is on. Because of this, Spans

full range from 0 to The expression for given in [6] applies to

this case giving us

4Cl
3gm

where the value of gffl corresponds to the on transistor. The equations

derived for the NMOS inverter delay and output voltage also apply to the

CMOS inverter. In this case, both Z and Z* are infinite.

1-2.3. Dynamic NMOS Inverter Model

In order to reduce power consumption and increase packing density,

dynamic circuits are becoming quite popular. Since dynamic logic is

typically ratioless, it usually requires much less area than equivalent

static logic. More importantly, dynamic circuits have very low power

consumption. The only power consumed is that required to charge and

discharge nodes. Dynamic circuits are fundamentally different than

static circuits. In a dynamic circuit, information is represented by

the presence or absence of charge on a node. A dynamic circuit

processes information by charging and discharging nodes, and transfer­

ring charge from one node to another. The most important difference

\
S7

a CMOS inverter is typically 3 to 4 times greater. During tho scaling

process. A• decreases slightly regardless of whether constant voltage or

constant field scaling is used.

If the response of a CMOS inverter is to be symmetric , then ~r-1 .

This implies that the rising and falling propagation delays are roughly

equal, Also, except when the inverter is near its transition point,

only one of the two transistors is on. Because of this, V• spans the

full range from Oto Vdd· The expression for ~d given in [61 applies to

this case giving us

4CL
Td ... 3 g m

where the value of gm corresponds to the on transistor. The equations

derived for the NMOS inverter delay and output voltage also apply to the

CMOS inverter. In this case. both Zand z' are infinite.

~.2.3. Dynamic NMOS Inverter Model

In order to reduce power consumption and increase packing density,

dynamic circuits are becoming quite popular. Since dynamic logic is

typically ratioless, it usually requires much less area than equivalent

static logic. More importantly, dynamic circuits have very low power

consumption. The only power consumed is that required to charge and

discharge nodes. Dynamic circuits are fundamentally different than

static circuits. In a dynamic circuit, information is represented by

the presence or absence of charge on a node. A dynamic circuit

processes information by charging and discharging nodes, and transfer­

ring charge from one node to another. The mo s t important difference

58

between dynamic and static circuits is that static circuits are restor­

ing. If an external force disrupts the operation of a static circuit*

the static circuit opposes the disruption. A dynamic circuit is not

able to oppose a disruption. Dynamic circuits are very sensitive to

charge leakage* changes in device parameters* and clock skew. They are

also sensitive to ionizing radiation which can erase the charge stored

on a node. For these reasons* dynamic circuits might be a poor choice

where high reliability is a necessity. On the other hand* since the

power consumption is low (and thus circuit temperature is low) and the

currents tend to be pulses rather than constant (and thus electromigra­

tion is less likely)» dynamic circuits may offer advantages for long

term reliability.

A great variety of dynamic circuits exist [34]. Dynamic circuits

range from bootstrap drivers which can drive large capacitive loads to

dynamic CMOS circuits which can implement very complex logic functions.

The circuit we examine is perhaps the simplest dynamic circuit* the two

phase ratioless shift register. Figure 3.8 shows the circuit diagram

for a 1 bit section of the shift register. The circuit uses two nono­

verlapping clocks* an(j An inspection of the circuit shows that

and ^2 serve the function of both power and ground and that there is

no way for a static current to flow. The circuit samples while

is high. When dj goes low, node 1 is the complement of Vin 's value when

^ 1 was high. Node 1 is sampled while ^2 is high. When ^2 goes low,

^out becomes the complement of the value of node 1 when ^2 was high.

Therefore, when goes high* Vouj. has the same value as V o n the

51

between dynamic and static circuits is that static circuits are restor­

ing. If ui external force disrupts the operation of a static circuit,

the static circuit opposes the disruption. A dynamic circuit is not

able to oppose a disruption. Dynamic circuits are very sensitive to

charge leakage, changes in device parameters, and clock skew. They are

also sensitive to ionizing radiation which can erase the charge stored

on a node. For these reasons, dynamic circuits might be a poor choice

where high reliability is a necessity. On the other hand, since the

power consumption is low (and thus circuit temperature is low) and the

currents tend to be pulses rather than constant (and thus electromigra­

tion is less likely), dynanic circuits may offer advantages for long

term reliability.

A great variety of dynamic circuits ez:ist [34]. Dyndic circuits

range from bootstrap drivers which can drive large capacitive loads to

dyna.aiic CMOS circuits which can implement very complex logic functions.

The circuit we examine is perhaps the simplest dynamic circuit, the two

phase ratioless shift register . Figure 3 . 8 shows the circuit diagram

for a 1 bit section of the shift register. Tho circuit uses two nono­

verlapping clocks, •1 and 62. An inspection of the circuit shows that

'1 and 62 serve the function of both power and ground and that there is

no way for a static current to flow. The circuit samples V. while 61
Ul

is high, When 62 goes low. node 1 is the complement of Vin's value when

'1 was high. Node 1 is sampled while 62 is high. l'hen 62 goes low,

Vout becomes the complement of the value of node 1 when 62 was high,

Therefore. when ;1 goes high , Vout has the same value as Vin on the

I-

59

/

V I N

PH I PH I 2

T2

T1

T5

T3 T 4

VOUT

T 6

PH I 1 PH I 2

Figure 3.8. Dynamic Shift Register.

PH I 1

I

1--------1 1 T2

PH I 1

PH l2

VOUT

PH l 2

Figure 3.8. Dynamic Shift Register.

59

60

previous clock pulse. In other words, while ^ high, is a

delayed version of

The transistors in the circuit can he broken into two groups, the

inverter transistors which make up the inverter and the sampling

transistors, an(j T4 , which couple together the stages. The inverter

transistors (Tj, X3 , T5 , and Tg) are grouped into pairs that form

inverters.

The function of the inverter transistors is to charge and discharge

the inverter's output node. Charging of the output node is primarily

performed by the load transistor while 6 is high. If the gate of the

driver transistor is high while b is high, the driver transistor also

assists in charging the node. The output node is discharged by the

driver transistor while b is low but only if the gate of the driver

transistor is high. The load transistor is off whenever b is low.

The sampling transistors serve the purpose of coupling the output

node of one inverter to the input node of the next inverter. The gate

of a sampling transistor is always connected to one of the two clock

signals. When the gate goes high, an inverter is able to sample the

output of the preceding inverter. When the output node of the preceding

inverter is low, then the input node of the current inverter is

discharged. The discharge path is through the sampling transistor and

driver transistor of the preceding inverter. If the output node of the

preceding inverter is high, then some of the charge already stored on

the output node is transferred to the input node. Due to the charge

being split between two nodes, the voltage after sampling at the output

previous clock pul so .

delayed version of Vin·

60

In other words, while t,1 ia high, v
0111

is a

The transistors in the circuit can be broken into two groups, the

inverter transistors which make up the inverter and the sampling

transistors, T1 and T4, which couple together the stages. The inverter

transistors <T2, T3, Ts, and T6) are grouped into pairs that form

inverters.

The function of the inverter transistors is to charge and discharge

the inverter's output node. Charging of the output node is primarily

performed by the load transistor while t, is high. If the gate of the

driver transistor is high while 6 ia high, the driver transistor also

assists in charging the node. The output node is discharged by the

driver transistor while (, is lo,r but only if the gate of the driver

transistor is high. The load transistor is off whenever; is low.

The sampling transistors serve tl!.e purpose of coupling the output

node of one inverter to the input node of the next inverter. The gate

of a sampling transistor is always connected to one of the two clock

signals. When the gate goe, high, an inverter is able to sample the

output of the preceding inverter. When the output node of the preceding

inverter is low, then the input node of the current inverter is

discharged. The discharge path is through the sampling transistor and

driver transistor of tho preceding inverter. If the output node of the

preceding inverter is high, then some of the charge already stored on

the output node is transferred to the input node. Due to the charge

being split between two nodes. the voltage after sampling at the output

61

node is less than it was before sampling. The input node voltage after

sampling is always less than the output node voltage it sampled. The

output node capacitance must be much greater than the input node capaci­

tance, otherwise the input node may never be charged to a satisfactory

level.

In order for the circuit to operate properly, the clock pulses

and ^2 must be high long enough to charge both the input and output node

and discharge the input node. The output node is charged up by a

saturated transistor. Using the formula given in [29] for charging a

capacitance through a saturated transistor gives

Vout<t> = vdd - v th -

From this equation, we see that will never be charged above -

^th• Figure 3.9 shows the resistive model of the coupling transistor.

We can use this model to calculate the time required to charge the input

node through the sampling transistor. The loop equation is

out
''out dt

Solving for V.a(t)j we find

dVnnt(t) Vont(t) - Vi„<t)in'
R + c

dVin(t)
in dt = 0

V. (t) _ v Cput rt t/RCoutvLI - e J

In this circuit, V _ vm v
charged past this point.

m C. + r m uout

m - Vth since the output node will never be

From these equations, we can calculate the time required to chargi

out *the input and output nodes. Notice that both equations depend on C

,1

node is less than it was before sampling. The input node voltage after

sampling is always less than the outp11t node voltage it sampled. The

output node capacitance must be much greater than the input node capaci­

tance, otherwise the input node may never be charged to a satisfactory

level.

In order for the circuit to operate properly, the clock pulses ~l

and ~2 must be high long enough to charge both the input and output node

and discharge the input node . The output node is charged up by a

saturated transistor. Using the formula given in [29] for charging a

capacitance through a saturated transistor gives

From this equation, we see that Vout will never be charged above Vdd -

Vth· Figure 3.9 shows the resistive model of the coupling transistor.

We can use this model to calculate the time required to charge the input

node through the sampling transistor. The loop equation is

~(t) ~!(t) - Vin(t) dVin(t)
- Cout dt-- + R + Ci n dt = O

Solving for Vi n(t), we find

In this circuit , Vm • ydd

charged past this point.

Vth since the output node will never be

From these equations, we can calculate the time required to charge

the input and output nodes. Notice that both equations depend on C
out·

62

VOUT(T)
R V I N (T)

COUT C I N

Figure 3.9. Resistive Model of Coupling Transistor.

61

VOUT(T)
R VIN(T)

COUTI

Figure 3.9. Resistive Model of Coupling Transistor.

63

The equation for depends not only on COU£ , but also the relative

sizes of C.n and C<mt.

3.3. Response of Failed Circuits

We have discussed the type of failures that may occur in MOS cir­

cuits in Chapter 2. We have developed models of MOS circuits in the

previous section. In this section, we use these models to predict the

response of failed circuits.

3.3.1. Response of Circuits with Shorts

Figure 3.10 shows an NMOS and a CMOS inverter. If we ignore the

power and ground nodes, we see that each type of inverter contains two

nodes, an input node and an output node. Therefore the possible shorts

that are internal to an inverter are

(1) Input node shorted to power or ground

(2) Output node shorted to power or ground

(3) Input node shorted to output node

(4) Power shorted to ground

If the input node is shorted to power or ground, we may model this as

the output node of the previous inverter being shorted to power or

ground. We therefore only need to consider three cases.

If the output node is shorted to power or ground, then we have the

impedance of the short in parallel with the impedance of the transistor.

If the impedance of the short is much less than the impedance of the

transistor, then the output will be stuck-at 1 or stuck-at 0 , depending

on whether the short is to power or ground. If the impedance of the

63

The equation for Vin depends not only on Cont• but also the relative

sizes of C. d C 1n an out•

~-1• Response su Fiiled Circuits

We have discussed the type of failures that may occur in MOS cir­

cuits in Chapter 2. We have developed models of MOS circuits in the

previous section, In this section, we use these models to predict the

response of failed circuits,

i.1.1. Response .Q.f Circuits rub Shorts

Figure 3 .10 shows an NMOS and a CMOS invert er. If we ignore the

power and ground nodes, we see that each type of inverter contains two

nodes, an input node and an output node. Therefore the possible shorts

that are internal to an inverter are

(1) Input node shorted to power or gronnd

(2) Output node shorted to power or ground

(3) Input node shorted to output node

(4) Power shorted to ground

If the input node is shorted to power or ground, we may model this as

the output node of the previous inverter being shorted to power or

ground. We therefore only need to consider three ca se s .

If the output node is shorted to power or ground, then we have the

impedance of the short in parallel with the impedance of the transistor .

If the impedance of the short is much less than the impedance of the

transistor, then the output will be stuck-at 1 or stttck-at o. depending

on whether the short is to power or ground. If the impedance of the

64

NODE 1

NODE 2

NODE 1 NODE 2

Figure 3.10. NMOS and CMOS Inverters.

64

NODE 2

NODE 1 ~ I

1

J
NODE 1 NODE 2

I

1
Figure 3.10, NMOS and CMOS Inverters,

65

short is much greater than the impedance of the transistor, then the

short will have no effect on the operation of the inverter. A more

interesting situation occurs if the impedances of the short and transis­

tor are of the same order of magnitude. The impedance of the shorted

transistor can be replaced with the parallel combination of the transis­

tor impedance and the short impedance. If the short occurs in an NMOS

inverter between the output node and power, then the value of Z

decreases while the value of Z' increases. ° These new values for Z and

Z may be used with the equations already derived for inverters. The

decreased value of Z causes an increase in V1q and the rising transition

switching time. If the short occurs between the output node and ground,

the value of Z increases while the value of Z* decreases. In this case,

hi decreases while the rising transition switching time increases. For

a CMOS inverter, an output node to power or ground short causes Z or Z*,

respectively, to be reduced to a specific finite value, whereas under no

failure they can be treated as effectively infinite. This decrease in Z

or Z will either increase the falling transition time and increase

or increase the rising transition time and reduce V^.. jn addition, the

CMOS gate now dissipates static power.

To summarize, a short from the output node to ground decreases the

falling transition switching time, increases the rising transition

switching time, and reduces . A short from the output node to power

decreases the rising transition switching time, increases the falling

transition switching time, and raises V

65

short is much greater than the impedance of the transistor, then the

short wil 1 have no effect on the operation of the inverter. A more

interesting situation occurs if the impedances of the short and transis­

tor are of the same order of magnitude . The impedance of the shorted

transistor can be replaced with the parallel combination of the transis­

tor impedance and the short impedance. If the short occurs in an NMOS

inverter between the output node and power, then the value of Z

decreases while the value of Z' increases. · These new values for Z and

z' may be used with the equations already derived for inverters . The

decreased value of Z causes an increase in V10 and the rising transition

switching time, If the short occurs between the output node and ground,

the value of Z increases while the value of z' decreases. In this case,

Vhi decreases while the rising transition switching time increases. For

a CMOS inverter. an output node to power or ground short causes Z or z',

respectively, to be reduced to a specific finite value. whereas under no

failure they can be treated as effectively infinite. This decrease in Z

or z• will either increase the falling transition time and increase v
10

or increase the rising transition time and reduce Vh i • In addition, the

CMOS gate now dissipates static power.

To summarize, a short from the output node to ground decreases the

falling transition switching time, i ncreases the rising transition

switching time, and reduces Vbi · A short from the output node to power

decreases the rising transition switching time, increases the falling

transition switching time, and raises v
1 o·

66

Figure 3.11 shows the situation that exists when the output node is

shorted to the input node. By recognizing that the short and the driver

transistor's gate together form a distributed RC network, we see that

the circuit is of the same form as a phase-shift oscillator. The

inverter forms the inverting amplifier while the short and driver

transistor's gate together form the phase-shift network which serves to

feed a delayed version of the inverter's output back into its input.

The frequency of oscillation, a>0 is given in [3 5] as;

W0 = RC~
where R is the resistance of the phase-shift network and C is its capa­

citance. The conditions necessary for oscillation are studied in [36],

where it is shown that the gain of the amplifier must be less than -29

for sustained oscillation. From our discussion of A*, it is fairly

unlikely that an NMOS inverter would have the required gain for sus­

tained oscillations. This value of gain is not unreasonable for a CMOS

inverter, especially one that was deliberately designed for high gain.

In order for an inverter to have high gain, it must be operating near

its transition point. If the input to the inverter is driven to either

a logic 0 , or a logic 1 , the inverter will not be able to oscillate.

There are three conditions where an inverter of sufficient gain has the

potential to oscillate:

(1) The circuit driving the failed inverter is not capable
of driving the failed inverter's input a significant dis­
tance from its transition point. It is much harder to drive
such a failed inverter than a good inverter.

(2) The failed inverter's input is coupled by a pass
transistor to the previous stage. Any time the pass

66

Figure 3.11 shows the situation that exists when the output node is

shorted to the input node. By recognizing that the short and tho driver

transistor's gate together form a distributed RC network. we see that

the circuit is of the same form as a phase-shift oscillator . The

inverter forms the inverting amplifier while the short and driver

transistor's gate together form the phase-shift network which serves to

feed a delayed version of the inverter• s output back into its input .

The frequency of oscillation, w0 is given in [35] as:

1
11)0 - inf'

where R is the resistance of the phase-shift network and C is its capa-

citance. The conditions necessary for oscillation are studied in [36] .

where it is shown that the gain of the amplifier must be less than -29

for sustained oscillation. From our discuss ion of A•. it is fairly

unlikely that an NMOS inverter would have the required gain for sus­

tained oscillations. This value of gain is not unreasonable for a CMOS

inverter, especially one that was deliberately designed for high gain .

In order for an inverter to have hi1h gain, it 111.ust be operating near

its transition point. If the input to the inverter is driven to either

a logic O, or a logic 1. the inverter will not be able to oscillate.

There are three conditions where an inverter of sufficient gain has the

potential to oscillate:

(l) The circuit driving the failed inverter is not capable
of driving the failed inverter's input a significant dis­
tance from its transition point. It is much harder to drive
such a failed inverter than a good inverter,

(2) The failed inverter ' s input is
transistor to the previous stage.

coupled by a
Any time the

pass
pass

61

Figure 3.11. Output Node to Input Node Short.

67

-~--1

1

T

Figure 3 .11. Output Node to Input Node Short.

6 8

transistor is off# the failed circuit may begin to oscil­
late .

(3) The circuit driving the failed inverter switches the
failed inverter's input. As the input moves through the
transition region# it may oscillate until the driving cir­
cuit is capable of forcing the input a significant distance
from its transition point. As mentioned in (1)# this takes
longer than it would for a good inverter.

If the gain of the inverter is insufficient to sustain oscillation#

the result of an input to output short is to shift the inverter's logic

levels and increase its switching time. The exact nature of these

shifts is dependent on the impedance of the short# the value of

impedances of the load and driver transistors# and the impedances of the

load and driver transistors driving the failed inverter. If the

impedance of the short is very large (at least a factor of 1 0 larger

than the transistor's impedance)# it will have little or no effect on

the circuit. As the short impedance becomes smaller# the difference

between and becomes smaller and smaller. For an impedance of

^in equals Vout. Depending on the impedances of the driving

inverter, the failed inverter, and the short# will range anywhere

from ground to the supply voltage. A situation of particular interest

occurs if the driving inverter and failed inverter are identical and the

short resistance is small. Figure 3.12 shows the resistive models for

the failed inverter including the output stage of the driving inverter.

Two cases are shown, namely a logic 0 and logic 1 input to the driving

inverter.

If the input to the driving inverter is a logic 0, then we effec­

tively have the parallel combination of the load transistors of both

transistor is off, the failed circuit may begin to oscil­
late.

(3) Tho circuit driving the failed inverter switches the
failed inverter's input. As the input moves through the
transition region. it may oscillate until the driving cir­
cuit is capable of forcing the input a significant distance
from its transition point. As mentioned in (1). this takes
longer than it would for a good inverter.

68

If the gain of the inverter is insufficient to sustain oscillation,

the result of an input to output short is to shift the inverter's logic

levels and increase its switching time. The ezact nature of these

shifts is dependent on the impedance of the short, the value of Vin• the

impedances of tho load and driver transistors , and the impedances of the

load and driver transistors driving the failed inverter. If the

impedance of the short is very large (at least a factor of 10 larger

than the transistor's impedance), it will have little or no effect on

the circuit . As the short impedance becomes smaller. the difference

between Vin and V011t becomes smaller and smaller. For an impedance of

0, V.
1n equals Depending on the impedances of the driving

inverter, the failed inverter, and the short, Vout will range anywhere

from ground to the supply voltaae, A situation of particular interest

occurs if the driving inverter and failed inverter are identical and the

short resistance is small, Figure 3.12 shows the resistive models for

the failed inverter including the output stage of the driving inverter.

Two cases are shown. namely a logic O and logic 1 input to the driving

inverter.

If the input to the driving inverter is a logic 0, then we effec­

tively have the parallel combination of the load transistors of both

I r

r .

69

(A) LOGIC 0 DRIVER INPUT

fB'l LOGIC 1 DRIVER INPUT

Figure 3.12. Resistive Model of Failed inverter.

69

VOUT

(A) LOG IC O DRIVER INPUT

RSHORT

VOUT

(B) LOGIC 1 DRIV ER INPUT

Figure 3.12. Resistive Model of Failed inverter.

70

inverters trying to pull high while the driver transistor of the

failed inverter tries to pull low. By setting the load currents

equal to the driver currents, we find that

Vont - VthD + VtkL [2pr] 1 / 2

In deriving this equation, we have assumed that the load transistor is

saturated. As this equation shows, the output, (which should be a logic

1), is significantly lower than

If the input to the driving inverter is a logic 1, then the load

transistors of both inverters try to pull high, while tie driver

transistors of both inverters will be trying to pull the output low. If

we assume the current through the failed inverter's driver transistor is

very small, then the steady state value of Vo^t is t ^ e same as an

inverter which has a value of Z which is half of the original inverter's

value of Z. Therefore, the value of lowered while the value of

is raised. When the input to the driving inverter is a logic 1, it

is possible for to become greater than Vout when the input to the

driving inverter is a logic 0. Furthermore, the speed of operation of

the failed circuit is reduced considerably. This reduction is due to

both the degraded values of V^. and ylo and the fact tliat the failed

inverter output must drive the load capacitances of both inverters.

One interesting variation occurs if the input node is shorted to

the output node and, simultaneously, the connection from the previous
Jstage is open circuited. As long as the impedance of the open circuit

to the previous stage is very large, the input and output node of the

failed inverter charges to VT regardless of the impedance of the short.

70

inverters trying to pull V oot high while the driver transistor of the

failed invorter tries to pull Vout low. By setting the load currents

equal to the driver currents, we find that

In deriving this equation, we have assumed that the load transistor is

saturated. As this equation shows, the output, (which should be a logic

1), is significantly lower than Vdd•

If the input to the driving inverter is a logic 1, then the load

transistors of both inverters try to pull V
011

t high. while the driver

transistors of both inverters will be trying to pull the output low. If

we assume the current through the failed inverter's driver transistor is

very small , then the steady state value of V out is the same as an

inverter which has a value of Z which is half of the original inverter's

value of Z. Therefore, the value of Vh l la lowered while the value of

Vlo is raised , When the input to the driving inverter is a logic 1, it

is possible for Vout to become greater than V011t when tho input to the

driving inverter is a logic O. Furthermore. the speed of operation of

the failed circuit is reduced considerably. This reduction is due to

both the degraded values of Vh i and v10 and the fact that the failed

inverter output must drive the load capacitances of both inverters.

One interesting variation occurs if the input node is shorted to

the output node and, siaultaneously, tho connection from the previous

stage is open circuited, As long as
1

the impedance of the open circuit

to the previous stage is very large, the input and output node of tho

failed inverter charges to~ regardless of the impedance of tho short.
1D

71

There are two likely ways to get a simultaneous open to the previous

stage and short from input node to output node. One way is for the gate

of an inverter's driver transistor to be coupled to the previous stage

with a pass transistor. Whenever the pass transistor is off, the open-

short condition would exist. A second way to get a simultaneous open-

short would be for metal migration to cause an open. The accumulated

metal could then form a short.

A short from power to ground can have catastrophic consequences.

If the impedance of the short is very small, then the voltage difference

between the power and ground lines would become quite small. In this

case, the output of all circuits supplied by these power and ground

lines would be unpredictable. In order for the power and ground line

voltages to change appreciably, there would have to be a large current

flowing through the short. Electromigration and/or ohmic heating of the

short and power and ground lines would lead to one or more of these

lines almost instantly failing (most likely the short) which would allow

the power and ground lines to return to their original values. If the

impedance is large enough not to reduce power supply voltage signifi­

cantly, the short should have little effect; at least for the short run.

The short increases the power dissipated from the integrated circuit and

thus raises the temperature locally. It may also encourage electromi­

gration to occur along power or ground lines which must now carry

heavier currents than they were designed for. A power-ground short in a

CMOS circuit due to latchup may be able to sustain heavy currents for a

long period of time before the latched CMOS device or a power or ground

line fails.

71

There are two likely ,rays to get a simultaneous open to the previous

stage and short from input node to output node. One way is for the gate

of an inverter's driver transistor to be coupled to the previous stage

with a pass transistor. Whenever the pass transistor is off. the open­

short condition would exist. A second way to get a simultaneous open­

short ,ronld be for metal migration to cause an open. The acct1mulated

metal could then form a short.

A short from power to ground can have catastrophic consequences.

If the impedance of the short is very small, then the voltage difference

between the power and ground lines would become quite small. In this

case, the output of all circuits supplied by these power and ground

1 ines would be u:o.predictable. In order for the power and ground 1 ine

voltages to change appreciably, there would have to be a large current

flowing through the short. Electromigration and/or ohmic heating of the

short and power and ground 1 ines would lead to one or more of these

lines almost instantly failing (most likely the short) which would allow

the power and ground lines to return to their original values. If the

impedance is large enough not to reduce po,rer supply voltage signifi­

cantly, the short should have little effect; at least for the short run.

The short increases the power dissipated from the integrated circuit and

thus raises the temperature locally. It may al so encourage electromi­

gration to occur along power or ground lines which must now carry

heavier currents than they were designed for. A power-ground short in a

CMOS circuit due to latchup may be able to sustain heavy currents for a

long period of time before the latched CMOS device or a power or ground

line fails.

72

We have now studied all possible internal shorts in NMOS and CMOS

inverters. An NMOS NOR gate behaves in a similar manner for internal

shorts. NMOS NAND gates and CMOS gates have a structure of stacked

transistors. In such a stack* the drain of one transistor is connected

to the source of the next transistor. The first transistor in the stack

has its source connected to the power or ground node. The drain of the

top transistor in the stack is connected to the output node. A drain to

source short of any of the transistors in the stack may be analyzed by

the same procedures as those used for the NMOS and CMOS inverters. The

most difficult situation to analyze occurs when a gate to drain short

occurs. The analysis is basically the same as for the inverter except

that more transistors must be considered. The results will be the same;

voltage levels and speed of operation will be degraded.

Dynamic circuits are much more susceptible to shorts than static

logic circuits. Dynamic logic depends on the ability to store charge on

the stray capacitance of nodes. Any short* whether to another node* a

clock signal* or the substrate (ground)* will allow charge to leak on or

off the node. If enough charge enters or leaves a node* the information

stored there is destroyed. An RC time constant determines the time

required to charge or discharge a shorted node, where R is the resis­

tance of the short and C is the node capacitance. If the RC time con­

stant is much longer than the clock pulse* the circuit should be unaf­

fected. If RC is of the same order of magnitude as the clock pulse or

smaller* the short will be able to alter the voltage of a node signifi­

cantly. If the short is almost able to completely charge or discharge a

node during one clock pulse* the node will appear to be stuck-at 1 or

72

We have now studied all possible internal shorts in NMOS and CMOS

inverters. An NMOS NOR gate behaves in a similar manner for internal

shorts. NHOS NAND gates and CMOS gates have a structure of stacked

transistors. In such a stack, the drain of one transistor is connected

to tho source of the next transistor. The first transistor in the stack

has its source connected to the power or ground node. The chain of the

top transistor in the stack is connected to the output node. A drain to

source short of any of the transistors in the stack may be analyzed by

the same procedures as those used for tho NMOS and CMOS inverters. The

1110s t difficult situation to analyze occurs when a gate to drain short

occurs, The analysis is basically the same as for the inverter except

that more transistors must be considered. Tho results will be the same;

voltage levels and speed of operation will be dearaded.

Dynamic circuits are much more susceptible to shorts than static

logic circuits. Dynamic logic depends on the ability to store charge on

the stray capacitanoe of nodes. Any short, whether to another node, a

clock signal, or the substrate (groUDd), will allow charge to leak on or

off the node, If enough charge enters or leaves a node. the information

stored there is destroyed, An RC time constant determines the time

required to charge or discharge a shorted node, where R is the resis­

tance of the short and C is the node capacitance. If the RC time con­

stant is much longer than the clock pulse. the circuit should be unaf­

fected. If RC is of tho s&1:1e order of magnitude as the clock pulse or

smaller. the short will be able to alter the voltage of a node signifi­

cantly, If the short is almost able to completely charge or discharge a

node during one cl oc:t pulse. the node ,ril 1 appear to be stuck-at 1 or

I

I -

73

stuck-at 0 depending on whether the short is charging or discharging the

node. If the short is unable to charge or discharge the node completely

during a clock pulse, but is still able to alter the node voltage signi­

ficantly, then the circuit may or may not operate correctly. This

situation is somewhat analogous to the shifting of an<j in static

circuits. The most critical determinate of maximum clock speed for this

circuit is the time taken to charge and discharge the input node of the

inverter. A short occurring at either the input or output nodes, signi­

ficantly increases the time required to perform these operations.

In addition to internal shorts, it is also possible for external

shorts to occur between inverters. We again treat external shorts as if

they occur between output nodes. Let us first assume that the short

does not introduce feedback. That is, neither of the shorted outputs is

a function of the other. If both outputs are the same value, the

behavior of the two outputs is generally unaffected. If the outputs

have complementary values, several possibilities may occur. If the

impedances of the short and one of the inverters are much less than the

impedances of the other inverter, then the inverter with the larger

impedances will follow the output of the other inverter. If the

impedances of both inverters are similar, then the exact behavior will

depend primarily on the impedance of the short. The two load transis­

tors, coupled by the impedance of the short will be trying to pull both

output nodes high while one of the driver transistors will be trying to

pull the output nodes low. See Figure 3.13. The voltage at nodes 1 and

2 will be:

73

stuck-at O depending on whether the short is charging or discharging the

node. If the short is unable to charge or discharge the node completely

during a clock pulse, but is still able to alter the node voltage signi­

ficantly, then the circuit .may or 111ay not operate correctly. This

situation is somewhat analogous to the shifting of V10 and Vh i in static

circuits. The most critical determinate of maximum clocl speed for this

circuit is the time taken to charge and discharge the input node of the

inverter. A short occurring at either the input or output nodes, signi­

ficantly increases the time required to perform these operations.

In addition to internal shorts, it is also possible for external

shorts to occur between inverters, We again treat external shorts as if

they occur between output nodes. Let us first assume that the short

does not introduce feedback. That is, neither of the shorted outputs is

a function of the other. If both outputs are the sa111e value. the

behavior of the two outputs is generally unaffected. If the outputs

have complementary values, several possibilities may occur. If the

impedances of the short and one of the inverters are much less than the

impedances of the other inverter, then the inverter with the larger

impedances will follow the output of the other inverter. If the

impedances of both inverters are similar, then the exact behavior will

depend primarily on the impedance of the short. The two load transis­

tors, coupled by the impedance of the short will be trying to pull both

output nodes high while one of the driver transistors will be trying to

pull the output nodes low. See Figure 3.13. The voltage at nodes 1 and

2 will be:

74

Figure 3.13. Resistive Model of Two Outputs Shorted Together.

74

Z1R1 Z2R2

V (1) V(2)

R1

Figure 3.13 , Resistive Model of Two Outputs Shorted Together.

75

V(l) = V ZjRj + Z2 R2 + Rshort
dd Z1z2R2 + zl Rshort + zi Rl + z2r 2 + Rsliort

V(2) = v --- ?sbgyt.— + y(i) ---- -.2— —
dd Z2«2 + Rshort Z2R2 + Rshort

If the two inverters are identical* then

V(l) = V(2) vdd

In this case, the effective value of Z has been reduced by one-half. In

addition to degrading the steady state output values, a short also

reduces the speed of a falling transition since both inverters' load

capacitors have to be discharged by one driver transistor. As mentioned

in Chapter 1, many people use a wired AND operation assumption to model

shorts between outputs. An examination of the equations for V(l) and

V(2) shows the wired AND operation assumption is only justified if the

value of the short resistance is small and R-̂ an(j are both much

smaller than either Z^r ̂ or Z2R2 •

If a short occurs between two output nodes where one of the outputs

is a function of the other, then we have feedback. If this feedback

loop includes an odd number of inversions, oscillation is possible. Let

us define the looped inverter to be the inverter whose output is a func­

tion of the other inverter's output (that is the inverter inside the

feedback loop). We refer to the other inverter as the unlooped

inverter. In order for oscillation to occur, the looped inverter must

have a driver transistor with much lower impedance than that of the

unlooped inverter's load. An algorithm is given in [37] to predict

V(l)

If the two inverters are identical, then

V(l) ""V(2)
z + 1
%'

75

In this case, the effective value of Z has been reduced by one-half. In

addition to degrading the steady state output values, a short also

reduces the speed of a falling transition since both inverters' load

capacitors have to be discharged by one driver transistor. As mentioned

in Chapter 1, many people use a wired AND operation assumption to model

shorts behreen outputs. An examination of the equations for V(l) and

V(2) shows the wired AND operation assumption is only justified if the

value of the short resistance is small and R1 and ~ are both much

If a short occurs between two output nodes where one of the outputs

is a function of the other, then we have feedback, If this feedback

loop includes an odd number of inversions , oscillation is possible. Let

us define the looped inverter to be the inverter whose output is a func­

tion of the other inverter's output (that is the inverter inside the

feedback loop). We refer to the other inverter as the unlooped

inverter. In order for oscillation to occur, the looped inverter must

have a driver transistor with mnch lower impedance than that of the

unlooped inverter's load. An algorithm is given in (37) to predict

76

whether or not feedback bridging faults will lead to oscillation* ** The

algorithm is useful for determining whether or not a complicated circuit

will oscillate with a given input vector. Unfortunately this work is

based on the wired AND or wired OR assumptions which may not be applica­

ble. If the inverter which is out of the feedback loop has much lower

impedances than the inverter in the feedback loop, then the inverter in

the feedback loop's output will follow the other inverter's output.

If the feedback loop encloses an even number of inversions, the

circuit will generally not oscillate. The inverters inside the loop

will form a latch circuit. If the unlooped inverter has lower

impedances than the looped inverter to which it is shorted, then the

latch will change state each time the input to the unlooped inverter

changes. If the looped inverter has the lower impedances, then the out­

put of both inverters will appear to be stuck-at 0 or 1, depending on

what value is stored in the latch. Under very unusual circumstances, it

is possible for the latch circuit to exhibit metastable behavior. This

behavior is discussed later in Section 3.4.2.

3.3.2. Respp-ps.c o l Cixsaita ylth Opens

Opens that occur in series with transistor channels are very easy

to analyze. For all three types of circuits we have studied, it is only

necessary to replace the open transistor with the series combination of

the channel resistance and the open resistance. This new resistance may

*
Questions have been raised about several of the theorems in this pa­

per (see [38]). The disputed theorems all concern the detection and lo­
cation of bridging faults, not the conditions necessary for oscillation.

76

whether or not feedback bridging faults will lead to oscillation. • The

algorithm is useful for determining whether or not a complicated circuit

will oscillate with a given input vector. Unfortunately this work is

based on the wired AND or wired OR assumptions which may not be applica­

ble. If the inverter which is out of the feedback loop has much lower

impedances than the inverter in the feedback loop, then the inverter in

the feedback loop's output will follow the other inverter's output.

If the feedback loop encloses an even number of inversions, the

circuit will generally not oscillate, The inverters inside the loop

will form a latch circuit. If the unlooped inverter has lower

impedances than the looped inverter to which it is shorted, then the

latch will change state oacb time the input to the unlooped inverter

changes. If the looped inverter has the lower impedances, then the out­

put of both inverters ,rill appear to be stuck-at O or 1, depending on

what value is stored in the latch, Under very unusual circumstances. it

is possible for the latch circuit to eshibit metastable behavior. This

behavior is discussed later in Section 3.4.2.

l•l••· Rosponso u Circuits rlil ()gens

Opens that occur in series with transistor channels are very easy

to analy%e. For all three types of circuits we have studied, it is only

necessary to replace the open transistor with the series combination of

the channel resistance and the open resistance. This new resistance may

• Questions have been raised about several of the theorems in this pa-
per (see [38}). The disputed theorems all concern the detection and lo­
cation of bridging faults. not the conditions necessary for oscillation.

77

now be used in the equations we have already derived for switching speed

and voltage limits for each of the circuit types. If the open occurs in

the driver transistor, Z is decreased and Z* is increased. If the open

occurs in the load transistor, Z is increased and Z ’ is decreased. If

the resistance of the open is very large (i.e., much greater than the

resistance of a transistor), the output of the inverter will either be

stuck-at 0 or stuck-at 1, depending on whether the open is in series

with the load or driver transistor, respectively. As discussed in

Chapter 1, high resistance opens in CMOS NAND or NOR gates and NMOS

gates fed with pass transistor logic, result in stuck-open type faults.

If a high resistance short occurs in NMOS NAND or NOR gates, either one

of the inputs appears to be stuck-at 0 (driver transistor open), or the

output appears to be stuck-at 0 (load transistor open). In the dynamic

circuit, high resistance opens cause the output node to appear to be

either stuck-at 1 (driver transistor open), or stuck at 0 (load transis­

tor open). A high resistance open of the coupling transistor in general

leads to unpredictable behavior.

Low resistance opens in series with the gate terminal of a transis­

tor significantly reduce the speed of NMOS and CMOS inverters. For an

NMOS inverter, the capacitance of the driver transistor's gate must be

charged though the open. In a CMOS inverter, two cases are possible.

If the short affects both driver and load transistors, then the capaci­

tance of both transistors must be charged through the open. If the

short affects only one of the transistors, then the shorted transistor

turns off and on more slowly than the other transistor. An open gate

terminal to the depletion load transistor of an NMOS inverter has very

77

now be used in the equations we have already derived for switching speed

and voltage limits for each of the circuit types, If the open occurs in

the driver transistor, Z is decreased and z' is increased. If the open

I
occurs in the load transistor, Z is increased and Z is decreased, If

the resistance of the open is very large (Le., much greater than the

resistance of a transistor), the output of the inverter will either be

stuck-at O or stuck-at 1, depending on whether the open is in series

with the load or driver transistor, respectively. As discussed in

Chapter 1, high resistance opens in CMOS NAND or NOR gates and NMOS

gates fed with pass transistor logic, result in stuck-open type faults.

If a high resistance short occurs in NMOS NAND or NOR gates, either one

of the inputs appears to be stuck-at O (driver ttansistor open), or the

output appears to be stuck-at O (load transistor open). In the dynamic

circuit, high resistance opens cause the output node to appear to be

either stuck-at 1 (driver transistor open), or stuck at O (load transis­

tor open). A high resistance open of the coupling transistor in general

leads to unpredictable behavior.

Low resistance opens in series with the gate terminal of a transis-

tor significantly reduce the speed of NMOS and CMOS inverters. For an

NMOS inverter, the capacitance of the driver transistor's gate must be

charged though the open. In a CMOS inverter , two cases are possible.

If the short affects both driver and load transistors, then the cnpaci-

tance of both transistors must be charged through the open. If the

short affects only one of the transistors, then the shorted transistor

turns off and on more slowly than the other transistor. An open gate

terminal to the depletion load transistor of an NMOS inverter has very

78

little effect on circuit operation [4] . The primary reason the gate-

to-sonrce connection has so little effect on circuit operation is due to

capacitive feed-through from the source terminal to the gate terminal.

A parasitic capacitance exists between the gate and source of a transis­

tor. Any rapid change at the source terminal is coupled to the gate

terminal. It is difficult to predict the circuit behavior if a deple­

tion transistor's gate should open completely. If no signal levels

change on the chip for a long period of time, the charge will eventually

leak off the gate [28]. Charge leakage causes an n channel device to be

off and a p channel device to be on. This analysis, however, fails to

account for capacitive feed-through. Any transistor whose drain or

source is connected to a clock or other rapidly changing signal will

experience capacitive feed-through to the gate. As a result, the gate

voltage will be constantly changing. Whether or not the gate voltage

ever gets above (below for a p channel device) the threshold voltage

will depend on the particular details of the circuit. Since a large

percentage of the transistors in dynamic circuits have a source or drain

connected to a clock signal, capacitive feed-through is an important

factor. If the gate is connected to a long interconnection, and the

open occurs at the end of the interconnection away from the gate, then

the interconnection will act as an antenna collecting all the noise and

other signals in the vicinity. This essentially random signal drives

the inverter which in turn amplifies it and distributes it to other cir­

cuits.

78

little effect on circu.it operation [4] . The primary reason tho gate­

to-source connection has so little effect on circuit operation is due to

Capacitive feed-through fro111 the source terminal to the gate terminal.

A pa r asitic capacitance exists between tho sate and source of a transis­

tor. Any rapid change at the source terminal is coupled to tho gate

terminal. It is difficult to predict the circuit behavior if a deplo-

tion transistor's sate should open conpletely. If no signal levels

change on the chip for a long period of time, the cha:r-ge will eventually

leak off the gate [28). Charge leakage causes an n channel device to be

off and a p channel device to be on. This analysis, however. fails to

account for capacitive feed-through . Any transistor whose drain or

source is connected to a clock or other rapidly changing signal ,ril 1

experience capacitive feed-through to the gate. Aa a result. the gate

voltage will be constantly changing. Whether or not the gate voltage

ever sets above (bol ow for a p channel device) the threshold voltage

wil 1 depend on the particular details of the circu.i t. Since a large

percentage of the transistors in dynamic circuits have a source or drain

connected to a clock signal. capacitive feed-through is an important

factor. If the gate is connected to a long interconnection, and the

open occurs at the end of the inter conn.e cti on away from the gate. then

the interconnection will act as an antenna collecting all the noise and

other signals in the vicinity. This essentially random s i gnal drives

the i nverter which in turn U!plifies it and distributes it to other cir­

cuits.

79

3.-3.3. Response of Circuits to Noise

During normal operation, an integrated circuit is constantly

exposed to noise. This noise is of two types, random noise dne to vari­

ous physical processes (we call this physical noise) and capacitive or

inductive coupling of signals as well as any external electrical distur­

bances (we call this coupling noise). The most common types of physical

noise are thermal noise, shot noise, and quantum noise [39]. These

types of noise are usually modeled as an independent random white Gaus­

sian process. Wallmark [40] has developed a statistical model for capa­

citive and inductive coupling. For large circuits, especially those

consisting of a large percentage of random logic, he shows that the cou­

pling noise may also be considered as another random noise source. He

also treats device variations (random fluctuations in geometric and pro­

cess parameters) in a similar fashion. Under Wallmark's assumptions,

the total rms voltage due to all sources of noise is three to four times

the value of physical noise alone.

For proper operation, the circuit must be designed to work

correctly in the presence of noise. Although it is impossible to make a

circuit totally immune to noise, it is possible to make a circuit rela­

tively insensitive to noise. Usually this is done by making the abso­

lute value of the gain of a circuit small both for values of close

to logic 1 and for those close to logic 0, while the absolute value of

the gain at the transition point is made as large as possible. The

absolute value of the gain for equal to a logic 0 or 1 must be less

than 1. Otherwise, noise is amplified rather than suppressed. Ideally,

79

!-1-1- Response su Circuits 12. N.Qj_u_

During normal operation, an integrated circuit is constantly

exposed to noise. This noise is of two types, random noise due to vari­

ous physical processes (we call this physical noise) and capacitive or

inductive coupling of signals as well as any external electrical distur­

bances (we call this coupling noise). The most common types of physical

noise are thermal noise, shot noise, and quantum noise [39]. These

types of noise are usually modeled as an independent random white Gaus­

sian process. Wallmark [40) has developed a statistical model for capa­

citive and inductive coupling, For large circuits, especially those

consisting of a large percentage of random logic, be shows that the cou­

p! ing noise may al so be considered as another random noise source. He

also treats device variations (random fluctuations in geometric and pro-

cess parameters) in a similar fashion. Under Wallmark' s assumptions,

the total rms voltage due to all sources of noise is three to four times

the value of physical noise alone.

For proper operation, the circuit must be designed to work

correctly in the presence of noise. Although it is impossible to make a

circuit totally immune to noise. it is possible to make a circuit rela-

tively insensitive to noise. Usually this is done by making the abso­

lute value of the gain of a circuit small both for values of V. close
lD

to logic l and for those close to logic 0, while the absolute value of

the gain at the transition point is made as large as possible. The

absolute value of the gain for Vin equal to a logic O or 1 must be less

than 1. Otherwise, noise is amplified rather than suppressed. Ideally,

80

the gain at these points should be close to zero. The absolute value of

the gain at the transition point should be as large as possible to pro­

vide a sharp transition from a logic 0 to a logic 1. Other techniques

for maximizing noise immunity are using a large supply voltage and mak-

ing close to the midpoint of the voltage swing.

Long-term exposure to radiation and hot electron injection

increases a circuit's susceptibility to noise. As mentioned in Chapter

2, noise levels in transistors increase after exposure to radiation. In

addition* radiation exposure and hot electron injection cause shifts in

the threshold voltages and a decrease in transconductance. These param-

eter shifts nay result in values of Vlo and vki closer to the transition

point. As and Vjjj move closer to the transition point, the circuits

fed by an affected gate tend to amplify the noise to a greater extent.

A reduction in transconductance also tends to reduce the gain of the

inverter. Lower gain also reduces an inverter's noise immunity.

For well-designed circuits operating normally, the effect of noise

should be soft errors very similar to radiation-induced soft errors. On

very rare occasions, a noise spike may be large enough to change the

value of an output. As is the case for radiation-induced soft errors,

dynamic circuitry is more susceptible than static circuitry.

3.4. Response of Good Circuits J& the Output a l s. Failed Circuit

As shown in the last section, there are a variety of ways a circuit

may behave under failure. In some cases, the output of a circuit is a

legal logic value although it may not be the correct one, e.g., outputs

may exhibit stuck-at or stuck-open behavior. In these circumstances, we

80

the gain at these points should be close to zero, The absolute value of

the gain at the transition point should be as large as possible to pro­

vide a sharp transition from a logic Oto a logic 1. Other techniques

for maximizing noise immunity are using a larse supply voltage and mak­

ing ~n close to the midpoint of the voltase swing.

Long-term 0%posure to radiation and hot electron injection

increases a circuit's susceptibility to noise. As mentioned in Chapter

2, noise levels in transistors increase after exposure to radiation. In

addition, radiation exposure and hot electron injection cause shifts in

the threshold voltages and a decrease in transconductance. Those param­

eter shifts may result in values of V10 and vhi closer to tho transition

point, As Vlo and Vbi move closer to the transition point , tho circuits

fed by an affected gate tend to am11lify the noise to a greater u:tent.

A reduct ion in transconductance al so tends to reduce the gain of the

inverter. Lower gain also reduces an inverter's noise immunity.

For well-designed circuits operating normally. the effect of noise

should be soft errors very similar to radiation-induced soft errors. On

very rare occasions, a noise spike may be larae enough to change the

value of an output, As is the case for radiation-induced soft errors,

dynamic circuitry is more susceptible than static circuitry.

1•! • Response ~! .fuu2..d. Circuits .t.2 .1lu. Output 2.f. A Failed Circuit

As shown in the last section, there are a variety of ways a circuit

may behave under failure. In some cases. the output of a circuit is a

legal logic value although it may not be the correct one, e.g., outputs

may exhibit stuck-at or stuck-open behavior. In these circumstances, we

81

know the response of good circuits which must process the failed

circuit's output. The output from the failed circuit is a legal logic

value and is processed just as any legal logic values from good circuits

would be processed.

However, many of the failures that we have examined may result in

outputs which are not legal logic values. Under a variety of failures,

it is possible to produce a steady state output which is between V® and

(undefined constant logic value). Another possibility is a timing

failure. Synchronous systems are designed so that all signals are

steady when a clock pulse or edge occurs. A timing error may violate

this constraint. A related type of failure is oscillation. When oscil­

lation occurs, the steady signal constraint is once again violated. All

three of these types of failures have one important attribute in common;

circuits which process these signals are unable to interpret them reli­

ably as being either a logic 0 or logic 1.

3..4.1. Metastable Operation

During normal operation, a system undergoing a state transition

shifts from one stable state to another. Unfortunately, under certain

circumstances, it is possible for the system to be left in a metastable

state. A system is at equilibrium when it is in either a stable or

metastable state. In a stable state, a small disruption will cause the

system to react in a manner which restores the system to its original

state. The larger the disruption, the larger the restoring force until,

for a disruption which is large enough, the system changes state. In a

metastable state, if a disruption is applied, the system will react by

81

know the response of good circuits which must process the failed

circuit's output. The output from the failed circuit is a legal logic

value and is processed just as any legal logic values from good circuits

would be processed,

However, many of the failures that we have examined may result in

outputs which are not legal logic values, Under a variety of failures,

it is possible to produce a steady state output which is between vO and

Vl (undefined constant logic value). Another possibility is a timing

failure. Synchronous systems are designed so that all signals are

steady when a clock pulse or edge occurs. A timing error may violate

this constraint. A related type of failure is oscillation. When oscil­

lation occurs. the steady signal constraint is once again violated. All

three of these ty-pes of failures have one important attribute in common;

circuits which process these signals are unable to interpret them reli­

ably as being either a logic O or logic 1.

l-1·1· Metastable Oneration

During normal operation, a system undergoing a state transition

shifts frot11 one stable state to another. Unfortunately, under certain

circumstances, it is possible for the system to be left in a metastable

state. A system is at equilibriwn when it is in either a stable or

metastable state. In a stable state, a .1m.l.ll. disruption will canse the

system to react in a manner which restores the system to its original

state. The larger the disruption, the larger the restoring force until,

for a disruption which is large enough, the system changes state. In a

metastable state, if a disruption is applied, the system will react by

82

forcing itself further from its metastable equilibrium condition toward

some stable state. Eventually, the system will come to rest in a stable

state. Unfortunately, the system may remain in a metastable state for

an unbounded time period.

As an example of such a system, consider a bistable element. Such

an element can store one bit of information. A power or energy function

is associated with any such element. For an inverted pendulum or other

mechanical bistable element, this associated function is the system's

potential energy. For a flip-flop, this associated function is called

the dissipative function (see [29] for a discussion of the dissipative

function). A stable state is represented by a local minimum in the

element's associated function. A metastable state is represented by a

local maximum. A bistable element must have two local minima

corresponding to its two stable states. For any continuous function,

however, between any two local minima, there must also exist at least

one local maximum. Therefore, between any two stable states, there must

always be a metastable state.*

A certain amount of energy or power (depending on the memory ele­

ment) is required to switch the state of a flip-flop. If the input sig­

*
By flip-flop, we mean a static restoring memory element. We do not

use the term flip-flop for a dynamic memory element where information is
stored as charge on a transistor. A dynamic memory element has a con­
stant dissipative function. Such an element has an infinite number of
stable states. Any disruption to such an element, no matter how small,
will simply move the element to another of the infinitely many stable
states. Due to the flatness of the dissipative function, the element
has no restoring or nonrestoring response to a disruption. In a dynamic
memory element, there is no distinction between stable and metastable
states.

82

forcing itself further from its metastable equilibrium condition toward

some stable state. Eventually, the system will come to rest in a stable

state. UJLfortunately, the system may remain in a •etastable state for

an unbounded time period.

As an example of such a system, consider a bistable element . Such

an eleaent can store one bit of information. A power or energy function

is associated with any such element. For an inverted pendullim or other

mechanical bistable element, this associated function is the system's

potential energy, For a flip-flop, this associated function is called

the dissipative function (see [29] for a discussion of the dissipative

function). A stable state h represented by a local minimum in the

element's associated function. A metastable state is represented by a

local ma::r:immn. A bistable element must have two local minima

corresponding to its two stable states. For any continuous function,

however, between any two local minima. there must al so esist at least

one local maximum. Therefore, between any two stable states, there must

always be a metastable state.•

A certain amount of energy or power (depending on tho memory ele­

ment) is required to switch the state of a flip-flop, If the input sig-

• By flip-flop, we mean a static restoring memory element. We do not
use the term flip-flop for a dynamic memory element where information is
stored as charge on a transistor. A dynamic memory element has a con­
stant dissipative fllllction, Such an element has an infinite number of
stable states. Any disruption to such an element, no matter how small.
,rill simply move the e 1 ement to another of the infinitely many stable
states. Due to the flatness of the dissipative function, the element
has no restoring or nonrestoring response to a disruption. In a dyna111ic
memory element, there ia no distinction between stable and metastable
states.

l -

83

nal does not have quite enough power or energy to complete the flip-

flop's transition, the flip-flop may be left in a metastable state.

Such a pulse is called a runt pulse. A runt pulse lacks the duration

and/or amplitude required to change the flip-flop state reliably. In a

properly designed system, there are only two ways that the system will

be left in a metastable state: a synchronization failure, or a component

failure. In both cases, a runt pulse is presented to a flip-flop.

Synchronization failures result when a synchronous system must

accept a nonsynchronous input. Such an input may change at any time

with respect to the system clock. For a synchronous system to work

properly, all inputs must be stable before the clock pulse arrives. In

order to accomplish this, the asynchronous signal is usually presented

first to a clocked flip-flop. Unfortunately, as we have already shown,

the flip-flop has a metastable state. If the asynchronous signal should

change during a very small window with respect to the clock, the flip-

flop may be left in a metastable state. Such a situation is referred to

as a synchronization failure. Notice that such a synchronization

failure can occur without any part of the circuit experiencing a physi­

cal failure.

Several suggestions have been proposed to prevent synchronization

failures. One approach is to design an asynchronous network to perform

the synchronization function. One such network is a time-bound arbiter.

Unger [41] has developed a technique for designing asynchronous networks

including time-bound arbiters. Unfortunately, Unger's technique depends

on the use of a device called an inertial delay. There is some question

nal does not have quite enough power or energy to complete the flip­

flop's transition, the flip-flop may be left in a metastable state.

Such a pulse is cal led a runt pulse. A runt pulse lacks the duration

and/or amplitude required to change the flip-flop state reliably. In a

properly designed system. there are only two ways that the system will

be left in a metastable state: a synchronization failure. or a component

failure. In both cases. a runt pulse is presented to a flip-flop.

Synchronization failures result when a synchronous system must

accept a nonsynchronous input. Such an input may change at any th1e

with respect to the system clock. For a synchronous system to work

properly. all inputs must be stable before the clock pulse arrives. In

order to accomplish this, the asynchronous signal is usually presented

first to a clocked flip-flop. Unfortunately. as we have already shovn,

the flip- flop bas a metastable state, If the asynchronous signal should

change during a very small window with respect to the clock, the flip­

flop may be left in a metastable state. Snch a situation is referred to

as a synchronization failure. Notice that such a synchronization

failure can occur without any part of the circuit experiencing a physi­

cal failure,

Several suggestions have been proposed to prevent synchronization

failures. One approach is to design an asynchronous network to perform

the synchronization function. One such network is a time-bonnd arbiter.

Unger [41] has developed a technique for designing asynchronous networks

including time-bound arbiters. Unfortunately, Unger's technique depends

on the use of a device called an inertial delay. There is some question

84

as to the realizability of an inertial delay. Marino [42] has investi­

gated three proposed inertial delay designs and has demonstrated that

they are all unreliable. In addition, Strom [43] has shown that a

time-bound arbiter and an inertial delay are equally realizable since an

inertial delay may be built from a time-bound arbiter and vice versa.

In a more general study, Marino [44] has proposed an extremely gen­

eral model for any system that exhibits sequential behavior. The only

restriction imposed by this model is that the system is nonanticipatory.

Using this model, Marino has shown that unless certain relationships

between the inputs can be guaranteed, metastable operation is unavoid­

able.

Several techniques have been proposed to eliminate synchronization

failures. The only proposed technique which will prevent synchroniza­

tion failure was first suggested by Chaney et al. [45]. This method

uses flip-flops to synchronize the asynchronous inputs. Instead of

attempting to prevent the input flip-flops from entering a metastable

state, circuitry is included to detect a metastable state. If this cir­

cuitry detects a metastable state, the clock signal is delayed until the

metastable state is resolved. Such an approach is clearly not satisfac­

tory for all applications, since an adjustable frequency clock is

required. In addition, the maximum clock period is unbounded since the

time for a flip-flop to exit from its metastable state is also

unbounded. A practical compromise is to reduce the probability of syn­

chronization failure below some "acceptable" level [46,47,481.

as to the reali~ability of an inertial delay. Xarino [•2] has invosti­

gated three proposed inertial delay designs and has demonstrated that

they are all unreliable. In addition, Strom [◄31 has shown that a

time-bound arbiter and an inertial delay are equally realizable 1ince an

inertial delay may be built from a time-bound arbiter and vice versa.

In a moro general study# Marino [44] has proposed an extremely gen­

eral model for any system that exhibits sequential behavior. The only

restriction imposed by this model ls that the systea is nonanticipatory,

Using this model, Marine has shown that unless certain relationships

between the inputs can be guaranteed1 metastable operation is UD.avoid­

able.

Several techniques have been proposed to eliminate synchronization

failures. The only proposed technique which will prevent synchroniza­

tion failure was first sugguted by Chaney et al. (45]. This method

uses flip-flops to synchronize the asynchronous inputs. Instead of

attempting to prevent the input flip-flops from entering a metastable

state, circuitry is included to detect a metastable state. If this cir­

cuitry detects a metastable state. the clock signal ls delayed until the

metastable state ls resolved. Such an approach is clearly not satisfac­

tory for all applications. since an adjustable frequency clock is

required . In addition, the maxi■Ulll clock period is unbounded since the

time for a flip-flop to exit from its metastable state is also

unbounded. A practical compromise is to reduce the probability of syn­

chronization failure below some "acceptable" level [46,47 ,48].

85

Another source of metastable operation is component failure. If a

failure occurs* the timing and/or voltage levels of signals produced by

the failed components may present a runt pulse to a flip-flop. Oscilla­

tion at the input of a flip-flop can also cause runt pulses and thus

metastable operation. Regardless of whether the failure is a synchroni­

zation failure or a component failure, metastable operation is caused by

a runt pulse being presented to a flip-flop.

Researchers have found two modes of metastable behavior in flip-

flops [49,50] . In one mode of behavior, the outputs of the flip-flop

remain for some time at a level between V® and V*. In the second mode

of behavior, the outputs of the flip-flop oscillate. In both cases,

other gates receiving the outputs of the flip-flop will be unable to

interpret the flip-flop's state reliably. Some gates may interpret the

state as a logic 0 , while others may interpret the state as a logic 1 .

Still others may themselves produce an illegal logic output.

A variety of researchers have examined the probability of failure

due to metastable operation [29,46,50,51], Unfortunately, in these

prior studies, only synchronization failure is considered as a cause of

metastable operation. Generally, a synchronizing flip-flop is con­

sidered for processing an synchronous input occurring at some average

frequency f. In [29], it is estimated that metastable operation will

occur if the asynchronous input changes within a window of width

• The value of is that of the cross-coupled gates whichave ave
form the flip-flop. Therefore, metastable operation occurs with a pro­

bability of O.lfrg^ per synchronization event. Clearly, the faster
ave

i

' .

••

• .

BS

Another source of metastable operation is component failure. If a

failure occurs, the timing and/or voltage levels of signals produced by

the failed components may present a r1lllt pulse to a flip-flop. Oscilla­

tion at the input of a flip-flop can also cause runt pulses and thus

metastable operation. Regardless of whether the failure is a synchroni­

zation failure or a component failure, metastable operation is caused by

a runt pulse being presented to a flip-flop.

Researchers have found two modes of metastable behavior in flip-

flops [49,SO]. In one mode of behavior, the outputs of the flip-flop

remain for some time at a level between vO and v1 • In the second mode

of behavior, the outputs of the flip-flop oscillate. In both cases,

other gates receiving the outputs of the flip-flop will be unable to

interpret the flip-flop's state reliably. Some gates may interpret the

state as a logic 0, while others may interpret the state as a logic 1.

Still others may themselves produce an illegal logic output.

A variety of researchers have exainined the probability of failure

due to metastable operation [29,46,50,51). Unfortunately, in these

prior studies, only synchronization failure is considered as a cause of

metastable operation . Generally, a synchronizing flip-flop is con-

sidered for processing an synchronous input occurring at some average

frequency f. In [29], it is estimated that metastable operation will

occur if the asynchronous input changes within a window of width

O. l~SW The value of ~SW is that of the cross-coupled gates which
ave ave

form the flip-flop. Therefore, ~etastable operation occurs with a pro-

bability of O .lf't'SW per synchronization event. Cl early, the faster
ave

the gate used in the synchronizer flip-flop, the lower the probability

of the flip-flop entering a metastable operation. On the other hand,

this advantage is lost if a faster synchronizer is forced to synchronize

more events (i.e., f is higher).

The probability of a synchronizer leaving a metastable state before

some time t, is usually modeled as a Poisson process with rate p

[29,51]. Under a number of simplifying assumptions, it can be shown

that [51,46]

p = j t *—
ztswave

Therefore, for everything else equal, the lower the value of x ^
ave

(i.e., the faster the flip-flop) and the higher the value of A*, the

lower the probability of failure from synchronization failure. The pro­

bability of a synchronizer being in a metastable state at time t, p(t)

is

2t jp!*
p(t) = 0 .1 fTsw e aV®

ave
These equations should be used with caution. They were derived under a

number of simplifying assumptions. Lacroix et al. [52] found a three

order of magnitude difference in the average length of metastable opera­

tion for 7475 D latches from different vendors. It is quite doubtful

that the gain-bandwidth product would vary enough to account for this

difference. Pechoucek. [50] found that from a random sample of 74S74

flip-flops, the flip-flops with the smallest delay exhibited longer

the gate used in the synchronizer flip-flop, the lower the probability

of the flip-flop enterinB a metastable operation. On the other hand.

this advantage is lost if a faster synchronizer is forced to synchronize

more events (i.e •• f is hiaher),

The probability of a synchronizer leaving a metastable state before

some time t, is usually modeled as a Poisson process with rate p

(29,51] . Under a nlllllber of simplifying assumptions, it can be shown

that (51,46]

•
p = .A.

2 t'sw
ave

Therefore. for everything else equal. tho lower the value of t' SW
ave

(i.e., the faster the flip-flop) and the higher tho value of A•. the

lower the probability of failure from synchronization failure. The pro­

bability of a synchronizer being in a metastable state at time t, p(t)

is

p (t) = 0 .1 f,: SW e
ave

;

These equations should be used with caution, They were derived under a ,

number of simplifying assumptions. Lacroh: et al. [52] found a three

order of magnitude difference in the average length of metastable opera-

tion for 7475 D latches from different vendors. It is quite doubtful

that the gain-bandwidth product would vary enough to account for this

difference, Pechoucek [50] found that from a random sample of 74874

flip-flops, the flip-flops with the smallest delay exhibited longer

87

average length of metastable operation than those flip-flops with a

larger delay.

If we make the assumption that during a timing failure, the added

delay modulo the clock period is uniformly distributed, then the same

equations derived for synchronization failure will also apply to timing

failures. This assumption is somewhat tenuous. One could reasonably

expect the actual probability of metastable operation due to a timing

failure to be several times higher than that predicted by the synchroni­

zation failure analysis. Since most device failures affect both timing

and logic levels, it is very difficult to estimate the probability of

metastable operation due to a component failure. If, however, the com­

ponent failure does not occur in the flip-flop itself, then the average

length of metastable operation should be the same regardless of what

caused the metasable operation in the first place. Based on the equa­

tions, the gain-bandwidth product of the flip-flop gates should be as

large as possible in order to minimize the average time of metastable

operation. If NMOS gates with nonsaturated loads are used, then the

gain of the flip-flop gates will be limited. To increase a gate's gain,

we must increase the value of Pr. Since Z is proportional to pr, any

increase of also increases Z. For large Z, x is proportional to
ave

Z. Therefore, if is large, the gain-bandwidth product actually

decreases by a factor of approximately p* /2 as Pr is increased. Better

synchronizers can be built using NMOS with a saturated load or CMOS.

Both of these types of gates will have inherently larger gains than the

nonsaturated NMOS gates. Any attempt, however, to increase the gain-

bandwidth product of a saturated NMOS or CMOS gate by increasing channel

87

average length of metastable operation than those flip-flops with a

larger delay.

If we make the asstlll1ption that during a timing failure. the added

delay modulo the clock period is uniformly distributed. then the same

equations derived for synchroflization failure will also apply to timing

failures. This ass'llm.ption is sontewbat tenuous. One could reasonably

expect the actual probability of metastable operation dne to a timing

failure to be several times higher than that predicted by the synchroni­

zation failure analysis. Since most device failures affect both timing

and logic levels. it is very difficult to estimate the probability of

metastable operation due to a component failure. If. however. the com-

ponent failure does not occur in the flip-flop itself, then the average

length of metastable operation should be the same regardless of what

caused the metasable operation in the first place. Based on the equa-

tions, the gain-bandwidth product of the flip-flop gates should be as

large as possible in order to minimize the average time of metastable

operation. If NMOS gates with nonsatnrated loads are used, then the

gain of the flip- flop gates will be limited. To increase a gate's gain.

we must increase the value of Pr. Since Z is proportional to l3r• any

increase of ,r also increases Z. For large Z, ~SW is proportional to
ave

z. Therefore. if a. "'r is large. the gain-bandwidth product actually

decreases by a factor of approximately 13!12 as ~r is increased. Better

synchronizers can be built using NMOS with a saturated load or CMOS.

Both of these types of gates will have inherently larger gains than the

nonsaturated NMOS gates. Any attempt, however, to increase the gain­

bandwidth product of a saturated NMOS or CMOS gate by increasing channel

88

length is futile. As the channel length is increased# gain increases#

but switching time decreases due to increased resistance and capaci­

tance. The implications of scaling on metastable operation is examined

in [51]. If the number of devices are increased by the scaling process

and clock speeds are increased as gate propagation delays decrease# the

average length of metastable operation is roughly invariant.

1 -4 .2 . Rft.spms.fi. sl gjapfripfttiQhsI Logie

Combinational logic is only susceptible to timing errors if it is

part of a sequential machine or if it must produce its output in some

bounded period of time. Unfortunately# nearly all cases of practical

interest are included in this case. In addition* combinational logic is

susceptible to oscillation and illegal constant logic values.

If the combinational logic is part of a synchronous sequential

machine* then a timing failure may result in incorrect behavior. In

order for a synchronous sequential machine to operate properly# it is

necessary for all outputs from the combinational logic to have reached

their steady state values before the arrival of the next clock pulse.

In the event of a timing failure* one or more of the outputs may be in

the process of changing at the same time that the clock pulse arrives.

In this case, it is not possible to predict whether the affected combi­

national logic outputs will be interpreted as a logic 0 or a logic 1 .

Any outputs which are delayed may be incorrectly interpreted. Although

asynchronous sequential machines do not depend on all internal signals

settling before a clock pulse arrives, they are still susceptible to

timing failures. A large class of asynchronous circuits have essential

81

length ii futile. As the channel length is increased. gain increases .

but switching time decreases due to increased resistance and capaci­

tance, The implications of scaling on metastable operation is exuiined

in [Sl] . If the nWllber of devices are increased by the scaling process

and clock speeds are increased as gate propagation delays decrease, the

average length of metastable operation is roughly invariant,

.!-~•l• Response il ~ombinational Lo1ic

Combinational logic is only susceptible to timing errors if it is

part of a sequential machine or if it must produce its output in some

bounded period of time, Unfortunately, nearly all cases of practical

interest are included lo this case, In addition, combinational logic is

susceptible to oscillation and illegal constant logic values.

If the combinational logic is part of a synchronous sequential

machine. then a timing failure may result in incorrect behavior . In

order for a synchronous sequential machine to operate properly, it is

necessary for all outputs from the combinational logic to have reached

their steady state values before the arrival of the nez:t clock pulse.

In the event of a timing failure, one or more of the outputs may be in

the process of changing at the same time that the clock pulse arrives .

In this case, it is not possible to predict whether tho affected combi­

national logic outputs will be interpreted as a logic O or a logic 1.

Any outputs which are delayed may be incorrectly interpreted. Although

asynchronous sequential machines do not depend on all internal signals

settling before a clock pulse arrives, they are still susceptible to

timing failures. A large class of asynchronous circuits have essential

r
I

89

hazards which cannot he eliminated* In these circuits, excessive delays

in part of the circuit may result in an erroneous state transition.

Furthermore, asynchronous sequential circuits are usually designed under

the assumption that after an input changes, all signals in the circuit

settle before further input changes occur. Timing failures can lead to

the violation of this assumption.

Any node which oscillates will cause other nodes which are sensi­

tized to it to oscillate also (the conditions required for sensitization

are discussed in Chapter 4) . If the outputs of a combinational logic

block are sensitized to an oscillating node, then they may be inter­

preted as either a logic 1 or a logic 0 by following logic.

If the input of a gate is at a voltage close to its transition

point (i.e., an illegal constant logic value), then its output voltage

may also be close to its transition point. Similarly, other inverters

which receive this inverter's output as their input may have their out­

put voltages close to their transition points. Consider a string of n

identical inverters where the first inverter's input is at its transi­

tion point. The first several inverters will have output voltages which

are close to the transition point. Any noise present in the system will

tend to force the inverter's output voltage away from its transition

point. Intuitively, inverters at the beginning of the string would be

expected to have a relatively high probability of being close to the

transition point. Inverters further down the string would be expected

to have a much lower probability of being close to the transition point

due to each inverter's amplification. Inverters at some distance from

'

89

hazards which cannot be eliminated. In these circuits, excessive delays

in part of the circuit may result in an erroneous state transition.

Furthermore, asynchronous sequential circuits are usually designed UDder

the assumption that after an input changes, all signals in the circuit

settle before further input changes occur. Timing failures can lead to

the violation of this assumption.

Any node which oscillates will cause other nodes which are sensi­

tized to it to oscillate also (the conditions required for sensitization

are discussed in Chapter 4). If the outputs of a combinational logic

block are sensitized to an oscillating node, then they may be inter­

preted as either a logic 1 or a logic Oby following logic,

If the input of a gate is at a voltage close to its transition

point (Le., an illegal constant logic value), then its output voltage

may also be close to its transition point. Similarly, other inverters

which receive this inverter's output as their input may have their out­

put voltages close to their transition points. Consider 11 string of n

identical inverters where the first inverter's input is at its transi­

tion point. The first several inverters will have output voltages which

are close to the transition point. Any noise present in the system will

tend to force the inverter's output voltage away from its transition

point. Intuitively, inverters at the beginning of the string would be

expected to have a relatively high probability of being close to the

transition point. Inverters further down the string WO'llld be expected

to have a much lower probability of being close to the transition point

due to each inverter's amplification. Inverters at some distance from

90

the beginning of the string would be expected to oscillate between

and V-lo*

We now develop a simplified model in order to determine the approx­

imate probability that a given inverter^s output is greater than V* or

less than V®, Figure 3.14 shows a string of inverters and the simpli­

fied model which we use. Each inverter is modeled as an ideal finite

gain* finite bandwidth amplifier. Each amplifier has a transfer func­

tion H(<o). At the input of each amplifier is a summing point where

noise from a noise source is added to the output from the previous

amplifier. Each noise source is assumed to be a Gaussian white noise

source and each source is assumed to be statistically independent of

every other source. For the sake of convenience* the transition point

is taken to be zero while is assumed to be negative and V* is assumed

to be positive.

Referring to Figure 3.14, the response at point y due to some noise

source i (1 < i < n) is

Ti<o>) = [H(u)] n+1

The power spectrum density of yi [39] £s

S = lH(*)l2 (a+1 -i>Sw df
i i

while the variance is

VAR = f°° |H(»)|2 <n+1-i>S df
yi wi

The central limit theorem states that when several independent random

;/

1

variables are summed* the variance of the sum is the sum of the vari-

the beginning of the string would be expected to oscillate between Vhi

and V10 •

We now develop a simplified model in order to determine the appro%­

imatc probability that a given inverter's output is greater than v1 or

less than v0 • Figure 3.14 shows a string of inverters and the simpli­

fied model ,rhich we use . Each inverter is mode 1 ed as an ideal finite

gain, finite bandwidth amplifier. Each amplifier has a transfer func­

tion H(co), At the input of each amplifier is a &WDDling point where

noise from a noiae source is added to the output from the previous

amplifier, Each noise source is assumed to be a Gaussian white noiu

source and each source is assumed to be statistically independent of

every other source. For the sake of convenience, the transition point

is taken to be zero while vO is assumed to be negative and v1 is assumed

to be positive.

Referring to Figure 3.14, the response at pointy due to some noise

source i (1 iii n) is

Yi(~)= [H(w))n+l- ifl(•}

The power spectrum density of Yi [39) is

while the variance is

~ J luc~>l2(n+l-i)sw.df
- 1

The central limit theorem states that when several independent random

variab 1 es are summed, the variance of the sum is the sum of the var i-

I I

,-1
I

J

I •

91

Figure 3.14. Model of Inverter String.

91

(> ---(> - ·;
., - .

.v ,v A' N , - .,

-1"':1... - - ~ ~~~---(~ L ~
~ -- / '<J V _ _,; v-

Figure 3.14. Model of Inverter String .

/

92

ances [39]„ Therefore * the variance due to all the noise sources is

VARy = J j lH(U)l2 <“+1 -i>Sw df
i=l 1

We assume that every source has identical statistics (i.e.* S _ g
W1 1

e* 0 “ = Sw = Nq / 2). The variance is nown

VAR _ ~ 2 f “ lH(ft>) |2(n+l-i)df
i=l

If the amplifiers are assumed to have a single pole, then

H(ti>) = - A. , I + jmy
and

|H(o))|2 = --- A-
1 + jtô ŷ

where A is the gain of the amplifier and y is the reciprocal of the

amplifier's cut-off frequency. Using the fact that to = 2nf, the expres­

sion for variance can be rewritten as

Nn n co
VAR = =£ X A2 <”+1 -i> f [--- 1---]»+l-idU

7 2n /, J 0 1 + »2t 2

Using a table of integrals and simplifying, the variance is

VAR = — — — \ — A— [gamma(n - i + 1.5)]
y 2yjrl/ 2 ^ _2n + 2 i - 1 gammaTn - i + 1)

In order to avoid the gamma function, we developed the following approx­

>2 (n-i+l)

imation

ances [39}. Therefore. tho variance duo to all tho noise sources is

f• ruc~)l2(n+l- i)s df
- wi

We as1111De that every source has identical statistics (i.e . , S • s_
•1 "2

- ... - s w n
= Sy = No/2) • Tho variance is now

~
VAR.1 • 2

A CD

l J
i=l -•

If tho amplifiers are assumed to have a single pole, then

H(w) = A
I + JIUY

and

IH(1»)12 = A.
2

1 + jco2y2

whore A is the gain of tho amplifier and T is the reciprooal of the

amplifier's cut-off frequency. Using the fact that co= 2nf, the expres­

sion for variance can be rewritten as

VAR No ~ A2(n+l-i)
y = 2JT L.

Using a table of integrals and simplifying , the variance is

VAR
y

Al(n-i+l) c omma<~ - i + 1.5) 1
-2n + 2i - 1 gamma n - i + 1)

In order to avoid the gamma function, we developed tho following approx­

imation

93

.?) ss rx _ 2 5 +gamma(x) Lx +
_]l/2

(2500x)1/2
For integer values of x between 1 and 70, the error is less than 1 per­

cent for this approximation. If we substitute this approximation into

the equation for VAR^ we f£n(j

VAR N0 “ ,2 (n-i+l) r
2ynl/2 } -2.1 + 2 1 - 1

' 1=1
- i + 0.75

ALet P be the probability that y <. -a or y >. a. In other words, P is

the probability that y is at least a distance of a from the transition

point. Since y has a mean of zero, it is easy to show that

p*(a. N0> y. A, n) = 1 - erf(a[2VARy] 1/2>

where erf() is the error function. P* is most strongly dependent on the

inverters gain, A. This dependence is due to the fact that the vari­

ance of y is proportional to . As n becomes large, this factor

will increase rapidly as A increases. Figure 3.15 is a graph of P* vs n

as A is varied from 2 to 100. The value of y is based on a SPICE simu­

lation of an inverter designed using Mead-Conway [293 design rules for a

5 micron process. a was arbitrarily chosen to be 1 volt while was

roughly equal to the thermal noise present at room temperature. As

pointed out in [40], the total noise in the circuit will probably be

several times this value. The SPICE simulation of the Mead-Conway

inverter had a value of A equal to 2.27. The graph shows that P is

very close to zero for small values of n. When n increases beyond a

certain value, P increase rapidly until it becomes almost equal to one.

93

011111 (I + • 5) :::: [_ 2 5 + 1] 1/ 2
gamma (x} x • (2S00x) 1/ 2

For integer values of x between 1 and 70, the error is less than 1 per­

cent for this approximation, If we substitute this ap11roximation into

the equation for VARY' we find

VAR
y

No n ,2(n-i+l)
'\: - - -·-- - [i + 0.75 1/2 L -2n + 2i - 1 ° -2Y7f i=l

+ (2500(~ - l ♦ l)}l/1 J 1/2

Let p• be the probability that y i -ci or y L a. In other words, p* is

the probability that y is at least a distance of a from the transition

point. Since y has a mean of zero, it is easy to show that

p*(N - 1/2) a, O• T• A, n) : 1 - erf(a{2VARy1

where erf() is the error function. p• is most strongly dependent on the

inverter's gain, A. This dependence is due to the fact that the vari­

ance of y is proportional to A2 (n+l) . As n becomes large, this factor

will increase rapidly as A increases. Figure 3.15 is a graph of p• vs n

as A is varied from 2 to 100. The value of r is based on a SPICE simu­

lation of an inverter designed using Mead-Conway [29) design rules for a

S micron process. a was arbitrarily chosen to be 1 volt while N
0

was

roughly equal to the thermal noise present at room temperature. As

pointed out in [40], the total noise in the circuit wi ll probably be

several times this value. The SPICE simulation of the Mead-Conway

inverter had a value of A equal to 2 .27. The graph shows that p• is

very close to zero for small values of n, Whe n n increases beyond a

certain value, p• increase rapidly until it becomes almost equal t o one.

94

\

A = 100 A - 50 A = 1 0 A = 2.27 A = 2

P*
1

Figure 3.15. Probability of lyl >. a vs. Number of Inverters for Small
Noi se .

A= 100 A .,. 50 A• 10 A = 2.27 A ,.. 2

-- - --- -----
P•

,.. -- -/ ,,,

I
/

I
I

I I

.8 I

I I I

I I

I
I

I I
I

.6 I I

I I I I

I I

I
I
I

.4,

I
I

I I

I I I

I I

I
I

.2 I I ,
I

I
I I

I I

0
0 5 10 15 20 25 30 35

n • num~r of inverters

Figure 3 . 15 . Probability of lyl l a vs . Number of Inverters for Small
Noise .

I -

~

95

The value at which P* begins its rapid rise is highly dependent on A.

The larger the value of A, the sooner P* begins its rapid increase. The

slope during this increase is also larger for larger values of A.

In Figure 3.15, we assume a very low value for Nq o Figure 3.16 is

another graph of P* as A is varied from 2 to 100. The values of a and y

remain the same in Figure 3.16, but the value of No is increased by a

factor of 10 from the value used to derive Figure 3.15. The value of Nq

used for Figure 3.16 is probably much larger than the actual total noise

in a circuit.

The graph of Figure 3.16 is very similar in shape to the graph of

Figure 3.15. The only appreciable difference is that the graph of Fig­

ure 3.16 is shifted roughly one inverter to the left with respect to the

graph of Figure 3.15. In other words, the effect of increasing the

value of Nq j,y a factor of 1 0 is approximately the same as the effect of

adding one more inverter to the chain. By examining the equation for

VA^y, it is apparent that an increase in A, Nq , and n leads to an

increase in the value of VAR^ an(j thus P*» Likewise, increases in a and

y decreases the value of both VAR^ an(j p*. In order to maximize the

value of P*> circuits should be designed to maximize gain and bandwidth.

Note that gain is more important than bandwidth in maximizing P .

It is important to consider the behavior of a node when its voltage

leaves the range of + a. As long as the node voltage is small, the

response of each inverter is approximately linear. The input to the

first inverter is white Gaussian noise. The output of the first

inverter will be colored Gaussian noise. The frequency components that

95

The value at which p• begins its rapid rise is highly dependent on A.

The larger the valne of A, the sooner p• begins its rapid increase. The

slope during this increase is also larger for larger values of A.

In Figure 3.15, we assume a very low value for N0 , Figure 3.16 is

another graph of p• as A is varied from 2 to 100. The values of a and y

remain the same in Figure 3 .16, but the value of N0 is increased by a

factor of 10 from the value used to derive Figure 3.15. The value of N0

used for Figure 3.16 is probably much larger than the actual total noise

in a circuit.

The graph of Figure 3.16 is very similar in shape to the graph of

Figure 3.15, The only appreciable difference is that the graph of Fig­

ure 3.16 is shifted roughly one inverter to the left with respect to the

graph of Figure 3 .15. In other words, the effect of increasing the

value of NO by a factor of 10 is approximately the same as the effect of

adding one more inverter to the chain. By e:r.amining the equation for

VARY. it is apparent that an increase in A, No, and n leads to an

increase in the value of VAR and thus p•. y

-y decreases the value of both VAR and p•. y

Likewise, increases in a and

In order to maximize the

• value of P, circuits should be designed to ma:r.imize gain and bandwidth.

Note that gain is more important than bandwidth in maximizing P•.

It is important to consider the behavior of a node when its voltage

leaves the range of ±. a. As long as the node voltage is small. the

response of each inverter is approximately linear. The input to the

first inverter is white Gaussian noise. The output of the first

inverter will be colored Gaussian noise. The frequency components that

96

A = 100 A - 50 A « 10 A «= 2.27 A - 2

P*
1

Figure 3.16. Probability of lyl J> a vs. Number of Inverters for Large
Noise.

A= 100 A = 50 A.= 10 A-= 2.27 A= 2

-- - --- -----

P•

/
,, ,,

I
I

/

I I

.8

I
I I

I

I I

I
I

I
I I I

.8

I
I

I

I
I

I I
I
I

.4 I
I I I

I I
I
I

I
I

I
I
I

.2 I I
I

I
I I

I
I

0 J

0 5 10 15 20 25 30 35
n • number of inverters

Figure 3.16. Pr obability of lyl l a vs. Number of Inverters for Large
Noise.

97

\

are removed from the output noise are those frequencies that are too

high for the inverter to respond to. The colored Gaussian noise from

the output of the first inverter is added to white Gaussian noise and

then input to the second inverter. The output of the second inverter is

once again colored Gaussian noise. This process is repeated as we pro­

gress down the chain of inverters. Finally, the colored Gaussian noise

at the input of one of the inverter is large enough so that the linear

response assumption is no longer valid. Since the noise from the previ­

ous inverter is so large, we may neglect the white noise which is being

injected at this node. Therefore, this inverter is being driven by a

fairly large colored Gaussian signal. By large, we mean that the signal

is large enough to saturate the inverter. The frequencies present in

the Gaussian signal are low enough for the inverter to respond to.

Therefore, the output of this inverter will be a "clipped" version of

its input. Since the colored Gaussian noise is a zero mean process, the

inverter outputs will oscillate.

In this analysis, it is assumed that the input to the first

inverter in the string is exactly at zero (i.e., its transition point).

It is more likely that there will be some small offset, e, from 0. The

effect of such a DC offset is to change the mean of the input signal

from 0 to e. Likewise, the output signal's mean is changed from 0 to

eA. In general, the output from the ith inverter has a mean value of

eA1, Since the signal at y no longer has a mean of zero, the probabil­

ity that y I a is no longer the same as the probability that y (_ —a.

Due to the symmetry of the problem, we may, without loss of generality,

....
....

97

are removed from the output noise are those frequencies that are too

high for the inverter to respond to. The colored Gaussian noise from

the output of the first inverter i.s added to white Gaussian noise and

then input to the second inverter. The output of the second inverter is

once again colored Gaussian noise. This process is repeated as we pro­

gress down the chain of inverters. Finally, the colored Gaussian noise

at the input of one of the inverter is large enough so that the linear

response assumption is no longer valid. Since the noise from the previ­

ous inverter is so large, we may neglect the white noise which is being

injected at this node. Therefore, this inverter is being driven by a

fairly large colored Gaussian signal. By large, we mean that the signal

is large enough to saturate the inverter. The frequencies present in

the Gaussian signal are low enough for the inverter to respond to.

Therefore. the output of this inverter will be a "clipped" version of

its input. Since the colored Gaussian noise is a zero mean process. the

inverter outputs will oscillate.

In this analysis, it is assumed that the input to the first

inverter in the string is exactly at zero (i.e . , its transition point) .

It is more likely that there will be some small offset. e. fro111 O. The

effect of such a DC offset is to change the mean of the input signal

from O to £. Likewise, the output signal's mean is changed from O t o

cA. In general. the output from the ith inverter has a mean value of

£Ai. Since the signal at y no longer has a mean of zero, the probabil­

ity that y l. a is no longer the same as the probability that y f -a.

Due to the sylDl!letry of the problem, we may, without loss of generality,

98

assume that a is positive. In this case# the response at y is identical

to our previous analysis except that sAn is added to the signal.

Let y* be the original signal at y (i.e., the value at y if e = 0).

Therefore, y = y (+ aA*. The original value of P* was defined to be the

probability that y 1 -a plus the probability that y >. o. Since the

value at y is the sum of the original signal at y and eAn . Therefore,

P is the probability that y' —a — sAn plus the probability that

y' >, a - eAn. It is easy to show that

P* = J.U - erf[(o - 8An)(2VAR)-l/2] + 1 - erf[(-a - sAn)(2VAR
y y

As eAn becomes large, then

1 - erf[(a - sAn)(2VARy ,)~l/2] >> 1 - erf[(-a - eA»)(2VARy ,)~l/2

Therefore, for large values of eAn, an approximation for P* is

P*<a’ N0, r. a , n, 8) ~ i-tl - erf [(a - eA”) (2VARy ,]-l/2)

As the value of e becomes larger, the probability that y is outside the

range of -a to a increases.

This analysis demonstrates that if an illegal constant logic value

occurs at a node, then other nodes that are sensitized to the illegal

value node may either oscillate or also have an illegal logic value.

The more levels of logic between the nodes, the greater the probability

of oscillation.

In most cases, the output of a chain of gates drives the input of a

flip-flop. If a failure has occurred so that the input of one of the

gates is forced to its transition point, the flip-flop may enter a meta-

stable state. If the output of the last gate in the chain is still

98

ass1ll!le that a is positive. In this case, the response at y is identical

to our previous analysis except that aAD is added to the signal.

Let y' be the original signal at y Ct . e •• the value at y if a~ 0).

Therefore. y = y' + aAn. The ori1inal value of p• was defined to be the

probability that y i -a plus the probability that y la. Since the

value at y is the sum of the original signal at y and aAn. Therefore,

p• h the probability that y' i -ci - aAn plus the probability that

y' La - aAn. It is easy to show that

p• ~ t{1 - erf[(a - aAn)(2VARy ,)-1/2J + 1 - erf[(-a - aAn)(2VAR
1

,)-1/l)

As eAn becomes large. then

1 - erf[(a - aAn)(lVAR)-1/2} >> 1 - erf[(-a - aAn)(2VAR)-1/2
y' y'

Therefore, for large values of sAn, an appro%imation for p• is

p•cci. No. Y• A, D, a) - ir1 - erf[(a - aAU)(2VARy•1-1/2J

As the value of a becomes larser, the probability that y is outside the

range of -a to a increases.

This analysis demonstrates that if an illegal constant logic value

occurs at a node• then other nodes that are sensitized to the illegal

value node may either oscillate or also have an illegal logic value.

The more levels of logic between the nodes, the greater the probability

of oscillation.

In most cases, the output of a chain of gates drives the input of a

flip-flop. If a failure has occurred so that the input of one of the

gates is forced to its transition point, the flip-flop may enter a meta­

stable state . If the output of the last 1ate in the chain is still

, .

99

close to its transition point, then the probability that the flip-flop

enters a metastable state is relatively high. The flip-flop only enters

a metastable state if its input is in the vicinity of the transition

point. If the input is oscillating with a very small amplitude (i.e.,

the input is near the transition point), then the probability of enter­

ing a metastable state is much higher than if the input is oscillating

between the voltage limits of the circuit. The most effective way to

minimize the probability of a metastable state is to keep the input to

the inverter as far away from the transition point as possible. There­

fore, the higher the probability that the output from the last gate in a

chain is a legal logic value, the lower the probability of metastable

operation. From Figure 3.15, the probability of a legal logic value

approaches 1 as the chain length becomes longer. This would seem to

imply that as the chain length becomes long, the last gate's output

spends a smaller and smaller percentage of its time in a region near the

transition point. If this is true, then as the chain becomes long, the

probability that the flip-flop enters metastable operation approaches

zero. Unfortunately, in our analysis, we have neglected the fact that a

gate has a finite slew rate (i.e., the output of a gate can only change

at some maximum rate) . As the gate output oscillates back and forth

from one voltage to the other, it takes a finite time to switch from one

logic level to the other. Therefore, the gate output must spend some

nonzero time in the region of the transition point.

We have already calculated the switching time for an inverter. In

the section on metastable operation, we estimated that there is window

width of approximately during which time the flip-flop can
ave

99

close to its transition point, then the probability that the flip-flop

enters a metastable state is relatively high. The flip-flop only enters

a metastable state if its input is in the vicinity of the transition

point, If the input is oscillating with a very small amplitude (i.e.,

the input is near the transition point), then the probability of enter­

ing a metastable state is much higher than if the input is oscillating

between the voltage limits of the circuit. The most effective way to

minimize the probability of a metastable state is to keep the input to

the inverter as far away from the transition point as possible. There­

fore, the higher the probability that the output from the last gate in a

chain is a legal logic value, the lo,rer the probability of metastable

operation, From Figure 3. 1 S, the probability of a legal logic value

approaches 1 as the chain length becomes longer . This would seem to

imply that as the chain length becomes long, the last gate's output

spends a smaller and smaller percentage of its time in a region near the

transition point. If this is trne, then as the chain becomes long, the

probability that the flip-flop enters metastable operation approaches

zero. Unfortunately, in our analysis , we have neglected the fact that a

gate has a finite slew rate (i.e., the output of a gate can only change

at some maximum rate). As the gate output oscillates back and forth

from one voltage to the other, it takes a finite time to switch from one

logic level to the other. Therefore, the gate output must spend some

nonzero time in the region of the transition point .

We have already calculated the switching time for an inverter. In

the section on metastable operation, we estimated that there is window

width of approximately . 1-tsw during which time the flip-flop can
ave

100

enter a metastable state. When the output is oscillating between the

voltage limits of the circuit, it should typically be switching at a

speed fairly close to x ^ „ Therefore, when the probability of a
ave

legal logic value is very close to 1 , the probability that the flip-flop

enters a metastable state should be approximately 0.1. On the other

hand, when the probability of of a legal logic value is very low, the

probability that the flip-flop enters a metastable state is quite high.

Therefore, it is important that the probability of having a legal logic

value is as high as possible.

In summary, when a component failure occurs in combinational logic,

three types of illegal logic values may result: timing failures, oscil­

lation, and illegal constant logic values. Synchronization failure may

also result in an illegal logic value. For the rest of this manuscript,

we restrict our scope to synchronous sequential systems. These systems

consist of blocks of combinational logic followed by some type of

clocked bistable elements. If static flip-flops are used, then it has

been shown that when sensitized to an illegal logic value in the combi­

national logic, these flip-flops may either assume a legal (although

possibly incorrect) logic value or an illegal logic value (by entering

and remaining in a metastable state) . If the output of one or more

flip-flops assumes an illegal logic value, then these illegal logic

values are presented to the combinational logic block following the

latches. Although it is possible for illegal logic values to propagate

through many blocks of combinational logic, it is unlikely since prop­

erly designed flip-flops have a high probability of leaving a metastable

state well within one clock period. Obviously, the longer the system

100

enter a metastable state. l'hon tho output is oscillating be tween tho

voltage limits of the circuit, it should typically be switchi:ug at a

speed fairly close to 1:SI Therefore, when the probability of a
ave

legal logic value is very close to 1, the probability that the flip-flop

enters a metastable state should be appro.dmately O .1. On tho other

hand, when the probability of of a legal logic value h very low, tho

probability that the flip-flop enters a metastable state is quite high.

Therefore, it is important that the probability of having a legal logic

value is as high as possible.

In summary, when a component failure occurs in combinational logic,

three types of illegal logic valnes may result: timing failures. oscil­

lation, and illegal constant logic values. Synchronization failure may

also result in an illegal logic value. For tho rest of this manuscript,

we restrict our scope to synchronous sequential systems. These systems

consist of blocks of combinational logic follO'Wod by some type of

clocked bistable elements. If static flip-flops are uaed. then it has

been shown that when sensitized to an illegal logic value in the combi­

national logic, those flip-flops may either assllllle a legal (although

possibly incorrect) logic value or an illegal logic value (by entering

and remaining in a metastable state). If the output of one or more

flip-flops assumes an illegal logic value. then those illegal logic

values are presented to the combinational logic block follo-.ing the

latches. Although it is possible for illegal logic values to propagate

through many blocks of combinational logic, it is unlikely since prop­

erly designed flip-flops have a high probability of leaving a metastable

state Yell within one clock period, Obviously. tho longer the system

101

clock period is with respect to the combinational delay, the lower the

probability that an illegal logic value propagates through more than one

block of combinational logic. If dynamic latches are used, the proba­

bility that an illegal logic value propagates through several combina­

tional blocks is much higher, since dynamic latches do not attempt to

resolve an illegal logic value to a legal logic value. For this reason,

static flip-flops are to be preferred over dynamic latches.

Many of the physical failure modes in Chapter 2 result in a gradual

degradation of switching speed and inverter gain. Such failures include

hot electron injection, exposure to ionizing radiation, and electromi­

gration. From analyzing the probability of metastable operation and

illegal constant logic level propagation along a chain of inverters, it

is clear that the degradation of gate performance has a very negative

influence on the circuits ability to react to undefined logic values.

The average length of metastable operation is proportional to the gain-

bandwidth product. The probability of producing a legal logic value

from a chain of inverters, is a very strong function of gain and is also

influenced by the bandwidth of the inverters. As circuits degrade, tim­

ing becomes more critical since all gates in the circuit become slower,

but not necessarily by the same amount. In addition, the lowering of

the gain coupled with the decrease in bandwidth makes flip-flops more

likely to enter a metastable state and more likely to stay in the meta-

stable state for a longer time.

101

clock period is with respect to the combinational delay, the lower the

probability that an illegal logic value propagates through more than one

block of co~binational logic. If dynamic latches are used. the proba­

bility that an illegal logic value propagates through several combina­

tional blocks is much higher, since dynamic latches do not attempt to

resolve an illegal logic value to a legal logic value. For this reason,

static flip-flops are to be preferred over dynamic latches.

Many of tho physical failure modes in Chapter 2 result in a gradual

degradation of switching speed and inverter gain. Such failures include

hot electron injection, exposure to ionizing radiation, and electromi-

gration. From analyzing the probability of metastable operation and

illegal constant logic level propagation along a chain of inverters, it

is clear that the degradation of gate performance has a very negative

influence on the circuits ability to react to undefined logic values.

The aver age length of metastable operation is proportional to the gain­

bandwidth product. The probability of producing a legal logic valne

from a chain of inverters, is a very strong function of gain and is also

influenced by the bandwidth of the inverters. As circuits degrade, tim­

ing becomes more critical since all gates in the circuit become slower,

but not necessarily by the same amount. In addition, the lowering of

the gain coupled with the decrease in bandwidth makes flip-flops more

likely to enter a metastable state and more likely t o stay in the meta­

stable state for a longer time .

102

CHAPTER 4

Concurrent Error Detection of Physical Failures

In the last chapter, we developed an understanding of how circuits

behave when they fail. The behavior of good circuits which must process

the outputs of failed circuits was also discussed. We are now in a

position to develop concurrent error detection schemes for physical

failures.

4.1. Ffluit.S.

The analysis presented in Chapter 3, demonstrated the diverse ways

in which a digital circuit may behave when it fails. Most of the clas­

sical faults are only capable of accurately modeling a subset of all

failures. Physical failures which result in timing failures, oscilla­

tions, or illegal logic levels are very poorly modeled by the classical

fault models. Synchronization failures also result in circuit behavior

which is not well modeled by the classical models. These failures all

result in circuit outputs which cannot be reliably interpreted as either

a logic 0 or a logic 1 and are hence called indeterminate values.

If all but one input to an AND (or NAND) gate is a logic 1 while

the remaining input is an indeterminate value, then it is possible for

an indeterminate value to appear at the output of the AND gate. If,

however, at least one input to an AND gate is a logic 0, then any

indeterminate input present at any other inputs does not propagate to

102

CHAYrER 4

Concurrent Error Detection of Physical Failures

In the last chapter, we developed an understanding of how circuits

behave when they fail. The behavior of good circuits which must process

the outputs of failed circuits was al so discussed. We are now in a

position to develop concurrent error detection schemes for physical

failures.

J. .1 . Indetorainate Faults

The analysis presented in Chapter 3, demonstrated the diverse ways

in which a digital circuit uy behave when it fails, Most of the clas­

sical faults are only capable of accurately modeling a subset of all

failures. Physical failures which result in timing failures. oscilla­

tions, or illegal logic levels are very poorly modeled by the classical

fault models. Synchronization failures also result in circuit behavior

which is not well modeled by the classical models. These failures all

result in circuit outputs which cannot be reliably interpreted as either

a logic O or a logic 1 and are hence called indetenninate values,

If all but one input to an AND (or NAND) gate is a logic 1 while

the remaining input is an indeterminate value. then it is possible for

an indeterminate value to appear at the output of the AND gate. If,

however. at least one input to an AND gate is a logic o. then any

indeterminate input present at any other inputs does not propagate to

I

I -

103

the output of the gate. Instead, the output of the gate is a logic 0 .

Similarly, for an OR (or NOR) gate, if all but one input is a logic 0,

then an indeterminate value may propagate. If one or more inputs to the

OR gate is a logic 1, then its output is a logic 1 and the indeterminate

value does not propagate. An indeterminate value input to an inverter

may always be propagated to its output.

When an indeterminate input to a gate may be propagated to the gate

output, we say that the output of the gate is sensitized to the input

with the indeterminate value. Therefore, AND and NAND gates are sensi­

tized to an indeterminate value when all inputs other than the input (or

inputs) with an indeterminate value have logic 1 values. OR and NOR

gates are sensitized to an indeterminate input when all inputs other

than the input (or inputs) with an indeterminate value have logic 0

values. Inverters are always sensitized to an indeterminate value.

It is important to realize that simply because a gate is sensitized

to an indeterminate value which is occurring at one of its inputs does

not necessarily insure that the gate output is an indeterminate value.

In this case, the output may be either a legal logic 0, an indeterminate

value, or a legal logic 1. If the indeterminate input happens to be due

to oscillation, then the output of a sensitized gate is usually an

indeterminate value. If the indeterminate input is either an illegal

constant logic value or a timing failure, then the value assumed by the

sensitized output depends on such factors as the gate's delay, the gate

input's transition point, and the noise which is present in the circuit

at that instant. For this reason, the response of circuits with

103

the output of the gate. Instead, the output of the gate is a logic O.

Similarly, for an OR (or NOR) gate, if all but one input is a logic 0,

then an indeterminate value may propagate . If one or more inputs to the

OR gate is a logic 1, then its output is a logic 1 and the indeterminate

value does not propagate. An indeterminate value input to an inverter

may always be propagated to its output.

When an indeterminate input to a gate may be propagated to the gate

output, we say that the output of the gate is sensitized to the input

with the indeterminate value. Therefore, AND and NAND gates are sensi­

tized to an indeterminate value when all inputs other than the input (or

inputs) with an indeterminate value have logic 1 values. OR and NOR

gates are sensitized to an indeterminate input when all inputs other

than the input (or inputs) with an indeterminate value have logic 0

values. Inverters are alway s sensitized to an indeterminate value.

It is important to realize that simply because a gate is sensitized

to an indeterminate value which is occurring at one of its inputs does

not necessarily insure that the gate output is an indeterminate value.

In this case, the output may be either a legal logic 0, an indeterminate

value, or a legal logic 1. If the indeterminate input happens to be due

to oscillation, then the output of a sensiti zed gate is usually an

i ndeterminate value. I f the indeterminate input is either an illegal

constant log i c value or a timi ng failure, then the value assumed by the

sensitized output depends on such factors as the gate ' s delay. the gate

input's transition po i nt, and the noise which i s present in the circuit

at that instant. For this reason, the response of circuits with

/

indeterminate value inputs is, in general, nondeterministic. Effects of

indeterminate errors may not be repeatable and a signal which is

fanned-out may be interpreted differently at distinct destinations.

Indeterminate faults are a very general type of fault. Most of

this chapter is based on the following hypothesis

Hypothesis; An indeterminate value at a node is the most general
type of single node failure.

This hypothesis is due to the fact that when an indeterminate value

occurs, it may be subsequently interpreted as either a logic 0, an

indeterminate value, or a logic 1. Therefore, indeterminate failures

are able to represent not only the nondeterministic behavior but also

the deterministic behavior of many classical faults. In this sense,

stuck-at faults, stuck-open faults, and any other fault which forces a

node to a legal logic value are only special cases of indeterminate

failures.

4.1.1. Ternary Algebra

In order to analyze digital systems which operate on indeterminate

values, it is helpful to have an appropriate algebra. Since such an

algebra must deal with an alphabet of three distinct values. Boolean

algebra is clearly inadequate. A ternary algebra [53] however has the

three required levels. The three values may be represented as {0, u, 1}

with the property that 0 < u < 1. When a signal undergoes a transition

from a voltage which is less than to a voltage greater than V1, then

the ternary algebra models this transition as the sequence 0 -> u -> 1

[54]. Likewise, a negative transition is modeled by the sequence 1 -> u

104104

indeterminate value inputs is. in general, nondeterministic. Effects of

indeterminate errors may not be repeatable and a signal which is

fanned-out may be interpreted differently at distinct destinations.

Indeterminate faults are a very general type of fault. Most of

this chapter is based on the following hypothesis

HV!>othesis : An indeterminate value at a node is the most general
type of single node failure.

This hypothesis is due to the fact that when an indeteminate value

occurs. it 111ay be subsequently interpreted as either a logic 0, an

indeterminate value, or a logic 1. Therefore, indeterminate failures

are able to represent not only the nondeterministic behavior but also

the deterministic behavior of many classical faults. In this sense,

stuck-at faults. stuck- open faults. and any other fault which forces a

node to a legal logic value are only special cases of indeterminate

failures.

i -l -l, Ternary Algebra

In order to analyze digital systems which operate on indeterminate

values , it is helpful to have an appropriate algebra. Since such an

algebra must deal with an alphabet of three distinct values, Boolean

algebra is clearly inadequate. A ternary algebra [53] however has the

three required levels. The three values may be represented as {O, u, 1}

with the property that O < u < 1. 'When a signal undergoes a transition

from a voltage which is less than yO to a voltage greater than v1 , then

the ternary algebra models this transition as the sequence O -> u -> 1

[54]. Likewise. a negative transition is modeled by the sequence 1 -> u

I •

I .

105

~> 0. In order for the algebra to be useful, there must be a mapping

between Boolean functions and ternary functions. The ternary functions

MIN, MAX, and INV may be defined as

Y = MIN[x^ . xn] <. x£ for (1 < i (n) and Y € (xj, . xn}

Y = MAX[x^j ..., xn] 2 xi for (1 (i (n) and Y € {x^, ..., xn)

INV[x.] = 1 -iJ 1 xi
where x^, ..., xn represents the n ternary inputs to the functions and

1 - u is defined to be u. Figure 4.1 gives the truth tables for these

ternary functions for two inputs. An examination of these functions

when the inputs are all either 0 or 1 shows that MIN is the ternary

equivalent of AND, MAX is the ternary equivalent of OR, and INV is the

ternary equivalent of NOT [53,54].

If MIN, MAX, and INV are substituted for AND, OR, and NOT, then

many of the laws of Boolean algebra are also valid for ternary algebra.

These laws include idempotency, commutativity, absorption, associa­

tivity, distributivity, involution, and De Morgan's law [53]. The com­

plementation law, however, does not extend to ternary algebra. That is;

MIN[xl, INV[X1]] £ 0

and

“AXf*!, INVtxi]] ^ 1

The ternary value u will be used to represent two cases. The value

u indicates either that a signal has an indeterminate value or that the

105

-> 0. In order for the algebra to be useful, there mnst be a mapping

between Boolean functions and ternary functions. The ternary functions

MIN, MAX, and INV may be defined as

Y = MIN [x J < f (1 < 1· <) d Y " { } 1, • • •, J:n _ Xf or _ _ n an "' x1, . •• , Xn

where represents the n ternary inputs to the functions and

1 - n is defined to be u. Figure 4.1 gives the truth tables for these

ternary functions for two inputs. An examination of these functions

when the inputs are all either O or 1 shows that MIN is the ternary

equivalent of AND, MAX is the ternary equivalent of OR, and INV is the

ternary equivalent of NOT [53,54).

If MIN , MAX, and INV are substituted for AND , OR, and NOT, then

many of the laws of Boolean algebra are also valid for ternary algebra.

These laws include idempotency, commutativity, absorption, associa­

tivity, distributivity. involution, and De Morgan's law [.53]. The com­

plementation law, however, d.2ll .ruu extend to ternary algebra, That is:

and

The ternary value n will be used to represent two cases. The value

n indicates either that a signal has an indeterminate value or that the

I

106

MIN 0 u Li_i
0 0 0 o j
u 0 u a |
1 0 u 1 |

M A X 0 u 1
0 0 u_ 1
u u u 1
1 1 1 1

INV
0 1
u u
1 0

Figure 4.1 Ternary Algebra Truth Tables
i

J(JN O u
0 0 0
u O u Q I
1 0 u 1 I

Y I ~ I : I i I
1 1111111

I 1~ I 1 I
I u I o
I 1 I o

Figure 4.1 Ternary Algebra Truth Tables .

106

I .

107

value is a usually unknown* (but legal) Boolean value. Therefore, a u

may represent a logic 0 , an indeterminate value, or a logic 1. This is

useful since if a gate is sensitized to an input which is an indeter­

minate value, its output may be either an indeterminate value or a legal

Boolean value. It is therefore possible to use the ternary algebra to

determine whether or not a gate is sensitized to a particular input with

a given input vector. The gate is replaced with its ternary equivalent

(i.e., a MIN gate replaces an AND gate, a MAX gate replaces an OR gate,

and an INV gate replaces a NOT gate). The value of the particular input

is set to u while all other inputs are set to the values given in the

input vector. If the gate output is u, then the gate is sensitized to

the input. If the gate output is a 0 or 1, then the gate is not sensi­

tized.

The concept of sensitization may be defined for any combinational

function. A function is sensitized to a particular node (or nodes) of

the circuit if under a given input vector and an indeterminate value at

the particular node (or nodes), an indeterminate value may occur at the

function output. In order to determine if the combinational function is

sensitized to a particular set of nodes under a given input vector, the

gates in the function must be first transformed into their ternary

equivalents. The input vector is then applied to the ternary function.

Finally, the particular set of nodes are set to the value u. If the

output of the function is u, the function is sensitized to the set of

*
That is, the value is usually unknown a priori. We discuss in Sec­

tion 4.1.2 why a static hazard may make the Boolean value predictable.

107

value is a usually unknown• (but legal) Boolean value. Therefore, a u

may represent a logic 0, an indeterminate value, or a logic 1. This is

useful since if a gate is sensitized to an input which is an indeter­

minate value, its output may be either an indeterminate value or a legal

Boolean value, It is therefore possible to use the ternary algebra to

detennine whether or not a gate is sensitized to a particular input with

a given input vector. The gate is replaced with its ternary equivalent

(i.e., a MIN gate replaces an AND gate, a MAX gate replaces an OR gate,

and an INV gate replaces a NOT gate). The value of the particular input

is set to u while all other inputs are set to the values given in the

input vector. If the gate output is u. then the gate is sensitized to

the input. If the gate output is a O or 1, then the gate is not sensi­

tized .

The concept of sensitization may be defined for any combinational

function. A function is sensitized to a particular node (or nodes) of

the circuit if under a given input vector and an indeterminate value at

the particular node (or nodes), an indeterminate value may occur at the

function output. In order to determine if the combinational function is

sensitized to a particular set of nodes under a given input vector, the

gates in the function must be first transformed into their ternary

equivalents. The input vector is then applied to the ternary function.

Finally. the particular set of nodes are set to the value u. If the

output of the function is u, the function is sensitized to the set of

• That is, the value is usually unknown a priori. We discuss in Sec-
tion 4.1.2 why a static hazard may make the Boolean value predictable.

108

nodes under the given input vector. It should be noted that sensitize-

tion is always defined with respect to some input vector.

The concept of sensitization developed here for indeterminate logic

values is analogous to the concept of path sensitization for stuck-at

faults [55]. A node is said to be path sensitized to an output with

respect to an input vector if a change in the Boolean logic value at the

node results in a change in the Boolean logic value at the output. The

method of Boolean differences [56] can be used to determine whether or

not an output is path sensitized with respect to a particular node with

a given input vector. Let y be the output of f, some Boolean function,

and X = ...» be the input vector. Let q be some node in the cir­

cuit which implements f. Then q must be some function of X which we

shall call g. Therefore, q = g(X) and y = f(X,q), and y is path sensi­

tized to q if and only if

- f<x>0) © f<X,l)|x = 1

Otherwise, y is not path sensitized to q. The Boolean difference being

1 implies that, for the given assignment of values to X, any change of

the Boolean logic value at q results in a change of the Boolean logic

value at the function's output.

The Boolean difference may be computed for ternary functions as

well as for Boolean functions. If the inputs to a ternary function are

Boolean values, the ternary function and a Boolean equivalent of the

ternary function produce the same result. Therefore, the Boolean

difference of a ternary function may be computed by finding the Boolean

difference of the ternary function's Boolean equivalent.

108

nodes under the given input vector. It should be noted that sensitiza­

tion is always defined with respect to some input vector.

Tho concept of sensitization developed here for indetet'llinate logic

values ls analogous to the concept of path sensitization for stuck-at

faults (55]. A node h said to be path sensitized to an output with

respect to an input vector if a change in the Boolean logic value at the

node results in a change in the Boolean logic value at the output. The

method of Boolean differences [56] can be used to dotet'111ine whether or

not an output is path sensitized with respeot to a particular node with

a given input vector. Let y be the output off, some Boolean function,

and X: X1, ••• , In be tho input vector. Let q be s0111.e node in the cir­

cuit which implements f. Then q must be some function of X which we

shall call I• Therefore, q = g(X) and y = f(X,q), and y is path sensi­

tized to q if and only if

atc4,a> Ix = fCX,O) ® r<x,1) Ix;:; 1

Otherwise. y is not path sensitized to q. The Boolean difference being

1 implies that, for the given assi1nment of valoes to X, any change of

the Boolean logic value at q results in a change of the Boolean logic

value at the function's output.

The Boolean difference may be computed for ternary functions as

•ell as for Booloan functions. If the inputs to a ternary function aro

Boolean values, the ternary function and a Boolean equivalent of the

ternary function produce the same result. Therefore, the Boolean

difference of a ternary function may be computed by finding the Boolean

difference of the ternary function's Boolean equivalent .

ThgQrem 1: If a node is path sensitized to a second node with a
given input vector, then it must also be sensitized to an in­
determinate failure at the second node with the same input vec­
tor .

Proof: Consider the ternary model of the circuit® For Boolean

inputs, the behavior of the ternary model must be identical to

the behavior of the Boolean equivalent. Let node a be path sen­

sitized to node b for a given input vector. Since node a is

path sensitized to node b, when the value of node b is set to 0 ,

then node a will assume value d and when the value of node b is

set to 1 , then node a will assume the value d, where d is 0 or

1. If the value of node b is set to u, then the circuit may in­

terpret the value of node b as either 0 or 1. Therefore, the

value of node a may be either 0 or 1 when node b is set to u and

node a is path sensitized to node b. Consequently, when a node

is path sensitized to a second node, it must also be sensitized

to an indeterminate failure at the second node.

4.1.2. The Effects of Hazards on Sensitization

In the last section, it was shown that when the Boolean difference

of a function is equal to 1 , with respect to some node, the output is

sensitized to an indeterminate value at that node. The converse of this

statement is not, however, true. That is, if the Boolean difference of

a function with respect to some node and input vector is equal to zero,

then the function may still be sensitized to an indeterminate value on

the node. As an example, consider Figure 4.2. If inputs B and C to the

109

Theorem l: If a node is pa th sensitized to a second node with a
given input vector, then it must also be sensitized to an in­
determinate failure at the second node with the same input vec­
tor.

~ : Consider the ternary model of the circuit. For Boolean

inputs, the behavior of the ternary model must be i dentical to

the behavior of the Boolean equivalent. Let node a be path sen­

sitized to node b for a given input vector. Since node a is

path sensitized to node b , when the value of node bis set to 0,

then node a will assume valued and when the value of node bis

set to 1, then node a will assume the value a, where d is O or

1. If the valne of node bis set to u, then the circuit may in­

terpret the value of node b as either O or 1. Therefore, the

value of node a may be either O or l when node bis set to u and

node a is path sensitized to node b . Consequently , when a node

is path sensitized to a second node , it must also be sensitized

to an indeterminate failure at the second node .

f ,1 .1. ~ Effects SU Hazards .QJl Sensitization

109

In the last section, it was shown that when the Boolean diff erence

of a function is equal to 1 , with respect t o some node, the ontpnt is

sensitized to an indeterminate valne at that node . The converse of th i s

statement is not, however, true. That i s , if the Boolean difference of

a function with respect to some node and input vector is equal to zero ,

then the function may still be sensitized to an inde terminate value on

the node, As an example, consider Figure 4.2 , If inputs Band C to the

BC

A
0 0 01 11 1 0

0 0
A

1 0

1 0 0 1

C
A

B

Figure 4.2. Example of a Static Hazard.

C

A

B

BC

A 0

1

Figure 4.2. Example of a Static Hazard.

110

I -

Ill

function are both a logic 1 , then the output should be a logic 1 ,

regardless of the value at the A input® Therefore

This Boolean difference implies that the output of function f is not

path sensitized to input A when B = C ~ 1 . If we consider the

equivalent ternary function, however, we see that if input A assumes a

value of u, while inputs B and C both have values of 1, then the output

is u. Therefore, the output is indeed sensitized to A. This

discrepancy between path sensitization for a Boolean value and sensiti­

zation for an indeterminate value, is a direct consequence of the fact

that the complementation law is not valid for the ternary algebra.

By examining the Karnaugh map of the function, it is evident that a

static hazard [56] exists for a transition of input A while B = C = 1.

Any time a static hazard exists with respect to an input transition,

then the Boolean difference with respect to the input must be zero.

A static hazard occurs when there is reconvergent fan-out along two

or more paths, and at least one of the paths has a different inversion

parity than the other paths. If x is the input whose transition causes

a static hazard, then the reconvergent fan-out either results in x + x

or x • x depending on whether the reconvergence occurs at an OR gate or

an AND gate respectively. The complementation law of Boolean algebra

guarantees that x + x ~ 1 and x • x * 0 , which in turn implies that the

Boolean difference with respect to x must be zero. Therefore, the out­

put is not path sensitized to x.

111

function are both a logic 1. then the output should be a logic 1,

regardless of the value at the A input. Therefore

fffB=l, c ... 1 = o
This Boolean difference implies that the output of function f is not

path sensitized to input A when B = C • 1. If we consider the

equivalent ternary function, however, we see that if input A assumes a

value of n, while inputs Band C both have values of 1, then the output

is u. Therefore. the output is indeed sensitized to A. This

discrepancy between path sensitization for a Boolean value and sensiti­

zation for an indeterminate value. is a direct consequence of the fact

that the complementation law is not valid for the ternary algebra.

By examining the Karnaugh map of the function, it is evident that a

static hazard [56] e:ists for a transition of input A while B :: C = 1,

Any time a static hazard exists with respect to all input transition,

then the Boolean difference with respect to the input must be zero .

A static hazard occurs when there is reconvergent fan-out along two

or more paths. and at least one of the paths has a different inversion

parity than the other paths. If x is the input whose transition causes

a static hazard, then the reconvergent fan-out either results in x + x

or x • x depending on whether the reconvergence occurs at an OR gate or

an A..~D gate respectively, The complementation law of Boolean algebra

guarantees that x + i ~ 1 and x. x : 0, which in turn i~plies that the

Boolean difference with respect to x must be ~ero. Therefore, the out­

pnt is not path sensitized to x.

112

If we use the ternary model, then MAX[x, INVEx]] jfe 1 and

MIN[x, INVtx]] £ 0. In particular, if x = u, then MAX[x, INVEx]] =

MINEx, INVEx]] = u. Consequently, the output of the reconvergence gate

is sensitized to an indeterminate value at x. If the output of the func­

tion is sensitized to one or more of the outputs of the reconvergence

gate,* then the function is sensitized to an indeterminate value at

input x. By modifying a function, it is always possible to remove a

static hazard. In the example of Figure 4.2, the static hazard may be

removed by adding the product term B • C to the sum-of-products imple­

mentation. This term is redundant but serves to remove the static

hazard by desensitizing the reconvergent fan-out from the output of the

function. When B = C = 1, the term B • C is 1. The reconvergence gate

is an OR gate. An input of 1 from this product term thus forces the OR

gate output to a 1 value. This new implementation of the function no

longer, has its output sensitized to an indeterminate value at input A

when B = C = 1.

From this analysis, it is clear that a static hazard implies sen­

sitization. This fact is not surprising since ternary algebra has long

been used to detect the presence of hazards in digital circuits E54,

57] .

Eichelberger [54] has extended the concept of static hazards to

hazards that occur during multiple input transitions. He calls a hazard

due to a transition at p of the inputs, a u-variable logic hazard. Let

*
It is possible for the reconvergence gate to be the same gate as the

output gate.

112

If we use the ternary model , then MAX[:a:, INV[x]] ;' 1 and

MIN[x, INV[x]] F O. In particular, if x = u, then MAX[:a:, INV[x]] •

MIN[x, INV[x]] = u. Consequently, the output of the reconvergence gate

is sensitized to an indeterminate value at x. If the output of the func­

tion is sensi thed to one or more of the outputs of the reconvergence

gate.• then the function is sensitized to an indeter1Dinate value at

input x, By modifying a function, it is always possible to remove a

static hazard. In the example of Figure 4.2, the static hazard may be

removed by adding the product ter11 B • C to the sum-of-products imple­

mentation. This term is redundant but serves to remove the static

hazard by desensitizing the reconvergent fan-out from the output of the

function. When B = C = 1 . the term B • C is 1. The reconvergence gate

is an OR 1ate. An input of 1 from this product term thus forces the OR

gate output to a 1 value. This new implementation of the function no

longer . has its output sensitized to an indeterminate value at input A

when B = C := 1.

From this analysh, it is clear that a static hazard implies sen­

sitization. This fact is not surprising since ternary algebra has long

been used to detect the presence of hazards in digital circuits (54,

57].

Eichelberger {54] has extended the concept of static hazards to

hazards that occur during multiple input transitions . He calls a hazard

due to a transition at p of the inputs, a ~-variable locic hazard. Let

• It is possible for the reconvergence gate to be the same gate as the
output gate.

113

X1 = (X1* • • • ' 3Cp» Xp+l , • , Xn)
and

2“(*1 ' ...» Xp, Xp+i, . xn)

where and x2 represent input vectors of some combinational Boolean

function f. Function f is said to have a p—variable logic hazard for a

transition from input vector to fnpUt vector X2 (p variables change

in this transition) if and only if

(1) f(x^) = f(X2)>

(2) all of the 2P values specified for f in the sub-cube
X̂p+1» •••» xn) are the same, and

(3) during the input change from to X2 , a spurious pulse may
1be present at the output.

For the special case of p = 1, the p—variable logic hazard is identical

to a static hazard. Eichelberger shows that by modifying the implemen­

tation of a function, it is possible to remove all p—variable logic

hazards. In many cases, this will require the addition of redundant

logic just as it did for static hazards.

From the above definition of a p-variable logic hazard, it is

apparent that whenever a p-variable logic hazard exists, the output of

the function is sensitized to indeterminate values at the p variables.

This sensitization occurs despite the fact that all 2P values of f in

the sub-cube (xp+^ ..., xn) are the same. Clearly, if these values are

not the same, the function must be sensitized.

113

and

X -
2=(::r:1. •··• ::r:p• ::r:p+l• • ··• ::r:n)

where 1t and X2 represent input vectors of some combinational Boolean

function f. Function f is said to have a p-variable logic hazard for a

transition from input vector X1 to input vector x2 (p variables change

in this transition) if and only if

(2) all of
(::r:

p+l• • • I I

the 2P valnes specified

::r:n) are the same, and
for f in the sub-cube

(3) during the input change from X1 to x2 , a spurious pulse may
be present at the output.

For the special case of p = 1, the p-variable logic hazard is identical

to a static hazard . Eichelberger shows that by modifying the implemen­

tation of a function, it is possible to remove all p-variable logic

hazards. In many cases, this will require the addition of redundant

logic just as it did for static hazards.

From the above definition of a p-variable logic hazard, it is

apparent that whenever a p-variable logic hazard e::r:ists, the output of

the function is sensitized to indeterminate valnes at the p variables.

Tb.is sensitization occurs despite the fact that all 2P values of f in

the sub-cube (xp+l• •• • , ::r:n) are the same. Clearly, if these values are

not the same, the function must be sensitized.

114

4.2. CflflfiS J t o rqs Detection

The goal of concurrent error detection is to detect errors during

the normal operation of the system. Ideally, the concurrent error

detection scheme should guarantee the detection of all possible errors.

A class of circuits has been defined [5] that under a number of assump­

tions achieves the goal of total error detection. These circuits are

designed so that under the proper assumptions, any error results in a

non-codeword output from the circuit and the first incorrect output is a

non-codeword output. Such circuits are called totally self-checking

circuits.

4.2.1. Totally Sgif-Chflgfcias Circuits

Let the input code space be all input vectors that can be applied

to a circuit under normal (i.e., fault-free) operation. All output vec­

tors not in the code space are non-codewords. The following definitions

are paraphrased from [5]:

Self-Testing: A circuit is said to be self-testing if for every
fault in the fault model, there is at least one sequence of
codeword inputs which produces a non-codeword output.

Fault-Secure: A circuit is said to be fault-secure if for every
fault in the fault model, the circuit either produces the
correct output or a non-codeword output for the entire input
code space.

Totally Self-Checking: A circuit is said to be totally self­
checking if it is self-testing and fault-secure.

Code Pisioint: A circuit is said to be code disjoint if all
non-codeword inputs produce non-codeword outputs.

114

!-l• Concurrent~ Detection

The goal of concurrent error detection is to detect errors during

the normal operation of the system. Ideally, the concurrent error

detection scheme should guarantee the detection of all possible errors.

A class of circuits has been defined [5] that under a nlllllbor of assump­

tions achieves the goal of total error detection. These circuits are

designed so that under tho proper assumptions, any error results in a

non-codeword output from the circuit and tho first incorrect output is a

non-codeword output,

circuits.

Such circuits are called totally self-checking

!,1.1. Totally ~-Checkin1 Circuits

Let the input code space be all input vectors that can be applied

to a circuit under normal (i.e., fault-free) operation. All output vec­

tors not in the code space are non-codewords. The following definitions

are paraphrased from IS]:

~-Testina: A circuit is said to be self-testing if for every
fault in the fault model, there is at least one sequence of
codeword inputs which produces a non-codeword output.

Eull-Secure: A circuit is said to be fault-secure if for every
fault in the fault model. the circuit either produces tho
correct output or a non-codeword output for tho entire input
code space.

Tota 11 v Sel f-Checkin1: A d rcuit is said to be totally u 1 f­
chocking if it is self-testing and fault-secure.

Code Dh ;oint: A circuit is said to be code dhj oint if all
non-codeword inputs produce non-codeword outputs.

I -

115

The following assumptions are made about the operation of a totally

self-checking circuit:

(1) Only failures which are modeled by the fault model occur.

(2) Failures occur one at a time with some minimum time inter­
val, r, between each failure.

(3) The inputs to the circuit are applied often enough to insure
that during any time period of length t , enough inputs are ap­
plied to the circuits to test the circuit completely. This as­
sumption is referred to as the testabilitv assumption.

In practice, the period of time between failures is a random variable

and is often modeled as a Poisson process. It is possible for two

failures to occur in a period of time much less than x although this is

unlikely. If the circuit is completely tested in any time period x ,

then r can be made sufficiently small to insure that the probability

that a second failure occurs before the first failure is detected, is

low. Note that in the testability assumption, completely testing the

circuit, refers only to testing for those faults which are testable.

Under these assumptions, a totally self-checking circuit is able to

detect any failure. This fact is guaranteed by the self-testing pro­

perty and the three assumptions. The self-testing property is necessary

to prevent the buildup of undetectable latent faults. The fault-secure

property, assures that for any fault from the fault model, all incorrect

outputs are non-codewords. We are therefore assured of meeting the goal

that the first incorrect output is a non-codeword. This property is

referred to as the totally self-checking goal [58]. The totally self­

checking property is more restrictive than it needs to be since there

115

The following assumptions are made about the operation of a totally

self-checking circuit:

(1) Only failures which are modeled by the fault model occur.

(2) Failures occur one at a time with some minimum time inter­
val,~. between each failure.

(3) The inputs to the circuit are applied often enough to insure
that during any time period of length T, enough inputs are ap­
plied to the circuits to test the circuit completely. This as­
sumption is referred to as the testability assumption.

In practice, the period of time between failures is a random variable

and is often modeled as a Poisson process, It is possible for two

failures to occur in a period of time much less than T although this is

unlikely. If the circuit is completely tested in any time period T,

then T can be made sufficiently small to insure that the probability

that a second failure occurs before the first failure is detected, is

low. Note that in the testability assumption. completely testing the

circuit, refers only to testing for those faults which are testable.

Under these assumptions, a totally self-checking circuit is able to

detect any failure. This fact is guaranteed by the self-testing pro­

perty and the three assumptions. The self-testing property is necessary

to prevent the buildup of undetectable latent faults. The fault-secure

property, assures that for any fault from the fault model, all incorrect

outputs are non-codewords, We are therefore assured of meeting the goal

that the first incorrect output is a non-codeword. This property is

referred to as the totally self-checking goal [58]. The totally self-

checking property is more restrictive than it needs to be since there

116

are circuits which are not totally self-checking but which still satisfy

the totally self-checking goal. Consider a sequence of faults from the

fault model. As each subsequent fault in the sequence occurs* the

behavior of the circuit is modified to reflect the effects of all the

faults in the sequence. A sequence of faults is said to be detectable

if at least one codeword input produces an incorrect result. The fol­

lowing definition is paraphrased from [58] :

Strongly Fault-Secure: A circuit is said to be strongly fault-
secure if for all possible sequences of faults* as each fault in
the sequence occurs* the first fault in the sequence which
causes the sequence to be detectable only produces correct out­
puts or non-codeword outputs.

Strongly fault-secure networks are the largest class of networks which

achieve the totally self-checking goal [58]. Totally self-checking net­

works are a subset of strongly fault-secure networks. The fault secure

property is a necessary (but not sufficient) condition for a circuit to

be strongly fault-secure. If a circuit is strongly fault-secure* then

each failure that occurs must either be detectable or transform the cir­

cuit into a new circuit which is also fault-secure until a detectable

failure occurs. Totally self-checking and strongly fault-secure cir­

cuits are generically referred to as totally self-checking. A distinc­

tion between the two will only be made when it is relevant to the dis­

cussion.

Typically* the totally self-checking properties are only considered

for combinational circuits. This restriction is made to insure that the

testability assumption is met. If the circuit is combinational* then by

applying the input code space to the circuit, all stuck-at faults which

116

are circuits which are not totally self-checking but which still satisfy

the totally self-checking goal. Consider a sequence of faults from tho

fault model. As each subsequent fault in the sequence occnrs. the

behavior of the circuit is 111.odified to reflect the effects of all the

faults in the sequence. A sequence of faults is said to be detectable

if at least one codeword input produces an incorrect result. The fol­

lowing definition is paraphrased from [58) :

Strongly Fault-Secure : A circuit is said to be strongly fault­
secure if for all possible sequences of faults. as each fault in
tho sequence occurs, the first fault in the sequence which
causes the sequence to be detectable only produces correct out­
puts or non-codeword outputs.

Strongly fault-secure networks are tho largest class of networks which

achieve the totally self-choctin1 goal [58]. Totally self-checking net-

works are a subset of strongly fault-secure networks. The fault secure

property is a necessary (but not sufficient) condition for a circuit to

be strongly fault-secure. If • circuit is strongly fault-secure. then

each failure that occurs must either be detectable or transform the cir-

cuit into a new circuit which is also fault-secure until a detectable

failure occurs. Totally se If-checking and strongly fault-secure cir­

cuit s are generically referred to as totally self-cheeking. A distinc­

tion between tho two will only be made when it is relevant to the dis-

cussion.

Typically, the totally self-checking properties are only considered

for combinational circuits. This restriction is made to insure that the

testability ass11211ptio11 is net. If the circuit is combinational, then by

applying the input code space to the circuit. all stuck-at faults which

I -

117

are detectable will be detected. If tbe circuit is sequential, then a

specific sequence of input codewords must be applied in order to assure

the detection of all detectable faults. Therefore, for a combinational

circuit, it is only necessary during any time period, x , to apply at

most the entire input code space to the circuit to satisfy the testabil­

ity assumption. Since the inputs to a circuit are in general unknown,

it is very difficult to insure that the testability assumption is satis­

fied during normal operation. The most obvious solution is to use

periodic off-line testing to test the circuit completely. If off-line

testing is used, then sequential circuits can be tested by performing

the tests in the proper sequence to test all faults.* We have worded our

definitions of the self-testing property so that it may apply to sequen­

tial as well as combinational logic. If the self—testing property is

only specified for combinational logic, then any fault which causes

sequential behavior, automatically prevents the circuit from satisfying

the self—testing property. For this reason, the self—testing property

is defined for both sequential and combinational logic even though the

circuits we consider are combinational. If the combinational circuit

has some of its outputs fed back as inputs, it may be analyzed as a com­

binational circuit for the purpose of determining whether it satisfies

the self-checking property.

Figure 4.3 shows a typical totally self-checking module. The

module is made up of a totally self-checking circuit which performs the

*
Generating tests for sequential circuits is significantly more dif­

ficult than for combinational circuits.

117

are detectable will be detected, If the circuit is sequential, then a

specific sequence of input codewords must be applied in order to assure

the detection of all detectable faults. Therefore, for a combinational

circuit, it is only necessary during any time period, 't, to apply at

most the entire input code space to tho circuit to satisfy the testabil­

ity asslll!lption, Since the inputs to a circuit are in general unknown.

it is very difficult to insure that the testability assumption is satis-

fied during normal operation. The most obvious solution is to use

periodic off-line testing to test the circuit completely. If off-line

testing is used, then sequential circuits can be tested by performing

the tests in the proper sequence to test all faults.• We have worded our

definitions of the self-testing property so that it may apply to sequen-

tial as wel I as combinational logic. If the self-testing property is

only specified for combinational logic, then any fault which causes

sequential behavior, automatically prevents the circuit from satisfy ing

the self- testing property. For this reason, the self- testing property

is defined for both sequential and combinational logic even though the

circuits we consider are combinational. If the combinational circuit

has some of its outputs fed back as inputs, it may be analyzed as a com­

binational circuit for the purpose of determining whether it satisfies

the self- checking property.

Figure 4.3 shows a typical totally sel f-checking module. The

module is made up of a totally self-checking circuit which performs the

• Generating tests for sequential circuits is significantly more dif-
ficult than for combinational circuits.

118

INPUT
VECTOR

OUTPUT
VECTOR

Figure 4.3. Totally Self-Checking Module

INPUT
VECTOR

TOTALLY SELF-CHECKING

DATA PROCESSING

CIRCUITS

TOTALLY SELf--<:HECK ING

CHECKER

ERROR I ND I CA Tl ON

Figure 4.3. Totally Self- Checking Module .

OUTPUT

VECTOR

118

119

desired data processing. The inputs and outputs must be encoded in an

appropriate codes. The outputs from the circuit are examined by a

totally self-checking checker. A totally self-checking checker must

itself be both totally self-checking and code disjoint. The code dis­

joint property is required since the whole purpose of the checker is to

indicate when it receives a non-codeword input from the data processing

circuit. The checker does this by producing a non-codeword on the error

indication lines. The cade disjoint property assures that if a non­

codeword is produced by the processing circuit, then the checker indi­

cates the fact by producing a non-codeword. The checker must be totally

self-checking to insure that any failure in the checker is detected

before it can cause the checker to miss detecting a non-codeword output

from the processing circuit. The checker is therefore able to detect

faults in the data processing circuit as well as in itself. The error

indication lines are usually encoded using a l-out-of-2 code. A minimum

of two lines are required for the error indication. This requirement

prevents the failure of one checker output line from causing the error

indication to appear permanently good.

In many cases, it is advantageous to build a totally self-checking

system by connecting together several smaller totally self-checking cir­

cuits. If all circuits have their output checked by totally self­

checking checkers, there are no additional restrictions which are neces­

sary. If it is desired to connect two circuits together without check­

ing the output from the first circuit, then the second circuit must be

code disjoint. The code disjoint property assures that if a non­

codeword output is produced by the first circuit, then the second

119

desired data processing. The inputs and outputs must be encoded in an

appropriate codes. The outputs

totally self-checking checker .

from the

A totally

circuit are examined by a

self-checking checker must

itself be both totally self-checking and code disjoint. The code dis­

joint property is required since tho whole purpose of the checker is to

indicate when it receives a non-codeword input from the data processing

circuit. The checker does this by producing a non-codeword on the error

indication lines. The cO'de disjoint property assures that if a non­

codeword is produced by tlie processing circuit, then the checker indi­

cates the fact by producing a non-codeword . The checker must be totally

self-checking to insure that any failure in the checker is detected

before it cnn cause the checker to miss detecting a non-codeword output

from the processing circuit. The checker is therefore able to detect

faults in the data processing circuit as well as in itself. The error

indication lines are usually encoded using a 1- out-of-2 code . A minimum

of two lines are required for the error indication. This requirement

prevents the failure of one checker output line from causing the error

indication to appear permanently good.

In many cases, it is advantageous to build a totally self-checking

system by connecting together several smaller totally self-checking cir-

cuits. If all circuits have their output checked by totally self-

checking checkers, there are no additional restrictions which are neces­

sary . If it is desired to connect two circuits together without check­

ing the output from the first circuit, then the second circuit must be

code disjoint. The code disjoint property assures that if a non-

codeword output is produced by the first circuit, then the second

120

circuit also produces a non-codeword output. The non-codeword from the

second totally self-checking circuit is detected by the checker and thus

the fault in the first circuit is detected.

The definitions given above* are the traditional definitions for

totally self-checking systems. These definitions are quite adequate

when traditional fault models are used. When failures cause indeter­

minate values to occur* the circuit behavior is no longer deterministic.

If the output of a circuit with a given fault and input vector could be

one of several different output vectors (some of which may be codewords

and some of which may be non-codewords)* then the self-testing property

is not satisfied. Therefore, if the traditional definitions of totally

self-checking were retained* it would not be possible to construct

totally self-checking systems which include indeterminate value faults

in their fault model.

In order to allow the construction of totally self-checking cir­

cuits for fault models allowing indeterminate value faults, new defini­

tions are required. We, therefore* propose the following

Potential Codeword: Let A be a ternary logic vector containing i
elements assigned the value u. It is possible to construct 21
distinct Boolean vectors by replacing all u values with a logic
0 value or a logic 1 value in all possible combinations. Vector
A is said to be a potential codeword if exactly one of the 21
Boolean vectors is a codeword. The Boolean vector which is a
codeword is called the corresponding codeword of the potential
codeword. (Any vector which is neither a codeword nor a poten­
tial codeword is said to be a non-codeword.)

Self-Testing: A circuit is said to be self-testing if for every
fault in the fault model* there is at least one sequence of
codeword inputs which produces either a non-codeword output or a
potential codeword output.

120

circuit alao produces a non-codeword output. The non-codeword from the

second totally self-checking circuit i• detected by the chocker and thus

the fault in the first circuit is detected.

The definitions Jiven above. are the traditional definitions for

totally self-checking systems. Those dof ini tioa.s are quite adequate

when traditional fault models are used. When failures cause indeter­

minate values to occur, the circuit behavior is no lonser deterministic.

If the output of a circuit with a siven fault and input vector could be

one of several different output vectors {some of which may be codewords

and s0111e of which may be non-codewords). then the self-testing property

is not satisfied. Therefore. if the traditional definitions of totally

self-checking wore retained. it would not be possible to construct

totally self-checking systems which include indeterminate value faults

in their fault model,

In order to allow the construct ion of totally self-checking cir­

cui ts for fault models allowing indeterminate value faults, new defini­

tions are required. We, therefore, propose the following

Potential Codeyord: Let A be a ternary logic vector containing i
elements auign.ed the value u, It h possible to construct 2i
distinct Boolean vectors by replacing all u values with a logic
0 value or a logic 1 value in all possible combinations, Vector
A is said to be a potential codeword if e:nctly one of the 2i
Boolean vectors is a codeword. The Boolean vector which is a
codeword is called the correspondina codeword of the potential
codeword, (Any vector which is neither a codeword nor a poten­
tial codeword is said to be a non-codeword.)

bll- Testina : A circuit is said to be self-testing if for every
fault in the fault aodeL there is at least one sequence of
codeword inputs which produces either a non-codeword output or a
potential codeword output.

121

Fault-Secure: A circuit is said to be fault-secure if for every
fault in the fault model# the circuit either produces the
correct output# a non-codeword output# or a potential codeword
output whose corresponding codeword is the correct output for
the entire input code space.

Totally Self-Cheeking: A circuit is said to be totally self­
checking if it is self-testing and fault secure.

Strongly Fault-Secure: A circuit is said to be strongly fault-
secure if for all possible sequences of faults from the fault
model, as each fault in the sequence occurs# the first fault in
the sequence which causes the sequence to be detectable# only
produces the correct output, a non-codeword output# or a poten­
tial codeword output whose corresponding codeword is the correct
output for the entire input code space.

The new definitions explicitly allow for the presence of indeterminate

values in vectors. In the remainder of this thesis we use these defini­

tions rather than the traditional definitions.

4.2.2. Checker Strategy

Checkers designed for traditional types of faults are only designed

to work properly with legal logic values. In general# digital circuits

are unable to react in a reliable manner to indeterminate values (i.e.,

the circuit response to indeterminate values is nondeterministic). A

variety of checker strategies is possible when indeterminate values may

occur in output vectors. One strategy is to include additional circui­

try in the checker portion of the circuit. The purpose of this addi­

tional circuitry (which we refer to as indeterminate detection circui-

trv) , is to detect the occurrence of indeterminate logic values in the

output vector. If an error is present in the output vector# then either

the original checker and/or the additional indeterminate detection cir­

full-Secure: A circuit is said to be fault-secure if for every
fault in the fault model, the circuit either produces the
correct output, a non-codeword output. or a potential codeword
output whose corresponding codeword is the correct output for
the entire input code space.

Totally kl.f.-Checkina : A circuit is said to be totally self­
checking if it is self-testing and fault secure.

Stron&lv Fault-Secure: A circuit is said to be strongly fault­
se cure if for all possible sequences of faults from the fault
model, as each fault in the sequence occurs, the first fault in
the sequence which causes the sequence to be detectable, only
produces the correct output, a non-codeword output, or a poten­
tial codeword output whose corresponding codeword is the correct
output for the entire input code space.

121

The new definitions erplicitly allow for the presence of indeterminate

values in vectors. In the remainder of this thesis we use these defini-

tions rather than the traditional definitions.

i -1 •1 • Checker Strategv

Checkers designed for traditional types of faults are only designed

to work properly with legal logic values. In general, d i gital circuits

are unable to react in a reliable manner to indeterminate values (i.e.,

the circuit response to indeterminate values is nondetermini stic) . A

variety of checker strategies is possible when indeterminate values may

occur in output vectors. One strategy is t o include additional circui­

try in the checker portion of the c i rcuit . The purpose of this addi­

tional circuitry (which we refer to as indeterminate detection circui­

..t.Ir), is to detect the occurrence o f indeterminate logic value s in the

output vector. If an error is present in the output v ector. then either

the or i ginal checker and/or the additional indeterminate detection cir-

122

cuitry detects it. The original checker circuitry detects any erroneous

bits in the output vectors which are incorrect, but legal, logic values.

The checker circuitry may or may not detect the presence of any indeter­

minate values. The indeterminate detection circuitry is designed to

detect the occurrence of indeterminate values in the output vector.

Therefore, the checker together with the indeterminate detection circui­

try is able to defect all erroneous output vectors.

There are several problems with this strategy. First of all,

indeterminate values may be of several different forms. Circuits which

are capable of detecting all types of indeterminate values are

inherently quite complex. To make the problem even more difficult, the

indeterminate detection circuitry is inherently analog. The circuitry

must be capable of measuring voltage amplitudes and determining accu­

rately when high frequency transitions on one line occur in relationship

to another line (most likely the clock). To fabricate such circuits

with an integrated circuit process that is optimized for digital cir­

cuits, further complicates this problem.

The most serious problem with the indeterminate detection circuitry

is the need to make it part of a totally self-checking system. The con­

cept of totally self-checking is defined for digital systems where it is

meaningful to discuss the encoding of input and output vectors. There­

fore, it is doubtful that indeterminate detection circuitry can be built

which is totally self-checking.

At the very least, is should be possible to test the indeterminate

detection circuitry under normal operation. Testing of analog circuitry

122

cuitry detects it. The original checker circuitry detects any erroneous

bits in the output vectors which are incorrect, but legal> logic values,

The checker circuitry may or may not detect tho presence of any indeter­

minate values. The lndeterainate detection circuitry is designed to

detect the occurrence of indeterminate values in the output vector.

Therefore, tho checker together with tho indeterminate detection circui­

try is able to detect all erroneous output vectors.

There are several problems with this strategy. First of all,

indeterminate values may be of several different forms. Circuits which

are capable of detecting all types of indeterminate values are

inherently quite coaples. To make the problem even more difficult, the

indeterminate detection circuitry is inherently analog. The circuitry

must be capable of nu,asuring voltage amplitudes and determining accu­

rately when high frequency transitions on one line occur in relationship

to another line (most likely tlu1 dock). To fabricate such circuits

with an integrated circuit process that is optimized for digital cir­

cuits. further complicates this problem.

The most serious problem with the indeterminate detection circuitry

is the need to make it part of a totally self-checking system. The con­

cept of totally self-checking is defined for digital systems where it is

meaningful to discuss the encoding of input and output vectors. There­

fore. it is doubtful that indeterminate detection circuitry can be built

which is totally self-checking.

At the very lout. is should be possible to test the indeterminate

detection circuitry 'llltder normal operation . Testing of analog circuitry

123

is considerably more complicated and inherently different from testing

digital circuitry [59]. It is altogether unclear how to go about test­

ing analog circuits as complicated as the indeterminate detection circu­

itry during normal system operation of a digital circuit. Unless a

scheme can be developed to test the indeterminate detection circuitry,

the overall system reliability is seriously compromised since it is now

possible for a series of failures to lead to an undetected error.

Therefore, cost and reliability concerns make the strategy of directly

detecting indeterminate values unattractive.

An alternative that eliminates the cost objection is possible if

all lines which are to be checked by the checker come directly from the

output of clocked flip-flops. Recall that the output of a flip-flop is

either a a legal (but possibly incorrect) logic value from the flip-flop

or the flip-flop is in a metastable state. Therefore, the problem of

detecting indeterminate values has been reduced to the problem of

detecting metastable operation. As discussed in Section 3.4.1, circuits

capable of detecting metastable states do exist. A circuit given by

Stucki and Cox [47] is shown in Figure 4.4. This circuit is an

exclusive NOR gate and is intended for implementation using MOSFETs.

The true and complemented outputs from the flip-flop are the inputs to

this circuit. The MOSFET exclusive NOR gate is being used as an analog

comparator to compare the voltage difference between the flip-flop's Q

and d outputs. When a metastable condition occurs in the flip-flop, the

true and complemented outputs are at approximately the same voltage. An

examination of Figure 4.4 shows that any time IVq _ y^| < V (y of

the two enhancement mode transistors), the output is high. An

123

is considerably more complicated and inherently different from testing

digital circuitry [591. It is altogether unclear how to go about test­

ing analog circuits as complicated as the indeterminate detection circu­

itry during normal system operation of a digital circuit. Unless a

scheme can be developed to test the indeterminate detection circuitry,

the overall system reliability is seriously compromised since it is now

possible for a series of failures to lead to an undetected error.

Therefore. cost and reliability concerns make the strategy of directly

detecting indeterminate values unattractive.

An alternative that eliminates the cost objection is possible if

all lines which are to be checked by the checker come directly from the

output of clocked flip-flops. Recall that the output of a flip-flop is

either a a legal (but possibly incorrect) logic value from the flip-flop

or the flip-flop is in a metastable state. Therefore, the problem of

detecting indeterminate values has been reduced to the problem of

detecting metastable operation. As discussed in Section 3.4.1. circuits

capable of detecting metastable states do exist.

Stucki and Cox [47] is shown in Figure 4.4.

A circuit given by

This circuit is an

exclusive NOR gate and is intended for implementation using MOSFETs.

The true and complemented outputs from the flip-flop are the inputs to

this circuit. The lfOSFET exclusive NOR gate is being used as an analog

comparator to compare the voltage difference between the flip-flop's Q

and Q outputs. When a metastable condition occurs in the flip-flop, the

true and complemented outputs are at approximately the same voltage. An

examination of Figure 4.4 shows that any time /v0 - vo:I i Vth (Vth of

the two enhancement mode transistors), the output is high. An

Figure 4.4. Metastable Detection Circuit.

ll4

Q

Q

Figure 4.4. Metastable Detection Circuit.

125

indeterminate detection circuit can be built using the exclusive NOR

circuit and a circuit which samples the exclusive NOR's output at the

appropriate time in relation to the system's clock.

This circuit still suffers from the same reliability issues which

were raised earlier for the analog indeterminate detection circuitry.

There is simply no way to test the operation of the exclusive NOR cir­

cuits during normal system operation. An additional problem with this

circuit is that it only detects indeterminate values as long as the

flip-flop is operating properly. A failure in the flip-flop could also

render the exclusive NOR circuit unable to detect indeterminate values

reliably.

An alternative checker strategy is to make no attempt to detect

indeterminate values. Instead, the assumption is made that all indeter­

minate values will eventually become legal logic values as they pro­

pagate through the system. Errors are detected when they finally mani­

fest themselves as incorrect, but legal, logic values. It is also pos­

sible for all indeterminate values all to become correct and legal logic

values. In this case, no error is indicated and the system has produced

the correct output.

The success of this strategy is dependent on the assumption that

indeterminate values eventually become legal logic values. For systems

which are constructed with blocks of combinational circuitry sandwiched

between clocked flip-flops, this is a very reasonable assumption. Our

analysis in Section 3.4 showed that under normal circumstances, the pro­

bability that the output of a flip-flop is other than a legal logic

125

indeterminate detection circuit can be built using the exclusive NOR

circuit and a circuit which samples the exclusive NOR's output at the

appropriate time in relation to the system's clock.

This circuit still suffers from the same reliability issues which

•ere raised earlier for the analog indeterminate detection circuitry.

There is simply no way to test the operation of the exclusive NOR cir­

cuits during normal system operation. An additional problem with this

circuit is that it only detects indeterminate values as long as the

flip-flop is operating properly. A failure in the flip-flop could also

render the exclusive NOR circuit unable to detect indeterminate values

reliably.

An alternative checker strategy is to make no attempt to detect

indeterminate values. Instead, the ass'Dlllption is made that all indeter­

minate values will eventually become legal logic values as they pro­

pagate through the system. Errors are detected when they finally mani­

fest themselves as incorrect, but legal, logic values. lt is also pos­

sible for all indeterminate values all to become correct and legal logic

values. In this case, no error is indicated and the system has produced

the correct output.

The suc c e ss of this strategy is dependent on the assumption that

indeterminate values eventually become legal logic values. For systems

which are constructed with blocks of combinational circuitry sandwi ched

between clocked flip-flops, this is a very reasonable assumption. Our

analysis in Section 3.4 showed that under normal circumstances, the pro­

bability that the output of a flip-flop is other than a legal logic

126

value is low. If an indeterminate value from one block of combinational

logic is presented to a clocked flip-flop, tbe probability of the

indeterminate value propagating into the next block is therefore low.

The probability that it propagates through another clocked flip-flop

into a following combinational logic block is even lower.

If the failure occurs in the flip-flop itself, an indeterminate

value may be produced but subsequent flip-flops should eventually

prevent continued propagation of the indeterminate value throughout the

system. The major shortcoming of this assumption is the possibility of

indeterminate values being generated in the proximity of the system out­

puts. If these system outputs are connected to another system which is

designed to be tolerant of indeterminate valde inputs, then the other

system is able to respond in some appropriate manner to the indeter­

minate values. Otherwise, a serious failure can occur. In general, the

only solution to this problem is to make the other systems fault-

tolerant with respect to indeterminate values since a failure in the

lines which connects the two systems may also result in indeterminate

values.

The strategy we use is the second one (i.e*» no attempt is made to

detect indeterminate logic values). This strategy does not require

costly analog detection circuitry. It also does not result in an unte-

stable design. The checker circuitry required for this strategy is

entirely digital.

It should be pointed out that both strategies suffer from a testing

problem. The definition of self-testing requires that a faulty circuit

126

value is low. If an indeterminate value from one block of combinational

logic is presented to a clocked flip-flop, the probability of the

indeterminate value propagating into the next block is therefore low.

The probability that it propagates through another clocked flip-flop

into a following combinational logic block is even lower.

If the fa.llure occurs in the flip-flop itself, an indeterminate

value may be produced but subsequent flip-flops shonld eventually

prevent continued propagation of the indeterminate value throughout the

system. The major shortcoming of thi ■ assumption is the possibility of

indeterminate values being generated in the proximity of the system out­

puts. If these system outputs are connected to another system which is

designed to be tolerant of indeterminate vahfe inputs, then the other

system is able to respond in 101110 appropriate manner to the indeter­

minate values. Otherwise. a serious failure can occur. In general, the

only solution to this pro bl em ii to make the other systems fault­

tolerant with respect to indeterminate values since a failure in the

lines which connects the t,ro systems may al so result in indeterminate

values.

The strategy we use is the second one (i.e .• no attempt is made to

detect indeterminate logic values) . This strategy does not require

costly analog detection circuitry. It also does not result in an unte­

stable design, The checker circuitry required for this strategy is

entirely digital.

It should be pointed out that both strategies suffer from a testing

problem, The definition of self-testing requires that a faulty circuit

127

must produce either a non-codeword or a potential codeword output for

some sequence of codeword inputs. If the faulty circuit produces a

non-codeword output, then the fault is detected. If however, the fault

produces a potential codeword output, then the fault may or may not be

detected. There are three cases that must be considered. One case

occurs if the potential codeword's u values are all interpreted as legal

Boolean values which also happen to be correct. In this case, neither

strategy would detect the fault. Another case occurs if at least one of

the potential codeword's u values is an indeterminate value. All u

values which are not indeterminate values must be legal and correct

logic values. In this case, the strategy which relies on indeterminate

detection circuitry detects the fault but the strategy we use may not

detect the fault. Finally, there is the case where at least one of the

potential codeword's u values is an incorrect Boolean value. In this

case, both strategies detect the fault.

Therefore, testing is a serious concern. Regardless of which stra­

tegy is used, there is no assurance that a given sequence detects a

fault that produces indeterminate values. One of the assumptions that

was made earlier was that there is some minimum time interval, x , during

which the circuit is completely tested. In order to prevent the buildup

of latent faults in this case, the time interval, t , may have to be

reduced considerably.

In many ways, the testing problem for indeterminate failures is

quite similar to the testing problem for intermittent failures. In

fact, most indeterminate faults can alternatively be considered to be

127

must produce either a non-codeword or a potential code-word output for

some sequence of codeword inputs. If the faulty circuit produces a

non-codeword output, then the fault is detected, If however, the fault

produces a potential codeword output, then the fault may or may not be

detected. There are three cases that must be considered. One case

occurs if the potential codeword's n values are all interpreted as legal

Boolean values which also happen to be correct. In this case, neither

strategy would detect the fault. Another case occurs if at least one of

the potential codeword's u values is an indeterminate value. All u

values which are not indeterminate values must be legal and correct

logic values. In this case, the strategy which relies on indeterminate

detection circuitry detects the fault but the strategy we use may not

detect the fault. Finally, there is the case where at least one of the

potential codeword ' s n values is an incorrect Boolean value,

case, both strategies detect the fault.

In this

Therefore, testing is a serious concern. Regardless of which stra­

tegy is used, there is no assurance that a giv en sequence detects a

fault that produces indeterminate values. One of the assumptions that

was made earlier was that there is some minimum time interval.~. during

which the circuit is completely tested. In order to prevent the buildup

o f latent faults i n this case. the time interv al, 't', may have t o be

reduced considerably.

In many ways, the testing problem for indeterminate failures is

quite similar to the test i ng problem for intermittent failures. In

f act, most inde tenninate faults can alternat i vely be cons i dere d to be

128

intermittent. Depending on how the circuit responds to an indeterminate

fault, an error may or may not be produced when one or more outputs are

sensitized to the fault. Therefore, the error produced by an indeter­

minate fault may certainly be viewed as being intermittent. Techniques

for the detection of intermittent failures are discussed in [60, 61].

These techniques are intended for off-line testing. Nevertheless, for

those situations where off-line testing is used to help satisfy the tes­

tability assumption, these techniques could be used to increase the

off-line testing effectiveness and/or reduce the off-line test length.

4.3. CED andgj S. Sim&liiiM Indeterminate Fault Model

The properties of indeterminate faults have been established. In

addition, we have established the conditions which we require of our

systems in order for them to implement concurrent error detection. We

are now ready to propose a fault model that incorporates indeterminate-

type faults.

4.3.1. Fault Mp.d.Sl As$pmpti<?fl£

The simplified indeterminate fault model assumes that any physical

failure causes a single node in the circuit to become a ternary u value.

This fault model excludes some (but not all) bridging-type failures.

Opr analysis of Chapter 3 shows that, in general, each line which is

shorted to another line may have an indeterminate value. Thus, if we

wish to model the most general case, then each line which is shorted to

another line has a ternary u value on it. In a few cases, it may be

possible to model two lines shorted together with only a single ternary

128

intermittent. Depending on how the circuit responds to an indeterminate

fault, an error may or may not ~e produced when one or more outputs are

sensitized to the fault. Therefore, the error produced by an indeter­

minate fault may certainly be viewed as being intermittent. Techniques

for the detection of intermittent failures are discussed bl [60, 61].

These techniques are intended for off-line testing. Nevertheless, for

those situations where off-line testing is used to help satisfy the tes­

tability assumption, these techniques could be used to increase the

off-line testing effectiveness and/or reduce the off-line test length.

i-1• W lUlill • Simplified Indeterminate :Eu.ll M2.d.tl

The properties of indeterminate faults have been established. In

addition, ,re have established the conditions which we require of our

systems in order for them to implement concurrent error detection. We

are now ready to propose a fault model that incorporates indeterminate­

type faults.

i -l•l• Fault~ Aasumptions

The simnlifiod indeterminate fault~ assumes that any physical

failure causes a single node in the circuit to become a ternary u value.

This fault model excludes some (but not all) bridging-type failures.

Our analysis of Chapter 3 shows that, in general, each line which is

shorted to another line may have an indeterminate value. Tb.tu, if we

wish to model the most general case, then each line which is shorted to

another 1 ine has a ternary u value on it. In a few cases, it may be

possible to model two lines shorted together with only a single ternary

129

u value. Figure 4.5 shows examples of two different bridging faults.

Fault 1 is disallowed by the simplified indeterminate fault model since

lines X and Y must both be considered to have u values on them. Fault 2

is allowed by the simplified indeterminate fault model since indeter­

minate values on both inputs X and Y are indistinguishable from an

indeterminate value at the output of the gate. Therefore, fault 2 may

be modeled as a u value on line A. This fault model does not consider

the effect of failures on certain global signals such as ground, power,

and clocks. Such failures may affect the entire circuit or very large

sections of it. If protection must be provided against failure of these

global lines, then the circuit must be designed so that a global line

failure results in a non—codeword. This type of design usually requires

at least a redundant copy of each such global signal.

From Theorem 1, stuck-at fault (or any other type of failure which

causes a single line to become a legal logic value) propagation automat­

ically is considered by this fault model. It should be pointed out that

using the ternary u value for legal logic values may result in mislead­

ing results if there are hazards in the circuit. In the presence of

hazards, the ternary model may predict that an output or outputs are

sensitized to a value of u at a node. If the value of u is a legal

logic value and the Boolean difference with respect to the node is zero,

then the path is not sensitized. Therefore, there are cases where an

indeterminate value propagate even though a legal Boolean value does not

propagate.

129

u value. Figure 4.5 shows examples of two different bridging faults .

Fanlt 1 is disallowed by the simplified indeterminate fault model since

lines X and Y must both be considered to have u values on them . Fault 2

is allowed by the simplified indeterminate fault model since indeter­

minate values on both inputs X and Y are indistinguishable from an

indeterminate value at the output of the gate. Therefore, fanl t 2 may

be modeled as an value on line A. This fault model does not consider

the effect of failures on certain global signals such as ground, power,

and clocks. Such failures may affect the entire circuit or very large

sections of it. If protection must be provided against failure of these

global lines, then the circuit must be designed so that a global line

failure results in a non-codeword . This type of design usually require s

at least a redundant copy of each such global signal.

From Theorem 1, stuck-at fault (or any other type of failure which

causes a single line to become a legal logic value) propagation automat­

ically is considered by this fault model. It should be pointed out that

using the ternary u value for legal logic values may result in mislead-

ing results if there are hazards in the circuit. In the presence of

hazards, the ternary model may predict that an output or outputs are

sensitized to a value of u at a node. If the value of u is a le gal

lo gic valoe and the Boolean difference with res pect to the node i s z ero ,

then the path is not sensitized. Therefore, there are cases where an

indeterminate value propagate even though a legal Boolean value does not

propagate .

Figure 4.5. Two Types of Bridging Faults.

X

z

X

y

X

z

X

y

130

FAULT2-> >A
~L------

<- FAUL T 1

B

Figure 4.S . Two Types of Bridsing Faults.

131

When determining whether a circuit satisfies the fault-secure pro­

perty, we are interested in which faults are sensitized to the outputs

for a given input. If a fault is propagated to an output, the code used

in the circuit must be able to detect this fault. If a fault always

results in a legal logic value, then the ternary model may predict that

the output is sensitized, even though the output is not path-sensitized

to the fault. Legal logic values may only propagate to an output when

the output is path sensitized to the fault. Therefore, the ternary

model is pessimistic for legal logic values when determining whether or

not a circuit satisfies the fault-secure property.

On the other hand, when determining whether or not a circuit satis­

fies the self-testing property9, it is desirable to propagate as many

faults as possible to the outputs as this is the only way in which a

fault may be detected. Consequently, the ternary model is optimistic

for legal logic values when determining whether or not a circuit satis­

fies the self-testing property. For this reason, the indeterminate

fault model is a poor choice if failures cause only legal logic values.

On the other hand, in situations where both indeterminate values and

legal logic values are caused by failures, then the indeterminate fault

model is a good choice, since it handles both indeterminate and legal

logic values. In situations where failures may cause both indeterminate

values and legal logic values, the simplified indeterminate fault model

should be used to determine whether or not a circuit satisfies the

fault-secure property. However, the single stuck-at fault model should

be used to determine whether or not a circuit satisfies the self-testing

property.

131

When determining whether a circuit satisfies the fault-secure pro­

perty, we are interested in which faults are sensithed to the outputs

for a given input. If a fault is propagated to an output, the code used

in the circuit must be able to detect this fault. If a fault always

results in a legal logic value. then the ternary model may predict that

the output is sensitized. even though the output is not path-sensitized

to the fault. Legal logic values may only propagate to an output when

the output is path sensitized to the fault. Therefore, the ternary

model is pessimistic for legal logic values when determining whether or

not a circuit satisfies the fault-secure property.

On the other hand, when determining whether or not a circuit satis­

fies the self-testing property•, it is desirable to propagate as many

faults as possible to the outputs as this is the only way in which a

fault may be detected, Consequently. the ternary model is optimistic

for legal logic values when determining whether or not a circuit satis-

fies the self-testing property. For this reason, the indeterminate

fault model is a poor choice if failures cause only legal logic values.

On the other hand, in situations where both indeterminate values and

legal logic values are caused by failures. then the indeterminate fault

model is a good choice, since it handles both indeterminate and legal

logic values. In situations where failures may cause both indeterminate

values and legal logic values. the simplified indeterminate fault model

should be used to determine 1'hether or not a circuit satisfies the

fault-secure property. However, the single stuck-at fault model shonld

be used to determine whether or not a circuit satisfies the self-testing

property.

132

In order to study the implications of using the simplified indeter­

minate fault model, we assume that all indeterminate values become legal

logic values by the time they reach the circuit's output. This assump­

tion is required to insure that a failure in a previous circuit does not

result in several indeterminate values appearing on the inputs of a cir­

cuit. By placing a checker at the output of every circuit, this assump­

tion implies that any error in the first circuit is detected before the

error reaches the second circuit.

When using the simplified indeterminate fault model, it is not

necessary to consider all possible faults. Many possible faults do not

need to be considered, since consideration of certain faults, takes into

account all th'e effects of other faults.

Theorem 2: For any switching function, an implementation exists
in which all failures allowed by the simplified indeterminate
fault model may be modeled as a single ternary u value on a sin­
gle input line or output line.

Proof: Figure 4.6 demonstrates a manner in which any switching

function may be implemented. Each output is generated by its

own independent block of logic. Clearly, any modeled failure

which affects an input line may be modeled by a ternary u value

on the failed input line. Any modeled failure which occurs in

one of the blocks of logic may be modeled conservatively as a

ternary u value on the output line from the failed logic block.

Therefore, for this implementation, all failures allowed by the

simplified indeterminate fault model may be modeled by a single

ternary u value on an input or output line.

132

In order to atudy the implications of using the simplified indotor·

minate fault model, we assume that all indeterminate values become legal

logic values by the time they reach the circuit's output. This ass1JD1.p­

tion is required to insure that a failure in a previous circuit does not

result in several indeterminate values appearing on the inputs of a cir­

cuit. By plaaing a checker at the output of every circuit. this assump­

tion implies that any error in the first circuit is detected before the

error reaches the second circuit.

When us ins the simplified indeterminate fault modeL it is not

necessary to consider all possible faults. Many possible faults do not

need to be considered, since consideration of certain faults, tales into

account all th~ effects of other faults.

Theorem 1: For any switching function, an implementation exists
in which all failures allowed by the simplified indeterminate
fault model may be modeled as a single ternary u value on a sin­
gle input line or output line.

Proof: Figure • .6 demonstrates a manner in which any switching

function may be implemented. Each output is generated by its

own independent bloct of logic. Clearly, any modeled failure

which. affects an input line may be modeled l,y • ternary u value

on the failed input line. Any modeled failure which occurs in

one of the blocks of logic may be modeled conservatively as a

ternary u value on the output lino from tho failed logic bloct.

Therefore. for this implementation. all failures allowed by the

simplified indeterminate fault model may be modeled by a sin&le

ternary u value on an input or output lino.

133

f 1

f2

Figure 4.6. Possible Circuit Implementation.

INPUT VECTOR

[

LOGIC BLOCK

1

LOGIC BLOCK

2

0

0

0

0

0

0

LOG IC BLOCK

m

Figure 4 . 6. Possible Circuit Implementation.

133

134

As long as circuits are implemented in the form of Figure 4.6, the

number of fanlts which must be considered is significantly reduced.

Unfortunately, the implementation of Figure 4.6 is seldom the most effi­

cient implementation of a switching function. By using shared logic to

produce two or more outputs, the total amount of logic may be signifi­

cantly reduced. Figure 4.7 shows a 4-input, 2-output circuit. Clearly,

this implementation is not of the same form as shown in Figure 4.6. In

Figure 4.7, the product term labeled m is used in generating both out­

puts. If it were desired to implement this function in the form shown

in Figure 4.6, then an additional 3-input AND gate would be required.

If W = X = Y = Z = 0 , then both outputs are 0. Furthermore, neither

output is sensitized to any of the 4 inputs. Both outputs are, however,

sensitized to the output of the gate labeled m. Therefore, a failure

resulting in a ternary u value at the output of gate m cannot be modeled

as any> single input or output having a ternary u value. In general, a

fault which is sensitized to two or more outputs and at the same time is

not sensitized to any inputs, cannot be modeled as a single input or

output having a ternary u value.

4.3 .2. Separable Cftd$$

Codes used in totally self-checking circuits can be divided into

two broad classes: separable codes and non-separable codes.

A separable code consists of two parts: the data vector and the

check vector. The data portion of the codeword merely consists of the

unencoded data. The check vector consists of redundant information.

Therefore, decoding a separable code simply requires stripping the check

134

As long as circuits are implemented in the form of Fi1ure 4.6. the

nmnber of faults which must be considered is significantly reduced.

Unfortunately, the implementation of Fizure 4.6 is seldom the most effi­

cient implementation of a switohin& function. By using shared logic to

produce two or more outputs, the total amount of logic may be signifi­

cantly reduced . Fiaure 4.7 shows a 4-input, 2-output circuit . Clearly,

this implementation is not of the same form as shown in Figure 4.6. In

Figure 4.7. the product term labeled mis used in generating both out­

puts. If it were desired to implement this function in tho form shown

in Figure 4 .6. then an additional 3-input AND gate would be required.

If W ... X = Y -= Z = 0, then both outputs are O, Furtheniore, neither

output is sensitized to any of the 4 inputs. Both outputs are, however.

sensitized to the output of the gate labeled m. Therefore. a failure

resulting in a ternary u value at tho output of gate m cannot be modeled

as any, single input or output havin& a ternary u value. In general. a

fault which is sensitized to two or more outputs and at the same time is

not sensitized to any inputs. cannot be modeled as a single input or

output having a ternary u value.

!.1.1. Separable~

Codes used in totally sel £-checking circuits can be divided into

two broad classes : separable codes and non-separable codes .

A separable code consists of two parts: the data vector and the

check vector. The data portion of the codeword merely consists of the

unencoded data. The check vector consists of redundant information.

Therefore. decoding a separable code simply requires stripping the check

N
-
<

lx

N
K

I
S

-

<
I

X
§

M

X
$

M

-<

 X

N
-
<

$

-<
 x

135

f 2

Figure 4.7. Circuit Implementation with Shared Logic.

135

w
X
y

w
y
z

X
f 1

V
I

z

w
X
z m

w
X -y

w
f2

y
z
X
-y
z

Figure 4.7. Circuit Implementation with Shared Logic .

13 6

vector from the codeword. Common examples of separable codes include

parity codes and two-rail codes. Any code which does not satisfy the

definition of a separable code is considered to be non-separable. A

common non-separable code is the k-out-of-n code.

We restrict onr attention exclusively to separable codes. Separ­

able codes are nsnally much easier to implement than non-separable

codes. With a separable code, the data portion of the code is no harder

to implement than a non-encoded version of the same function since the

data portion is not altered by the encoding into a separable code. The

simplicity of the encoding can often be a significant advantage. The

designer is usually able to use a knowledge of the function and its pro­

perties to determine an efficient implementation. By encoding into a

non-separable code, a function typically becomes more complicated in a

manner that often obscures the original function. More than likely,

this new function will be harder to implement than the original unen­

coded function. A separable code may be implemented with two indepen­

dent relatively small circuits while the implementation of a non-

separable code requires one larger circuit. In terms of switching

speed, two smaller circuits in parallel as in a separable code are usu­

ally preferable to one larger circuit as in a non-separable code. This

is especially true in structured elements such as PLAs. Therefore, a

separable implementation may be faster than a non-separable implementa­

tion. Finally, the analysis of separable codes is usually easier than

for non-separable codes. Because of the advantages that separable codes

offer over non-separable codes, non-separable codes are not considered

further.

136

vector from tho codeword. CO!DIISon examples of separable codes include

parity codes and two-rail codes, Any code which does not satisfy tho

definition of a separable code is considered to be non-separable. A

common non-separable code is the k-out-of-n oode,

lfe restrict our attention exclusively to separable codes. Separ-

able codes are usually much easier to implement than non-separable

codes. With a separable code. the data portion of the code is no harder

to implement than a non-encoded version of the same function since the

data portion is not altered by the encoding into a separable code. The

simplicity of the encoding can often be a significant advantage. The

designer is usually able to use a b.owledge of the fllJlction and its pro­

perties to determine an efficient implementation. By encoding into a

non-separable code. a fllllction typically becomes more complicated in a

manner that often obscures tho original function, More than likely,

this new function ,rill be harder to implement than the original unen­

coded funotion. A separable code may be implemented with two indepen­

dent relatively small circuits while the illlplementation of a non-

separable code requires one larger circuit. In terms of switching

speed, two smaller circuits in parallel as in a separable code are usu­

ally preferable to one larger circuit as in a non-separable code. This

is especially true in structured elements such as PLAs. Therefore. a

separable implementation may be faster than a non- separable implementa­

tion. Finally, the analysis of separable codes is usually easier than

for non-separable codes. Because of the advantages that separable codes

offer over non-separable codes. non-separable codes are not considered

further.

137

There are a variety of possible separable codes which may be useful

in totally self-checking circuits. In addition, there are a variety of

implementations for each separable code. One important class of separ­

able code implementations is functional duplication. A circuit is said

to employ functional duplication if

(1) The circuit uses a separable code.

(2) The circuit layout is such that the data and check portions
of the circuit are physically disjoint.

(3) There is a bijective (one—to—one and onto) mapping between
the data vector and check vector of the entire output code
space.

Note that condition (3) does not require the checker circuit to be an

exact copy of the data circuit for functional duplication. Since the

circuit uses a separable code and the data and check portions of the

circuit are physically separated, then any failure modeled by the sim­

plified indeterminate fault model affects either the check portion or

the data portion, but not both. This fact leads us to the following

theorem:

Theorem 3_: Any switching function has a functional duplication
implementation. Furthermore, any functional duplication imple­
mentation of a switching function, satisfies the totally self­
checking goal.

Proof: First we prove the existence part of the theorem. Con­

sider any arbitrary switching function f. It is possible to

construct a circuit C that implements the function f. Consider

a circuit C' which is formed by two distinct and physically dis­

I
I I

,,
\

r

i

137

There are a variety of possible separable codes which may be useful

in totally self-checking circuits. In addition. there are a variety of

implementations for each separable code. One important class of separ­

able code implementations is functional dunlication . A circuit is said

to employ functional duplication if

(1) The circuit uses a separable code.

(2) The circuit layout is such that the data and check portions
of the circuit are physically disjoint.

(3) There is a bijective (one-to-one and onto) mapping between
the data vector and check vector of the entire output code
space.

Note that condition (3) does not require the checker circuit to be an

exact copy of the data circuit for functional duplication. Since the

circuit uses a separable code and the data and check portions of the

circuit are physically separated. then any failure modeled by the sim­

plified indeterminate fault model affects either the check portion or

the data portion. but not both. This fact leads us to the following

t~eoredl:

Theorem l : Any switching function bas a functional duplication
implementation . Furthermore . any functi onal duplication imple­
mentation of a switching function, satisfies the totally self­
checking goal.

l.i:w: First we prove the e xistence part of the theorem. Con-

sider any arbitrary switching function f. It i s po s s i b 1 e t o

construct a circuit C that implements the function f . Consider

a circuit C' which is formed by two distinct and phys ically dis-

138

joint copies of C. One of the copies of C represents the data

portion while the other copy represents the check portion of C'.

Clearly C' employs a separable code where there is a bijective

mapping between the check and data vectors of the code. Furth­

ermore# we have specified that C' is constructed with disjoint

data and check circuitry. Therefore# circuit C' is a functional

duplication implementation of switching function f.

From the definition of functional duplication# any modeled

failure affects at most one portion of a functionally duplicated

circuit's output. If a failure occurs in the data portion# then

the check vector is always correct while the data vector may or

may not be correct. Likewise# if a failure occurs in the check

portion, the data vector is correct while the check vector may

or may not be correct. The bijective property of functional du­

plication assures that any failure that causes either the data

vector or the check vector (but not both) to be incorrect is

detectable.

If a failure occurs which is undetectable# then the circuit

is transformed into a new circuit which still employs functional

duplication and still implements the same function as the origi­

nal circuit. The next modeled failure which occurs is either

detectable# in which case it is detected when the first non­

codeword output is produced, or it is undetectable and the cir­

cuit is once again transformed into a new functional duplication

circuit which continues to implement the original switching

joint copies of C. One of the copies of C represents the data

portion while the other copy represents the check portion of C'.

Clearly C' employs a separable code where there ls a bijective

mapping between the check and data vectors of the code, Furth­

ermore, we have specified that C' h constructed with disjoint

data and chock circuitry. Therefore. circuit c• is a functional

duplication implementation of switching function f,

From the definition of functional duplication. any modeled

failure affects at most one portion of a functionally duplicated

circuit's output. If a failure occurs in the data portion, then

the check vector is always correct while the data vector may or

may not be correct. Likewise, if a failure occurs in the check

portion. the data vector is correct while the check vector may

or may not be correct. The bijective property of fun.ction.al du­

plication assures that any failure that causu either tho data

vector or the check vector (but not both) to be incorrect is

detectable.

If a failure occurs which is undetectable, then the circuit

is transformed into a new circuit which still employs functional

duplication and still implements the same fUDction as the origi­

nal circuit. The nu::t modeled failure which occurs is either

detectable. in which case it is detected when the first non­

codeword output is produced. or it is undetectable and the cir­

cuit is once again transformed into a new functional duplication

circuit which continues to implement the original switching

138

I
, .

I

i

139

function. This process is continued until a detectable failure

occurs and a non-codeword output results. Therefore, the first

incorrect output is a non-codeword and the circuit thus satis­

fies the totally self-checking goal.

Corollary 3.: If a functional duplication implementation contains
no redundant logic (with respect to the input code space), then
it is totally self-checking with respect to the simplified in­
determinate fault model.

Proof: From Theorem 3, we know that the first incorrect output

from a functional duplication circuit must be a non-codeword.

Therefore, the circuit satisfies the fault-secure property.

Since the circuit contains no redundant logic, any modeled

failure which occurs must be detectable. Since the circuit sa­

tisfies both the fault-secure and self-testing property, then it

must also satisfy the totally self-checking property. There­

fore, the circuit is totally self-checking with respect to the

simplified fault model.

From Theorem 3 and Corollary 3, we know that a totally self­

checking implementation exists for any switching function. Unfor­

tunately, functional duplication requires roughly a 100 percent increase

in both area and power dissipation. When the additional circuitry for

the checkers is included, this increase is significantly above 100 per­

cent. Therefore, a question, which we now examine, is: under what cir­

cumstances do totally self-checking implementations exist that are more

economical than functional duplication?

J
J

. l
I

'

function. This process is continued until a detectable failure

occurs and a non-codeword output results. Therefore. the first

incorrect output is a non-codeword and the circuit thus sa tis-

fies the totally self-checking goal,

Corollary l: If a functional duplication implementation contains
no redundant logic (with respect to the input code space). then
it is totally self-checking with respect to the simplified in­
detenninate fault model.

Proof: From Theorem 3, we know that the first incorrect output

from a functional duplication circuit must be a non-codeword,

Therefore, the circuit satisfies the fault-secure property.

Since the circuit contains no redundant logic, any modeled

failure which occurs most be detectable. Since the circuit sa-

tisfies both the fault-secure and self-testing property, then it

must al so satisfy the totally self-checking property. There-

fore. the circuit is totally self-checking with respect to the

simplified fault model,

139

From Theorem 3 and Corollary 3, we know that a totally self­

checking implementation exists for any switching function. Unfor­

tunately. functional duplication requires roughly a 100 percent increase

in both area and power dissipation. When the additional circuitry for

the checkers is included, this increase is significantly above 100 per-

cent. Therefore, a question, which we now examine, is: under what cir-

cumstances do totally self-checking implementations exist that are more

economical than functional duplication?

140

4.3.3. Finding jkfiflftPicftl Ig-tftUx Self-Che eking Implementations

To determine which of several implementations of a given function

is most economical * it is usually necessary to layont each implementa­

tion. The area of the circuit may then be determined and a circuit

simulator such as SPICE may be used to estimate the circuit’s power con­

sumption. The simulator may also be used to determine the speed of the

circuit. Although this technique assures that we always use the most

economical of the several implementations * it is not in general practi­

cal. For any given switching function, there is a large number of

implementations which must be considered. The average circuit

designer’s productivity in industry may be as low as 5 - 10 transistors

per day [62]. Even when structured designs and extensive design automa­

tion software is used, the designer productivity may still be less than

40 transistors per day [63]. For large integrated circuits containing

hundreds-of-thousands of transistors, implementing a large number of

alternative designs is quite clearly not practical. Instead, we con­

sider the cost of an implementation to be completely determined by the

number of bits the circuit must process. Under this assumption, the

cost of an implementation depends solely on the code it uses. By making

this assumption, we are shifting the problem from finding the most

economical implementation to finding the most economical code. Since

there are many possible implementations of a given code, once a code has

been selected, a good implementation of the code must still be deter­

mined. It is usually much easier to determine which implementation of

one code is more economical than to determine which implementation among

different possible codes is more economical. It does not always follow

140

!,J..,1. Finding Economical Totally kl.f.-Checkinc Implementations

To determine which of several implementations of a given function

is most economical. it is usually necessary to layout each implementa­

tion. Tbe area of the circuit may tlten be deter11lned and a circuit

■ imulator such as SPICE may be u■ed to estimate the circuit's power con­

sumption. The siaulator may also be used to determine the speed of the

circuit. Although this technique assure■ that we always uae the 11.ost

economical of the several implementations, it is not in general practi­

cal. For any given switching function. there h a large number of

implementations which must be considered. The average oircui t

designer ' s productivity in industry may be as low as 5 - 10 transistors

per day [62). Bven when structured designs and e%ten■ ive design automa­

tion software is used. the designer productivity may still be less than

40 transistors per day [63] . For larse integrated circuits containing

hundreds-of-thousands of transistors, implementing a large nllDlber of

alternative designs is quite clearly not practical. Instead. we con-

sider the cost of an implementation to be completely determined by the

number of bits the circuit must process. Under this ass'Ulllption. the

cost of an implementation depends solely on the code it uses. By mating

this assumption. we are shifting the problem from finding the most

economical implementation to finding the most economical code . Since

there are many possible implementations of a given code, once a code has

been selected. a good implementation of the code must still be deter­

mined. It h usually much easier to determine which implementation of

one code is more econ0111lcal than to determine which implementation U1.ong

d i fferent possible codes is more economical. It does not always follow

\ .

141

that if code A is more economical than code B, then a "good" implementa­

tion of code A is more economical than a "good" implementation of code

B. Nevertheless, it is reasonable to expect this usually to be true.

We therefore, restrict our attention to finding economical codes.

Since all codes that we consider are separable, all codes for a

given function have the same number of data bits. Therefore, when con­

sidering the relative economy of several codes, only the number of check

bits for each code needs to be considered. We define the cost of a code

to be the number of check bits in the code. The code with the lowest

cost is considered to be the most economical.

Theorem 3 guarantees that a functional duplication implementation

exists for any desired switching function. If N is the number of dis­

tinct output codewords of a switching function, then the most economical

code which may be used in a functional duplication implementation has a

cost C* given by

C* = riog2(N)l

Any code with a cost less than C* cannot satisfy the bijection require­

ment for functional duplication. Therefore, we are interested in find­

ing codes for a given function which have a cost less than C* but still

have an implementation that satisfies the totally self-checking goal.

In searching for codes more economical than functional duplication,

we concentrate on the fault-secure property. There are several reasons

for this. The fault-secure property is a necessary condition for both

the totally self-checking property and the strongly fault-secure pro­

perty. Therefore, a circuit must be fault-secure if it is to satisfy

....

.,

.-

I

141

that if code A is more economical than code B. then a "good" implementa­

tion of code A is more economical than a "good" implementation of code

B. Nevertheless. it is reasonable to e%pect this usually to be true.

We therefore, restrict our attention to finding economical codes.

Since all codes that we consider are separable, all codes for a

given function have the same number of data bits. Therefore, when con­

sidering the relative economy of several codes, only the number of check

bits for each code needs to be considered . We define the cost of a code

to be the number of check bi ts in the code. The code with the lowest

cost is considered to be the most economical,

Theorem 3 guarantees that a functional duplication implementation

exists for any desired switching function. If N is the number of dis­

tinct output codewords of a switching function, then the most economical

code which may be used in a functional duplication implementation has a

cost c• given by

c• = flog2(N) 1

Any code with a cost less than c• cannot satisfy the bijection require­

ment £or functional duplication. Therefore, we are interested in find­

ing codes for a given function which have a cost less than c• but still

have an implementation that satis f ies the totally self-checking goal.

In searching for codes more economical than functional duplication,

we concentrate on the fault-secnre property . There are several reasons

for this. The fault- secure property is a necessary condition for both

the totally self-checking property and the strongly fault-secure pro­

perty. Therefore. a circuit must be fault-secure if it is to satisfy

142

the totally self-checking goal. For circuits without hazards, it is

possible to determine whether a code for a given function is fault-

secure without knowing the details of the implementation except that it

is of the form of Figure 4.6. On the other hand, whether a function

satisfies the self-checking property is strongly dependent on the imple­

mentation. The procedure we use to search for codes with a cost less

than C , but which still satisfies the fault-secure property, only

depends on the switching function that we desire to encode. Since a

hazard-free implementation of the form shown in Figure 4.6 always exists

for any code, this procedure may be used to find whether a fault-secure

implementation exists with a cost less than C*.

The search procedure we propose is now demonstrated by an example.

Figure 4.8 shows the truth table for a full adder circuit with inputs X,

T, and Z, and outputs C and S. The question we wish to answer is

whether or not a fault-secure implementation exists with a cost less

than C*. For this circuit, there must be 4 output codewords. There­

fore, C* = 2. Each codeword consists of a data vector and a check vec­

tor. Codewords are formed by combining each code vector with certain

data vectors. Not all combinations are allowed. The allowed combina­

tions are the codewords while the disallowed combinations are non-

codewords .

In order for the check vector of the code to require fewer bits

than C*, there must be some check vectors which may be combined with

more than one data vector to form codewords. Ve make the assumption

that for all codewords, a given data vector only has a single possible

142

tho totally self-chocking goal. For circuits without ha:r.ards. it h

possible to determine whether a codo for a siven. function h fault­

socure without lnowin1 tho details of the haplemen.tation except that it

is of tho fora of Figure 4 .6. On the other hand. whether a function

satisfies tho self-chocking property ia strongly dependent on tho imple­

aentation. Tho procedure ,re use to search for code1 with a cost less

than C-. but which still aatisfioa tho fault-secure property, only

depends on tho switching function that wo desire to encode. Since a

hazard-free implementation of the form shown in Fisure 4.6 always exists

for any code. this procedure may be used to find whether a fault-secure

implementation e%ists with a coat loss than c•.

The search procedure we propose ia now demonstrated by an example.

Fisure 4.8 shows the truth table for a full adder circuit with inputs X,

Y. and Z. and outputs C and S. The quest ion we wish to answer is

whether or not a faul t-seouro haplementation u:ists with a cost leaa

than c•. For this circuit, there must be 4 output codewords. There­

fore. c• = 2. Bach codeword consists of a data vector and a chock vec­

tor. Codewords are formed by combining each code vector with certain

data vectors, Not all combination, are allowed. The allowed combina­

tions are the codewords while tho disallowed combinations are non-

codewords.

In order for the chock vector of the code to require fewer bi ts

than c•. there must bo some check vectors which may be combined with

more than one data vector to fo:rm codewords. le make the as sum.pt ion

that for all codewords, a given data vector only has a single possible

I

r

•• -

,. .

X Y 1 Z 1 CS 1
0 0 1 0 1 0 0 I

0 0 1 1 1 0 1 1

0 1 1 0 1 0 1 I

0 1 1 1 1 1 0 1

1 0 1 0 1 0 1 I

1 0 1 1 1 1 0 1

1 1 1 0 1 1 0 1

1 1 1 1 1 1 1 1

Figure 4.8 Full Adder Example

• - I

..

.....

X y z cs
0 0 0 00
0 0 1 01

I o I 1 I o I 01
Io I 1 I 1 I 10

I ~ I ~I~ I ~~
I 1 I 1 I o I 10
111111111

Figure 4.8 Full Adder Example .

143

144

check vector. In other words, the data vector of a codeword implies the

check vector of a codeword. Violating this assumption never reduces the

cost of a code since by violating the assumption, we are increasing the

number of distinct check vectors which the code must include. The main

reason for this assumption is that it means we only need to consider

failures in the data portion of the function.

In order for the fault-secure property to be satisfied, a failure

must either be undetectable (in which case the correct output is always

produced) or detectable for some input (in which case the circuit must

produce a non-codeword output). When a failure occurs in the data por­

tion of the circuit, then the code must be designed so that it is never

possible for the data vector of one codeword to be transformed into the

data vector of another codeword. If this transformation is allowed to

happen, then the failure has caused an incorrect codeword output to

occur and the circuit is thus not fault-secure. If a failure occurs in

the check portion of the circuit, the check vector is either correct (in

which case the output codeword is also correct), or the check vector is

incorrect. We have assumed that the data vector implies the check vec­

tor. Therefore, if the check vector is incorrect, then the output from

the circuit is a non—codeword. Consequently, failures in the check por­

tion of the circuit automatically satisfy the fault-secure property.

Returning to our example of Figure 4.8, we must find a code which

requires fewer than 2 check bits. The code must be selected such that

if a fault in the data portion of a circuit can cause the data vector of

one codeword to change to the data vector of another codeword, then the

144

check vector. In other words, the data vector of a codeword implies tho

check vector of I codeword. Violatina this assumption never reduces the

cost of a code since by violatina tho assumption. we are increasing the

number of distinct check vectors which the code aust include. The main

reason for this assnmption is that it moans wo only neod to consider

failures in the data portion of the function.

In order for the fault-secure property to be satisfied, a failure

must either be undetectable (in which case the correct output is always

produced) or detectable for some input (in which case the circuit must

produce a non-codeword output), When a failure occurs in tho data por­

tion of the circuit, then the code must be designed so that it is never

possible for the data vector of one codeword to be transformed into the

data vector of another codeword. If this transformation is allowed to

happen. then tho failure has caused an incorrect codeword output to

occur and the circuit is thus not fault-secure, If a failure occurs in

the check portion of the circuit, the check vector is either correct (in

which case the output codeword is also correct), or the check vector is

incorrect. We have assUJ11ed that the data vector implies the check vec­

tor. Therefore, if the check vector is incorrect. then the outpnt from

tho circuit is a non-codeword, Consequently, failures in tho check por­

tion of tho circuit automatically satisfy the fault-secure property.

Returnina to our example of Figure 4.8, we must find a code which

requires fewer than 2 check bits. The code must be selected such that

if a fault in the data portion of a circuit can cause the data vector of

one codeword to chan1e to the data vector ot another codeword. then the

'
I

145

two codewords must have different check vectors. The first step is to

determine the effect of all faults on the data portion of the circuit's

outputs. By Theorem 2, we only need to consider failures on the data

portion of the circuit's inputs and outputs. Let us first consider the

effect of a fault on the input.

Figure 4.9 shows the result for the full adder example of Figure

4.8. The first 4 columns of the table of Figure 4.9 repeats the truth

table from Figure 4.8. The next 3 columns of the table show the effect

of failures on lines X, Y, and Z, respectively. Each row of the table

represents one of the possible input conditions. If a data bit, C or S,

retains its original value when a given input is changed, that data bit

retains its original value in the column under the given input. If a

data bit changes its value when a given input is changed, the data bit

takes on the value of u in the column under the given input.

In other words, we are interested in whether or not the data bit is

sensitized to a fault on the input. If a change in the input causes a

change in the data bit output, then the data bit is sensitized to the

input. If the circuit contains a static hazard, then a data bit output

may be sensitized to an input even though a change in an input does not

cause the data bit to change. An implementation which is free of static

hazards exists for any function although it may require redundant logic.

Therefore, we only need to consider whether a input change leads to an

output change to determine sensitization. We may determine sensitiza­

tion by inspection from the truth table as we have done here or more

formally, by the Boolean difference method. If the Boolean difference

i

two codewords must have different check vectors, The first step is to

detemine the effect of all faults on the data portion of the circuit's

outputs, By Theorem 2, ,re only need to consider failures on the data

portion of the circuit's inputs and outputs. Let us first consider the

effect of a fault on the input.

Figure 4.9 shows the result for the full adder example of Figure

4.8, The first 4 colUJ11ns of the table of Figure 4.9 repeats the truth

table from Figure 4.8. The next 3 columns of the table show the effect

of failures on lines X. Y, and Z, respectively. Each row of the table

represents one of the possible input conditions. If a data bit, C or S,

retains its original value when a given input is changed, that data bit

retains its original value in the coltlllln under the given input. If a

data bit changes its value when a given input is changed, the data bit

takes on the value of u in the colwnn under the given input.

In other words, we are interested in whether or not the data bit is

sensitized to a fault on the input. If a change in the input causes a

change in the data bit output, then the data bit is sensitized to the

input. If the circuit contains a static hazard. then a data bit output

may be sensitized to an input even though a change in an input does not

cause the data bit to change. An implementation which is free of static

hazards ezists for any function although it may require redundant logic,

Therefore. we only need to consider whether a input change leads to an

output change to determine sensitization. We may determine sensitiza­

tion by inspection from the truth table as we have done here or more

formally, by the Boolean difference method. If the Boolean difference

146

OUTPUT FOR
INDETERMINATE FAULT IN

FUNCTION X Y Z flTTTPTFT MAP
X Y 7 cs CS CS CS
0 0 0 00 Ou Ou Ou 0 1 1,2
o 0 1 01 uu uu Ou 1 0.2,3 0,-3_.
0 1 0 01 uu Ou uu__ 1 0.2.3 0.3
0 1 1 10 lu uu uu 2 0.1.3 0.3
1 0 0 01 Ou uu__ 1 0.2.3 0.3
1 0 1 10 uu lu uu 2 0 , 1 . 3 - 0.3
1 1 0 10 uu uu lu__ 2 0.1.3 0.3
1 L U 1 11 lu lu lu 3 2 1*2

Correct
Output

0
1
2
3

Possible Faulty
Outputs
1,2
0,2,3
0,1,3
1,2

I

Figure 4.9 Fault Behavior of Full Adder*.

' ^

OUTPUT FOR
INDITRllMINATE FAULT IN

L__ FUNCTION' X I y z
IXIYIZI cs cs I cs cs

I g I g I ~ I 00 :: I ~: ~: 01
I 0 I l I o I 01 Jl,Jl I O:g. JUl

I !I ! I 1 I~! I :: I :: :: 0

l lll JUI
I 1 I 1 I 0 I
I 1 I l I 1 I

10 I u
11 I lg

Correct
Output

0
1
2
3

I
I

u l:1
llli l]l

Possible Faulty
Outputs
1,2
0,2,3
0,1,3
1,2

OUTPUT MAP

0 I 1
1 016•3
1 I Q,213
i I 011,3
1 0.2.3
2 I 0,113
2 I 01113
3 I 2

Fiaure ~.9 Fault Behavior of Full Adder .

I
1.2

I
-

0,3
013 I
o.~ I 0,3
0.3 I
0.3 I
1.2. I

147

is 1, then the output data bit is sensitized to the input and the output

data bit is set to u. If the Boolean difference is 0, then the data bit

retains its original value. It must be emphasized that using the

Boolean difference method (or equivalently determining from the truth

table whether or not an input change causes an output change)# is only

valid because of the assumption that the implementation has no static

hazards.

In Figure 4.9, on the first row, all columns have a value of Ou.

This implies that if the input of the circuit is X = Y = Z = 0, then a

single indeterminate fault on any of the three inputs results in output

bit C remaining 0. Output bit S has a value of u meaning it may take on

a value of either 0 or 1. Likewise, the second row of the table

corresponds to X = Y = 0, Z = 1. In this case, a single indeterminate

fault on either input X or input Y results in output bits C and S both

having a value of u. A single indeterminate fault on input Z results in

output bit C having a value of 0 and output S having a value of u. A

simple indeterminate fault on either input X or input Y can result in

output bits C and S being either 0 or 1. Other rows are similarly con­

structed.

The three columns under the heading "OUTPUT MAP," represent the

correct output, all outputs that may be produced if a single indeter­

minate fault occurs on any one of the inputs, and all outputs that may

occur due to a single indeterminate fault on any one of the outputs.

Note that the output vector CS is treated as an unsigned two-bit binary

1.f7

is 1, then the output data bit is sensitized to the input and the output

data bit is set to u. If tho Boolean difference is 0, then the data bit

retains its original value. It must be emphasized that using the

Boolean difference method (or equivalently dotennining from the troth

table whether or not an input change causes an output change), is only

valid because of the assumption that the implementation has no static

hazards.

In Figure -t.9, on the first row, all columns have a value of Ou.

This implies that if the input of the circuit is I = Y = Z .. 0, then a

single indeterminate fault on any of the three inputs results in output

bit C remaining O. Output bit S has a value of u meaning it may take on

a value of either O or 1. Like,riso, the second row of the table

corresponds to I = Y = 0, Z = 1. In this case, a single indeterminate

fault on either input I or input Y results in output bits C and S both

having a value of u. A single indeterminate fault on input Z results in

output bit C having a value of O and output Shaving a value of u. A

simple inde ter111ina te fault on either input X or input Y can result in

output bits C and S being either O or 1, Other rows are similarly con­

structed.

The three colUJ11ns under the heading "OUTPUT MAP , " represent the

correct output. all outputs that may bo produced if a single indeter­

minate fault occurs on any one of the inputs, and all outputs that may

occur due to a sing! e inde ter:mina te fault on any one of the outputs.

Note that the output vector CS is treated as an unsigne d two-bit binary

!

number. To determine the possible faulty outputs, all u fs in the output

vector are replaced by all possible combinations cf 0 ps and l ps.

We have now considered the effect of a ternary u value on any of

the circuit inputs. It is still necessary to consider the effect of a

ternary u value on any of the circuit outputs. Output faults may be

considered by taking each of the possible output vectors one at a time

and complementing each of the output bits. For example, if the correct

output is 0, an output fault may result in an output vector of 1 or 2.

If the correct output vector is 1, then an output fault may result in an

output vector of 0 or 3. If the correct output vector is 2, then an

output fault may also result in an output vector of 0 or 3. Finally, if

the correct output vector is 3, then an output fault may result in an

output vector of 1 or 2.

The list at the bottom of Figure 4.9, gives a summary of all errors

due to any single indeterminate fault on an input or output line. Below

the table, the fault behavior is summarized. Each of the four possible

correct outputs are listed along with the faulty outputs that they may

be changed into. From the summary, we see that any time the correct

output vector is 0, then with a fault on one of the inputs or outputs,

we may get an output vector of either 0, 1, or 2. When the correct out­

put vector is 1 or 2, we may get any output vector. When the correct

output vector is 3, we may get an output vector of 1, 2, or 3.

It is now necessary to assign a check vector to each of the possi­

ble data vectors. In order to keep the cost of the code as low as pos­

sible, it is desirable to assign as many of the data vectors to a single

148

*

148

number, To determine the possible faulty outputs. all u's in the output

vector are replaced by all possible combinations of O's and l's ,

We have now considered the effect of a ternary u value 011 any of

the circuit inputs. It is still necessary to consider the effoot of a

ternary u value on any of tho circuit outputs. Output faults may be

considered by takin1 each of tho poulblo output vectors one at a time

and complementing each of tho output bits . For example, if the correct

output is O. an output fault may result in an output vector of 1 or 2.

If the correct output vector is 1, then an output fault may result in an

output vector of O or 3 , If tho correct output vootor is 2, then an

output fault may also result in an output vector of O or 3. Finally, if

the correct output vector is 3. then an output fault may resal t in an

output vector of 1 or 2.

The list at the bottom of Figure ◄ .9, gives a SWIUll&ry of all errors

due to any sinsle indeterminate fault on an input or output lino. Below

tho table, the fault behavior is summarized. Each of the four possible

correct outputs are listed along with tho faulty outputs that they may

be changed into. From the &1Dlllllary, we see that any time tho correct

output vector is O, then with a fault on one of tho inputs or outputs,

we may get an output vector of either 0, 1, or 2. When the correct out­

put vector is 1 or 2, ,re may get any output vector. When the correct

output vector is 3, we may 1et an output vector of 1, 2, or 3.

It is now necessary to assisn a check vector to each of the possi­

ble data vectors. In order to keep the cost of the code as low as pos­

sible, it is desirable to assign as many of the data vectors to a single

149

i

l

l

check vector as possible. On the other hand, two data vectors cannot be

assigned to the same check vector if a fault may transform one data vec­

tor into the other data vector.

A set of data vectors is said to be compatible if no member of the

set may be transformed by a fault into another member of the set. The

problem is to determine the fewest sets of compatible data vectors such

that each data vector occurs in exactly one set. Each set of compatible

data vectors is assigned a unique check vector.

In Figure 4.10, a merger diagram is drawn as a graphical aid to

determine the fewest sets of compatible data vectors. The merger

diagram has a node for each data output vector. An arc is drawn between

each pair of compatible data output vectors. A set of nodes is compati­

ble if and only if every node in the set is connected by an arc to every

other node in the set. From the merger diagram, we see that at least

three sets of data vectors are required. Data vectors 0 and 3 form a

compatible set since a correct data vector of 0 can never be changed by

a fault to 3 and a correct data vector 3 can never be changed by a fault

to 0. On the other hand, data vectors 1 and 2 must each be in a set by

themselves since a fault may change these data vectors to any of the

other possible data vectors. Since at least three sets of data vectors

are required, there must be three distinct check vectors. Therefore, no

code exists with a cost less than 2. Since C* for this function is 2,

no code exists which is more economical than the most economical func­

tional duplication code.

\

I

I

149

check vector as possible, On the other hand, two data vectors cannot be

assigned to the same check vector if a fault may transform one data vec­

tor into the other data vector.

A set of data vectors is said to be comnatible if no member of the

set may be transformed by a fault into another member of the set. The

problem is to determine the fewest sets of compatible data vectors such

that each data vector occurs in exactly one set. Each set of compatible

data vectors is assigned a unique check vector.

In Figure 4 ,10. a merger diagram is drawn as a graphical aid to

determine the fewest sets of compatible data vectors, The merger

diagram has a node for each data output vector. An arc is drawn between

each pair of compatible data output vectors. A set of nodes is compati­

ble if and only if every node in the set is connected by an arc to every

other node in the set. From the merger diagram, we see that at least

three sets of data vectors are required. Data vectors O and 3 form a

compatible set since a correct data vector of O can never be changed by

a fault to 3 and a correct data vector 3 can never be changed by a fault

to 0. On the other hand, data vectors 1 and 2 must each be in a set by

themse 1 ves since a fault may change these data vectors to any of the

other possible data vectors. Since at least three sets of data vectors

are required, there must be three distinct check vectors. Therefore. no

code exists with a cost less than 2. Since c• for this function is 2,

no code exists which is more economical than the most economical func­

tional duplication code.

150

o

Figure 4.10. Merger Diagram for Full Adder Example.

150

0 1
0

0

3 2

Figure 4.10. Merger Diagram for Full Adder Example.

151

The procedure for finding codes that are both more economical than

functional duplication and have implementations that are fault-secure

with respect to the simplified indeterminate fault model may now be sum­

marized as follows:

(1) Construct a truth table for the desired switching function.
This function is implemented by the data portion of the circuit.

(2) For each possible data input vector, determine the possible
incorrect data output vectors that may result from a fault on a
single input.

(3) Summarize the results from step 2 to obtain a list of each
correct data output vector and the incorrect data output vectors
that may result from a fault on an input.

(4) Update the list from step 3 to include the effects of faults
on output lines.

(5) Determine the minimum number of sets of compatible data out­
put vectors required so that each output vector is included in
exactly one set.

(6) The minimum number of check bits is the smallest integer
which is greater than or equal to the log2 of the minimum number
of compatible sets.

When the minimum number of sets of compatible data vectors has been

found, then each set of data vectors must be assigned a unique check

vector. This assignment is completely arbitrary as it has no effect on

either the fault secure property or the cost of the code. Therefore,

the assignment may be done so as to minimize the cost of the implementa­

tion of the disjoint check bit generation logic.

In the example of Figure 4.8, it is possible for all data input and

output vectors to occur. In other cases, it is possible that one or

151

The procedure for finding codes that are both more economical than

functional duplication and have implementations that are fault-secure

with respect to the simplified indetermi nate fault model may now be sum­

marited as follows:

(1) Construct a truth table for the desired switching function.
This function is implemented by the data portion of the circuit.

(2) For each possible data input vector, determine the possible
incorrect data output vectors that may result from a fault on a
single input.

(3) Summarize the results from step 2 to obtain a list of each
correct data output vector and the incorrect data output vectors
that may result from a fault on an input.

(4) Update the list from step 3 to include the effects of faults
on output lines.

(S) Determine the minimum number of sets of compatible data out­
put vectors required so that each output vector is included in
exactly one set.

(6) The minimum number of check bits is the smallest integer
which is greater than or equal to the log2 of the minimum number
of compatible sets.

When the minimum number of sets of compatible data vectors has been

found, then each set of data vectors must be assigned a unique check

vector . This assignment is completely arbitrary as it bas no effect on

either the fault secure property or the cost of the code. Therefore,

the assignment may be done so as to minimize the cost of the implementa­

tion of the disjoint check bit generation logic.

In the example of Figure 4.8, it is possible for all data input and

output vectors to occur. In other cases, it is poss i ble that one or

152

more of the input or output vectors cannot occur in normal operation*

In such a case, this procedure may still be used. Any data input vec­

tors which are not used should be left out of the truth table. Any data

output vectors which do not occur during normal operation may also be

ignored since the checker may be designed to recognize any unused data

output vector.

This procedure may be used to detect whether or not a code exists

which has a cost lower than the most economical functional duplication

code. Furthermore, if such a code is found by the procedure to exist,

then there is always a fault-secure implementation of the code. Since

the fault-secure property is necessary for all circuits that meet the

totally self-checking goal, then if a function is found to have no code

more economical than functional duplication for meeting the fault-secure

property, the function also does not have a more economical implementa­

tion which satisfies the totally self-checking goal.

We have assumed that the implementation has no static hazards. In

many cases, this requires the addition of redundant logic. This logic

has important implications if the desire is for the implementation to

satisfy the totally self-checking goal. If redundant circuitry is

added, then the circuit cannot satisfy the totally self-checking pro­

perty. However, the circuit might not satisfy the strongly fault-secure

property. For such fault-secure circuits which are not strongly fault-

secure, fault detection cannot be guaranteed for some fault sequences.

The procedure we have proposed does not take into consideration any

static hazards which may exist in the implementation when examining

152

more of the input or output vectors cannot occur in normal operation.

In such a ca••• this procedure may still be used. Any data input vec­

tors which are not used should bo left out of tho truth table. /my data

output vectors which do not occur during normal operation may also bo

ignored since the checker may be dosi1nod to recognize any unused data

output vector.

This procedure may be uaed to detect whether or not a code exists

which bas a cost lower than the most economical functional duplication

code. Furthermore, if such a code ia found by the procedure to exist,

then there is always a fault-secure implementation of tho code. Since

the fault-secure property is necessary for all circuits that meet the

totally self-checking goal, then if a function is found to have no code

more economical than functional duplication for meetlns the fault-secure

property. the function al so does not have a more economical impl ementa­

tion wliich satisfies tho totally self-chocking goal.

~e have assumed that the implementation has no static hazards. In

many cases, this requires the addition of redundant logic. This logic

has important implications if the desire is for the implementation to

satisfy the totally self-chocking goal . If redundant circuitry is

added, then the circuit cannot satisfy the totally self-checking pro­

perty. However, the circuit might not satisfy the strongly fault- secure

property. For such fault-secure circuits which are not stronsly fault­

secure, fault detection cannot be suaranteed for some fault sequences.

The procedure we have proposed does not take into consideration any

static hazards which may exist in the implementation when osamining

153

whether a fault may propagate from an input to an output. In some

cases, a static hazard does not destroy the fault-secure property. Each

static hazard in the circuit allows a fault to propagate from an input

to an output. Such a static hazard causes a correct output vector to be

transformed to another incorrect output vector. In some cases, this

transformation occurs for some other input vector, regardless of whether

the static hazard exists. In this case, the static hazard does not

affect the fault-secure property of the implementation. In other cases,

the static hazard causes the transformation from a correct output vector

into an incorrect output vector that does not otherwise occur. If this

transformation causes one of the sets of compatible output vectors to

become incompatible, then the static hazard must be removed from the

implementation.

Redundant logic is often required to remove a static hazard. Occa­

sionally, the situation arises in which the only way a code may be

implemented so that it satisfies the fault—secure property is to add

redundant logic to the implementation. In this situation, the implemen­

tation is fault-secure, but it is not either totally self-checking or

strongly fault—secure. The redundant logic which is added to remove the

static hazard is not testable. Therefore, if the redundant logic fails,

then the static hazard exists once again, but it is impossible to test

for all failures in redundant logic. Since the redundant logic was

added to make the circuit fault-secure, then the failure of this redun­

dant logic causes the circuit not to be fault-secure. We now have a

situation where a failure has occurred that cannot be detected by test­

ing. In addition, the circuit is no longer fault-secure so that the

153

whether a fault may propagate from an input to an output. In some

cases. a static hazard does not destroy the fault-secnre property. Each

static hazard in the circuit allows a fault to propagate from an input

to an output. Such a static hazard causes a correct output vector to be

transformed to another incorrect output vector. In some cases, this

transformation occurs for some other input vector. regardless of whether

the static hazard e::a::i sts. In this case, the static hazard does not

affect the fault-secure property of the implementation. In other cases.

the static hazard causes the transformation from a correct output vector

into an incorrect output vector that does not otherwise occur. If this

transformation causes one of the sets of compatible output vectors to

become incompatible, then the static hazard must be removed from the

implementation.

Redundant logic is often required to remove a static hazard. Occa­

sionally, the situation arises in which the only way a code may be

implemented so that it satisfies the fault-secure property is to add

redundant logic to the implementation. In this situation. the implemen­

tation is fault-secure, but it is not either totally self-checking or

strongly fault-secure. The redundant logic which is added to remove the

static hazard is not testable. Therefore, if the redundant logic fails,

then the static hazard exists once again, but it is impossible to test

for all failures in redundant logic. Since the redundant logic was

added to make the circuit fault-secure, then the failure of this re dun-

dant logic causes the circuit not to be fanl t-secure. We now have a

situation where a failure has occurred that cannot be detected by test­

ing. In addition, the circuit is no longer fault-secure so that the

154

next fault that occurs may cause an incorrect codeword output- This is

an example where the first incorrect output is a codeword output.

Therefore# such a circuit does not satisfy the totally self-checking

goal- From this argument# we see that if the desire is to build cir­

cuits which have the strongly fault-secure (or totally self-checking)

property# then redundant logic should not be used to remove static

hazards.

In many instances# it may be desirable to use implementations which

are not of the form of Figure 4.6, Often by sharing logic among several

outputs# the amount of logic required for an implementation is signifi­

cantly reduced. In many cases# sharing logic between several outputs

results only in faults which can be modeled as a single fault on an

input or output. In other cases# the shared logic causes faults which

cannot be modeled as a single fault on an input or an output# but

nevertheless# no sets of compatible output vectors become incompatible

due to the sharing of logic. In both of these cases* the sharing of

logic does not affect the fault-secureness of the implementation. In

other cases# sharing of logic results in compatible sets of output vec­

tors becoming incompatible. In cases where one or more sets of output

vectors become incompatible# the resulting implementation is not fault-

secure.

Simulators are usually the most practical method of evaluating the

effect of static hazards and sharing logic on an implementation. Ter­

nary simulators are quite straightforward to implement [57]. If the

circuit implementation is of the same form as Figure 4.6 (no shared

154'

next fault that occurs may cause an incorrect codeword output. This i•

an example where tho first incorrect output is a codeword output.

Therefore, such a circuit does not satisfy the totally self-checking

goal. Prom this ar1ument, we aeo that if the desire is to build cir­

cuits which have tho strongly fault-socure (or totally self-checking)

property. then redundant logic should not be uaed to remove static

hazards.

In many instances. it may be desirable to use implementations which

are not of the form of Figure 4.6. Often by sharins logic among several

outputs. the amount of logic required for an lmplem.entation is signifi­

cantly reduced. In many cases. sharing loBiC between. several outputs

results only in faults which can be modeled as a single fault on an

input or output. In other cases, the shared logic causes faults which

cannot be modeled as a single fault on an input or an output, but

nevertheless. no sets of compatible output vectors become incompatible

due to the sharing of logic. In both of these cases, the sharing of

logic does not affect the faul t-$ecureness of the implementation. In

other cases, sharing of logic results in compatible sets of output vec­

tors becoming incompatible. In cases where one or more sets of output

vectors become incompatible, the resulting implementation is not fault-

secure.

Simulators are usually the most practical method of evaluating the

effect of static hazards and sharing logic on an implementation. Ter­

nary simulators are quite straightforward to implement [57]. If the

circuit implementation i1 of the same form as Figure 4 .6 (no shared

155

logic)# then the simulator can be used to determine when a u value on an

input causes a u value on an output. The simulator can determine when a

u value propagates from input to output of an implementation, regardless

of whether static hazards exist. A ternary simulator may also be used

to study the effect on an implementation of sharing logic among its out­

puts.

The procedure we have outlined in this section can be used to

search for codes that are more economical than the most economical func­

tional duplication code. If a functional duplication code is found to

be the most economical code# then it may be implemented without any con­

cern about static hazards or the sharing of logic between outputs in the

implementation. If another code is found to be more economical, then it

may be implemented in the form of Figure 4.6 and a ternary simulator may

be used to check for the presence and effect of static hazards. If an

implementation that shares logic among the outputs is desired (i.e.# the

implementation is not of the form of Figure 4.6), then the simulator may

also be used to determine the effect of shared logic. For non­

functional duplication codes, any static hazard or sharing of logic

which causes sets of compatible output vectors to become incompatible

must be removed or else the code must be modified so that the sets of

outputs are split into smaller outputs. Obviously removing a static

hazard or using separate logic to calculate each output requires extra

logic. Modifying a code by splitting sets of compatible outputs, may

also require additional logic. It should be noted that for functional

duplication codes, hazards and shared logic are not a concern. The

bijective property requires that each set of compatible output vectors

155

logic), then the simulator can be used to determine when au value on an

input causes an value on an output. The simulator can determine when a

n value propagates from input to output of en implementation, regardless

of whether static hazards exist. A ternary simulator may also be used

to study the effect on an implementation of sharing logic among its out­

puts.

The procedure we have outlined in this section can be used to

search for codes that are more economical than the most economical func­

tional duplication code. If a functional duplication code is found to

be the most economical code, then it may be implemented without any con­

cern about static hazards or the sharing of logic between outputs in the

implementation. If another code is found to be more economical, then it

may be implemented in the form of Figure 4.6 and a ternary simulator may

be used to check for the presence and effect of static hazards. If an

implementation that shares logic among the outputs is desired (i.e., the

implementation is not of the form of Figure 4,6), then the simulator may

also be used to determine the effect of shared logic. For non-

functional duplication codes, any static hazard or sharing of logic

which causes sets of compatible output vectors to become incompatible

must be removed or else the code must be ciodified so that the sets of

outputs are split into smaller outputs. Obviously removing a static

hazard or using separate logic to calculate each output requires extra

logic. Modifying a code by splitting sets of compatible outputs, may

also require additional logic. It should be noted that for functional

duplication codes, hazards and shared logic are not a concern. The

bijective property requires that each set of compatible output vectors

15 6

have only one member. Therefore, for functional duplication, the sets

of data vectors always remain compatible.

The full adder example is a case where no code more economical than

functional duplication exists. There are other functions, however,

where codes more economical than functional duplication do exist. Fig­

ure 4.11 shows the truth table and fault behavior of a two-bit, vector

AND function. From the list of input and output fault behavior, it is

clear that only two sets of compatible output vectors are required,

{0,3} and {1,2}. For any such vector bitwise function, regardless of

the length of the input vectors, a fault under the simplified indeter­

minate fault model may only affect at most one output bit. Therefore,

any possible erroneous vector will be distance 1 away from the correct

output vector. To detect such errors, it is only necessary for every

output codeword to be at least distance 2 away from every other output

codeword. A one-bit parity code is an excellent choice for such a code.

Consequently, for any bitwise vector operation, fault-secure operation

with respect to the simplified indeterminate fault model may be provided

at a cost of only one check bit.

4.3.4. Check Ve_c.toc ff-gJLcrfrti<?h

If the circuit we wish to design accepts unencoded inputs, then the

generation of the check vector presents no particular difficulties. The

unencoded input vector is fanned-out to both the data and check portions

of the circuit. Since the entire input vector is available to the check

portion of the circuit, the generation of the output check vector is

straightforward. Unfortunately, if there is a fault on an input line

156

have only one member. Therefore, for functional duplication. the sets

of data vectors always remain compatible,

The full adder e~uaplo is a case where no code more economical than

functional duplication exiats. Thore are other functions. however,

where codes more econoaical than functional duplication do exist. Fig­

ure -4.11 shows the truth table and fault behavior of a two-bit, vector

AND function. From. the list of input a.nd output fault behavior, it is

clear that only two sets of compatible output vectors are required.

(0,3} and (1,2}. For any such vector bitwise function, regardless of

the length of the input vectors, a fault under the simplified indeter­

minate fault model may only affect at most one output bit. Therefore,

any possible erroneous vector will be distance 1 away from the correct

output vector. To detect such errors. it ii only necessary for every

output codeword to be at least distance 2 away from every other output

codeword. A one-bit parity code i1 an excellent choice for such a code.

Consequently. for any bitwise vector operation, fault-secure operation

with respect to the simplified indeterminate fault model may be provided

at a cost of only one check bit.

i-1-i• ~ Vector Generation

If the circuit we wish to design accepts unencoded inputs, then the

generation of the check vector presents no particular difficulties. The

unencoded input vector is fanned-out to both the data and check portions

of the circuit, Since the entire input vector is available to the check

portion of the circuit, the 1eneration of the output check vector is

straightforward. Unfortunately, if there is a fadt on an input line

157

OUTPUT FOR
INDETERMINATE FAULT IN

1 X X Y Y 1
1 FUNCTION 1 0 1 0 OUTPUT MAP 1

11 x X 1 Y Y s S s S S
1 1 0 1 1 0 -4
i o 0 1 0 0 00 00 00 00 00 0 1 1 1,2 1
1 o 0 I 0 1 00 00 Ou 00 00 O i l 1 1,2 1
1 o 0 1 1 0 00 u0 00 00 00 0 I 2 1 1,2 1

1 o 0 1 1 1 00 uO Ou 00 00 0 1 1,2 1 1,2 1
1 o 1 1 0 0 00 00 00 00 Ou O i l 1 1,2 1
1 0 1 1 0 1 01 01 Ou 01 Ou 1 1 0 1 0,3 1

1 0 1 1 1 0 00 uO 00 00 Ou 0 1 1,2 1 1,2 1
1 o 1 1 1 1 01 ul Ou 01 Ou 1 1 0,3 I 0,3 I

1 1 0 I 0 0 00 00 00 uO 00 0 1 2 1 1,2 1
1 1 0 j 0 1 00 00 Ou uO 0 0 0 1 1,2 1 1,2 1
1 1 0 I 1 0 10 uO 1 0 uO 10 2 I 0 1 0,3 1

1 1 0 j 1 1 10 uO lu uO 10 2 1 0,3 1 0,3 1

1 1 1 1 0 0 0 0 0 0 0 0 uO Ou 0 1 1,2 1 1,2 1
1 1 1 I 0 1 01 01 Ou ul Ou 1 1 0,3 1 0,3 1

1 1 1 1 1 0 10 uO 10 uO lu 2 1 0,3 1 0,3 1

1 1 1 1 1 1 1 1 ul i» ul lu 3 1 1,2 | 1,2 |

Figure 4.11 Vector AND Example

15?

OUTPUT FOR
INDETERMINATE FAULT I N

I X l XO f yl Yo
I FUNCTION 1 OUTPUT MAP
I X X y y s s l s s s
I 1 0 1 0

I 0 0 0 I 0 00 00 00 00 00 0 1.2
I 0 0 0 I 1 00 00 Ou 00 00 0 1 1.2
I o 0 1 I 0 00 uO 00 00 00 0 2 1, 2

I 0 0 1 I 1 00 uO Ou 00 00 0 1,2 1 , 2
I 0 1 0 I 0 00 00 00 00 Ou 0 1 1,2

I 0 1 0 I 1 01 01 Ou 01 Ou 1 0 0,3

I o 1 1 I o 00 u0 00 00 Ou 0 1. 2 1,2

I 0 1 1 I 1 01 ul Ou 01 Ou I 1 0,3 0,3
I 1 0 0 I 0 00 00 00 u0 00 I 0 2 1,2

I 1 0 0 I 1 00 00 Ou uO 00 I 0 1 , 2 1 , 2
I 1 0 1 I o 10 u0 10 uO 10 I 2 0 0, 3

I 1 0 1 I 1 10 uO lu u0 10 I 2 0 , 3 0,3
I 1 1 0 I 0 00 00 00 uO Ou I 0 1.2 1,2

I 1 1 0 I 1 01 01 Ou ul Ou I 1 0,3 0 , 3

I 1 1 1 I 0 10 uO 10 u0 ln I 2 0 , 3 0, 3

I 1 1 1 I 1 11 yl lu yl lu I 3 1,2 1.2

Figure 4.11 Vect or AND Example .

158

before the input vector is fanned-out to tie data and check portions of

the circuit* then the fault may cause an undetected error since the

incorrect value is passed to both the data and check portions of the

circuit.*

The generation of the check vector becomes more complicated if the

circuit is part of a larger totally self-checking system. In this case,

the check vector must be generated in such a manner that no modeled

failure on an input violates the fault-secure property.

Figure 4.12 demonstrates three possible ways of generating the

check vector that are compatible with the philosophy of separable codes.

Method A of Figure 4.12 has the advantage of being very simple. In this

method, the data input vector is used by both the data and check por­

tions of the circuit. Unfortunately, as we have just shown, this method

cannot protect against input line faults. Method B is also very simple.

In this method, the data input vector is used to calculate the data out­

put vector and the check input vector is used to calculate the check

output vector. Note that the check output vector of the previous func­

tion forms the check input vector of this function. The drawback to

this method is that there may not be enough information in the check

input vector to calculate the check output vector. It should be noted

that the bijactive property of functional duplication guarantees that

method B may always be used with functional duplication. Method C is

more complicated than either method A or method B. In method C, the

data input vector is used to calculate the data output vector and the

*
We are assuming that none of the data bits is redundant.

1.58

before the input vector is fanned-out to the data and check portions of

the circuit, then the fault may cause an undetected error since the

incorrect value h passed to both the data and check portions of tho

circuit.•

The generation of the check vector becomes more complicated if tlle

circuit is part of a larger totally self-checking system. In this case ,

tho check vector must be aenerated in such a man.nor that no modeled

failure on an input violates tho fault-secure property.

Figure •.12 demonstrates three possible ways of generating the

check vector that are compatible with tho philo■ophy of separable codes.

Method A of Figure •.12 has the advantage of beina very simple. In this

method, the data input vector is used by both the data and check por­

tions of the circuit. Unfortunately, as we have just shown, this motbod

cannot protect against input line faults. Method Bis also very simple.

In this method, the data input vector is used to calculate the data out­

put vector and tho chock input vector is used to calculate tho check

output vector. Note that tho check output vector of tho previous func­

tion forms the check input vector of this function. Tho drawback to

this method ia that there may not be enough information in the check

input vector to calculate the check output vector, It should be noted

that the bij octive property of functional duplication guarantees that

method B may always be used with functional duplication. .Method C is

more complicated than either method A or method B. In method C, the

data input vector is used to calculate tho data output vector and the

• le are assuming that nono of tho data bits is redundant.

159

METHOD A

METHOD B

METHOD C

Figure 4.12. Three Methods of Check Vector Generation.Figure 4 .12.

MTA

MTA ---
M TA

,_, -- ----------, -

....
'""" -

MTA

'"""

METHOD A

METHOD B

-
C11S111

- ----------,

METHOD C

_ _. --
1m --

Three Methods of Check Vector Generation.

159

160

data input and check input vectors are used to calculate the check out­

put vector. Since the check circuitry must process both the data input

and check input vectors* method C generally requires more logic than

either method A or method B. For this reason* method B is preferred

whenever it is feasible.

One of the advantages of using separable codes is that* in general*

single faults only affect either the data vector or the check vector,

but not both. If method C is used for generating the check vector then

a single fault may affect both the data and check portions of the cir­

cuit. Ideally, if method C is used to generate the check vector, then

it would be desirable to design the check portion of the circuit so that

no single failure on one of the data input bits causes both the data and

check portions of the circuit to produce erroneous output vectors. If

both the data and check output vectors may be in error, it is very dif­

ficult to determine whether the circuit violates the fault-secure pro­

perty. In some cases, it may be possible to design both the data and

check circuits so that even when both data and check vectors are

incorrect, the output vector is a non-codeword. In general, this goal

is very difficult to achieve since we must now consider the effect of

faults in the data input vector on the check output vector. The primary

reasons for choosing separable codes is to simplify the analysis and

design of the circuit. If faults are allowed to cause errors in both

the data output vector and the check output vector, then in order to

insure that the circuit is fault-secure, we must consider the data cir­

cuit and the check circuit together.

\

160

data input and ohect input vectors are used to calculate the check out­

put vector. Since the check circuitry must process both the data input

and check input vectors, method C generally requires more logic than

ei thor method A or method B. For this reason. method B is preferred

whenever it is feasible.

One of the advantages of using separable codes is that. in 1eneral.

single faults only affect either the data vector or tho chock vector.

but not both. If method C is used for generating the check vector then

a single fault may affect both the data and check portions of the cir­

cuit, Ideally, if method C is used to generate the chock vector, then

it would be desirable to design the check portion of the circuit so that

no single failure on one of the data input bits causes both the data and

check portions of the circuit to produce erroneous output vectors. If

both the data and check output vectors may be in error. it is very dif­

ficult to determine whether the circuit violates the fault-secure pro­

perty. In some cases. it may be possible to design both the data and

ohect circuits so that even when both data and check vectors are

incorrect, the output vector is a non-codeword. In general. this goal

is very difficult to achieve since we must 110,r consider the effect of

faults in the data input vector on tho check output vector . The primary

reasons for choosing separable codes is to simplify the analysis and

design of the circuit, If faults are allowed to cause errors in both

the data output vector and the check output vector, then in order to

insure that the circuit is fault-secure, we must consider the data cir­

cuit and the check circuit together.

161

Up to this point, only the function performed by the data circuit

needed to be considered. We were able to ignore the details of the

check circuit because errors were not allowed to occur in both the data

output vector and the check output vector. If simultaneous errors were

allowed in both the data output vector and the check output vector, then

the functions performed by the data circuit and the check circuit must

be considered when finding codes that satisfy the fault-secure property.

However, the function that the check circuit performs depends on the

code selected. In this case, a code has to be assumed, and then, the

data circuit and check circuit together as a unit may be tested to

determine if the entire circuit satisfies the fault-secure property.

The additional analysis required by this process negates any advantage

that separable codes have over non-separable codes in terms of ease of

analysis. In addition, the code used and the function performed by the

preceeding circuit, which produces the inputs for this circuit, must

also be considered when evaluating the fault-secureness of this circuit.

This requirement serves to complicate the design process further. For

the sake of simplicity, we assume that simultaneous incorrect data and

check vectors imply a de jure violation of the fault-secure property.

This assumption will be referred to as the disjoint error assumption.

In many cases method B is not applicable. It is important to know

whether or not method C is universally applicable so that it may be used

when method B cannot be used.

Theorem 4: Method C may be used to provide a fault-secure imple­
mentation with respect to the simplified indeterminate fault
model of the check portion of the circuit provided that the

161

Up to this point, only the function perfor111ed by the data circuit

needed to be considered. We were able to ignore the details of the

check circuit because errors were not allowed to occur in both the data

output vector and the check output vector, If simultaneous errors were

allowed in both the data output vector and the check outpnt vector, then

the functions performed by the data circuit and the check circuit must

be considered when finding codes that satisfy the fault-secure property.

However, the function that the check circuit performs depends on the

code selected. In this case, a code has to be assumed, and then. the

data circuit and check circuit together as a unit may be tested to

determine if the entire circuit satisfies the fault-secure property.

The additional analysis required by this process negates any advantage

that separable codes have over non-separable codes in terms of ease of

analysis. In addition, the code used and the function performed by the

preceeding circuit, which produces the inputs for this circuit, must

also be considered when evaluating the fault-secureness of this circuit.

This requirement serves to complicate the design process further, For

the sake of simplicity, we assume that simultaneous incorrect data and

check vectors imply a de Jure violation of the fault-secure property,

This assumption will be referred to as the disjoint m assumption.

In many cases method B is not applicable. It is important to know

whether or not method C is universally applicable so that it may be used

when method B cannot be used.

Theorem!: Method C may be used to provide a fault-secure imple­
mentation with respect to the simplified indetertninate fault
model of the check portion of the circuit provided that the

162

Hamming distance between any two data input vectors in a compa­
tible set is at least 3.*

^IQ Q £.‘ Ve prove this theorem by describing a method C implemen­

tation that satisfies the theorem. Assume that the check por­

tion of the circuit has no static hazards. As we have already

discussed* any switching function has a static hazard free im­

plementation. Recall that added redundancy if any, does not

jeopardize the fault-secure property. If method B is sufficient

to provide a fault secure implementation, then clearly this

theorem is true (i.e., simply use the method B implementation

and have the data input vector ignored by the check generation

circuitry).

If method B is not sufficient, then there must be at least

one instance where the same check input vector is used by the

check circuit to calculate two different check output vectors.

In this case, the information contained in the data input vector

must be used to help calculate the check output vector. Let us

call any two such data input vectors an<j . Let their

corresponding check input vector be and their check output

vectors be and co2 » respectively. Since data input vectors

and D2 have the same check vector C^, they must belong to

the same set of compatible data vectors. By the distance 3 res­

*
Under any circumstances, the Hamming distance between any two compa­

tible data vectors must be at least 2. Otherwise, a fault on an output
line could transform one member of a compatible set into another member
of the same set. This property violates the definition of a compatible
set.

•

Hammin1 cHstanoo between any two data input vectors in a compa­
tible set is at least 3.•

Proof: Ye prove this theorem by describing a method C implemen­

tation that satisfies the theorem. Ass11Jlle that tho check por­

tion of the circuit has no static hazards. As we have already

discussed, any switching function has a static hazard free im­

plementation. Recall that added redundancy if any, does not

jeopardize the fault-secure property. If method Bis sufficient

to provide a fault secure implementation, then cl early thi a

theorem is true (Le., limply use the method B implementation

and have the data input vector ignored by the check 1eneration

circuitry).

If method Bis not sufficient, then there must be at least

one instance where the same chock input vector is used by the

check circuit to calculate two different check output vectors.

In this case, the infor~ation contained in the data input vector

must be used to help calculate the check output vector . Let us

call any two such data input vectors D1 and Di- Let their

correspondin1 check input vector be Cil• and their check output

vectors be Col and c02 , respectively. Since data input vectors

DI and D2 have the same check vector Cu, they must belong to

the same set of compatible data vectors. By the distance 3 res-

162

Under any circUD1stances, the Hamming distance between any two compa-
tible data vectors must be at least 2. Otherwise, a fault on an output
line could transform one member of a compatible set into another member
of tho same set. This property violates the definition of a compatible
set.

163

triction of the theorem, an<j must differ in at least three

bits. Let S be the set of bit positions in the data input vec­

tor which are different in an(j . Since the minimum Hamming

distance is 3, set S must have at least 3 members.

When a fault exists, the output may be either the correct

codeword or a non-codeword. Precisely which non-codeword that

is produced is not important. Therefore, as long as an in­

correct codeword is not produced, we may design the circuit to

behave in any manner we wish when an unused input occurs. Since

a single fault on the data input bits in S corresponds to unused

input vectors, we are free to assign these in any way we find

convenient as long as an incorrect codeword is not produced.

In order to insure that the check generation circuit satis­

fies the fault-secure property, the check circuit must be

designed so that if the correct check output vector is C ^ then

for any single bit change in 0f bits in set S, the check out­

put vector is still t This requirement follows from the dis­

joint error assumption. Likewise, if the correct check output

vector is then for any single change in D2 of a bit in set

S, the check output vector must remain Cq1. The check function

may always be defined in this manner, since all pairs of data

input vectors in the same compatibility set have a Hamming dis­

tance of at least 3.

Since the check circuit has no static hazards, when an(j

triction of the theorem, D1 and o2 must differ in at least three

bits. Let S be the set of bit positions in the data input vec-

tor which are different in D1 and ~ - Since the minimum Hamming

distance is 3, set S must have at least 3 members.

When a fault exists, the output may be either the correct

codeword or a non-codeword. Precisely which non-codeword that

is produced is not important. Therefore, as long as an in­

correct codeword is not produced, we may design the circuit to

behave in any manner we wish when an unused input occurs. Since

a single fault on the data input bits in S corresponds to unused

input vectors, we are free to assign these in any way we find

convenient as long as an incorrect codeword is not produced.

In order to insure that the check generation circuit satis­

fies the fault-secure property, the check circuit must be

designed so that if the correct check output vector is C01 , then

for any single bit change in D1 of bits in set S, the check out­

put vector is still C01 • This requirement follows from the dis­

joint error assumption. Likewise, if the correct check output

vector is C02 , then for any single change in D2 of a bit in set

S, the check output vector must remain C02 . The check function

may always be defined in this manner, since all pairs of data

input vectors in the same compatibility set have a Hamming dis­

tance of at least 3.

Since the check circuit has no static hazards, when c11 and

163

164

either or is applied to the check circuit* no check output

hit is sensitized to any one of the hits in set S. Similarly

given and either or Dj as inputs* no check output can he

sensitized to a data input hit which is not in set S, due to the

disjoint error assumptiouc The distance 3 restriction in the

theorem statement assures that such a circuit is feasible.

Therefore, any fault on a single data input hit results in

the correct check output vector and either the correct or the

incorrect data output vector. If the data output vector is

correct, then the correct codeword is produced. If an incorrect

data output vector is produced, then it is not compatible with

the correct check output vector. Therefore, the circuit is

fault-secure.

Theorem 4 shows that method C may always he used provided that the

minimum Hamming distance in any compatible set is at least 3. In the

proof, it is required that the check circuit he designed so that in

those cases where there is insufficient information in the check input

vector to calculate the data input vector, a single fault on one of the

data input hits would not change the check output vector. By making

this requirement, we are insuring that a fault on one of the data input

bits does not cause the check output vector to he incorrect. If we do

not design the check circuit in this manner, then a fault on one of the

data input hits may cause both the data and check vectors to he

incorrect. This in turn may lead to an incorrect codeword output and

thus a violation of the fault-secure property.

either D1 or Di is applied to the check circuit, no check output

bit ls sensitized to any one of the bits in set S. Similarly

given C i1 and either 0,. or D2, as inputs, no check output can be

sensitized to a data input bit which is not in set S, due to the

disjoint error assumption. The distance 3 restriction in the

theorem statement assures that such a circuit is feasible .

Therefore, any fault on• single data input bit results in

the correct check output vector and either the correct or the

incorrect data output vector. If the data output vector is

correct, then the correct codeword is produced. If an incorrect

data output vector is produced, then it is not compatible with

the correct check output vector. Therefore, the circuit is

faul t-secare.

164

Theorem 4 shows that method C may always be used provided that the

minimum Hamming distance in any compatible set is at least 3. In the

proof, it is required that the check circuit be designed so that in

those cases where there is insufficient information in the check input

vector to calculate tho data input vector, a single fault on one of the

data input bits would not change the check output vector. By making

this requirement, we are insuring that a fanlt on one of the data input

bits does not cause the check output vector to be incorrect. If we do

not design the check circuit in this manner, then a fault on one of the

data input bits may cause both the data and check vectors to be

incorrect. This in turn may lead to an incorrect codeword output and

thus a violation of the fault-secure property.

165

In order to satisfy the fault-secure property under the disjoint

error assumption, the check circuitry must be designed so that no single

fault on one of the data input bits changes the check output vector.

Unfortunately, this type of check circuit creates a testability problem

if the desire is to implement a circuit which satisfies the totally

self-checking goal.

Theorem 5: If a circuit cannot be implemented using method B,
then no implementation using method C satisfies the totally
self-checking goal with respect to the simplified indeterminate
fault model.

Proof: If the checker circuit is implemented so that a single

fault on one of the data input bits may change the check output

vector, then a single failure on one of the data input lines can

result in an incorrect data output and check output vector. By

the disjoint error assumption, the circuit is not fault-secure.

Therefore, the circuit cannot satisfy the totally self-checking

goal.

Consider an implementation using method C where no single

bit input fault alters the check output vector. We now prove

the the theorem by constructing a sequence of faults on the data

input bits for which the implementation violates the self­

checking goal . Since the data portion of the circuit may con­

tain redundancy, we consider faults only on irredundant data in­

put bits, i.e., each such fault will affect the data output vec­

tor for some data input vector. Let the first fault in the se­

quence occur on one of the data input bits after they have been

165

In ordor to satisfy the fault-secure property under the disjoint

error assmnption, the check circuitry must be designed so that no single

fault on one of the data input bits changes the check output vector.

Unfortunately. this type of check circuit creates a testability problem

if the desire is to implement a circuit which satisfies the totally

self-checking goal.

Theorem i: If a circuit cannot be implemented using method B,
then no implementation using method C satisfies the totally
self-checking goal •ith respect to the simplified indeterminate
fault model.

~: If the checker circuit is implemented so that a single

fault on one of the data input bits may change the check output

vector. then a single failure on one of the data input lines can

result in an incorrect data output and check output vector. By

the disjoint error assumption, the circuit is not faul t-secnre.

Therefore, the circuit cannot satisfy the totally self-checking

goal,

Consider an implementation using method C where no single

bit input fault alters the check output vector. We now prove

the the theorem by constructing a sequence of faults on the data

input bits for which the implementation violates the self­

checking goal. Since the data portion of the circuit may con­

tain redundancy. we consider faults only on irredundant data in-

put bits. i.e .• each such fault will affect the data output vec­

tor for some data input vector. Let the first fault in the se­

quence occur on one of the data input bits after they have been

fanned out so that the fault only affects the check circuit•

This fault is undetectable. Let the next fault occur occur on

another data input bit. If this fault causes the check output

vector to change * then let the fault occur before the data input

bits are fanned out so that it affects both the data and check

portions of the circuit. Otherwise, let the fault occur after

the data input bit is fanned out so that it affects only the

check portion of the circuit and is therefore undetectable.

Continue this process until a fault finally causes an incorrect

check output vector. Note that such a fault must eventually be

encountered since otherwise all data input bits would be redun­

dant in the checker portion of the circuit and we would have a

method B implementation contrary to the theorem hypothesis. We

now have a sequence of undetectable faults followed by a data

input bit fault that alters the check output vector. This last

fault must also alter the data output vector for some choice of

input vector. It therefore causes an incorrect data output vec­

tor and an incorrect check output vector. From the disjoint er­

ror assumption, the circuit is not fault-secure for this se­

quence of faults. Therefore, the circuit cannot satisfy the to­

tally self-checking goal.

From this discussion, several conclusions can be drawn. Method A

must be used if the circuit receives unencoded inputs. Method A, how­

ever, does not protect against failures that occur on data inputs. When

the circuit receives encoded inputs, method B is the method of choice.

166

' I

fa-nned out so that the fault only affects the check circuit .

This fault ii undetectable. Let the neitt fault occur occur on

another data input bit. If this fault causes the check output

vector to change, then let the fault occur before the data input

bits are fanned out so that it affects both the data and check

portions of the circuit. Othenrise. let the fault occur after

the data input bit is fanned out so that it affects only the

check portion of the circuit and ia therefore udetectable.

Continue this process until a fault finally causes an incorrect

check output vector. Note that such a fault must eventually be

encountered since otherwise all data input bits would be redun­

dant in the checker portion of the circuit and we would have a

method B iJl.plemontation contrary to the theorem hypothesis. We

now have a sequence of undetectable faults followed by a data

input bit fault that alters tho check output vector. This last

fault must al so alter the data output vector for some choice of

input vector. It therefore causes an incorrect data output vec­

tor and an incorrect check output vector. From the disjoint er­

ror assumption. the circuit is not fault-secure for this se­

quence of faults. Therefore, the circuit cannot satisfy the to­

tally self-checking goal.

1,,

From this discussion. several conclusions can be drawn. Method A

must be used if tho circuit receives nnenooded inputs. Method A. how-

ever. does not protect against failures that occur on data inputs. When

the circuit receives encoded inputs, method B is the method of choice.

I

l

Method B is relatively simple to implement and when feasible, always

provides a fanlt-secnre implementation. Unfortunately, in some cases,

there is not enough input information in the check input vector to com­

pute the check output vector. In such cases, method B cannot be used.

Method C usually requires more logic than either method A or method B.

Method C provides a fault-secure implementation provided that the

minimum distance of all compatible data input sets is at least 3.

Unfortunately, we have shown in Theorem 5, that if method B is not

feasible for a given function and input encoding, then no method C

implementation can satisfy the totally self-checking goal. Therefore,

if the desire is to construct circuits which satisfy the totally self­

checking goal, then only method B merits further consideration.

In Theorem 4, we required that the Hamming distance between any two

data input vectors be at least 3. This requirement is actually more

restrictive than necessary. In particular, if a compatible set of data

input vectors all produce data outputs which are all in the same set of

compatible output vectors, then it is unnecessary to use the data input

vector to calculate the check output vectors. In this case, the check

input vector implies the check output vector. Consequently, for this

check input vector, none of the check output bits is a function of any

of the data input bits. If the check circuit has no static hazards,

then none of the check output bits is sensitized to any of the data

input bits. Therefore, it is only necessary that those compatible data

input vectors which may produce data output vectors in different compa­

tible output sets must have a minimum Hamming distance greater than 2.

I
167

Method B is relatively simple to implement and when feasible, always

provides a fault-secure implementation. Unfortunately, in some cases,

there is not enough input information in the check input vector to com­

pute the check output vector. In such cases, method B cannot be used,

Method C usu.ally requires more logic than either 111etbod A or 111ethod B.

Method C provides a fault-secure implementation provided that the

minimum distance of all compatible data input sets is at least 3.

Unfortunately, we have shown in Theorem S, that if method B is not

feasible for a given function and input encoding, then no method C

implementation can satisfy the totally self-checking goal. Therefore,

if the desire is to construct circuits which satisfy the totally self­

checking goal, then only method B merits further consideration.

In Theorem 4, we required that the Hamming distance between any two

data input vectors be at least 3 . This requirement is actually more

restrictive than necessary. In particular, if a compatible set of data

input vectors all produce data outputs which are all in the same set of

compatible output vectors, then it is unnecessary to use the data input

vector to calculate the check output vectors. In this case, the check

input vector implies the check output vector. Consequently, for this

check input vector, none of the check output bits is a function of any

of the data input bits. If the check circuit has no static hazards,

then none of the check output bits is sensitized to any of the data

input bits. Therefore, it is only necessary that those compatible data

input vectors which may produce data output vectors in different compa­

tible output sets must hav e a minimum Ramming distance greater than 2.

168

Figure 4.12 demonstrates three different methods of generating the

check output vector. A fourth method exists where both the check output

and data output vectors are calculated using both the check input and

the data input vectors. This method is not considered since it violates

the spirit of a separable implementation. One of the advantages of a

separable implementation is that the data portion of the circuit is

unchanged by the coding function. If the data output vector were com­

puted from both the data input and the check input vectors* the data

portion of the circuit would be changed.

4.4. CED Under & General Single F&iJjajfi I-EUlsle.CTiafttg Ew lE Model

The simplified indeterminate fault model is adequate for describing

failures that only affect a single line. Unfortunately* the simplified

indeterminate fault model fails to take into account the behavior of

bridging failures. For this reason* we propose a new fault model which

includes bridging failures.

4.4-I* Fault AgaaaiLfciflna PiP-g.exli-C.g

The a£ft££fil ai&glfirl&ilm a iMe-terminate fault Hjfljtel assumes that

any physical failure that causes a short between two nodes causes the

value on the two nodes to become ternary u values. Any physical failure

which affects a single node causes the value on the node to become a

ternary u value.

*
Only bridging failures between two nodes are considered. The proba­

bility that a single failure causes more than 2 lines to become shorted
is quite low.

168

Figure 4.12 demonstrates three different methods of generating tho

chock output voctor. A fourth method oxists where both the check output

and data output vectors are calculated using both the chock input and

the data input vectors. This method is not considered since it violates

the spirit of a soparable implementation. Ono of tho advantage• of a

separable implenentation is tbat the data portion of the circuit h

unchanged by the coding function. If the data outi,ut vector wore com­

puted from both the data input and tho check input vectors, tho data

portion of tho circuit would be changed .

,!.J. ~ Und;r A Gcnaral Sinsle Failure Indetenninato f&.Jl.ll ~

Tho simplified indeterminate fault model is adequate for describin1

failures that only affect a single line. Unfortunately, tho simplified

indeterminate fault 111odel fails to tat.e into account tho behavior of

bridging failures. For this reason, we propose a new fault model which

includes bridging failures.

i-!-1, Fault Model Assumptions .IA4 Properties

The seneral singl~failure indeterminate fault model asslllllos that

any physical failure that cau1111s a short between two nodes causes the

• value on the tYo nodes to become ternary u values. Any physical failure

which affects a single node causes the value on the node to becoine a

ternary u valuo,

• Only bridging failures between two nodes are considered. The proba-
bility that a single failure causes more than 2 lines to become shorted
is quite low.

169

Clearly, the general single-failure indeterminate fault model and

the simplified indeterminate fault model are identical for physical

failures that affect only a single node. The difference is that the

general single-failure indeterminate fault model is also able to model

failures which cause two nodes to become shorted together. We assume

that a bridging failure always causes both nodes to assume a ternary u

value. It can be argued that if both lines have the same Boolean value,

the short has no effect. In most cases, this is true. For some types

of circuits which are very sensitive to changes in circuit parameters

(i.e., certain classes of dynamic circuits), a short between two nodes

may definitely affect circuit operation, even when they would have the

same Boolean value under no fault. For other classes of circuits it is

also possible to make the assumption that both nodes assume a u value

only when the nodes have different Boolean logic values under no

failure. In this case, any time both lines have the same value, we

still must consider the effect of single faults at each node.

Most of the theorems and procedures which were developed in Section

4.3 for the simplified indeterminate fault model have an analog for the

general single-failure indeterminate fault model. When considering a

theorem for the general single-failure indeterminate fault model, which

is analogous to a theorem we have considered for the simplified indeter­

minate fault model, we use a after the theorem's number to indicate

that the theorem applies to the general single-failure indeterminate

fault model.

169

Clearly, the general single-failure indeterminate fault model and

the simplified indeterminate fault model are identical for physical

failures that affect only a single node. The difference is that the

general single-failure indeterminate fault model is also able to model

fail nres which cause two nodes to become shorted together, We assume

that a bridging failure always causes both nodes to assume a ternary u

value. It can be argued that if both lines have the same Boolean value,

the short has no effect. In most cases, this is true . For some types

of circuits which are very sensitive to changes in circuit parameters

(i.e., certain classes of dynamic circuits), a short between two nodes

may definitely affect circuit operation, even when they would have the

same Boolean value under no fault. For other classes of circuits it is

also possible to make the assumption that both nodes assume a n value

only when the nodes have different Boolean logic values under no

failure. In this case. any time both lines have the same value, we

still must consider the effect of single faults at each node.

Most of the theorems and procedures which were developed in Section

4.3 for the simplified indeterminate fault model have an analog for the

seneral single-failure indeterminate fault model. When considering a

theorem for the general single- failure indeterminate fault model. which

is analogous to a the orem we have considered for the simplified indeter­

minate fault model, we use a 11
• " after the theorem's number to i ndicate

that the theorem applies to the general single-fail nre indeterminate

fault model.

170

When more than one variable of a logic function may be an indeter­

minate value* the Boolean difference is no longer satisfactory for

determining whether an output is sensitized to n values on several

inputs. Considers

X - .c* JLp* *p+l» Xjj)
where X represents an input vector to some combinational function f. If

function f has no p-variable logic hazards* then the output of f is sen-

sitized to ternary n values on (ij, ^) if and only lf there exists

both l #s and 0*s specified for f within the 2P cells of the sub-cube
1

X̂p+1 » •••» Xjj) . When a p-variable logic hazard exists* then the output
of f is sensitized* even if the 2P cells of the sub-cube (x _ \

p + 1 » • • • *

are specified as all l ps or all 0's.

In the general single-failure indeterminate fault model* we assume

that any two nodes in the circuit can be shorted together. In practice*

only lines which are in close proximity to one another can become

shorted. Unfortunately, unless the circuit layout is available* there

is no way of knowing which lines are near each other. For this reason, i
we assume that with one exception* any line in the circuit may become

shorted to any other line in the circuit. The one exception concerns |
■ ! I

shorts between the data and check portions of the circuit. We assume

that the circuit is designed so that no shorts can occur between the [

check circuit and data circuit. Presumably* a design rule can be speci­

fied so that if two lines are separated by some distance* no short can

occur between the two nodes. This restriction insures that no single

short will cause an error to occur in both the data and check output

170

When more than one variable of a logic function may be an indeter­

minate value. the Boolean difference is no longer satisfactory for

determi11in1 whether an output is sensitized to u values on several

inputs. Consider:

X • (x1, ••• , Zp• J:p+l • • ••, Zn_)

where X represents an input vector to some combinational funotion f. If

fnnction f has no p-variable loaic hazards. thon the output off is sen-

sitized to ternary u values on (x1 , ••• , ;.> if and only if there exl1ta

both l's and 0' s specified for f within the 2P cells of the sub-cube

(x)
p+l • • • • • %it • When a p-variable logic hazard exists, then tho output

off is sensitized, even if tho 2P cells of the sub-oubo (x , p+l • • • • • ¼ •

are specified as all l's or all O's.

In the general single-failure indeterminate fault model, we assume

that any two nodes in the circuit can be shorted together. In practice,

only lines which are in close p~osimity to one another can become

shorted. Unfortunately, unless the circuit layout is available, there

is no way of knowing which lines are near each other. For this reason,

we assume that with one exception, any line in tho circuit may become

shorted to any other lino in the circuit. The one exception concerns

shorts between. tho data and check portions of the circuit. We ass Wile

that the circuit is designed so that no shorts can occur between tho

check circuit and data circuit. Presumably, a design rule can be speci­

fied so that if two lines are separated by some distance, no short can

occur between the two nodes. This restriction insures that no single

short will cause an error to ooc:ur in both the data and check output

171

vectors. In many cases, a circuit layout is such that inputs and out­

puts are on opposite sides of the circuit. If this is the case, the

probability of a short between an input node and an output nodes is very

low. We assume that input-output shorts may occur. If enough informa­

tion is known about the layout, it may be desirable to assume that

input-output shorts do not occur. All of the results of this section

may be easily modified if desired for the assumption that input-output

shorts do not occur.

We are now ready to begin reconsideration of the theorems which we

have already developed for the simplified indeterminate fault model.

Hypothesis*: Indeterminate values at a pair of nodes is the most
general model for a bridging fault.

Theorem 2*: For any switching function, an implementation exists
in which all failures allowed by the general single-failure in­
determinate fault model may be modeled as ternary u values on
one or two input lines, ternary u values on one or two output
lines, or ternary u values on a single input line and a single
output line.

Proof: If one of the two u values behaves as the correct logic

value, then this situation is equivalent to a single u value on

an input or output. In the proof of Theorem 2, we showed that a

single u value on an input or output could model all failures in

the simplified indeterminate fault model. Therefore, we only

need to consider bridging failures. Assume the function is im­

plemented in the form of Figure 4.6, i.e., no output bits share

logic. Clearly, any failure which causes a short between two

input lines may be modeled as a pair of indeterminate values on

171

vectors. In many cases, a circuit layout is such that inputs and out-

puts are on opposite sides of the circuit. If this is the case, the

probability of a short between an input node and an output nodes is very

low. We assume that input-output shorts may occur . If enough informa­

tion is known about the layout, it may be desirable to assWtle that

input-output shorts do not occur. All of the results of this section

may be easily modified if desired for the assumption that input-output

shorts do not occur.

We are now ready to begin reconsideration of the theorems which we

have already developed for the simplified indeterminate fault model.

Hypothesis•: Indetenninate values at a pair of nodes is the most
general model for a bridging fault.

Theorem 1 • : For any switching function. an implementation exists
in which all failures allowed by the general single-failure in­
determinate fault model may be modeled as ternary t1 values on
one or two input 1 ines, ternary u values on one or two output
lines. or ternary u values on a single input line and a single
output 1 ine,

~: If one of the two u values behaves as the correct logic

value. then this situation is equivalent to a single u value on

an input or output. In the proof of Theorem 2, we showed that a

single n value on an input or output could model all failures in

the simplified indeterminate fault model. Therefore, we only

need to consider bridging failures. Assume the function i s im-

plemented in the form of Figure 4,6, i.e .. no output bits share

logic, Clearly, any failure which causes a short between two

input lines may be modeled as a pair of indeterminate values on

the two shorted input lines. A short between two nodes within

the logic for one output bit only affects that output. This

condition may be represented as a single ternary u value on the

affected output. Any short that occurs between two nodes asso­

ciated with two distinct output bits# can at most affect the two

output bits. Thus# such faults may be modeled as a pair of ter­

nary u values on these outputs. A short that occurs between an

input node and an output node may be modeled as the as a ternary

u value on the affected input and a ternary u value on the af­

fected output. Therefore# for this implementation, all failures

allowed by the general single-failure indeterminate fault model

may be modeled as ternary u values on at most two input lines#

two output lines, or one of each.

Just as was the case for the simplified indeterminate fault model,

Theorem 2* significantly reduces the number of faults which must be con­

sidered for implementations of the form of Figure 4.6. If shorts

between an input node and an output node are not being considered, then

only pairs of ternary u values on input nodes and pairs of ternary u

values on output nodes need to be considered.

Theorem 3.*: Functional duplication provides an implementation
which satisfies the totally self-checking goal with respect to
the general single-failure indeterminate fault model for any
switching function.

Proof: Based on the assumption that the circuit can be designed

such that no node in the data portion of the circuit can be

172

the two shorted input lines. A short betwoen two nodes within

the logic for one output bit only affects that output. This

condition may be represented as a single ternary u value on the

affect•d output. Any short that occurs between t•o nodes asso­

ciated with two distinct output bits. can at most affect the two

output bits. Thus. such faults aay be modeled as a pair ofter­

nary u values on these outputs. A short that occurs between an

input node and an output node may be modeled as the as a ternary

11 value on tho affected input and a ternary 11 value on tho af­

fected output. Therefore, for this implementation. all failures

allowed by the aeneral single-failure indeterminate fault model

may bo modeled as ternary u valu~s on at most two input lines,

two output lines, or one of each.

172

Just as was the case for tho simplified indeterminate fault model,

Theorem 2• significantly reduces the number of faults which must be con-

sidered for implementations of tho form of Figure 4 .6, If short&

between an input node and an output node are not being considered. then

only pairs of ternary u values on input nodes and pairs of ternary u

values on output nodes need to be considered,

Theorem 1,• : Fllnctional duplication provides an implement& tion
which satisfies tho totally self-checking goal with respect to
the general single-failure indeterminate fault model for any
switching f11.11ctlon.

~: Based on the assllJllption that the circuit can be designed

such that no node in the data portion of the circuit can be

173

shorted to a node in the check portion of the circuit* the proof

is identical to the proof for Theorem 3.

Corollary 1 *: If a functional duplication implementation con­
tains no redundant logic (when only the input code space may he
applied)* then it is totally self-checking.

Proof: The proof is identical to the proof for Corollary 1.

4.4.2. Economical Implementations for the General Indeterminate Fault

Model

Once again* we are now left with the question of when, if ever, an

implementation exists which is cheaper than functional duplication. The

procedure that we developed for the simplified indeterminate fault model

is directly applicable to the general single-failure indeterminate fault

model. The only difference is that we must consider faults on a pair of

input and output lines rather than single faults.

As an example of searching for a more economical code, consider a

four-input, three-output function. The inputs consist of two 2-bit

numbers, X = x1Xq and y = yiyo* The output S = s2 siso is the sum of X

and Y. Figure 4.13 shows the truth table for the function and the

result of failures on all pairs of inputs. It is assumed the function

is implemented without any 2-variable logic hazards so that the sensi­

tized bits may be determined from the truth table. By only considering

faults on the inputs, we have the situation where any of the correct

output vectors, except 0, can be transformed to any other output vector.

When 0 is the correct output vector, then any output vector may result

shorted to a node in the check portion of the circuit, the proof

is identical to the proof for Theorem 3.

Corollary 1• : If a functional duplication implementation con­
tains no redundant logic (when only the input code space may be
applied), then it is totally self-checking.

Proof: The proof is identical to the proof for Corollary 1.

113

i•l••· Economical Implementations .ill. ~ General Indeterminate Fault

Model

Once again, we are now left with the question of when. if ever. an

implementation exists which is cheaper than functional duplication. The

procedure that we developed for the simplified indeterminate fault model

is directly applicable to the general single- failure indeterminate fault

model. The only difference is that we must consider faults on a pair of

input and output lines rather than single faults.

As an example of searching for a more economical code, consider a

fonr-inpnt. three-output function. The inputs consist of two 2-bit

number 5 • X = x1xo and Y = YlYO. The output S = s2 s1 so is the stml of X

and Y. Figure 4.13 shows the truth table for the function and the

result of failures on all pairs of inputs. It is asstlJlled the function

is implemented without any 2-variable logic hazards so that the sensi­

tized bits may be determined from the truth table, By only considering

faults on the inputs. we have the situation where any of the correct

output vectors. except O. can be transformed to any other output vector.

When O is the correct output vector, then any output vector may result

174

S OUTPUT FOR INDETERMINATE I
J_______ BRIDGING FAULT IN___________J

i1 FUNCTION *lx0 *lyl xly0 x0yl W o 1 W o 1

j * , xo y 1 y o
s s s S s s s

■I . A.
1 o 0 0 0 000 Ouu uuO Ouu Ouu Ouu Ouu
! o 0 0 1 001 uuu uul Ouu uuu Ouu Ouu
i o 0 1 0 010 uuu uuO uuu Ouu uuu Ouu
S o 0 1 1 Oil uuu 1 uul uuu uuu uuu Ouu
j 0 1 0 0 001 Ouu 1 uul uuu Ouu Ouu uuu
i o 1 0 1 010 uuu 1 uuO uuu uuu Ouu uuu

1 o 1 1 0 Oil uuu 1 uul uuu Ouu uuu uuu 1
! o 1 1 1 100 uuu 1 uuO uuu 1 uuu UUU UUU 1 1
1 i 0 0 0 010 Ouu 1 uuO Ouu 1 uuu uuu UUU 1 1
1 i 0 0 1 Oil uuu 1 uul 1 Ouu 1 uuu I uuu uuu 1 1
1 i 0 1 0 100 uuu 1 uuO 1 uuu 1 uuu 1 luu uuu 1 1 1
I i 0 1 1 101 uuu 1 uul 1 uuu 1 uuu 1 luu 1 UUU I 1 t
i i 1 0 0 Oil Ouu 1 uul 1 uuu 1 uuu 1 uuu I uuu 1 1 1
1 1 1 0 1 100 uuu 1 uuO 1 uuu 1 uuu I uuu 1 uuu 1 1 1
1 1 1 1 1 1 0 1 101 uuu 1 uul 1 uuu 1 uuu 1 luu 1 UUU 1 1 1
L i — ll 1 1— 1 1 i 110 _JiSS— 1. .too— 1 uim— 1 uuu__ 1 luu__1 ..Ujrs__ l

Figure 4.13 Two-Bit Adder Example

174

I OU'n>UT FOil INDETERMINATE I
I BRIDGING FA]ZLT IN I

i FUNCTION I %1%0 I z:1y1 1:lyO xoY1 I 1:070 Y1Yo I l

%1 %0 y1 Yo s s I s s s I s s I
0 0 0 0 000 Ouu I unO Oun Ouu I Ouu Ouu
0 0 0 1 001 111111 I nul Ouu uuu I Ouu Ouu
0 0 1 0 010 unu I 11110 unu Ouu I UllU Ou11
0 0 1 1 011 1l1lll uul uun uuu I uuu Ouu
0 1 0 0 001 Ouu uul uuu Ouu I Ouu 111111

0 1 0 1 010 uuu uuO nuu uuu I Ouu nuu
0 1 1 0 011 1l111l unl UllU Ouu I 111111 U11U

0 1 1 1 100 uuu nnO 1l11U nun I a.nu nun
1 0 0 0 010 Oun uuO Ouu uuu I nun nun
1 0 0 1 011 uuu unl ' Ouu unu l unn unn
1 0 1 0 100 unu uuO I uuu uuu I lnu QUU

1 0 1 l 101 uuu nul I U11U 1111'11 I luu uuu
1 1 0 0 011 Ouu nul I 111111 UU.11 i uun uuu
1 1 0 1 100 uuu uuO I UllU nun I uuu u1111

1 1 1 0 101 U1111 uul J 111111 uuu I luu uun
1 1 1 l 110]l]l]I :imO I llllll JUl]I I 131]1 JUlll

Figure •.13 Two-Bit Adder Ezuaple .

175

except 5 and 7. Since output vector 7 is never a legal output vector,

it may be ignored. When output faults are considered, it is possible

for the correct output vector 0 to be transformed into output vector 5.

Therefore, any of the correct output vectors can be transformed by a

modeled failure into any of the other legal output vectors. Clearly,

functional duplication is the cheapest code for this example if the gen­

eral single-fault indeterminate fault model is used.

Figure 4.14 shows the behavior of the outputs under input-output

shorts. In order to consider the effects of input-output shorts, it is

necessary to consider a ternary u value on one input node and one output

node simultaneously. The procedure of Section 4.3.3 considers the

effect of ternary u values on all single input nodes. The first four

columns of Figure 4.14 show the effect of faults on the input nodes. If

an indeterminate fault simultaneously occurs on an output node, then the

resulting output vector may be altered in at most one additional bit

position. Therefore, the output vector resulting from a ternary u value

at both an input node and an output node, as shown in the output map of

Figure 4.14, is either:

(1) the correct output vector

(2) one of the incorrect output vectors that can result from a
fault on an input node

(3) other output vectors which are a Hamming distance of 1 from
one of the output vectors in (1) or (2).

The procedure for finding codes that are more economical than func­

tional duplication and that have implementations that are fault-secure

17S

except 5 and 7. Since output vector 7 is never a legal output vector,

it may be ignored. When output faults are considered, it is possible

for the correct output vector Oto be transformed into output vector 5.

Therefore, any of the correct output vectors can be transformed by a

modeled failure into any of the other legal output vectors , Clearly,

functional duplication is the cheapest code for this example if the gen­

eral single-fault indeterminate fault model is used.

Figure 4 .14 shows the behavior of the outputs under input-output

shorts. In order to consider the effects of input-output shorts. it is

necessary to consider a ternary u value on one input node and one output

node simultaneously. The procedure of Section 4.3 .3 considers the

effect of ternary u values on all single input nodes. The first four

columns of Figure 4,14 show the effect of faults on the input nodes. If

an indeterminate fault simultaneously occurs on an output node. then the

resulting output vector may be altered in at most one additional bit

position. Therefore, the output vector resulting from a ternary u value

at both an input node and an ontput node, as shown in the output map of

Figure 4.14, is either:

(1) the correct output vector

(2) one of the incorrect output vectors that can result from a
fault on an input node

(3) other output vectors which are a Hamming distance of 1 from
one of the output vectors in (1) or (2).

The procedure for finding codes that are more economical than func-

tional duplication and that have implementations that are fault-secure

116

OUTPUT FOR
INDETERMINATE FAULT IN

FUNCTION X1 xo *0

X *0 y1 yn s s s S s OUTPUT MAP

0 0 0 0 000 OuO oou-! OuO OOu 0 | 1,2 1 3,4,5,6
0 0 0 1 001 Oul Ouu Oul OOu 1 I 0,2,3 1 4,5,6,7
o 0 1 0 010 uuO Olu OuO Olu 2 1 0,3,4,6 1 1,5,7
o 0 1 1 Oil uul uuu Oul Oul 3 1 0,1,2,4,5,6,7 1
o 1 0 0 001 Oul OOu Oul Ouu 1 | 0,2,3 1 4,5,6,7
o 1 0 1 010 uuO Ouu uuO Ouu 2 1 0,1,3,4,6 1 5,7
o 1 . 1 0 Oil uul Olu Oul uuu 3 1 0,1,2,4,5,6,7 j
o 1 1 1 100 luQ uuu uuO uuu 4 1 0,1,2,3,5,6,7 1
1 0 0 0 010 OuO Olu uuO Olu I 2 1 0,3,4,6 1 1,5,7
1 0 0 1 Oil Oul 1 uuu I uul Olu 3 1 0,1,2,4,5,6,7 1
1 o 1 0 100 uuO 1 lOu 1 uuO 1 lOu 4 I 0,2,4,5,6 | 1,3,7
1 0 1 1 101 uul 1 luu 1 uul 1 lOu | 5 1 1,3,4,6,7 1 0,2
1 1 0 0 Oil Oul 1 Olu 1 uul 1 uuu j 3 1 0,1,2,4,5,6,7 1
1 1 1 0 1 100 uuO 1 uuu 1 uul 1 uuu I 4 1 0,1,2,3,5,6,7 1
1 1 1 1 0 101 uul 1 lOu 1 luu 1 luu 1 5 1 1,2,3,4,6,7 1 0
1 Ll_Li— 1 1 110 1 1 IBB— 1 luu 1 luu 1 6 1 4,5 j_J________ 1 Ofl|2,3

Figure 4„14 Behavior of Input-Output Faults in Two-Bit Adder

11,

I OUTPUT FOil
I INDETBRJIINATE FAULT IN

FUNCTION l %1 f XO I yl I YQ

~ %0 yl Yo s s I s I s I s OUlPUT lfAP

0 0 0 0 000 Ou0 OOu Ou0 00u 0 I 1 , 2 3,4,S ,6
0 0 0 1 001 Oul Ouu I Oul I 0011 1 I 0,2 , 3 4,5,6,7
0 0 1 0 010 uuO 01u I Ou0 I Olu 2 I 0,3,4,6 1,5.7
0 0 1 1 011 uul l1U1l I Oul I Oul 3 ' 0 , 1,2 , 4 , S,6,7
0 1 0 0 001 Oul O0u I Oul I Ouu 1 I 0,2,3 4,5,6,7
0 1 0 1 010 uuO Ouu I uuO I 0uu 2 I 0,1,3,4.6 5,7
0 1 1 0 011 uul Olu I Oul I Ullll 3 I 0.1,2 , 4,5,6,7
0 1 1 1 100 lu0 uuu I uuO I Ullll 4 I 0,1,2 , 3,5,6,7
1 0 0 0 010 0uO Olu I uuO I 0lu 2 I 0,3,4,6 1,5,7
1 0 0 1 011 Out tlllU I 11111 I Olu 3 I 0,1.2,4,5,6,7
1 0 1 0 100 uu0 l0u 1 uuO I 1011 4 I 0,2,4,S,6 1,3,7
1 0 1 1 101 uul luu I uul I l0u 5 I 1,3,4,6 , 7 0,2
1 1 0 0 011 Oul Olu I uul I 111111 3 I 0,1,2,4,5 , 6,7
1 1 0 1 100 Ullll I uul I 4 I 0 ,1,2,3,5,6,7
1 1 1 0 101 10u r 11111 I 5 I 1,2 , 3,4,6,7 0
1 1 1 1 10 1 I 1 I 6 4 5 0

Figure 4.14 Behavior of Input-Output Faults in Two-Bi t Adder .

177

with respect to the general single-failure indeterminate fault model may

now be summarized as follows:

(1) Construct a truth table for the desired switching function.
This function is implemented by the data portion of the circuit.

(2) For each possible data input vector, determine the possible
incorrect data output vectors that may result from a fault on a
pair of inputs.

(3) Summarize the results from step 2 to obtain a list of each
correct data output vector and the incorrect data output vectors
that may result from a pair of input faults.

(4) Update the list from step 3 to include the effects of faults
on a pair of output lines.

(5) Update the list from step 4 to include the effects of faults
on an input line and an output line simultaneously.

(6) Determine the minimum number of sets of compatible data out­
put vectors so that each output vector is included in exactly
one set.

(7) The minimum number of check bits is the smallest integer
which is greater than or equal to the log2 of the minimum number
of compatible sets.

So far, we assumed that any two nodes in the data portion of the

circuit may become shorted together. If it is known a priori that two

particular inputs cannot become shorted, then this fault need not be

considered when determining the effects of faults on output vectors.

Likewise, if it is known that two outputs (and the logic which computes

these outputs) cannot be shorted together or that an input node cannot

be shorted to an output node, then these faults do not have to be

I
177

with respect to the general single-failure indeterminate fault model may

now be summarized as follows:

(1) Construct a truth table for the desired switching function.
This function is implemented by the data portion of the circuit.

(2) For each possible data input vector. determine the possible
incorrect data output vectors that may result from a fault on a
pair of inputs.

(3) Summarize the results from step 2 to obtain a list of each
correct data output vector and the incorrect data output vectors
that may result from a pair of input faults.

(4) Update the list from step 3 to include the effects of faults
on a pair of output lines.

(5) Update the list from step 4 to include the effects of faults
on an input line and an output line simultaneously.

(6) Determine the minimum nUJDber of sets of compatible data out­
put vectors so that each ontpnt vector is included in exactly
one set.

(7) The minimwn nnmber of check bits is the smallest integer
which is greater than or equal to the log2 of the minimum number
of compatible sets.

So far, we assumed that any two nodes in the data portion of the

circuit may become shorted together. If it is known a priori that two

particular inputs cannot become shorted, then this fault need not be

considered when determining the effects of faults on output vectors.

Likewise, if it is known that two outputs (and the logic which computes

these outputs) cannot be shorted together or that an input node cannot

be shorted to an output node, then these faults do not have to be

178

considered either. It is only necessary to consider the effects of

faults which may actually occur.

This procedure is based on the assumption that any short between

two nodes results in a ternary u value on both nodes regardless of what

the original logic values of the shorted nodes would be under no fault.
For some types of circuits* particularly static circuits* this assump­

tion is overly pessimistic. For such circuits* a more reasonable
assumption is that a bridging failure between two nodes* causes a ter­

nary u value at the node only if the original values at the nodes are
different. The procedure for finding more economical codes* can easily

be modified to work with this assumption. The only difference is that

if the two nodes have the same value* then the short has no effect on

circuit operation. In those cases where the failed nodes have different
values* the above procedure is unchanged. In the remaining cases where

the nodes have the same value* the effect of a single ternary u value on

each of the two nodes individually must be considered (i.e.* the effect
of a single ternary u value needs to be considered for each input vector

only for nodes whose bridging faults have no effect).

4.4.3. Check Vector Generation

The general single-failure indeterminate fault model presents the

same problems for check vector generation as in the simplified indeter­
minate fault model. The three methods presented in Figure 4.12 are

still possible candidates for generating the check vector. Method A is
the method to use when the circuit receives unencoded input data.

Method B is the method to use when there is enough information in the

178

considered either. It h only necessary to consider tho effects of

!aulta which may actually occur,

This procedure is baaed on tho ass1Ullption that any short between

two nodes results in a ternary u value on both nodes regardless of what

tho original logic values of the shorted nodes would be undor no fault.

For some types of circuits, particularly static circuits, this auump-

tion is overly pessimistic. For such circuits, a more reasonable

assumption is that a bridging failure between two nodes, causes a ter­

nary u value at the node only if tho oriainal values at tho nodes are

different. The procedure for finding more economical codes, can easily

be modified to work with this assmnption. The only difference is that

lf tho two nodes have the same value, then the short has no effect on

circuit operation. In those cases where the failed nodes have different

values, the above procedure i1 unchanged. In the remaining cases where

the nodes have the sue value, the effect of a single ternary u value on

each of the two nodes individually must be considered (i.e., tho effect

of a single ternary u value needs to be considered for each input vector

only for nodes whose brid1in1 faults have no effect),

!,J.i. ~ Vectox Generation

The general single-failure indeterminate fault model presents the

same problems for check vector generation as in tho simplified indeter­

minate fault model. Tho three methods presented in Figure 4.12 are

still possible candidates for generating the check vector. Method A is

the method to use when. tho circuit receives unencoded input data.

Method B is the method to use when there is enough information in the

179

check input vector to calculate the check output vector. When the check

input vector contains insufficient information, method C must be used.

Theorem 4*: Method C may always be used to provide a fault-
secure implementation of the check portion of the circuit with
respect to the general single-failure indeterminate fault model
provided that the Hamming distance between any two data input
vectors in a compatible set is at least 5.

Proof: The proof is identical to the proof for Theorem 4 except

that the check circuit must be specified so that no pair of

faults on the data input lines causes the check output vector to

change. This requirement can always be met when the minimum

Hamming distance between any two data input vectors in a compa­

tible set is at least 5.

Theorem 5*: If a circuit cannot be implemented using method B,
then no implementation using method C satisfies the totally
self-checking goal with respect to the general single-failure
indeterminate fault model.

Proof: The proof is identical to the proof for Theorem 5 except

that we must consider a pair of faults on data input lines.

4.5.. Checker Requirements

It was stated in Section 4.2.1 that a totally self-checking checker

must be both totally self-checking and code disjoint. As pointed out by

Smith [5], it is not actually necessary for the checker to satisfy the

fault-secure property. A checker which is self-testing and code dis­

joint also operates satisfactorily. The fault-secure property is not

necessary since what is important is whether the output from the circuit

179

check input vector to calculate the check output vector. When the check

input vector contains insufficient information, method C must be used.

Theorem ,!*: Method C may always be nsed to provide a fault­
secure implementation of the check portion of the circuit with
respect to the general single-failure indeterminate fault model
provided that the Hamming distance between any t•o da t& input
vectors in a compatible set is at least S.

~: The proof is identical to the proof for Theorem 4 except

that the check circuit must be specified so that no pair of

faults on the data input lines causes the check output vector to

change. This requirement can always be met when the minimWD

HBJ11ming distance between any two data input vectors in a compa­

tible set is at least S.

Theorem 1*: If a circuit cannot be implemented using method B,
then no implementation using method C satisfies the totally
self-checking goal with respect to the general single-failure
indeterminate fault model.

~: The proof is identical to the proof for Theorem 5 except

that we must consider a pair of faults on data input lines.

! -1• Checker Requirements

It was stated in Section 4.2.1 that a totally self-checking checker

must be both totally self-checking and code disjoint. As pointed out by

Smith [SJ, it is not actually necessary for the checker to satisfy the

fault-secure property, A checker which is self-testing and code dis-

joint also operates satisfactorily. The fault-secure property is not

necessary since what is important is whether the output from the circuit

180

being checked is a codeword or a non-codeword. If a circuit is totally
self-checking and code disjoint* then as long as the checker is operat­

ing properly* it will always produce a non-codeword output if the output

from the circuit being checked is a non-codeword. When the checker

fails* then the totally self-checking property insures that there is
some test to detect the failure. As long as all modeled failures are

testable* it is not necessary for the checker output vector to be the
correct codeword output under all possible faults and checker input vec­

tors. Therefore, the checker does not need to be fault-secure.

Checkers for indeterminate faults are much easier to design if they
do not have to satisfy the fault-secure property. We have assumed that

checkers are unable to detect indeterminate values. Therefore* a

checker cannot be code disjoint with respect to indeterminate failures.

Checkers should* however, be code disjoint with respect to vectors which
contain only Boolean values. If the input to the checker is a

potential-codeword, then the precise response of the checker becomes
non-deterministic.

In our design methodology, checker input vectors come from the out­
puts of the flip-flops which separate blocks of combinational logic. If

a failure occurs inside the block of logic* then the flip-flops should

with very high probability have a legal logic value output. The proba­
bility that more than one flip-flop passes an indeterminate input

through to its output should thus be negligible with respect to the pro­

bability that some multiple or other unmodeled failure occurs. However*

we do need to be concerned about the checker receiving an indeterminate

180

bolns chocked is a codeword or a non-codeword. If a circuit is totally

self-chocking and code disjoint. then as long as tho chocker is operat­

ing properly, it will always produce a non-codeword output if the output

from the circuit being checked ia a non-codeword. Yhon tho chocker

fails, then the totally self-checking property insures that there ii

some tut to detect the failure. As long as all modeled failures are

testable. lt is not necessary for tho checker output vector to be the

correct codeword output under all possible faults and checker input vec­

tors, Therefore. the checker does not need to be fault-secure.

Checkers for indeterminate faults are lllllCh easier to desian if they

do not have to satisfy tho fault-secure property. We have assumed that

choctors are unable to detect indeterminate values. Therefore, a

checker cannot be code disjoint with respect to indeterminate failures.

Checkers should, however. be code disjoint with respect to vectors which

contain only Boolean values. If the input to the checker is a

potential-codeword. then tho precise response of the checker becomes

non-deterministic.

In our desi1n methodolo17, checker input vectors coao from the out­

puts of the flip-flops which separate blocks of combinational logic, If

a failure occurs inside the block of logic. then the flip-flops should

with very high probability have a legal logic value output. The proba­

bility that more than one flip-flop passes an indoterminate input

through to its output should thus be negligible with respect to the pro­

bability that s01lle multiple or other UJUDodeled failure occurs. However.

we do need to be concerned about the checker receiving an indeterminate

181

value, for example if one of the flip-flops should fail. Thus a checker

may experience three different conditions when a failure occurs: the

checker may receive a non-codeword with only Boolean values, the checker

may receive a potential codeword that has exactly one indeterminate

value (two indeterminate values due to a short if the single-failure

indeterminate fault model is used), or the checker may receive the

correct codeword. The first case should be detected by the checker, the

next case is compatible with the requirements for concurrent error

detection in the next block of combinational logic, and the last case

involves no error.

If the checker is code disjoint with respect to Boolean values and

self-testing with respect to indeterminate faults occurring within

itself, it is able to respond appropriately to all three of the situa­

tions that may occur. Note that if one of the checker's inputs is

indeterminate, then the failure may or may not be detected. If it is

not detected, the next block of combinational logic which accepts the

output of this circuit as its input, may receive one (two if the general

single-failure indeterminate fault model is used) incorrect input bits.

Any checker which is acceptable for the single stuck-at fault model

is also acceptable for the simplified indeterminate fault model. Since

the checker is self-testing with respect to single stuck-at faults it

must also be self-testing with respect to simplified indeterminate fault

model faults. The checker is also code disjoint for all vectors which

only contain Boolean values. This fact implies that any non-codeword

input vector results in a non-codeword output vector. If the input vec­

I

181

value. for example if one of the flip-flops should fail. Thus a checker

may experience three different conditions when a failure occurs: the

checker may receive a non-codeword with only Boolean values, the checker

may receive a potential codeword that has exactly one indeterminate

value (two indeter111inate values due to a short if the single-failure

indeterminate fault model is used). or the checker may receive the

correct codeword. The first case should be detected by the checker, the

next case is compatible with the requirements for concurrent error

detection in the next block of combinational logic , and the last case

involves no error .

If the checker is code disjoint with respect to Boolean values and

self-testing with respect to indeterminate faults occurring within

itself. it is able to respond appropriately to all three of the situa­

tions that may occur, Note that if one of the checker's inputs is

indeterminate. then the failure may or 111ay not be detected . If it is

not detected, the next block of combinational logic which accepts the

output of this circuit as its input, may receive one (two if the general

single-failure indeterminate fault model is used) incorrect input bits.

Any checker which is acceptable for the single stuck-at fault model

is also acceptable for the simplified indeterminate fault model. Since

the checker is self-testing with respect to single stuck-at faults it

must also be self-testing with respect to simplified indeter111inate fault

model faults. The checker is also code disjoint for all vectors which

only contain Doolean values. This fact illlplies that any non-codeword

input vector results in a non- codeword output vector. If the input vec-

182

tor is a potential codeword# then at least one ontpnt must be sensitized
to all of the input vector bits. If we consider all possible Boolean

vectors that can be constructed by replacing indeterminate values in the

potential codeword by Boolean values# exactly one of these is a codeword

(the potential codeword's corresponding codeword). If the potential

codeword applied to the checker's input is the corresponding codeword*

then the checker output vector must be a codeword. When the other

Boolean vectors (which are non-codewords) are applied* then the checker
output vector must be a non-codeword. Therefore, at least one output

bit of the checker must be sensitized to the checker input vector bits.
Therefore* if the checker is adequate for single stuck-at faults* it is

also adequate for the simplified indeterminate fault model. This result
is quite important since a variety of checkers for different codes have
been designed under the single stuck-at fault assumption. Techniques
for designing checkers are discussed in [5].

Checker design is more complicated for the general single-failure
indeterminate fault model. A line of reasoning similar to that used for
the simplified indeterminate fault model may be used to show that a

checker which is adequate for a double stuck-at fault model is also ade­
quate for the general single-failure indeterminate fault model. Unfor­

tunately* checker designs for a double stuck-at fault model are not
well-known. One possible solution is to use duplicate checkers that are

designed for single stuck-at faults. The duplicate checkers would be
placed so as to prevent a short between nodes in two distinct checkers.

In addition, the checker inputs should be buffered before going to each
checker so that a bridging fault in one of the checkers will not affect

182

tor ls a potential codeword, then at least one output •nst bo sensitized

to all of the input vector bits. If we consider all possible Boolean

vectors that can be oonatructed by replacing indeterminate values in the

potential codeword by Boolean values, ezactly one of these ls a codeword

(the potential codeword' 1 corresponding codeword). Ir the potential

codeword applied to tho checker's input is the correspo11dln1 codeword,

then the checker output vector aust be a codeword. When tho other

Boolean vectors (which are non-codewords) are applied, then the checker

output vector must be a non-codeword. Therefore, at least one output

bit of tho checker must be sensitl~ed to the checker input vector bits.

Therefore. if the chocker is adequate for single stuck-at faults , it is

also adequate for the simplified indeteminate fault model. This result

is quite important since a variety of checkers for different codes have

been designed under tho sin1le stuck-at fault assumption. Techniquos

for designing checkers are discussed in (5) .

Checker design it more complicated for the general single-failure

indeterminate fault model. A line of reasoning similar to that used for

the simplified indeterminate fault model may be used to show that a

ohecter which is adequate for a double stuck-at fault model is also ade­

quate for the general single-failure indeterminate fault model . Unfor­

tunately, checker designs for a double stuck-at fault model are not

well-known. One possible solution is to use duplicate checkers that ara

designed for single stuck-at faults. The duplicate checkers would be

placed so as to prevent a short between nodes in two distinct checkers.

In addition, the checker inputs should be buffered before going to each

chocker so that a bridging fault in one of the checkers will not affect

183

the other checker through the checker input lines* With such an

approach* the outputs of at most one checker will be erroneous.

Consider a totally self-checking system constructed from a number

of smaller totally self-checking modules* If a checker is placed at the

output of each module* then instead of having one set of encoded lines

which indicate the presence of an error, there are several sets of error

indication lines (one set from each of the checkers). It is possible to

use one global checker which checks the outputs of all the other check­

ers. The output of the global checker produces one set of error indica­

tion lines which indicate if an error has occurred anywhere in the sys­

tem .

If a failure occurs in one of the flip-flops which separates two

blocks of combinational logic* it is possible for a simple global

checker scheme to fail. In particular, the checker which receives the

output of the failed flip-flop may have an indeterminate value input

(two indeterminate value inputs if the general single-failure indeter­

minate fault model is used). The next combinational block which

receives the output of the failed flip-flop may also receive an indeter­

minate value input (two indeterminate value inputs if the general

single—failure indeterminate fault model is used) and in response, pro­

duce a non-codeword output. If this situation occurs, the global

checker may receive both an indeterminate value (from the checker of the

first block of logic) and a non-codeword input (from the checker of the

second block of logic). We assume as above, that there is a negligible

probability that an indeterminate input can propagate through an entire

183

the other checker through the checker input lines. With such an

approach, the outputs of at most one checker will be erroneous.

Consider a totally self-checking system constructed from a number

of smaller totally self-checking modules. If a checker is placed at the

output of each module, then instead of having one set of encoded lines

which indicate the presence of an error, there are several sets of error

indication lines (one set from each of the checkers). It is possible to

use one global checker which checks the outputs of all the other check­

ers. The output of the global checker produces one set of error indica­

tion lines which indicate if an error has occurred anywh~re in the sys­

tem.

If a failure occurs in one of the flip-flops which separates two

blocks of combinational logic, it is possible for a simple global

checker scheme to fail. In particular, the checker which receives the

output of the failed flip-flop may have an indetenninate value input

(two indeterminate value inputs if the general ~ingl e-fail ure indeter-

minate fault model is used). The next combinational block which

receives the output of the failed flip-flop may also receive an indeter­

minate value input (two indeterminate value inputs if the general

single- failure indeterminate fault model is used) and in response , pro-

duc e a non- codeword output. If this s ituation occurs, the global

checker may receive both an indeterminate value (from the checker of the

first bl ock of logic) and a non- codeword input (from the checker of the

s econd block of logic). We assume as above, that there is a negligible

p robability that an indeterminate input can propagate through an entire

184

logic block and its output flip-flops. If the second logic block pro­
duces a Boolean-valued non-codeword* then the global checker must indi­
cate an error if the system is to operate appropriately.

However, because of the presence of an indeterminate value output
from the first checker, it is possible for a codeword to be produced by

the global checker due to the fact that the indeterminate value can pro­
pagate through one or more stages of the global checker. In such a

case, it is possible that no error would be indicated by the global
checker even though the second block checker output indicates an error.

To make this possibility extremely unlikely, flip-flops should separate

the outputs of the block checkers from the inputs of the global check­

ers. In this manner, any indeterminate values produced by one of the

block checkers should become legal logic values before they are

presented to the global checker.

11,,f

logic block and its output flip-floPS• If tho second l ogic block pro­

duces • Boolean-valued non-codeword, then the global checker must indi­

cate an error if the system is to operate appropriately.

Bowevor. because ot the presence of an indeterminate value output

from the first checker. it is possible for a codeword to be produced by

the global checker due to the fact that the indetermi nate value can pro­

pagate through one or more stages of the global checker. IJ1 such a

cue. it is pouiblo that no error would be indicated by the global

chocker even though the second block checker output indicates an error,

To make this possibility extremely unlikely, flip-flops should separate

the o~tputs of the block checkers from the inputs of the global check­

ers . In this manner. any i ndetermi nate values produced by one of tho

block checkers should become legal logic values before they are

presented to the global checker .

185

CHAPTER 5

Conclusion

5.1. Evaluation o£ Fault Model

Two models for concurrent error detection are defined in Chapter 4:

the simplified indeterminate fault model and the general single failure

indeterminate fault model. These fault models are based on

indeterminate-type faults. We are now in a position to evaluate these

fault models by comparing them to the traditional fault models using the

criteria proposed in Chapter 1.

5.1..,1. Fault Model Accuracy

The indeterminate-type fault is based on the analyses of Chapters 2

and 3. This analysis showed that when MOS logic circuits fail, they may

produce outputs that are not legal logic values. Traditional fault

models rely on faults that may be represented using Boolean algebra

(i.e., stuck-at faults, wired logic faults, etc.). Unfortunately, these

traditional models are not able to represent many of the types of

anomalous behavior that we have discussed in Chapter 3.

Historically, faults and tests for faults have been divided into

two broad classes: logical (or static) and parametric (or dynamic).

Logical faults are defined by Breuer and Friedman [64] as those faults

that change the logical behavior of some element or signal. Parametric

faults are considered to be those faults that cannot be modeled as

185

CHAPTER 5

Conclusion

~ -l. · Evaluation 21. ~ M2.d.tl

Two models for concurrent error detection are defined in Chapter 4:

the simplified indeterminate fault model and the general single failure

indeterminate fault model. These fault models are based on

indeterminate-type faults. We are now in a position to ev aluate these

fault models by comparing them to the traditional fault models using the

criteria propo~ed in Chapter 1.

~ -1 -l , Fault~ Accuracv

The indeterminate-type fault is based on the analyses of Chapters 2

and 3, This analysis showed that when MOS logic circuits fail. they may

produce outputs that are not legal

models rely on faults that may be

logic values. Traditional fault

represented using Boolean algebra

(i.e., stuck-at faults , wired logic faults. etc.). Unfortunately. these

traditional models are not able to represent many of the types of

anomalous behavior that we have discussed in Chapter 3.

Historically, faults and tests for faults have been divided into

two bro ad classes: logical (or static) and parametric (or dynamic).

Logical faults are defined by Dreuer and Friedman (64] as those faults

that change the logical behavior of some element or signal. Parametric

fanl ts are considered to be those faults that cannot be modeled as

I t t

logical faults. There is quite a bit of ambiguity in such a classifica­
tion of faults. Beh et al. [65] define static quality as

the occurrence of defects that if present would most certainly
cause a circuit failure in all systems applications if exer­
cised.

Dynamic quality is defined as

the occurrence of defects that if present may possibly cause a
circuit failure in some or all system applications if exercised.

Perhaps the most reasonable definition is that logical (static) faults
alter DC behavior while dynamic (parametric) faults alter behavior of

the circuits at higher clock rates. From such definitions, it is hard

to state definitively that a specific failure results in one type of

fault or the other. In fact# it is difficult to state that a given
behavior should be classified as a logical (static) or parametric
(dynamic) fault. Clearly# most of the traditional fault models are

intended to address logical fault types.

When concurrent error detection is incorporated in a system, the

goal is to detect errors when they occur. Whether a fault is logical or
parametric is of little concern to the end user who has paid a substan­

tial premium for the concurrent error detection capability. To the end

user, it is only important that the system detect errors in a timely

fashion.

Many of the traditional fault models are special cases of the
indeterminate fault models of Chapter 4. The single stuck-at fault

model and stuck-open fault model are special cases of both the simpli­
fied indeterminate fault model and the general single failure

18'

lo1ical fault,. There i1 quite a bit of lllllbiguity in such a classifica­

tion of faults. Beh et al, (65) define static quality a1

the occurrence of defects that if present would most certainly
cause a circuit failure in all systems application• if n:er­
cised .

Dynamic quality is defined••

the occurrence of defects that if present may pouibly cause a
circuit failure in some or all system applications if exercised.

Perhaps the most reasonable definition is that logical (static) faults

alter DC behavior while dynamic (parametric) faults alter behavior of

the circuits at hi1her clock rates. From such definitions. it is hard

to state definitively that a specific failure results in one type of

fault or the other. In fact. it is difficult to sta to that a given

behavior should be classified as a logical (static) or parametric

(dynamic) fault. Clearly, 1tost of the traditional fault models are

in.tended to address logical fault types.

Yb.en concurrent error detection is incorporated in a system, the

goal is to detect errors when they occur. Yb.ether a fault is logical or

parametric is of little concen to the end user who has paid a substan­

tial premium for the concurrent error detection capability. To the end

user. it is only important that the system detect errors in a timely

fashion.

Many of the traditional fault models are special cases of the

indeterminate fanl t models of Chapter 4. Tho single stuck-at faol t

model and stuck-open fault model are special cases of both the simpli­

fied indeterminate fault model and the general single failure

187

indeterminate fanlt model* In addition* the bridging fault model is a

special case of the general single failure indeterminate fault model.

The only traditional fault models that are not covered by one of the

indeterminate fault models of Chapter 4, are the unidirectional fault

model and the unidirectional error fault model. The unidirectional

fault models are intended to cover two distinct type of failures:

failures of certain global signal lines, and device and line failures.

The first type of failure is usually catastrophic, such as the com­

plete failure of an integrated circuit's power line. If an entire

integrated circuit loses its power, all outputs drift rather quickly to

a logic 0 and remain at a logic 0 until power is restored. Such a

failure clearly results in both a unidirectional fault and a unidirec­

tional error. If a ground line fails instead of a power line, it is

more difficult to predict precisely how the integrated circuit outputs

respond. If the integrated circuit is static NMOS, then the outputs

certainly would all become logic l's. If the integrated circuit is

CMOS, then probably one or more of the circuit's outputs would be

indeterminate. Therefore, for a global failure of the ground lines in

CMOS logic, the unidirectional fault model is of questionable validity.

The indeterminate fault models are unable to model the effects of a glo­

bal signal failure. If it is desirable to protect against such global

power and ground failures (or any other failure causing a unidirectional

error), then a two-rail implementation may always be used. A two-rail

implementation consists of the original circuit that becomes the data

portion of the circuit and the Boolean dual [56] of the original circuit

that forms the check portion of the circuit. Such a two-rail

187

indeterminate fault model. In addition, the bridging fanl t model is a

special case of the general single failure indeterminate fault model.

The only traditional fanl t models that are not covered by one of the

indeterminate fault models of Chapter 4, are the unidirectional fan! t

model and the unidirectional error fault model. The unidirectional

fault models are intended to cover two distinct type of failures:

failures of certain global signal lines, and device and line failures.

The first type of failure is usually catastrophic* such as the com-

plete failure of an integrated circuit's power line. If an entire

integrated circuit loses its power, all outputs drift rather quickly to

a logic O and remain at a logic O until power is restored. Such a

failure clearly results in both a unidirectional fault and a unidirec-

tional error, If a ground line fails instead of a power line, it is

more difficult to predict precisely how the integrated circuit outputs

respond, If the integrated circuit is static NMOS, then the outputs

certainly -,rould all become logic l's. If the integrated circuit is

CMOS, then probably one or more of the circuit's outputs would be

indeterminate. Therefore, for a global failure of the ground lines in

CMOS logic, the unidirectional fault model is of questionable validity.

The indeterminate fault models are unable to model the effects of a glo­

bal signal failure. If it is desirable to protect against such global

power and ground failures (or any other failure causing a unidirectional

error), then a iu-uil implementation may always be used. A two-rail

implementation consists of the original circuit that becomes the data

portion of the circuit and the Boolean dual [56] of the original circuit

that forms the check portion of the circuit. Such a two-rail

188

implementation always exists* and furthermore, if satisfies the func­

tional duplication property. Since a two-rail code is unordered* it may
be used to detect the occurrence of any unidirectional error. In some

cases* codes more economical than functional duplication may also be
unordered. In this situation, the more economical code also detects all

unidirectional errors. If it is only necessary to detect the situation
where a power or ground failure causes all outputs to become all logic

0's or all logic l's* then it is only necessary that the all 0's output
vector and all l rs output vector not be legal codewords. This require­

ment is significantly less restrictive than requiring an unordered code.
By carefully assigning the check vectors to the data vectors* it is

always possible to make the all 0's output vector and the all l's output
vector be non-codewords as long as the check output vector contains more

than one bit.

The second type of failure that unidirectional fault models are
intended to cover* is the single failure of a device or line. Usually*

this is done for structured elements. For instance* Banerjee [4] shows
that under certain restrictions* failures in a PLA or decoder result in

a unidirectional error at the device's output. From the hypotheses of
Chapter 4* any such failures are modeled by indeterminate faults.

Therefore* all traditional fault models* except the unidirectional
fault model and the unidirectional error fault model* are special cases

of the indeterminate fault models. The indeterminate fault models are

also applicable to unidirectional errors caused by the failure of a sin­
gle line or device. In addition* many of the codes that are derived

188

implementation always exists. and furthermore . it satisfies the fUD.o­

tional duplication property. Since• two-rail code is unordered, it may

bo used to detect the occurrence of any unidirectional error. In some

cases, codes more economical than f11Dotional duplication :may 11 ■0 be

UDOrdered. In this situation, tho more econoaical code also detects all

unidirectional errors. If it is only nece■ aary to detect the situation

whore a power or groUD.d failure causes all outputs to become all logic

O's or all logic l's, then it is only necessary that the all O's output

vector and all 1'1 output vector not be legal codewords. This require­

ment is significantly less restrictive than requiring an unordered code.

By carefully assigning the check vectors to the data vectors, it h

always possible to make the al.I O's output vector and the all l's output

vector be non-codewords as long 11 the check output vector contains more

than one bit.

The second typo of failure that UDidirectional fault models are

intended to cover, is tho single failure of a device or lino. Usually,

this is done for structured elements. For instance, Banerjee [4] shows

that under certain restriction•- failures iu a PLA or decoder reault in

a unidirectional error at tho device's output. From tll.o hypotheses of

Chapter 4. any suoh failures are modeled by indeterminate faults.

Therefore, all traditional fault models, except tho unidirectional

fault model and the unidirectional error fault model, are special cases

of the indeterminate fault •odels. Tho indeterminate fault •odels are

also applicable to 11J1idirectional errors caused by the failure of a sin­

gle lino or device. In addition, many of tho codes that are derived

189

using the indeterminate fault models also protect against all unidirec­

tional errors including those caused by global power and ground

failures. As mentioned in Chapter 1, Smith [5] has shown that the uni­

directional fault model requires that an implementation be built with

noninverting gates. This makes the unidirectional fault model useless

for most MOS circuits.

With the possible exception of some type of unidirectional faults,

all traditional fault models are merely special cases of our indeter­

minate fault models. Therefore, the indeterminate fault models should

be more accurate. In addition to the logical type of faults modeled by

the traditional models, the indeterminate fault models are also able to

account for parametric-type faults that are beyond the ability of tradi­

tional models to describe. These parametric faults include timing

failures and oscillations. The biggest limitation of the indeterminate

fault models is their inability to model the behavior of multiple device

failures. In many cases, the behavior of such multiple failures will

map into one of the modeled faults. If a functional duplication code is

used, then the circuit is protected against an arbitrary number of

failures of any type as long as these failures only affect either the

data portion or check portion of the circuit, but not both simultane­

ously .

5.1.2. Ea_$e of Analysis

Hie second criterion discussed in Chapter 1 is ease of analysis.

The indeterminate fault model is a very easy fault model to work with.

This is primarily due to the fact that the fault model is comprehensive

189

using the indeterminate fault models also protect against all unidirec­

tional errors including those caused by global power and ground

failures. As mentioned in Chapter 1, Smith [SJ has shown that the uni­

directional fault model requires that an implementation be built ,ritb

noninverting gates. This makes the unidirectional fault model useless

for most MOS circuits.

With the possible e~ception of some type of unidirectional faults,

all traditional fault models are merely special cases of our indeter­

minate fault models. Therefore, the indeterminate fault models should

be m.ore accurate, In addition to the logical type of fanlts modeled by

the traditional models, the indeterminate fault models are also able to

account for parametric-type faults that are beyond the ability of tradi-

tional models to describe. These parametric faults include timing

failures and oscillations, The biggest limitation of the indeterminate

fault models is their inability to model the behavior of multiple device

failures. In many cases, the behavior of such multiple failures will

map into one of the modeled faults. If a functional duplication code is

used, then the circuit is protected against an arbitrary number of

failures of any type as long as these failures only affect either the

data portion or check portion of the circuit, but not both simultane­

ously.

i •l •• · ~ su, Analysis

The second criterion discussed in Chapter 1 is ease of analysis .

The indeterminate fault model is a very easy fault model to work with.

This is primarily due to the fact that the fault model is comprehensive

190

for many types of physical failures. The simplified indeterminate fault

model accurately represents the behavior of all failures modeled by the

simplified indeterminate fault model as well as shorts between nodes.

Therefore* these fault models do not need to be combined with other
fault models to account for the behavior of all single failures accu­

rately. The traditional fault models often must be combined with other

fault models in order to cover certain types of physical failures.

If an implementation in the form of Figure 4.6 is acceptable* then

only faults on circuit inputs or outputs need to be considered for the
indeterminate fault models. With the traditional fault models* it is

generally necessary to consider faults on all nodes of the circuit* not
just inputs and outputs. Typically* a circuit has many more nodes than

inputs and outputs. Therefore* the number of faults that must be con­
sidered is greatly reduced. It is true that for many of the traditional

fault models* especially the stuck-at fault model* many faults are
indistinguishable from other faults. However* even after collapsing the

fault model* there are usually significantly more stuck-at faults that

must be considered than simplified indeterminate faults.

The difficulty in using the indeterminate fault models lies in the

fact that a ternary algebra must be used rather than Boolean algebra.
Fortunately, the rules of ternary algebra are very similar to the rules

of Boolean algebra. Furthermore* when the inputs to a ternary function
are restricted to 0 and 1 values* then the function's behavior may be

described using Boolean algebra. Thus* perhaps with the exception of

190

for many types of physical failures. The simplified indeterminate fault

model accurately represents the behavior of all failures modeled by the

simpli fled indeterai:nate hul t model u well as shorts between nodes.

Therefore. these fault models do not need to be combined with other

fault models to account for the behavior of all single failures accu­

rately. The traditional fault models often must be combined with other

fault models in order to cover certain types of physical failures.

If an implementation in tho form of Figure •• 6 is acceptable, then

only faolts on circuit inputs or 011tputs need to be considered for the

indeterminate fault models. I' i th tho traditional fault mode ls . it is

generally necessary to consider faults on all nodes of the circuit, not

just inputs and outputs. Typically, a circuit has many nore nodes than

inputs and outputs. Therefore. the n1JJDber of faults that must be con­

sidered is greatly reduced. It is true that for many of the traditional

fault models, especially the stuck-at fault model, many faults are

indistinguishable from other faults. Hoyever. even after collapsing the

fault model, there are usually significantly 111ore stnot-at faults that

must be considered than simplified indeterminate faults.

The difficulty in using the indeterminate fault models lies in the

fact that a ternary algebra must be used rather than Boolean algebra.

Fortunately. the rules of ternary algebra are very similar to the rules

of Boolean algebra. Furthermore. when the inputs to a ternary function

are restricted to O and 1 values, then the function's behavior ■ay be

described using Boolean algebra. Thus, perhaps with the exception of

I

191

unfamiliarity, ternary algebra is no more difficult to use than Boolean

algebra.

In general, the indeterminate fault models should provide good ease

of analysis. Both indeterminate fault models are comprehensive models

and only require that a limited number of faults be considered.

Although ternary algebra is required in order to analyze circuits with

indeterminate faults, this should provide no real difficulty.

5..1.3. Cost of Fault Tolerance

The cost of fault tolerance for any fault model is highly dependent

on the target system. Some systems naturally lend themselves more

readily to concurrent error detection than others. Furthermore, there

are a variety of costs involved in utilizing any fault-tolerance scheme.

Such costs include: power cost, size cost, speed cost, and most impor­

tantly, monetary cost. Clearly, a variety of tradeoffs exist between

each of these costs. Usually one is most concerned with the tradeoff

between monetary cost and the other types of costs.

When attempting to implement a concurrent error detection scheme,

one is faced with two basic choices: whether to implement the entire

system as one single totally self-checking circuit or to divide the sys­

tem into several smaller totally self—checking circuits that are inter­

connected to perform the same function.

A variety of tradeoffs are involved in this decision. All other

things being equal, the smaller the blocks of logic checked by a

checker, the better the logic block’s observability, and hence, the

191

unfamiliarity, ternary algebra is no more difficult to use than Boolean

algebra.

In general, the indeterminate fault models should provide good ease

of analysis. Botb indeterminate fault models are comprehensive models

and only require that a limited nwnber of faults be considered.

Although ternary algebra is required in order to analyze circuits with

indeterminate faults, this should provide no real difficulty.

1,1,1, !&.tl ~ Fault Tolerance

The cost of fault tolerance for any fault model is highly dependent

on the target system. Some systems naturally lend them.selves more

readily to concurrent error detection than others. Furthermore, there

are a variety of costs involved in utilizing any fault-tolerance scheme.

Such costs include: power cost, size cost, speed cost, and most impor-

tantly, monetary cost. Clearly, a variety of tradeoffs exist between

each of these costs. Usually one is most concerned with the trade off

between monetary cost and the other types of costs.

When attempting to implement a concurrent error detection scheme,

one is faced with two basic choices: whether to implement the entire

system as one single totally self-checking circuit or to divide the sys­

tem into several smaller totally self-checking circuits that are inter­

connected to perform the same function.

A variety of tradeoffs are involved in this decision. All other

things being equal, the smaller the blocks of logic checked by a

checker, the better the logic block's observability, and hence, the

192

easier the block is to test. Therefore s breaking the system into

several smaller circuits is generally advantageous in regard to increas­
ing the system's testability. It is also usually easier to analyze

small circuits as opposed to large circuits. Thus * it is usually easier

to find totally self-checking implementations if the system is broken
into a number of smaller parts. It is not always obvious how to parti­

tion a system into a number of smaller parts in order to maximize testa­
bility and minimize the difficulty in finding a totally self-checking

implementation of the system. In general• it is often desirable to par­

tition the system into its functional parts such as adders, register

banks, busses, etc. Such a partition usually allows an efficient imple­
mentation.

An alternative to partitioning is to implement the entire system as
one totally self-checking circuit. In general, this approach results in

poorer testability, possibly more logic (and thus higher power consump­

tion), and larger system size. However, for large and very large scale
integrated circuits, this has an important advantage. By duplicating

standard off-the-shelf circuits, totally self-checking circuits can be

built quite cheaply. Due to the high development cost and relatively

low manufacturing cost, the price of a very large scale integrated cir­
cuit is a strong function of the number of identical circuits manufac­

tured [34] . Typically, the demand for systems with concurrent error
detection is smaller than the demand for the same or a similar system

without concurrent error detection. If custom integrated circuits must
be designed, then the monetary cost of a system with concurrent error
detection is much greater than the monetary cost of a similar system

192

easier tho block i1 to teat. Therefore. breaking the system into

sovoral smaller circuits is gonorally advantasoous in regard to increas­

ing tho system's testability. It h also usually easier to analyze

small circuits as opposed to largo circuit,. Thus. it is usually easier

to find totally self-checking implamontations if the systea is broken

into a nubor of naallor parts. It is not always obvious how to parti­

tion a system into a number of smaller parts in order to maximize testa­

bility and 111inimiz.e the difficulty in finding a totally self-checkins

implementation of the system. In general. it 11 often dosirablo to par­

tition the system into its functional parts such u adders, register

banks, busies, etc. Such a partition usually allows an efficient imple­

mentation.

An alternative to partitioning is to implement the entire system as

one totally self-checking circuit. In general, this approach results in

poorer testability, possibly more logic (and thus higher power consump­

tion), and larger system si&e. However. for large and very large scale

integrated circuits• this has an important advantage. By duplicating

standard off-the-shelf circuits, totally self-checking circuits can be

built quite cheaply. Due to the high development cost and relatively

low manufacturing cost. the price of a very largo scale integrated cir­

cuit is a strong function of tho number of identical circuits manufac­

tured [34]. Typically. the demand for systems ,rith concurrent error

detection is smaller than tho demand for the same or a similar system

,rithout concurrent error detection. If custom integrated circuit• must

be designed. then tho aonetary cost of a system with concurrent error

detection la much greater than tho monetary cost of a similar system

193

built by duplication with off-the-shelf parts. Even if a custom

integrated circuit must be designed* duplication still simplifies the

design process since very little analysis is required. Unless power

consumption and/or size is an overriding consideration, then any time a

very large scale integrated circuit already exists that performs the

desired function, the best way to gain concurrent error detection is

simply to use two copies of the existing integrated circuit.

Intel's iAPX 432 family [66] uses this approach so that the same

set of integrated circuits may be used for those applications that

require concurrent error detection and those applications that do not

require concurrent error detection (i.e., those where the benefits of

concurrent error detection are outweighed by its cost). Each of the

integrated circuits in the iAPX 432 family are designed so that each

output pin may also serve as an equality checker. One pin is devoted to

"programming" the chip to be a master (circuit operates normally), or a

checker. All pins on the master and checker integrated circuits except

the programming pin and the error indication pin are wired together.

Any discrepancy between the logical values of the integrated circuits'

outputs are indicated by the checker circuit. The only errors that are

not detected by this scheme are the failure of certain of the global

signal lines. Many of the issues involved in protecting against global

signal failures are discussed in [67].

In almost all cases, the cost of fault tolerance with an indeter­

minate fault model will be greater than or equal to the cost using a

traditional fault model. This is due to the fact that except for the

I

193

built by duplication with off-the-shelf parts. Even if a custom

integrated circuit must be designed, duplication stil 1 simplifies the

design process since very little analysis is required. Unless power

consumption and/or size is an overriding consideration, then any time a

very large scale integrated circuit already exists that performs the

desired function, the best way to gain concurrent eri-or detection is

simply to use two copies of the existing integrated circuit.

Intel's iAPX 432 family [66] uses this approach so that the same

set of integrated circuits may be used for those applications that

require concurrent error detection and those applications that do not

require concurrent error detection (i.e., those where the benefits of

concurrent error detection are outweighed by its cost). Each of the

integrated circuits in the iAPI 432 family are designed so that each

output pin may also serve as an equality checker. One pin is devoted to

"programming" the chip to be a master {circuit operates normally), or a

checker. All pins on the master and checker integrated circuits except

the programming pin and the error indication pin are wired together.

Any discrepancy between the logical valnes of the integrated circuits'

outputs are indicated by the checker circuit. The only errors that are

not detected by this scheme are the failure of certain of the global

signal lines. Many of the issues involved in protecting against global

~ignal failures are discussed in (67).

In almost all cases, the cost of fault tolerance with an indeter­

minate fault model •ill be greater than or equal to the cost using a

traditional fault model. This is due to the fact that except for the

194

unidirectional fault model (which is not applicable to logic constructed
from inverting circuits) and in some cases the unidirectional error

model. all the traditional fault models are only special cases of the
indeterminate fault models. Any implementation that provides concurrent

error detection for indeterminate fault models will also provide con-
current error detection for the traditional fault models (except the

unidirectional fault models). Therefore, the cost of fault tolerance

with the traditional fault models will always be less than or equal to

the cost of fault tolerance for the indeterminate fault models.

As we have mentioned above, duplication (whether at the intra-

integrated circuit level or the inter-integrated circuit level) has many

advantages, especially for systems that are produced in low numbers. In
many cases, duplication will be used regardless of the fault model.

Therefore, as a practical matter, the cost of fault tolerance in most
cases is roughly the same whether indeterminate fault models are used or

one of the traditional fault models is used.

5 . 2 . Snmirmrv

In Chapter 2, typical physical failure models are reviewed. Three

broad classes of physical failures are considered: interconnect
failures, transistor failures, and radiation-induced soft failures.

Interconnect failures result in shorts and opens in the lines that link
the transistors. Transistor failures are caused by a shift in device

parameters and device breakdown. Radiation-induced soft failures are

transient, non-recurring upsets of a node or nodes in the circuit caused

by high energy radiation generating charge carriers in the integrated

194

unidirectional fault model (which is not applicable to logic constructed

from inverting circuits) and in some cases the unidirectional error

model. all the traditional fault models are only special caaes of the

indeterminate fault models. Aliy inpleaentation that provides concurrent

error detection for indeterminate fault models will also provide con­

current error detection for the tradi Uonal fault models (except the

anidireetional fa11l t 111odel s). Therefore. the cost of fa1il t tolerance

with the traditional fault models will always be less than or equal to

the cost of fault tolerance for the indeterminate fault models.

As we have nent ione d above• dupl lea ti on (who ther at the intra­

in te grated circuit le•ol or the inter-integrated circuit level) has many

advantages, especially for systems that are produced in lo• numbers, In

many cases, duplication will be uaed regardless of the fault model.

Therefore , as a practical matter. the cost of fault tolerance in most

cases is roughly the same whether indeterminate fault models are used or

one of the traditional fault models is used.

In Chapter 2, typical physical failure models are reviewed. Three

broad classes of physical failures are considered: interconnect

failures, transistor failures. and radiation-induced soft failures.

Interconnect failures result in shorts and opens in the lines that linl:

the transistors. Transistor failures are caused by a shift in device

parU1eters and device breakdown. Radiation-induced soft failures aro

transient, non-recurring upsets of a node or nodes in the circuit caused

by high onerJY radiation generatin& charge carriera in the integrated

195

circuit. Circuits become more susceptible to all three of these types

of failures as devices are scaled.

In Chapter 3, the effects of these failures on integrated circuits

are studied. It is found that nearly all of these failures may be

modeled as resistive shorts or opens in a circuit. Models are developed

for static NMOS, static CMOS, and dynamic NMOS inverters. These models

are used to predict the behavior of inverters under failure. It is

shown that when physical failures occur, the logic levels of the

inverter output may degrade, the inverter switching speed may decrease

and under some circumstances, the inverter output may oscillate.

Integrated circuits are also constantly exposed to the effects of random

noise which may cause soft failures, similar in nature to radiation-

induced soft failures. Thus, the analysis of Chapter 3 shows that phy­

sical failures, in general, may cause the output of a failed circuit to

assume a value that is logically undefined.

The behavior of good circuits with logically undefined inputs is

examined. It is also shown that a flip-flop may undergo metastable

operation when its inputs are undefined logic values. When a flip-flop

is in a metastable state, its outputs are generally illegal logic

values. Since clocked flip-flops are commonly used to separate blocks

of combinational logic, the effect of circuit parameters on the proba­

bility of entering a metastable state and average length of metastable

operation is studied. It is shown that high gain and high bandwidth are

important to minimize the effects of metastable operation.

195

circuit. Circuits become more susceptible to all three of these types

of failures as devices are scaled.

In Chapter 3, the effects of these failures on integrated circuits

are studied. It is found that nearl;r all of these failures may be

modeled as resistive shorts or opens in a circuit. Models are developed

for static NMOS, static CMOS, and dynamic NMOS inverters. These models

are used to predict the behavior of inverters under failure. It is

shown that when physical failures occur, the logic levels of the

inverter output may degrade, the inverter switching speed may decrease

and under some circumstances, the inverter output may oscillate.

Integrated circuits are also constantly exposed to the effects of random

noise which may cause soft failures, similar in nature to radiation­

induced soft failures. Thus, the analysis of Chapter 3 shows that phy­

sical failures, in general, may cause the output of a failed circuit to

assume a value that is logically undefined.

The behavior of good circuits with logically undefined inputs is

examined. It is also shown that a flip-flop may undergo metastable

operation when its inputs are undefined logic values. When a flip-flop

is in a metastable state, its outputs are generally illegal logic

values, Since clocked flip-flops are commonly used to separate blocks

of combinational logic, the effect of circuit par811leters on the proba­

bility of entering a metastable state and average length of metastable

operation is studied, It is shown that high gain and high bandwidth are

important to minimize the effects of metastable operation.

196

In Chapter 4* concurrent error detection for errors caused by phy­
sical failures is discussed. Indeterminate faults are used to represent

the undefined logic values that may occur due to physical failures. It

is shown that indeterminate faults may also be used to represent the

behavior of any failure that forces a single node of the circuit to a

legal logic value. A ternary algebra is used to describe the behavior
of logic gates with indeterminate fault inputs. By using the ternary

algebra* it is shown that static hazards and p-variable logic hazards
will sensitize an output to an indeterminate fault* even when the output

is not a function of the faulted node.

The traditional definitions for fault-secure* self-testing* and

totally self-checking are discussed. It is shown that due to the non-
deterministic behavior of indeterminate faults* these definitions are
inappropriate for systems that are subject to physical failures that may
cause indeterminate faults. New definitions of fault-secure* self test­

ing* totally self-checking* and strongly fault secure are given that are
compatible with indeterminate faults.

Two fault models are introduced that are based on indeterminate

faults. The concept of functional duplication is introduced. It is
shown that a functional duplication implementation* that satisfies the

totally self-checking goal, exists for any switching function. Pro­
cedures are also discussed for each of the fault models to find any

codes that may exist for a function that are less costly than functional
duplication. The problem of generating the check output vectors when

lH

In Chapter 4, concurrent error detection for errors caused by phy­

sical failures is discussed. Indeterminate faults are used to represent

the nndefined logic values that may occur due to physical failures. It

h shown that indotel'lftinate faults may also be used to repreaont tho

behavior of any failure that forces a single node of tho circuit to a

lo gal lo1h value. A ternary al1ebra is used to describe the behavior

of logic gates with indeterminate fault inputs. By using the ternary

algebra, it is shown that static hazards and p-variable logic hazards

will sensitize an output to an indeterminate fault , even when tho output

is not a f11J1ction of tho faulted node.

The traditional definitions for fault-secure, self-testing, and

totally self-checkin1 are discusud. It h shown that due to tho non­

deterministic behavior of indeterminate faults, these definitions are

inappropriate for systems that are subject to physical failures that may

cause indeterminate faults. New definitions of fault-secure, self test­

ins, totally self-checking, and strongly fault secure are given that are

compatible with indeterminate faults.

Two fault models are introduced that are based on indeterminate

faults. The concept of functional duplication is introduced. It is

shown that a functional duplication implementation, that satisfies tho

totally self-checking goal, exists for any switching function. Pro­

cedures are also discussed for eaoh of tho fault models to find any

codes that may e%ist for a function that are less costly than functional

duplication. The problem of generating tho check output vectors when

I

197

the circuit in question is part of a larger totally self-checking system

is also examined.

5.3. Suggestions for Future Research

One of the major detriments to systems that are totally self­

checking with respect to the indeterminate fault model is the testing

problem. Further research into methods that generate efficient and

effective tests for indeterminate faults is necessary in order to

improve the concurrent error detection capabilities of such systems. As

mentioned in Chapter 4, testability techniques for intermittent failures

appears to be a very promising foundation for developing such techniques

for indeterminate faults.

It would be desirable to extend the research of Chapter 4 to cover

a broader range of possible circuits and implementations. Since sequen­

tial networks are such an important class of circuits, it is imperative

to study them explicitly and develop the requirements for providing them

with concurrent error detection capability. Non-separable codes should

also be examined to determine if such codes might provide more economi­

cal implementations of certain functions than separable codes.

The algorithms presented in Chapter 4 to search for codes more

economical than functional duplication are straightforward to apply.

Unfortunately, for functions with a large number of inputs and outputs,

these procedures may become quite unwieldy to apply. For this reason,

new search algorithms should be developed to find such codes more effi­

ciently.

197

the circuit in question is part of a larger totally self-checking system

is also examined,

~-i, Sogsestions for Future Research

One of the major detriments to systems that are totally self­

checking with respect to the indeterminate fanlt model is the testing

problem . Further research into methods that generate efficient and

effective tests for indeterminate faults is necessary in order to

improve the concurrent error detection capabilities of such systems, As

mentioned in Chapter 4. testability techniques for intermittent failures

appears to be a very promising foundation for developing such techniques

for indeterminate faults .

It would be desirable to extend the research of Chapter 4 to cover

a broader range of possible circuits and implementations. Since sequen­

tial networks are such an important class of circuits, it is imperative

to study them explicitly and develop the requirements for providing them

with concurrent error detection capability. Non-separable codes should

also be examined to determine if such codes might provide more economi­

cal implementations of certain functions than separable codes.

The algorithms presented in Chapter 4 to search for codes more

economical than functional duplication are straightforward t o apply.

Unfortunately, for functions with a large number of inputs and outputs,

these procedures may become quite unwieldy to apply . For this reason,

new search algorithms should be developed to find such codes more effi­

ciently,

One of the major difficulties in using the general single-failure

indeterminate fault model is the problem of designing appropriate check­

ers* Therefore* designs of checkers for the general single-failure

indeterminate fault model should be studied*

198198

One of the ■ajor difficulties in using tho goneral single-failare

indeterminate faalt ■odel is tho proble• of designing appropriate check­

ers. Therefore, dosians of checkers for tho general single-failure

indeterminate fault model should be studied .

199

References

[1] T, W. Williams and K. P. Parker, "Design for testability - a
survey," Proc. IEEE, vol. 71, no. 1, Jan. 1983, pp. 98-112.

[2] S. R. McConnel, D. P. Siewiorek, and M. M. Tsao, "The measure­
ment and analysis of transient errors in digital computer sys­
tems," IEEE Int. Svmo. Fault-Tolerant Computing. Los Angeles,
1979, pp. 67-70.

[3] J. H. Patel and L. Y. Fung, "Concurrent error detection in
ALU's by recomputing with shifted operands," IEEE Trans. Com­
puters , vol. C—31, no. 7, July 1982, pp. 589—595.

[4] P, Banerjee, "A model for simulating physical failures in MOS
VLSI circuits," Report CSG-13, Coordinated Science Laboratory,
University of Illinois, Urbana, IL, 1982.

[5] J. E. Smith, "The design of totally self-checking combinational
circuits," Report R-737, Coordinated Science Laboratory,
University of Illinois, Urbana, IL, 1976.

[6] D. F. Barbe, Very large scale integration (VLSI) Fundamentals
and Applications. Berlin: Springer—Verlag, 1980.

[7] S. Vaidya, D. B. Fraser, and A. K. Shinha, "Electromigration
resistance of fine—line Al for VLSI applications," Proc. Int.
Reliability Physics, 1980, pp. 165-170.

[8] P. A. Gargini, C. Tseng, and M. H. Woods, "Elimination of sili­
con electromigration in contacts by the use of an interposed
barrier metal," Proc. Int. Reliability Physics, 1982, pp. 66-
76.

[9] G. DiGiacomo, "Metal migration (Ag, Cu, Pb) in encapsulated
modules and time-to-fail model as a function of the environment
and package properties," Proc . Int. Re 1 iab il itv Phy.$ i.c.§., 1982,
pp. 27-33.

References

[11 T . W, Williams and K. P. Parker. "Design for testability - a
survey," Proc. IEEE, vol. 71, no. 1, Jan. 1983, pp. 98-112.

[21 S. R. McConnel. D. P. Siewiorek, and M. M. Tsao. "The measure­
ment and analysis of transient errors in digital computer sys­
tems," IEEE hi., Svmn, EIJl.li-Tolerant Computing. Los Angeles,
1979, pp. 67-70,

[3] J. H. Patel and L. Y. Fung, "Concurrent error detection in
ALU' s by recomputing 'lfith shifted operands,'' IEEE Trans. ~
put,,s. vol. C-31, no. 7, July 1982, pp. 589-595.

[4] P. Banerjee, "A model for sbulating physical failures in MOS
VLSI circuits," Report CSG-13, Coordinated Science Laboratory,
University of Illinois, Urbana, IL, 1982.

[5] J.E. Smith, ''The design of totally self-checking combinational
circuits," Report R-737, Coordinated Science Laboratory.
University of Illinois, Urbana, IL, 1976.

[61 D, F. Barbe,~ tare.A scale integration (VLSI) Fundamentals
.A.n.d. Applications. Berlin: Springer-Verlag, 1980.

[71 S. Vaidya, D. B. Fraser, and A. K. Shinha, "Electromigration
resistance of fine-line Al for VLSI applications,"~- .IJu..
Reliability Phvsics, 1980, PP• 165-170.

[8] P, A. Gargini, C. Tseng, and M. H. Woods, "Elimina.tion of sili­
con electromigt'ation in contacts by the use of an interposed
barrier metal."~- .h.t , Reliability Physics, 1982, PP· 66-
76.

[91 G. DiGiacomo, "Metal migration (Ag, Cu, Pb) in encapsulated
modules and time-to-fail model as a function of the envirorunent
and package properties ,"~- !Ju.. Reliability Physics. 1982,
pp. 27-33.

199

200

[10] J. R. Lloyd* G. S. Hopper* and W. B. Roush* "In situ IR obser­
vation of electromigration induced damage in heavily doped po­
lycrystalline silicon resistors*" Proc. Ifti. Reliability Phy­
sics. 1982, pp. 47-49.

[11] Me R e Polcari, J. R. Lloyd, and S. Cvikevich, "Electromigration
failure in heavily doped polycrystalline silicon*" Proc Int
Reliability Phytifll* 1980, pp. 178-185.

[12] H. C. Potter and D. R. Reber* "A study of surface charge in­
duced inversion failure of junction isolated monolithic silicon
integrated circuits," Proc. Int. Reliability Physics* 1976, pp.
11-17.

[13] B. A. Unger* "Electrostatic discharge failures of semiconductor
devices," Proc. Iflt,. Reliability Physics* 1981, pp. 193-199.

[14] A. R. Hart, J. Smyth, and Stan Gorski, "Predicting ESD related
reliability effects," Proc. Int- Reliability Physics* 1982, pp.
233-237.

[15] E. S. Anolick, "Screening of time-dependent dielectric break­
downs," Proc. Int. Reliability Physics, 1982, pp. 238-243.

[16] B. Evzent, "Hot electron injection efficiency in IGFET struc­
tures," Proc. Int. Reliability Physics, 1977, pp. 1-4.

[17] B. Eitan and D. Frohman-Bentchkowsky, "Hot-electron injection
into the oxide in n-channel MOS devices," IEEE Trans. Electron.
Devices. vol• ED—28, no. 3, pp. 328—340, March 1981.

[18] P. K. Chaudhari, "Leakage-induced hot carrier instability in
phosphorus-doped Si02 gate IGFET devices," Proc. Int. Reliabil­
ity Physics, 1977, pp. 5-9.

[19] S. A. Abbas and R. C. Dockerty, "Hot electron induced degrada­
tion of n-channel IGFETs," Proc. Ia£. Reliability Physics,
1976, pp. 38-41.

[20] M. Nojori and T. Ishihara, "Secondary slow trapping - a new
moisture induced instability phenomenon in scaled CMOS dew-
ices," Proc. Xn£. Reliability Physics, 1982, pp. 113-121.

[10] 1. ll. Lloyd. G. S. Bopper, and 1'. B. Roush, "In. dt11 ll obser­
vation of eloctroaigration induced damage in heavily doped po­
lycrystalline silicon resistors." hw;.. lJu.. Reliability lla:­
llU.• 1982, pp. 47-49.

[11) II. R. Polcari. 1 . R. Lloyd, and S. Cvi:tevich, "Bhctroaigration
fail'llre in heavily doped polycrystalline silicon," lxR.5-• _hl.
Reliability Physics. 1980, PP • 178-185.

[12] H. C. Potter and D. ll. Reber, "A study of surface charge in­
duced inversion failure of juction isolated monolithic silicon
integrated circuits,"~- ht, Reliability Physic1. 1976, PP •
11-17.

(13] B. A. Unser, "Electrostatic discharge fail urea of semiconductor
devices,• ~ - h,t. Reliability flL.T1ic1. 1981, PP• 193-199.

[U] A. It. Bart, 1. Smyth. and Stan Gorski, "Predicting BSD related
reliability effects,"~- h1,. Reliability Physic,1. 1982, PP·
233-137.

[151 E . S. Anolick, "Screening of time-dependent dielectric break­
downs, " lm£. IAt• Reliability Physics. 1982. pp. 238-243.

(16] B. Evzont, "Hot electron injection efficiency in IGFET struc­
tures , " ~ - la.t- Reliability Physics. 1977, pp. 1-4.

[17] B. IHtan and D. Frohman-Bentchkowsky, "Hot-electron injection
into tho oxide inn-channel MOS devices," IEEE Trans. Electron.
Deyices. vol. ED-18, no. 3, pp, 328-340. Karch 1981.

[181 P. I:. Chaudhari . "Leakage-induced hot carrier instability in
phosphorus-doped Si02 gate IGFET devices," ~ . 11.1, Reliabil­
~ Physics. 1977, PP• 5-9.

[19] S. A. Abbas and R. C. Dockerty, "Hot electron induced degrada­
tion of n- channel IGFETs," ~ . .!D.1• Reliability Physics .
1976, pp. 3 8-41.

(20] M. Nojori and T. Ishihara, "Secondary slow trapping - a new
moisture induced instability phenomeno:n in scaled CMOS dev­
ices, " lt.a.g_. Xn.1, Reliability Physics. 1981, pp. 113-121.

200

201

[21] J. P. Mitchell and D. K. Wilson, "Surface effects of radiation
on semiconductor devices," Bell Systems Technical J ournal, vol.
XLVI, no. 1, Jan. 1967, pp. 1-80.

[22] E. H. Snow, A. S. Grove, and D. J. Fitzerald, "Effects of ion­
izing radiation on oxidized sillicon surfaces and planar dev­
ices," Proc. IEEE, vol. 55, no. 7, July 1967, pp. 1168-1185.

[23] I. N. Krishnan and T. M. Chen, "G-R noise and microscopic de­
fects in irradiated junction field effect transistors," Solid-
State Electron., vol. 20, Nov. 1977, pp. 897-906.

[24] S. A. Abbas and E. E. Davidson, "Reliability implications of
hot electron generation and parasitic bipolar action in an IG-
FET device," Proc. Int. Reliability Physics, 1976, pp. 18-22.

[25] R. R. Troutman and H. P. Zappe, "A Transient analysis of latch-
up in Bulk CMOS," IEEE Trans. Electron. Devices. vol. ED-30,
no. 2, Feb. 1983, pp. 170-179.

[26] C. M. Esieh, P. C, Mur ley, and R. R. O'Brien, "Dynamics of
charge collection from alpha-particle tracks in integrated cir­
cuits," Proc. Int. Reliability Physics, 1981, pp. 38-42.

[27] M. L. White, J. W. Serpiello, K. M. Striny, and W. Rosenzweig,
"The use of silicone RTV rubber for alpha particle protection
on silicon integrated circuits," Proc. Int. Reliability Phy­
sics. 1981, pp. 43-47.

[28] J. Galiay, Y. Crouzet, and M. Vergniult, "Physical versus logi­
cal fault models M0S LSI circuits: impact on their testabili­
ty," IEEE Trans. Computers, vol. C-29, no. 6, June 1980, pp.
527-531.

[29] C. Mead and L. Conway, Introduction to VLSI systems. Reading:
Addison-Wes1ey Publishing, 1980.

[30] B. G. Streetman, Solid state electronic devices. Englewood
Cliffs: Prentice-Hall, 1980.

[31] R. D. Davis, "Design and analysis of an NMOS operational am­
plifier with depletion loads," Report R-857, Coordinated Sci­
ence Laboratory, University of Illinois, Urbana, IL, 1979,

[21] J. P. Mitchell and D. I. Wilson, "Surface effects of radiation
on semiconductor devices," hll. Systems Technical Journal. vol.
XLVI, no. 1, Jan, 1967, pp. 1-80.

[22) E. H, Snow, A. S. Grove, and D. J. Fitzerald, "Effects of ion­
izing radiation 011 oxidized sillicon surfaces and planar dev­
ices," P:coc. IEEE. vol. 55, no. 7, July 1967, pp. 1168-1185.

[231 I. N. Krishnan and T. M. Chen, "G-R noise and microscopic de­
fects in irradiated junction field effect transistors," ~­
~ Electron •• vol. 20, Nov, 1977, pp, 897-906.

[24) S, A. Abbas and E. E, Davidson, ''Reliability implications of
hot electron generation and parasitic bipolar action in an IG­
FET device," Proc . .l.Ju. &,liability fus,jc_s_, 1976, pp. 18-22.

[25) R.R. Troutman and H.P. Zappe, "A Tra~sient analysis of latch­
op in Bulk CMOS," IEEE :rx...u. Electron. Devices. vol. ED-30,
no. 2, Feb. 1983, pp. 170-179.

[26) C. M, Hsieh. P. C, Murley, and R.R. O'Brien , "Dynamics of
charge collection from alpha-particle tracks in integrated cir­
cuits,"~- Int. Reliabilitv Phvsics. 1981. pp . 38-42.

[271 M. L. White. J. W. Serpiello, K. M. Striny, and W. Rosenzweig,
"The use of silicone RTV rubber for alpha particle protection
on silicon integrated circuits," f..r...2.£. h,t. Reliabilitv flu.­
till, 1981, pp. 43-47.

[28] J. Galiay, Y. Crouzet, and M. Vergniolt, "Physical versus logi­
cal fault models MOS LSI circuits: impact on their tes tabil i­
ty," IEEE IuJu.. Computers. vol. C-29, no. 6, June 1980. pp .
527-531.

(291 C. Mead and L. Conway, Introduction .tQ. VLSI svstems. Reading :
Addison-Wesley Publishing, 1980 .

(30) B, G. Streetman, Solid ~ electronic devices. Englewood
Cliffs: Prentice-Hall, 1980,

[31] R. D. Davis, t1Design and analysis of an NMOS operational am­
plifier with depletion loads," Report R-857. Coordinated Sci­
ence Laboratory, University of Illinois, Urbana, IL, 1979.

201

202

[32] L. A. Glasser* "The analog behavior of digital integrated cir­
cuits* " Design Automation Conf., 1981* pp. 603-612.

[33] L. P. J. Hoyte* "Automated calculation of device sizes for di­
gital IC designs*" M.S. Thesis* Massachusetts Institute of
Technology* Cambridge* MA* 1982.

[34] S. Muroga* VLSI system design. New York: John Wiley and Sons*
1982.

[35] D. J. Hamilton and f. G. Howard* Basic integrated circuit £&"
gingering. Reading: Addison-Wesley, 1979.

[36] L. Strauss* Wave generation and shaping. New York: McGraw-
Hill, 1970.

[37] M. Karpovsky and S. I. H. Su* "Detection and location of input
and feedback bridging faults among input and output lines,"
IEEE Trans. Computers* vol. C—29* no. 6, June 1980* pp. 523—
527.

[38] T. Yamada and T. Nanya* "Comments on 'Detection and location of
input and feedback bridging faults among input and output
lines'*" IEEE Trans. Computers. vol. C-32, no. 5, May 1983, pp.
511-512.

[39] R. E. Ziemer and W. H. Tranter* Principles ol gommuflicatiQn?♦
Boston: Houghton Mifflin, 1976.

[40] J. T. Wallmark* "Noise spikes in digital VLSI circuits*" IEEE
Trans. Electron. Devices * vol. ED-29, no. 3, March 1982, pp.
451-458.

[41] S. H. Unger, "Asynchronous sequential switching circuits with
unrestricted input changes," IEEE Trans. Computers, vol. C-20,
no. 12, Dec. 1971, pp. 1437-1444.

[42] L. R. Marino, "The effect of asynchronous inputs on sequential
network reliability," IEEE Trans. Computers, vol. C-26, no. 11,
Nov. 1977, pp. 1082-1090.

[43] B. I. Strom* "Proof of the equivalent realizability of a time-
bound arbiter and a runt-free inertial delay," Sixth AsfiB&l
Svmp. Computer Architecture* 1979, pp. 178-181.

[32] L . A. Glasser. ''The analog behavior of digital intesrated cir­
cuits, w Desi~n Automation ~ •• 1981 , PP • 603- 611 .

[33] L. P. 1. Boyto, ~Automated calculation of device sizes for di­
gital IC designs," .M.S. Thesis, llauachuaetts Institute of
Technoloay, Cambridge , IIA , 1982 .

(34] S. Kuro1a, VLSI sv1tep dp1J1n. New York: John Wiley and Sons,
1982.

[3S] D. J . Buailton and W. G. Boward, D.a.l..i.Q. intearated circuit a­
tineerina. Reading: Addison-Wesley, 1979.

(36) L. Strauss, hll uneration w shapin1, Ne,r York: McGra,r­
Hill, 1970.

[37) It. 1:arpovsky and. S. Y. B. Su, "Detection and location of input
and feedback brid1ing faults among input and output lines,"
IEEE Trans. Computers, vol. C-29, no. 6, June 1980, pp. 523-
.527 .

[38] T. Yamada and T. Nanya, "Comments on 'Detection and location of
input and feedback brid1in1 fa~lts uiong input and output
lines'," IEHR Tuna. Computers. vol. C-32. no. 5, May 1983. pp.
511-512.

[391 R. E. Ziemer and W. B. Tranter. Principles .o.f. communications.
Boston : Houghton Mifflin, 1976 .

[40) r . T. lfallmark, ''Noise spiku in diaital VLSI circuits," IEEE
il.AAI.• Electron. Dnicu. vol. ~29. no. 3. March 1982, pp .
,451- 458.

[41] S . B. Unger, "Asynchronous sequential 1,ritching circuits with
unrestricted input changes," IEEE~. Computers, vol. C-20.
no. 11, Deo. 1971, pp. 1437-1444.

[421 L. R. Marino, ''Th.e effect of asynchronolll inputs on sequential
network reliability," IEEE ll.lll.l.• Computers. vol. C-26, no. 11,
Nov. 1977, PP• 1082-1090.

[43] B. I. Stro•, "Proof of the equivalent realizability of a time­
bound arbiter md a runt-free inertial dolay," lix.tll Annual
~- Coguter Architecture. 1979. PP• 178-181.

202

203

[44] L. R. Marino, "General theory of metastable operation," IEEE
Trans * Computers, vol. C—30, no. 2, Feb. 1981, pp. 107—115.

[45] T. J. Chaney, S. M. Ornstein, and W. M. Littlefield, "Beware
the synchronizer," IEEE Compcon, 1972, pp. 317—319.

[46] I. Catt, "Time loss through gating of asynchronous logic signal
pulses," IEEE Trans. Computers, vol. C—15, no. 2, Feb. 1966,
pp. 108-111.

[47] M. J. Stucki and J. R. Cox, "Synchronization strategies," Cal­
Tech Conf. VLSI, 1979, pp. 375-393.

[48] P. A. Stoll, "How to avoid synchronization problems," VLSI
Design. Nov./Dec. 1982, pp. 56-59.

[49] T. J. Chaney and C. E. Molnar, "Anomalous behavior of synchron­
izer and arbiter circuits," IEEE Trans. Computers, vol. C-22,
no. 4, April 1973, pp. 421-422.

[50] M. Pechoucek, "Anomalous response times of input synchroniz­
ers," IEEE Trans. Computers, vol. C-25, no. 2, Feb. 1976, pp.
133-139.

[51] T. J. Chaney and F. U. Rosenberg, "Characterization and scaling
of MOS flip flop performance in synchronizer applications,"
Cal-Tech Conf. VLSI, 1979, pp. 357-374.

[52] G. Lacroix, P. Marchegay, and G. Piel, "Comments on 'The
Anomalous behavior of flip-flops in synchronizer circuits',"
IEEE Trans. Computers, vol. C—31, no. 1, Jan. 1982, pp. 77—78.

[53] D. E. Muller, "Treatment of transition signals in electronic
switching circuits by algebraic methods," IRE Trans. Electronic
Computers, vol. EC-8, no. 3, Sept. 1959, p. 401.

[54] E. B. Eichelberger, "Hazard detection in combinational and
sequential switching circuits," IBM Journal, vol. 9, no. 2,
March 1965, pp. 90-99.

[55] D. B. Armstong, "On finding a nearly minimal set of fault
detection tests for combinational logic nets," IEEE Trans.
Electron. Computers, vol. EC-15, no. 1, Feb. 1966, pp. 66-73.

[44] L. R, Marino, "General theory of metastable operation," IEEE
!.a.Ju. Comunters, vol. C-30, no. 2, Feb, 1981. pp. 107-115.

{45] T. J. Chaney, S. M. Ornstein, and W. M. Littlefield, "Beware
the synchronizer," IEEE Compcon. 1971, pp. 317-319.

[46] I. Catt, "Time loss through gating of asynchronous logic signal
pulses," IEEE Trans . Computers, vol. C-15, no, 2, Feb. 1966,
pp, 108-111.

(47] M.. J. Stucki and J, R. Cox, "Synchronization strategies," .W­
Tech Conf. VLSI, 1979, pp. 315-393.

{48] P. A. Stoll. "Bow to avoid synchronization problems," VLSI
Design. Nov./Dec, 1982, pp. 56-59.

{49] T, J, Chaney and C, E. Molnar, "Anomalous behavior of synchron­
izer and arbiter circuits," IEEE '.!i:m, Computers. vol. C-22,
no. 4, April 1973, pp, 421-422.

[50] M. Pechoucek, "Anomalous response times of input synchroniz­
ers," IEEE Trans, Computers, vol. C-25, no, 2, Feb, 1976, pp.
133- 139.

[51] T. J. Chaney and F. U. Rosenberg, "Characterization and sealing
of MOS flip flop performance in synchronizer applications,"
W -Tech !&n.,f. VLSI, 1979, pp. 357- 374.

[52] G, Lacroi:1:, P. Marchegay, and G, Piel, "Com!llents on 'The
Anomalous behavior of flip-flops in synchronizer circuits•,"
IEEE Trans, Computers. vol . C-31, no , 1, Jan. 1982, pp. 77-78.

[53] D. E. Muller, "Treatment of transition signals in electronic
switching circuits by algebraic methods," IRE Trans. Electronic
Computers. vol. EC-8 , no, 3, Sept. 1959, p, 401.

[54] E. B. Eichelberger, "Hazard detection in combinational and
sequential switching circuits," IBM Journal, vol. 9, no, 2,
March 1965, pp. 90-99.

[SSJ D. B. Armstong, "On finding a nearly minimal set of fault
detection tests for combinational logic nets," IEEE Trans.
Electron, Computers, vol . EC- 15, no. 1.Feb.1966, pp. 66- 73 .

203

204

[563 Z. Kohavi, Switching and liaJLLfe m £ 9 m £ & th s& X Z - New York:
McGraw-Hill, 1978.

[573 J. S. Jephson, R. P. McGuarrie, and R. E. Vogelsberg, "A
three-value computer design verification system," IBM Sy ft»
Journal. vol. 8, no. 3, 1969, pp. 178-181.

[583 J. E. Smith and G. Metre, "Strongly fault secure logic net­
works," IEEE Trans. Computers, vol. C-27, no. 6, June 1978, pp.
491-499.

[59] P. Duhamel and J. C. Rault, "Automatic test generation tech­
niques for analog circuits and systems: a review," IEEE Trans.
Circuits and Systems. vol. CAS—26, no. 7, July 1979, pp. 411—
440.

[603 S. Kamal and C. Y. Page, "Intermittent faults: a model and a
detection procedure," IEEE Trans. Computers, vol. C-33, no. 7,
July 1974, pp. 713-719.

[613 J. Savir, "Testing for single intermittent failures in combina­
tional circuits by maximizing the probability of fault detec­
tion," Report 145, Center for Reliable Computing, Stanford
University, Palo Alto, CA, 1977.

[62] J. W, Beyers, L. J. Dohse, J. P. Fucetala, R. L. Eochis, C. G.
Lob, G. L. Taylor, and E. R. Zeller, "A 32-bit VLSI CPU chip,"
IEEE Journal Solid-State Circuits, vol. SC-16, no. 5, Oct.
1981, pp. 537-542.

[63] W. W. Lattin, J. A. Bayliss, D. L. Budde, J. R. Rattner, and W.
S. Richardson, "A methodology for VLSI chip design," Lambda,
Second Quarter 1981, pp. 34-44.

[64] M. A. Breuer and A. D. Friedman, Diagnosis and reliable fljLfiga
of digital systems. Rockville: Computer Science Press, 1976.

[653 C. C. Beh, K. H. Arya, C. E. Radke, and K. E. Torku, "Do stuck
fault models reflect manufacturing defects?," Int. Test Conf.,
Philadelphia, 1982.

[663 R. Grappel and J. Hemenway, "Understand the newest processor to
avoid future shock," EDN. vol. 26, no. 9, April 29, 1981, pp.
129-136.

(561 z . l:ohavi. Switchln1 and finite automata theory. Ne,, Yort:
McGra,r--Hill, 1978,

[57] J. S. Jephson, K. P. NcGuarrie, and R. R, Vo1el1bor1, ~A
three-value computer design verification system,• lR h.1.1,
Journal, vol. 8, no. 3, 1969, PP• 178-188.

[58] :r . E. Saith and G. Motr.e, "Strongly fault socuro lo1ic not­
,rorb , " ,IEEE ll™• Com.paten, vol. C-17, no. 6 , 1lJJle 1978, pp.
491-◄99.

(59] P. Duhamel and 1. C. B.ault, "Automatic test 1ene:ution tech­
niques for analog circuit• and ■ystems : a review," IEEE Trans.
Circgit1 .AA4. Sv1tems. vol, CAS-26, no, 1, July 1979, pp, 411-
◄40.

[60] S. lamal and C, V. Pago, "Intermittent faults : a model and a
detection prooedure," IJmi Trana. Compgten. vol, C-33, no, 7.
1uly 1974, pp, 713-719,

[61] J. Savir, "Teetins for single intermittent failuos in combina­
tional circuits by ma:dm.i:zing the probability of fault detec­
t ion, " Rei,ort 145. Center for Reliable Computing, Stanford
University, Palo Alto, CA, 1977.

[62] J . W. Beyers, L. J. Dohse, J.P. Fucetala, R. L. ICoohis, C. G.
Lob, G. L. Taylor, and E. K. Zoller, ' 'A 32-bit VLSI CPU chip,"
IlmE Journal WJJl-h..all Circuits. vol. SC-16, no . 5. Oct.
1981, pp, 537-542.

[631 Y, W. Lattin, 1. A. Bayliss, D. L, Budde. 1. R. Rattner, and W.
s. Richardson, "A 11ethodology for VLSI chip design," Lambda.
Second Quarter 1981, pp, 34-44.

[641 M.A. Breuer and A. D. Friedman, Dia1nosi1 m reliable desi1n
su. digital svstems. Rockville : Computer Science Press, 1976.

[65J C, C. Beh, I. B. Arya, C, E. Radke , and IC. E. Torku, "Do stuck
fault models reflect manufacturing defects?," lat, It.J.t ~ .•
Philadelphia, 1982.

[66] R. Grappel and 1. Hemenway. "Understand the ne,rost proce,sor to
avoid future shock," IWf, vol. 26, no. 9, April 29, 1981, pp.
129-136.

204

205

167] R. M e Sedmak and H. L, Bergot* "Fault tolerance of a general
purpose computer implemented by very large scale integration*"
IEEE Trans* Computers* vole C-29* no* 6* June 1980* pp. 492-
500.

I 67] R. M. Sedmak and H. L. Bergot, "Fant t tolerance of a general
purpose computer implemented by very large scale integration."
IEEE Trans. Computers. vol. C-29, no. 6 , June 1980, pp . 492-
500.

205

206

Vita

Daniel Lee Halperin was born January 23, 1957 in Oak Ridge# Tennes­

see. He graduated first in bis class in the College of Engineering at

the University of Tennessee in 1978 with a B.S. in Electrical Engineer­

ing. He received bis M.S. and Pb.D. in Electrical Engineering in 1981

and 1984, respectively, from tbe University of Illinois. While at tbe

University of Tennessee, be was inducted into tbe Phi Eta Sigma, Eta

Kappa Nu, Tau Beta Pi, and Phi Kappa Phi honorary societies. While pur­

suing bis graduate studies at tbe University of Illinois* be was a

member of the Computer Systems Group of tbe Coordinated Science Labora­

tory. He is currently employed by Hewlett-Packard as a member of tbe

engineering staff in tbe System Technology Operation at Fort Collins,

Colorado.

Vita

Daniel Lee Halperin was born 1anuary 23, 1957 ia Oat Kidao, Teanoa­

see. Be sraduated first in hi1 clas, in tho Colle10 of Enginoorins at

tho University of Tennessee in 1978 with a B.S. in Electrical Engineer­

ing. Be received his X.S. and Ph.D. in Electrical En.ginoering in 1981

and 1984, respectively, fro■ tho University of Illinoh. While at the

University of Tennessee, he was inducted into tho Phi Eta Sigma, Bta

lappa Nu, Tau Beta Pi, and Phi lappa Phi honorary societies. While pur­

suing his graduate studios at tho University of Illinois, ho was •

member of the Computer Systems Group of the Coordinated Scion.co Labora­

tory. He is currently employed by Howlett-Packard as a member of the

on1ineerin1 staff in tho System. Technology Operation at Fort Collins,

Colorado.

	83-8583.pdf
	83-8583 original

