

University of Bath

PHD

Self checking circuits applied to the fault diagnosis of microprocessor based systems

Hollis, T. J.

Award date:
1986

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

SELF CHECKING CIRCUITS APPLIED TO THE FAULT
DIAGNOSIS OF MICROPROCESSOR BASED SYSTEMS

submitted by T. J. Hollis
for the degree of PhD

of the University of Bath
19B6

COPYRIGHT
Attention is drawn to the fact that copyright of this
thesis rests with its author. This copy of the thesis has
been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its
author and that no quotation from the thesis and no
information derived from it may be published without the

prior written consent of the author.

This thesis may be made available for consultation within
the University Library and may be photocopied or lent to

other libraries for the purposes of consultation.

UMI Number: U369651

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U369651
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

S o o ^ \°\
UAIIVER5!,TV OF BATH

S3l l5~JULm7 1

SUMMARY
This thesis examines the fault diagnosis of microprocessor
based systems from the use of existing test techniques and
equipment to the design and application of self checking
circuits.
Initially, some existing techniques and equipment for the
testing of microprocessor based systems are detailed,
together with the test philosophies of twelve major
manufacturers or users of such systems. This includes a
specific application of in-circuit emulation.
Consideration of the testing process at the design stage
has resulted in built in test at board and chip level.
Common forms of built in test are studied, particularly
error detection codes, and a summary provided of available
integrated circuits with built in test.
The aspect of built in test where a system is tested
concurrently with normal operation makes extensive use of
fault detection or checking circuits. The problem of
failures in these checking circuits is resolved with the
use of self checking circuits.
The theory of self checking circuits is introduced with
formal definitions of their characteristics. Based on the
tests required to detect all single failures in logic
gates and the use of Karnaugh maps, a technique is
proposed for the design of totally self checking circuits.
Circuit designs are presented for several self checking
code checkers.
The mechanisms required to construct a self checking
microprocessor based system are discussed. These allow
a device or circuit failure in the system to be precisely
located and include the use of signal isolation circuits.
A review of proposals for self checking devices and
systems reveals how extensively the various self checking
mechanisms are adopted.
Finally, an experimental self checking computer is
described, in which the application of self checking
circuits to the fault diagnosis of microprocessor based
systems is practically evaluated.

ACKNOWLEDGEMENTS
At the University of Bath, the author wishes to thank Mr.
A. R. Daniels (Senior Lecturer in the School of Electrical
Engineering) for his guidance as Supervisor during the
research and for the provision of facilities within the
School of Electrical Engineering. The guidance given Dr.
S. L. Hurst (Senior Lecturer in the School of Electrical
Engineering) is also gratefully acknowledged. In
addition, the author appreciates the assistance given by
Dr. R. T. Lipczynski (Lecturer in the School of Electrical
Engineering) during the industrial survey.
The provision of a Case Award by the Science and Engineer
ing Research Council, Swindon, is also acknowledged.
At Rolls Royce pic, Bristol, the author wishes to thank
Mr. R. D. Fyfe (ADR Applications Manager) and Mr. A. C.
Plenty (Head of Electronics and Instrumentation) for the
provision of time and facilities during the past three
years, as well as Mr. P. L. Westlake (Systems Planner) for
many helpful discussions and Mr. M. S. Whitfield (ADR3
Project Manager : Systems Procurement) as industrial
supervisor during the first three years.
The assistance given by Ms. H. M. R. Hollis (Architectural
Designer at the Welsh School of Architecture, Cardiff) and
Mr. A. Burn (Senior Systems Engineer at Rolls Royce pic,
Bristol) in the preparation of figures for this thesis is
gratefully acknowledged, as is the assistance given by Mr.
P. D. Burn (Sales Engineer at Multibloc Sales Ltd.,
Keynsham, Bristol) in the wiring of the experimental
computer.
During the industrial survey, the co-operation of the
following companies is noted; Lucas Aerospace Ltd., Hemel
Hempstead; Satchwell Control Systems Ltd., Slough; British
Aerospace, Dynamics Group, Stevenage; Renishaw Electrical
Ltd., Wotton-Under-Edge; Marconi Avionics Ltd., Micro
processor Division, Milton Keynes; Digital Equipment
Company Ltd., Bristol; Ferranti Computing Systems Ltd.,
Bracknell; Data General, Bristol; Cifer Systems Ltd.,
Melksham; Negretti and Zambra Avionics Ltd., Eastleigh;
and Square 'D' Ltd., Swindon.
Finally, the author is indebted to his parents, Mr. and
Mrs. R. J. Hollis, for their constant support and
encouragement.

-iii-

SYMBOLS AND ABBREVIATIONS
Address line
Asynchronous Communications Interface Adaptor
Arithmetic Logic Unit
American Standard Code for Information
Interchange
Automatic Test Equipment
Buffer
bits per second
Built In Test
Checker
Clock
Clear
Complementary Metal-Oxide Semiconductor
Central Processing Unit
Hamming distance
Diode or Data line
Direct Current

DED/DEC Double Error Detecting/Double Error Correcting
DIR Direction
DMA Direct Memory Access
EXOR Exclusive-OR
Fs secure fault set
Ft tested fault set
G enable
ECL Emitter-Coupled Logic
EPROM Erasable Programmable Read Only Memory
Hex Hexadecimal (base 16)
Hz Hertz
I Isolator
I/O Input/Output
IC Integrated Circuit
ICE In-Circuit Emulation
I2L Integrated Injection Logic
k kilo (103)
K 1024
LA Logic Analayser
LED Light Emitting Diode
LFSR Linear Feedback Shift Register
LSI Large Scale Integration
M Mega (106)
MOS Metal-Oxide Semiconductor
MSI Medium Scale Integration
MUX Multiplexer
N secure input set
PCI Programmable Communications Interface
PSC Partially Self Checking
PIA Peripheral Interface Adaptor
PLA Programmable Logic Array
PR Preset
Q flip-flop output
R Resistor
RC Resistor Capacitor
R/W Read/Write

A
ACIA
ALU
ASCII
ATE
B
BAUD
BIT
C
CK,CLK
CLR
CMOS
CPU
d
D
DC

-iv-

RAM Random Access Memory
ROM Read Orily Memory
RST Reset
SA Signature Analysis .
SAO Stuck-At-0
SA1 Stuck-At-1
SC Self Checking
SED/SEC Single Error Detecting/Single Error Correcting
SSI Small Scale Integration
STO Self Testing Only
SV Self Verification
TPG Test Pattern Generation
TR Transistor
TSC Totally Self Checking
TTL Transistor-Transistor Logic
U the Universal set
*jP microprocessor
V Volts
Vcc Positive supply rail
VDU Visual Display Unit (terminal)
VLSI Very Large Scale Integration
VMA Valid Memory Address
X normal input set
X^ vector X
x^ variable x within a vector

20mA
RS232 interface specifications

N
I
©
i
U
G

equals
does not equal
approximately equals
is equivalent to
less than
less than or equal to
greater than
greater than or equal to
vector
addition, or logical OR
addition modulo N
summation
Exclusive-OR
logical AND
factorial
the Union of
is a member of
is not a member of

-v-

implies that
3 is a superset of
C is a subset of
C is a subset of or equal to
V for all
^ for not all
| given that
3 there is some
—> to or maps to
<— from
£ } Set
0 clock phase or null set
n rounded up to the nearest integer
LJ rounded down to the nearest integer

Morphic AND
A logical complement of A or A is active low
(l), © codewords on a Karnaugh map

-vi-

CONTENTS
SUMMARY ii
ACKNOWLEDGEMENTS iii
SYMBOLS AND ABBREVIATIONS iv
CHAPTER ONE : INTRODUCTION 1
1.1 : REFERENCES 6
1.2 : FIGURES 11
CHAPTER TWO : EXISTING TECHNIQUES AND EQUIPMENT 14
2.1 : SIGNATURE ANALYSIS 14
2.2 ; LOGIC ANALYSIS 16
2.3 : AUTOMATIC TEST EQUIPMENT 20

2.3.1 : In-Circuit Testing 20
2.3.2 s Functional Testing 21
2.3.3 : In-Circuit and Functional Testing Combined 22
2.3.4 s ATE In Use 23

2.4 : SELF TEST 24
2.5 : IN-CIRCUIT EMULATION 26
2.6 s COMBINED TECHNIQUES 29
2.7 : PROVISION FOR TEST 31
2.8 : REFERENCES 32
2.9 : FIGURES 34
CHAPTER THREE : BUILT IN TEST - AN INTRODUCTION 39
3.1 s FAULTS AND FAULT MODELS 39

3.1.1 s Stuck-At Fault Model 40
3.1.2 s LSI/VLSI Failures 42
3.1.3 : Bridging Faults (shorts) 43
3.1.4 : Unidirectional Faults 43
3.1.5 : Functional Fault Model 43

3.2 : OBSERVABILITY AND CONTROLLABILITY 44
3.3 s DESIGN FOR TESTABILITY 45
3.4 : REDUNDANCY 46
3.5 : REFERENCES 48
3.6 : FIGURES 51
CHAPTER FOUR : TECHNIQUES FOR BUILT IN TEST 54
4.1 : MODES OF TESTING 55

4.1.1 : On Line Testing 55
4.1.2 : Off Line Testing 55

4.2 : THE LINEAR FEEDBACK SHIFT REGISTER 56
4.3 : ERROR DETECTING CODES 57

-vii-

4.3.1 ; Single Parity Codes 58
4.3.2 : B-Adjacent Codes 59
4.3.3 : Duplication Codes 59
4.3.4 : Checksum Codes 60
4.3.5 : AN Codes 61
4.3.6 : Residue Codes 62
4.3.7 : M-out-of-n Codes 63
4.3.8 : Berger Codes 64
4.3.9 s Cyclic Codes 64

4.3.9.1 : Non Systematic Cyclic Codes 65
4.3.9.2 : Systematic Cyclic Codes 65

4.3.10 : Hamming Codes 66
4.4 : SCAN DESIGN 68

4.4.1 : Scan Path Design 69
4.4.2 : Level Sensitive Scan Design 70
4.4.3 : Advantages and Limitations of Scan Design 70
4.4.4 s STUMPS 71

4.5 : THE BUILT IN LOGIC BLOCK OBSERVER 72
4.6 : AUTONOMOUS TESTING 73

4.6.1 : Partitioning with Multiplexers 75
4.6.2 : Sensitised Partitioning 75

4.7 : SERIAL SHADOW REGISTER 76
4.8 s OTHER BIT TECHNIQUES 78

4.8.1 : Scan Set Logic 78
4.8.2 : Random Access Scan 78
4.8.3 : Syndrome Testing 78
4.8.4 : Walsh Coefficient Testing 78
4.8.5 : ROM Based Test Patterns and Responses 79
4.8.6 s Self Oscillation 79
4.8.7 : Self Comparison 79
4.8.8 : History Memory 79
4.8.9 : Reed Muller Canonical Representation 79
4.8.10 : Technique Comparisons 80

4.9 : INTEGRATED CIRCUITS WITH BIT 80
4.9.1 : Motorola MC6805 80
4.9.2 : Motorola M68000 81
4.9.3 : Intel iAPX 432 81
4.9.4 : Monolithic Memories 74S818 81
4.9.5 : Monolithic Memories 63DA1643/841/441 82
4.9.6 : National Semiconductor SLX6360 82
4.9.7 : National Semiconductor DP8400 82
4.9.8 : LSI Logic LSA2000 82
4.9.9 : Hitachi Gate Arrays 83

4.10 : SELF VERIFICATION 83
4.11 : CONCLUSIONS 84
4.12 : REFERENCES 86
4.13 : FIGURES 93
CHAPTER FIVE : SELF CHECKING CIRCUITS

- AN INTRODUCTION
-viii-

5.1 : INTRODUCTION 113
5.2 : DEFINITION OF TERMS 114
5.3 : TOTALLY SELF CHECKING CIRCUITS AND NETWORKS 119

5.3.1 s TSC Circuits 119
5.3.2 s TSC Networks 121

5.4 : TOTALLY SELF CHECKING CHECKERS 124
5.4.1 : General Structure 124
5.4.2 : TSC Checker for Separable Codes 126

5.5 s PARTIALLY SELF CHECKING NETWORKS 127
5.5.1 : Type 1 Networks 127
5.5.2 : Type 2 Networks 130
5.5.3 : Type 3 Networks 130
5.5.4 : A Partially Self Checking Logic Unit 132

5.6 s SELF TESTING ONLY CIRCUITS AND NETWORKS 133
1365.7 s SELF CHECKING PROPERTIES OF BIT

AND BYTE-SLICED CIRCUITS
5.7.1 : Bit-Sliced Circuits 136
5.7.2 : Byte-Sliced Circuits 138

5.8 : SELF CHECKING SEQUENTIAL CIRCUITS 139
5.8.1 : Fault Security 139
5.8.2 : Self Test 142

5.9 s LITERATURE REVIEW 142
5.10 s REFERENCES 145
5.11 : FIGURES 149
CHAPTER SIX : THEORY AND DESIGN OF SELF

CHECKING CIRCUITS 165
6.1 s INTRODUCTION 165
6.2 s TESTING FOR FAILURES IN AND, , „

OR AND INVERTER GATES
6.3 : TESTING FOR FAILURES IN EXCLUSIVE-OR GATES 168
6.4 : TESTING FOR FAILURES IN CASCADED GATES 169
6.5 : DESIGN OF TSC CHECKERS USING KARNAUGH MAPS 174

6.5.1 : TSC AND/OR Structures 175
6.5.2 : TSC OR/AND Structures 177

6.6 : A TSC N-BIT COMPARATOR 178
6.7 : A TSC PARITY CODE CHECKER 184
6.8 : A TSC 1-OUT-OF-N CODE CHECKER 186
6.9 : A TSC PERIODIC SIGNAL CHECKER 190
6.10 : LITERATURE REVIEW 191
6.11 : REFERENCES 194
6.12 : FIGURES 198

-ix-

CHAPTER SEVEN s FAULT DETECTION AND DIAGNOSIS
IN SELF CHECKING SYSTEMS

7.1 : INTRODUCTION
7.2 : POSITIONING OF CHECKERS
7.3 : DATA PATHS AND MEMORY

7.3.1 : Choice of Error Detection Codes
7.3.2 : Selection and Addressing Errors
7.3.3 : Code Translation
7.3.4 : Interleaved Coding

7.4 s CONTROL PATHS
7.4.1 : Clocks
7.4.2 s Control Lines
7.4.3 : Decoders

7.5 j ARITHMETIC OPERATIONS
7.6 : LOGICAL OPERATIONS
7.7 : HARDWARE CHECKS FOR SOFTWARE FAULTS
7.8 : FAULT DIAGNOSIS

7.8.1 : Fault Indication
7.8.2 s Fault Isolation
7.8.3 s Transient Error Indications
7.8.4 : Verification and Efficiency of

Fault Detection Circuits
7.8.5 : Marginal Testing

7.9 : SUMMARY AND CONCLUSIONS
7.10 : REFERENCES
7.11 : FIGURES
CHAPTER EIGHT ; SELF CHECKING SYSTEMS AND

DEVICES : A REVIEW
8.1 : INTRODUCTION
8.2 : SELF CHECKING INTEGRATED CIRCUITS
8.3 : PROPOSED SELF CHECKING SYSTEMS AND DEVICES

8.3.1 68000 Microprocessor
8.3.2 MIL-STD-1750A Microprocessor
8.3.3 Microprogram Control Unit
8.3.4 Four-Bit Microprocessor
8.3.5 Error Detection Processor
8.3.6 The PAD
8.3.7 Generalised VLSI Chip
8.3.8 Morphic AND Gate
8.3.9 VLSI Building Blocks
8.3.10 Research Microcomputer
8.3.11 Self Checking Computer Costs

8.4 : CONCLUSIONS
8.5 : REFERENCES
8.6 : FIGURES

CHAPTER NINE : AN EXPERIMENTAL SELF CHECKING COMPUTER 286
9.1 : INTRODUCTION 286
9.2 : THE UNCHECKED SYSTEM 286
9.3 : THE CHECKED SYSTEM 289

9.3.1 : CPU 289
9.3.2 : System and CPU Clocks 291
9.3.3 : Reset Line 292
9.3.4 : Data Transmission Paths 292
9.3.5 : Memory 295
9.3.6 : Address Decoding 297
9.3.7 s I/O Devices 298
9.3.8 : Control Logic 299
9.3.9 : Isolators 300

9.4 : FAULT INDICATION AND ERROR CONTROL LOGIC 301
3039.5 : PRACTICAL IMPLEMENTATION OF TOTALLY

SELF CHECKING COMPARATORS
9.6 : TESTING THE EXPERIMENTAL COMPUTER 303
9.7 : REFERENCES 308
9.8 : FIGURES 309
CHAPTER TEN : CONCLUSIONS AND FURTHER WORK 327
APPENDIX A s PRACTICAL IN-CIRCUIT EMULATION 334
A. 1 : OPERATION OF THE PROCESSOR SYSTEM 334
A.2 : THE TESTS * 334
A.3 : THE TESTS IN USE 337
A.4 : REFERENCES 338
A.5 : FIGURES 339
APPENDIX B : SIGNAL ISOLATION CIRCUITS 341
B.l : INTRODUCTION 341
B.2 : SWITCHED UNIDIRECTIONAL ISOLATORS 342
B.3 : BIDIRECTIONAL ISOLATORS 343
B.4 : UNSWITCHED UNIDIRECTIONAL ISOLATORS 344
B.5 : REFERENCES 347
B .6 : FIGURES 349

-xi-

CHAPTER ONE : INTRODUCTION

A continuing increase in the complexity of integrated
circuits, namely Very Large Scale Integration (VLSI), has
meant more logic power per square millimetre of circuit
area.

The introduction of the microprocessor has led to a major
advance in product design, with a reduction in the design
time and a realisation of products which were previously
inconceivable.

However, this increased density of integration has result
ed in internal circuits or modules becoming transparent to
the outside world, which means that they cannot be direct
ly controlled or observed. This is certainly true of
microprocessors, which have the added complexity of a bus
structure, so that it is necessary to observe the activity
on the address data and control buses simultaneously to
determine its exact operation at any time.

These factors have contributed to the creation of a
serious challenge to the electronics industry; namely how
to service processor boards and the products which use
them. Testing and troubleshooting using conventional
equipment is a difficult and time consuming task, which
requires skilled personnel, of which there is generally a
shortage, since most of them are actively involved with
design.

In order to combat this problem, the industry has been
searching for new tools, techniques and equipment which
can be used in the field, at a central or local repair
base and also on the production line, by people who are
not necessarily familiar with the operation and structure
of such systems. Design and debugging during development
also benefit from these techniques.

Some general constraints for test techniques or equipment
-1-

are:

1) An ability to work with existing and future process
ors .

2) Provision for operating with various logic types.
3) Facilities for testing the analogue sections of a

system.
4) Speed for real time measurement.
5) Ease of installation into the unit under test.

Expanding these points:

1) In order not to become rapidly outdated with the
introduction of new processors, the equipment must be
able to work with a wide variety of processors, sup
porting eight and sixteen bit architectures, and be
able to cater for new ones as they become available,
notably those with thirty-two bit architectures. This
is generally achieved by using a dedicated probe for
each processor and sufficient flexibility in the main
instrument to cope with present and future needs.

2) The use of a wide variety of technologies, notably
within interface circuits, has resulted in a require
ment to operate with different voltage levels, whether
these be those of TTL, MOS or ECL.

3) Since analogue/digital interfaces are crucial to the
diversity of processor based systems, it is an advan
tage if analogue testing can be handled as well. Much
analogue testing now relies on the digitisation of its
signals for subsequent processing and display.

4) The speed at which the test equipment operates should
be higher than that of the system it is testing. This
means that the stimulation and observation of repon
ses can be carried out in real time. Problems due to
timing and crosstalk, for example, are less evident at
slower speeds.

✓

-2-

5) A lot of test equipment has been designed around the
IEEE488 bus Cl.13, which allows a rapid connection of
the instrument to the unit under test, a defined
communication link, as well as compatibility with
other instrumentation.

Much has been written on current techniques and equipment,
but to get a practical viewpoint, a survey of twelve
major manufacturers and/or users of microprocesser based
systems was instigated to establish their particular test
philosophies. The various strategies adopted by these
companies are detailed in Chapter 2 from the viewpoint of:

1) The benefits they offer.
2) Limitations to their performance.
3) The extent of their usage.

Considerable personal practical experience, obtained over
a number of years, is also incoporated into the appropri
ate section. In addition, Appendix A describes a specific
application of in-circuit emulation to a microprocessor
based system.

Most of the techniques in extensive current use require
some form of external equipment to perform the testing.
With technology progressing so rapidly, this equipment
soon becomes inflexible or is simply unable to cope.
Testing can become a costly process if the equipment has
to be replaced.

During the past twenty years, considerable thought has
been given to catering for the test process at the design
stage and not as an after-thought when the design, manu
facture and installation phases of a product have been
completed. This is Built-in-Test (BIT), which is intro
duced in Chapter 3 with a discussion of faults and fault
models, observability and controllability, design for
testability and redundancy. These four concepts are used✓

-3-

to describe and specify BIT. In Chapter 4 the more
common forms of BIT are studied, again considering the
benefits and limitations of each technique. The use of
error detecting codes, scan design, built in logic block
observers, autonomous testing, serial shadow registers and
design for self verification are included in this study.

Figure 1.1 summarises the possible test strategies for
VLSI (equipment, techniques and built-in hardware or soft
ware) and details many references for further information.

An integral part of many of the BIT strategies discussed
in Chapter 4 is an ability to check a microprocessor based
system whilst it is on line carrying out its normal
functions. However, what happens if one or more of the
checking circuits fail? Is there a checker checking the
checker? The solution is to use self checking circuits,
circuits which effectively check themselves. The rest of
the thesis is devoted to this subject.

In Chapter 5 self checking circuits are introduced with
formal definitions of their characteristics. This in
cludes the concepts of self testing only (STO) circuits,
partially self checking (PSC) circuits and totally self
checking (TSC) circuits. Self checking (SC) networks, SC
checkers, SC bit-sliced circuits, SC byte-sliced circuits
and SC sequential circuits are also discussed.

Chapter 6 investigates the theory and design of SC cir-
uits. The tests which have to be performed on individual
logic gates to detect failures within them are significant
in determining if a circuit is SC or not, so these tests
are considered in some detail. Based on the resulting
test requirements and the use of Karnaugh maps, a
technique is then proposed for the design of SC circuits.
Subsequent sections in Chapter 6 describe the design of
TSC comparators and periodic signal checkers, as well as
TSC 1-out-of-n and parity code checkers.

-4-

Since this thesis is concerned with the testing of
microprocessor based systems, Chapter 7 discusses the
requirements to make such systems self checking. The main
objective here is a means of precisely locating a faulty
device or circuit during normal operation. Various
techniques are presented for fault detection and fault
diagnosis. Chapter 8 then examines the extent to which
these techniques are employed in current and past research
by reviewing a number of self checking devices and
systems.

In order to support the philosphies of Chapter 7 and the
conclusions from Chapter 8, a minimal self checking micro
processor based system has been built using the designs of
Chapter 6. This is described in Chapter 9 together with
results from its subsequent evaluation. An essential
requirement for the construction of this system was a
means of fault isolation between the transmitting and
receiving points of an interconnection; notably the
address, data and control buses. This design work for
unidirectional and bidirectional'isolators is detailed in
Appendix B.

Finally, overall conclusions on the design and use of SC
circuits in microprocessor systems are presented, as well
as suggestions for further work.

-5-

1.1 : REFERENCES
1.1) IEEE-488 instruments - A. Santoni; EDN; October 28,

1981; pp. 77-90.
1.2) How to troubleshoot and repair microcomputers - J.

D. Lenk; Reston Publishing Inc.; Virginia, USA;
1980; pp. 47-61.

1.3) Troubleshooting microprocessors and digital logic
- R. L. Goodman; Tab Books Inc.; PA., USA; 1980;
Chapter 5.

1.4) Practical troubleshooting techniques for micropro
cessor systems - J. W. Coffron; Prentice Hall Inc.;
New Jersey, USA; 1981; pp. 134-7.

1.5) as per 1.3); Chapter 4.
1.6) Digital testing oscilloscope cushions against

mounting costs of troubleshooting - W. E. Shoe
maker, D. W. Wilson; Electroncs; March 16, 1978;
pp. 105-112.

1.7) ICE development heats up to handle new processors
D. G. West, R. Paulson; Electronic Design;

September 3, 1981; pp. 125-130.
1.8) Fast emulator debugs 8085-based microcomputers in

real time - M. Y. Yen; Electronics; July 21, 1977;
pp. 108-112.

1.9) Hardware emulation conquers the testing mountain
created by 16 bit uPs - D. Lemke, D. Smith, T.
Tunder; Electronic Design;No. 14, July 5, 1979;
pp. 54-59.

1.10) Cut hardware, software development costs - take
advantage of in-circuit emulation - J. M. Kelley;
Electronic Design; No. 17, August 16, 1979; pp.
66-71.

1.11) Use of the slave emulator - T. McCann; Micropro
cessors & Microsystems; Vol. 5, No.2, March 1981;
pp. 65-68.

1.12) ROM simulator, memory tracer debug microsystems
J. L. Nichols, R. W. Ulrickson; Electronic

Design; July 23, 1981; pp. 147-154.
1.13) as per 1.4); Chapters 3, 4, 5 and 9.
1.14) Emulator solves system-level debug problems - R.

Parks, K. Greenberg; Electronic Design; May 14,
1981; pp. 173-180.

1.15) Fault diagnostics for microprocessor based systems
- T. J,. Hollis; Project report for the degree of

-6-

1.16)
1.17)
1.18)
1.19)
1.20)

1.21)

1.22)
1.23)

1.24)

1.25)

1.26)
1.27)

1.28)

1.29)

1.30)

1.31)

1.32)

1.33)

B.Sc. in Electrical Engineering; University of
Bath, England; 1980; p. 16.
as per 1.2); pp. 273-284.
as per 1.4); Chapter 7.
Instruments - A. Santoni; EDN; July 20,1979; p. 97.
as per 1.15); pp. 13-15.
Signature analysis wins new acclaims - M. Marshall;
Electronics;Fehruary 14, 1980; pp. 103-104.
Applying signature analysis to existing processor-
based products - R. Rhodes Burke; Electronics;
February 24, 1981; pp. 127-133.
as per 1.2); pp. 63-105.
Logic-analyzer 'computer' simplifies computer test
ing - G. Brock; Electronic Design; June 25, 1981;
pp. 101-108.
What to look for in logic timing analysers - M.
Marshall; Electronics; March 29, 1979; pp. 109-114.
Designing a servicemans' needs into microprocessor-
based systems - M. Neil, R. Goodner; Electronics;
March 1, 1979; pp. 122-128.
as per 1.4); Chapter 6.
Flexible pattern generation aids logic analysis
- S. Palmquist, M. Pettet; Electronic Design;
October 15, 1981; pp. 165-174.
Functional and in-circuit testing team up to tackle
VLSI in the '80s - P. Hansen; Electronics; April
21, 1981; pp. 189-195.
Application of guided probe and in-circuit test
architectures to compensate for inadequate UUT
testability - A. Lowenstein; Autotestcon '80*;
pp. 60-66.
Optimised digital testing using general purpose ATE
- P. J. Hand; Autotestcon '80*; pp. 259-263.
ATE swings towards merged in-circuit, functional
tests - J. McLeod; Electronic Design; October 29,
1981; pp. 90-104.
To sort out card testers, ask the right questions
- S. L. Black; Electronic Design; February 5, 1981;
pp. 115-119.
Automating test generation closes the design loop

-7-

- R. Hickling, G. Case; Electronics; November 30,
1981; p.129-133.

1.34) Test LSI boards functionally on an in-circuit
tester - T. Jackson, P. Vais; Electronic Design;
October 29, 1981; pp. 137-144.

1.35) Design for in-situ chip testing with a compact
tester - C. C. Perkins, S. Sangani, R. Stopper, M.
Valitski; 1980 Test Conf.*; pp. 29-41.

1.36) Software package generates in-circuit programs
automatically - C. Bostrom; Electronic Design;
February 5, 1981; pp. 99-102.

1.37) In-circuit tester takes on ECL, TTL, and MOS
devices - M. P. Carroll, G.W. Peterson; Electronic
Design; May 28, 1981; pp. 91-97.

1.38) Test vectors development and optimisation for a
microprocessor - C. C. Timoc, L. M. Hess, F. R.
Stott; Autotestcon '80*; pp. 165-170.

1.39) Interactive design simplifies test-program gen
eration - B. Kelley, M. Bonham, R. Chruscial;
Electronic Design; February 19, 1981; pp. 169-173.

1.40) Microprocessor functional testing - R. Chantal, S.
Garbriele; 1980 Test Conf.*; pp. 433-443.

1.41) Enhanced simulator takes -on bus structured logic
- H. Levin; Electronic Design; October 29,1981; pp.
153-157.

1.42) as per 1.5); Chapter 10.
1.43) Reliability Design Handbook - R. T. Anderson; IIT

Research Institute (IITRI), Chicago, for Reliabil
ity Analysis Centre; 1975; pp. 258-271.

1.44) as per 1.4); Chapter 8.
1.45) Testing logic networks and designing for testabil

ity - T. W. Williams, K. P. Parker; Computer;
October 1979; pp. 9-21.

1.46) Design for autonomous test - M. J. McCluskey, S.
Bozorgui-Nesbat; 1980 Test Conf.*; pp. 15-21.

1.47) Microprocessor bus standard could cure designers'
woes - G. Force; Electronics; July 20, 1978; pp.
113-118.

1.48) A monolithic self-checking error detection process
or - J. Chavade, M. Vergniault, P. Rousseau, Y.
Crouzet, C. Landrault; 1980 Test Conf.*; pp. 279-
286.

-8-

1.49)

1.50)

1.51)

1.52)

1.53)

1.54)

1.55)

1.56)

1.57)

1.58)
1.59)

1.60)

1.61)

1.62)

1.63)

1.64)

1.65)

Quality and control self-test - R. W. Spearman, F.
D. Patch; 1980 Test Conf.*; pp. 257-260.
Implementation techniques for self-verification
- R. M. Sedmak; 1980 Test Conf.*; pp. 267-278.
BIDC0, Built-in digital circuit observer - P. P.
Fasang; 1980 Test Conf.*; pp. 261-266.
Enhance computer fault isolation with a history
memory - G. L. Fitzgerald; Autotestcon '80*; pp.
267-278.
Application of shift register and its effective
implementation - M. Kawai, S. Funatsu, A. Yamada;
1980 Test Conf.*; pp. 22-25.
Incomplete scan path with an automatic test gen
eration methodology - E. Trischler; 1980 Test
Conf.*; pp. 153-162.
Applying the Hamming code to microprocessor-based
systems - E. L. Wall; Electronics; November 22,
1979; pp. 103-110.
A research oriented microcomputer with built in
auto-diagnostics - J. Moreira de Souza, E. Peixoto
Paz, C. Landrault; FTCS-6*; pp. 3-8.
Self testing computers - J. B. Clary, R. A. Sacane;
Computer; October 1979; pp. 49-59.
as per 1.43); pp. 185-213.
Analysis of fault detection coverage of a self-test
software program - V. Tasar; FTCS-8*; pp. 65-71.
Design self-testing capability for reliable uC-
system operation - S. Strom; EDN; October 28, 1981;
pp.102-108.
Efficient and effective uC testing requires care
ful preplanning - E. S. Donn, M. D. Lippman; EDN;
February 20, 1979; pp.97-107.
Design forethought promotes easier testing of
microcomputer boards - M. D. Lippman, E. S. Donn;
Electronics; January 18, 1979; pp.113-9.
Microcomputer for emulation bares hidden busses,
functions - J. Moon; Electronics; July 17, 1980;
pp. 126-129.
Self-testing supercells; Alternative test strate
gies - D. K. Bhavsar; Autotestcon '80*; pp. 135-
139.
Off line, built-in test techniques for VLSI cir-✓

-9-

cuits - M. G. Buchier, M. W. Sievers; Computer;
June 1982; pp. 69-82.

1.66) Design of self-checking MOS-LSI circuits, applica
tion to a four-bit microprocessor - Y. Crouzet, C.
Landrault; FTCS-9*; pp. 189-192.

1.67) Memory finds and fixes errors to raise reliability
of microcomputer - A. Heimlich, J. Korelitz;
Electronics; January 3, 1980; pp. 168-172.
A see section B.5.

-10-

|TEST STRATEGIES

GENERAL

Logic comparator
Cl.23

Logic clip
Cl.2,1.33

Logic probe
Cl.2,1.33

Logic pulser
Cl.2-1.43

Current tracer
Cl.2,1.43

Oscilloscope
Cl.5,1.63

BUILT IN TEST EQUIPMENT

IN-CIRCUIT EMULATION

CHIP SYSTEM

DYNAMIC STATIC CPU
+memory
manager
Cl.143

CPU
Cl.7-1.113

ROM
Cl.123

CPU
Cl.133

| ATE

SIGNATURE ANALYSIS
Cl.17-1.193

DESIGNED
INU RETROFIT

Cl.20,1.213

STIMULUS

Self test
ICE

Dedicated
software

LOGIC ANALYSIS
Cl.22,1.233

TIMING
Cl.243

Waveform
comparison

Cl.53
Mapping
Cl.253

TRANSITION COUNTER
Cl.153

SERIAL DATA ANALYSER
Cl.163

STATE
Cl.26,1.273

Trace graph

FIGURE 1.1(a) TEST STRATEGIES

EQUIPMENT BUILT IN TEST

Cate nodel
IC model

Fault vectors

MODULE
TEST

TEST STRATEGIES

FUNCTIONAL
Cl.403

ATE
Cl.28-1.313

IN-CIRCUIT
Cl. 32,1.333

PATTERN
GENERATION

COMPONENT
TEST

Cl.35-1.373

PATTERN
GENERATION
Cl.38,1.393

SOFTWARE/HARDWARE
SIMULATION
Cl. 343

SOFTWARE/HARDWARE
SIMULATION
Cl.34,1.413

Bed of nails Edge connector
Test clip Test clip

Guided probe

FIGURE 1.1(b) TEST STRATEGIES

BOARD LEVEL

ATE

SOFTWARE

EQUIPMENT

CHIP LEVEL

BUILT IN TEST

TEST STRATEGIES

GENERAL
Cl.42,1.433

Processor single step
Test points
Cl.44,1.453

Partitioning/Isolation
Cl.44,1.463

I/O foldback links
Indicators
Cl.443

power supply
serial data lines

Standard bus
Cl.473

Watchdog timer
Error detection processor

Cl.48,1.493
Logic block observer

Cl.50,1.513
History memory

Cl.523
Multiplexing/Switching

Cl.463
Scan design

Cl.45.1.53,1.543
Coding circuits

Cl.55-1.573
Redundancy & comparison

Cl.56-1.583

Self test
Cl.59-1.623

ROM
Ext. loaded

Error correction
codes
Cl.553

eg. Hamming

Increased internal visibility
Cl.633

Self testing supercells
Cl.643

Logic block observer
Cl.50,1.51,1.653
Coding circuits

Cl.56,1.57,1.66,1.673
Redundancy £ comparison

Cl.56,1.57,1.653
Self checking logic

Cl.563
Self oscillation

Cl.653
Scan design

Cl.45,1.54,1.653
Switching/Multiplexing

Cl.463
Self repair

FIGURE 1.1(c) TEST STRATEGIES

CHAPTER TWO : EXISTING TECHNIQUES AND EQUIPMENT

2.1 : SIGNATURE ANALYSIS

Introduced in 1977, signature analysis (SA) compresses a
data stream into a four digit signature by means of a
sixteen bit shift register with linear feedback C2.13, as
shown in Fig. 2.1. This signature represents the nodal
activity during the defined period of measurement and is
virtually unique. A defined and repeatable stimulus must
be created at each node, this being derived from one of
three sources, as indicated in Fig. 1.1.

Having located a faulty board, the signatures of the
various nodes on that board are observed and compared with
those obtained from a known good board, as shown in Fig.
2.2. This allows a fault to be located to component
level. The technique can detect all single bit failures
and 99.998% of multi-bit failures C2.23. However, the
signature contains no diagnostic information whatsoever,
it is purely a go/no-go test.

Limitations of the technique are as follows:

1) Testing the CPU requires on-board provision to break
the data bus and force an instruction which causes the
address bus of the processor to cycle; for example, a
no-operation.

2) All other feedback loops must have a means of being
broken, in order to prevent an unstable signature
caused by a fault propagating around that loop.

3) If the stimulus is derived from on-board software,
then part of the system ROM will have to be allocated
for this purpose and hardware added to provide the
start, stop and clock signals required by the analyser
C2.13.

4) SA cannot cope with asynchronous events, so operations
such as direct memory access or interrupts must be
synchronously driven, or tested independently.

-14-

5) Normally static nodes must be activated. This gener
ally means more hardware, which could itself be a
source of failure.

6) SA cannot handle analogue signals.
7) SA cannot cope with timing or noise problems.
8) Considerable time might have to be spent in document

ing signatures from a known good board, deriving
troubleshooting trees and creating fault dictionaries.

SA can thus diagnose faults to component level, but it may
require additional software and hardware to accommodate
it. However, it is usually necessary to locate the fault
to a board or a module first, so that signatures do not
have to be taken from every node in the system. The
technique can be considered as the digital equivalent of
analogue signal tracing, whereby signatures, not wave
forms, are compared with those on the circuit diagram,
see Fig. 2.2.

One of the main attributes of SA is that it can be used by
a technician who is not familiar* with the system being
tested, or, for that matter, familiar with computer fault
finding techniques. The technician just needs to know
what to run and where to probe, taking appropriate action
when an incorrect signature is detected.

The signature analyser itself, in comparison with other
equipment, is not expensive, but if a basic analyser is to
be used, then the hardware and software required in a
system to accommodate it will create additional cost over
heads. This hardware and software has to be considered at
the design stage of a system and prevents SA being applied
to systems already in use (circuits cannot easily be
added). However, this problem is overcome by using in-
circuit emulation as the circuit stimulation. An instru
ment is available which combines the two techniques C2.33.

Recently, Hewlett Packard has introduced a dedicated
instrument to use in conjunction with a standard analyser,

-15-

which provides the stimulus, a set of pre-programmed tests
(one of these is a processor test) and provision for dedi
cated tests C2.43. However, it is not disclosed how they
effect circuit partitioning and the breaking of feedback
loops, without modification to the board being tested.

Literature tends to indicate a widespread use of SA C2.53,
but of the twelve companies surveyed, only one was using
the technique. So far, however, this company is not using
it for production testing. It is still being evaluated in
development circles. Results so far according to them are
good. Good devices have been replaced with those having
faults and the faulty devices successfully located using
SA. Their design will take into account SA, by, for
example, allowing a 'watchdog' timer to be disabled during
SA evaluation, a circuit which will have to be checked
with conventional techniques.

The reaction from another company was that they would
never use the technique, because 'the stimulus has no
correlation with system operation, it is just a random
stimulation'.

Generally though, the technique should be viable for pro
ducts manufactured in hundreds off, which can more easily
justify the time to document signatures and consideration
during their design. However, as indicated later, compan
ies producing large quantities still tend to be using
automatic test equipment.

2.2 : LOGIC ANALYSIS

A logic analyser (LA) is probably the most powerful tool
for all aspects of digital logic, particularly devel
opment, debugging and fault diagnosis. However, it is not
often used for production testing at present.

Logic analysers essentially fall into two categories:

-16-

1) Logic State : Used principally for the observation and
debugging of software, but also used to locate hard
ware failures which cause software errors. Fig. 2.3
shows how information is displayed on a typical
logic state analyser.

2) Logic Timing : An extension of a conventional oscillo
scope which can generally display up to sixteen
waveforms of nodal activity on its screen, but where
any point on a waveform can only occupy one of two
levels, a logic '1' or a logic "O', as shown in Fig.
2.4. This allows the relative action of waveforms
to be observed and precise timing measurements to be
made. It is therefore a tool for hardware evalua
tion, debugging and testing.

It is now usual to find both types of machine combined
into one instrument. Certain logic analysers are current
ly becoming even more powerful, due to the inclusion of a
digital oscilloscope within their frame C2.6D.

The power of the instrument is a result of major develop
ments during recent years and lies with the features it
can offer, which include:

1) General:
a) Microprocessor controlled.
b) Menu driven from a keyboard.
c) Clocking rates up to 500MHz.
d) Synchronous and asynchronous clocking simul

taneously.
e) Can handle multiphase clocks and multiplexed

buses.
f) Voltage thresholds for TTL, MOS and ECL, or

variable.
g) Comparison/reference memory for state and tim

ing.
h) Operating parameters and memory can be stored

externally.
-17-

i) Can handle standard buses, eg. IEEE488 and
RS232.

j) Has self and probe tests.

2) State Analyser (synchronous clocking):
a) External clock and control inputs so that the LA

samples at the same time as the processor.
b) Minimum of 32 input channels.
c) Minimum of 64 sampled words.
d) Data formatted in binary, hex., octal, decimal

or ascii.
e) Disassembly for a specific processor.
f) Search for a specific word.

3) Timing Analyser (asynchronous clocking):
a) Minimum of 8 input channels.
b) Minimum of 1000 sample points.
c) Traces displayed in pages (for more than 16).
d) Trace labels using ascii characters.
e) Trace order definable, with traces available on

more than one page.

4) Signal Conditioning:
a) Sample - samples at a clock edge.
b) Glitch - detects threshold transitions between

its sample points.
c) Latch - allows the definition of complex tim

ing arrangements between the clock and control
signals.

d) Demultiplex - given appropriate control signals,
multiplexed buses are automatically demulti
plexed.

5) Trigger Modes:
a) Input pattern recognition.
b) Post and pre-trigger.
c) Trigger qualifiers.
d) Nested or sequential trigger levels.
e) Arm and trigger.✓

-18-

f) Delay by events or count.
g) Pass counts.

Despite all the features listed above, the use of logic
analysis still seems to be reserved for design, develop
ment, debugging and special test benches.

Of the twelve companies surveyed, most had some form of LA
but only used it in the testing process for systems which
defied fault analysis by any other method. Logic analysis
for example, is the only method to resolve problems such
as noise, timing and general device incompatibility.

The reluctance to use logic analysers for production test
ing is attributed to:

1) The complexity of the instrument.
2) The infinite number of possible connections to the

system under test.
3) Difficulty of incorporation into an automated test

procedure.

In order to use its full capacity, a good working know
ledge of the machine and its facilities is essential. If
an error in a system is to be rapidly eliminated then the
area of the fault must be known, along with the best
connection of the analyser probes to locate it. A good
knowledge of the system being tested is therefore also
required. The operation of a LA is fairly straight
forward to master, especially if all information is
entered via a keyboard in sequenced menus which indicate
when an input error has been made. In addition, help or
operating manual pages within the machine greatly assist
its use.

The level of operator interaction required with a logic
analyser, which has already been reduced, will continue to
decrease with:

-19-

1) Automated loading of set up parameters and reference
memory from a host computer, or from an integral
floppy disk unit.

2) Guided probe(s> analysis.

2.3 : AUTOMATIC TEST EQUIPMENT

Automatic test equipment (ATE) is the most common form of
board and system testing. Two principal techniques are
used with ATE; in-circuit testing and functional testing.

2.3.1 : In-Circuit Testing

In-circuit testing consists of a 'bed of nails', a set of
spring loaded contacts pressed onto the wiring side of a
printed circuit board by a vacuum, with (ideally) one nail
for every circuit node on the board. There is then elect
rical access to every node in the circuit.

Bare boards can be tested for open circuits and short
circuits before assembly. Simple components such as
resistors, capacitors, diodes, transistors and op-amps can
be isolated with the use of guarding techniques C2.73 and
then easily checked. Circuit models are required for more
complex integrated circuits. These models would be truth
tables for the basic logic gates. Howevever, for certain
VLSI devices, such as microprocessors, circuit models are
not easily obtained, even from the manufacturer.

Unless standardised (PCB designed on a matrix), a unique
bed of nails is required for each board tested. These are
expensive and, therefore, hard to justify for low volume
production. However, in spite of all cost considerations,
it is the ease of fault isolation, due to the internal
visibility and controllability of the board via its bed
of nails, which makes the technique so attractive.

A device is tested by forcing its inputs to a known state
from the application of fast high current pulses which

-20-

override existing states, whilst simultaneously monitor
ing its output(s), as shown in Fig. 2.5. Lines can also
be overdriven to isolate or partition components. The
rate at which test data can be applied is limited by the
interface electronics used for the bed of nails and the
quantity of data which has to be processed.

Thus an in-circuit test checks individual component per
formance and board workmanship but cannot detect dynamic
or interactive characteristics. It should also be able to
handle both mixed logic and analogue electronics.

2.3.2 : Functional Testing

In a functional test, the board is exercised via its edge
connector(s). Fig. 2.6 shows the structure of a typical
tester. Stimuli for the board can be generated in a num
ber of ways:

1) Software simulation : The components and connections
on the board are described'to the software, which
will produce a gate level equivalent model (although
the availability problem of certain device models
arises again). The simulator then generates test
programs, patterns and reference data.

2) Vectors : Fixed repeatable pseudorandom patterns are
used to generate input vectors. The resulting out
put vectors are then compared with those from a
fault free board.

3) Synthesis of address and data patterns : A programma
ble tester is used for this purpose.

As the complexity of a board increases, it is difficult to
adequately test it solely from its edge connector, so
functional testing is usually assisted by guided probing.
This part of the technique uses a hand held probe to
increase the depth of penetration and observation on the ✓

-21-

board. Probe sequences are generated by circuit simula
tion.

The fixture cost for functional testing is low and a board
with good visibility allows faults to be isolated accurate
ly and quickly. Digital and analogue boards can be tested.

2.3.3 : In-Circuit and Functional Testing Combined

Combining the two techniques, as illustrated in Fig. 2.7,
overcomes the shortcomings of each. Stimulation is pro
vided as above, whilst the circuit response is checked by
signature analysis, a stored correct response, in-circuit
testing or probing.

The level of fault detection achieved by combining the
techniques is better than either used independently. In
addition, an effective test for timing has been achieved
in one system C2.83.

Segmentation of the circuit and * component isolation is
achieved via the bed of nails on which the automatic
probing is carried out. The results can then be applied
to a fault isolation tree and the suspected failure indi
cated on a VDU/terminal.

A typical strategy for testing a microprocessor based
system is:

1) Standard short circuit test.
2) Test discrete components.
3) In-circuit test of microprocessor.
4) Bus check for shorts.
5) Sequence address bus to confirm address decoding.
6) Functionally exercise CPU with another device:

a) RAM.
b) ROM.
c) I/O.
d) VDU controller.

/

-22-

General drawbacks of ATE are:

1) Low throughput.
2) Poor test quality.
3) High cost.

2.3.4 : ATE In Use

Major computer manufacturers use ATE almost exclusively to
test their boards at a central base. Boards having faults
which are unresolvable using ATE are scrapped, simply
because it is not cost effective to test further.

The only company surveyed which had volume production uses
ATE extensively throughout their manufacturing operations.
Devices such as microprocessors and associated program-
able chips, are not evaluated using ATE, but after the
rest of the board is tested, these are inserted and normal
application software run to verify them.

One company, whose boards are well defined for document
ing and testing, is in the process of ATE installation but
another said that the volume of their product could not
justify sophisticated ATE, since "it would not be cost
effective'. Yet another was using in-circuit testing via
edge connectors, EPROM and processor sockets, followed by
a system test.

In other quarters, extensive use is made of analogue and
digital models, with the philosophy that if all the
interconnections and components are faultless, then the
board must work - the design says so. PCBs there are
designed around a 0.1" matrix, using computer aided design
to allocate components, test points, isolation paths and
so on. The computer also produces the PCB layout and jig
design details. Their strategy is:

1) Interconnection test.✓
-23-

2) Component checks using static models.
3) Components checks using dynamic models.
4) Components checked in clusters.
5) Functional test of system as in normal operation (no

testing as a general computer).

2.4 : SELF TEST

Probably the most important form of testing is self test;
software written to interrogate the various modules of a
system and to report on failures found. Alternatively, it
can be used as a go/no-go test with zero diagnostic infor
mation. It is used in just about every stage of every
product, from design and development, through to produc
tion testing and field testing.

The software can be written to test the system as a
generalised computer, or written to test only those
operations used in the application program. A typical
strategy for the former is given*in Fig. 2.8. It need
not, however, be restricted to testing but can also be
used for performance verification and auto-calibration.

Self test programs can be run:

1) On power up to provide an automatic confidence check.
2) On line: a) as a foreground task.

b) as a background task.
3) Off line.

The tests can provide rapid go/no-go diagnostic checks for
each module in a system, or exhaustively verify the
complete system; for example during test by the manufac
turer where comprehensiveness is more important than
testing time.

The software itself can be:

-24-

1) Resident in ROM.
2) Down loaded from a host computer using:

a) DMA.
b) RS232.

3) Loaded from disk.
4) Loaded from cassette or paper tape.

Advantages of self test include:

1) Tests are easily generated.
2) Modules can be quickly tested, one after another.
3) No test probes to move around.

The fundamental limitation of the technique, however, is
that a certain amount of the system, CPU, ROM (possibly
RAM as well) and associated buses, must be fully function
al before the program will run at all. Once this has been
established, then self test is a powerful tool. It means
that devices can be readily exercised in conjunction with
others at their normal operating speeds. Given a faulty
component or module, then specific programs can be written
to probe further, obtaining more information about the
fault.

The fundamental limitation of self test, detailed above,
can be overcome by running the programs from an external
source via buffers for isolation. This falls into the
domain of in-circuit emulation, which is considered next.

If the software is stored in on-board ROM, then this
creates an additional system overhead but a minimum of
external connections are required.

Another area of concern with self test programs is their
fault coverage; i.e. the type and quantity of faults they
are able to detect. Ideally, all faults should be detect
ed. This problem is analysed by Tasar C2.93, who con
cludes that the level of fault coverage is dependent on
how well written the programs are to start with.

The major computer manufacturers have test software resi
dent in ROM, on dedicated diagnostic boards, loaded from
disk, or transmitted along a telephone line from a remote
diagnostics centre. Some of this software is extremely
powerful, locating faults to component level.

One company has a system consisting of a master controller
connected to subcontrollers via an RS232 link, where each
controller has its own microprocessor. Test software is
resident in each module, but additional software can be
downloaded from the master to the subunits via the RS232
link when it is required.

Another form of maintenance strategy used by several
companies is the line replaceable unit (LRU). This is a
unit which runs tests to check itself and other modules in
background and/or foreground modes, indicating any fault
condition(s) found on lights or a dedicated message dis
play. When a fault occurs the LRU can be easily replaced.
All the individual boards of the faulty LRU will be
tested, sometimes on site but more generally at a central
repair base, proceeding to a system test if the fault is
not found and finally being given to the boffins to sort
out in sheer desperation.

Standard checks of CPU, ROM, RAM and I/O may be carried
out in a background mode, whilst checks on current levels
and other vital parameters are carried out in the fore
ground. Some companies prefer to perform a series of
'actual' tests, checking the system as it actually oper
ates and not as a general computer.

2.5 : IN-CIRCUIT EMULATION

Microprocessor emulation is the most common form of in-
circuit emulation (ICE) in microprocessor based systems,
since the processor is the focus for all system functions.
The operation of the system processor is emulated by a

✓

-26-

similar processor in the ICE equipment, which is connected
via a cable to the socket of the system processor. Fig.
2.9 shows a typical in-circuit emulator and its connec
tion to the system under test (SUT). No modifications
are required to the SUT. The processor in the emulator is
totally controllable which, together with the resources of
the instrument, allows hardware and software to be easily
evaluated and debugged. It is therefore a powerful devel
opment tool.

Operationally, ICE is similar to ATE in that test patterns
or vectors are generated and the response of the circuit
to them is observed.

Generally only the clock of the SUT must be functional to
carry out ICE, so diagnostic software in the emulator can
exercise all components in the SUT, isolating faults to
module or subsystem level.

Typical features of ICE are:

1) Real time transparent emulation of processor.
2) Control over CPU registers, I/O ports and memory.
3) Breakpoint s.
4) Menu driven.
5) Subsequent run comparison (reference memory).
6) Trace memory.
7) Write protection.
8) Frequency and pulse measurement.

Emulators typically have three operating modes:

1) Interrogation:
a) Display and modify CPU registers, including pro

gram counter and stack pointer.
b) Display and modify memory and I/O ports.
c) Set breakpoints for a number of different condi

tions .
d) Display trace details from high speed memory.

*

-27-

e) Display measured execution time.

2) Run/Emulation:
a) Execute test programs, testing and comparing in

formation.
b) Display register or memory contents, along with

address or data bus states on a sampled basis.

3) Single Step:
as for 2), but one cycle at a time.

Emulation must be able to cope with all current and
future processors and in particular be able to handle:

a) Interrupts.
b) DMA.
c) Memory refresh.
d) Multiplexed buses.
e) Illegal accesses.
f) Asynchronous communication.
g> Multiprocessors.
h) Cache and queue memory.
i) Instruction prefetch.

In addition, with systems supporting in excess of one
mega-byte of memory and, therefore, making extensive use
of memory managers, system emulation must now be consider
ed, whereby the processor and the memory manager are
emulated together to distinguish between logical and phys
ical addresses. System emulation must also cope with
shared memory C1J33.

Advantages of ICE are:

1) Software is written in the assembly language of the
target processor (or even a higher level language).

2) The system is tested as used (CPU instructions), in
stead of a meaningless stream of bits.

3) A working kernel is not required (the minimum amount
-28-

of CPU and ROM necessary to run a program).
4) A system overhead is not created for testing (no

additional system ROM).
5) Minimal test fixtures are required (no bed of nails or

edge connector).
6) Hardware and software can be tested and debugged under

tightly controlled conditions (eg. start,step,stop).
7) Tests can be executed in real time at normal or

abnormal clock rates.

Limitations of ICE are:

1) A socketed CPU is required, which could be a source of
unreliability. This is especially a problem in mili
tary applications.

2) Problems are generally located to module not component
level due to a lack of visibility.

As far as the use of ICE in industry is concerned, the
company survey revealed that, like logic analysis, it
seems to be reserved for development use only.

Extensive ICE has been practically implemented on a
specific microprocessor based system, using a Millenium
Microsystem Analyser (in-circuit emulator). This work is
detailed in Appendix A.

2.6 : COMBINED TECHNIQUES

All the techniques considered so far have limitations as
indicated. The tendency now is to combine techniques in
one instrument, so overcoming at least some of the in
herent problems of each. The combination of logic state
and timing analysis in one instrument is already standard,
with the combination of in-circuit and functional ATE
becoming so C2.103. Other techniques available together
are:

1) ATE with self test C2.11D.
-29-

2) ICE with SA 12.3,2.123.
3) ICE with logic state analysis C2.133.
4) ICE with complete logic analysis C2.143.
5) Logic analysis with pattern generation (ATE) C2.15,

2.163.
6) Logic state analysis with SA C2.173.

In a previous paper C2.183, it was suggested that ICE and
logic analysis would be the most effective combination.
Individually, these two techniques are not widely used for
production testing but they are nevertheless powerful
diagnostic tools. This is still believed to be the case
for the techniques considered so far, with proposed
operation as follows. Tests and stimuli generated by the
emulator would be monitored by the LA using guided probes.
State and timing information could then be recorded
automatically and compared with a set of expected res
ponses. Resulting error information should be displayed
in state, timing and English formats. The LA would also
be available to deal with time related failures and
glitches. Instruments are currently available which com
bine these two techniques, but they do not function exact
ly as outlined above.

Self test, as has already been indicated, appears at some
point in the life of every processor based system, which
ever overall single or combination of techniques is used
to test it. It will also continue to do so, since in
terms of generation, implementation and cost it creates
minimal overheads.

Test instruments developed to cope with increased circuit
complexity are certainly becoming more sophisticated. One
such instrument C2.193 runs a 'learn' algorithm to in
terrogate the system and generates a memory map of all
devices found. It then proceeds, based on this informa
tion, to run a series of pre-programmed tests. Also part
of this equipment is a hand held probe, which can observe
nodal activity or provide stimulus in synchronism with

✓

-30-

operations in the system under test.

2'7 : PROVISION FOR TEST

Design for testability has become a major requirement for
all microprocesor based systems, especially those diagnos
tic techniques which require built in provision to use
them. This built in provision for test may vary from
special test points or memory for test software, to
removable wire links or additional gates to allow external
control of devices. In this chapter it has been built in
test (BIT) at board level for subsequent external testing.
More significantly now and certainly in the future, is BIT
at board level for internal (self) testing and BIT at chip
level for self checking chips. These techniques (see Fig.
1.1) are considered in the next Chapter.

-31-

2.8 : REFERENCES
2.1) Fault diagnostics for microprocessor based systems

- T. J. Hollis; Project report for the degree of
B.Sc. in Electrical Engineering; University of
Bath, England; 1980; pp. 13-15.

2.2) Instruments - A. Santoni; EDN; July 20,1979; p. 97.
2.3) Combining diagnosis and emulation yields fast fault

finding - L. Badagiliacca, R. Catterton; Electron
ics; November 10, 1977; pp. 107-110.

2.4) Applying signature analysis to existing processor-
based products - R. Rhodes Burke; Electronics;
February 24, 1981; pp. 127-133.

2.5) Signature analysis wins new acclaim - M. Marshall;
Electronics; February 14, 1980; pp.103-4.

2.6) Logic analyzer model 1631/AD...the one with the
scope; Data sheet 5954-2614; Hewlett Packard; USA;
1985.

2.7) 3062A board test system; Data sheet 5953-6934;
Hewlett Packard; USA; 1983.

2.8) Test LSI boards functionally on an in-circuit
tester - T. Jackson, P. Vais; Electronic Design;
October 29, 1981; pp. 137-144.

2.9) Analysis of fault detection coverage of a self-test
software program - V. Tasar; FTCS-8*; pp. 65-71.

2.10) ATE swings toward merged in-circuit, functional
tests - J. McLeod; Electronic Design; October 29,
1981; pp.115-9.

2.11) Quality and control self-test - R. W. Spearman, F.
D. Patch; 1980 Test Conf.*; pp.279-286.

2.12) Plan a mixed strategy to simplify uP systems tests
- B. Hordos; EDN; April 20, 1979; pp. 183-187.

2.13) Emulator solves system-level debug problems - R.
Parks, K. Greenberg; Electronic Design; May 14,
1981; pp.173-180.

2.14) Analysers, emulators: Together they stand for
better testing - R. Allan; Electronic Design; June
25, 1981; pp 75-92.

2.15) Flexible pattern generation aids logic analysis
S. Palmquist, M. Pettet; Electronic Design;

October 15, 1981; pp. 165-174.
2.16) Logic analyser delivers test patterns too - S.

Palmquist, G. Hoeren; Electronics; September 8,
-32-

1981; pp.113-9.
2.17) Logic state and signature analysis combine for easy

testing - I. H. Spector; Electronics; Vol. 51, No.
12; June 8, 1978; pp. 141-5.

2.18) The maintainability of processor systems - T. J.
Hollis; Microtest '81; 21-24 September 1981;
University of Bath, England; Society of Electronic
and Radio Technicians; pp. 110-123.

2.19) Portable tester learns boards to simplify service
- D. Cassas; Electronics; June 16, 1981; pp. 153-
160.
a see section B.5.

-33-

DISPLAY

SYSTEM CLOCK
GATED WITH STOP
AND START SIGNALS

12

LINEAR FEEDBACK
DATA INPUT
FROM NODE UNDER TEST

16 BIT
SHIFT
REGISTER

16

FIGURE 2.1 THE PRINCIPAL CIRCUIT OF A SIGNATURE
ANALYSER

2PH2
7516
9042
112U ROM

RAMC 106
253POlAU
3F6A OUTPUTSB667
9FPU
814F

26A9

 PARALLEL
ZE INPUT/OUTPUT

CONTROLLER7P6U
95H7

MREQ
8 BIT DATA BUS

FIGURE 2.2 CIRCUIT DIAGRAM WITH SIGNATURES

TRIG ODOO 10100 3A
ODOl 10101 10
0D02 10101 09
0910 10101 47
0D03 10100 3C
0D04 10100 32
0DO5 10101 10
0D06 10101 09
0910 lOOll 48
0D07 10100 18
0D08 10101 F7
ODOO 10100 3A
ODOl 10101 10
0D02 10101 09

FIGURE 2.3

ADDRESS STATUS/ DATA
CONTROL

TYPICAL DISPLAY ON A LOGIC STATE
ANALYSER

-34-

FIGURE 2.4 TYPICAL DISPLAY ON A LOGIC TIMING
ANALYSER

PATTERN
MEMORY W ORT CCKTRCLUD

DRIVE
n ■̂a3oti/orr J L

DfCNtR
LOGIC H&i/UJ* r
STATE I-

COMPARE
COL*AIKAOK*e. — I_2 --------------

o*ojrrrw—O
PASS/FAIL

FIGURE 2.5 OVER-DRIVING A CIRCUIT PIN OR NODE

-35-

CPU

PROGRAMMABLE
RATE

GENERATOR
CARD

PROGRAMMABLE
DRIVER/

COMPARATOR
CARD(S)

PROGRAMMABLE
VOLTAGE
REFERENCE

CARD

TTL
DRIVER/

COMPARATOR
CARD(S)

CMOS
DRIVER/

COMPARATOR
CARD(S)

TO ANALOGUE
MEAS. UNIT

(IS UEASURMXT paxrs rtx CARD)WAVC

TEST ADAPTER

DTU - DIGITAL TEST UNIT
"]] EXTERNAL TO DTU

PC BOARD
UNDER TEST

PROBE
CARD

DTU MOTHERBOARD BUS

FIGURE 2.6 STRUCTURE OF A TYPICAL FUNCTIONAL BOARD
TESTER .

DIGITAL

COMPARATOR

ANALOGUETEST BARE
BOARD

PATTERN
GENERATOR

LOW COST
FIELD TESTER

PROGRAMMABLE
TESTER

EDGE CONNECTOR
ONLY

TEST
ACTIVE COMPONENTS

TEST LOGIC USING
DIGITAL OVERDRIVE

BED OF NAILS
(IN-CIRCUIT TESTING)

TEST S/C AND
PASSIVE COMPONENTS

EDGE CONNECTOR
(FUNCTIONAL TESTING)

EDGE CONNECTOR WITH
LIMITED BED OF NAILS

BED OF NAILS AND EDGE CONNECTOR
- FULL FUNCTIONAL CAPABILITY

FIGURE 2.7 THE COMBINATION OF IN-CIRCUIT AND FUNCTIONAL
TESTING

-36-

(START)

n o DISPLAY PROCESSOR
ERROR

YES

COMPUTE ROM
CHECKSUM

NO t DISPLAY ROMKUM UKf ERROR
Y E S ^
DO READ-AFTER
WRITE RAM TEST

.NO DISPLAY RAM
r a m ur\« ERROR

CHECK KEYBOARD
STATUS & RESPONSE

KEYBOARD OK?

YES

CHECK CRT INTERFACE
& DISPLAY RAM

LOOPBACK TEST ON
COMMUNICATIONS

INTERFACE

COMMUNICATIONS
LINE OK?

CHECK PROGRAMMABLE
TIMER

TIMER OK?

YES____________

(SYSTEM OK)

NO

NO B DISPLAY KEYBOARD
ERROR

NO B DISPLAY CRT
ERROR

DISPLAY
COMMUNICATIONS

LINE ERROR

NO DISPLAY TIMER
ERROR

FIGURE 2.8 A COMPLETE SELF TEST PROGRAM

-37-

IN-CIRCUIT EMULATOR SYSTEM UNDER TEST

A
V

EMULATOR BUS

A
V

RS232
INTERFACE

BREAKPOINT
LOGIC

MASTER

RAM k ROM

MASTER
CPU

KEYBOARD
k

DISPLAYS

N
W

N
W

A -\
\— /

A—A
W

FREQUENCY/

PULSE
MEASUREMENT

A-A
W

A-N
h — Z

SHARED RAM

k USER

DIAGNOSTIC

EPROMS

PERSONALITY A EMULATOR
MODULE k / \

/ PROBE
SLAVE CPU N y (BUFFERS)

DATA PROBE
 1. ,t>—

AV

SYSTEM BUS

•mm

-N

P 7
-

>mm

V

SYSTEM
CPU

(REMOVED)

AV

A-Nf
W .

A—N
W .

A—N[W .

RAM

ROM

I/O A—N
. W

FIGURE 2.9 STRUCTURE OF A TYPICAL IN-CIRCUIT EMULATOR AND ITS CONNECTIONS

CHAPTER THREE : BUILT IN TEST - AN INTRODUCTION

Microprocessors are typical of VLSI circuits, so a lot of
attention has been given to their testing C3.1-3.153.
Devices in a microprocessor based system are difficult to
test because:

1) The number of possible faults is extremely large.
There are thousands of gates and interconnecting
lines, all subject to failure, and thus a successful
test will require a large number of test patterns.

2) Access to internal components and lines is severely
limited by the number of I/O connections; say 5000
gates but only 40 I/O pins.

3) New and complex failures such as pattern sensitivity
occur.

4) A complete description of the device is generally not
available. Microprocessor specifications, for exam
ple, typically consist of a register level block
diagram, a listing of the instruction set of the
processor and some information on system timing.

These points highlight the problem areas that built in
test (BIT) must overcome. This chapter introduces four
concepts to describe and specify BIT techniques. These
are:

1) Faults and Fault Models - the types of fault to be
detected, and their effect on circuit operation.

2) Observability and Controllability - the level of
access to internal components.

3) Design for Testability - the mechanisms to implement
during design.

4) Redundancy - the quantity of additional hardware and
software for test purposes.

3.1 : FAULTS AND FAULT MODELS

Faults fall into two categories; permanent (solid) and
-39-

intermittent (transient). Intermittent failures are the
most difficult to test for and can be caused by timing and
noise problems, or clock waveform and power supply degra
dation. A test sequence which will detect solid faults in
one pass may have to be repeated many times to stand any
chance of detecting intermittent failures.

A combinational circuit may be tested by applying all
possible input combinations (test patterns) to verify its
truth table. If the circuit has twenty inputs, for exam-

20 6 pie, then this means 2 = approx. 10 patterns. However,
all single and multiple faults will be detected (assuming
they are detectable).

Sequential circuts require a minimum of s2n test patterns,
where s is the number of stable states, which must be
arranged as a specific checking sequence, a difficult and
time consuming task.

The quantity of test patterns and therefore test time for
circuits with a significant number of inputs is large. To
reduce both, it is necessary to test for a subset of all
possible faults. A list of likely failures is construct
ed, fault models created to represent the logical charac
teristics of these faults, input patterns generated to
test for them (test pattern generation) C3.16-3.183 and
test verification implemented using fault simulation
C3.163 to determine the faults actually detected (fault
coverage).

Faults and fault models as applied to VLSI are now
considered.

3.1.1 : Stuck-At Fault Model

The stuck-at fault model assumes that a logic gate has an
input or output permanently stuck at either a logic 0 or a
logic 1. Fig. 3.1a shows a fault free AND gate, whilst
Fig. 3.1b shows the same gate with a stuck-at-1 (SA1)

fault. The faulty gate sees input A as a 1 irrespective
of the actual level applied to it.

A circuit might not physically have a stuck-at failure (a
node literally connected to OV or the positive power
rail), but exhibits the characteristics from an operation
al point of view. Consider the circuit in Fig. 3.2, a
typical NAND gate. If the base-emitter junction of input
A (b-e^) is open circuit, then input A appears to be SA1,
whereas a collector-emitter short on TR4 looks like output
Y stuck-at-0 (SAO).

If a network has a total of N gate inputs and outputs,
then since each of these may be SAO, SA1, or correct, then

Nthe total number of fault combinations is 3 -1. So for a
circuit with thirty gates, each having two inputs, there

14would be approximately 2 x 10 faulty states. This is
far too many faults to assume, as the time required to
generate and implement tests for them would be imprac
tical.

In order to overcome this problem, the model of a single
stuck-at fault has been assumed for many years, in which
a faulty circuit is considered to have one single stuck-
at failure only. Thirty 2-input gates will then have one
hundred and eighty possible single stuck-at faults.

The quantity of faults can be further reduced by fault
equivalencing C3.163. Consider the AND gate in Fig.
3.3 with one of its inputs SAO. The effect of this fault
is equivalent to the output Y SAO, so for test purposes
only one of the two faults needs to be considered.

The single stuck-at fault model might be suitable for SSI
and MSI, but LSI and VLSI have other faults (excluding
manufacturing defects and design faults C3.19-3.213) which
cannot necessarily be modelled as stuck-at failures.
These are detailed next.

-41-

3.1.2 : LSI/VLSI Failures

1) Pattern Sensitive Failures : These are failures ob
served only when a specific set of states (logic
levels) or sequence of states occurs. These are
particularly prevalent in memory. Example failures
are the non recognition of a single 0 (1) following
a string of l's (0's) due to unwanted hysteresis
effects, or the generation of noise (crosstalk).

2) Transformation Failures : These are failures which
create feedback, so that sequential behaviour or
oscillation is exhibited from a combinational cir
cuit. An example of this is the input short
illustrated in Fig. 3.4. CMOS is particularly
susceptible to these failures.

3) Environmental Failures : These are failures caused by
heat, vibration and humidity, as well as electrical
and electromagnetic interference.

4) Parametric Failures : These are failures such as
resistance or transistor gain variation due to
component aging.

A lot of these faults will be intermittent and difficult,
if not impossible, to model as single stuck-at faults. In
some cases an electrical model might be more appropriate
than a logical model. Galiay C3.223 comments on this and
details failures related to integrated circuit (IC) con
struction and layout. He then suggests IC layout rules to
assist test, which decrease failure types and avoid those
which are difficult to detect.

The inadequacy of the stuck-at fault model for VLSI is
considered by Nickel C3.233, who presents nearest neigh
bour and neighbourhood interaction fault models, princi
pally for memory.

-42-

Two other important classes of faults are bridging and
unidirectional faults.

3.1.3 : Bridging Faults (shorts)

In general, the stuck-at fault model does not cover
bridging faults. If two active lines are shorted togeth
er, one at logic 0 and the other at logic 1, the resulting
level could be a 0, a 1 or indeterminate. The individual
source impedances principally determine which level will
win, but in practice either an ORing or an ANDing
operation will take place. For the OR situation, a short
circuit, as indicated in Fig. 3.5a, can be modelled as an
additional gate, as shown in Fig. 3.5b.

Bridging faults in particular are a problem in program
mable logic arrays (PLAs) C3.243.

3.1.4 : Unidirectional Faults

Unidirectional multiple errors are those where all erron
eous bits are the same; either l's changed to 0's or 0's
changed to l's. For example, a unidirectional error can
change 0110 to 1111 or 0000, but not 1001. The failure of
a power lead to or in an IC, such that a number of its
data lines become stuck at the same logic value, creates
a unidirectional error. Alternatively, a single fault in
the address decoding circuitry of a ROM chip could cause
the correct word and an incorrect word to be simultaneous
ly selected. Externally, the words would generally appear
to be ORed together, resulting in a word with more l's
than the correct word. This fault causes data dependent
unidirectional errors, whereas the power lead failure
produces a permanent undirectional error. This type of
fault can also occur in the transmission of serial data
from a device having a single failure.

3.1.5 : Functional Fault Model

-43-

Since the information required to generate logical or
electrical models is generally not available for VLSI,
then a technique proposed by Thatte C3.2,3.11,3.143 makes
use of the information which is. For microprocessors,
this means using the register level block diagram and
instruction information to produce a functional fault
model. Rather than testing each instruction with various
operands and exercising the internal registers, various
functional modules are defined from the architectural
organisation and instruction information, which are inde
pendent of their actual implementation. Each functional
unit is allowed to have one functional fault, such as the
wrong instruction or no instruction executed (although
these may be caused by stuck-at faults) and test patterns
generated to locate these faults.

Marchal C3.253 extends these principles using the single
or dual internal buses of a microprocessor.

3.2 : OBSERVABILITY AND CONTROLLABILITY

The principal aim of any BIT technique is to increase the
observability and controllability of a network.

If system inputs are fed to an AND gate, as shown in Fig.
3.6a, then these inputs are directly controllable. Simi
larly, if the output from the AND gate is a system output,
then it is directly observable. If this AND gate becomes
part of a large combinational circuit, as indicated in
Fig. 3.6b, then it is more difficult to control and
observe this one gate. Going one step further, if the AND
gate is embedded into a much larger sequential circuit
(VLSI), then the problem gets much worse.

The testability of a circuit is therefore directly related
to the difficulty of controlling and observing internal
nodes from system inputs and outputs respectively. Ideal
ly, every node should be controllable and observable.

-44-

A method of analysing the controllabilty and observabili
ty for combinational and sequential networks has been
proposed by Goldstein C3.26D.

3.3 : DESIGN FOR TESTABILITY

Built in test (BIT) requires design for testability, a
provision for test at the design stage. Design for
testability is broadly divided in to two categories; the
so called 'ad hoc' approach or the structured approach.
This chapter is concerned with the structured approaches,
but since these frequently extend the concepts of the ad
hoc methods, it is worth listing some of these ad hoc
methods first, with particular reference to microprocess
or based systems.

1) Partitioning:
a) Mechanical:

i) Separate boards for different areas/functions
of the system; for example, CPU, memory and
I/O cards.

ii) Removable wire links, either on the board or
external to the board. These could be feed
back paths which can then be broken.

b) Logical : Additional logic and control lines to
allow direct control of internal modules, see Fig.
3.7, external control of the clock, see Fig. 3.8,
or direct observation and control of module inter
connections, see Fig. 3.9 C3.16,3.27-3.293. The
latter technique is particularly suited for exter
nal control of microprocessor buses, so that
perhaps switches can set up the desired informa
tion C3.303.

2) Test Points C3.16,3.29,3.31,3.323:
a) Additional observation points.
b) Additional observation/control points (as re

quired for logical partitioning).
c) Bed of nails (as used for ATE).

/

-45-

3) Indicators:
a) Single LEDs to indicate the state of power

rails, serial data lines and general gate/chip
inputs or outputs C3.293.

b) Latches and seven segment displays for bus in
formation C3.30,3.333.

4) Microprocessor Single Step : Additional circuitry
which allows a microprocessor to execute a single
instruction or clock cycle C3.28,3.333.

5) Signature Analysis (see section 2.1).

6) Self Test Programs (see section 2.4).

7) Watch Dog Timer C3.343: Checks the response of the
microprocessor to interrupts, or checks that soft
ware or hardware processing time is within a
predetermined limit.

8) Control Line Access : Allows normally static control
lines to be externally controlled by using tie-up or
tie-down resistors C3.313.

9) Standard Bus Structures : Well defined bus structures
such as the Microbus C3.353, the G64 Bus C3.363, or
the VME Bus C3.373 allow the control and observation
of bus activity to be standardised for test purposes.

3.4 : REDUNDANCY

Most of the ad hoc and structured approaches use some form
of redundancy to achieve improved testability; i.e. not
necessary for normal system operation. Redundancy can be
classified as follows:

1) Hardware : Additional hardware for observation (check
ing) or control.✓

-46-

2) Software : Additional routines such as self test
programs.

3) Time : If system checking is performed during normal
operation, then hardware can do this with no extra
time burden. However, software checking will impose
a time overhead (redundancy).

4) Information : Both hardware and software require in
formation redundancy. They need and/or generate more
information than is necessary for normal operation.

-47-

3.5 : REFERENCES
3.1) Microcomputer for emulation bares hidden buses,

functions - J. Moon; Electronics; July 17, 1980;
pp. 126-129.

3.2) Test generation for microprocessors - S. M. Thatte,
J. A. Abraham; IEEE Trans. Comput.; Vol. C-29, No.
6; June, 1980; pp. 429-441.

3.3) Testability considerations in microprocessor-based
design - J. P. Hayes; Computer; March, 1980; pp.
17-25.

3.4) Survey of approaches to testing and diagnosing
microprocessor-based systems - W. Schmitt, E.
Lynch; Autotestcon '80*; pp. 127-130.

3.5) The microprocesor testing revolution - E. S. Donn;
1979 Test Conf.*; pp. 121-124.

3.6) Design of easily testable bit-sliced systems - T.
Sridhar, J. P. Hayes; IEEE Trans. Comput.; Vol. C-
30, No. 11; November, 1981; pp. 842-854.

3.7) A testable design of general purpose microprocess
ors - R. Parthasarathy; FTCS-12*; pp. 117-123.

3.8) Testing the new generation of microprocessors - P.
Wohlfarth, D. Smith; 1979, Test Conf.*; pp. 255-257.

3.9) Testing internally clocked LSI - R. Winn; 1979 Test
Conf.*; pp. 338-340.

3.10) Bit-slices microprocessors testing - a case study
- M. El-Lithy, R. Husson; FTCS-10; pp.126-1.

3.11) User testing of microprocessors - S. M. Thatte, J.
A. Abraham; IEEE Compcon '79; Spring 1979; San
Francisco, California, USA;IEEE Pub. No. 79 CH1393-
8C; pp. 108-114.

3.12) Testing the 8086 - M-G Lin, A. K. Yuen, K. Rose;
1980 Test Conf.*; pp. 426-431.

3.13) A functional test method for microprocessors - L.
Shen, S. Y. H. Su; FTCS-14; pp 212-218.

3.14) Fault coverage of test programs for a microprocess
or - J. A. Abraham, S. M. Thatte; 1979 Test Conf.*;
pp. 18-22.

3.15) Testing using a minimal number of instructions - P.
K. Lala; Microprocessors and Microsystems; Vol. 5,
No. 7; September 1981; pp. 295-298.

3.16) Design for testability - T. W. Williams, K. P.
Parker; Proc. IEEE; Vol. 71, No. 1; January, 1983;

-48-

pp. 98-112.
3.17) Test generation techniques - S. B. Akers; Computer;

March, 1980; pp. 9-15.
3.18) LSI logic testing - an overview - E. I. Muehldorf,

A. D. Savkar; IEEE Trans. Comput.; Vol. C-30, No.
1; January, 1981; pp. 1-16.

3.19) Microprocessor device reliability - E. R. Hnatex;
1977 IEEE Southeastcon Region 3 Conference; pp.
82-86.

3.20) Improvements in reliability of VLSI integrated
circuits - M. Noble; IEE Electronics and Power;
March, 1985; pp. 222-226.

3.21) Hardware logic design faults - a classification and
some measurements - T. L. Faulkner, C. W. Bartlett,
M. Small; FTCS-12*; pp. 377-380.

3.22) Physical versus logical fault models MOS LSI
circuits; Impact on their testability - J. Galiay,
Y. Crouzet, M. Vergniault; IEEE Trans. Comput.;
Vol. C-29, No. 6; June, 1980; pp. 527-531.

3.23) VLSI - The inadequacy of the stuck at fault model
- V. V. Nickel; 1980 Test Conf.*; pp. 378-381.

3.24) The effect of untestable faults in PLAs and a
design for testability - D. K. Pradhan, K. Son,
1980 Test Conf.*; pp. 359-367.

3.25) Updating functional fault models for microcomputer
internal buses - P. Marchal; FTCS-15; pp. 58-64.

3.26) Controllabilty/observability analysis of digital
circuits - L. W. Goldstein; IEEE Trans. on
Circuits and Systems; Vol. CAS-26, No. 9; September
1979; pp. 685-693.

3.27) Design for testability for microprocessor-based
boards - R. Willis; Electronic Engineering; April,
1983; pp. 67-72.

3.28) Designing boards for testability - G. Foley; New
Electonics; Vol. 12, No. 23; November 27, 1979;
pp. 98-102.

3.29) Practical troubleshooting techniques for micropro
cessor systems - J. W. Coffron; Prentice-Hall Inc,
Englewood Cliffs, New Jersey, USA; 1981; Chapter 8.

3.30) Save both time and money debugging a uP prototype
board -M. M. Zyla; EDN; 5 September, 1978; pp.
153-156.

3.31) Design for testability - J. Turino; Logical Solu-
✓

-49-

tions Inc.; Campbell, Ca., USA; 1979; Chapter 4.
3.32) Enhancing testability of large-scale integrated

circuits via test points and additional logic - M.
J. Y. Williams, J. B. Angell; IEEE Trans. Comput.;
Vol. C-22, No. 1; January, 1973; pp. 46-60.

3.33) Testing microprocessor-based systems at home - C.
Carson; Wireless World; April, 1984; pp. 44,45,49.

3.34) Designing fail-safe microprocessor systems - D. R.
Ballard; Electronics; 4 January 1979; pp. 139-143.

3.35) Microprocessor bus standard could cure designer's
woes - G. Force; Electronics; 20 July, 1978; pp.
113-118.

3.36) The G-64 route to microsystem hardware implementa
tion - P. Wilson, C. Cordingley; New Electronics;
12 November, 1985; pp. 43-46.

3.37) Decentralising uP bus grows easily from 16 to 32
bits - C. Kaplinsky; Electronic Design; 12 November
1981; pp. 173-179.
a see section B.5.

-50-

(a) w B
1 ---

0 NORMAL

SA1

(b) 1 FAULTY

FIGURE 3.1 A STUCK-AT FAILURE

Vcc
R1 R2 R4

TR1 TR2 TR3

elopen circuit e2

Bo- short circuit
TR4

R3
OV

FIGURE 3.2 TWO FAILURES IN A TTL NAND GATE

SAO*
X permanently 0

SAO

FIGURE 3.3 EQUIVALENT STUCK-AT FAILURES

— j — 1b e c o m e s^>
V InnutsInputs
Short
Circuit

FIGURE 3.4 A TRANSFORMATION FAILURE

-51-

Y1
Inputs
Short
Circuit

Y2

Y1

Y2

(a) (b)
FIGURE 3.5 MODELLING A SHORT CIRCUIT FAULT

SYSTEM

System A
Inputs B

System
Outputs (a)

DIRECT

System
Inputs

SYSTEM

Logic

System
Outputs

(b)
INDIRECT

FIGURE 3.6 THE CONTROLLABILITY AND OBSERVABILITY OF A SINGLE GATE

1= Enable
0= Inhibit

module 1 control
of module 2

EXTERNAL CONTROL
OF MODULE 2

MODULE MODULE

FIGURE 3.7 DIRECT CONTROL OF AN INTERNAL MODULE
USING ADDITIONAL LOGIC

-52-

CLOCK
GENERATOR

CLOCK ENABLE
EXTERNAL CLOCK

FIGURE 3-8 EXTERNAL CONTROL OF A SYSTEM CLOCK

BUFFERS WITH

OBSERVE MODULE
1 OUTPUTS
CONTROL MODULE
2 INPUTS

TRISTATE OUTPUTS

MODULE MODULE

FIGURE 3.9 OBSERVATION & CONTROL OF MODULE INTERCONNECTIONS

-53-

CHAPTER FOUR : TECHNIQUES FOR BUILT IN TEST

Built in test (BIT) allows testing to be implemented in
one of two modes, on or off line. Ideally it has
negligible effect on system performance and involves
minimal space and cost overheads. At the same time, it
seeks to transform the fault diagnosis of a complex
circuit from almost impossible to a relatively straight
forward operation. It also needs to minimise test
generation, test procedures and the assistance of external
equipment.

BIT ranges from well established (and widely used) coding
techniques to the more recent and powerful concept of a
Serial Shadow Register. Both of these are described in
some detail in this Chapter, along with three more
important forms of BIT; Scan Design, the Built In Logic
Block Observer and Autonomous testing. Many other tech
niques for BIT have been proposed, so a further selection
are concisely detailed.

It is interesting to see what impact these techniques have
had on chip manufacturers. A number of these techniques
are being implemented at chip level and a summary is
provided of some of the available devices.

However, prior to any of this discussion, section 4.1.2
presents the Linear Feedback Shift Register (LFSR), a
circuit which is extensively used for data generation and
compression.

The chapter concludes with a generalised approach to BIT,
the concept of self verification.

Many of the BIT techniques presented can either individ
ually, or in combination make extensive use of self
checking circuits at chip, board or system level, as they
do in the error detection processor C4.1,4.23. These
aspects are not covered here, but dealt with in subsequent

Chapters on self checking circuits and systems.

4.1 : MODES OF TESTING

Testing or checking can he implemented concurrently with
normal operation (on line), or distinct from normal
operation as an off line process, using the circuitry as
it is, or in a special test mode of operation C4.163.

Fig. 4.1 shows the on and off line techniques for BIT
considered in subsequent sections, together with their
interactions. It also includes, for completeness, certain
referenced aspects of on line testing for fault tolerance.

4.1.1 : On Line Testing

The need for on line testing originates from the require
ments of fault tolerant computing, where ideally there is
no computer down time due to failure. This is certainly
true for critical space and aviation applications where
faults must be detected, located*and either the erroneous
data corrected, or the faulty module replaced with built
in spares.

Concurrent checking therefore requires, in general, a
significant hardware redundancy to achieve its goal with
zero time overhead. This method of testing also has the
ability to detect intermittent errors that occur during
normal operation, which an off line test procedure may not
detect.

Coding schemes or duplication and comparison are the most
common forms of concurrent testing.

4.1.2 : Off Line Testing

Off line testing uses hardware and/or software to verify
that the operation of devices assembled as part of a
system or in isolation is correct. The only restriction

✓

-55-

on testing time is that it falls within an acceptable
limit.

Non concurrent testing allows all modules to be thorough
ly exercised, a process which can locate failures not
discovered during concurrent testing methods because nor
mal operation does not create such an extensive stimulus.

Increased observability and controllability (see section
3.2) is often created by the test mode of operation
whereby certain circuitry, particularly sequential logic,
is reconfigured. Scan design is one such technique.

4.2 : THE LINEAR FEEDBACK SHIFT REGISTER

Mechanisms for generating a circuit stimulus and observing
its response are essential to the success of any BIT
technique. These are provided by effective and compact
circuits for test pattern generation and data compression
respectively. The most widely used device to provide both
is the linear feedback shift register (LFSR), particularly
in scan path design.

A series of D-type flip-flops configured with feedback
paths, as shown in Fig. 4.2a, is known as a LFSR and can
be used to provide a pseudorandom pattern generator. When
the feedback paths are carefully selected, it can gen
erate a long, near random, sequence of output patterns

Nwith length 2 , where N is the number of flip-flops in
the shift register. Fig. 4.2b gives these patterns for
the depicted LFSR. The philosophy of pseudorandom pat
terns is that by applying a sufficiently large number of
them to the circuit, acceptable testing will be achieved.
The LFSR allows test patterns to be applied at high speed,
so that several million can be achieved within an
acceptable test time.

A relatively short test sequence can produce a considera
ble amount of response data, since the state of each

output must be checked after the application of each
stimulus. Data compression is therefore essential and
can be achieved with the use of a LFSR plus an external
input. This technique has already been covered in section
2.1, as it is signature analysis. Fig. 4.3 shows a four
stage LFSR for this purpose and the resultant signature
from a sample data stream. However, since most circuits
have more than one output, and to avoid having a separate
LFSR for each of these, the basic LFSR can be expanded to
accommodate more than one input, as shown in Fig. 4.4.
This is then known as a multiple input signature register
(MISR) and is obviously more economical than the basic
LFSR, but can suffer from a worse error detection
probability [4.313.

4.3 : ERROR DETECTING CODES

The most common form of BIT is coding. It provides an on
line (concurrent) method of verifying circuit operation,
using both information and hardware redundancy.

A set of lines, typically a bus, are encoded, ideally at
their source, and the code subsequently checked at various
points in the circuit, as shown in Fig. 4.5. The binary
combinations on these lines will then only be a subset of
all possible combinations during normal (fault free)
operation. A failure in this or associated circuitry will
(ideally) produce a value outside this allowed subset and
will therefore be detected by the checking process.

This can be expressed more formally as follows C4.323.
For a particular code, the allowed binary combinations or
vectors are a subset S of a universe U chosen so that a
likely failure affecting vector X^ in S produces vector
X.' which is not in S. A codeword is a vector in S and a i
a non codeword a vector in the set U-S. If X^ is a
codeword and X^' a different vector produced by a failure
f, then f is a detectable error if X^' is a non codeword
and f an undetectable error if X.' is the same or another / ^

-57-

codeword. These concepts are illustrated in Fig. 4.6.

The choice of code is dependent on the following:

1) The types of fault to be detected.
2) Whether logical or arithmetic processing is involved,

since some codes are not preserved during these
operations.

3) The added complexity to the uncoded circuit.
4) The cost of installation.
5) How easily the code is checked.

Codes essentially fall into two categories, separable and
non separable. In a separable (systematic) code, the
codeword is formed by the concatenation of additional
(separate) check bits to the original data word. In a non
separable (non systematic) code, the original data word is
extended and modified to form the codeword.

4.3.1 : Single Parity Codes

Parity is one of the simplest coding techniques available
and has been extensively used for many decades. In its
basic form, a single parity bit is appended to an n-bit
data word to produce odd or even parity. For even parity
the parity bit is a '1* or a "O' such that the total
number of ones in the word (including the parity bit) is
an even number, whilst for odd parity the total number of
ones is odd.

Expressed mathematically the parity bit P for an n-bit
word x-, . . . x^ is:1 n

Even parity: Peven = © x2 © --- © xn_1 © xR (4.1)

Odd parity: PQdd = xx © x2 © --- © xn_1 © xn (4.2)

This is illustrated in Fig. 4.7.

-58-

Considering odd parity, any fault which changes the number
of ones from odd to even is detectable. Thus odd parity
will detect all single bit errors as well as multiple bit
errors which are odd in number. The same is true for even
parity.

The code is checked with an Exclusive-OR (EXOR) tree, as
shown in Fig. 4.8. An MSI package is available for this
purpose C4.333.

Parity is used extensively for checking data transmission
paths and memory, but is not, in general, preserved by
arithmetic or logical operations, as indicated in Fig.
4.9. If parity is to be used with arithmetic or logical
operations, then the parity bit can be regenerated after
the operation with the use of parity prediction techniques
C4.34-4.363.

Overall parity creates the least redundancy (one bit) and
is the cheapest code to generate and check.

4.3.2 : B-Adjacent Codes C4.37,4.383

Basic parity is ideally suited for memory where each
device handles a single bit, for example, IK words x 1-bit
RAM chips, since it will detect all failures within that
device. However, if the memory device is four bits wide
(for example, IK words x 4-bits) then an internal fault
could cause a four bit error, which is undetectable by
simple parity. In this case the b-adjacent code can be
used. This is illustrated in Fig. 4.10, where the tech
nique is also known as interleaved parity. An error in b
adjacent bits is only a single error for each of the b
parity check codes. The checker now consists of b x
(k+1)-input EXOR trees and one b-bit AND gate.

4.3.3 : Duplication Codes

Where it is difficult to code the internal paths of a
✓

-59-

circuit or device, then the easiest solution is to
duplicate the whole circuit and compare the outputs of
normal and duplicated modules to detect failures in each,
as shown in Fig 4.11.

The advantage of this technique is that all failures
(single and multiple) will be detected, except those which
identically change the outputs of both modules. To
overcome the possible occurrence of identical failures
occurring in each module, Sedmak C4.14,4.3911 suggests that
the duplicated module should be an inverse of the main
circuit.

Duplication is a method of coding because when correspond
ing outputs are compared, the input to the comparator for
each pair will be <00> or <11> for modules giving
identical outputs, the duplication code, and <01> or <10>
for modules with complementary outputs, the l-out-of-2
code. Thus errors are indicated by an input pair of <01>
or <10> for the duplication code and <00> or <11> for the
l-out-of-2 code. The l-out-of-2-code is preferred since
it detects unidirectional multiple errors, such as those
caused by a loss of power.

Duplication provides the highest fault coverage, but has
the most redundancy and is the most expensive form of
checking. Larsen C4.40D compares the redundancy of
duplication with the redundancy of other coding forms.

4.3.4 : Checksum Codes C4.413

Checksum codes have been used extensively to detect
errors in data transmission and data storage. Data is
stored and transmitted in b-bit words. Appended to the
end of each packet is a check word or checksum which is
the binary sum of the words within that packet. The
length of these packets may be anything from one to
thousands of bytes.

-60-

The principle method of checking the code is software
simply because of the vast amount of data involved.
However, hardware detection of errors in individual words
may be performed by breaking the word down into k x b-bit
bytes and applying the technique to these bytes, as shown
in Fig 4.12.

An extra b-bit byte is required for the checksum which
will detect all faults within a single byte. The checker
consists of (k-1) x b-bit binary adders and a b-bit
comparator.

Checksums can also be incorporated into arithmetic opera
tions with the use of checksum prediction C4.423.

Checksums provide the same fault coverage as the b-
adjacent code in Fig. 4.10, but with a checker which is
more expensive and slower.

4.3.5 : AN Codes C4.433

The AN code is an arithmetic code C4.44,4.453, that is to
say, unlike parity, is preserved during arithmetic opera
tions. The code is described as non systematic and non
separable.

In the AN code an uncoded word X is multiplied by a check
base A to form the codeword AX. Each codeword is formed

Thus the encoding of the sum of two numbers is the sum of
their respective encodings. When no fault occurs, the
adder output is a multiple of A. A checker monitors this
output and produces an error signal when the residue or
remainder is not zero. This structure is illustrated in
Fig. 4.13, together with a numerical example. All faults

by appending bits to X. Binary addition of
codewords is performed so that:

AX + AY = A (X+Y) (4.3)

-61-

producing an output which is not a multiple of A will be
detected. These faults include most unidirectional multi
ple errors.

In this general case, the checker must carry out long
division by A to obtain the residue which is a slow and
complex hardware algorithm. However, this process can be
greatly simplified if the check base A = 2^-1, where b is
an integer greater than one C4.463. This is known as the
low cost AN code because the checker now greatly simpli
fies to an adder tree of b-bit modulo 2^-1 adders plus an
AND gate. A sample structure together with a numerical
example is given in Fig. 4.14. Note that:

i) The modulo 2^-1 adders are ordinary binary adders with
end around carry,

ii) The correct residue is now all l's (all 0's would be
produced by normal long division), so the final check
of the residue might need to take into account all 0's
or all l's as being correct.

All errors within a b-bit byte can be detected except
those of magnitude 2^-1. This form of coding has similar
redundancy and checker costs to the checksum code, but may
be a little slower. The AN code is not suitable for
logical operations since it is non separable.

4.3.6 : Residue Codes C4.473

The basic residue code is, again, an arithmetic code and
similar to the AN code except that it is separable. A
word X is encoded by appending check bits C(X) to it which
are the residue of X divided by a check base A. The
number of check bits required is given by flog2Aj . The
encoding of the sum of two numbers is the binary sum of
the original data words, say X and Y, and the independent
summation of their respective check bits modulo A. The
encoding of the sum of X and Y, f(X+Y), is then:

-62-

f(X+Y) = <C(X) +A C(Y), X+Y> (4.4)

where +, is addition modulo A and is concatenation.A

A checker which compares C(X+Y) with (C(X) +A C(Y)) will
then be used to detect errors in the addition, as shown in
Fig. 4.15. All faults will be detected except those which
produce an all 0's or all l's residue.

As with the AN code, a low cost residue code can be
produced by using A = 2^-1, where b is again an integer
greater than one. This is now beneficial to both the
generation and checking of the code. A sample structure
and numerical example are given in Fig. 4.16. The same
fault detection capabiltiy, redundancy and checking costs
apply as for the AN code.

4.3.7 : M-out-of-n Codes C4.483

M-out-of-n codewords are a subset of all n-bit words where
exactly m of its bits are a - logic 1. The code is
therefore termed a fixed weight code. The number of
possible combinations for m bits out of an n-bit word is
given by:

Cn = n!/m!(n-m)i (4.5)m

Although m-out-of-n codes are non separable and non
systematic, and therefore not suitable for processing
systematic data, they are suitable for encoding control
information, where the individual bits of a word have
specific functions rather than a numerical representation.
In some cases, for example, memory address decoding, they
occur naturally. They can detect all unidirectional
multiple errors, except faults which change one codeword
to another codeword.

A maximum number of codewords occurs when m equals the
integer part of n/2 : m = . Using this particular

-63-

case and an 8-bit data word, consider the following. If
8the word is encoded using simple parity, then 2 = 256

codewords are provided with one redundant bit. A similar
number of codewords (252) are available from a 5-out-of-10
code which requires two redundant bits. So, compared with
parity, n/2-out-of-n codes, better known as k-out-of-2k
codes, require slightly more redundancy for much better
fault coverage.

4.3.8 : Berger Codes C4.49-4.523

Berger codes are optimal separable (systematic) codes,
where an n-bit word X is encoded by the addition of k
checkbits. The checkbits are the binary representation of
the number of 0's in X, XO, or the binary representation
of the number of l's in X complemented (bit by bit), XI.
This results in k check bits, where k = r the
number of binary bits needed to represent n. XO and XIItwill only be identical when n = 2 -1, when a maximal
length Berger code is produced.

Berger codes will detect all unidirectional errors and are
optimal, in terms of the number of check bits required for
n information bits, amongst all separable codes that
detect unidirectional errors. However, they are more
redundant than m-out-of-n codes, which also detect uni
directional errors, but Berger codes have the separability
advantage which simplifies and minimises encoding and
decoding hardware.

The checker consists of a series of full adder modules to
add the information bits in parallel. Fig. 4.17 shows a
structure for n=7 and k=3, together with a numerical
example.

4.3.9 : Cyclic Codes C4.533

Binary cyclic codes have the property that any cyclic
shift of a code word is also a code word. The encoding

✓

-64-

and decoding processes for these codes are straight
forward with the use of linear feedback shift registers
(see section 4.2), so the codes are ideal for checking
serial data.

An n-bit binary number may be represented as a polynomial
M(x) thus:

— 1 y \ 9M(x) = m ,x + m nx * + + m,x + mA (4.6)n-1 n-2 1 0

Two forms of cyclic code exist; systematic or non syste
matic.

4.3.9.1 : Non Systematic Cyclic Codes

A code polynomial V(x) is formed from the product G(x)M(x)

V(x) = G(x)M(x) (4.7)

where G(x) is a suitable generator polynomial of the form

G(x) = grxr + Sr_1xr~1 + + % i x + (4.8)

For an k-bit encoded word r = k-n (n is the number of
information bits).

This code is non systematic since the information bits are
scrambled in the polynomial product. Fig. 4.18 gives an
example.

4.3.9.2 : Systematic Cyclic Codes

V(x) is formed by appending the inverse of the remainder
ITwhen x M(x) is divided by G(x) as check bits to the

original information bits.

xrM(x)/G(x> = Q(x) + C(x)/G(x) (4.9)

i.e. xrM(x) = Q(x)G(x) + C(x)
✓

-65-
(4.10)

V(x) = xrM(x> - C(x) = Q(x)G(x) (4.11)

where: r = k-n as above.
Q(x) and C(x) are polynomials, with the highest

power of x in C(x) being less than r.

Thus V(x) is a multiple of G(x). Fig. 4.19 gives an
example.

These cyclic codes are referred to as (k,n) codes. They
will detect all single errors and all burst errors that
affect k-n (r) or fewer adjacent bits. The cyclic codes
can also be used for error correction.

Both the encoding and decoding of systematic cyclic codes
requires the use of division by G(x):

Encoding: xrM(x)/G(x) and use the inverse of the remain
der as check bits.

Decoding: V(x)/G(x) and if the remainder is zero it is a
codeword.

A linear feedback shift register (LFSR) can be used to
serially divide by G(x). Fig. 4.20 shows such a structure
where G(x) is that used in the above example.

4.3.10 : Hamming Codes C4.12,4.543

The Hamming codes extend the principles of single parity.
They are not only able to detect errors, but also able to
correct them as well. In these codes more than one parity
bit is appended to a data word X, such that each added bit
represents the parity of a different subset of the n
information bits.

Codes are e-error detecting if any fault causing up to e
erroneous bits can be detected and f-error correcting if

-66-

f erroneous bits can be corrected to produce the original
fault free data.

The Hamming distance d of a code is the minimum number of
bits between two codewords. Fig. 4.21 shows the inter
relation of d,e and f derived from coding theory C4.123.
For simple parity d=2, which allows single error detec
tion and zero error correction. Since the Hamming codes
provide error correction, they must have d greater than 2.

Consider the case for a single error correcting code
C4.123. To be single error correcting a data word of n
information bits requires c check bits, where

2C > n+c+1. (4.12)

For an overall b-bit word, the check bits ideally occupy
positions b q, b b b c_2«2 2 2 2
As an example, let n=4 such that (4.12) gives c > 3. Take
c=3 and a seven bit word is required, b^, with the
check bits occupying b^, b2and b^.

The values of the check bits are determined from the
parity check equations:

b4 such that : P3 = b? © b6 © b5 © b4 = 0 (4.13)
**2 such that : P2 = b? © b& © b3 © b2 = 0 (4.14)

such that : PI = b? © b5 © b3 © bx = 0 (4.15)

These are even parity equations, so an even number of l's
is required to satisfy the left hand side of each
equation.

If the information bits have values ^3 = 1* ^5=0,
and b^ = lf then the check bits have values b^=0, an(*
b^=l, so that the encoded word is 1001100.

If a single bit error occurs in bit b^ the word becomes
-67-

1011100. When checking occurs, P3 = l, P2=0 and P1 = 0. It
can be seen from the parity check equations that if the
outputs P3, P2 and PI are concatenated in this order, then
they represent the binary number of the erroneous bit, in
this case 101, i.e. b^, which can be corrected.

Consider now a fault in bits b^ and b ^ r i.e. a double
fault. The modified word becomes 1011110, with PI, P2 and
P3 all equal to 1. Accordingly, bit 7 will be corrected
producing 0011110. This demonstrates that although the
double bit error has been detected, it cannot be correc
ted. In fact, an incorrect correction will be made. Fig.
4.22 shows pictorially why this occurs.

A more typical information word of eight bits requires at
least four check bits, from (4.12). In this case, it is
equally redundant as a Berger code with n=8, but has twice
as many redundant bits for n=8 in an equivalent k-out-of-
2k code (5-out-of-10). However, whilst the k-out-of-2k
code can detect all unidirectional errors it has no error
correction capacity 2), whereas the Hamming code
considered has single error correction and double error
detection.

The checking requirement for this Hamming code is c parityc—1trees, each with up to 2 inputs (c is the number of
check bits).

Practical implementation of the Hamming code in micro
processor based systems is presented by Heimlich C4.553
and Wall C4.133.

4.4 : SCAN DESIGN

Scan design is a technique developed by IBM which involves
the reconfiguration of storage elements. It exists in two
main forms; Scan Path design using conventional storage
elements and Level Sensitive Scan design using special
storage elements. 'STUMPS' extends the scan concepts for

✓

-68-

multi-device applications.

4.4.1 : Scan Path Design 114.31,4.56-4.583

In scan path design all storage elements (flip-flops) have
additional circuitry as indicated in Fig. 4.23. This
additional circuitry is essentially a 2 to 1 multiplexer
in front of the D input, with normal data and scan data
as the two inputs.

During test, this circuitry enables the storage elements
to be reconfigured serially into a shift register, hence
forth termed the scan register, as shown in Fig. 4.24.
The scan data out from one storage element is inherently
connected to the scan data input of the next storage
element and it is this data path which is selected for
test purposes by the scan enable line. A sequential
circuit is then reduced to a shift register and combina
tional logic, so that test patterns are required for the
combinational logic only (a comparatively easy task com
pared with test generation for sequential logic). These
are applied using the normal input pins and the access
path provided by the scan register. If, for example, a
LFSR data generator and LFSR data compressor are added
with appropriate control circuitry, then the test setup
becomes that in Fig. 4.25.

For Fig. 4.25 testing is as follows:

1) Reset the data generator and the data compressor and
then enable the data generator.

2) Set mode to test. This reconfigures the storage
elements into a scan register.

3) Clock the circuit until the scan register has been
completely loaded with data (via scan in). This is
the first test for the combinational logic.

4) Set mode to normal and set up primary input data.
5) Clock the circuit once.
6) Set mode to test, latching primary output data.✓

-69-

7) Enable the data compressor (first time only) and shift
out the contents of the scan register into it, whilst
simultaneously loading the next test pattern.

8) Repeat steps 4)-7) until the test generator has sup
plied all possible test patterns.

9) Inhibit data generator and data compressor.
10) Compare the signature held in the data compressor with

a reference value and generate a pass/fail indication.

4.4.2 : Level Sensitive Scan Design C4.58-4.633

The level sensitive scan design (LSSD) technique is
similar to the scan path, except that the storage element
is a shift register latch (SRL) which uses level sensitive
latches in a master-slave configuration, as shown in Fig.
4.26. This circuit is nearly independent of hard to
control ac characteristics such as rise time, fall time
and overall delay for correct operation and is hazard/race
free. However, there are restrictions on when and how
signals can change C4.593.

The scan data out is now a separate line, but still
connects to the scan data in of the next unit to form the
scan register, which is now operated from a two phase non
overlapping clock C4.59-4.613.

LSSD is used extensively in the IBM System/38 C4.60,4.613.

4.4.3 : Advantages and Limitations of Scan Design

Advantages:

1) Sequential logic is transformed into a combinational
form, allowing well understood test generation tech
niques such as the D-Algorithm or Boolean Difference
C4.64,4.653 to be used.

2) It provides a vast improvement on the controllability
and observability of internal nodes compared to a
circuit without this technique.

✓

-70-

3) It can be used for chip, board and system testing
during production and in the field.

4) The additional circuitry creates little performance
degradation during normal operation.

Limitations:

1) Each storage element is two to three times logically
more complex than a standard unit (although the
additional latches required for LSSD can be used for
other system functions).

2) Up to four more I/O pins are required.
3) External control and clock circuitry is required.
4) External inputs will have to be precisely controlled

to generate the correct response (signature).
5) It provides only a dc test of the system.
6) The serial nature of the data can result in long test

times.

Scan path can be added to conventional designs C4.573,
whilst LSSD is included during design.

The above assumes that all the storage elements in a
circuit will be serially connected to form a shift
register, giving a complete scan path, but Trischler
C4.663 considers the effect of not including every
element, which results in an incomplete scan path.

4.4.4 : STUMPS

The concepts discussed above may be used for circuits
within a single device or several devices cascaded.
However, for multiple device applications, self test using
MISR and a parallel shift register sequence generator
(STUMPS) is an extension of these ideas, as shown in Fig.
4.27 C4.313.

The scan inputs are fed from the parallel output of a LFSR
pseudorandom sequence generator, whilst the scan outputs ✓

-71-

feed the parallel inputs of a MISR via a set of control
gates. The control gates allow the test response from a
device or devices to be ignored in order to isolate an
incorrect signature to one particular chip. Obviously
additional known signatures will be required for this
purpose.

Using this technique, a long shift register has been
broken down into a number of smaller units operating in
parallel, so the test time will be significantly reduced.

4.5 : THE BUILT IN LOGIC BLOCK OBSERVER f?'*'fan■ - 4.67-4.69D

THE Built In Logic Block Observer (BILBO) combines many of
the elements used in scan design to provide a self testing
structure. In a similar manner to the scan path technique,
the BILBO is formed from reconfigured storage elements
within a network, plus a number of additional gates.

It consists of latches with feedback paths via EXOR gates,
which are typical of LFSRs. Fig.* 4.28a shows a typical
BILBO structure which has parallel inputs from combina
tional logic Zi, parallel outputs Qi,a serial input SDI,
a serial ouput SDO and two control inputs B1 and B2.

B1 and B2 select four operating modes:

Mode 1 : B1=B2=1 - Fig. 4.28b
This is the normal mode of operation. The circuit
operates as a parallel latch with data loaded at the Z
inputs on a transition of the clock.

Mode 2 : B1=B2=0 - Fig. 4.28c
The circuit becomes a shift register. Data present at
SDI will be shifted through the four latches, appearing
at Zi and SDO.

Note that the combination of Modes 1 and 2 provide a scan
register.

-72-

Mode 3 : Bl=l, B2=0 - Fig. 4.28d
The circuit now becomes a MISR. It can be used to
compress test responses or, for constant Zi, generate
pseudorandom data streams at Qi.

Mode 4 : B1=0, B2=l - Fig. 4.28e
On a clock transition all latches will be reset (0
applied to all inputs).

The BILBO is thus an incredibly versatile building block
for the construction of self testing circuits, as indi
cated in Fig 4.29. Alternatively, it can be used to
assist other BIT techniques. The scan path structure of
Fig 4.25, for example, can be modified to include a BILBO
which will perform the data generation and data com
pression functions simultaneously, such that the response
of the circuit to one test influences the next test, as
shown in Fig 4.30. Once a failure has been detected, the
other two modes of operation allow the circuit to perform
as a conventional scan register for further diagnosis.

Fasang and Konemann C4.67-4.693 detail experimental re
sults and usage for the BILBO, allowing BIT at normal
system speed and the high fault resolution quality of scan
path techniques.

4.6 : AUTONOMOUS TESTING C4.62,4.70-4.743

Scan design provides a powerful testing mechanism, but
introduces additional complexity into the design process
and requires test pattern generation (TPG) C4.64,4.651
determined by the type of faults to be detected (fault
modelling). Scanning patterns in and out of the network
means a long testing time, especially for large circuits.
Even if pseudorandom patterns are used to eliminate TPG
(as prevously described), then the test time will be
substantially increased, since there must be sufficient
patterns to provide the desired fault coverage.

/

-73-

Autonomous testing does not require fault modelling or
TPG. All possible input combinations are applied to
combinational logic and all sequences to sequential logic,
with outputs monitored for correct operation. This is
known as exhaustive testing, which, in general, is a
lengthy process. However, the testing time can be
substantially reduced by partitioning the circuit under
test into subcircuits which have a relatively small
number of inputs compared to those of the complete
circuit. Williams L 4.62,4.633 indicates that testing
time is related to the cube of the complexity (number of
gates) in the circuit.

Requirements for this technique are:

1) Mechanisms to partition the circuit under test into
subcircuits.

2) Additional circuitry, or reconfiguration of existing
circuitry, to provide all input combinations to the
subcircuit.

3) Additional circuitry, or reconfiguration of existing
circuitry, to verify the response of the subcircuit.

As with many of the BIT techniques, the circuit functions
in either a normal or a test mode of operation. The test
mode of operation is as described above. All additional
test circuitry is transparent to the inputs and outputs
during the normal mode of operation. The transformation
from the normal to the test mode of operation is presented
in Fig. 4.31.

Parts 2) and 3) of the strategy above are implemented with
the now familiar LFSR, modified so that the generator can
provide all output combinations, since the LFSR in Fig.
4.2 does not generate the all zero state. A circuit
proposed by McCluskey (MC) in C4.733, and given in Fig.
4.32, closely resembles the BILBO already described.

-74-

In order to exhaustively test each subcircuit, the par
titioning must allow all its inputs to be controllable and
all its outputs observable.

Two approaches are presented for partitioning by MC
C4.733. These are the use of multiplexers and sensitised
partitioning.

4.6.1 : Partitioning with multiplexers

The use of multiplexers is demonstrated in Fig. 4.33. It
shows a module G broken down into two subcircuits G1 and
G2 (Fig. 4.33a); how multiplexers are added to create the
subcircuits (Fig. 4.33b); how the multiplexers are con
figured for normal operation (Fig. 4.33c) and how the
multiplexers are configured to test subcircuit G1 (Fig.
4.33d). Bozorgui-Nesbat (BN) C4.723 indicates that a
stuck-at fault on any line, including the testing cir
cuitry, will be detected, whilst MC C4.733 warns against
failures affecting normal operation only. BN C4.723 also
details a generalised approach bo partitioning in this
manner. MC C4.733 describes a practical implementation of
this technique for a 74181 ALU/Function Generator C4.693
and compares the number of tests required with and without
the partitioning. Buehler C4.763 carries out a similar
operation for a full/half adder combination.

However, this method of partitioning involves an addition
al overhead to provide the multiplexers and their control
circuitry. This overhead is dependent on the size and
complexity of the network and could be significant. The
multiplexers also reduce the speed of normal operation.

4.6.2 : Sensitised Partitioning

MC C4.733 suggests that the effect of multiplexer inser
tion should be created using sensitised partitioning.
Here circuit partitioning and subcircuit isolation are
achieved by applying an appropriate pattern to some of the

-75-

input lines. As an example, consider the circuit G in
Fig. 4.34a divided into the two subcircuits G1 and G2 of
Fig 4.34b. These subcircuits can be tested as follows:

1) To test G1 : Put D1=D2=0, then E1=C1 and E2=C2 (outputs
of G2=outputs of Gl>. Apply all binary combinations
to CA1,A2,B1,B23.

2) To test G2 : Put B1=B2=1, then C1=A1 and C2=B2 (inputs
to G2=inputs to Gl). Apply all binary combinations
to £A1,A2,C1,C21.

The test configurations for Gl and G2 are shown in Figs.
4.34c and 4.34d respectively. Each subcircuit effectively4has four inputs and therefore requires 2 =16 test pat
terns , so a total of 32 tests are required to test both0subcircuits,, compared with 2 =64 if the circuit is tested
as a single unit. MC C4.733 again applies the technique
to the 74181 ALU/Function Generator. In addition, MC
suggests how to implement the pattern generator and res
ponse verifier within the same device.

Unlike the insertion of multiplexers, sensitised parti
tioning is heavily dependent on circuit structure, but
requires less additional hardware overhead.

MC £4.703 extends the above principles for autonomous test
to sequential circuits.

4.7 : SERIAL SHADOW REGISTER £4.583

Serial shadow register (SSR) diagnostics is an on-chip
technique which allows complex systems to be easily
controlled and observed.

The structure, shown in Fig. 4.35, uses 'output' and
'shadow' registers to initialise and test combinational
and sequential circuits. External control circuitry
allows the data transfer between the shadow register and

-76-

the circuit under test to be bidirectional. Fig. 4.36
details the various operations of the SSR structure.

The output and shadow registers are both connected to the
D and B buses. The shadow register has either serial or
parallel input data. Serial data arises from test pat
terns shifted in, or test responses shifted out, i.e. scan
data as in the scan path technique, whilst parallel data
is loaded from either the B bus or the output register. A
2 to 1 multiplexer allows the output register to be loaded
from either the D bus or the shadow register. It can thus
obtain serially input test patterns from the shadow
register, or have its contents (test responses) copied to
the shadow register to be serially output. Normal
operation can continue immediately after system states
have been read from the output register, unlike the Scan
Path and BILBO techniques, in which these states have to
be reloaded as they are destroyed by the read process. In
addition, switching to the test mode does not alter system
states in the output register, this only happens when the
test pattern is loaded.

DCLK and CLK, generated from the system clock, clock the
shadow and output registers respectively, whilst the mode
and SDI inputs control data loaded into the registers from
external sources. Together these four lines control the
on-chip diagnostics, as detailed in Fig. 4.36. The two
clocks increase test speed since test patterns can be
loaded (or test reponses unloaded) during normal output
register operation.

Fig 4.37 shows a typical application of the SSR technique,
where SSRs replace all ordinary and I/O registers.

Overall, the technique allows a great deal of flexibility
in the test process and although it requires more hard
ware than other techniques (shadow registers, mutilplexers
and control circuitry),its superiority is highlighted by a
comparison wibh the Scan Path and BILBO structures C4.58D.

-77-

4.8 : OTHER BIT TECHNIQUES

The five techniques considered so far are the most widely
used forms of BIT. However, there are a number of other
techniques which will be briefly mentioned for complete
ness.

4.8.1 : Scan Set Logic

A technique proposed by Sperry Univac which combines the
principle of scan path and SSR to provide a scan register
independent of system latches and thus not part of any
system data path C4.623.

4.8.2 : Random Access Scan

Random access scan is similar to the scan path technique
except that shift registers are not employed. Instead, an
addressing scheme allows each latch to be selected for
control and observation purposes* C4.623.

4.8.3 : Syndrome Testing

All 2n patterns are applied to an n-input combinational
circuit and its syndrome compiled C4.62,4.773. The syn
drome is essentially the number of l's appearing at the
output of the circuit during the test, which is then
compared with its correct value to locate a faulty
network. However, some circuits need to be modified so
that they are syndrome testable for stuck-at faults.
Savir C4.773 demonstrates this technique for the 74181
ALU.

4.8.4 : Walsh Coefficient Testing

Again, this technique requires the application of all
possible input patterns to a combinational network, in
which two of its Walsh coefficients are checked to de

termine the presence of stuck-at faults 114.62,4.78-4.803.
Modification of the network might also be neccessary so
that it is testable by this method.

4.8.5 : ROM Based Test Patterns and Responses

Instead of using test patterns from an external source or
a LFSR, patterns are stored in a special test ROM C4.813.
Test responses are compared with expected responses stored
in another ROM.

4.8.6 : Self Oscillation

During its test mode of operation, the circuit is recon
figured so that it will oscillate only if it is fault free
C4.763. Specific input combinations are required to
create this condition.

4.8.7 : Self Comparison

In a self comparison scheme, the* circuit under test is
partitioned into two subcircuits which produce identical
outputs for a given set of inputs C4.76,4.813. Checking
then simply involves a comparison of the corresponding
outputs in each subcircuit.

4.8.8 : History Memory

Not strictly a BIT technique perhaps, but worth a mention
as it is ideally suited for computer applications C4.823.
A large quantity of memory records particular or all bus
transactions for subsequent analysis, so that hardware and
software failures can be located. In principle, it is
similar to a logic state analyser.

4.8.9 : Reed Muller Canonical Representation

An n-input combinational circuit can be implemented in
Reed Muller canonical form thus C4.833:

-79-

f (X1 xn J C0 ® Clxl ® C2X2 ® ® Cnxn ®

(4.13)

This form requires, at most, (3n+4) tests to detect all
single stuck-at faults, including input faults C4.833.

4.8.10 : Technique Comparisons

Overall, certain papers make useful comparisons between
techniques in terms of additional hardware requirements,
fault coverage, test time, pattern generation and test
response mechanisms, testability of the test circuitry,
VLSI applicability and so on.

Buehler C4,763 compares self oscillation, self comparison,
scan path and BILBO; Bhavsar C4.813 compares duplication,
residue coding, ROM based test patterns and responses,
autonomous testing and self comparison; whilst Gupta
C4.583 compares the SSR, BILBO and scan path techniques.

4.9 : INTEGRATED CIRCUITS WITH BIT

A number of integrated circuits which either contain BIT,
or assist BIT, are already commercially available, with
hopefully many more to come.

Some of these devices are reviewed below, with reference
to their function and their BIT.

4.9.1 : Motorola MC6805 : single chip 8-bit microprocessor

The 6805 has 116 bytes of on-board ROM and control
circuitry which allow a self check mode of operation
C4.84-4.863. When certain external requirements have been
met, the self check mode of operation can be initiated.
The internal program then runs repeatedly until it is
manually terminated or it discovers a fault. It firstly

-80-

tests I/O lines on which a test status is emitted,
proceeding to test the other I/O lines, RAM, ROM and
interrupts.

4.9.2 : Motorola M68000 : 16-bit microprocessor

The 68000 does not strictly have BIT, but it does have
exception processing - processing for exceptional condi
tions C4.87,4.883. These exceptions can be generated
internally or externally and include divide by zero,
odd address accesses, illegal instructions, bus errors,
privilege violations and spurious interrupts. The ex
ternally generated bus error can also cause the processor
to re-run the bus cycle in which the error was detected.
If a double bus error occurs during exception processing,
then the processor is halted. Also, a hardware trace
faciltity is provided which causes exception processing

after each instruction is executed, allowing a debugging program
to monitor main program execution.

4.9.3 : Intel iAPX 432 : 32-bit microprocessor

The iAPX 432 consists of a two-chip general data processor
(GDP), interface processor, bus interface unit (BIU) and
memory control unit C4.89,4.903. It is aimed at multi
processor applications and features a functional redundan
cy checking mode for hardware error detection. When the
GDP devices are in a checking mode, they compare certain
of their I/O lines with an internally generated result,
signalling an error to the BIU. The BIU then serially
transmits the type and location of the error to all other
nodes in the system. Redundancy in this error reporting
mechanism ensures that each node will receive the same
correct error report. Each node logs the information
and proceeds with an appropriate recovery procedure.

4.9.4 : Monolithic Memories 74S818 : Diagnostic Register

The 74S818 diagnostic register is a direct implementation
/

-81-

of the SSR technique and contains the circuitry detailed
in Fig. 4.35 C4.913.

4.9.5 : Monolithic Memories 63DA1643/841/441 : PROMs

This diagnostic PROM family consists of devices with
arrays of varying depths, but all 4-bits wide C4.91,4.923.
Each has a built in 4-bit SSR. Applications include a
microprocessor control store with built in system diagnos
tic test, as shown in Fig. 4.37, serial character
generation or serial code conversion.

4.9.6 : National Semiconductor SLX6360 : Logic Array

The SI.X6360 is a 6000 gate semicustom logic array which
has a BILBO C4.933. A 189-bit pseudorandom number genera
tor, which is externally seeded, can deliver 20M vectors
per second. The test responses are fed to a checksum
register which generates an 88-bit signature.

4.9.7 : National Semiconductor DP8400 : Error Corrector

The DP8400 provides error correction and detection within
one chip C4.943. Each chip handles 16 data bits,
generates check bits using a modified Hamming code,
indicates and corrects single and double bit errors and
indicates triple bit errors. It can also differentiate
between transient and permanent failures. In addition to
all of this, it can generate and check single bit byte
parity and allows access to all of its internal gates for
diagnostic purposes.

4.9.8 : LSI Logic LSA2000 : Structured Array Family

In addition to logic gates, the LSA2000 family of
structured arrays have various combinations of RAM, ROM
and/or special purpose megacells C4.953. They also
contain multiple scan paths which allow every memory bit
and every megacell transistor to be tested.

✓

-82-

4.9.9 : Hitachi : Gate Arrays

Hitachi gate arrays also include multiple path scan
design, referred to as a scan bus structure C4.963.
Master-slave latches are employed, similar to those in
LSSD, although they are not level sensitive.

4.10 : SELF VERIFICATION

This section outlines the proposals presented by Sedmak
C4.14,4.39,4.973 for self verification (SV). These pro
posals provide an excellent focus for all the various on
or off line testing forms of BIT considered in previous
sections, hence their inclusion.

Sedmak suggests a somewhat ideal, but generalised approach
to BIT, which merges on and off line testing so that
verification of a fault free chip, board or system can be
made without the use of external test equipment and with
logic operating at its normal speed.

The overall scheme is shown in Fig. 4.38 and consists of
the following:

1) A combinational/sequential partition or subcircuit of
the complete circuit.

2) Internal Stimuli Generators (ISGs) which provide
stimuli to thoroughly exercise the logic and expose
any fault. They do not use stored test patterns or
require test pattern generation.

3) An ISG Supervisor (ISGS) which coordinates the opera
tion of all ISGs.

4) Fault Detection Circuits (FDCs) which monitor in
termediate as well as final outputs, so that inter
mittent or solid faults are immediately detected.

5) An Error Status Generator (ESG) which collects in
formation from the FDCs and encodes it to provide
error signals which indicate the presence and location

-83-

of failures.

Both the ISGs and ISGS operate during verification and not
during normal operation. The FDCs and ESG operate con
tinuously during normal operation and self verification.

In design for self verification the following need to be
considered:

1) The size and complexity of each partition.
2) The quantity and position of FDCs and ISGs, versus the

complexity and position of the ISGS and ESG.
3) Detailed designs for FDCs, ISGs, ISGS and ESG.

In addition, it is desirable to:

a) Minimise the SV cost overhead.
b) Minimise the degradation of performance during normal

operation.
c) Maximise the speed of the SV process.
d) Maximise fault coverage during both modes of opera

tion.

Using the constraints of a) to d), Sedmak C4.973 expands
points 1) to 3), giving extensive guidelines for each
(although little attention is given to the ESG). He also
applies the design for verification process to a 32-bit
ALU.

4.11 : CONCLUSIONS

Overall, it is considered by the author that the most
important aspect of BIT and design for verification is the
use of on line fault detection. If this forms the sole
basis for testing and verification of microprocessor based
systems then the following are achieved:

1) The system functions only in its normal mode of
operation, so there is no special test mode and no

✓

-84-

reconfiguration of circuits.
2) Solid and intermittent faults are detected immediate

ly.
3) No external test equipment is required.
4) No TPG or stimulus is required, since the circuit is

continuously supplying its own.

Faults that affect normal system operation need to be
detected, located and cause actions such as:

a) Notification to the outside world.
b) Error correction.
c) System halt or shutdown.
d) Operation retry C4.14,4.29,4.303.

There also has to be mechan-isms for fault detection.
These are often coding techniques, which include duplica
tion. The fault detection circuits are then code checkers
as previously described (section 4.3). A problem then
arises as to what happens if a failure occurs in the
checking circuit. Is there a checker checking the
checker, another checker checking that checker and so on
ad-infinitum? Fortunately, the answer is no and the prob
lem is resolved with the use of self checking checkers.
Despite the presence of an internal fault, these circuits
either produce a correct output or indicate that the
failure exists. They are the basis for the rest of the
thesis.

-85-

4.12 : REFERENCES
4.1) A monolithic self-checking error detection process

or - J. Chavade, M. Vergniault, P. Rousseau, Y.
Crouzet, C. Landrault;1980 Test Conf.*;pp. 279-286.

4.2) Design specifications of a self-checking detection
processor - Y. Crouzet, C. Landrault; FTCS-10*; pp.
275-277.

4.3) Real-time fault diagnosics multiple microprocessor
systems - K. Fu, G. M. Flachs; 1981 IEEE Real Time
Systems Symposium; December 1981; pp. 56-61.

4.4) Microprogrammed control and reliable design of
small computers - G. D. Kraft, W. N. Toy; Prentice-
Hall Inc., Englewood Cliffs, New Jersey, USA; 1981;
pp. 362-365.

4.5) Design of a microprogram control for a processor
in an electronic switching system - T. F. Storey;
Bell Syst. Tech. J.; February, 1976; pp. 183-232.

4.6) Error detecting codes, self checking circuits and
applications - J. F. Wakerly; Elsevier - North
Holland; New York; 1978; pp. 3-5.

4.7) Diagnosis and reliable design of digital systems
- M. A. Breuer, A. D. Friedman; Pitman Publishing
Ltd., London, 1977; pp. 274-276.

4.8) Fault Detection in digital circuits - A. D. Fried
man, P. R. Menon; Prentice-Hall Inc., Englewood
Cliffs, New Jersey, USA; 1971; pp. 193-202.

4.9) Error correcting codes for reliable digital cir
cuits - I. S. Reed; Infotech*; pp. 713-745.

4.10) Error-correcting codes with byte error-detection
capability - C. Chen; IEEE Trans. Comput.; Vol. C-
32, No. 7; July, 1983; pp. 615-621.

4.11) A new class of error-correcting/detecting codes for
fault-tolerant computer applications - D. K. Prad-
han; IEEE Trans. Comput.; Vol. C-29, No. 6; June,
1980; pp. 471-481.

4.12) Error detecting and error correcting codes - R. W.
Hamming; Bell Syst. Tech. J.; Vol. 29, No. 1;
January, 1950; pp. 147-160.

4.13) Applying the Hamming code to microprocessor based
systems - E. L. Wall; Electronics; November 22,
1979; pp. 103-110.

4.14) Fault-tolerance of a general purpose computer
implemented by very large scale integration - R. M.
Sedmak, H.L. Libergot; FTCS-8*; pp.137-143.

- 8 6 -

4.15) Designing reliable computer systems the fault
tolerant approach - 1 - R. G. Bennetts; IEE Elec
tronics and Power; November/December, 1978; pp.
846-851.

4.16) Designing reliable computer systems the fault
tolerant approach - 2 - R. G. Bennetts; IEE Elec
tronics and Power; January 1979; pp. 51-56.

4.17) Fault tolerance and digital systems - R. G.
Bennetts; Microprocessors and Microsystems; Vol. 3,
No. 8; October, 1979; pp. 365-373.

4.18) Fault tolerant computing: Techniques and develop
ment - A. Avizienis; Infotech*; pp. 309-333.

4.19) Architectural design for near - 100% fault coverage
- J. J. Stiffler; FTCS-6*; pp. 134-137.

4.20) A study of standard building blocks for the design
of fault-tolerant distributed systems - D. A.
Rennels, A. Avizienis, M. Ercegovac; FTCS-8*; pp.
144-149.

4.21) The STAR (self-testing and repairing) computer: An
investigation of the theory and practice of fault-
tolerant computer design - A. Avizienis, G. C.
Gilley, F. P. Mathur, D. A. Rennels, J. A. Rohr, D.
K. Rubin; IEEE Trans. Comput.; Vol. C-20, No. 11;
November, 1971; pp. 1312-1321.

4.22) Design techniques for reliable hardware - F. P.
Maison; Infotech*; pp. 236-251.

4.23) Fault diagnosis in computer control systems - G.
Edge; Systems Technology; No. 31; April, 1979; pp.
33-41.

4.24) Availability, reliability and maintainability
aspects of the Sperry Univac 1100/60 - L. A. Boone,
H. L. Liebergot, R. M. Sedmak; FTCS-10*; pp. 3-8.

4.25) Installability, availablity, reliability and main
tainability aspects of the Sperry System 11 - A. K.
Bhatt, D. R. Mueller; FTCS-14*; pp. 29-35.

4.26) Dependable computing and fault tolerance: Concepts
and terminology - J. Laprie; FTCS-15*; pp. 2-11.

4.27) Computer systems reliability: An overview - A.
Avizienis; Infotech*; pp. 216-233.

4.28) Error detection process - model, design, and its
impact on computer performance - K. G. Shin, Y.
Lee; IEEE Trans. Comput.; Vol. C-33, No. 6; June,
1984; pp. 529-540.

-87-

4.29) On-line bus fault diagnosis in microprocessor
systems - D. P. Agrawal, V. K. Agarwal; J. of Dig.
Syst.; Vol. 4, No. 4; Winter, 1980; Computer
Science Press Inc., USA; pp. 377-391.

4.30) Error correction by alternate-data retry - J. F.
Shedlestky; IEEE Trans. Comput.; Vol. 27, No. 2;
1978; pp. 106-112.

4.31) Built-in test: A review - C. Maunder; IEE Electron
ics and Power; March, 1985; pp. 204-208.

4.32) as per 4.6) p. 9.
4.33) The TTL book for design engineers - The engineer

ing staff of Texas Instruments components group;
Texas Instruments; Fourth European edition; 1980;
pp. 7/269-7/270 & 7/406-7/409.

4.34) Parity prediction in combinational circuits - B.
Khodadad-Mostashiry; FTCS-9*; pp. 185-188.

4.35) as per 4.6); pp. 129-133 & 144-146.
4.36) as per 4.4); pp. 294-299.
4.37) as per 4.6); pp. 22-24.
4.38) b-adjacent error correction - D. C. Bossen; IBM J.

Res. Devel.; Vol. 14 No. 4; July 1970; pp. 402-408.
4.39) Design for self-verification : An approach for

dealing with testability problems in VLSI-based
designs - R. M. Sedmak; 1979 Test Conf.*; pp. 112-
120.

4.40) Redundancy by coding versus redundancy by replica
tion for failure-tolerant sequential circuits - R.
W. Larsen, I. S. Reed; IEEE Trans. Comput.; Vol.
C-21, No.2; February 1972; pp. 130-137.

4.41) as per 4.6); pp. 46-48, 114-5, 118-9 & 133-140.
4.42) as per 4.6); pp. 133-140.
4.43) as per 4.6); pp. 37-46, 71-74, 114-115 & 123-124.
4.44) Arithmetic codes: Cost and effectiveness studies

for application in digital system design - A.
Avizienis; IEEE Trans. Comput.; Vol. C-20, No. 11;
November, 1971; pp. 1322-1331.

4.45) Error codes for arithmetic operations - H. L.
Garner; IEEE Trans. Electronic Comput.; Vol. EC-15,
No. 5, May, 1966; pp. 763-770.

4.46) as per 4.6); pp. 40-46.

- 8 8 -

4.47)
4.48)
4.49)

4.50)

4.51)

4.52)

4.53)
4.54)
4.55)

4.56)

4.57)

4.58)

4.59)

4.60)

4.61)

4.62)

4.63)

as per 4.6); pp. 38-46, 71-74, 114-115 & 147-148.
as per 4.6); pp. 48-50.
Modified Berger codes for the detection of uni
directional errors - H. Dong; FTCS-12*;pp. 317-320.
Design of fast self-testing checkers for a class of
Berger codes - S. J. Piestrak;FTCS-15*;pp. 418-423.
On totally-self-checking checkers for separable
codes - M. J. Ashjaee, S. M. Reddy; FTCS-7*; pp.
151-156.
Design of self-checking checkers for Berger codes
- M. A. Marouf, A. D. Friedman;FTCS-8*;pp. 179-184.
as per 4.6); pp 24-34.
as per 4.7); pp. 256-265.
Memory finds and fixes errors to raise reliability
of microcomputer - A. Heimlich, J. Korelitz;
Electronics; January 3, 1980; pp. 168-172.
Application of shift register approach and its
effective implementation - M. Kawai, S. Funastu, A.
Yamada; 1980 Test Conf.*; pp. 22-25.
Enhancing testability of large-scale integrated
circuits via test points -and additional logic - M.
J. Y. Williams, J. B. Angell; IEEE Trans. Comput.;
Vol. C-22, No. 1; January, 1973; pp. 46-60.
Structured-test devices simplify test generation
- S. Gupta; EDN; 14 November, 1985; pp.289-298.
A logic design structure for LSI testability - E.
B. Eichelberger, T. W. Williams; 14th Design Auto
mation Conference; New Orleans, Louisiana, USA;
June 1977; IEEE Pub. No. 77 CH1216-1C; pp. 462-468.
Level-sensitive scan design test chips, boards,
system - N. C. Berglund; Electronics; 15 March,
1979; pp. 108-110.
Design for testability of the IBM System/38 - L.
A. Stolte, N. C. Berglund; 1979 Test Conf.*; pp.
29-36.
Design for testability - T. W. Williams, K. P.
Parker; Proc. of the IEEE; Vol. 71, No. 1; January,
1983; pp. 98-112.
Testing logic networks and designing for testabil
ity - T. W. Williams, K. P. Parker; Computer;
October, 1979; pp. 9-21.

-89-

4.64)

4.65)

4.66)

4.67)

4.68)

4.69)

4.70)

4.71)

4.72)

4.73)

4.74)

4.75)

4.76)

4.77)

4.78)

Test generation techniques - S. B. Akers; Computer; March, 1980; pp. 9-15.
LSI logic testing - an overview - E. I. Muehldorf,
A. D. Savkar; IEEE Trans. Comput.; Vol. C-30, No.
1; Janaury, 1981; pp. 1-16.
Incomplete scan path with an automatic test gen
eration methodology - E. Trischler; 1980 Test
Conf.*; pp. 153-162.
BIDCO, Built-in digital circuit observer - P. P.
Fasang; 1980 Test Conf.*; pp. 261-265.
Built-in logic block observation techniques - B.
Konemann, J. Mucha, G. Zwiehoff; 1979 Test Conf.*;
pp. 37-317.
Built-in test for complex digital integrated cir
cuits - B. Konemann, J. Mucha, G. Zwiehoff; IEEE
J. of Solid-State circuits; Vol. SC-15, No. 3;
June 1980; pp.315-318.
Design for autonomous test - E. J. McCluskey, S.
Bozorgui-Nesbat; 1980 Test Conf.*; pp. 15-21.
Verification testing - A pseudoexhaustive test
technique - E. J. McCluskey; IEEE Trans. Comput.;
Vol. C-33, No. 6; June, 1984; pp. 541-545.
Structured design for testability to eliminate test
pattern generation - S. Bozorgui-Nesbat, E. J.
McCluskey; FTCS-10;* pp. 158-163.
Design for autonomous test - E. J. McCluskey, S.
Bozorgui-Nesbat; IEEE Trans. Comput.; Vol. C-30,
No. 11; November, 1981; pp. 866-874.
Autonomous testing and its application to testable
design of logic circuits - H. Eiki, K. Inagaki, S.
Yajima; FTCS-10*; pp. 173-178.
The TTL book for design engineers - The engineer
ing staff of Texas Instruments components group;
Texas Instruments; Fourth European edition; 1980;
pp. 7:271-7:281.
Off-line, built-in test techniques for VLSI cir
cuits - M. G. Buehler, M. W. Sievers; Computer;
June, 1982; pp. 69-82.
Syndrome testable design of combinational circuits
- J. Savir; IEEE Trans. Comput.; Vol. C-29, No. 6;
June, 1980; pp. 442-451.
Radamacher Walsh spectral techniques: A new tool
for digital network fault diagnosis - R. G. Ben
netts, S. L. Hurst; FTCS-7; p. 213.

/

-90-

4.79) The logical processing of digital signals - S. L.
Hurst; Crane, Russak, New York; 1978.

4.80) Testing by verifying Walsh coefficients - A. K.
Susskind; FTCS-11*; pp.206-208.

4.81) Self-testing supercells: Alternative test strate
gies - D. K. Bhavsar;Autotestcon '80*;pp. 135-139.

4.82) Enhance computer fault isolation with a history
memory - G. L. Fitzgerald; Autotestcon '80*; pp.
131-133.

4.83) as per 4.7); pp. 292-294.
4.84) Motorola MC6805P2 8-bit microcomputer unit; data

sheet; Motorola Semiconductor Products Inc.;
Scotland, UK; 1982

4.85) Let your next microcomputer check itself and cut
down your testing overhead - J. Boney; Electronic
Design; No. 18; 1 September 1979; pp. 100-105.

4.86) Motorola 6805 self test programs; Motorola Semi
conductor Products Inc.; Scotland, UK.

4.87) Handling exceptions gracefully enhances software
reliability - T. W. Starnes; Electronics; 11
September, 1980; pp. 153-157.

4.88) Motorola M68000; data sheet ADI-814-R1; Motorola
Semiconductor Products Inc., USA; 1980.

4.89) Intel iAPX 43201/43202 VLSI general data processor;
data sheet; Intel Corporation ;1981.

4.90) Error reporting in the Intel iAPX 432 - D. B.
Johnson; FTCS-14*; p. 24-28.

4.91) Diagnostic PROMs enhance PCB testability - J.
Gabris; New Electronics;11 December 1984;pp. 37-43.

4.92) Monolithic Memories 53DA841/63DA841 2048 x 4 diag
nostic registered PROM; data sheet; Monolithic
Memories.

4.93) Semicustom-logic suppliers differ on how to best
deal with testability - W. Twaddell; EDN; 24
September, 1982; pp. 69-73.

4.94) 'Expandable' IC finds and fixes errors fast - C.
Carinalli, M. Evans; Electronic Design; 18 February
1982; pp. 177-186.

4.95) Structured arrays mix gate arrays and standard
cells - R. Rasmussen; New Electronics; 18 February
1986; pp. 40-42.

-91-

4.96) Gate array test circuits generated automatically
- J. Vickerton; New Electronics; 18 February, 1986;
pp. 58-60.

4.97) Implementation techniques for self-verification
- R. M. Sedmak; 1980 Test Conf.*; pp. 267-278.

4.98) Fail-safe computers increase reliability, lower
costs - G. Kravetz; Mini-Micro Systems; April,
1984; pp. 121-130.
* see section B.5.

-92-

VOTING
COMPARISON
Continuous

Synchronised

DUPLICATION
Identical

Complementary

ERROR HANDUNG
Fault Isolation it Indication

[4.14 - 4 .28,4.98]

FAULT
TOLERANCE

ERROR CORRECTION
SED/SEC
DED/DEC codes

[4 .9 - 4.13]

MAINTENANCE PROCESSOR
Large computors

[4 .3 - 4.5]

ON-UNE TESTING
:ccts. tested as used
: self verification

AD HOC CIRCUITS
eg. Power supply monitor

Watchdog timer
Information displays

RETRY/ROLLBACK it RECOVERY
Prevention of erroneous data

reaching outputs
[4.14,4.21,4.24,4.28 - 4.30]

REDUNDANCY >2
eg. Triple modular

[4 .3 - 4.5]

CODING
eg. Parity for buses

Residue for arithmetic

OFF-UNE TESTING
ccts.tested outside normal operation

SCAN DESIGN
Scan Path — normal flip-flops
LSSD — level sensitive latches

BUILT IN LOGIC OBSERVER
Parallel latch,shift register

or signature register

(b)

SERIAL S H A D O W REGISTER
Additional test register

WALSH COEFFICIENT TESTING

SYNDROME TESTING

SELF OSCILLATION

REED MULLER CANONICAL FORM

SELF COMPARISON

H
IIhH
__I___

AUTONOMOUS TESTING
Exhaustive testing
Signature register

TEST PATTERN GENERATION
Linear feedback shift register

Rom stored vectors

PARTITIONING/RECONFIGURATION
Multiplexers

 Sensitised partitioning_____

FIGURE 4.1 ON AND OFF LINE TECHNIQUES FOR BUILT IN TEST

Q4Q302PRESET

CLOCK,

CKCK CK -CK

(a)
N= 4 so number of patterns = 15

SEQUENCE 01 02 03 04
1 1 1 1 1
2 0 1 1 1
3 0 0 1 1
4 0 0 0 1
5 1 0 0 0
6 0 1 0 0
7 0 0 1 0
8 1 0 0 1
9 1 1 0 0
10 0 1 1 0
11 1 0 1 1
12 0 1 0 1
13 1 0 1 0
14 1 1 0 1
15 1 1 1 0
1 1 1 1 1

FIGURE 4.2 THE LINEAR FEEDBACK SHIFT REGISTER

-94-

PRESET!
PRPRPRPR

CK jCKCKCK

CLOCK

DATA IN

DATA IN

Preset

(b>

*•— Final signature

FIGURE 4.3 LFSR DATA COMPRESSOR (SIGNATURE REGISTER)

PRESET

Z1NdA
CLOCK

PR
D Q

CK

Z2AdA
‘01

PR
D 0
► CK
Ad-

021 _

PR
D 0

CK

<3 t
03

PR
D 0
■CK

04

FIGURE 4.4 MULTI-INPUT SIGNATURE REGISTER (MISR)

-95-

XI
X2

Xn-1
Xn

XI
X2

X3
X4

Xp

ENCODING
PROCESS BUS BUSBUSSOURCE

- CODE -
CHECKERS

FIGURE 4.5 CODE GENERATION & CHECKING

XI, X2 and X3 are codewords : X4 is a non codeword
fl is an undetectable error : f2 is a detectable error

FIGURE 4.6 FAILURES IN AN ERROR DETECTING CODE

FIGURE 4.7 GENERATION OF ODD AND EVEN PARITY

correct parity indicated by:
0 for even parity
1 for odd parity

parity bit

FIGURE 4.8 CHECKING SCHEME FOR PARITY - EOR TREE

-96-

5

1 0 1 0 1

2
0 0 0 1 0

P= odd parity

5-BIT BINARY ADDER

 1
Parity now even

FIGURE 4.9 PARITY DURING AN ARITHMETIC PROCESS
MEMORY

■b parity bitsPI
XI © X5Pl=

P2= X2 © X6
P3= X3 © X7
P4= X4 © X8

P2I
P3!
P4i

n=
b=
k=XI =2

X2
X3
X4partitions

of
original

data X5
X6
X7
m

k+l inputs 4X3-I/P
E0R TREES

PARITY
CHECKERS

1 for correct (odd) parity

b BITS
WIDE

error

FIGURE 4.10 CHECKING SCHEME FOR B-ADJACENT CODES

-97-

b - bit
Y1
Y2
Y3
Y4

Yl'
Y21
Y3'
Y4

errorCOMPARATOR

ORIGINAL
MODULE

DUPLICATE
MODULE

FIGURE 4.11 DUPLICATION AND COMPARISON

MEMORY

partitions
of

original
data

b-bit checksum

error
XI
X2
X3
X4

X5
X6
X7
X8

4 bits
wide

n= 8
b= 4
k= 2

(k-l)*b-bit
Adders

l*b-bit
Comparator

FIGURE 4.12 CHECKING SCHEME FOR CHECKSUM CODES-HARDWARE

-98-

(10001010)
AX — (11000011)

AX + AY = A(X+Y)
AY --

(00111001)

ERROR

BINARY
ADDER

X = 461q = 1011102
Y = 191q = 0100112

A = 310 = 112
n = 6
(no. of additional bits=2)

(0)

FIGURE 4.13 CHECKING SCHEME FOR AN CODES

MSB

(10001010)
AX

AY
(00111001)

LSB 1
X « 46

43 = ADDITION MODULO 3
eg

no error

43

BINARY
ADDER

FIGURE 4.14 CHECKING SCHEME FOR LOW COST AN CODES

C(X)

error
C(Y) COMPARATOR

FIGURE 4.15 CHECKING SCHEME FOR RESIDUE CODES

(101110)

46

(001000) LSB
b-bits

MSB
C(X) MSB 1MSB 1

LSB
no error

MSB
C(Y)

LSB

COMPARATOR

FIGURE 4.16 CHECKING SCHEME FOR LOW COST RESIDUE CODES

MSB 0

LSB 1

no errorC3

Cl

Cout S

Cout S

lout S

Cin A
Cout ;

X7
X6
X5
X4
X3
X2
XI

COMPARATOR

n = 7
k = 3

(n = 23-l)

FULL
ADDERS

FIGURE 4.17 CHECKING SCHEME FOR MAXIMAL LENGTH BERGER CODES

-100-

P(x)

INFORMATION BITS CODEWORD
M2 Ml MO M(x) V(x)=M(x)G(x) V6 V 5 V4 V3 V2 VI VO
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 4 3 2 , X + x >x +1 0 0 1 1 1 0 1
0 1 0 X 5 4 3

X +X -t-X +x 0 1 1 1 0 1 0
0 1 1 x+1 5 2 X +X + X+1 0 1 0 0 1 1 1
1 0 0 2X 6 5 4 2 X +x +x +x 1 1 1 0 1 0 0
1 0 1 X2+1 6 5 3 ,

X + x +x +1 1 1 0 1 0 0 1
1 1 0 2X +x 6 3 2 X +x +x +x 1 0 0 1 1 1 0
1 1 1 2 ,

X + X+1 6 4
X +x +X+1 1 0 1 0 0 1 1

nt \ 4 3 2 ,G(x) = x +x +X +1 n * 3 k = 7 r = 4

FIGURE 4.18 GENERATION OF A (7,3) NOH-SYSTEMATIC CYCLIC CODE

INFORMATION BITS
CODEWORD
V(x)=x M(x)-C(x)

M2 Ml MO x 4 M (x) C(x)=REM(x4M(x)/G(x)) V6 V5 V4 V3 V2 VI VO
0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 4X 3 2 , X +X +1 0 0 1 1 1 0 1
0 1 0

5
X

2 ,
X +X+1 0 1 0 0 1 1 1

0 1 1 5 4
X +x 3X +x 0 1 1 1 0 1 0

1 0 0
6X 3 2 X +x -*-x 1 0 0 1 1 1 0

1 0 1 6 4
X +x X-t-1 1 0 1 0 0 1 1

1 1 0
6 5

X +x x3*l 1 1 0 1 0 0 1
1 1 1 6 5

X +x +x4 2
X 1 1 1 0 1 0 0

r ! \ 4 3 2Glx)=x +x +x +1 original information bits

FIGURE 4.19 GENERATION OF A (7,3) SYSTEMATIC CYCLIC CODE

=) D —

CLEAR

D o D 0 D 0 D 0

CLR CLR CLR CLR

FIGURE 4.20 A LFSR FOR DIVIDING BY x4+x3+x2+l

.0(x)

-101-

d e f

1 0 0
2 1 0
3 2 1
• • •
d d-1 "d-1

2

d= Hamming distance
e= no. of errors detected
f= no. of errors corrected

FIGURE 4.21 CAPABILITIES OF A CODE WITH HAMMING DISTANCE d

1011100 1011110
correctable
single
error
from X

1001100

correctable single
error from Y

0011110

improperly corrected double error from X
(looks like a single fault from Y)

FIGURE 4.22 FRAGMENT OF A DISTANCE 3 ERROR CORRECTING CODE

Normal Data In
(DI) Normal/Scan

Data Out
(DO)

(SE)
Scan Enable O
Scan Data In O'

(SDI)
System Clock O'

(CK)

FIGURE 4.23 D-TYPE FLIP FLOP FOR SCAN PATH DESIGN

-102-

Figure 4.23
MODULE/CHIP

L2SCAN DATA
IN PRIMARY

OUTPUTO--
1__

PRIMARY
INPUT PRIMARY

OUTPUT
L3

DI
PRIMARY
INPUT SE

SDI
DO

CKSYSTEM CLOCK *• CK L4 SCAN DATA
OUTSCAN ENABLE DI

SE DOPRIMARY
INPUT L _SDI CK

 path of scan

COMB.
LOGIC

COMB.
LOGIC

COMB.
LOGIC

DI
SE
SDI

DO DI
SE
SDI

CK

DO

data

PRIMARY
OUTPUTS

PRIMARY
INPUTS COMBINATIONAL LOGIC

SCAN
DATA IN

L2 L3 L4 SCAN
DATA OUT

SCAN ENABLE ►-
CLOCK ►

SDI DO
SE
DI

CK

SDI DO
SE
DI

CK

SDI DO
SE
DI

CK

SDI DO
SE
DI

CK

SCAN REGISTER
(b)

FIGURE 4.24 TYPICAL SCAN PATH STRUCTURE

-103-

LFSR DATA
GENERATOR

SHIFT
REGISTER

—► a
► h

CONTROL
—

“* e

PRIMARY 1/Ps COMBINATIONAL
LOGIC

PRIMARY O/Ps

SCAN
IN LATCH/

SCAN REGISTER

SCAN
OUT

SCAN ENABLE
CLOCK

LFSR DATA
COMPRESSOR

I
LATCH/
SHIFT REGISTER

FIGURE 4.25 SCAN DESIGN WITH LFSR DATA GENERATION & COMPRESSION

NORMAL DATA IN
NORMAL DATA OUT

SYSTEM
CLOCK

SCAN DATA IN r “ SCAN DATA
OUTjL2

SCAN |
CLOCK A

SCAN
CLOCK B

FIGURE 4.26 SHIFT REGISTER LATCH (SRL) FOR LSSD

-104-

OUTPUT
CONTROL

oCL

o CM
CL

LFSR DATA GENERATOR

MISR DATA COMPRESSOR

chip
interconnections
not shown

FIGURE 4.27 STUMPS

-105-

21 22 23
B1 _

B2 ^

SDI ,

CLK
p f C K

■i

(a) COMPLETE STRUCTURE

p f CK
k > J D - D

Ql

CK

24

i

Jd s d -

_ _ P

SDO

a
' f
Q2

'I

Q3

21 22 23

CLK
CKCK CK

(b) B1 - B2 « 1 Ql 02 Q3

.SDI^

CLK

D Q

► CK

"t>°^ D 0

•* CK

”t>°— D ' 0
CK

"{>- D Q

" CK

Q4

SDĈ

(c) B1 = B2 - O
21 v 22 23 24

€>
CLK

CKCKCK CK

(d) B1 = l, B2 = O

CLK

CK ■CKCK CK

(e) B1 = O. B2 = 1

FIGURE 4.28 BUILT IN LOGIC BLOCK OBSERVER

04

-106-

DATA GENERATION

DATA COMPRESSION

BILBO

BILBO

CHECK
SIGNATURE

COMBINATIONAL
LOGIC

FIGURE 4.29 TESTING WITH BILBOS

PRIMARY INPUTS COMBINATIONAL
LOGIC

m o d e{;

SCAN DATA IN

I PRIMARY OUTPUT

1 Z
BILBO > SCAN DATA OUT

FIGURE 4.30 SCAN DESIGN WITH A BILBO
PRIMARY
.INPUTSCONTROL

(NORMAL)
CONTROL
(TEST)

PRIMARY
OUTPUTS

INPUT
FLIP FLOPS

LFSR DATA
GENERATION

OUTPUT
FLIP FLOPS

LFSR DATA
COMPRESSION

COMBINATIONAL
LOGIC

G1

G3
G2

(a) (b)

FIGURE 4.31 AUTONOMOUS TESTING

-107-

21 22 23

CLK
CKCK

Ql Q2 Q3

N S MODE - M
1 X NORMAL OPERATION
0 0 LFSR DATA GENERATOR
0 1 LFSR DATA COMPRESSOR

FIGURE 4.32 LFSR FOR AUTONOMOUS TESTING

-108-

NZ LI2 K
G «=*> G1 G2

^ ~L21 .

MUXMUX

X2
L12L12 *s U

G2
L21L21

Y2

Y2

X21
L12 X2

L12

G2G1

X21
Y1

L12

FIGURE 4.33 PARTITIONING WITH MULTIPLEXERS

(a) SUBCIRCUIT
CREATION

(b) ADDITION OF
MULTIPLEXERS

(c) NORMAL
OPERATION

(d) TESTING G1

-109-

ALL

CO
MB

IN
AT

IO
NS

B2 B1

A1 El

A2 E2

DI D2B2 B1

(a) MODULE 6

E1=(A1 B1)+Dl
E2=(A2 B2)+D2

Cl
A1 El

C2
A2 E2

G1 G2B1
DI D2

ClA1 E1=C1

C2A2 E2=C2

G1
DI D2 G21 1 0 0

(b) SUBCIRCUIT
CREATION

(c) TESTING G1

B2 B1

C1=A1

C2=A2

G1
A1 A2 DI D2 G2

"V

El

(d) TESTING G2
E2

ALL COMBINATIONS

FIGURE 4.34 SENSITISED PARTITIONING

-110-

D0-D7

SDI
DCLK ►_

8-BIT
SHADOW
REGISTER

■*» SDO

S0-S7

MODE
MUX

8-BIT
OUTPUT
REGISTER

CLK ►

B0-B7

FIGURE 4.35 STRUCTURE OF THE SERIAL SHADOW REGISTER

INPUTS | OUTPUTS OPERATION
MODE SDI CLK DCLK||B0-B7 S0-S7 SDO
0 X t A Dn*Bn HOLD S7 LOAD OUTPUT REGISTER FROM INPUT BUS

0 X A r HOLD Sn-l+Sn
SDI+SO

S7 SHIFT SHADOW REGISTER DATA

0 X t t Dn-*Bn Sn-l+Sn
SDI-»SO

S7 LOAD OUTPUT REGISTER FROM INPUT BUS
WHILST SHIFTING SHADOW REGISTER DATA

1 X t A Sn+Bn HOLD SDI LOAD OUTPUT REGISTER FROM SHADOW
REGISTER

1 0 A t HOLD Bn-*Sn SDI LOAD SHADOW REGISTER FROM OUTPUT BUS

1 0 t t Sn*Bn Bn-»Sn SDI SWAP SHADOW REGISTER AND OUTPUT
REGISTER

1 1 A t |hold HOLD SDI NO OPERATION : D0-D7 ARE OUTPUTS

t * rising edge of clock * * clock steady or falling

FIGURE 4.36 FUNCTIONS OF THE SERIAL SHADOW REGISTER

-111-

DATA BUS
'ML’MU'HY- HATA"
REGISTER x

TorDRrum-
REGISTER vINSTRUCTION

REGISTER SDI SDI SDO SDOSDO

INSTRUCTION
MAP PROMDIAGNOSTICS

CONTROLLER REGISTER
FILES

[MODE SEQUENCER

ALU

CONTROL
STORE RAM SDO SDI SDO SDI

MEMORY
ADDRESS
REGISTER

STATUS
REGISTERSDO "SDI SDO " SDI SDO " $DI

CONTROL BUS
ADDRESS BUS

DIAGNOSTIC
REGISTERED PROMS
(see section 4.9.5)

FIGURE 4.37 GENERAL PURPOSE CPU WITH SSR

f y t
ERROR STATUS

GENERATOR^
FDC A

FDC

FDC V

PRIMARY OUTPUTS

COMBINATIONAL/
SEQUENTIAL
PARTITION

or
SUBCIRCUIT

j

ISG

ISG = Internal
Stimulus
Generator

= Path used
during SV only

FDC = Fault
Detection

A Circuit

ISG

- - -

PRIMARY INPUTS ISG
SUPERVISOR

FIGURE 4.38 SELF VERIFICATION

CHAPTER FIVE : SELF CHECKING CIRCUITS - AN INTRODUCTION

5.1 : INTRODUCTION

A circuit which has its output encoded in an error
detecting code is termed a self checking circuit C5.1,
5.23, as shown in Fig 5.1. During failure free operation
its output is always a code word (see section 4.3). The
output of a self checking circuit is monitored by a
checker which indicates the presence of non codewords, as
shown in Fig. 5.2. A self checking circuit has the
properties of 'self test' and 'fault security'. These are
defined by Anderson C5.23 as follows.

DEFINITION 5.1 : A circuit is self testing if, for every
fault from a defined set, it produces a non codeword
output for at least one codeword input.

DEFINITION 5.2 : A circuit is fault secure if, for every
fault from a defined set, it never produces an incorrect
codeword output for codeword inputs.

DEFINITION 5.3 : A circuit is totally self checking if it
is both self testing and fault secure.

A circuit could be self testing and fault secure for
different input sets and different fault sets, so the
following is proposed. A circuit is self testing for an
input set of codewords X and fault secure for an input set
of codewords N, where N is a subset of X. If N equals X,
then the circuit is totally self checking as defined
above. If N is a null set then the circuit is self
testing only and not fault secure at all. If N is a non
null subset of X then the circuit is partially self
checking.

The self testing and fault secure properties of sequential
circuits can be similarly defined as follows.

s

-113-

DEFINITION 5.4 : A sequential circuit is self testing if,
for every fault from a defined set, it produces a non
codeword output for at least one codeword input.

DEFINITION 5.5 : A sequential circuit is fault secure if,
for every fault from a defined set, it never produces an
incorrect codeword output for codeword inputs.

Only combinational circuits are considered during the
first part of the Chapter, with formal definitions of
totally self checking, partially self checking and self
testing only circuits. Some examples of totally self
checking circuits are described in section 5.3. In
addition, sufficient conditions are given for a network to
be totally self checking. Totally self checking checkers
are essential for checking codes, so section 5.4 details
their general characteristics and design requirements,
together with checkers specifically for separable codes.
Section 5.5 presents the partially self checking property
and its use for networks performing logical operations.
Section 5.6 discusses self testing only circuits with
sufficient conditions for self testing only networks.
Section 5.7 analyses the self testing and fault secure
properties for bit and byte-sliced circuits, whilst
section 5.8 describes self checking sequential circuits.

Parallel processing of information (encoding and decoding)
is assumed throughout, since this is the most appropriate
method for computers.

5.2 : DEFINITION OF TERMS

Combinational circuits are considered to produce a fault
free output vector Z(X^), where X^ is an input vector, see
Fig. 5.3a. With a fault f in the circuit this becomes
Z (X^), as shown in Fig. 5.3b. Faults will be one or more
lines stuck at a logic value of 1 or 0 (SA1 or SAO);
i.e. single and multiple faults. Unidirectional multiple
faults have all affected lines stuck at the same value.

-114-

A circuit whose output Z(X^) is encoded in an error
detecting code S is referred to as a self checking circuit
115.1,5.21, see Fig. 5.3c. During fault free operation,
the output of such a circuit is always a codeword S^,
where:

Si = Z(Xi) and S ± € S (5.1)

The set S is termed the output code space or output code
set. A checker monitors the output of the circuit ,
detecting and indicating the presence of non codewords. A
fault can change the output into a non codeword (detecta
ble), or an incorrect codeword (undetectable). The fault
secure property of self checking circuits limits the
occurrence of undetectable errors.

DEFINITION 5.6 : A circuit is fault secure for an input
set N and a fault set Fg if, V f € Fg and V N^ 6 N, then
Zf(Ni) = Zd^) € S or Zf(Ni) S.

Thus the output of a fault secure circuit is always
correct, or is a non codeword, as indicated in Fig. 5.4.
The input set N is termed the secure input set (not
necessarily all code inputs) and Fg the secure fault set.
Fault security ensures that a fault will not cause an
undetectable error, but does not indicate that it will
eventually produce a detectable error; this is covered by
the self testing property for self checking circuits.

DEFINITION 5.7 : A circuit is self testing for an input
set X and a fault set Ffc if, V f 6 F̂ ., 3 X. 6 X such
that Zf(X.) 4 S.

Fig. 5.5 illustrates this definition. The input X. for
f 1which Z (Xi) is not in S is termed a test for f and Ffc

is the tested fault set.

X is termed the normal input set and it is assumed that
*

-115-

all X^ occur during normal operation. Then the self
testing property guarantees that all faults in F̂ _ will
produce detectable errors.

U is the set of all possible n-bit vectors given by:

U = t U t = < 0 ^ 2 ______ “ n H ' - ' j € t O f 1 3 , l C j < n , H i v < 2 n J (5 . 2)

which is abbreviated to:

U = £0,13n : the set of all n-bit combinations
of 1 and 0 (5.3)

Thus:

X C U and S C U (5.4)

The secure input set N is assumed to be a subset of X,
N C X. Fault security specifies circuit behaviour for
codeword inputs only. Although a circuit may be fault
secure for inputs outside N, these are not of interest
since they do not occur during normal operation. F iss
also assumed to be a subset of F. , F C F. .t s — t

The properties of self testing and fault security are also
illustrated in Fig. 5.6. This depicts the set of all
faults F with its subsets Fg and Ffc, the set of all input
vectors U with subsets X and N and the set of all output
vectors with subset S. Self test is demonstrated by the
existence of a test in X for the faults fl, f2 and f3 in F^
(X^ or X2, Xg and X^ respectively). Fault security is
illustrated by the behaviour of various faults on Z(X^).
Erroneous codewords may be produced from faults outside
Fg (eg. Z^(X2)) or inputs outside N (eg. Z^tX^)).

Fault security specifies the behaviour of a circuit for
codeword inputs only. It is also important to know how
circuits perform with non codeword inputs. The code
disjoint property covers this aspect of operation.

*

-116-

DEFINITION 5.8 : A circuit is code disjoint for an input
code S' and an output code S if, V X^ ̂S' then Z(X^) ^ S.

The fault free output function of a circuit which is code
disjoint maps codeword inputs Xj, € S' to codeword outputs
S^ 6 S and maps non codeword inputs X^ S' to non
codeword outputs S^ ̂S. Fig. 5.7 illustrates this
property.

Given X, F^ is determined to be the largest fault set for
which the circuit is self testing. Fg is chosen on the
basis of faults that are likely to occur (eg. all single
stuck-at faults) and then N is determined to be the largest
input set for which the circuit is fault secure. N is
therefore controlled by the choice of F , but depending
on whether N contains all, some or none of X, then the
circuit is defined as totally self checking, partially
self checking, or self testing only. These are defined as
follows.

DEFINITION 5.9 : A totally self checking (TSC) circuit is
self testing for fault set F̂ _ with normal input set X and
fault secure for fault set Fg with input set X.

In a TSC circuit, all faults in Ffc are tested and no fault
in Fg causes an undetectable error during normal operation
However, there are circuits which are fault secure for
only a subset of normal inputs.

DEFINITION 5.10 : A partially self checking (PSC) circuit
is self testing for fault set F^ with normal input set X,
but fault secure for fault set F„ with a non null subset Ns
of X.

In a PSC circuit, all faults in F̂_ are testing during
normal operation. Faults in Fg will not cause undetect
able errors when inputs are from N, but can when inputs
are from the set X-N.

-117-

Finally, a particular choice of Fs might result in there
being no inputs for which the circuit is fault secure.

DEFINITION 5.11 : A self testing only (STO) circuit is
self testing for fault set F^ with normal input set X, but
fault secure for fault set F with a null subset N of X.s

In a STO circuit, all faults in F^ are tested during
normal operation, but undetectable errors can occur at any
time, as shown in Fig. 5.8.

The operation of these three forms of a self checking
circuit can be summarised as follows:

1) TSC circuits and PSC circuits operating in their
secure mode (inputs from N) always output correct
codewords for any fault in F .s

2) STO circuits . and PSC circuits operating in their
insecure mode (inputs from X-N) can output incorrect
codewords.

3) All self checking circuits have the self testing
property, which guarantees that any fault from F^ will
eventually be detected (eventually since the occur
rence of input Xj, from X, which produces a detectable
error for fault f, cannot be specified).

The likelihood of an undetectable error during the in
secure mode of a PSC circuit is dependent on its usage in
that mode. If the insecure mode is used infrequently, it
is likely that a fault will be detected during its secure
mode before any erroneous result is produced during its
insecure mode. Under these conditions, even undetectable
errors occurring during its insecure mode will soon be
detected when it reverts to the secure mode.

There is always a chance that transient errors occurring
during an insecure mode will never be detected, so, for
critical applications, the use of PSC or STO circuits may

-118-

be ruled out. In non critical applications an immediate
detection of errors is not essential, only an eventual
detection is required. Here low cost STO and PSC circuits
can be employed instead of the more expensive TSC
circuits.

Another point worth considering is the probability that a
fault will be detected within t units of time from its
occurrence. The expected value of t has been referred to
as the 'error latency' of a circuit C5.3D. Hardware
detection of single failures is only vaild if the error
latency of the circuit is much less than the expected time
for a second fault to occur. The circuit might otherwise
experience a multiple fault for which it is insecure.

5.3 : TOTALLY SELF CHECKING CIRCUITS AND NETWORKS

In totally self checking (TSC) circuits, the set of secure
inputs N is the same as the normal input set X, so only
the latter needs to be mentioned. A number of simple TSC
circuits are presented, which either process their inputs
without modification, or transform them into other code
words. These and other TSC circuits may be interconnected
to form a network, but this network will, in general, not
be TSC. Sufficient requirements are therefore given to
ensure that it is.

5.3.1 : TSC Circuits

Example 5.1 : The k-bit parity buffer shown in Fig. 5.9,
which consists of k identical buffer gates, is TSC. The
output code space S equals the normal input set X and is
the set of all odd parity k-bit vectors. A single stuck-
at fault will either have no effect on the output, or
change it from an odd parity codeword to a non codeword,
since a single bit change will always create an even
parity codeword. A multiple fault which causes an even
number of bits to change at the output is not detectable
since it creates an incorrect codeword. This situation

-119-

occurs for at least one code input (in the presence of all
multiple faults), so the circuit is fault secure for F ,
the set of single stuck-at faults. However, there is at
least one code input which will produce a non code output
(change an odd number of bits) for all multiple faults,
except where all gates are affected (e.g. the output stuck
at a codeword). The circuit is therefore self testing for
Fj., the set of all faults affecting fewer than all k-bits.
Fig. 5.10 illustrates these points for various faults.
The circuit is thus TSC.

Example 5.2 : The multiplexer for two k-bit parity encoded
words shown in Fig. 5.11 is also TSC. When control lines
<s9s,> = <01> input vector A. becomes output vector Y.,
whilst <s2s^> = <10> tranfers input vector to the
output. If S is the set of all odd parity k-bit vectors,
the input set X is:

X = i <s2s1AiBi|<s2s1>=<01> and A ± e S

or <s2s^>=<10> and B^ € S3 (5.5)

When the multiplexer is set to transfer A^ to any
fault affecting the data path of each individual bit is an
identical problem to the set of buffers in example 5.1. A
fault in the control path of s^ (eg. AND gate input SAO)
for a particular bit will affect the data flow at the
output of its input AND gate (Fig. 5.11) and is therefore
equivalent to a fault in the data path. This hypothesis
is also valid for a transfer of B.. to Y^ in conjunction
with control line s2, so the multiplexer is TSC for the
same fault sets given in example 5.1. If s2 and s^ fan
out from a common source, then faults before the fan-out
point are not detectable, in general, at the multiplexer
output, since they could represent another valid control
input, as shown in Fig. 5.12. These faults will have to
be detected by some other means such as, for example,
encoded control lines.

Examples 5.1 and 5.2 transfer an input vector to their
-120-

outputs without modification, so S could be any error
detecting- code and the circuits would still be TSC,
although not neccessarily for the same faults sets.
Consider now an example which combines two input codewords
to produce a different output codeword. It performs a
function Z(X.,Y^) such that X. and € S implies
Z(Xi,Yi> € S, i.e. function Z preserves the encoding.

lrExample 5.3 : A modulo 2 -1 ripple adder for data encoded
in an AN code is described in section 4.3.5 and illustra
ted in Fig 5.13a. Assuming that the carry and sum bits of
each full adder are computed with independent subcircuits,
as shown in Fig. 5.13b, then a single fault in the circuit
will have one of the following effects:

1) No effect.
2) Carry out is 1 when it should be 0, or vice versa.
3) Sum out is 1 when it should be 0, or vice versa.

Effects 2) and 3) will produce a result which is incorrect
by a power of two. Clearly, if the multiplying factor of
the code , A, is a power of two, then the output becomes
an incorrect codeword. However, if low cost AN codes are
used, where A = 2^-1|b an integer > 1 (see section 4.3.5),
this problem does not arise and the adder is fault secure
for all single stuck-at faults. Fig. 5.14 shows the
effect of these faults for A=2 and A=3. There is at least
one code input combination which will produce a non code
output for faults affecting fewer than all k-bits, so
under these conditions the circuit is self testing and
hence TSC.

5.3.2 : TSC Networks

The difficulties of providing general design rules for TSC
circuits (see next Chapter) means that large TSC networks
are often formed from the interconnection of a number of
smaller TSC logic blocks. However, these blocks may be
TSC in isolation, but when interconnected to form a large

✓

-121-

network, they could be neither fault secure or self
testing. A block may not be fault secure because a non
code output may not propagate to the network outputs. In
addition, the block may not be self testing because its
inputs are outputs from other blocks. As a result, the
required patterns to ensure self test might not exist
during normal operation.

Anderson C5.23 gives a theorem for TSC networks with
sufficient although not necessary conditions. Before
presenting this theorem, two further definitions are
required.

DEFINITION 5.12 : A block of a network is defined to be
fully exercised if it receives its entire input code space
B from the application of normal input set X to the
network.

This definition is illustrated in Fig. 5.15.

DEFINITION 5.13 : A block of a network is defined to be
securely located if, on the basis of its inputs, the
preceding subnetwork of the total network is fault secure,
i.e. its input encoding will detect all f 6 Fsns in the
previous subnetwork, where F, is the union of F_ forsns s
each block in this subnetwork.

This definition is illustrated in Fig. 5.16.

THEOREM 5.1 : An interconnection of logic blocks is TSC
for the network secure fault set F (F is the union ofns ns
Fg for each block) and the network self testing fault set
F . (F . is the union of F. for each block), if each blocknt nt. t
is:

1) TSC (fault secure for its Fg and self testing for its
Ft>-

2) Code disjoint
3) Fully exercised

-122-

4) Securely located

Proof: The network must he shown to he fault secure and
self testing.

Fault Security: Since each hlock is fault secure for its
F , a faulty block generates either the correct codeword
or a non codeword at its outputs. For a non code output,
succeeding blocks will not receive an incorrect code input
as they are securely located for ^sns* They, in turn,
will produce non code outputs because they are code
disjoint. Overall, a non code output from a faulty block
propagates to the final output of the network as a non
codeword. Hence the network is fault secure.

Self test: Since each block is self testing for its F^ and
fully exercised, a faulty block will always produce a non
code output for some network input. By the same argument
given above, the non code output always propagates to the
output of the network as a non codeword. Hence the
network is self testing.

The most difficult condition to satisfy is the secure
location of each block. Anderson C5.23 give two coroll
aries to achieve this for specific fault classes. These
are given here without proof.

Corollary 5.1 : A network consisting of an interconnec
tion of blocks is TSC for single faults (F^= F .) if the3 ns nt
network has no reconvergent fan-out of block outputs and
each block is i) TSC for single faults, ii) code disjoint
and iii) fully exercised.

Corollary 5.2 : A network consisting of an interconnec
tion of blocks is TSC for unidirectional faults if the
network contains no inverters and each block is i) TSC for
unidirectional faults, ii) code disjoint, iii) fully
exercised and its inputs are encoded in a unidirectional
error detecting code.

-123-

5.4 : TOTALLY SELF CHECKING CHECKERS

5.4.1 : General Structure

The output of a self checking circuit is monitored by a
checker which indicates the presence of non codewords.
The output from the checker could be a 0 for codewords and
a 1 for non codewords, as indicated in Fig. 5.2. However,
the checker needs to be totally self checking so that
faults within it can be detected just as easily as those
in the circuit it is monitoring. It must not allow a
detectable error (non codeword) in the circuit it is
monitoring to be ignored because of a failure within
itself. Its output must therefore be encoded in an error
detecting code Sc. The encoding suggested above is
clearly not an error detecting code, as a single fault,
the output SAO (no error), would never be detected.
Suitable error detecting codes have been mentioned in
section 4.3.3. These are the duplication code, S = t<00>,
<11>3, and the l-out-of-2 code, = €<01>,<10>1. The 1-
out-of-2 code is preferred since it detects unidirectional
multiple errors (see section 3.1.4), such as those
produced by the loss of power, and this is the code which
has been generally adopted.

Lines constantly at one logic level are thus not allowed
in a network which is to be self testing, since the lines
would not be tested for being stuck at that value. This
must also be true of the checker output, even if it is
encoded. If a failure (or failures) within the checker
caused its output to be permanently <10>, for example,
then this is just as undetectable as the single line SAO
above. Therefore, the checker output must alternate
between <01> and <10> during normal operation to indicate
an error free network. This means that there must be at
least one code input to the checker which is mapped to
each of these outputs.

-124-

The system where 0 is represented as <01> or <10> and 1
represented as <11> or <00> (or vice versa) is also known
as Morphic logic, where Morphic Boolean functions replace
the standard functions of OR, AND and NOT C5.4,5.5D.

Anderson C5.23 presented the model given in Fig. 5.17 for
a totally self checking network, which consists of a
functional circuit and a checker which are both TSC. The
functional circuit has a normal input set X̂ . and output
set S^, whilst the checker has a normal input set Xc and
output set Sc« In addition:

The fault free output function of the checker must map
code inputs to code outputs and non code inputs to non
code outputs, so it must be code disjoint.

It is interesting to note that the checker does not
necessarily need to be fault secure. It must certainly
be self testing and code disjoint, but if a fault produces
an incorrect output codeword this is not a problem, since
as an error indicator, the output of the checker is either
a codeword (fault free) or non codeword (error). The
actual codeword is not important.

Applying Theorem 5.1 to Fig. 5.17 demonstrates that the
network is TSC. Its secure and tested fault sets are
the unions of corresponding fault sets for functional
circuit and checker. The normal input set of the network
is X̂ . and the output code set is defined as;

Xf c £ 0,1}n
Sf C £0,l}m

(5.6)
(5.7)
(5.8)
(5.9)

Sn = Sc x £0,l}m (5.10)

This definition allows errors to be detected from an
observation of the checker output only. If the output of

✓

-125-

the network was specified as Sc alone, then network
fault security would not guarantee that a code space
output from the checker implied a correct functional
circuit, see example 5.6. During fault free operation the
output of the network is Sc x Ŝ ..

Chapter 6 describes the design of several TSC checkers.

5.4.2 : TSC Checker for Separable Codes

If the error detecting code is separable, then a checker
for that code will consist of an equality checker and a
check bit generator, as shown in Fig. 5.18. The equality
checker compares the check bits of the codeword with new
check bits generated from the data part of the codeword.
The following theorem demonstrates that a checker is TSC
if the equality checker is TSC:

THEOREM 5.2 : For the conditions:

i) A separable error detecting* code S with codewords
<CifX^>, where X.̂ € X is the original data and Ci € C
the check bits generated from C^ = F(X^).

ii) The checking network consists of a check bit generator
which computes F(X^) and an equality checker which
compares C^ and F(X^) (see Fig. 5.18).

The network is a TSC checker for S if the equality checker
is TSC for the duplication code S', where:
S' = £<C.,C. > I 3 X. 6 X such that FtX^ = C^J.

The proof for this theorem is given by Wakerly in C5.6U.
The equality checker has to be TSC for S' to satisfy the
above theorem. It has two sets of C^ as inputs, which
form S'. In most cases C^ will take on all possible
combinations, C^ € C and C C u, so the equality checker
will automatically be TSC. However, if the check bits do
not take on all possible values, as for the residue codes
illustrated in Fig. 5.19, then the self testing property

-126-

must be verified for those that do. The theorem also
depends on the data part of S taking on all possible
values to completely test the check bit generator for
faults which affect its operation. Again, if not all
these occur, then the structure of the check bit generator
must be examined to verify its self testing property for
those which do.

Overall the problem of designing TSC checkers for separa
ble codes can be reduced to the much simpler problem of
designing check bit generators for these codes (see
examples in section 4.3), with no consideration of their
self checking properties.

5.5 : PARTIALLY SELF CHECKING NETWORKS

If a logical operation is performed on two codewords the
result is not, in general, a codeword; i.e. the code is
not preserved. If the encoding is separable (separate
data and check bits), then a logical operation performed
on the two data parts will he correct, but the same
operation performed on the two sets of check bits will
not, in general. Duplication, however, is one code that
is preserved by logical operations, but of course has a
high redundancy.

A solution is to calculate new check bits from the data
output after the logical operation. This has previously
been referred to in sections 4.3.1 and 4.3.4 as check bit
prediction. This is a practical scheme if it can be
implemented in a self checking manner at low cost.
Partially self checking (PSC) networks fulfill this
requirement. They achieve less redundancy by not re
quiring the immediate detection of errors.

Wakerly C5.6,5.73 has proposed three forms of PSC network,
which are detailed below.

5.5.1 : Type 1 Networks
-127-

The simplest PSC network is referred to as the type 1
model and shown in Fig. 5.20. It uses a TSC functional
circuit with a fault free output function which maps the
normal input set, X̂ . C £0,13n to an output code space,
Ŝ. C £0,13m . The TSC checker has normal input set Xc = S^
and output code space Sc = {<01>,<10>3.

There are also two control gates which enable or disable
the error indication from the network. With control lines
<s2si> set to <01>, the network error indicator mimics the
the checker outputs, but when the lines are set to <10>,
they force the error indicator to <10> (no error).

The output code space for a type 1 PSC network is Sc x S^
as with a TSC network. The normal input set of the
network is vectors of the form <S2S^Xi>, where Xi is the
functional circuit input. When functional circuit inputs
from X̂ . are expected, <323)̂ is set to <01> and the
network is logically equivalent to the TSC network of
Fig. 5.17. However, when inputs* are not from X̂ ., the
functional circuit output may not be a codeword, so
*S2S1^ se^ which disables the checker. When
used in this manner the network of Fig. 5.20 is PSC.

Let F be the set of all single stuck-at faults on the a
control gates. The secure and tested fault sets of the
network are the unions of Fa with the corresponding fault
sets of functional circuit and checker. The secure input
set of the network, Nn , is:

N = €<s0s1X.>|(<sos1>=<01>) and (X. 6 X f)3 (5.11)n 2 1 l > 2 1 i f

The network may also be operated with insecure inputs from
the set N ':

N ' = £ < s0s,X.>I(<s0s,>=<10>) and (X.| Xf)3 (5.12)n 2 1 i > 2 1 i * f

Normally during its insecure mode of operation the func
-128-

tional circuit will only receive inputs outside X̂ ., but,
in practice, any input could occur, so N ' is better
defined as:

N ' = {<s,s,X.>|(<sos,>=<10>)3 (5.13)n z 1 1 1 z 1

A type 1 PSC network alternates between secure and
insecure modes of op
the network is thus:
insecure modes of operation. The normal input set Xn of

X = N U N ' (5.14)n n n

THEOREM 5.3 : The network shown in Fig. 5.20 and described
above is PSC.

Proof : During its secure mode of operation, the network
is self testing and fault secure for the fault sets of the
functional circuit and checker (both TSC networks).
Therefore, the network is also self testing with inputs
from X since X D N . This leaves the evaluation of self n n n
test and fault security for Fa . -

Self test : All faults except d SAO and a SA1 are tested
by some input from N^. The faults d SAO and a SA1 are
not detected since d=0 and a=l during the secure mode
(constant lines), but they will be detected by some input
from Nn ', since each changes the correct error indicator
output from <10> to <11> or <00>. Thus all faults in F^
are tested by some input from Xn «

Fault security : A single fault from F causes, at most, 1 1 u
a single bit change in the error indicator output,
producing either the correct output or a non codeword.

Example 5.4 : A type 1 PSC network is the n-bit parity
checked bus buffer shown in Fig. 5.21. The TSC functional
circuit is the n-bit bus buffer of Fig 5.9. The TSC
parity checker is based on a design to be described in
Chapter 6. The control inputs <S2S^> are set to <01> for

-129-

the transmission of odd parity words and to <10> for words
of unknown parity.

The application of type 1 networks is limited, since a re
encoded functional output is not available during their
insecure mode. However, in the example of Fig. 5.21, re
encoded parity is always available from the parity checker
at line P. Type 2 networks implement this concept.

5.5.2 : Type 2 Networks

A type 2 network is a type 1 PSC network which uses the
TSC checker design described in section 5.4.2 and whose
functional circuit output is a separable code. Fig. 5.22
shows such a network.

A re-encoded functional output is provided by the check
bit generator within the checker. The input sets, fault
sets and output code space are the same as those for a
corresponding type 1 network. Thus, ignoring the re
encoded functional output, type * 2 networks are type 1
networks with a specific TSC checker and hence they are
PSC.

A non codeword output caused by a fault in the re-encoding
operation is detected by the equality checker. These
results are summarised in the following theorem.

THEOREM 5.4 : A type 2 network described above and
illustrated in Fig. 5.22 is PSC. In the absence of faults
the re-encoded functional circuit output is always a
codeword.

5.5.3 : Type 3 Networks

A disadvanatge of type 2 networks is that the functional
circuit output is delayed by the check bit generator in
the re-encoding process. In a TSC network or a type 1 PSC
network, the functional output delay is due to the

-130-

functional circuit alone, whereas in a type 2 PSC network
it is the sum of functional circuit and check hit
generator delays. During its insecure mode, the re
encoding process in any PSC network will always introduce
delay, hut a type 3 network reduces this delay to that of
a multiplexer during the secure mode.

Fig. 5.23 shows a type 3 network, consisting of a TSC
functional circuit, a TSC equality checker and multiplexer
which selects either the check hits of the functional
circuit, or the output of the check generator as the
network check bits.

The equality checker compares the network check hits with
the generated check hits. When <S2S^> is <01> (secure
mode) the network is logically equivalent to a TSC
network. When <S2S^> is <10> (insecure mode) the func
tional circuit output is re-encoded and the equality
checker compares the generated check bits with themselves,
producing a good output.

The normal input set, secure input set and output code
space of a type 3 network are the same as those of a type
1 or 2 PSC network. Let F be the set of all singlea
faults affecting the control gates except u^ SA1 (see Fig.
5.23). The secure and tested fault sets of the network
are the unions of F with the corresponding fault sets of
the functional circuit and checker.

THEOREM 5.5 : A type 3 network described above and
illustrated in Fig 5.23 is PSC.

The proof for this theorem is similar to that for theorem
5.3 and requires a demonstration of the self testing and
fault secure capabilities of the network for F .a

Although type 3 networks avoid the delay associated with
a re-encoded functional output during their insecure mode,
they have two disadvanatges:

✓

-131-

1) They require more gates than a type 2 network with a
corresponding increase in cost.

2) They have a set of single stuck-at faults for which
the network is generally not self testing or fault
secure (û . SAD.

Wakerly E5.63, however, shows how to overcome the latter
problem.

5.5.4 : A Partially Self Checking Logic Unit

Example 5.5 : The bit-slice (see section 5.7) of Fig.
5.24a can perform sixteen different Boolean functions on
two input variables a^ and b^, dependent on the setting
of control inputs s^, s^, and s^. The functions
available are detailed in Fig. 5.24b. The circuit may be
duplicated to form a bit-sliced functional circuit which
can perform any of these operations on two input vectors
A.. and such that for each value of r = <S£SgS2S^> the
circuit performs a function Fr(A^,B^). If A^ and B^
are encoded in an error detecting code S with a Hamming
distance of two, and if a function preserves that en
coding (Aj,,Bi £ S and F ^ f A ^ B ^ £ S), then the functional
circuit is fault secure for all single bit-slice faults
from theorem 5.7. The secure input set N for F (A.,B.)r r i l
is:

N =£<s„s0s0StA.B.>I<s.s-s0St>=r and A.,B. £ S3 (5.15) r 4 3 2 1 1 1 * 4 3 2 1 l l

If the encoding is preserved by a number of r, say r £ R,
then the secure input set N of the circuit is:

N = U N (5.16)
r £ R r

Consider S to be the set of even parity n-bit vectors,
where n is even. This encoding is preserved by operations
A± © Bi(© Bi, Ai(Bi, AT, IT, 0 and 1 (A., B. 6 S).
Fig. 5.25 details the single stuck-at faults in the bit-

-132-

lice (Fig 5.24a) which are detected by these operations
C5.73. Inspection of Fig. 5.25 reveals that all single
stuck-at faults are detected if both A^ © B^ and A^ ©
are used. The same is true if all four operations A^,
B^, A^ and B7 are used. If the functional circuit has an
input set which contains any such set of code preserving
operations then the circuit is self testing. The circuit
is also fault secure for code preserving operations, so
under these conditions it is TSC (secure mode). It can
therefore be used in a partially self checking network
which re-encodes the output for those functions which are
not code preserving.

The 74181 arithmetic logic unit/function generator C5.83
contains four circuits similar to that in Fig. 5.24a. It
can perform the logic functions of Fig. 5.24b or a set of
arithmetic functions. Additional carry logic means that
it is not a bit-sliced circuit, but if A^ and B^ are
encoded in an arithmetic error detecting code which has a
Hamming distance of two, then their encoding is preserved
by the addition and subtraction operations. These func
tions will test the carry logic, and when combined with
code preserving functions which test all stuck-at faults,
will allow the 74181 to be TSC C5.73. This can then form
the basis of a PSC arithmetic logic unit.

5.6 : SELF TESTING ONLY CIRCUITS AND NETWORKS

TSC and PSC circuits are self testing for a set of inputs
X and fault secure for a non-null subset N of X. N is a
null set for self testing only (STO) circuits.

Example 5.6 : Consider the 2 to 4 line decoder shown in
Fig. 5.26. A 2-bit input vector Xj=<x2x^> is translated
into a l-out-of-4 coded vector Y^=<y^y2y2y^>. The error
indicator E^=<e2e^> is formed by ORing the outputs into
two partitions:

ex = y4 + y1 (5.17)
-133-

(5.18)

In the absence of faults E. € £<01>,<10>1. The normal
1 2 input set is the set of 2-bit vectors 6 £0,1} , whilst

from (5.10) the output code space is the set of 10-bit
vectors Y^E..:

As usual, errors may be detected from observation of E^
alone.

Fig. 5.27 details the effect on and E^ of every single
stuck-at fault in the circuit. Conclusions from this are:

1) The decoder alone is self testing and fault secure for
all single stuck-at faults. It is also trivially code
disjoint.

2) The checker alone is self testing and fault secure for
all single stuck-at faults. It is not, however, code
disjoint.

3) The overall network is self testing only for all
single stuck-at faults. The secure fault set is null
because a decoder output SA1 can produce a non code
word which goes undetected. This occurs when y^ = 1
and y. is SA1, j 4 k, where y. is in the same outputK Jpartition as y^, see Fig. 5.27.

If the output of the network was specified as E^ alone,
then the fault in 3) would not be a problem, since the
checker output is the same with and without the fault.
However, using (5.19) means that this fault produces an
incorrect codeword output from the network.

Y.E. 6 t0,lj4 X t<01>,<10>} (5.19)

where during fault free operation is:

Tj. € cy4y3y2y1|yj € to,u, y4 + y3 + y2 + yx = u
(' +' is plus) (5.20)

-134-

The network is TSC though for all stuck-at-0 faults. This
may be acceptable if the circuit is implemented with gates
whose only failure is SAO. Note that faults in x ̂ and x,
are not detectable since they create a different normal
input. If it is neccessary to check these, then they need
to be encoded C5.53.

Self testing only networks are formed by the interconnec
tion of STO circuits, as shown in Fig. 5.28. The output of
each STO block is either connected to the input of another
block, is part of the network output, or both. Blocks
which are part of the network output are termed output
blocks (T^ and T^ in Fig. 5.28). The output code set of
the network is the cross product of output block code
spaces. The tested fault set of the network is the union
of the fault set for each block. Sufficient conditions
are given below for a network to be STO.

THEOREM 5.6 : A network which is an interconnection of
logic blocks T^ is self testing only for a fault set
Fj_= U Fj with normal input set X' if:

i) Each block is self testing for fault set F^ with
normal input set X̂ ., such that each input in X̂ . occurs
for some input in X.

ii) Each block with inputs which are not network inputs or
outputs is code disjoint.

Proof : It must be shown that there is a test for every
fault in F. = U F ..t j j

For any j and any fault f in F^ there is a network input
in X such that the output of T^ is a non codeword from
condition i). If the output of T^ is a network output,
then the network output is also a non codeword and f
tested. Otherwise the output of T̂ . must feed the input of
another block, T^ , which is code disjoint from condition
ii) . Then the non code output from T^ produces a non code
output from T^. This process continues until a non code

-135-

network output is produced. In the example of Fig. 5.28,
only blocks T^, and need to be code disjoint.

5.7 : SELF CHECKING PROPERTIES OF BIT
AND BYTE-SLICED CIRCUITS

A bit-sliced circuit is defined as a multi-output combin
ational circuit, in which each output bit is computed by
an independent subcircuit, called a bit-slice. A byte-
sliced circuit is similarly defined as a multi-output
combinational circuit, in which each output byte is
computed by an independent byte-slice. As microprocessor
based systems are bus orientated, their buses are particu
larly suited to bit or byte-slice processing. In order
to provide a more general means of analysing the self
checking properties, it is convenient to consider bit and
byte-sliced circuits, because of their structure and their
application.

5.7.1 : Bit-Sliced Circuits

The circuits of Fig. 5.9 and 5.11 are bit-sliced circuits,
whereas the circuit of Fig. 5.13a is not. Remember that
a circuit is self checking if it self testing for a fault
set Fj. with input set X and fault secure for a fault set
Fg with input set N.

Fault Security : The fault security of a bit-sliced
circuit is demonstrated by the following theorem.

THEOREM 5.7 : If S is an error detecting code with a
minimum Hamming distance of two, B a bit-sliced circuit
with fault free output function Z(N^), such that Z maps
the input set N to S, and Fg the set of all faults which
affects only a single bit-slice, then B is fault secure
for F with N. s

Proof: Any fault f in Fg affects only a single bit-slice
and therefore only a single output. For an input , f

-136-

may or may not change that output bit. If it does not
Z^(N^)=Z(N^) € S, but if it does, then the output is one
bit different to the correct codeword and Z^(N^) ̂S.

Thus, a bit-sliced circuit is fault secure for all single
bit-slice faults with all inputs that are mapped to
codeword outputs. The checker must be disabled for inputs
outside N during normal operation. This is therefore a
PSC network.

Self Test; The self testing property for all single faults
depends on the bit-slice structure and normal input set X.
However, the self testing capability of a bit-sliced
circuit can be determined from the individual slices.

Consider a single bit-slice within a bit-sliced
circuit, as shown in Fig. 5.29. The input to is ,
so that its output is Z^CA^). Given X, a set of input
vectors A^ to the slice B^ can be determined, see Fig.
5.29.

Example 5.7 : The TSC multiplexer shown in Fig. 5.30 has
an input vector <S2S^a^b^.> to each bit-slice. During
normal operation <S2S^> is set to <01> or <10>, so that
for every j, â . and b̂ . should take on all four possible
combinations. The set A^ for B^ is thus:

Aj = C<0100>,<0101),<0110),<0111),
<1000),<1001>,<1010>,<1011)1 (5.21)

Given A , then the tested fault set for the complete bit-
sliced circuit can be determined.

THEOREM 5.8 : If the output of a bit-sliced circuit is
encoded in an error detecting code S, where S has a

minimum Hamming distance of two, and for each bit-slice
Bj there is a set of faults such that for an input
A^. in Aj, Z^(A^j) ̂ Z^(A^), then the bit-sliced circuit
is self testing for the fault set F. = U F. ..t j tj

-137-

Proof : For any fault f in F*..., there is a bit-slice
input A. . in A. due to circuit input X. in X such that
f ^ 3 3 iZ.(A. .) ̂Z.(A. .). No other bit is affected by f, so the
3 1 3 3 ^ - 3 * ’circuit output Z (X^) is different from Z(X^) € S by a

single bit and therefore ̂ S. The circuit is thus self
testing for any fault in F^ and self testing for any fault
in F, = U F. .. t . t]

The self testing ability of a bit-sliced circuit can be
determined by considering each bit-slice separately. In
many cases the bit slices are identical (for example
the multiplexer of Fig. 5.30), as are the input sets A^
and fault sets A standard set of faults F̂. together
with a standard set of inputs A from X can therefore be
ascertained. F^ is determined by methods which identify
the set of faults detected for a particular test A^ in A.
Alternatively, F^ is deemed to be a known fault set and
every A^ in A examined to prove that every f in F^ is
tested.

5.7.2 : Byte-Sliced Circuits

The results of theorems 5.7 and 5.8 for bit-sliced
circuits can be extended to cover byte-sliced circuits
with outputs encoded in a byte error detecting code. Such
circuits are fault secure for all single byte faults. As
with bit-slice circuits, their self testing capabilities
are dependent on structure and normal input set.

Example 5.8 : Consider the byte-slice multiplexer for 8-
bit words shown in Fig. 5.31. The select input, s; deter
mines whether A^ or B^ is transfered to the output. The
transfer takes place when the enable input is at 0,
otherwise an all 0 output occurs. If the input vectors are
encoded in a byte error detecting code for 4-bit bytes
such that the all zero vector (all outputs at 0) is a
codeword, then the circuit is fault secure for all single
byte faults. This statement is independent of the struc-

✓

-138-

of the quad 2 to 1 multiplexer. Examples of suitable byte
error detecting codes are the b-adjacent code shown in
Fig. 4.10, or the checksum code shown in Fig. 4.12. Self
test is not independent of multiplexer structure so each
individual byte has to be examined to determine the level
of self test.

5.8 : SELF CHECKING SEQUENTIAL CIRCUITS

A model of a sequential machine is required to develop the
definitions of self test and fault security given for
sequential circuits at the beginning of the Chapter. The
model depicted in Fig. 5.32 will be used which is
specified by <V,Q,W, £,co> , where:

V is the set if input vectors.
Q is the set of states.
W is the set of output vectors.
S is the next state function of the fault free machine,

S : V x Q Q'.
o> is the output function of the fault free machine,

to : Q —) W.

V contains all possible binary input vectors, W all
possible output vectors and Q all possible states, regard
less of whether they occur in normal operation. For fault
detection purposes, the output of the circuit must be
encoded in an error detection code, such that S C W and
non codewords detected. It is assumed that only the
circuit output is observable; i.e. the state and input
information is not observable, unless it is part of the
output function.

5.8.1 : Fault Security

A sequential circuit fault may change the next state
function, the output function, or both. The next state
function of a machine in the presence of a fault is
denoted by $ ^ and the output function by o ^ . Fault

security requires that output function failures must
produce either the correct code output or a non code
output. Next state failures must produce either the
correct state or a non code output before an incorrect
next state produces an incorrect code output. It is
therefore possible for a sequential machine to be in
several incorrect states before a failure is indicated,,
as long as none of these incorrect states produces an
incorrect code output. In practice, however, a transition
to an incorrect state needs to be indicated immediately.
This requires the set of states occupied by the fault free
machine to be encoded in an error detecting code, P C Q,
and also requires the output function to be a code
disjoint mapping from P to S.

DEFINITION 5.14 : A sequential circuit is fault secure for
a fault set Fs with input set N (N C V), if, V N^ 6 N,
V f 6 F and V P. € P, either : s 1

i) Sf (N.,P.) = S(N.,P.) and o>f (Sf (NT, PT)) = u> (S(Nt ,PT)) l i 1 1 1 1 1 1
or

ii) cuf (Sf(iq,Pj>) 4 S

This definition, illustrated in Fig. 5.33, requires that
all faults either produce no effect on the next state and
output function for a particular input, or produce an
immediate error indication. Visiting several error states
whilst maintaining the correct output before a detectable
error is not allowed. (Diaz, however, in his definition
could allow this behaviour C5.93.) The above definition
also requires that a fault affecting both the next state
and output functions must still give an error indication.
When logic is shared between both functions this error
indication is difficult to guarantee, so shared logic must
be avoided. The definition of fault security does not
require an error indication to be maintained; i.e. once a
faulty circuit produces a non code state and indicates an
error, the definition does not prevent it from returning
to an incorrect code state. Many sequential machine

-140-

designs prevent this behaviour by 'error trapping',
whereby the machine maintains a non code state if one is
entered.

The general block diagram of Fig. 5.32 may be modified to
give the fault secure machine in Fig. 5.34. The current
state is held in a state register implemented with
(say) D type flip-flops fed by a common clock signal. It
is assumed that the clock signal is checked separately,
see Chapter 6. The state register is updated with the
output of a circuit which computes S(N^,P^) and the
machine output is produced byo(P..). The state vector P^
should be from an error detecting code P so that the state
register is fault secure. If, for example, P is a single
bit parity code, then the state register is fault secure
for all faults which affect a single bit. The next state
circuit must also be fault secure. This is accomplished
by using an independent subcircuit for each bit. Finally,
the output circuit should be a fault secure, code disjoint
mapping from state code P to output code S, so that P^€ P
becomes € S.

An m-out-of-n code is equally suitable for encoding the
states of a fault secure machine. This has the advantage
of detecting undirectional errors.

Example 5.9 : Consider the state diagram, state table and
logic diagram given in Fig. 5.35 for a synchronous
sequential machine. Output y is set when three consecutive
l's are received by input x and reset by the next 0 at x
thereafter. The design has four states and requires two
flip-flops. A fault secure version of the machine is
achieved by encoding the states in a single parity code
and encoding the output in a l-out-of-2 code, as shown in
Fig. 5.36. The machine still has four states, but now
requires three flip-flops because of the additional parity
'bit' and a second output to support the l-out-of-2
encoding. The machine is now fault secure for a single
gate or flip-flop fault.

-141-

5.8.2 : Self Test

A sequential machine is self testing if every fault is
tested during normal operation. If P C Q is the set of
states during normal operation and X C v is the set of
normal inputs, then one way to define self test would be
the existence of a state in P and an input X^ in X
for each fault f in Ffc, such that cô ((XT ,P7)) ^ S L5.93.
However, this definition is not adequate since the inputs
and states of the machine may be correlated and there is
no guarantee that a particular input/state pair occurs in
practice. For example, input strings with only two or
three consecutive l's will not visit the states marked
with a in Fig. 5.36. Therefore, the set XP of normal
input/state pairs has to be defined, where <X^,P^> is in
XP if Xi occurs with state Pi during normal operation.
This allows a more satisfactory definition of self test
ing sequential circuits to be made C5.63.

DEFINITION 5.15 : A sequential circuit is self testing for
a normal input/state set XP and fault set F̂ _, if,
V f 6 F. , 3 <X.,P. > G XP, such that i/ (gf (XT,P7) 4 S.

Z 1 1 1 1 *

This definition is illustrated in Fig. 5.37. The sequen
tial machine in Fig. 5.34 is self testing if the next
state function, state register and output function are all
tested by normal inputs. Self testing is not as easy to
achieve as fault security. The design of example 5.9 in
Fig.5.36, for instance, is not self testing for SAO faults
on the inputs of its 3-input AND gate, even if all input/
state pairs occur. Requirements for the self testing of
seqential machines are discussed by Diaz C5.9,5.103 and
Ozguner C5.113.

5.9 : LITERATURE REVIEW

Carter and Schneider laid the foundations for self testing
circuit theory in their historic 1968 paper C5.13, with a

-142-

model for dynamically checked logic. They also presented
designs for parity and l-out-of-2 code checkers, which
have since been universally adopted as a basis for TSC
checkers. Carter in conjunction with other IBM personnel
subsequently expanded these ideas from the view point of
fault tolerant computing C5.12-5.143 and Morphic Boolean
functions C5.43. Carter summarised many of these concepts
in his excellent 1974 paper C5.53. The most recent
documentation from the team has been a fault tolerant
memory system C5.153 and a self checking computer design
C5.163. The latter is a significant development from
their first paper.

In his thesis, Anderson C5.23 formalised the initial ideas
of Carter, with definintions for TSC circuits and net
works, plus a discussion on how to test them. He also
presented an important design technique for TSC m-out-of-n
checkers, which was extended in a later paper C5.173.
Many papers have been written on the design of TSC code
checkers and these will be detailed in the next Chapter.
Kolupaev C5.183 has more recently considered TSC networks,
with modifications to the fault secure and self testing
definitions proposed by Anderson.

Using a more mathematical approach, Smith C5.193, in his
thesis,detailed TSC circuits for single and unidirectional
faults, as well as considering their behaviour for un
modelled faults. A subset of this work appeared in C5.203,
with further papers discussing strongly fault secure logic
networks C5.213 and TSC system design C5.223. Self
checking systems are the subject of Chapter 7, prompted by
the work of Moreira de Souza et al C5.233. Strongly fault
secure systems are also considered by Nanya C5.243, whilst
a design technique for TSC circuits with unrestricted
stuck-at faults using redundancy in time and space has
been proposed by Rao C5.253.

In 1974 Wakerly introduced the concept of PSC circuits and
networks C5.73, which subsequently formed part of his book

-143-

C5.63. In the book he also used modified definitions of
the fault secure and self testing properties. The relia
bility of PSC circuits has been discussed by Gay C5.263
and a signal reliability evaluation of self checking
networks proposed by Hong C5.273

The majority of the papers referenced so far are concerned
with combinational circuits only, but Diaz has presented a
number of papers on the design of sequential TSC circuits
C5.9,5.10,5.283, along with Smith C5.223, Nanya C5.293,
Viaud C5.303 and Ozguner C5.113. The code disjoint
property has been discussed by Jansch C5.313 for sequen
tial circuits and by Nicolaidis C5.323 for combinational
circuits.

The construction of TSC circuits using programmable logic
arrays (PLAs) has been widely investigated C5.33,5.343,
particularly for checkers (see Chapter 6), whilst the
specific problems associated with TSC circuit implementa
tion in technologies such as MOS C5.35,5.363, CMOS C5.373 2and I L C5.38,5.393 have also been examined.

Specific examples of self checking circuits include a self
checking form of the linear feedback shift register
(mentioned many times in Chapter 4), developed by Lu
C5.403, a self checking periodic signal checker, proposed
by Usas C5.413 and a self testing decoder described by
Carter C5.423.

All of the above papers detail various aspects of self
checking hardware, but self checking software also needs
to be considered C5.433.

-144-

5.10 : REFERENCES
5.1) Design of dynamically checked computers. - W. C.

Carter, P. R. Schneider; Proc. IFIPS Congress,
Vol. 2; Edinburgh; August 1968; North-Holland
Publishing Company, Amsterdam (1969); pp. 878-883.

5.2) Design of self-checking digital networks using
coding techniques - D. A. Anderson; Coordinated
Science Laboratory Report R-527; September, 1971;
University of Illinois, Urbana, Illinois, USA.

5.3) The error latency of a fault in a combinational
digital circuit - J. J. Shedletsky, E. J. McClus-
key; FTCS-5*; pp. 210-214.

5.4) Computer error control by testable morphic Boolean
functions - A way of removing hardcore - W. C.
Carter, A. B. Wadia, D. C. Jessep; FTCS-2*; pp.
154-159.

5.5) Theory and use of checking circuits - W. C. Carter;
Infotech*; pp. 415-454

5.6) Error detecting codes, self checking circuits and
applications - J. F. Wakerly: Elsevier - North
Holland; New York; 1978; Chapter 3, pp. 54-99.

5.7) Partially self-checking circuits and their use in
performing logical operations - J. F. Wakerly; IEEE
Trans. Coraput.; Vol. C-23, No. 7; July, 1974; pp.
658-666.

5.8) The TTL book for design engineers - The engineer
ing staff of Texas Instruments components group;
Texas Instruments; Fourth European edition; 1980;
pp. 7:271-7:281.

5.9) Design of totally self-checking and fail-safe
sequential machines - M. Diaz; FTCS-4*; pp. 19-24.

5.10) Unified design of self-checking and fail-safe
combinational circuits and sequential machines - M.
Diaz, P. Azema, J. M. Ayache; IEEE Trans. Comput.;
Vol. C-28, No. 3; March, 1979; pp. 276-281.

5.11) Design of totally self-checking asynchronous and
synchronous sequential machines - F. Ozguner; FTCS-
7*; pp. 124-129.

5.12) Logic design for dynamic and interactive recovery
- W. C. Carter, D. C. Jessep, A. B. Wadia, P. R.
Schneider, W. G. Bouricius; IEEE Trans. Comput.;
Vol. C-20, No. 11; November, 1971; pp. 1300-1305.

5.13) A theory of design of fault-tolerant computers
using standby sparing - W. C. Carter, W. G. Bouri
cius, D. C. Jessep, J. P. Roth, P. R. Schneider, A.

-145-

B. Wadia; FTCS-1A; pp. 83-86.
5.14) A theory of design of fault-tolerant computers

using standby sparing - W. C. Carter, W. G. Bouri-
cius, D. C. Jessep, J. P. Roth, P. R. Schneider, A.
B. Wadia; IBM Research Yorktown; RC 3261; February,
1971; pp. 1-11.

5.15) Implementation of an experimental fault-tolerant
memory system - W. C. Carter, C. E. McCarthy; IEEE
Trans. Comput.; Vol. C-26, No. 6; June, 1976; pp.
557-568.

5.16) Cost effectiveness of self checking computer
design - W. C. Carter, G. R. Putzola, A. B. Wadia,
W. G. Bouricius, D. C. Jessep, E. P. Hsieh, C. J.
Tan; FTCS-7*; pp. 117-123.

5.17) Design of totally self-checking check circuits for
m-out-of-n codes; D. A. Anderson, G. Metz; IEEE
Trans. Comput.; Vol. C-22, No. 3; March, 1973; pp.
263-269.

5.18) Cascade structure in totally self-checking net
works - S. Kolupaev; FTCS-7*; pp. 150-154.

5.19) The design of totally self-checking combinational
circuits - J. E. Smith; Coordinated Science Lab-
oratoryReport R-737; August, 1976; University of
Illinois, Urbana, Illinois, USA.

5.20) The design of totally self-checking combinational
circuits - J. E. Smith, G. Metz;FTCS-7*;pp. 130-4.

5.21) Strongly fault secure logic networks - J. E. Smith,
G. Metz; IEEE Trans. Comput.; Vol. C-27, No. 6,
June, 1978; pp. 491-499.

5.22) A theory of totally self checking system design
- J. E. Smith, P. Lam; IEEE Trans. Comput.; Vol.
C-32, No. 9; September, 1983; pp. 831-844.

5.23) A research oriented microcomputer with built in
auto-diagnostics - J. Moreira de Souza, E. Peixoto
Paz, C. Landrault; FTCS-6*; pp. 3-8.

5.24) Error secure/propagating concept and its applica
tion to the design of strongly fault secure pro
cessors - T. Nanya, T. Kawamura; FTCS-15*; pp. 396-
401.

5.25) Design of totally self-checking circuits with an
unrestricted stuck-at fault-set using redundancy in
space and time domains - K. V. S. S. P. Rao, D.
Basu; IEEE Trans. Comput.; Vol. C-32, No. 5; May,
1983; pp. 464-475.

5.26) Reliability of partially self-checking circuits
-146-

5.27)

5.28)

5.29)

5.30)

5.31)

5.32)

5.33)

5.34)

5.35)

5.36)

5.37)

5.38)

5.39)

5.40)

5.41)

- F. A. Gay; FTCS-7*; pp. 135-142.
Signal reliability evaluation of self checking
networks - K. K. Hong, Y. Thoma; FTCS-10*; pp. 257-
262.
Design of self-checking microprogram controls - M.
Diaz, J. Moreira de Souza; FTCS-5*; pp. 137-142.
Design of self-checking asynchronous sequential
machines - T. Nanya, Y. Tohma;FTCS-10*;pp. 278-280.
Sequentially self-checking circuits; J. Viaud, R.
David; FTCS-10*; pp. 263-268.
Strongly language disjoint checkers - I. Jansch,
B. Courtois; FTCS-15*; pp. 390-395.
Strongly code disjoint checkers - M. Nicolaidis,
I. Jansch, B. Courtois; FTCS-14*; pp. 16-21.
Design and application of self-testing comparators
implemented with MOS PLA's - Y. Tamir, C. H.
Sequin; IEEE Trans. Comput.; Vol. C-33, No. 6;
June, 1984; pp. 493-506.
The design of totally self-checking circuits using
programmable logic arrays - S. L. Wang, A. Avizien-
is; FTCS-9*; pp. 173-180.
Techniques for efficient MOS implementation of
totally self-checking checkers - N. K. Jha, J. A.
Abraham; FTCS-15*; pp. 430-435.
Analysis of a class of totally self-checking
functions implemented in a MOS LSI general logic
structure - M. W. Sievers, A. Avizienis; FTCS-11*;
pp. 256-261.
Totally self-checking CMOS circuits using a hybrid
relalization - N. K. Jha, J. A. Abraham; FTCS-15*;
pp. 154-158.

2Multivalued I L circuits for TSC checkers - D.
Etiemble; FTCS-9*; pp. 181-184.

2Threshold I L totally self checking circuits - Y.
W. Yang, S. M. Liu, T. C. Chen; FTCS-10*; pp. 284-
287.
Self-checking linear feedback shift registers - D.
J. Lu; FTCS-10*; pp. 269-271.
A totally self-checking checker design for the
detection of errors in periodic signals - A. M.
Usas; IEEE Trans. Comput.; Vol. C-24, No.5; May,
1975; pp. 483-489.

-147-

5.42) A simple self-testing decoder checking circuit
- W. C. Carter, K. A. Duke, D.C. Jessep; IEEE
Trans. Comput.; November, 1971; pp. 1413-1415.

5.43) Self stabilising programs : The fault-tolerant
capability of self-checking programs - A. Mili;
IEEE Trans. Comput.; Vol. C-31 No. 7; July, 1982;
pp. 685-689.

* see section B.5.

-148-

->*
CODED OUTPUTS

(CODE IS ERROR DETECTING)

FIGURE 5.1 A SELF CHECKING CIRCUIT

INPUTS

-------►
SELF CHECKING

CIRCUIT

SELF CHECKING
CIRCUIT

CODED OUTPUTSINPUTS

NON CODEWORDS
CODE

.CHECKER

> - ERROR SIGNAL

FIGURE 5.2 A SELF CHECKING CIRCUIT WITH CHECKER

INPUT
VECTORX<

zX1
Xn

r~

OUTPUT VE C TO FU ZU i)

■ r

(a) COMBINATIONAL CIRCUIT

-xi :
•*

zf ••
w

OUTPUT VECTOR=Z (X i)

(b) COMBINATIONAL CIRCUIT WITH FAULT f

z
I

CODED OUTPUT
VECTOR SA S i6S

(c) SELF CHECKING COMBINATIONAL CIRCUIT

FIGURE 5.3 CIRCUIT DEFINITIONS

fault freee n
• r
'• z (Ni) e s » A •

any Nj 6 N» any f £ F§ 2 x (N i) = Z (N i) e S

orZ

FIGURE 5.4 A FAULT SECURE CIRCUIT

any Xi 6 X , fault free

some Xi 6 X t 2f (Xi) $ s

FIGURE 5.5 A SELF TESTING CIRCUIT

F ----
(\
\f3* \ fl)

F= [all faults}'
Ft C F
Fs C Ft

xcu
N C X

OUTPUTS UINPUTS U

z (X)
Z (X.)

FIGURE 5.6 EXAMPLES OF SELF TEST AND FAULT SECURITY

SCU

-150-

fault free
• r

any Xi €» S '!
(ie.S'i) I

2 (X i) e S S ' i 6 s
S' c ur
s c u

any X* fault free

...•

Z(Xi
r

(S and S' are both
error detecting codes)

FIGURE 5.7 A CODE DISJOINT CIRCUIT

any Xi .6 X •

some Xi & X

fault free

any f e Ft self test </

some Xi £ X any f 6 Ff . Zf(Xi) = Z(Xj) 6 s|j*i
incorrect
codeword input

fault security X
Fs=d

FIGURE 5.8 A SELF TESTING ONLY CIRCUIT

BUFFER GATES

>

D >

y. (parity bit)

FIGURE 5.9 A TOTALLY SELF CHECKING BUFFER

-151-

FAULT
INPUTS

Notes
ODD PARITY
CODEWORDS
a5*PARITY BIT

1)2)

3)
4)
5)

n * 4, 1 parity bit k = 5
R = result status:

a) * = correct codeword output.
b) E = non codeword output (even parity codeword)
c) X = incorrect codeword.

Correct outputs » inputs.
Input fault a corresponding output with same fault.
a1,a2,a3,a ,a5 SA1 <y«;yAy,y,y1 > permanently 111115 M J3J2Jr

FIGURE 5.10 A TSC BUFFER WITH FAULTS

-152-

1
1
2
1

+■ y,

l
’2
’2

2

FIGURE 5.11 A TOTALLY SELF CHECKING MULTIPLEXER

input
0 ►—

fan out point
I

\SA1
> ■

actual desired
output output
^ 0y (l)''

-+■ 1 (0)
FIGURE 5.12 A CONTROL LINE FAULT

L A

a b

sk s2

' f
FULL FULL FULL

Co ADDER Ci C° ADDER Ci co ADDER ci

(a) s = a © b © c i cQ = ab + c ^ (a @ b)

:= ^ r >ci—

(b)

a
b

FIGURE 5.13 A TOTALLY SELF CHECKING RIPPLE ADDER

-153-

-8+8
----->13
----->17

_r> 19. -4 ■ ~ V‘ -*-4 + 2*—> 23
----->25
----->29

NON CODEWORDS

214—

J

AN CODEWORDS
LOW COST ORIGINAL A-2
b“2,A«3
(k*6 >

DATA (K*5)

000000 0000 00000
000011 0001 00010
000110 0010 00100
001001 0011 00110
001100 0100 01000
001111 0101 01010
010010 0110 01100
010101 0111 OHIO
011000 1000 10000
011011 1001 10010
111110 1010 10100
100001 1011 ' 10110
100100 1100 11000
100111 1101 11010
101010 1110 11100
101101 1111 11110

<- 24-
■ 64■ 8 10■12

4-14 4-

-4
+ 4

-8*8
4-184-

CODEWORDS

FIGURE 5.14 ERRORS IN AN CODEWORDS
N

TSC NETWORK

INPUTS
Xi

X1
INPUTS
B< x_—

TSC
BLOCK

CODED
OUTPUTS

CODED
OUTPUTS

vx^x
FIGURE 5.15 A FULLY EXCERCISED BLOCK

INPUTS
Xi

PRECEDING
SUBNETWORK

TSC NETWORK

INPUTS TSC
Bi BLOCK

CODED
OUTPUTS

VXf6X, Vf6F, then B.is unaffected or i B SnS x r

FIGURE 5.16 A SECURELY LOCATED BLOCK

CODED
OUTPUTS

INPUTS6Xr
TOTALLY SELF
CHECKING
FUNCTIONAL
CIRCUIT

OUTPUTS
6Sf
INPUTSSXe

TOTALLY
SELF
CHECKING
CHECKER

OUTPUTS
6Sc

FUNCTIONAL
CIRCUIT OUTPUTS -----

.ERROR
INDICATOR

FIGURE 5.17 A TOTALLY SELF CHECKING NETWORK

-155-

DATACHECK BITS C. 6C

CODE S

CHECK BIT
'GENERATOR

CODES S*

TOTALLY SELF CHECKING EQUALITY CHECKER

ERROR INDICATOR

FIGURE 5.18 A TOTALLY SELF CHECKER FOR SEPARABLE CODES

LOW COST CODE

DATA BITS CHECK BITS
Xi Ci
0000 000
0001 001
0010 010
0011 Oil0100 100
0101 101
0110 110
0111 000
1000 001
1001 010
1010 Oil
1011 100
1100 101
1101 110
1110 000
1111 001
T r

• CO.I)4 111 4 c

A - S')
n * M
k - 7)

DATA BITS
Xi

CHECK BITS
Ci

0000 000
0001 001
0010 010
0011 Oil
0100 100
0101 000
0110 001
0111 010
1000 Oil
1001 100
1010 000
1011 001
1100 010
1101 Oil
1110 100
1111 000
r TrH01 101)

110 \ 4 c
111)

FIGURE 5.19 RESIDUE CODEWORDS

INPUTS
ex.

<s2 Sl>
SECURE s

<Ol) MODE
INSECURE S1

<10?MODE

TOTALLY SELF
CHECKING
FUNCTIONAL
CIRCUIT

OUTPUTS
€S , 6X J— fx.

INPUTS

TOTALLY
SELF
CHECKING
CH ECKER;

outputs es

FUNCTIONAL
CIRCUIT OUTPUTS

ERROR INDICATOR

FIGURE 5.20 A TYPE 1 PARTIALLY SELF CHECKING NETWORK
/

-156-

k-1 k-1

>*y (parity bit)

TOTALLY SELF
CHECKING
FUNCTIONAL
CIRCUIT

TOTALLY SELF
CHECKING
CHECKER

< S2 81 > s,
<01> ODD

PARITY
<10> UNKNOWN S1

PARITY

ERROR
INDICATOR

FIGURE 5.21 A PARTIALLY SELF CHECKING PARTY CHECKED BUFFER

INPUTS .
£ X„ *

TOTALLY SELF
CHECKING
FUNCTIONAL
CIRCUIT

< ’ 2 sl>

<01>

<10>

CODEWORD OUTPUTS s

• DATA BITS

1_£UECK BITS

TOTALLY SELF CHECKING
EQUALITY CHECKER

~ T > 'S

DATA BITS

OUTPUT
WITH RENCODED
CHECK BITS
es

CHECK BITS

OUTPUTS

& -----
FROM FUNC. CIRCUIT

NON CODEWORD OUTPUTS S I ►— — —
FROM FUNC. CIRCUIT

FIGURE 5.22 A TYPE 2 PARTIALLY SELF CHECKING NETWORK

ERROR
INDICATOR

*

-157-

DATA BITS DATA BITSINPUTS
exr CHECK BITS 1

CHECK BITS
< S2 Sl>

<01>RE-ENCODED CHECK BITS
<10/ORIGINAL CHECK BITS

CHECK BIT
g e n e r a t o r/

CHECK
BITS,

ERROR
INDICATOR

TOTALLY SELF
CHECKING
FUNCTIONAL
CIRCUIT

TOTALLY SELF CHECKING EQUALITY CHECKER

OUTPUTS
_ es„

FIGURE 5.23 A TYPE 3 PARTIALLY SELF CHECKING NETWORK

(a)

s4

S.3

r=<s2
s.1
b1

(b)

rs<s4s3s2si> w v Fr(Ai'V
0 0 0 0 10 0 0 + B1
0 0 0 1 Ai + B1 10 0 1 Aj ® B1
0 0 10 ri • Bi 10 10 B1
0 0 11 0 10 11 Ai * Bi
0 10 0 A1 • Bi 1 1 0 0 1

0 10 1 h 1 1 0 1 Al + Bi
0 110 Aj ® Bi 1 1 1 0 Ai + Bi
0 111 A1 • r i 1 1 1 1 Ai

FIGURE 5.24 A BIT-SLICE TO PERFORM 16 LOGIC FUNCTIONS

OUTPUTS

ON TWO VARIABLES
-158-

FUNCTION NODES STUCK-AT-0
Fr(Ai V ai al bi b4 30 al s2 s3 P1 p2 P3 p4 zi

0 X X X X
1 X X X X X

A1 © B. X X X X X X X X X
Aj © B1 X X X X X X X X

Ai X X X X X X X X X X

Bi X X X X X X X

^i X X
X X X X X X X

FUNCTION
Fr(Ai V ai a2 a3 bi bl

NODES
b3 b4

STUCK
b5 b6

-AT-
ao

-1
81 a2 a3 ql *2 zi

0 X X X
1 X X X X

Aj © X X X X X X X X X X X
Aa © B1 X X X X X X X X X X

Ai X X X X
Bi X X X X X X X X X
Ai X X X X X X X

X X X X X X X X X

Notes : 1) X indicates a detected failure.
2) Only one member from each class of structurally

equivalent faults is Included.

FIGURE 5.25 FAULT TESTED BY A SUBSET OF FUNCTIONS
IN THE CIRCUIT OF FIGURE 5.24a

, ,

DECODER CHECKER

L_
A 2 TO 4 LINE DECODER WITH CHECKERFIGURE 5.26

-159-

KEY
NORMAL (FAULT FREE) OPERATION

xi ef gh U kl Yi Ei
x2 X1 y4 7 3 y2 yl e2 C1
0 0 00 01 01 11 0 0 0 1 0 1
0 1 01 00 11 10 0 0 1 0 1 0
1 0 10 11 00 01 0 1 0 0 1 0
1 1 11 10 10 00 1 0 0 0 0 1

-- -- DECODER AND CHECKER
OUTPUTS AS NORMAL

y4y 3y2y i e2el
ERROR IN DECODER OUTPUTS

DETECTED BY CHECKER
-- e2el ERROR IN CHECKER OUTPUTS

y4y3y2yl — ERROR IN DECODER OUTPUTS
NOT DETECTED BY CHECKER

OPERATION WITH SINGLE STUCK-AT FAULTS

X2 X1 SAO SA1 SAO SA1 SAO SA1 SAO SA10 0
0 1
I 0
1 1

0101
1010

0000
0000 0011

1100

0000

0000

0000
0000

0101
1010

0000

0000
0011

1100

X2 X1 SAO SA1 SAO SA1 SAO SA1 SAO SA10 0
0 1
1 0
1 1

1010

0000 00 - - - -

11

0000
1100

00
11 0000

0101

00

11

- - 0000 00
1100 11

X2 X1 SAO SA1 SAO SA1 SAO SA1 SAO SA10 0
0 1
1 0
1 1

0000
0011 11

00 0000 00

1010

0000

11

00

0101

0000 00

11
0011 11

X2 X1 SAO SA1 SAO SA1 SAO SA1 SAO SA10 0 0 1
1 0
1 1 0000

1001
1010
1100

00
0000

0101
0110

00
1100

11
0000

11

0011
00

0110
1010

11 0000

11

00
0011
0101
1001

i2
SAO SA1 SAO SA1 SAO SA1 SAO SA1

0 0
0 1
1 0
1 1 00

00
11
11 00

11

11

00
11

11

X2 X1 SAO
*2

0 0
0 1
1 0
1 1

"s a t SAO
- - nil - - oo

11 00

SA1

FIGURE 5.27 FAULT TABLE FOR THE CIRCUIT OF FIGURE 5.26

-160-

NETWORK
INPUTS

T2 NETWORK
OUTPUTS

FIGURE 5.28 A SELF TESTING ONLY NETWORK

B IT SLICED CIRCUIT

INPUTx.exi

INPUT “ ►

Ail 6 Al“*
B IT SLICE

b,
t
•

INPUT —►

Aij e A j“*’
B IT SLICE Bj

• -

INPUT ,
A .. 6 A - *" ik k-».

•

B IT SLICE Bk

. OUTPUT =Z , (A111

OUTPUT = Z j (A i ^)

_► OUTPUT =Z (A) r k lk

FIGURE 5.29 DEFINITIONS FOR A BIT - SLICED CIRCUIT

V Aj

J
1

2 i.
J

FIGURE 5.30 A BIT-SLICE FROM THE MULTIPLEXER OF FIG. 5.11

-161-

QUAD 2tol
MULTIPLEXER

SELECT
ENABLE

a8 1A
IB

a7 2A
2B
3A
3B

1Y
2Ya6
3Y
4Ya5 4A

4Bb5

QUAD 2tol
MULTIPLEXER

a4 1A
IBb4

a3 2A
2B
3A
3B

b3
a2

4A
4B

al
bl

FIGURE 5.31 A BYTE-SLICED MULTIPLEXER

MEMORY CO

FIGURE 5.32 A SEQUENTIAL MACHINE MODEL

any Ni 6 N ►
(NS V) s

fault
free

= S(Ni>P1) memory
fault

free
pi

s p pi = s (n - ,p-:

any e n— J

o
code disjoint
fault free

if memory Pi wf
anyfCFg = S(Ni^i

©
any
f € E>

any f 6

p < - * (n t pi)

w(p.)e S
=tt(&(Nf,Pp)

(SC W)

u f (Sf (Nf.Pp)
_̂ u(S(N£- ,pi))es @

L
Of(Sf(NT PT))^S @

FIGURE 5.33 A FAULT SECURE SEQUENTIAL CIRCUIT

-162-

CLOCK

€ N
faultsecure

state
register

fault
secure

code
disjoint
fault

secure

FIGURE 5.34 A FAULT SECURE SYNCHRONOUS SEQUENTIAL MACHINE

0/0 Q 1/° n 0̂9^---- ► 92 --- Q y / i -

(a) State Diagram

(b) State Table

x/y
state Qi

PRESENT STATE

Q2 Ql

INPUT x

NEXT STATE OUTPUT y
0 1 0 1q2 q i q2 q i

Q 1 0 0 0 0 0 1 0 0
q 2 o 1 0 0 1 0 0 0
*3 1 0 0 0 1 1 0 0
9 4 1 1 0 0 1 1 1 1

SA 6 s

y=q2 Qi
q2 =x(cl2+ql)
ql =x̂ 2+qi)

(c) Logic Diagram

FIGURE 5.35 SEQUENTIAL MACHINE DESIGN

CK Q

-163-

(a) State Table

P = (even parity
codewords)

p = parity bit

S = (<0l><10>)

PRESENT STATE

P3 P2 P1

INPUT X

NEXT STATE OUTPUTS
0 1 0 1

P'3 ^ 2 ^ 1 P% P2 pl y2 yl y2 yl
0 0 0 0 0 0 1 0 1 1 0 1 0

p 1 0 1 2 0 0 0 * 1 1 0 1 0 1 0
p 1 1 0*3 0 0 0 O i l 1 0 1 0
p O i l *4 0 0 0 0 1 1 * 0 I 0 1

(b) Logic Diagraa

FIGURE 5.36 FAULT SECURE DESIGN OF FIG. 5.35

see section
5.8.2

P? Pi

CLOCK b-

any X ̂ 6 X-
fault
free

memory
fault
free

fa u lt
free

Some X j
(and P^)
e x p

memory
any f e Ft any f 6

S f
any f e Ft

FIGURE 5.37 A SELF TESTING SEQUENTIAL CIRCUIT

-164-

CHAPTER SIX : THEORY AND DESIGN OF SELF CHECKING CIRCUITS

6.1 : INTRODUCTION

Chapter 5 has defined the various types of self checking
circuit and discussed their properties. This Chapter
develops that theory in order to design a number of
totally self checking (TSC) circuits.

There is still no universally adopted technique for
designing self checking circuits, so it is often necessary
to form a self checking network out of a number of smaller
blocks, whose self checking abilities are easily demon
strated. The minimal attention paid by researchers in
this field to developing any generalised theory has not
been helped by many of the papers referenced so far, which
present designs, yet give insubstantial explanations of
any fundamental theory, their design procedures and how to
readily demonstrate that the designs are in fact self
checking. This Chapter attempts to remedy that situation
with a detailed development of self checking analysis and
design from the fault testing requirements of logic gates.

Most research has been devoted to self checking checkers
(see section 5.4), a circuit which effectively converts a
specific input code to a l-out-of-2 output code, see Fig.
6.1a. There is also a requirement for self checking
circuits with more than one encoded input, illustrated in
Fig 6.1b, and self checking circuits with uncoded inputs,
illustrated in Fig. 6.1c. Throughout the remaining
Chapters only self checking circuits which output a l-out-
of-2 code are considered, for reasons given in section
5.4.1.

It is shown in section 6.5 that a circuit with a 1-out-of-
2 code output is inherently fault secure if each output is
computed with an independent subcircuit. On this basis
only the self testing capabilities of the circuit need to
be evaluated for self checking purposes. A number of

-165-

theorems are proposed in sections 6.2 to 6.4 which specify
the tests required to detect all single stuck-at faults in
single and cascaded AND, OR, EXOR and inverter gates.
Section 6.4 also introduces the concept of merged test
sets, which allow simultaneous testing of more than one
gate. The self testing property requires that all the
necessary tests are generated within a circuit at some
point during normal operation from the application of
codeword inputs only. This aspect is discussed in section
6.5.

Section 6.5 applies the theory of section 6.4 to design
totally self checking checkers using Karnaugh maps C6.13.
Two theorems specify the conditions for a 2-level AND/OR
or OR/AND structure to be self testing and two corollaries
show how a Karnaugh map representation of the circuit is
used to determine if these conditions are met. Section 6.6
implements this design procedure for an n-input comparator
(equality checker), where the input pairs are initially
l-out-of-2 encoded. This circuit appears (mainly for n=2)
in virtually any discussion of' TSC circuits, but its
design has never been adequately documented. An often
quoted formula for this design is also derived. Section
6.7 again uses the theory of section 6.4 to design a TSC
parity code checker.

The design of a TSC 1-out-of-n code checker is discussed
in section 6.8, with specific reference to a 2 to 4 line
decoder and its l-out-of-5 checker. Finally, section 6.9
describes a TSC periodic signal checker. All of these
designs are subsequently employed in the self checking
computer of Chapter 9.

6.2 : TESTING FOR FAILURES IN AND, OR AND INVERTER GATES

Consider a 2-input AND gate which has four input combina
tions and six single stuck-at faults. Fig. 6.2 details
the faults detected by each input combination. A failure
is detected by an incorrect output, so the output stuck-

at-0 (SAO) is detected by an input combination which
normally produces a 1 output (<11>) and the output stuck-
at-1 (SA1) is detected by an input combination which
normally produces a 0 output (<00>, <01> or <10>). An
input SAO is detected by combinations which apply a 1 to
that input and levels to the other inputs such that the
input failure produces an incorrect output. Thus <11>
detects inputs A or B SAO in a 2-input AND gate (see Fig.
6.2). Similarly an input SA1 is detected by combinations
which apply a 0 to that input and produce an incorrect
output due to the failure. These are <01> for A SA1 and
<10> for B SA1 in a 2-input AND gate. A stuck-at input
will not be detected by applying the stuck-at level to it
and a stuck-at output will not be detected by an input
combination which produces the stuck-at level as an
output. Fig. 6.3 details the input combinations to a 2-
input OR gate and the single stuck-at faults they detect.

Using this information, it is desirable to ascertain the
minimum test set T for each gate. However, this is more
clearly observed from the fault tables given in Fig. 6.4
for 3-input AND and OR gates. From this table two
theorems are proposed.

THEOREM 6.1 : Every single stuck-at fault in an n-input
AND gate is detected with the application of a single 0 to
every input (n combinations) and all inputs at 1, a total
of n+1 input combinations.

Proof s The only test for an input SA1 is to apply a 0 to
that input and a 1 to all others. For n inputs there must
be n such tests, a single 0 applied to each input. All
these tests produce a 0 at the gate output during fault
free operation and a 1 when an input SA1 is detected.
They will therefore also detect an output SA1 failure.
The only test for an input SAO is all inputs at 1. Any
input SAO will be detected by this test, which produces a
1 output during fault free operation and a 0 output with a
single (or multiple) input SAO failure. The test there

-167-

fore also detects an output SAO failure. Thus all single
stuck-faults are detected by these n+1 tests. This set
of tests is defined as T&, so that T = T&.

THEOREM 6.2 : Every single stuck-at fault in an n-input OR
gate is detected with the application of a single 1 to
every input (n combinations) and all inputs at 0, a total
of n+1 input combinations.

Proof s Using Fig. 6.4. the proof for this theorem is
similar to that for theorem 6.1. This set of tests is
defined as T+, so that T = T+.

Although self evident, the testing requirments for an
inverter gate are given for completeness by the following
theorem.

THEOREM 6.3 : Every single stuck-at fault in an inverter
gate is detected with application of a 0 and 1 to its
input.

Proof : Fig. 6.5 gives the fault table for an inverter
gate. This shows that a 0 input will detect input SA1 and
output SAO failures, whereas a 1 input will detect input
SAO and output SA1 failures; i.e. both input combinations
are required to fully test the gate. This set of tests is
defined as T', so that T = T'.

6.3 : TESING FOR FAILURES IN EXCLUSIVE-OR GATES

The procedures for testing stuck-at failures in an
Exclusive-OR (EXOR) gate are somewhat different to those
in section 6.2 and hence are dealt with separately. Fig.
6.6 gives the fault tables for 2, 3 and 4-input EXOR
gates. From these it can be seen that there are 2 n ~ ^ (n
is the number of inputs) combinations which will test for
every single stuck-at failure. Half of the inputs which
detect an input stuck-at failure produce a 1 output from
the gate during fault free operation and the other half

-168-

produce a 0 output. It is therefore much more difficult
to derive a minimum test set. Any input combination and
its inverse will detect all input SA faults in all gates,
for example <000> and <111> when n = 3. These two
tests will also detect both output failures in gates
with odd n (n=3 in Fig. 6.6). They will not do the same
for gates with even n because both produce the same output
(n=2 and n=4 in Fig. 6.6). In this case a third test is
necessary which produces an output opposite to that of the
first two. From this discussion the following theorem is
proposed.

THEOREM 6.4 : Every single stuck-at failure in an n-input
EXOR gate is detected with the application of input
combinations which provide a 0 and a 1 to every input.
There must also be at least one input combination which
has an odd number of l's and at least one input combina
tion which has an even number of l's.

Proof : Single input SAO failures are detected by applying
a 0 to every input and single - input SA1 failures are
detected by applying a 1 to every input. The combinations
are therefore not as restrictive as those for AND and OR
gates. They can range from a single 0 and a single 1
applied to all inputs to the minimum set of two tests (any
combination and its inverse). The only restriction is
that all inputs receive a 0 and a 1. This is possible
since, given any input combination, a single change in
this combination due to a fault will produce a change in
the output and will thus be detected. The requirement for
at least one input combination which has an odd number of
l's and at least one input combination which has an even
number of l's ensures that the output of the gate will be
a 1 and 0 respectively, so that both output faults can be
detected. This set of tests is defined as T © .

6.4 : TESTING FOR FAILURES IN CASCADED GATES

So far, the tests for single stuck-at faults have been for
-169-

gates in isolation. In practice gates will be cascaded,
so the effect this has on testing them for failures must
be considered. The requirements of theorems 6.1-6.4 must
still be met for each gate, to ensure that all failures
within them can be detected. Assuming that this is the
case, a detected failure within the circuit needs to be
propagated to its output(s) so it can be detected extern
ally by an error indicator or checker. Theorem 6.5 gives
the conditions for this to occur.

THEOREM 6.5 : Every test t 6 T applied to a single gate,
where T is the test set for that gate (and given by
theorems 6.1-6.4), has an output y^, the level it occupies
with the fault present, which is the inverse of its normal
output. All single stuck-at faults in the circuit
consisting of a gate whose output y is connected to an
input x^ of a second gate can be detected at the output
of the second gate, if V t € T^ are applied to the first
gate, where T^ is T for that gate, and for at least one
occurrence of each t there must be an input combination to
the second gate which tests for input x. stuck-at-yf, f f i t .where yfc is y for test t. In addition V t € must be
applied to the second gate, where is T for that gate.

Proof : Consider a 3-input AND gate feeding a 3-input OR
gate, as shown in Fig. 6.7a. A fault in the AND gate
needs to be propagated to the output of the OR gate. With
the application of V t 6 T^ = T&, a fault in the AND gate
is detected when its output is opposite to that expected.
It is this faulty level, d^, which must be propagated to
output h. There is a d^ for each t, i.e. d£, so that for
at least one occurrence of each t (t could occur more than
once) there must be an input combination to the OR gate
which detects f stuck-at-d^. For example, in Fig. 6.7a,
a = b = c = 1 tests for a, b, c or d SAO. During fault
free operation d=l, but for any of these faults d=0. To
propagate this fault the OR gate must have the appropriate
input combination to detect f SAO, i.e. a single 1 on f,
<efg> « <010>. From Fig. 6.7b the four conditions to

-170-

detect and propagate all faults in the AND gate require
<efg> = <000> and <010>. However the OR gate requires
V t € = T+ to fully test it, so <efg> = <100> and <001>
must also occur.

Example 6.1 : The structure of Fig. 6.7a is expanded in
Fig. 6.8a to give a complete two level AND/OR structure.
There are now three 3-input AND gates to test, so the
procedure adopted in Fig. 6.7b to test for a fault and
propagate it is detailed for each AND gate in turn.

The fault propagation requirement means that whilst one
AND gate is being tested, the other two must have any
input combination except <111> so that they output a 0,
denoted by X in Fig. 6.8a. As a result, the required
OR gate input combinations automatically satisfy the
conditions to fully test this gate, see Fig. 6.8b. From
Fig. 6.8b there are twelve conditions which must be *
satisfied to fully test the circuit for all single stuck-
at faults. However, this can be reduced to a minimum of
six tests as follows. The tests*for a SA1 fault in any
AND gate (inputs <011>, <101> and <110>) all require the
OR gate input to be <000>. These tests produce a 0 output
from the tested gate during fault free operation, so they
can be merged without affecting the fault propagation
requirements. This allows all AND gates to be simultan
eously tested for SA1 faults. Any single SA1 fault in any
of the three AND gates will then produce a 1 output from
that gate and a change in the OR output from 0 to 1. The
tests can be merged in any combination. Fig. 6.8c gives
two examples. The tests for SAO failures in the AND gates
cannot be merged in a similar manner, since the propaga-
ion requirement allows only the tested AND gate output to
be a 1. SAO tests cannot be merged with a SA1 test
either, as a detected fault in the former would not be
propagated, since the OR gate already has an input at 1
due to the latter. (Another due to a SAO fault will not
cause a change at its output.) If the SA1 tests are fully
merged, the circuit in Fig 6.8a requires a minimum of six

-171-

tests, as indicated in Fig. 6.8c.

Fig. 6.9 extends the concepts of Fig 6.8 to give the test
requirements for various cascaded OR/AND, AND/AND, OR/OR
and mixed structures. These structures are totally self
checking for all single stuck-at faults if all the first
level gates are fully tested. An n-input AND or OR gate
requires n+1 tests to fully test it (from theorems 6.1 and
6.2), so the total number of unmerged tests Tu for the
2-level structures in Fig. 6.9 is given by:

m
T = I (n. + 1) : where n. is the number of inputs for

i = 1 1gate i and m is the number of first
level gates. (6.1)

To calculate the minimum number of tests which occur in a
fully merged test set, consider 2-level AND/OR and OR/AND
structures only, with m x n-input first level gates. The
merging process is applied to SA1 tests for the AND/OR
structures and SAO tests for the OR/AND structures. In
either case these tests constitute n of the n+1 tests for
each gate (see proof of theorem 6.1). In a fully merged
test set these n tests for m-1 of the first level gates
are combined with those for the remaining gate. For the
circuit conditions given above, Tu= m(n+l), so the number
of fully merged tests T^ is then given by:

T = m(n+l) - (m-l)n = m+n (6.2)m

Applying equation (6.2) to example 6.1, for which m=3 and
n=3, gives T^=12 and Tm=6, as expected.

Note that for AND/AND and OR/OR structures the only tests
which can be merged are the SAO and SA1 tests respective
ly, which in fact are automatically merged due to the
requirements of the second level gate for fault propaga
tion, see Fig. 6.9b and 6.9c.

A corollary is now presented to theorem 6.5 for the casca-
✓

-172-

ding of EXOR gates.

Corollary 6.1 : All single stuck-at failures in a circuit
consisting of an EXOR gate whose output y is connected to
an input x^ of a second gate can be detected at output of
a second EXOR if, V t 6 T ® are applied to both gates.

Proof : Consider a 2-input EXOR gate feeding another
2-input EXOR gate, as shown in Fig. 6.10a. Using theorem
6.4, Fig 6.10b details a set T = T © for the first gate
and possible input combinations to the second gate to
propagate detected faults. As stated before, a single bit
change to an EXOR input combination will always change its
output during fault free operation, so if c changes to c^
in the first gate, this level will always be propagated
through the second. It is only necessary, therefore, to
ensure that V t € T © are applied to each gate.

So far, only two cascaded gates have been considered. If,
as is likely, more than two gates are cascaded, all single
failures in every gate need to be propagated to the final
output(s). To ensure that this happens, theorem 6.5 must
now be applied to each pair of connected gates in the
circuit and its principles extended until the final output
is reached. Using Fig. 6.11a as an example, the procedure
is as follows:

1) Start at gate A:
a) For V t 6 T& (gate A), determine appropriate

t 6 T+ for gate B from theorem 6.5.
b) For the t € T+ required for gate B in a),

determine appropriate t € T& for gate C from
theorem 6.5.

2) Start at gate B:
a) For V t 6 T+ (gate B), determine appropriate

t € T& for gate C from theorem 6.5. Some of
these tests will have already been provided by
la) .

3) Ensure that V t 6 T& are applied to gate C. Again,
-173-

some of these will have already been provided by lb)
and 2a).

Fig. 6.11b gives the results of 1), 2) and 3) for the
circuit in Fig. 6.11a.

6.5 : DESIGN OF TSC CHECKERS USING KARNAUGH MAPS

A self checking checker maps a coded input (or inputs) to
a l-out-of-2 code output, as shown in Fig. 6.1a. Its
normal input set is Xc and its output set is Sc, where
S = £<01>,<10>}. From section 5.4.1, two fundamental crules must be applied to every TSC checker design.
These are:

1) The checker must be code disjoint:
a) Code inputs are mapped to outputs <01> or <10>.
b) Non code inputs are mapped to outputs <00> or

<11>.
2) Both code outputs must be used:

a) At least one code input must be mapped to output
<01>.

b) At least one code input must be mapped to output
<10>.

A checker must be totally self checking on the basis of
codeword inputs only. If an independent subcircuit is
used for each output, the checker will be fault secure for
all faults affecting one subcircuit only. Under these
fault conditions it will output the correct codeword or a
non codeword. It is also.fault secure for faults creating
a unidirectional error at its outputs. In general, only
single stuck at faults are considered for analytical and
design purposes. Independent subcircuits will be adopted
for all designs, so only the self testing capabilites of
each subcircuit need to be evaluated.

A design procedure is now presented for TSC checkers using
Karnaugh maps £6.13. From a Karnaugh map any circuit

✓

-174-

design can be implemented using either a sum of products
(normal minterm form) or a product of sums (normal maxterm
form) C6.13. A sum of products implementation is a two
level AND/OH structure as shown in Fig. 6.8a, whilst a
product of sums implementation is a two level OR/AND
structure as shown in Fig. 6.9a. Every design requires a
Karnaugh map for each output. The size of the map is
determined by the number of network inputs. Code inputs
are depicted by a circle within the appropriate minterm
square on each map.

6.5.1 : TSC AND/OR STRUCTURES

The following theorem ensures that an AND/OR structure is
self testing for code inputs.

THEOREM 6.6 : A 2-level AND/OR structure is self testing
for all single stuck at faults if code inputs provide:

i) At least one occurrence of a single 0 on each input
of every AND gate with no other AND gate output at 1.

ii) At least one occurrence of an all 1 input to each AND
gate with no other AND gate output at 1.

Proof : The single 0 and all 1 requirements for each gate
are the conditions of theorem 6.1 to detect all single
stuck-at faults in an AND gate, whilst the occurrence of
these with no other AND gate output at 1 satisfies the
condition of theorem 6.5 to propagate a fault. Section
6.4 and Fig. 6.8 have already demonstrated that the single
0 tests can be merged and that the requirements of theorem
6.5 for the second level OR gate will be automatically
met.

A means of interpreting this theorem on a Karnaugh map is
now required. Before presenting a corollary to theorem
6.6 for this purpose, a definition is required.

Definition 6.1 : The expansion of a prime implicant C6.13
-175-

with respect to one of its constituent variables is the
area on a Karnaugh map where that variable alone is at 0.

Fig. 6.12 shows these areas on a 4 variable Karnaugh map
for each variable of a 2, 3 and 4 variable prime
implicant.

Corollary 6.2 : A 2-level AND/OR structure is self testing
for all single stuck-at faults from code inputs if the
following conditions are satisfied on a Karnaugh map:

i) In the expansion of each prime implicant with respect
to each constituent variable, there must be at least
one codeword input which results in a 0 output; i.e.
a © .

ii) Each prime implicant must contain at least one code
word input which is unique to that prime implicant,
i.e. not covered by more than one prime implicant.

Proof : A codeword containing a 0 (©) in the expansion
of a prime implicant with respect to a variable, results
in this variable alone being a 0 for that code input. A
codeword containing a 1 (©) in the expansion of a prime
implicant with respect to a variable, results in a 1 at
the output of the OR gate, i.e. one of the other AND gates
has a 1 output for that code input. Whilst this latter
condition is allowed, there must be at least one instance
where it does not occur (for codeword inputs), so the
expansion of the prime implicant must contain at least one
© . In order to provide a single 0 to each input of
every AND gate, there must be at least one © in the
expansion of every prime implicant with respect to all of
its variables.

Every prime implicant must contain a codeword. If it does
not, the AND gate it represents may receive all input
combinations which have a single 0, but it will never
receive the all 1 input combination to test this gate from
code inputs. This all 1 input combination also provides a

-176-

single 1 test to the second level OR gate. A codeword
which is covered by more than one prime implicant results
in all these prime implicants (AND gates) presenting a 1
to the second level OR gate for that code input. Whilst
this condition is allowed, there must be at least one
instance where it does not occur (for code inputs), so
that each prime implicant must contain at least one code
input which is not covered by any other prime implicant.

Fig 6.13 illustrates these points in a number of proposed
designs for one output of a TSC checker, which are not
self testing and therefore not in fact TSC for the reasons
given in each case.

A prime implicant which contains an inverted variable does
not create a problem as Fig. 6.14 indicates. The AND
gates still receive all their required test inputs and
since every AND gate input has to be 0 for some tests and
1 for others, the added inverter gate will be automatical
ly tested to the conditions given in theorem 6.3.

6.5.2 : TSC OR/AND STRUCTURES

The following theorem ensures that an OR/AND structure is
self testing from code inputs.

THEOREM 6.7 : A 2-level OR/AND structure is self testing
for all single stuck at faults if code inputs provide:

i) At least one occurrence of a single 1 on each input of
every OR gate with no other OR gate output at 0.

ii) At least one occurrence of an all 1 input to each OR
gate with no other OR gate output at 0.

The proof is similar to that for theorem 6.6 and is there
fore not included. A circuit design can be implemented
just as easily in an OR/AND form from a Karnaugh map as
the AND/OR form C6.13. Prime implicants now become prime
implicates, covering 0's instead of l's. Definition 6.1

-177-

now needs to be modified.

Definition 6.2 : The expansion of a prime implicate with
respect to one of its constituent variables is the area on
a Karnaugh map where that variable alone is at 1.

Fig. 6.15 shows these areas on a 4 variable Karnaugh map
for each variable of a 2, 3 and 4 variable prime
implicate.

A similar corollary to that for theorem 6.6 can now be
presented.

Corollary 6.3 : A 2-level OR/AND structure is self testing
for all single stuck-at faults from code inputs if the
following conditions are satisfied on a Karnaugh map:

i) In the expansion of each prime implicate with respect
to each constituent variable, there must be at least
one codeword input which results in a 1 output; i.e.
a (T) •

ii) Each prime implicate must contain at least one code
word input which is unique to that prime implicate;
i.e. not covered by more than one prime implicate.

Again the proof is not included, as it is so similar to
that for corollary 6.2

TSC circuits and networks can now be designed using the
above theorems and corollaries.

6.6 : A TSC N-BIT COMPARATOR

A TSC circuit is frequently required to compare two n-bit
words. Consider, initially, that each input and its
corresponding input in the other word are encoded in a
l-out-of-2 code, in the manner of Fig. 6.16. This circuit
is then an n x l-out-of-2 to 1 x l-out-of-2 code conver
ter .

-178-

Consider two pairs of inputs <a^b^> and r so that
there are four possible code inputs <a^b^a^b^>; <0101>,
<0110>, 1001> or <1010>. Each of these must be mapped to
one of the code outputs <01> or <10>, with each output
occurring at least once. Non code inputs are mapped to
the non code outputs <11> or <00> for the circuit to be
code disjoint. In addition, the circuit must be self
testing from only the four code inputs.

Circuit options for each output are:

1) A single AND (OR) gate with up to three inputs, since
the number of tests for a 3-input gate is four.

2) A single EXOR gate, since a minimum of two or three
tests are required for an n-input gate, where n is odd
or even respectively.

3) A 2-level AND/OR (or OR/AND) structure wth up to 2 x
2-input AND gates, since the number of tests when
fully merged is four.

A single AND with two or three inputs is represented on a
Karnaugh map by a block of two or four l's respectively.
Both of these prime implicants can only cover a single
codeword, so option 1) is eliminated. Example 6.2
indicates that option 2) can provide a design that is self
testing but not code disjoint, whereas example 6.3 shows
that option 3) is the most viable.

Example 6.2 : The EXOR/EXNOR combination in Fig. 6.17a
provides the desired function. Its truth table in Fig.
6.17b demonstrates that it is self testing for code
inputs, but also shows that it is not code disjoint.

Example 6.3 : Option 2) requires a block of four l's on a
4 variable Karnaugh map for each 2-input AND gate. The
design of Figs. 6.18a and 6.18b is a 2-level AND/OR
structure which is self testing from corollary 6.2. Its
output <3̂ 2> *s given by:

-179-

yx = + bxa2
and y2 = + b2b2 (6.3)

The structure of each subcircuit is identical, so Fig.
6.18c details the testing requirements for one of them.
This process has already been demonstrated in example 6.1.
It shows that the inputs to each subcircuit must satisfy
six conditions to fully test for all single stuck-at
faults and that this number may be reduced to four in a
fully merged test set. However, there are only four code
word inputs, so each subcircuit MUST have a fully merged
test set, with each codeword generating one of the four
tests. The truth table of the circuit in Fig. 6.18d
demonstrates that it is code disjoint and that it uses a
fully merged test set for self testing purposes. Fig.
6.18e gives the fault table for the subcircuit which
computes y^, which confirms that all code inputs are
required to test it. It is interesting to note that the
second level OR gates provide a l-out-of-4 to l-out-of-2
code conversion. This process* is not, however, code
disjoint. The code disjoint property of the overall
circuit is provided by the first level AND gates.

Example 6.4 : In a similar manner to example 6.3, the
design of Figs. 6.19a and b is a 2-level OR/AND structure
which is self testing from corollary 6.3. Its output
< y ^ 2> is given by:

yl = (al + a2)(bl + V
and y2 = (a1 + b2>(b1 + a2> (6.4)

Figs. 6.19c and d demonstrate that it is code disjoint and
uses a fully merged test set. The second level AND gates
in this instance provide a 3-out-of-4 to l-out-2 code
conversion which is not code disjoint.

The circuits of examples 6.3 and 6.4 are those presented
by Carter C6.2D and Anderson C6.33. They are now expanded

-180-

for more than two input pairs and henceforth referred to
as 2-input Morphic AND gates.

A Morphic AND gate is a conventional AND gate where each
input and output is replaced by a pair of inputs and a
pair of outputs respectively, with each pair encoded in a
1-out-of-2 code. The output is a codeword if all input
pairs are codewords. Thus the output pair <y^y^> a
2-input Morphic AND gate is given by:

<yly2> = <aibi> &m <a2b2> (6*5>

where is defined as the Morphic AND operation. An
n-input Morphic AND gate has n input pairs, i.e. 2n
physical inputs. Fig. 6.20 compares the truth tables for
conventional and Morphic 2-input AND gates. The truth
table of the latter confirms that examples 6.3 and 6.4
are 2-input Morphic AND gates.

If y^^ and denote the outputs of an n x l-out-of-2 to
1 x l-out-of-2 converter, or n*-input Morphic AND gate,
then for n=l:

Using equations (6.4) and (6.6), the outputs for n=2 are
given by:

A 3-input Morphic AND gate, illustrated in Fig. 6.21a,
consists of two cascaded 2-input Morphic AND gates C6.43,
so that;

* n - ai
*12 = bl (6.6)

*21 = alb2 + bla2 * *llb2 + *12a2
*22 = ala2 + blb2 = *lla2 + *21b2 (6.7)

-181-

(6.8)

Equation (6.8) indicates that the 3-input Morphic AND gate
can also be implemented as the 2-level AND/OR structure of
Fig. 6.22a. However, it needs to be established if this
circuit or that in Fig. 6.21a is totally self checking.
Each 2-input Morphic AND gate in Fig. 6.21a is TSC
(inherently fault secure and self testing from theorem
6.6), code disjoint, fully exercised (the second level
Morphic AND gate also receives all input codewords, see
the truth table in Fig. 6.21b) and there is no reconver-
gent fanout in the network. Thus the conditions of
corollary 5.1 are satisfied and the network is TSC.
Applying corollary 6.2 to the Karnaugh map representation
of equation (6.8) in Fig. 6.22b reveals that the 2-level
AND/OR structure is also self testing and thus TSC. The
truth table for output y ^ in Fig. 6.22c also shows that
this implementation requires all codeword inputs to fully
test it, but does not use a fully merged test set (seven
tests).

From Fig. 6.23a a 4-input Morphic AND gate is given by:

Equation (6.9) can again either be implemented as in Fig.
6.23a, or as the 2-level AND/OR structure shown in Fig.
6.23b. Both are TSC.

In general, from equations (6.7) to (6.9), an n-input
Morphic AND gate is given by:

Equation (6.10) is that presented by Carter C6.53 and
Anderson C6.33.

*41 = y31b4 + y32a4
y42 = y31a4 + y32b4 (6.9)

ynl ” y (n-l)lbn + y (n-l)2an
yn2 = y (n-1)lan + y (n-l)2bn (6.10)

-182-

Equations (6.7) to (6.9) also show that each output has
2n ̂prime implicants, each with n variables. This means

n "■ 1that both subcircuits require 2 x n-input AND gates and n _2a 2 -input OR gate. The n-input Morphic AND gate there
fore satisfies the conditions associated with equation
(6.2), which gives the number of fully merged tests asn_ jTm = 2 +n. The number of possible codeword inputs to an
n-input Morphic AND gate is 2n , since each input has two
code combinations (<01> and <10>). Equating the number of
codewords to Tm reveals that only a 2-input Morphic AND
gate uses a fully merged test set.

Consider now a 4-input Morphic AND gate formed from 2 x
2-input Morphic AND gates, both implemented as an AND/OR
structure, which feed a third 2-input Morphic AND gate
implemented as an OR/AND structure, see Fig. 6.24a. Each
2-input Morphic AND gate is TSC, so the use of mixed
structures in no way affects the self checking ablility of
the network. In Fig. 6.24a, there is a set of 2 x
2-input OR gates feeding a third 2-input OR. These gates
can be merged to give a set of 4-input OR gates and the
circuit of Fig. 6.24b. The second level of the AND/OR
structure has now been merged with the first level of the
OR/AND structure, which results in fewer gates and gate
levels. This merging process does not affect the self
checking ability of the network either, because the
minimum test set for the cascaded 2-input OR gates (which
must exist in the original network) is identical to that
for the single 4-input OR gate of Fig. 6.25. This set of
OR gates forms a non code disjoint 2 x l-out-of-4 to 1 x
3-out-of-4 code converter.

If the 4-input Morphic AND gate is formed from 2 x 2-input
OR/AND Morphic AND gates, which feed a 2-input AND/OR
Morphic AND gate, then a similar merging process can be
performed on the central AND gates, as shown in Fig. 6.26.
This set of AND gates form a non code disjoint 2 x 3-out-
of-4 to 1 x l-out-of-4 code converter.

-183-

A Morphic AND gate for a large number of inputs can use
both of these merging processes. This significantly
reduces the number of gates and gate levels when compared
to the cascading of original 2-input Morphic AND gates.
Fig. 6.27 shows both of these networks for n=8. The third
option, a 2-level AND/OR structure, would require a total
of 256 x 8-input AND gates and 2 x 128-input OR gates.

All the circuits in this section so far have dealt with
input pairs encoded in a l-out-of-2 code. The original
intention was to design a TSC n-bit comparator or equality
checker. In this case the input pair is effectively en
coded in the duplication code, i.e. both inputs identical,
as opposed to the l-out-of-2 code in which they are always
opposite. It is therefore a simple matter to convert all
of the above designs into equality checkers by inserting
an inverter gate into one input of every pair, as shown in
Fig. 6.28. These extra gates convert the duplication code
into a l-out-of-2 code. They will not affect the self
checking ability of each design and will be automatically
tested to meet the conditions of theorem 6.3 from
codewords (every inverter input receives a 1 and a 0 from
codewords).

6.7 : A TSC PARITY CODE CHECKER

A TSC parity checker is a circuit which converts a parity
code to a l-out-of-2 code. This is achieved by splitting
the bits of a parity encoded word into two groups, where
each group contains at least one bit, as follows:

1) Odd Parity : An odd number of l's in the codeword
creates an odd number of l's in one group and an
even number of l's in the other. Therefore, if each
group is checked for an odd number of l's using an
EXOR tree, one output will be high and the other
low; i.e. a l-out-of-2 code. Fig. 6.29a shows the
resulting odd parity checker.

-184-

2) Even Parity : An even number of l's in the codeword
creates an odd number of l's in both groups or an
even number of l's in both groups. Therefore, if one
group is checked for an odd number of l's using an
EXOR tree and the other group is checked for an even
number of l's, then a l-out-of-2 code output will be
produced. Fig 6.29b shows the resulting even parity
checker.

An independent subcircuit for each of the two outputs
ensures that the checker is fault secure, so, again, only
its self testing ability needs to be evaluated.

Example 6.5 : Consider an 8-bit data word with a single
odd parity bit. Fig. 6.30a shows the 9-bit checking
circuit where bits x^, x2, x^ and x^ form group 1 and bits
X5, x6, x?, Xg and Xg form group 2, such that;

yl = xi © x2 © x3 © x4
y2 = x5 © x& © x? © Xg © x9 (6.11)

The data word is assumed to take on all possible combina-otions (2) so that the group 1 inputs will do likewise.
gThe overall codeword, however, only takes on 2 out of the

9 82 possible combinations. (The other 2 combinations are
even parity codewords.) The group 2 inputs, which include
the parity bit, will take on all combinations, though,
since the group 1 inputs are always able to provide
appropriate levels to form an odd parity codeword. The
truth tables are thus given in Fig. 6.30b and 6.30c for
each subcircuit with all input combinations. They
indicate that each gate will receive all its input
combinations, so the conditions of corollary 6.1 are
satisfied. Thus each subcircuit is self checking and the
checker is TSC overall.

Example 6.5 demonstrates that a TSC checker for a k-bit
parity encoded word can be constructed from a p-input
EXOR tree and a q-input EXOR tree, such that:

-185-

p + q = k, where p and q >, 1 (6.12)

In example 6.5 k=9, p=4 and q=5. The parity checker used
as part of the partially self checking circuit in Fig.
5.21 is another example, where p=l and q = k-1.

6.8 : A TSC 1-0UT-0F-N CODE CHECKER

A particular case of m-out-of-n codes are 1-out-of-n
codes. They occur frequently in control signals where the
code is generated from an m to n line decoder of the form
of Fig. 6.31. An example of this is address decoding in a
microprocessor based system. A TSC means of checking a
1-out-of-n code is therefore required. The author has
investigated many 2-level AND/OR structures for this
purpose, but all fail to be self testing because of only
n codewords in 2n combinations and the fact that each
codeword has only a single 1. A more complex circuit must
therefore be necessary.

Anderson C6.63 and Marouf C6.73 have proposed that a
1-out-of-n code is converted to a k-out-of-2k code, which
is then checked by a TSC k-out-of-2k to l-out-of-2 conver
ter, as shown in Fig. 6.32a. Kraft C6.83 and Khakbaz C6.93
have proposed that a 1-out-of-n code is converted to a
k x l-out-of-2 code, which is then checked using the
circuit described in section 6.6 and shown in Fig. 6.32b.
It is this latter approach which is adopted here, as
follows.

The 1-out-of-n to k x l-out-of-2 converter, circuit L in
Fig. 6.32b, has n inputs, x^...x^...x and k output pairs
<c^d^>...<Cjdj>...<0 4̂^), where k is given by:

A input codeword with x^=l maps to an output combination
such that <c^...cj...c^) is the binary representation of

-186-

i. In each case d. is the inverse of c,. The only
3 3 yexception to this is where n is a power of 2, in which

case the codeword with x =1 maps to c, =. . . =c . =. . . =c. =0.n 1 j k
Each output Cj and d^ is computed using an independent
subcircuit,, so the network is inherently fault secure.
The network must also be code disjoint and self testing.
These properties are demonstrated in example 6.6 below.

The k x l-out-of-2 to 1 x l-out-of-2 converter, circuit C
in Fig. 6.32b, consists of a series of cascaded 2-input
Morphic AND gates with level merging, if appropriate,
as described in section 6.6. If n is not a power of 2,
then all possible codewords will not be generated at the
outputs of circuit L, since L has n code inputs and n code
outputs. Circuit C implemented as a 2-level AND/OR (or

lrOR/AND structure) will require all 2 codewords to be
self testing, so this design is not viable. However,
every 2-input Morphic AND gate also requires all four
codewords to be self testing, so the connections from
circuit L to circuit C will have to ensure that this
occurs. Example 6.6 illustrates' this point.

Example 6.6 : Consider the 2 to 4 line decoder shown in
Fig. 6.33. This is a similar circuit to that used in
example 5.6, except that it has an additional input,
enable g. When g=0 the decoder operates normally, but
when g=l all outputs are at 0. All outputs at 0 is not
a l-out-of-4 codeword, but if g is included as part of the
output, a l-out-of-5 code will always be generated.

Circuit L (of Fig 6.32b) will have five inputs, so that
n=5, and k output pairs, where k=3 from (6.13). Fig.
6.34a gives the code inputs and required code outputs for
this circuit, based on the procedure given above. Fig.
6.34b shows the Karnaugh maps for each output pair <c^dj>,
with noncode inputs assigned to give a <00> or <11>
output. From these:

C. = X c + X.1 5 4 , d1 = x3 + x2 + xx
-187-

c3 - x5 + ^ + x x

c2 = x3 + x2 d2 = x5 + x4 + x -l

d3 = x4 + x2 (6.14)

Applying corollary 6.2 to each Karnaugh map demonstrates
that all subcircuits are self testing, so that L is TSC.

Circuit C (of Fig 6.32b) will be a 3-input Morphic AND
gate consisting of two cascaded 2-input Morphic AND gates,
as shown in Fig. 6.35a. Fig. 6.34a shows that only five
of the possible eight output codewords are generated from
circuit L, so that a Morphic AND gate with inputs <c^d^>
and <c7d«> will not be self testing, since it will not

•¥receive <1010>as a codeword. The pairing of < C 2 & 2 ^ and
(c^d^), however, does generate all four codewords, so
these must therefore be connected to the first level
Morphic AND gate in C and <c^d^> connected to the second
level Morphic AND gate in C, as shown in Fig. 6.35a.
Hence:

Fig. 6.35b demonstrates that the second level Morphic AND
gate in C receives all codewords, so C is self testing and
the overall checker TSC. If the 3-input Morphic AND gate
required for C was implemented as a 2-level AND/OR
structure (equation 6.8), then it would not be self
testing, as section 6.6 has already shown that it requires
all input codewords for this purpose.

Anderson concluded from his design procedure C6.63 that a
TSC code checker could not be constructed for l-out-of-3
or l-out-of-7 codes. He observed that a l-out-of-7 code
had too many codewords to be converted to a 2-out-of-4
code and if converted to a 3-out-of-6 code did not provide
enough codewords to make the 3-out-of-6 checker self
testing. Reddy C6.103 made the latter option possible by
designing a 3-out-of-6 checker which required less code
*<e,<J,c2J2> -188-

(6.15)

words to be self testing. A l-out-of-3 code checker cannot
be designed using the method presented here either, since
it has insufficient codewords to test even a 2-input gate.
David C6.11U has overcome this problem by converting a
l-out-of-3 code to a l-out-of-4 code using a TSC sequen-
ial circuit and checking that.

Another 1-out-of-n code checker is now proposed, similar
to that previously described in example 5.6. The network
in Fig. 5.26, which is self testing only, can be TSC by
replacing the two OR gates in the checker with EXOR gates.

Example 6.7 : Consider again the 2 to 4 line decoder with
enable as in Fig. 6.33. Fig. 5.27 has detailed the effect
of every single stuck-at fault within the circuit of Fig.
5.22. Fig. 6.36 uses this information to summarise the
effects of every single stuck-at fault within the circuit
of Fig. 6.33. It indicates that these faults can cause
either an all 0 output or an output with two l's, but
never an incorrect code output.

Two EXOR gates are added to the circuit of Fig. 6.33 to
form an output <e^e2>, such that:

ea = <3 © y4 © y3
and ei = y2 © yi’ (6.16)

Fig 6.37 details the complete truth table for these
additional gates. It demonstrates that the EXOR checker
is self testing for code inputs, but is not code disjoint.
All input combinations to it which have an odd number of
l's produce a code output. This is not surprising since
the circuit is the parity checker of section 6.7. How
ever, on the basis of single stuck-at faults, a decoder
output combination with three or five l's cannot occur.
The checker has an independent gate for each output, so it
is effectively TSC. Note that the same is not true for
unidirectional faults.

-189-

6.9: A TSC PERIODIC SIGNAL CHECKER

So far, only checkers for signals encoded in an error
detecting code have been examined. There are also other
signals in a microprocessor based system which need to be
checked, notably single or multiphase clocks. The self
checking synchronous machine design of section 5.8 also
requires a checked clock signal.

Moreira de Souza et al in their design of a research
oriented microcomputer C6.123 used a fault tolerant clock
C6.133, derived from the work of Daly C6.143. For the
Electronic Switching System processor, Chang et al C6.153
detected variations in clock period by converting the
signals to DC levels through low pass RC circuits and
comparing these levels with known references. They
checked for phase overlap with logic which could be tested
via maintenance control inputs, as shown in Fig. 6.38.
Usas C6.163 has proposed a TSC checker for single phase
periodic signals and this is described more rigorously
here.

A single phase clock signal is not encoded in space but
encoded in time via three parameters; t (period), tQn
and t (mark-space ratio), where t = t + t ^ . Aoff p on off
clock signal must be checked for these parameters, illus
trated in Fig. 6.39, as well as stuck-at faults. This is
accomplished with the circuit of Fig. 6.40. It consists
of two monostables Ml and M2. Ml is triggered by the
rising edge of the clock and should be set to generate a
high level pulse of expected width t , whereas M2 is
triggered by the falling edge of the clock and set to
generate a pulse of width The two monostable
outputs form a constantly changing l-out-of-2 code during
normal operation, as shown in Fig. 6.41b.

The parameters t , t and t ^ can each remain constant,p on of f ^
increase or decrease, so there are 3 -1 = 26 faulty
combinations or non codewords. Some of these are

-190-

impossible faults such as t constant with increasedPt _ and t Fig. 6.41 details the possible faulton of i
combinations and their effects on the monostable outputs.
The clock signal SA1 or SAO is equivalent to an infinite
increase in fcoff or t respectively, i.e. special cases
of faults 3 and 5 in Fig 6.41e and 6.41g respectively.
Fig 6.41 demonstrates that the checker produces a non code
output for all possible fault combinations, so it is code
disjoint. However, a permanent fault indication only
occurs for stuck-at faults.

Each output uses an independent monostable, so the checker
is fault secure for all faults affecting a single mono-
stable, as well as faults resulting in a unidirectional
output error. The self testing property cannot be
determined without reference to the circuit used for the
monostable. For example, a fault in Ml that causes its
input to be fed directly to its output will not be
detected and it would then prevent the clock SA1 failure
from being detected. Usas describes appropriate mono
stables to ensure that the checker is self testing and
hence TSC. He also details several applications for the
checker.

More complex periodic waveforms, including multiphase
clocks, can be generated by a self checking sequential ma
chine, or by logic with self checking checkers monitoring
the resultant waveform(s) for perhaps stuck-at failures or
phase overlap. The input to both of these circuits should
be a single phase clock checked in the manner described
above.

6.10 : LITERATURE REVIEW

Carter et al C6.23 proposed the 2-input Morphic AND gate
and its extension for n-inputs. Anderson C6.33 developed
this theory and showed how the number of gate levels could
be reduced when cascading 2-input Morphic AND gates. In
addition, he discussed m-out-of-n checkers, presenting a

-191-

TSC 3-out-of-6 checker, which he used again for 1-out-of-n
checkers C6.63.

There has been and continues to be a considerable amount
written on the design of m-out-of-n checkers, either
specifically £6.7,6.10,6.17-6.213, or as part of a wider
discussion of TSC circuits C6.22,6.233. These papers have
generally resulted from researchers striving to reduce the
hardware required for such checkers (the number of gates,
gate inputs and gate levels), in order to achieve an
increased speed of operation, reduced costs and fewer
tests. Although 1-out-of-n codes are a subset of m-out-
of-n codes, checkers specifically for them have also been
considered C6.8,6.93. A TSC checker for a l-out-of-3 code
has not yet been designed using combinational logic,
although David C6.113 has proposed a TSC sequential
machine for this purpose.

There has been little added to the work of Carter and
Anderson for TSC n-bit comparators using Morphic AND gates
(also known as l-out-of-2 checkers), other than their
implementation in specific technologies. These compara-
ors usually compare two n-bit vectors, but Hughes C6.24,
6.253 has extended the principles involved to comparators
for more than two input vectors.

There has also been no alternative proposals to the EXOR
trees for TSC parity checkers C6.2,6.26,6.473. What is
discussed though is their application. A number of
authors have studied TSC checkers for combinational
circuits which have uncoded inputs or outputs C6.27-6.303
and this often involves the use of parity predicion.

In addition to the codes mentioned so far, TSC checkers
have also been proposed for Berger codes £6.31,6.323,
separable codes in general £6.33,6.343 and low cost
arithmetic codes £6.353. The construction of all these
checkers using programmable logic arrays has been widely
investigated £6.36-6.383, as well as their implementation

-192-

in various technologies C6.39-6.433.

Other designs include the TSC periodic signal checker
described above C6.163, a self checking linear feedback
register C6.443, a self testing only decoder circuit
C6.453 which was redesigned to be TSC in a later paper
C6.463, a TSC linear counter C6.473 and a self testing
arbiter circuit for multi-microcomputer systems C6.483.

-193-

6.11 : REFERENCES
6.1) Logical design of switching systems - D. Lewin;

Thomas Nelson and Sons Ltd, England; Second
edition, 1974; Chapter 3.

6.2) Design of dynamically checked computers. - W. C.
Carter, P. R. Schneider; Proc. IFIPS Congress,
Vol. 2; Edinburgh; August 1968; North-Holland
Publishing Company, Amsterdam (1969); pp. 878-883.

6.3) Design of self-checking digital networks using
coding techniques - D. A. Anderson; Coordinated
Science Laboratory Report R-527; September, 1971;
University of Illinois, Urbana, Illinois, USA.

6.4) Private communication with W. C. Carter; May, 1983.
6.5) A theory of design of fault-tolerant computers

using standby sparing - W. C. Carter, W. G. Bouri-
cius, D. C. Jessep, J. P. Roth, P. R. Schneider, A.
B. Wadia; FTCS-1*; pp. 83-86.

6.6) Design of totally self-checking check circuits for
m-out-of-n codes; D. A. Anderson, G. Metz; IEEE
Trans. Comput.; Vol. C-22, No. 3; March, 1973; pp.
263-269.

6.7) Efficient design of self-checking checkers for
m-out-of-n codes - M. A. Marouf, A. D. Friedman;
FTCS-7*: pp. 143-149.

6.8) Microprogrammed control and reliable design of
small computers - G. D. Kraft, W. N. Toy; Prentice-
Hall Inc., Englewood Cliffs,Jersey, USA; 1981; pp.
238-264.

6.9) Totally self-checking checker for 1-out-of-n code
using two-codes - J. Khakbaz; IEEE Trans. Comput.;
Vol. C-31, No. 7; July, 1982; pp. 677-681.

6.10) A note on self-checking checkers - S. M. Reddy;
IEEE Trans. Comput.; October, 1974; pp. 1100-1102.

6.11) A totally self-checking l-out-of-3 checker - Rene
David; IEEE Trans. Comput., Vol. C-27, No. 6; June,
1978; pp. 570-572.

6.12) A research oriented microcomputer with built in
auto-diagnostics - J. Moreira de Souza, E. Peixoto
Paz, C. Landrault; FTCS-6*; pp. 3-8.

6.13) Fault-tolerant digital clocking system - J. Moreira
de Souza, E. Peixoto Paz; Electronics Letters; Vol.
11, No. 18; September 4, 1975; pp. 433-434.

6.14) A fault tolerant digital clocking system - W. M.
Daly, ,A. L. Hopkins, J. F. McKenna; FTCS-3*; pp.

-194-

17-21.
6.15) Maintenance techniques of a microprogrammed self-

checking control complex of an electronic switching
system - H. Y. P. Chang, G. W. Heimbigner, D. J.
Senese, T. L. Smith; IEEE Trans. Comput., Vol.
C-22, No. 5; May, 1973; pp. 501-512.

6.16) A totally self-checking checker design for the
detection of errors in periodic signals - A. M.
Usas; IEEE Trans. Comput.; Vol. C-24, No.5; May,
1975; pp. 483-489.

6.17) A new design method for m-out-of-n TSC checkers
- N. Gaitanis, C. Halatsis; IEEE Trans. Comput.;
Vol. C-32, No. 3; March 1983; pp. 273-283.

6.18) Fast and efficient totally self-checking checkers
for m-out-of (2m+/-l) codes - C. Halatsis, N.
Gaitanis, M. Sigala; IEEE Trans. Comput.; Vol.
C-32, No. 5; May, 1983; pp. 507-511.

6.19) Modular realization of totally self checking
checkers for m-out-of-n codes - C. Efstathiou, C.
Halatsis; FTCS-13*; pp. 154-161.

6.20) Design method of totally self checking checkers for
m-out-of-n codes; S. Piestrak;FTCS-13*;pp. 162-168.

6.21) A 3-level realization of totally self-checking
checkers for m-out-of-n codes - T. Nanya, Y. Tohma;
FTCS-13*; pp. 173-176.

6.22) A theory of design of fault-tolerant computers
using standby sparing - W. C. Carter, W. G. Bouri-
cius, D. C. Jessep, J. P. Roth, P. R. Schneider, A.
B. Wadia; IBM Research Yorktown; RC 3261; February,
1971; pp. 1-11.

6.23) Diagnosis and reliable design of digital systems
- M. A. Breuer, A. D. Friedman; Pitman Publishing
Ltd., London, 1977; pp. 265-272.

6.24) Design of totally self-checking comparators with
an arbitrary number of inputs - J. L. A. Hughes,
E. J. McCluskey, D. J. Lu; IEEE Trans. Comput.;
Vol. C-33, No. 6; June, 1984; pp. 546-550.

6.25) Design of totally self-checking comparators with an
arbitrary number of inputs - J. L. A. Hughes, E. J.
McCluskey, D. J. Lu; FTCS-13*; pp.169-172.

6.26) Self-testing embedded parity trees - J. Khazbaz;
FTCS-12*; pp. 109-116.

6.27) A self-testing group-parity prediction checker and
its use for built-in testing - E. Fujiwara, N.
Mutoh, K. Matsuoka; IEEE Trans. Comput.; Vol. C-33,

-195-

No.6, June, 1984; pp. 578-583.
6.28) A totally self-checking generalized prediction

checker and its use for built-in testing - E.
Fujiwara, K. Matsuoka; FTCS-15*; pp. 384-389.

6.29) The design of totally self-checking embedded
checkers - N. K. Jha, J. A. Abraham; FTCS-14*; pp.
265-270.

6.30) A self-testing group-parity prediction checker and
its use for built-in testing - E. Fujiwara; FTCS-
13*; pp. 146-153.

6.31) Design of fast self-testing checkers for a class of
Berger codes - S. J. Piestrak;FTCS-15*;pp. 418-423.

6.32) Design of self-checking checkers for Berger codes
- M. A. Marouf, A. D. Friedman;FTCS-8*;pp. 179-184.

6.33) On totally-self-checking checkers for separable
codes - M. J. Ashjaee, S. M. Reddy; FTCS-7*; pp.
151-156.

6.34) On totally-self-checking checkers for separable
codes - M. J. Ashjaee, S. M. Reddy; IEEE Trans.
Comput.; Vol C-26, pp. 737-744.

6.35) Totally self checking checkers for low cost arith
metic codes - N. Gaitanis; FTCS-14*; pp. 260-264.

6.36) Design and application of self-testing comparators
implemented with MOS PLA's - Y. Tamir, C. H.
Sequin; IEEE Trans. Comput.; Vol. C-33, No. 6;
June, 1984; pp. 493-506.

6.37) PLA implementation of k-out-of-n code TSC checker
- B. Bose, D. J. Lin; IEEE Trans. Comput.; Vol. C-
33, No. 6; June, 1984; pp. 583-588.

6.38) The design of totally self-checking circuits using
programmable logic arrays - S. L. Wang, A. Avizien-
is; FTCS-9*; pp. 173-180.

26.39) Multivalued I L circuits for TSC checkers - D.
Etiemble; FTCS-9*; pp. 181-184.

6.40) Threshold I^L totally self checking circuits - Y.
W. Yang, S. M. Liu, T. C. Chen; FTCS-10*; pp. 284-
287.

6.41) Analysis of a class of totally self-checking
functions implemented in a MOS LSI general logic
structure - M. W. Sievers, A. Avizienis; FTCS-11*;
pp. 256-261.

6.42) Totally self-checking CMOS circuits using a hybrid
relalization - N. K. Jha, J. A. Abraham; FTCS-15*;

-196-

pp. 154-158.
6.43) Techniques for efficient MOS implementation of

totally self-checking checkers - N. K. Jha, J. A.
Abraham; FTCS-15*; pp. 430-435.

6.44) Self-checking linear feedback shift registers - D.
J. Lu; FTCS-10*; pp. 269-271.

6.45) A simple self-testing decoder checking circuit
- W. C. Carter, K. A. Duke, D.C. Jessep; IEEE
Trans. Comput.; November, 1971; pp. 1413-1415.

6.46) Theory and use of checking circuits - W. C. Carter;
Infotech*; pp. 415-454.

6.47) Error-correcting codes and self-checking circuits
- D. K. Pradhan, J. J. Stiffler; Computer; March,
1980; pp. 27-37.

6.48) A self-testing arbiter circuit for multimicrocom
puter systems - M. Courvoisier, J. C. Geffroy, J.
P. Seek; FTCS-10*; pp. 281-283.
* see section B.5.

-197-

CODED
INPUT

SELF ____ l-OUT-OF-2
CODED '
INPUT - •

• SELF
CHECK INC CODED • CHECKINC
CHECKER ” OUTPUT

CODED -
INPUT - •

CHECKER
l-OUT-OF-2
CODED
OUTPUT

(a) (b)

UNCODED
INPUTS

• SELF
• CHECKING
• CHECKER

l-OUT-OF-2
CODED
OUTPUT

<c>

FIGURE 6.1 SELF CHECKING CIRCUITS

- = no fault detected
1 = SA1 fault detected
0 = SAO fault detected

> = t > c

INPUTS
a b

STUCK-AT FAULTS
DETECTED
a b c

0 0
0 1
1 0
1 1

1 - 1
1 1

0 0 0

FIGURE 6.2 FAULT TABLE FOR 2-INPUT AND GATE

S = f >

INPUTS
a b

STUCK-AT FAULTS
DETECTED
a b c

0 0
0 1
1 0
1 1

1 1 1
0 0

0 - 0

FIGURE 6.3 FAULT TABLE FOR 2-INPUT OR GATE

INPUTS
a b c

STUCK-AT FAULTS
DtitLitaJ

a b e d
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

1 - - 1
1 - 1

1 1
0 0 0 0

INPUTS
a b c

STUCK-AT FAULTS
DETECTED

a b e d
0 0 0
0 0 1
0 1 0
O i l
1 0 0
1 0 1
1 1 0
1 1 1

1 1 1 1
0 0

0 - 0
0

0 - - 0
0
0
o

FIGURE 6.4 FAULT TABLES FOR 3-INPUT GATES

-198-

INPUT
a

STUCK-AT FAULTS
DETECTED
a b

0
1

1 0
0 1

FIGURE 6.5 FAULT TABLE FOR INVERTER

: 0

INPUTS
a b

STUCK-AT FAULTS
DETECTED
a b c

INPUTS
a b c

STt
a
JCK-AT 1 >

 c LTS
d

INPUTS
a b e d

STUCK-AT FAULTS
DETECTED

a b c d e
DETECTED

b c
0 0 1 1 1 0 0 0 I 1 1 1 0 0 0 0 1 1 1 1 1
0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0
1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 1 0 1 0
1 1 0 0 1 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1

1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0
1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1
1 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1
1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0

1 0 0 0 0 1 1 1 0
1 0 0 1 0 1 1 0 1
1 0 1 0 0 1 0 1 1
1 0 1 1 0 1 0 0 0
1 1 0 0 0 0 1 1 1

- 1 1 0 1 0 0 1 0 0
1 1 1 0 0 0 0 1 0
1 1 1 1 0 0 0 0 1

FIGURE 6.6 FAULT TABLES FOR EXCLUSIVE-OR GATES

(a)

AND INPUTS FAULTS d df EQUIVALENT OR INPUTS TOV t € T& DETECTED (FAULT (d WITH FAULT IN PROPAGATE FAULTa b c FREE) FAULT) f e f 9
0 1 1 a,d SA1 0 1 SA1 0 0 01 0 1 b,d SA1 0 1 SA1 0 0 01 1 0 c,d SA1 0 1 SA1 0 0 01 1 1 a,b,c ,d SAO 1 0 SAO 0 1 0

(b) ADDITIONAL OR INPUTS (1 0 0
FOR V t € T-*- ^ 0 0 1

FIGURE 6.7 TESTING CASCADED GATES

-199-

a
b
c

d
e
f

g
hi

i
FIRST LEVEL J SECOND LEVEL

(a) CIRCUIT

rESTS FOR FIRST LEVEL CATES SECOND LEVEL INPUTS
TO PROPAGATE FAULT

a 9 c d ©e f g 9 i re n o
r 0 1 1 X X 0 0 0

1 0 1 X X 0 0 0V t 6 T& < 1 1 0 X X 0 0 0
I 1 1 1 X X 1 0 0

X 0 1 1 X 0 0 0
X - OUTPUT X 1 0 1 X 0 0 0

AT 0 X 1 1 0 X 0 0 0
X 1 1 1 X 0 1 0
X X 0 1 1 0 0 0

12 CONDITIONS X X l 0 1 0 0 0
TO SATISFY X X l 1 0 0 0 0

X X l 1 1 0 0 1

(b) REQUIRED TESTS (12) V t € T+

X - OUTPUT
AT 0

6 TESTS IN
FULLY MERCED
TEST SETS

a b c d e f 9 h 1 m n o
0 1 1 0 1 1 0 1 1 0 0 0
1 0 1 1 0 1 1 0 1 0 0 0
1 I 0 1 1 0 1 1 0 0 0 0
1 1 1 X X 1 0 0
X 1 1 1 X 0 1 0
X X 1 1 1 0 0 1

a b c d e f g h 1 m n o
0 1 1 1 1 0 l 0 1 0 0 0
1 1 0 1 0 1 0 1 1 0 0 0
1 1 0 1 0 1 0 1 1 0 0 0
1 1 1 X X 1 0 0
X 1 1 1 X 0 1 0
X X l 1 1 0 0 1

(C) POSSIBLE MERCED TEST SETS

FIGURE 6.8 TESTING A 2-LEVEL AND/OR STRUCTURE

-200-

V t € T+

© <D © © © © © ©
100 X X 111 Oil X X Oil
010 X X 111 \J ¥• C. TC / 101 X X Oil
001 X X 111 V C c T& C 110 X X Oil
000 X X Oil 111 X X 111
X 100 X 111 X Oil X 101
X 010 X 111 X 101 X 101
X 001 X 111 X 110 X 101
X 000 X 101 = -*■ X 111 X 111
X X 100 111 X X Oil 110
X X 010 111 X X 101 110
X X 001 111 X X 110 110
X X 000 110 X X 111 111

AT V . Y t S, X = OUTPUT AT I V :"TI
i.e. INPUT 111

12 CONDITIONS TO SATISY
EXTENSIVE MERGING POSSIBLE

(a) OR/AND

10 CONDITIONS TO SATISFY
NO MERGING POSSIBLE

 AND/AND

V t € T+

© © © ©
100 X X 100
010 X X 100
001 X X 100
000 X X 000
X 100 X 010
X 010 X 010
X 001 X 010
X 000 X 000
X X 100 001
X X 0)0 001
X X 001 001
X X 000 000

© © © ©
Oil X X 000
101 X X 000
110 X X 000
111 X X 100
X 100 X 010
X 010 X 010
X 001 X 010
X 000 X 000
X X 01 000
X X 10 000
X X 11 001

X * OUTPUT AT 1
I.e. INPUT - 000

V t e T+

10 CONDITIONS TO SATISY
NO MERGING POSSIBLE

(C) OR/OR

X - OUTPUT AT 1
FOR(2)THIS IS INPUT - 000
11 CONDITIONS TO SATISFY
SOME MERCINC POSSIBLE

(d) AND.OR/OR

FIGURE 6.9 TESTING 2-LEVEL STRUCTURES

-201-

e x o r(T)
INPUTS

V t 6 T ©
a b

FAULTS
DETECTED

c
(FAULT
FREE)

cf
(c WITH
FAULT)

EQUIVALENT
FAULT IN

d

EXOR(2)
INPUT5T0

PROPAGATE FAULT
d e

0 1 a SAl.b SAO.c SAO 1 0 SAO 1 a
1 0 a SAO,b SA1,c SAO 1 0 SAO 1 A
1 1 a SAO,b SAO,c SA1 0 1 SA1 0 A

a = 0 OR 1, BUT
REQUIRE V t € T ©

FIGURE 6.10 TESTING CASCADED EXCLUSIVE-OR GATES

1) START
AT A

V t € T&

2) START
AT B

V t € T+

3)
V t € T&
FOR C

. $ « d e f , i
O i l
1 0 1
1 1 0
I 1 1

0 0 0
0 0 0
0 0 0
1 0 0

0 1 1
O i l
o i l
1 1 1

o
o
o
^ 1 0 0
0 1 0
0 0 1
0 0 0

1 1 1
1 1 1
1 1 1
O i l

A
A
A
A

0
•1*
1
*1'

O i l
1 0 1
1 1 0
1 1 1

<-* - TEST ALREADY EXISTS
' 1' - OUTPUT AT 1, '0‘ - OUTPUT AT 0

A - OUTPUT AT 0 OR 1
(b)

FIGURE 6.11 TESTING MORE THAN TWO
CASCADED GATES

a = 0) d = lj
d = o)
a = lj'

ab Vcd\ 00 01 11 10

PI * ad
a=d = l

2 VARIABLE
(a)

. \cd a \ 0(
00 ,*

a - v/
c*d = l) 00 «* 1

01 1 c*0) 01 I
11 fl A * a=d* lj 11 (Ti 1 '»
10 / J \ 10 t *u 1 1

00 01 11 10

PI - ac
a=c=d=l

3 VARIABLE
(b)

(d = 0
"(a*c*l

a±i Led

c=0)
a=b=d= 1}

00
00 01 11 10

(a=0
(b = c<=d*l

7ivl_(d=o
(a=b=c*l

/b = 0
(a=c=d=l

PI abed)
a=b=c=d=l
4 VARIABLE

(c)

FIGURE 6.12 EXPANSION OF A PRIME IMPLICANT (PI)

ab
cd CODE INPUTS
00 01 11 10 * b c d

PRIME IMPLICANTS
ad be

0 0 0 0 0 1 0 1
1 1 0 0
1 1 1 0
1 0 1 1

01 10 , MERGED
10 10 •*— 1 TESTS
10 11
11 00

0 (l 1
(°) '1 ij) &
0 1 (*) 0 r iV t 6 T& ♦ t (TS*

ad + be C* no(a) @ In expansion of b
in be, only a Q) 3

ab iCd00 01 11 10
00 0 0 0 0
01 0 ® f1
11 0 fl ij
10 0 ©i_lj <§>

ad ♦ be

CODE
a b

INPUTS
c d

PRIME
ad

IMPLICANTS
be

0 1 0 1 01 10 -
1 0 0 1 11 00
1 0 1 0 10 01 —

(b)

V t €
t
T&

MERGED
TESTS

u € T&*
C* no 11 in be since PI does

not cover a codeword}

i e d 1000

ad ♦ bey

CODE
a b

INPUTS
c d

PRIME
ad

IMPLICANTS
be

0 1 0 1 01 10 ■*— |
1 1 1 1 11 111 0 0 1 11 00
1 0 1 0 10

f
01 — 1
f1

A
1
A

(c)

MERGED
TESTS

C* V t € T& for both Pis, but no
condition where bc*l and ad=0,

since no © unique to bc3

FIGURE 6.13 NON TSC CHECKER DESIGNS

-203-

ab V O
CL

o 01 11 10
00 0

p
T\ (°)

01 0 (l r>j
11 0 <s> - ®
10 0 0 0 0

01 11 10
00 m 0 (°) &
01 j) 0 lil
11 (») 0 It) ij
10 0 0 0 0

01 11 10
00 ij 0 (\
01 _lj (°) 0
11 0 0 0 0
10 fo 0) 0

CODE INPUTS PRIME IMPLICANTS
a b c d ad be
1 1 0 1 01 10
1 1 1 0 00 11
0 0 0 1 11 00
0 0 1 0 10 01

y * ad + be (.

CODE INPUTS PRIME IMPLICANTS
a b c d ad be
1 1 0 0 01 10
1 1 1 1 00 11
0 0 0 0 11 00
0 0 1 1 10 01

7 * ad + be (1

CODE INPUTS PRIME IMPLICANTS
a b c d ad be
1 0 1 0 01 10
1 0 0 1 00 11
0 1 1 0 11 00
0 1 0 1 10 01

y * ad + be (<

SELF
TESTING

SELF
TESTING

SELF
TESTING

FIGURE 6.14 TSC CHECKER DESIGNS WITH
INVERTED INPUTS

a=d=0 a=c*d=0
|PI = a+d

d = l
a*0,cdab

0001

2 VARIABLE

[PI = a+c+d]

cdab 100001
10

(a)
3 VARIABLE

(b)

a*b=c=d=0
|PI » a+b+c+d|

\oo^oi 11 10
.fd-1
(a*b«c«<

rrui0'1Z Z (a=b=d«<
b-1
a*c*d *0
a * 1
b*c *d *0

4 VARIABLE
(c)

FIGURE 6.15 EXPANSION OF A PRIME IMPLICATE (PI)

-204-

n-BIT
WORD

n-BIT
WORD

(*1
I n

(bl - T -
b ’ r\ n

l-OUT-OF-2
CODED
OUTPUT

l-OUT-OF-2
CODED
INPUT

l-OUT-OF-2
CODED
INPUT

al
bl

an
bn

1-OUT-OF 2
CODED
OUTPUT

TSC n-BIT
COMPARATOR

(a)

TSC n x l-OUT-OF-2
TO 1 X l-OUT-OF-2

CONVERTER
(b)

FIGURE 6.16 TSC COMPARATORS

1\ 00 01 11 10 !b200 01 11 10
00 0 0 1 1 00 1 0 0 1
01 0 (0) 1 0) 01 0 (') 1 <8>11 1 1 0 0 11 0 1 1 0
10 1 (D 0 <s> 10 1 (°> 0 ©

li *2 “
(a) KARNAUGH MAPS

CODE
INPUTS

(b) CIRCUIT

INPUTS GATE INPUTS OUTPUTS

al bl a2 b2 cd ef *1 *2
0 0 0 0 00 00 0 1
0 0 0 1 00 01 0 0
0 0 1 0 01 00 1 1
0 0 1 1 01 01 1 0
o 1 0 Q 00 10 0 0
0 1 0 1 00 11 Q 1
0 1 1 0 01 . 1SL _ 1 0
0 1 1 1 01 11 1 1
1 0 0 0 10 00 1 1
1 0 0 1 10 01 . 1 0
1 o 1 o 11 00 o 1
1 0 1 1 11 01 0 0
1 1 0 0 10 10 l 0
1 1 0 1 10 11 l 1
1 1 1 0 11 10 0 0
1 1 1 1 11 11 0 1

NON CODE
INPUTS
WITH CODE
OUTPUTS

(c) TRUTH TABLE

FIGURE 6.17 2 x l-OUT-OF-2 TO 1 x l-OUT-OF-2
CONVERTER

-205-

b1 1000
00

y. = a.b, + b.a

b1
00
01
11

y_ - a,a_ + b.b.
(a) KARNAUGH MAPS

2 x l-OUT-OF-2

FIRST LEVEL SECOND LEVEL

SUBCIRCUIT A
SUBCIRCUIT"B

1-OUT-OF-4
(b) CIRCUIT

l-OUT-OF-2

CODE
INPUTS

<p ® 0)
01 X 00
10 X 00
11 X 10
X 01 00
X 10 00
X 11 01

X - OUTPUT AT 0
6 CONDITIONS TO SATISFY
(c) TESTING SUBCIRCUIT A

GATE INPUTS
OUTPUTINPUTS

efcd
00
00
01
01
10

00000000
00

00
0100
01
00

10 *0 1 *
01*M A

01
10

01
0000HA

01 *
01
10

11
10
11
10
11

10
00
10
01

* INDICATES THE FULLY MERGED TEST SET
FOR SUBCIRCUIT A
(d) TRUTH TABLE

FAULT
CODE
a K

INPUTS
a K

c d e f g h i j yl
31 bl 2 2 SAO SA1 SAO SA1 SAO SA1 SAO SA1 SAO SA1 SAO SA1 SAO SA1 SAO SA1 SAO SA1
0 1
0 1
1 0
1 0

0 1
1 0
0 1
1 0

X
X

X
X

X
X

X
X

X
X

X
X

X

X
X

X

X

X
X

X
X
X

X

X

X INDICATES FAULT DETECTED
< e) FAULT TABLE FOR SUBCIRCUIT A

FIGURE 6.18 TSC 2-INPUT AND/OR MORPHIC AND GATE
-206-

b2
00 01 n 10 ai bi \^ b2

00 ol 11 10
00 roj l ls_ 00 t?| oj 1 r
01 V2_ -<°> l 0) 01 0) 1 (»x
11 l l l 1 11 1 1 1 i
10 °1 (V l (W 10 fo 1 0

'' u\ ru2 ' ^2* *al+b2 ̂ bl+a2
(a) KARNAUGH HAPS

2
t

2 x l-OUT-OF-2

FIRST LEVEL SECOND LEVEL

o

£ >

SUBCIRCUIT A
s u b c Ir c u It 'b

Or
3-OUT-OF-4

(b) CIRCUIT
l-OUT-OF-2

CODE
INPUTS

INPUTS OUTPUT
*1 bl a2 b2 *1 *2
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 1 1
0 1 0 0 0 0
0 1 0 1 0 I
0 1 1 0 1 0
0 1 1 1 1 1
1 0 0 <? o 0
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 1 1 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 1 1

(c) TRUTH TABLE

INPUTS
al bl a2 b2

GATE INPUTS
OUTPUT

ylcd © f <?,
0 1 0 1 00 11 01 0
0 1 1 0 01 10 11 1
1 0 0 1 10 01 11 1
1 0 1 0 11 00 10 0

(d) TESTING SUBCRCUIT A

FIGURE 6.19 TSC 2-INPUT OR/AND MORPHIC AND GATE

-207-

>=0 - !
—

M
— AND/OR

y21
y22

a b y
0 0 0
0 1 0
1 0 0
1 1 1

1 ■ 01 or 10
'0' « 00 or 11 /

CODE
INPUTS

al bl a2 b2 y21 y22
0 0 0 0
0 0 1 1
1 1 0 0
1 1 1 1

0 0
0 0
0 0
1 1

0 0 0 1
0 0 1 0
1 1 0 1
1 1 1 0

0 0
0 0
1 1
1 1

0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1

0 0
1 1
0 0
1 1

0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0

0 1
1 0
1 0
0 1

FIGURE 6.20 CONVENTIONAL AND MORPHIC
AND GATES

22
AND/OR

AND/OR

(a) BLOCK DIAGRAM

CODE INPUTS
OUTPUTS
y31 y32al bl

©
*2 b2 y21

©
y22 a3 b3

0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 1 1 0
0 1 1 0 1 0 1 0 0 1
1 0 0 1 1 0 0 1 1 0
1 0 0 1 1 0 1 0 0 1
1 0 1 0 0 1 0 1 0 1
1 0 1 0 0 1 1 0 1 0

(b) TRUTH TABLE

FIGURE 6.21 3-INPUT MORPHIC AND GATE

-208-

SUBCIRCUIT A SUBCIRCUIT B

31

,2b2Nl3b3\ 00 01 11 10
a2b2N

31

00
01
11
10

00
0111
10

a, b1"1
a2b2N

00
l3b3
V 00 01 11 10

32

0001
1110

00
011110

llbl 00

32

(a) CIRCUIT
l3b3 a
V 00 01 11 10

5101
3b3
00 01 11 10 l2b2

0
IS
IS

*00
01
li10

01
(b)

b.2
00 01 11 1000

01
10

11

b^3b3
A z\ o o00
0111
10

3b 3
00 01 11 10

11

01 11 100
731
10

©

,b.2
00
011110

10
KARNAUGH MAPS

a l

CODE

bl 1

INPUTS
»2 b2 -*3 b3

GATE: INPUTS OUTPUT

y31al b3 bl
©
*2 b3 al

©
*2 a3 bl a3 c ? e f

0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0
0 1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 1 1
0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 0 0 1
0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 0 0
1 0 0 1 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1
1 0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0
1 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 1

(C) TESTING SUBCIRCUIT A

FIGURE 6.22 3-INPUT AND/OR MORPHIC AND GATE

-209-

32

22

J41y42

(a) CASCADED 2-INPUT MORPHIC AND CATES

*41 42

(b) 2-LEVEL AND/OR STRUCTURE

FIGURE 6.23 4-INPUT MORPHIC AND GATES

°i
bi
°2

°3 ■
b3 ■
°4 •

OR/ANO

AND/C* CENTRAL OR
CATES

>41

°1
b1
°2
b2 .

>42 °3■
b3 ■
°4 ■
b4«

2 x 1—OUT—OF—4 1 x 3—OUT—OF—4
(a) UNMERGED

3 ;

UERCED OR
CATES

2 x 1—OUT—OF—4 1 x 3—OUT—OF—4
(b) MERGED

FIGURE 6.24 4-INPUT MORPHIC AND GATE WITH MERGED OR GATES
MIM1MUM
TEST SET

UIMIUUM
TEST SET

1 0 0 0 0

0 1 0 0 0 0 0 0 1 0
0 0 0 0 1

1 0 0 0 0 ^— *7 . 0 1 0 0 0 \— ,"V>*— ooio o -1 y ~ ~ ~ - 0 0 0 1 Q — ■ —J
FIGURE 6.25 TESTING A 4-INPUT OR GATE

UERCEO AND
CATES

2 x 3—OUT—OF—4 1 x 1—OUT—OF—4
FIGURE 6.26 4-INPUT MORPHIC AND GATE WITH MERGED AND GATES

>41

>42

-210-

°1
bt
°2
b2
°3
b3
°4
b4
°5

b5
°6
be
°7
b7

bfl

y8i

y82

- MORPHIC AND CATE

24 x 2-INPUT AND GATES
18 x 2-INPUT OR GATES
6 LEVELS

ys2
M+ - MERGED OR GATES
MAc - MERGED AND GATES

16 x 2-INPUT AND GATES
2 x 2-INPUT OR GATES
8 x 4-INPUT OR GATES
4 x 4—INPUT AND GATES
4 LEVELS

FIGURE 6.27 8-INPUT MORPHIC AND GATE

-211-

al
bl TSC

a,bnn
n x l-OUT-OF-2

nl
fn2

n x DUPLICATION ENCODED PAIRS 1 x l-OUT-OF-2

FIGURE 6.28 TSC COMPARATOR

CROUP 1

PARITY ENCODED
WORD

CROUP 2

l-OUT-OF-2
(a) ODD PARITY

CROUP 1

CROUP 2

PARITY ENCODED
WORD

l-OUT-OF-2
(b) EVEN PARITY

FIGURE 6.29 TSC PARITY CHECKERS

-212-

P bits

ODD
PARITY.

BIT

CROUP 1

CROUP 2

bits
PARITY ENCODED

WORD
GATE INPUTS OUTPUT
a b c d e f *1
0 0 0 0 0 0 0
0 0 0 1 0 1 1
0 0 1 0 0 1 1
0 0 1 1 0 0 0
0 1 0 0 1 0 1
0 1 0 1 1 1 0
0 I 1 0 1 1 0
0 1 1 1 1 0 1
1 0 0 0 1 0 1
1 0 0 1 1 1 0
1 0 1 0 1 1 0
1 0 1 1 1 0 1
1 1 0 0 0 0 0
1 1 0 1 0 1 1
1 1 1 0 0 1 1
1 1 1 1 0 0 0

t t t
V t € T ®

(b) GROUP 1 TRUTH TABLE

(a)

GATE INPUTS OUTPUT
*2g h 1 j k 1 D n

0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 1
0 0 0 1 1 0 0 1 1
0 0 0 1 1 1 0 0 0
0 0 1 0 1 0 0 1 1
0 0 1 0 1 1 0 0 0
0 0 1 1 0 0 0 0 0
0 0 1 1 0 1 0 1 1
0 1 0 0 0 0 1 0 1
0 1 0 0 0 1 1 1 0
0 1 0 1 1 0 1 1 0
0 1 0 1 1 1 1 0 I
0 1 1 0 1 0 1 1 0
0 1 1 0 1 1 1 0 1
0 1 1 1 0 0 1 0 1
0 1 1 1 0 1 1 1 0
1 0 0 0 0 0 1 0 1
1 0 0 0 0 1 1 1 0
1 0 0 1 1 0 1 1 0
1 0 0 I 1 1 1 0 1
1 0 I 0 1 0 1 1 0
1 0 1 0 1 1 1 0 1
1 0 1 1 0 0 1 0 1
1 0 1 1 0 1 1 1 0
1 1 0 0 0 0 0 0 0
1 1 0 0 0 1 0 1 1
1 1 0 1 1 0 0 1 1
1 1 0 1 1 1 0 0 0
1 1 1 0 1 0 0 1 1
1 1 1 0 1 1 0 0 0
1 1 1 1 0 0 0 0 0
1 1 1 1 0 1 0 1 1

(c >
V t € T ©

CROUP 2 TRUTH TABLE

FIGURE 6.30 TSC 9-BIT PARITY CHECKER

DECODER

n = 2

.FIGURE 6.31 m TO n LINE DECODER
-213-

C1
• 1-OUT-OF-n • k-OUT-OF-2k

TO • TO
k-0UT-0F-2k 1-OUT-OF-2• CONVERTER • CONVERTERC2k

C1
• 1-OUT-OF-n dl k x l-OUT-OF-2TO • TO• k x l-OUT-OF-2 ck * l-OUT-OF-2
• CONVERTER

dk CONVERTER

L (b) C

FIGURE 6.32 TSC 1-OUT-OF-n CODE CHECKERS

g

X.2

> 1-OUT-OF-5

FIGURE 6.33 A 2 TO 4 LINE DECODER WITH ENABLE

-214-

CODE INPUTS OUTPUTS

x5 X4 x3 X2 X1 C1 dl c2 d2 C3 d3
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

0 1
0 1
0 1
1 0
1 0

0 1
1 0
1 0
0 1
0 1

1 0
0 1
1 0
0 1
1 0

NOT
GENERATED

1 0
1 0
0 1

1 0
1 0
0 1

0 1
1 0
0 1

(a) MAPPINGS

00 01 11 10 11 10
00
01
11
10

00
01
11
10

00
01

10

00 01 11 10
00
01
11
10

00
01
11
10

00
1110

00 01 11 1000 01 11 10 00 01 11 100001
1110

0001
11
10

00
01
11
10

10 00 01 11 10 00 01 11 10
00
01

00
01
11
10

00
01

11
10 10

(b) KARNAUGH MAPS

FIGURE 6.34 DESIGN OF CIRCUIT L

-215-

AND/OR

AND/OR

(a) CIRCUIT

CODE INPUTS
OUTPUTS
*31 *32

©«1 bj a 2 b2 © V,*21*22 "3 3
0 1 1 0
1 0 0 1
1 0 1 0
0 1 0 1
0 1 1 0

1 0 0 1
1 0 0 1
0 1 0 1
0 1 1 0
1 0 1 0

1 0
1 0
0 1
1 0
0 1

t tALL POSSIBLE CODEWORDS

(b) TRUTH TABLE

FIGURE 6.35 DESIGN OF CIRCUIT C

NODE FAULT ENABLEg
POSSIBLE EFFECT ON

o u tput y4y3y2yi

a/b
SAO 0

l
2 l's

NO EFFECT
SA1 0

l
ALL ZERO

NO EFFECT

c/d
SAO 0

l
ALL ZERO
NO EFFECT

SA1 0
1

2 l's
NO EFFECT

e/f/g/h/
SAO 0

1
ALL ZERO

NO EFFECT
i/J/k/1 SA1 0

1
2 l's

NO EFFECT

W
SAO 0

1
ALL ZERO
NO EFFECT

y2/yi SA1 0
1

2 l's
NO EFFECT

SAO 0
1

NO EFFECT
2 l's

SA1 0
1

ALL ZERO
NO EFFECT

r/s/t/
SAO 0

1
ALL ZERO
NO EFFECT

u/V SA1 0
1

NO EFFECT
2 1' s

FIGURE 6.36 FAULT ANALYSIS OF FIGURE 6.33

-216-

CODE
INPUTS

INPUTS OUTPUTS
*4 *3 *2 *1 *2 el

0 0 p 0 p 0 p
0 0 0 0 1 p 1
0 0 0 1 0 0 1
0 0 0 1 1 0 0
0 0 1 0 0 1 0
0 0 1 0 1 1 1
0 0 1 1 0 1 1
0 0 1 1 1 1 0 4—
0 I 0 0 p 1 0
0 1 0 0 1 1 1
0 1 0 1 0 1 1
0 1 0 1 1 1 0 4—
0 1 1 0 0 . 0 0
0 1 1 0 1 0 1 4—
0 1 1 1 0 0 1 4—
0 1 1 1 1 0 p
1 0 0 0 0 1 0
I 0 0 0 1 1 1
1 0 0 1 0 1 1
1 0 0 1 1 1 0 4—
1 0 1 0 0 0 0
1 0 1 0 1 0 1 4—
1 0 I 1 0 0 1 4—
1 0 1 1 1 0 0
1 1 0 0 0 0 0
1 1 0 0 1 0 1 4—
1 1 0 1 0 0 1 4—
1 1 0 1 1 0 0
1 1 1 0 0 I 0 4—
I 1 1 0 I 1 1
1 1 1 1 0 1 1
1 1 1 1 I 1 0 4—

NON CODE
INPUTS
WITH CODE
OUTPUT

FIGURE 6.37 1-0UT-0F-5 CODE CHECKER

MAINTENANCE
CONTROL

REFERENCE
VOLTAGE

OSCILLATOR

DC LEVEL
CONVERTERS

THRESHOLD
DETECTOR

CHECK
LOGIC

REFERENCE
COMPARATORS

CLOCK
PHASE

GENERATOR

CLOCK
PHASES

ERRORS

FIGURE 6.38 CLOCK PHASE GENERATION
AND CHECKING

T '<>" , toff ;
tp

FIGURE 6.39 PERIODIC SIGNAL PARAMETERS

CLOCK
INPUT

MONOSTABLE
Ml

l-OUT-OF-2M2

FIGURE 6.40 TSC PERIODIC SIGNAL CHECKER

-218—

Foutt No. . J P ton . toff

1 C 1 1
2 C » !
3 » C ♦
4 1 c 1
5 \ » c
6 1 c
7 \ ! 1
8 1 1 J
9 t 1 1
10 1 I *
11 » 1 1
12 1 1 1

\ - INCREASE
- DECREASE(a) POSSIBLE FAULTS J

I Li/pj
M1J"
M2~|̂

n (b)1 NORMAL
—OPERATION

i/ p |

m i j t
u I - J l

1 (c)L FAULT 1

t / p f

M1J"

M2
u. T (d)1 L FAULT 2

l / p j

M lj"

M2

(e)
FAULT 3

I/Pj
M1J-

M2"̂

l / p j

M1J"

M2

l / p j

M lj"

M2

i / p f

M2 7

l/pf
M1J“

M2

i / p f ~

Mij-f
M2 y

'/pjl
M1J

M2

(g)
FAULT 5

(h)
FAULT 6

(0
FAULT 7

0>
FAULT 8

L

r
1

(k)
FAULT 9

(1>
FAULT 10

of

(m)
.FAULT 11

\/pJ~
M1JT (i)

FAULT 4

M2

i/pf
M1JT
m2 ;

’ (n)
.FAULT 12

FIGURE 6.41 TSC PERIODIC SIGNAL CHECKER FAULTS AND WAVEFORMS

-219-

CHAPTER SEVEN : FAULT DETECTION AND DIAGNOSIS
IN SELF CHECKING SYSTEMS

7.1 : INTRODUCTION

The maintenance process for a computer system consists
of the following five stages; fault detection, error
correction, fault diagnosis/isolation, error recovery and
repair. All of these stages are essential in fault
tolerant systems, but error correction and error recovery
are of particular importance 17.1-7.4,7.343. Fault detec
tion and fault diagnosis form the basis of this Chapter.

The aim of this investigation is to use self checking
techniques as a means of detecting and locating failures
at circuit, chip or component level in a microprocessor
based system. Whilst error correction and recovery are
obvious developments from this aim, they are well documen
ted elsewhere 17.5-7.7,7.353 and not considered here.

There have been many fault tolerant computers developed
over the years. Although few of them have used self
checking checkers, the self checking philosophies adopted
within them are fundamental to systems of the type
described in this thesis, which do employ such checkers.
Fault tolerant computers in this category include:

1) STAR (Self Test And Repairing) 17.2,7.4,7.83 : One of
the earliest and most well known of fault tolerant
computers, its development was started in 1961 at
the Jet Propulsion Laboratory, under the guidance of
Algirdis Avizienis.

2) ESS (Electronic Switching System) 17.5,7.9-7.123 :
Various models have been developed at the Bell
Laboratories for telephone switching.

3) FTSC (Fault Tolerant Spaceborne Computer) 17.133 : Has
a 95% probability of surviving unattended and with
out degradation for five years.

4) MECRA 17.3.43 : A self reconfiguring computer developed
-220-

in France.
5) Plessey System 250 C7.343 : A fault tolerant modular

processing system for control applications.
6) Sperry Univac 1100/60 and System 11 £7.7,7.151 : Both

are information processing systems.

The Chapter commences with a discussion on the positioning
of self checking checkers within a system. Section 7.3
then examines suitable error detection codes for data
transfer paths and memory. Problems caused by selection
and addressing errors are also investigated. Various
error detection mechanisms are detailed in section 7.4 for
the control paths of a system, which include clocks,
control lines and decoders. Duplication, check bit
correction and check bit prediction are the principal
techniques considered for fault detection in arithmetic
and logical operations in sections 7.5 and 7.6 respective
ly. All of the fault detection mechanisms in sections 7.2
to 7.6 are specifically for hardware faults. However,
software faults can also occur, so some special hardware
checks for these faults are outlined in section 7.7.
Finally, fault diagnosis is the subject of section 7.8
which includes fault indication, signal isolation for
fault isolation, error indications from transient condi-
ions, the verification and efficiency of fault detection
mechanisms and marginal testing.

7.2 : POSITIONING OF CHECKERS

Sellers C7.163 gives criteria for the positioning of
checkers in coded data paths as follows:

1) Undetectable errors and faults should be minimised.
2) An error should be detected before it corrupts other

data, so that error indications are meaningful for
maintenance and so that erroneous data can be recon
structed.

3) The fault should be located to within the smallest
amount of hardware necessary to ensure that servicing

-221

is straightforward.
4) The cost of the checker should be minimised.

There must always be trade-offs between the amount and
complexity of checkers to satisfy the first three criteria
and the minimum cost requirement of the last.

The position and quantity of checkers should therefore
enable as many faults and fault types to be detected
during normal operation of the system. The measure for
such a detection capability is referred to as fault
detection coverage. It can be readily determined by
examining which component, gate, device or interconnection
failures are detected by the fault detection circuits
present.

Suitable positions for checkers in a network of self
checking blocks are at the outputs of the network and at
the inputs of each non code disjoint block. The position
ing of checkers must ensure that a network is self testing
and fault secure. Individual blocks are assumed to be
self testing and fault secure. If the network satisfies
theorem 5.1, then a checker is only necessary at its
outputs. Network fault security says that all faults will
produce the correct output or a non codeword, whilst
network self test says that all faults will produce a non
code output for some normal network input. If the network
contains blocks which are not code disjoint, i.e. those
which produce code outputs from non code inputs, then the
network is not totally self checking (from theorem 5.1).
However, the network can still be fully checked with a
checker at its output if additional checkers are position
ed at the inputs of these non code disjoint blocks.
Wakerley, however, indicates that there need not be a
checker on every input C7.173.

The two criteria above give sufficient theoretical posi
tions for the checkers. In practice, additional checkers
are positioned to improve the diagnosability of the

-222-

network. Sedmak C7.183 gives three categories which
should have a high concentration of checkers, particularly
if recovery procedures are to be implemented. These are:

1) High failure rate logic.
2) Critical logic and logic with a high usage during

normal operation.
3) Storage elements which are accessed infrequently, or

where the period between write and read operations is
relatively long.

7.3 : DATA PATHS AND MEMORY

7.3.1 : Choice of Error Detection Codes

Chang C7.53 describes the use of a check register to
detect multiple errors in data transmission and storage,
which does not use an error detecting code and operates as
follows. Source data is toggled into an initially all
zero check register. After this data is transferred to
its destination register, it is -immediately read back and
toggled into the check register once more. The check
register should then again contain all zeros. If not, an
error is signalled. Time redundancy is used to perform
the additional read operation.

Errors in the transmission and storage of binary data,
instructions, and addresses can be detected in data which
is encoded in an error detecting code. Codes used for
this application are generally separable. They are chosen
on the basis of their cost, their effectiveness in detect
ing the set of likely failures and their impact on system
performance. The implementation cost of a code can be
determined by the number of redundant bits in the code and
by the cost of the appropriate self checking checker.
The effectiveness of the code can be principally determin
ed by its minimum Hamming distance (see section 4.3.10),
but knowledge of the sizes of its self checking tested and
fault secure sets are also significant.

-223-

The logical design of data path circuits also plays an
important part in determining which faults can be easily
detected and require a minimum amount of error checking
hardware. Flip-flops, for example, which can be used to
form registers for data processing, need to be carefully
designed so that logic faults do not result in indetermin
ate (transient) errors which make diagnosis difficult or
impossible. Kraft & Toy C7.19D show a flip-flop design
which has a race condition when certain faults are
present. They gives two possible solutions to this
problem; firstly, additional control lines for diagnostic
purposes and, secondly, a circuit redesign to avoid this
condition.

Thus the logic structure as well as the error detection
code must be considered to achieve the most efficient
circuit design from the viewpoints of both error detection
and fault diagnosis. The effects of all possible faults
must be considered and the error detection code chosen to
detect all faults, or at least a* reasonable subset.

The circuits used for data paths and memory are generally
bit(byte)-sliced circuits with no interaction between
bits (bytes), except for control lines (data selection and
addressing), which are considered separately in section
7.3.2. If data is encoded in an error detecting code and
the circuit is non transforming, i.e. performing only data
storage, transmission or switching (see section 5.3.1),
then it is self checking, since the output is always a
codeword with no failures present. The size of the tested
and fault secure sets for such circuits depend on the code
used and it is these sets which can be used to compare the
effectiveness of each code in detecting faults. Fig. 7.1
details this and other important properties for the
separable codes discussed in this Chapter. It is assumed
that the normal input set of vectors test for all faults
affecting a single bit(byte)-slice, with the relative
checker speeds and costs based on the use of SSI and MSI

-224-

TTL. For the non transforming circuits of examples 5.1
and 5.2, this means that all input combinations are
applied to each bit(byte)-slice during normal operation.

The simplest error dectecting code is single bit parity,
discussed in section 4.3.1. This code has n data bits and
n+1 bits overall. A non transforming circuit for parity
encoded data is fault secure for all faults affecting only
a single bit-slice and self testing for all faults affect
ing fewer than all bit-slices, for reasons given in
section 5.3.1. The circuit is thus fault secure for the
smallest reasonable fault set, but self testing for a
large fault set that contains almost all faults. Single
bit parity has minimum redundancy and out of all codes
with n data bits, the simplest totally self checking
checker. From section 6.7, this checker is an p-bit EXOR
tree and an q-bit EXOR tree, such that:

p + q = n + l , where p and q)/ 1 (7.1)

A duplicated circuit is both self testing and fault secure
for all faults that affect different combinations of bits
in the two circuits. Duplication is therefore better than
simple parity, in terms of fault security, but there are
many faults which are never tested during normal opera
tion. In particular, any double fault that affects a
single bit-slice and its duplicate in the same way is
undetectable. Wakerley C7.173 suggests that such a fault
is more likely than a fault affecting all n+1 bits in a
parity check code. Using this assumption, he shows that
parity can be more effective than duplication in terms of
its self testing ability. Duplication has the highest
redundancy and requires an n-bit TSC equality checker,
both of which can involve high costs. It is the most
complete and efficient check for certain operations, as
there are no constraints with the circuit for fault
dectection. Duplication is used where fault types cannot
be predicted and where the circuit is not bit(byte)-
sliced.

*

-225-

A b-adjacent code, discussed in section 4.3.2, is capable
of detecting all errors within a single b-bit byte and is
therefore ideal for a b-bit sliced circuit. From section
4.3.2, the code has k x b-bit data bytes and a single
b-bit check byte. Its checker consists of b x p-input
EXOR trees and b x q-input EXOR trees, such that:

p + q = k + 1, where p and q >, 1 (7.2)

plus a b-input Morphic AND gate. Since the code detects
all single byte errors, a non transforming circuit for
data in a b-adjacent code is fault secure for all faults
that affect a single byte-slice. Analogous to a single
bit parity checked circuit, this circuit is self testing
for all faults that affect fewer than all byte-slices,
since for each of these faults, there is a normal input
which produces a non code output. However, it is not
necessarily faults affecting all bits of all bytes which
are undetectable. For example, a fault which affects bit
i of every byte, such that the output from these bits is
a codeword, is also undetectable. Overall, though, for
applications where faults affecting all bytes of an
encoded word are unlikely, the b-adjacent code has the
fastest and cheapest checker out of all the codes with b
check bits discussed in this Chapter.

The low cost residue codes with check base A=2^-l,
discussed in section 4.3.6, are also capable of detecting
all errors within a single b-bit byte. Like the b-
adjacent codes, they have b redundant bits, but a more
costly checker, which employs a tree of b-bit adders.
They do not, however, detect errors of magnitude 2^-1,
so a byte which changes from 2^-1 (all l's) to 0 (all
0's), or vice versa, is not a detectable error. As a
result, a non transforming circuit which employs a low
cost code is fault secure for all single byte faults,
except all bits stuck at either 0 or 1. It is also fault
secure for a large class of multiple byte faults producing

-226-

unidirectional errors C7.203. The circuit is self
testing for all faults that affect fewer than all bits,
assuming there is no fault in a byte-slice whose only
effect is to change 2^-1 to 0, or vice versa. Such a
circuit, when compared to a similar circuit using a to
ad jacent code, is thus self testing for a larger fault
set, fault secure for a slightly smaller set, has the same
redundancy, tout its checker is more costly and slower.
The low cost residue codes can also be directly used to
perform arithmetic operations.

Pradhan and Stiffler C7.213 discuss coding for LSI
circuits and transient faults, with the conclusion that
the most common faults are unidirectional. They also
suggest that Berger codes will toe the most important code
for the detection of unidirectional errors in future
computers, because they are separable codes. In addition,
Pradhan has proposed a new code which is not only compati
ble with parity check codes and able to correct a limited
number of errors, but is also able to detect certain
unidirectional errors C7.21,7.223. Error correction is
desirable to cope with and recover from the effects of
transient errors. Traditionally, the memory unit of a
computer has tended to be the most unreliable unit, so
error correcting codes are also to be found there.

7.3.2 : Selection and Addressing Errors

The discussion so far applies to the detection of errors
in data transmission and storage. The detection of errors
in the selection mechanisms for data transfer, or the
addressing of data in memory, also need to be considered.

Separate error detection schemes can be used for data and
control. Parity on data detects all single bit errors
within a register. It is assumed that all faults within
the register will only affect one bit. Parity is checked
on a data transfer, but does not guarantee that the data
has been written to or read from the correct register.

-227-

Bit e r r o r s during the write operation are detected when
the data is read. This is adequate because erroneous data
within a register is not a problem until it is read.
Decoder faults affecting a complete word may not be not
detected, so the control line outputs from the decoder
need to be checked, see section 7.4.3.

Decoder faults manifiest themselves, in general, as
multiple bit errors in a data word. A decoder check will
eliminate the need to detect these errors. However, if
the error detection code capability of the data is
expanded to include the entire data word, a decoder check
is not required.

A simple address decoder for m encoded data words of k-
bits is shown in Fig. 7.2. A decoder translates the input
address data into a 1-out-of-n code to store, or retrieve
the desired word. These words are encoded in an error
detecting code such that a storage failure or bus failure
is detectable. A decoder failure, however, may result in
the selection of the wrong word.' The erroneously selected
word is a codeword, so the fault is not detected by
checking its encoding.

Selection failures can be detected by dividing the memory
into bit-slices and providing individual address decoding
for each bit, as shown in Fig. 7.3. Now a failure in the
selection circuitry produces only a single bit error in
the word, which is detected by the error detection scheme
for the data.

A single parity check bit will then detect all faults in a
single bit slice and its decoder, and single bit faults in
the data transfer. The circuit is fault secure for these
faults. This technique is inherent in memory chips which
are 1-bit wide. If the memory chips are b-bits wide and
the error detecting code is capable of detecting b-bit
errors, then the decoder circuitry only needs to be
duplicated for each byte-slice. Suitable codes are the

-228-

b-adjacent (interleaved parity) checksum or Berger codes.
For example, if the memory is 4-bits wide, the 4-adjacent
code can be used whereby every parity bit covers one bit
from each 4-bit slice. This is illustrated in Fig. 7.4.
In all cases, the error detection code requires the memory
to be one chip wider than normal.

It is assumed in all of the above discussion that if
decoder input errors are to be detected, then the address
information will also be encoded in an appropriate error
detecting code and checked. The technique applied here
for decoder circuitry is equally applicable to all other
common parts of a memory system, such as driver circuits,
refresh logic and bus interfaces. The checking of control
lines is futher discussed in section 7.4.

The above scheme takes advantage of data encryption in an
error detecting code. It is also possible to detect
selection and addressing errors independently of the data
error detection code. If, for example, selection failures
cause the selection of a data word whose address is
different from the desired address by an odd Hamming
distance, then these failures can be detected if the
parity of the address is stored with each word. The
address parity bit is then compared with the actual
address parity, when the word is retrieved from memory.
The disadvantage of this scheme is that is requires an
extra bit to be stored with each word and that it only de
tects the class of errors described above. A circuit using
this scheme is therefore not fault secure for failures
that cause a double selection, two words ORed together, or
selection of an erroneous word whose address is an even
Hamming distance from the address of the desired word.
This scheme has been used to detect addressing errors in
microprogram control memory C7.53.

Parity can be replaced with any other separable error
detecting code. The choice of code is determined by the
type of addressing errors to be detected. Other codes

-229-

though, in general, will require more than one extra bit
to be stored with each data word.

7.3.3 : Code Translation

Whilst it may be desirable to provide byte error detection
for the buses of a microprocessor based system, the
redundancy of these codes may not make their use in main
memory or mass storage economically viable. A code with
less redundancy (fewer check bits) may be more desirable
for memory. This then requires encoded data to be
translated from the memory code to the bus code when it is
read from memory and back again when it is written to
memory. Totally self checking (TSC) networks for perform
ing this translation are now considered, where both codes
are separable.

The interface between buses and memory can be accomplished
by the TSC circuitry shown in Fig. 7.5. Data is checked
in each direction by a TSC checker for the source code.
Check bits are generated for the* destination code from the
data bits in each case. This generation circuitry is self
checking because a generator fault produces either correct
check bits, or incorrect check bits making the output a
non codeword.

The scheme of Fig. 7.5 requires two check bit generators
and two TSC checkers. Each checker can be implemented
using a check bit generator and a TSC equality checker, as
described in section 5.4.2. As two check bit generators
are already required elsewhere, the generators required
for the checkers can be replaced with the additional
control logic shown in Fig. 7.6. Multiplexers are used to
connect the inputs of each check bit generator to the
appropriate bus, dependant on the direction of data
transfer. This scheme will not be cost effective unless
multiplexers are cheaper than check bit generators. This
in turn depends on the size of the data bus and the
complexity of the check bit generator for the particular

-230-

code used.

In Fig. 7.7, the scheme of Fig. 7.6 is modified to provide
code translation for data on a bi-directional bus. Check
bit tri-state drivers are required instead of data bit
multiplexers, which should be cheaper.

Wakerley C7.173 suggests that additional savings can be
made for certain combinations of bus and memory codes,
where the memory check bits can be directly derived from
the bus check bits.

Code conversion could also take place again for arithmetic
and logical operation, where, for example, residue codes
are more efficient for arithmetic operations than parity.
However, the conversion logic must not be over complex, or
add an excessive propagation delay to data transfers.

7.3.4 : Interleaved Coding

It is often desirable to retain unmodifed binary informat
ion in data tranfers, so that subsequent processing of the
data can be performed without any code conversions. In
this case, a separable code must be used, the simplest of
which is parity. Single parity will not detect a fault
which causes an even number of bits to be in error within
a data word, but it is still the simplest and most widely
used check scheme. However, if multiple bit errors affect
adjacent bits instead of being randomly dispersed through
the encoded word, as Cook et al suggest C7.11D, then these
faults can be detected by interleaving parity encoded data
information and m-out-of-n encoded control information as
in Fig. 7.8. Any multiple adjacent bit fault will affect
both the binary data field and the ra-out-of-n codeword in
the control field. Consequently a single bit parity check
is adequate to detect single bit errors errors in the data
field, since multiple adjacent bit errors will be detected
by the m-out-of-n code check. This interleaved coding
technique does not require any additional hardware to give

-231-

enhanced error detection.

7.4 : CONTROL PATHS

Previous sections have examined methods of detecting
errors in data transfer, storage and manipulation in a
computer. There must be some form of control unit to
manage these operations. In some instances it may be
necessary to duplicate the control unit for error de
tection purposes. However, in general, there are certain
aspects of control which do not require duplication. This
section investigates error detection for a number of
these aspects.

7.4.1 : Clocks

Errors can occur in the single or multiphase clocking
signals which control the various stages of an operation,
both within the CPU and I/O devices and between the
components of a microprocessor based system (CPU, I/O,
memory and discrete logic). Possible clock errors are
period and mark-space variation, phase overlap and stuck-
at faults. The methods used by Chang for checking
multiphase clock signals have already been described in
section 6.9. Alternatively, a single phase clock may be
used and checked with the TSC periodic signal checker,
also described in section 6.9. If multiple phases are
required from this arrangement, they can be derived from
a faster single phase clock in conjunction with a small
self checking sequential circuit.

7.4.2 : Control Lines

Control lines can be grouped together and encoded in an
error detecting code just like data lines. The choice of
code will be dependent on the level of fault detection
required versus the redundancy and cost of the checking
scheme. Whilst this method checks the transmission of
control signals, it does not guarantee that they reach

-232-

their destination correctly. For example, suppose one of
the control lines is used to gate bus A on to bus T, as
shown in Fig. 7.9. Data on the buses is assumed to be
encoded in an error detection code. A break in the
'T 4- A' control line affects multiple bits on the T bus
and may not be detected by the data path error detecting
code. A break at point a in Fig 7.9 will be detected by
some input combination on bus A, since it does not affect
all bits of the T bus. However, a break at point b can
produce an all 0 output for some logic families and will
never be detected if all 0's is a codeword in the data
path error detection code.

Errors caused by broken lines might seem improbable when
considering interconnection wires or PCB tracks, but bad
connections in card connectors and integrated circuit
sockets, plus wire breaks between bonding pads and pins
in integrated circuit packages are all possible faults.
A means of detecting errors caused by these failures
should therefore be available.

Fig. 7.10 shows a solution to this problem, whereby the
control lines are routed to their various destinations and
then regrouped for checking purposes at the end of their
transmission paths, i.e. after all fan-out points. The
checker monitors the data bits of the control word at this
point and the check bits at their termination point. Now
a failure in the control line(s) is detected by this
means, whilst a failure in the same line(s) to an individ
ual bit-slice is detected by the data path error detection
code, as shown in Fig. 7.10. If the data path code is
byte error detecting, then one line may be tapped off the
main control line for each byte-slice.

In the PSC networks of Figs. 5.20-5.23, an inverter may be
used to generate s2 from s^. A failure in this inverter
will be detected by the checking mechanisms for the
network, whilst a failure in the main control line
(affecting both s2 and s^) will be detected by the control

-233-

line checking mechanism outlined above.

7.4.3 : Decoders

The example in the previous section used a single control
line to provide a particular operation. In practice,
there may be many of these lines generated internally, or
externally to an integrated circuit for data selection or
addressing. If only one line is active at any time, then
collectively the lines form a 1-out-of-n code. It is

word, as in the case of address decoding for a micro
processor based system, see Fig. 7.11.

Decoder faults are mostly unidirectional. The errors, as
indicated in Fig. 6.36 for the circuit of Fig. 6.33, take
two forms. Either the selected output changes from a 1
(active) to a 0 (inactive) and there is no active output
supplied, or one or more unselected outputs change from a
0 to a 1, giving a multiple output error.

Consider the case of address decoding within a read/write
memory chip. When reading data from the chip, decoder
failures can cause the contents of two memory locations to
be gated on to the data bus, usually producing the logical
OR of the two words. This is a unidirectional error. The
circuit will be self testing for this type of failure,
since, in general, the logical OR of two codewords is a
non codeword. However, it is not fault secure since an
erroneous codeword could be produced. When writing data to
a particular location, failures in the address decoder can
cause data to be stored in two locations, with erroneous
data replacing the data in one of them. This error may
never be detected (when reading the data) because the new
data is a valid codeword. In addition, decoder failures
could result in no access to any memory location for both
read and write operations. If the memory outputs all l's
(or all 0's) for this failure (a unidirectional error) and
all l's (or all 0's) is a codeword, then the failure is

likely that they will have been derived from a

-234-

undetectable. Some means other than encoded data must
therefore be provided for the detection of decoder
failures.

A straightforward check for decoder errors is to dup
licate the decoder and compare the outputs of the two
circuits. If a fault exists in either decoder, it will be
detected by the comparator. The major disadvantage of
such a scheme, (aside from identical output faults in both
circuits) is that a comparator with a large number of
inputs could be required. The alternative means of check
ing for decoder errors is a 1-out-of-n code checker.

The design of two TSC 1-out-of-n code checkers has already
been described in section 6.8. A self testing only 1-out-
of-n code checker is detailed in section 5.6. Both
Wakerley C7.23U and Kraft & Toy C7.19D present further
designs for self tesing only 1-out-of-n code checkers.
These compare input data to the decoder with re-encoded
outputs from the decoder. Wakerley also shows that this
scheme can become TSC if the inputs to the decoder are
encoded in a k-out-of-2k code. TSC checkers for m-out-of-
n codes in general have also been proposed, see section
6.10 for references.

Comments made in section 7.3.2, on the detection of data
selection errors, also apply here. However, the technique
of decoder replication may be more expensive than the self
testing only and TSC checking schemes discussed above.
Decoder replication is practical if a bit or byte-sliced
register bank, multiplexer, demultiplexer or functional
unit is implemented using conventional MSI or LSI chips
which have on-chip decoders.

7.5 : ARITHMETIC OPERATIONS

The basic arithmetic operations are addition, subtraction
and shifting. Iterative operations, such as multiplica
tion and division, are accomplished in software or firm

-235-

ware by repeated use of these basic operations. However,
as the scale of integration continues to increase and the
cost of hardware continue to decrease, hardware multiplier
and divider packages become more attractive for systems
which require high performance operations. This section
briefly discusses error detection for the basic operations
using error detection codes. Errors in the iterative
operations manifest themselves as errors in the basic
operations, or as control errors. Totally self checking
checkers are used in all cases.

Typically, binary adders are implemented with either
ripple carries or with look-ahead carries, or both. The
choice of implementation is governed by the cost of
associated hardware and the speed of the arithmetic
operation required. The error characteristics of a binary
adder depend heavily on its structure. The fault detec
tion scheme must therefore take into account the resultant
error caused by logic faults within the adder.

There are several error detecting codes which can be used
to directly implement addition and subtraction. The AN
codes, as described in section 4.3.5, represent one of
these. Low cost AN codes have check bases of the form
A=21)-l. In this case, the modulo 2^-1 addition is
performed using ordinary binary adders with end around
carry. This is standard one's complement addition.
Avizienis C7.243 gives a set of algorithms for multipli
cation and division of AN encoded data.

The low cost residue codes can also be used for direct
implementation of addition and subtraction, with the added
advantage of being separate. Wakerley C7.25D gives
algorithms for arithmetic operations on low cost residue
encoded data. In many of these operations, the check bits
must be adjusted in order to produce the correct codeword.
This is achieved by adding (or subtracting) bits, derived
from either the data or carry parts of the result, to the
check bits. The circuitry which controls the check bit

-236-

correction must also be checked. Examples of residue
checked adders are given by Kraft and Toy C7.193.

In some cases the specialised circuitry required for check
bit correction and the propagation delay it imposes, has
resulted in designers choosing duplication for a checked
ALU design in favour of this technique C7.263. Duplica
tion is definitely a better choice if the ALU is fabricat
ed on one chip as opposed to byte-slices.

Non arithmetic codes are not preserved by arithmetic
operations; i.e. an arithmetic operation performed on two
codewords in general produces a non codeword. However, if
a separable code is employed, only the check bits result
ing from the sum of two codewords are incorrect. New
check bits can be generated from the data part of the sum.
Check bits generated in this manner, though, cannot
indicate errors within the addition operation, because
they are derived from the result alone (correct check bits
will be generated from an erroneous result). If, however,
new check bits are generated from the check bits of both
inputs and the resultant data bits, then errors in the
addition process will produce errors in the generated
check bits. This method is called check bit prediction,
previously mentioned in sections 4.3.1 and 4.3.4. The
amount of circuitry required to generate new check bits
after a logical or arithmetic operation is dependent on
the error detecting code used. Wakerley C7.253 presents
techniques for the application of check bit prediction
with parity and checksum codes. In both cases, carry
generation circuitry must be duplicated to detect faults
within it. He also examines carry look-ahead structures.
Kraft and Toy C7.193 also detail techniques for parity
prediction in ripple carry adders and look-ahead carry
adders, again stressing the need for duplicated carry
circuits.

Binary counting is one of the most important operations
within a processor. Its program counter is the most

-237-

obvious example. There may also be a requirement for
counters in specific application circuitry. In the design
of self checking processors or systems, these counters are
often checked by parity prediction, whereby the parity of
the next count is calculated and subsequently compared
with the actual parity for that count. Kraft and Toy
C7.193 describe parity prediction for counters in some
detail. Self checking counters as well as shift registers
are also discussed by Pradhan C7.273.

7.6 : LOGICAL OPERATIONS

Parity codes are preserved by the EXOR operation and a
TSC network for computing the EXOR of two k-bit parity
encoded words consists of k x 2-input EXOR gates, as Fig.
7.12 taken from reference C7.28D shows.

The duplication code is also preserved by the EXOR
function, as well as all other logical functions. A
totally self checking logical network can be designed by
simply duplicating the functional unit. The output
code space of such a network is the duplication code
S = C<DD'>|D=D'1, shown in Fig. 7.13. The network is self
testing and fault secure for all multiple faults that
affect disjoint sets of output in the two logic units. A
fault which has the same effect on both logic units is
undetectable. The network is neither self testing or
fault secure for these faults. In addition to the two
logic units, the TSC network has a TSC equality checker,
as shown in Fig. 7.13. This indicates an error when the
outputs from the two logic units are different.

The outputs from the duplicated logic unit in Fig. 7.13
go no further than the equality checker, for the purposes
of the TSC network. If encoded outputs are to be main
tained, these outputs could be extended. However, a bit
(or byte) error detection code, such as parity, may be
adequate for the data transmission paths (see section
7.3). In this case, a TSC code translation will be

-238-

required to convert the duplication code to say a parity
code, as indicated in Fig. 7.14. The network of Fig. 7.14
is a totally self checking check bit prediction scheme. A
TSC code translator can be formed by using the unmodified
outputs of one logic unit to supply the output data bits
and using the outputs of the duplicated unit to feed a
check bit generator, which in turn supplies the output
check bits, as shown in Fig. 7.15.

All the above schemes discard the check bits of the input
codewords. They are, therefore, not code disjoint, since
a non codeword input will produce a codeword output.
Checkers are thus required at the logic unit inputs, so
that input errors can be detected. Alternatively,
duplicated logic units which are code disjoint must be
designed. Wakerley C7.293 does this for AND and OR
operations using parity, residue and checksum codes.

Wakerley C7.29D also discusses a method of pre-checking
logical operations using any error detection code. In
this technique errors occurring -during a logical operation
are not detected, but faults that could affect the
operation are tested immediately before it takes place.
The disadvantage of this method is that it increases
the time to perform such operations (time redundancy).

A development from the concept of pre-checking is that of
partially self checking (PSC) circuits and networks,
discussed in section 5.5. The PSC logic unit described in
section 5.5.4 preserves even parity n-bit input vectors
for a number of its functions. If the normal input set to
the unit contains a set of code preserving operations
which test all single faults in each bit-slice (see
section 5.5.4), then the circuit is TSC for this set.
Thus all faults can be tested by using a certain set of
functions. The unit is not self checking for faults in
the control lines before they fan out to individual
slices, nor for single slice faults such as input diode
shorts, that affect control lines everywhere within the

-239-

slice. However these faults can be readily detected by
the control line checking techniques discussed in section
7.4. The circuit of Fig. 5.24a can be used in the design
of a PSC universal logic unit. The checker will be
enabled for code preserving operations and disabled for
non code preserving operations, such as AND and OR.
Kraft and Toy C7.193 also examine the circuit of Fig.
5.24a, concluding that A © B and its complement A © B are
capable of exercising every node. Consequently,
the parity check for each Boolean logic function needs to
be performed on only the EXOR function and its complement.

If certain logical operations are checked, other logical
operations can be performed using these checked operations
in conjunction with checked arithmetic operations and a
set of identities. For example, if the AND operation is
checked, other logical operations can be performed using
identities such as C7.29D;

A OR B = A plus B minus A AND B
A EXOR B = A plus B minus 2 (A AND B)

NOT A h minus A (l's complement)
NOT A = minus A minus 1 (2's complement) (7.3)

In this case, the AND operation could be checked by
duplication and the arithmetic operations checked by
residue codes. Another possibility is to use the parity
check code, so that the EXOR operation can be performed by
a simple TSC circuit (Fig. 7.12), with parity check bit
prediction for the arithmetic operations. Other logical
operations can then be computed using an identity such as
C7.293:

A AND B = 1/2(A plus B minus (A © B)) (7.4)

7.7 : HARDWARE CHECKS FOR SOFTWARE FAULTS

Aside from hardware faults, software faults can also cause
errors in a system. However, software failures may be

-240-

more difficult to handle, particularly when little used
branches are executed, or when data relevant to a program
is corrupted. Hardware checking procedures, as described
in previous sections, are designed specifically to detect
physical failures in the hardware. They will not, in
general, be capable of detecting software faults. Dupli
cate CPUs will not help either, because a software fault
will be executed in the same manner by both processors.
In real time applications it is desirable to recognise
software faults rapidly and take the necessary corrective
action to remove them from the system. Three techniques
to detect software faults are as follows:

1) Watchdog Timer.
2) Branch Allowed Check Bit.
3) Different Parity For Instructions and Data.

A watchdog timer is a hardware timer which runs continu
ously. It is periodically reset by the main program. If,
due to a hardware or software fault, the timer is not
reset, it times out and appropriate action is taken, such
as a high priority interrupt to the processor.

A branch allowed check bit is a means of detecting the
execution of an improper branch operation. A check bit,
called a branch allowed (BA) bit, is assigned to each word
in memory. If the BA bit contains a 0, for example, the
contents of that location may not be referenced by any
branch instruction. This is illustrated in Fig. 7.16.
The bit is checked during every branch operation, with a
branch to a word where BA=0 generating an error.

If a parity check bit is assigned to each word in memory,
the parity bit can be used to distinguish between instruc
tion and data words. This can be effected by assigning
odd parity, for example, to an instruction and even parity
to a data word, as shown in Fig. 7.17. A data word
referenced as an instruction, due a software or hardware
faults, is readily identified and appropriate action taken.

-241-

7.8 : FAULT DIAGNOSIS

Fault detection determines whether or not a circuit is
behaving correctly. Fault diagnosis identifies the
failure to a replaceable unit. This replaceable unit may
be a component, circuit, board or subsystem. Traditional
ly, a fault diagnosis routine uses fault detection
hardware and test sequences to locate a defective unit.

If the units are designed in a self checking manner,
hardware check circuits detect a fault and identify the
defective unit down to the lowest level desired. The
level of diagnosis is dependent on the quantity and
position of checkers. If duplication and comparison is
used for circuits and devices, then a mismatch indicates
a failure, but the fault cannot be diagnosed to the
functional unit or its duplicate. Thus, both will need to
be replaced on detection of an error.

A replacement at board level may* be justified on the basis
of a faster repair time for the faulty unit, or the cost
savings of not having to design additional fault diagnosis
hardware and software. However, when a board is replaced,
the integrity of the replacement unit must be verified to
establish that it does not also possess a fault. It is,
therefore, necessary for the complete system to be
extensively tested. However, if the self checking
circuitry is designed to diagnose faults down to the
smallest level possible (component), then this will be
unnecessary, as the system will indicate if the replace-
ent device or board is defective in use. It may take
quite some time, though, to generate all vectors in normal
operation so that each unit and each checker are self
tested, so particular test programs may be run which are
specifically designed to exercise the system for this
purpose.

In the checking schemes of sections 7.3 to 7.6, errors are
-242-

detected concurrently with normal system operation. It is
assumed that this error detection occurs before the fault
contaminates other parts of the system, making diagnosis
difficult. The amount of time which elapses between the
occurrence of a fault and its detection is dependent on
the position and quantity of checkers, plus the level
of fault detection provided by each individual technique
adopted.

7.8.1 : Fault Indication

The l-out-of-2 outputs from each checking circuit (equal
ity, 1-out-of-n and periodic signal checkers etc.)
can be combined using an n-input Morphic AND gate to
produce a single l-out-of-2 pair, which indicates an error
free or failed system. This signal can then be used to
halt or interrupt the processor, store all error signals
for subsequent analysis, restart the processor and re
initialise or reconfigure the system.

Error signals from each fault detection circuit provide
detailed diagnostic information about the system. This
information has to be acquired from the system. This can
be achieved by the error signals setting flip-flops in a
register (with appropriate test mechanisms if it is not
self testing). The contents of this register can be
accessed externally and/or displayed on a series of
indicator lamps, such as light emitting diodes (LEDs). A
fault table can be generated to locate a fault to the
desired level from a given set of error indications. This
assumes that the fault detection circuit has the ability
to detect faults down to the lowest level required.

The error condition in the l-out-of-2 pair is represented
by the vectors <00> or <11>, so a single EXOR gate can be
used to distinguish error free and faulty vectors, as
indicated in Fig. 7.18. However, the EXOR gate is not a
self testing circuit, in that certain failures within the
gate will mask an error signal from the checker.

-243-

(Theorem 6.4 gives the conditions for.an EXOR gate to he
self testing.) The most obvious failure in this category
is the EXOR gate output stuck-at one, indicating a
permanent error free condition, despite the outputs of the
checker. It is therefore essential that the EXOR gate is
checked periodically to ensure that it is operating
correctly. An input vector must be applied to verify that
it can generate an error indication. The vector should
thus be <00> or <11>. This can be effected by a special
test signal. Fig.7.19a shows one such mechanism, which
requires an additional EXOR gate. Under normal conditions
the test input is at 0. This allows the <01> and <10>
vectors from the check circuit to pass directly to the
output EXOR gate, as in Fig. 7.18. The test input set to
a 1 primarily confirms the operation of the output EXOR
gate, but also checks the additional EXOR gate. Fig.
7.19b gives the fault table for these two gates. Now with
<01> or <10> output vectors from the checker, the input
vectors to the output EXOR gate are <00> and <11>
respectively,which means that this gate should output a 0.

7.8.2 : Fault Isolation

In general, there will be a fan-out from every logic gate
output, i.e. every gate output will be connected to at
least one gate input. This is illustrated in Fig. 7.20a,
where a single transmitter (gate output) sends data to
many receivers (gate inputs). Another configuration is
possible, shown in Fig. 7.20b, where a single receiver
accepts data from one of several transmitters. The
transmitter will be either wire ORed (or wire ANDed)
together, or have tri-state output buffers. This latter
configuration is generally associated with bus structures.

Consider now the encoded and checked bus structures of
Figs. 7.21a and 7.21b. For diagnostic purposes the output
of each buffer block is checked for failures. The fault
tables in Figs. 7.21a and 7.21b identify the faults that
are detected by each checker in the circuit. These reveal

-244-

that any input or output fault that causes the bus to
become stuck at a particular logic level is undiagnosable.
For example, in Fig. 7.21a, if the bus becomes stuck-at-0
(SAO), it is unknown from the checker indications if this
is caused by the output of buffer B1 SAO, or the inputs
of buffers B2 or B3 SAO. The only solution, aside from
using a current probe to determine which device is sinking
current and therefore faulty C7.303, is to replace each
device connected to the bus in turn, until the fault is
eliminated. Sedmak C7.63, incidentally, investigates the
structure of Fig. 7.21a, but does not consider bus
failures caused by gate input failures.

An alternative solution is to introduce signal isolators
at strategic points in the signal lines, so that there is
only one output or input connected directly to the bus.
Then a stuck bus line (assuming that the lines themselves
are not open or short circuit) can only be due to the
directly connected device. The structures of Fig. 7.21a
and 7.21b now become those of Figs. 7.22a and 7.22b
respectively. The isolation circuits are allowed to fail,
but not in such a mannner as to cause a stuck-at failure
where they are connected to the bus. An input to output
short is another failure which is not allowed. Either of
these failures would render the isolator circuit useless.

The fault tables in Figs. 7.22a and 7.22b now reveal that
faults in individual devices are diagnosable to that
device from checker indications. The additional checkers
(C3 and C4) shown in Fig. 7.22b serve two purposes;
firstly they detect isolator faults and secondly they
improve the diagnosability of this structure. Isolator
failures are modelled as producing identical fault indica
tions as the single input or output of the device they
are connected to and isolate. Each isolator and the
device it isolates are then considered as one unit and
replaced as such. This is an ideal situation, which in
practice is dependent on the actual implementation of the
isolator circuitry.

-245-

Moreira de Souza et al, in their research oriented
computer C7.313, have used a series resistor and CMOS
buffer as an isolator for each signal line in Fig. 7.22a
and a series diode for each signal line in Fig. 7.22b,
resulting in Figs. 7.23a and 7.23b respectively. The
resistors used are wirewound types, where the probability
of an open circuit is much greater than the probability of
a short circuit. The CMOS buffers ensure that minimal
voltage is dropped across the resistors, so that an
acceptable noise immunity is maintained. The tie-up
resistors on the transmitter outputs in Fig. 7.23b
maintain odd or even parity for the checker between a
transmitter and its isolator when that transmitter is in
active. Appendix B shows that both short and open circuit
diode failures are detected in this structure.

In the STAR computer C7.43, Avizienis used the arrangement
shown in Fig. 7.24 for input and output isolation from a
bus. Unfortunately, the series static redundancy employed
for the isolation components is -useless, since a failure
within them cannnot be detected. If, for example, one of
the output diodes become a short circuit, then the isola
tor is still functional, but the failed diode must be
detected before the other diode fails as well. Avizienis
does not indicate how this is effected, if at all.

It is envisaged that these isolators would, ultimately,
become integrated, or at least gate circuitry redesigned
so that physical input and output stuck-at failures could
not occur. Wirewound resistors are not easily integrated,
so an alternative isolator to that in Fig. 7.23a had to be
designed for the self checking system of Chapter 9. The
circuit adopted is that in Fig. 7.25.

Both Moreira de Souza and Avizienis only consider isola
tors for unidirectional buses. In Fig. 7.26a, the
structures of Fig.7.22 are merged to from the structure of
a bidirectional bus. The self checking system of Chapter

9 has a bidirectional data bus, so a bidirectional
isolator was required for this purpose. This is shown in
Fig. 7.26b. The circuits of Figs. 7.25 and 7.26b are
derived in Appendix B.

7.8.3 : Transient Error Indications

The outputs of each checker and/or the combined error
signal pair can be monitored continously or loaded into a
register at certain defined intervals, for example on an
edge of a system clock. If continuously monitored, there
may be certain regular transient errors which occur during
the time interval when a number of signals are changing
state.

An example of this is the decoder in Fig. 6.33. Assume
that its inputs change from <11> to <00>. However, prim
arily because of variations in the gate delays encountered
by each line, the inputs may go through the following
transitions: 11 —> 01 —> 00. These transitions give the
decoder output waveforms shown in Fig. 7.27 and result in
a transient spike from output y2» These waveforms
indicate that the decoder generates a 1-out-of-n code
output at all times, but the spike may cause a transient
error in another part of the system. Assuming they are
not a problem, these transient errors will be ignored if
the checker outputs are sampled only when the system
signals are known to be stable. Alternatively, if checker
outputs are monitored continuously, the transient error
indications can be eliminated by filtering the checker
outputs, to remove transient errors of less than a defined
duration, or by preventing the transient spikes from
occurring. The latter solution is effected by inhibiting
the decoder outputs until the input signals are stable.
Alternatively, if the input data to the decoder is
encoded, the code can be chosen such that all possible
intermediate transitions between codeword inputs are non
codewords. In this case output spikes do not occur.
M-out-of-n codes are suitable for this purpose C7.193.

-247-

7.8.4 : Verification and Efficiency of
Fault Detection Circuits

As indicated in the section 7.8.1, any non self testing
section of fault detection hardware or subsequent error
processing circuitry must be periodically exercised to
ensure that it is fully operational. This process uses
hardware to simulate test conditions or circuit faults and
software to control it. The error detection circuits can
be checked automatically by generating an error condition
and observing their response. For parity and m-out-of-n
code checkers, for example, a non codeword needs to be
generated by the system. This can be effected by applying
special test signals as stimuli to the check hardware, so
that an error is created.

In reference C7.53 Chang describes mechanisms to exercise
check circuits. The data transfer and storage parity
checkers are exercised by reading idle or power on memory
locations, i.e. memory which has not been written to.
Hopefully, some of these will contain words with incorrect
parity. Several words with incorrect parity are included
in the system ROM or EPROM for a similar purpose. A
1-out-of-n decoder checker is exercised by selecting an
unused decoder output which, by design, is not an input to
the code checker. The checker is therefore given the
impression of no output selected. A second test is the
selection of another unused output, which in this in
stance, again by design, is fed twice into the checker.
The checker is now given the impression of two active
lines.

The Sperry Univac 1100/60 uses a combination of software
and hardware to verify that fault detection, isolation and
recovery mechanisms are operational C7.73. This
capability is provided by fault injection, a process of
deliberately causing a fault to occur within a system by
the insertion of erroneous data or control signals into

-248-

a portion of logic covered by a fault detection circuit.
The need for such testing arises because the section of
logic which processes the error signals is not frequently
exercised during normal operation and is not self testing.

Fault injection is also the subject of a paper by Crouzet
and Decouty C7.323. In order to determine the effective
ness of the fault detection mechanisms in their research
computer , described in section 8.3.10, they inject over
75,000 faults into it. The efficiency of the fault
detection mechanisms, defined as the probability of
detecting a fault knowing that one has occurred, was over
99%. A measurement of the safety of the detection
mechanisms, defined as the probability of the system
producing error free output data, knowing that a fault has
occurred, was 100%. Both test and application programs
where used whilst injecting faults, with the test
program giving a higher rate of fault detection, as
expected. This type of analysis highlights weak points
in the design for self checking. In the case of the
research computer, these were found to be multiplexed bus
checking and the implementation of Morphic logic func
tions.

7.8.5 : Marginal Testing

In most of the discussion so far on error detection, it
has been assumed that circuit faults were hard faults.
These faults are always repeatable, since the same errors
will always be generated under the same set of operating
conditions. However, a logic gate or circuit as well as
failing instantaneously due to, for example, electrical
overstress, can also fail gradually, in that its operating
voltage and current levels no longer fall within specified
tolerance levels over a period of time. This gradual
degradation creates maginal operating conditions, which
lead to transient errors, as the circuit appears to be
functioning correctly for most of the time. In addition,
such marginal conditions may cause failures which are not

-249-

repeatable under the same set of circuit conditions.
These faults are therefore extremely difficult to identi
fy. Kraft & Toy C7.333 consider aspects of marginal
testing, whereby voltage threshold levels are adjusted,
dynamic memory refresh rates reduced and clock rates to
the CPU increased.

7.9 : SUMMARY AND CONCLUSIONS

Section 7.2 has considered the positioning of checkers in
a network of self checking blocks. However, whilst these
may be the minimum requirements to detect all faults from
a specific set, many additional checkers are required in
practice, depending on the level of fault diagnosis
required. In the experimental computer of Chapter 9, for
example, fault diagnosis is desired at chip or circuit
level.

Fault detection in data transmission paths is effected
with an error detecting code. The level of fault detec-
ion is dependent on the code chosen. The choice of code
is also governed by the amount redundancy it invokes and
the cost of generating and checking it. If different
codes are adopted for data paths and memory, then code
translation circuitry will also be required.

Faults in the control circuitry of memory can be detected
without the need for a separate check, if either the
memory is organised in bit or byte-slices, for bit and
byte data error detecting codes respectively, or the
check bits of the address error detecting code are stored
with the data and checked when the data is retrieved from
memory.

If the information on the data transmission paths is
parity encoded, then the detection of errors in this
information can be improved above that of parity, by
interleaving it with encoded information whose code has
better error detection capabilities than parity.

-250-

Control lines must also be checked. Some control line
failures will produce errors in the data transmission
paths and be detected indirectly. Other faults will not
be detected in this manner, so the control information
must be encoded and checked. Decoder outputs, for
example, which are inherently 1-out-of-n encoded, must be
checked with a totally self checking 1-out-of-n checker.
The checking scheme for control lines must always include
a checker at the end of their transmission paths, to
ensure that all breaks in these lines are detectable.

Circuitry performing arithmetic operations can be checked
by duplication and comparison, by encoded inputs where
the error detecting code is preserved by the arith
metic operation(s) (with additional circuitry for check
bit correction), or by encoded inputs with check bit
prediction circuitry. Chapters 8 and 9 indicate that
duplication and comparison is the most widely used
technique. Despite its redundancy, the technique requires
a minimum of design effort to implement.

Circuits performing logical operations can be checked by
duplication and comparison, by encoded inputs using a set
of code preserving operations which test all single faults
in each bit-slice, or by encoded inputs with check bit
prediction crcuitry. Alternatively, if certain logical
and arithmetic operations are checked, other logical
operations can be performed via a set of identities using
these checked operations. Again duplication and comparison
is the most widely used technique.

Three hardware checks for software faults have been
described. These are a watchdog timer, a branch allowed
check bit and different parity for instructions and data.
However, there appears to be little attention paid to
software faults^ and therefore these tests^ in the self
checking systems reviewed in Chapter 8.

-251-

The level of fault diagnosis is dependent on the quantity,
position and checking ability of the self checking
circuits. All l-out-of-2 outputs from the checkers can be
combined to produce a single l-out-of-2 pair, which will
take some action on detection of an error, but all
individual outputs are required for diagnostic purposes.
The individual signals and/or the combined signal may also
be visually displayed. The diagnostic and display
processes will involve some non self testing circuitry.
Provision must be made to periodically test this cir
cuitry.

Although the fault detection logic is self checking, it
can be checked, along with the error processing logic, by
special hardware and software provided to create errors
in the system. This is a form of fault injection, which
can also be effected by using external mechanisms to
simulate various faults. The efficiency of the fault
detection circuits can also be evaluated using fault
injection.

The outputs from each checker may be monitored continuous
ly to observe all transient errors, but unwanted tran
sition spikes will have to be eliminated from the system.
In general, however, the checker outputs are sampled at
regular defined points during system operation, for the
detection of transient and permanent faults.

Mechanisms may also be provided within the system for
marginal testing, so that degradations in operating
conditions are detected. These mechanisms appear to be
rare, however.

Fault diagnosis is assisted by the inclusion of isola
ting circuits between a gate output (transmitter) and the
gate inputs (receivers) it drives. These are ideally
integrated as discrete package or within the device they
are isolating. Circuits adopted in the experimental
self checking computer of Chapter 9 are discussed in

-252-

Appendix B.

Various techniques for fault detection and fault diagnosis
have been presented in this Chapter. It is important to
examine the extent of their usage in current and past
research, not only as a means of putting them into
perspective, but also to determine how far the aims of
this investigation have already been met. A number of
self checking devices and systems are therefore reviewed
in Chapter 8 for this purpose. Many of the techniques for
fault detection and fault diagnosis, presented in this
Chapter, are practically applied in the experimental self
checking computer of Chapter 9.

-253-

7.10 : REFERENCES
7.1) Designing reliable computer systems; the fault

tolerant approach - 1 - R. G. Bennetts; IEE Elec
tronics and Power; November/December, 1978; pp.
846-851.

7.2) Designing reliable computer systems; the fault
tolerant approach - 2 - R. G. Bennetts; IEE Elec
tronics and Power; January 1979; pp. 51-56.

7.3) Fault tolerance and digital systems - R. G. Ben
netts; Microprocessors and Microsystems; Vol. 3,
No. 8; October, 1979; pp. 365-373.

7.4) Fault tolerant computing: Techniques and develop
ment - A. Avizienis; Infotech*; pp. 309-333.

7.5) Maintenance techniques of a microprogrammed self-
checking control complex of an electronic switching
system - H. Y. P. Chang, G. W. Heimbigner, D. J.
Senese, T. L. Smith; IEEE Trans. Comput., Vol.
C-22, No. 5; May, 1973; pp. 501-512.

7.6) Fault-tolerance of a general purpose computer
implemented by very large scale integration - R. M.
Sedmak, H.L. Libergot; FTCS-8*; pp.137-143.

7.7) Availability, reliability and maintainability
aspects of the Sperry Univac 1100/60 - L. A. Boone,
H. L. Liebergot, R. M. Sedmak; FTCS-10*; pp. 3-8.

7.8) The STAR (self-testing and repairing) computer: An
investigation of the theory and practice of fault-
tolerant computer design - A. Avizienis, G. C.
Gilley, F. P. Mathur, D. A. Rennels, J. A. Rohr, D.
K. Rubin; IEEE Trans. Comput.; Vol. C-20, No. 11;
November, 1971; pp. 1312-1321.

7.9) Microprogrammed control and reliable design of
small computers - G. D. Kraft, W. N. Toy; Prentice-
Hall Inc., Englewood Cliffs, New Jersey, USA; 1981;
Chapter 9, pp. 368-415.

7.10) Design of a microprogram control for a processor
in an electronic switching system - T. F. Storey;
Bell Syst. Tech. J.; February, 1976; pp. 183-232.

7.11) Design of a self-checking microprogram control - R.
W. Cook, W. H. Sisson, T. F. Storey, W. N. Toy;
IEEE Trans. Comput.; Vol. C-22, No. 3; March, 1973;
pp. 255-262.

7.12) The design of a microprogrammed self-checking
processor of an electronic switching system - H. Y.
P. Chang, R. C. Dorr, D. J. Senese; IEEE Trans.
Comput.; Vol. C-22, No. 5; May 1973; pp. 489-499.

-254-

7.13)

7.14)

7.15)

7.16)

7.17)

7.18)

7.19)
7.20)
7.21)

7.22)

7.23)
7.24)

7.25)
7.26)

7.27)

7.28)
7.29)
7 . 3 0)

Architectural design for near - 100% fault coverage
- J. J. Stiffler; FTCS-6*; pp. 134-137.
Design techniques for reliable hardware - F. P.
Maison; Infotech*; pp. 236-251.
Installability, availablity, reliability and
maintainability aspects of the Sperry System 11
- A. K. Bhatt, D. R. Mueller; FTCS-14*; pp. 29-35.
Error detecting logic for digital computers - F. F.
Sellers, M. Y. Hsiao, L. W. Bearnson; McGraw-Hill,
New York; 1968.
Error detecting codes, self checking circuits and
applications - J. F. Wakerly; Elsevier - North
Holland; New York; 1978; Chapter 4, pp. 101-122.
Implementation techniques for self-verification
- R. M. Sedmak; 1980 Test Conf.*; pp. 267-278.
as per 7.9); Chapter 7, pp. 212-330.
as per 7.17); Chapter 2, pp. 9-53.
Error-correcting codes and self-checking circuits
- D. K. Pradhan, J. J. Stiffler; Computer; March,
1980; pp. 27-37.
A new class of error-correcting/detecting codes for
fault-tolerant computer applications - D. K. Prad
han; IEEE Trans. Comput.; Vol. C-29, No. 6; June,
1980; pp. 471-481.
as per 7.17); Chapter 7, pp. 156-174.
Arithmetic algorithms for error-coded operands
- A. Avizienis; IEEE Trans. Comput.; Vol. C-22, No.
16; June, 1973, pp. 567-572.
as per 7.17); Chapter 5, pp. 123-142.
Cost effectiveness of self checking computer
design - W. C. Carter, G. R. Putzola, A. B. Wadia,
W. G. Bouricius, D. C. Jessep, E. P. Hsieh, C. J.
Tan; FTCS-7*; pp. 117-123.
Shift Registers designed for on-line fault detec
tion - D. K. Pradhan, M. Y. Hsiao, A. M. Patel, S.
Y. Su.; FTCS-8*; pp. 173-178.
as per 7.17); Chapter 3, pp. 54-99.
as per 7.17); Chapter 6, pp. 143-155.
HP 547A Digital Current Tracer; Hewlett Packard
1986 Product Catalogue; Hewlett Packard,USA;p. 378.

-255-

7.31) A research oriented microcomputer with built in
auto-diagnostics - J. Moreira de Souza, E. Peixoto
Paz, C. Landrault; FTCS-6*; pp. 3-8.

7.32) Measurement of fault detection mechanisms efficien
cy : Results - Y. Crouzet, B. Decouty; FTCS-12*;
pp. 373-376.

7.33) as per 7.9); Chapter 8, pp. 331-367.
7.34) Computer systems reliability: An overview - A.

Avizienis; Infotech*; 1975; pp. 216-233.
7.35) Fault diagnosis in computer control systems - G.

Edge; Systems Technology; No. 31; April, 1979; pp.
33-41.
* see section B.5.

-256-

Code Single bit odd parity
Data Bits n
Check Bits 1

Fault Security Single bit-slice faults
Self Test Faults affecting fewer than all bits

Checker p-bit EXCLUSIVE OR tree and
q-bit EXCLUSIVE OR tree
(p+q=n+l, where p and q >/ 1)

Comments Least redundancy, cheapest checker
Code Duplication

Data Bits n
Check Bits n

Fault Security Fault affecting different bits in the
two circuits

Self Test Fault affecting different bits in the
two circuits

Checker n-bit TSC equality checker
Comments Most redundancy, expensive checker, not

self testing for many double faults
Code b-adjacent (odd parity)

Data Bits k x b-bit bytes
Check Bits 1 x b-bit byte

Fault Security Single byte-slice faults
Self Test Faults affecting fewer than all bytes

Checker b x p-bit EXCLUSIVE OR trees,
b X q-bit EXCLUSIVE OR trees and
b-bit TSC Morphic AND gate
(p+q=k+l, where p and q >/ 1)

Comments Cheapest checker out of all codes with
b check bits

Low cost residue, A = 2 -1
k x b-bit bytes
1 x b-bit byte
Single byte slice faults except all
bits stuck-at-1 or stuck-at-0
Faults affecting fewer than all bits
k-byte tree of b-bit modulo 2^-1
adders and TSC equality checker
Direct implementation of arithmetic
operations, slower and more expensive
checker compared with b-adjacent
code checker

FIGURE 7.1 PROPERTIES OF FOUR SEPARABLE CODES

Code :
Data Bits :
Check Bits :

Fault Security :
Self Test :

Checker :
Comments :

-257-

ADDRESS BUS

DECODER

[BITjBITBITj
WORD 1

BlT| BITjBIT WORD 2

p= parity bit
n data bits
k=» n+1 bits

BTTi WORD m

DATA BUS

FIGURE 7.2 MEMORY ADDRESS DECODING

ADDRESS BUS

DECODER DECODERDECODER

WORD I
WORD 2

WORD m

p= parity bit
n data bits
k= n+1 bits _

BIT n
BIT n

3IT n

BIT p

BIT p

BIT p

BIT 1

BIT 1
BIT 1

DATA BUS

FIGURE 7.3 MEMORY ADDRESS DECODING WITH REPLICATION

-258-

4-BIT BYTE MEMORY CHIPS
(INTERNAL ADDRESS DECODING PER BYTE)

ADDRESS
BUS

DATA
BITS
D D D I
15 1+ 13n

k= 4:DATA BYTES
1:CHECK BYTE

*5-BIT TSC PARITY
CHECKER

(k+l=5 INPUTS)

DATA
BITS
D D D I
11 10 9 8

DATA
BITS

) D D D
7 6 5 4
TTT

DATA
BITS

D D D D
3 2 1 0

CHECK
BITS _
P P P F
3 2 1 C

(PARITY)

D15
Dll
D7 *
D3
P3
D14
DIO
D6 *
D2
P2
D13
D9
D5 '
D1
PI
D12
D8
D4 4
DO PO

FIGURE 7.4
DATA BUS

4—ADJACENT CODE CHECK

DATA

CHECK
BITS
(OUT)

DATA •
BITS
(OUT) m

(IN) ^
CHECK ^ MEMORY A-BITS ^ ---- CHECK 'r— J
(IN) BIT l-OUT-OF

GENERATOR

DATA

CODE
CHECKER

MEMORY
TSC

CODE
CHECKER

1-0UT-0F-2
BUS

CHECK
BIT

GENERATOR

CHECK
5 BITS

BUS

CHECK
BITS

DATA
BITS

FIGURE 7.5 CODE TRANSLATION FOR UNIDIRECTIONAL BUSES

—259—

TS
C

MO
RP
HI
C

AND

GA
TE

CHECK
BITS

DATA
BITS
(IN)

DATA
BITS
(IN)

MEMORY

CHECK
BITS
(OUT)
DATA
BITS
(OUT)

DATA
I BITS

I-OUT-
CHECKOF-2MULTIPLEXER

A-
TSC

EQUALITY
CHECKER

MEMORY
CHECK

GENERATOR

I-OUT
-OF-2

MULTIPLEXER BUS
CHECK
BIT

GENERATOR

TSC
EQUALITY
CHECKER

CHECK

DATA

— PATH OF DATA FOR MEMORY READ

FIGURE 7.6 CODE TRANSLATION FOR UNIDIRECTIONAL BUSES
WITH COMMON CHECK BIT GENERATION

BIDIRECTIONAL BUS DATA
BITS

DATA
BITS

MEMORY
CHECK
BIT

GENERATOR

BUS
CHECK
BIT

GENERATOR
MEMORY BUS

-OUT
■OF-2 TSC

EQUALITY
CHECKER

TSC
EQUALITY
CHECKER

1-OUT-
OF-2

TRI-STATE
DRIVERS

CHECK
BITS

BIDIRECTIONAL BUS BIDIRECTIONAL BUS
FIGURE 7.7 CODE TRANSLATION FOR BIDIRECTIONAL BUSES

ENCODED ADDRESS INFORMATION (PARITY) ENCODED CONTROL INFORMATION
(m-out-of-n)

INTERLEAVED CODES FOR TRANSMISSION

FIGURE 7.8 INTERLEAVED CODES

-260-

ERROR TSC CODE
CHECKER

CHECK
BITS

tl

t2 -4- <] r Q

ENCODED CONTROL BUS

M' b ^ 1T ■*"" A 1

"̂ al

-— QrOV J T

ENCODED
DATA
BUS

tk -4 C 11 V— I ak'

FIGURE 7.9 INEFFECTIVE CONTROL LINE CHECK

ERROR

ENCODED
CONTROL BUS

TSC CODE
CHECKER

f • • A • • 4

ENCODED
DATA
BUS

CHECK bit:
tI-4

3O H 3 r i
t2 -4-

a2 X't

tk-‘— O ^ 0 eak

V X*_A'

BREAK DETECTED
BY DATA PATH

CODE
BREAK DETECTED
BY CONTROL PATH

CODE

FIGURE 7.10 EFFECTIVE CONTROL LINE CHECK

-261-

DECODER

ADDRESS
LINES

(log

ENABLE(S >

MEMORY OR I/O
ENABLE LINES

(n)
1-out-of-n

code

FIGURE 7.11 ADDRESS DECODING

bk
ak

b l ------
al ■ ■ Y D -

yi

FIGURE 7.12 TSC CIRCUIT FOR THE EXOR OF TWO PARITY
ENCODED WORDS

INPUT
WORDS

LOGIC
UNIT

OUTPUT
WORD

DUPLICATED
LOGIC
UNIT

ERROR
(1-0UT-0F-2)TSC EQUALITY

CHECKER

FIGURE 7.13 TSC LOGICAL NETWORK

-262-

INPUT
WORDS

ENCODED
OUTPUT
WORD

eg-
parity

DUPLICATION
CODE

DUPLICATED
LOGIC
UNIT

LOGIC
UNIT

TSC
CODE

TRANSLATOR

FIGURE 7.14 TSC CHECK BIT PREDICTION

D I

D 51 “I V

CHECK
BIT

GENERATOR

£
DATA
BITS

ENCODED
OUTPUT
WORD

CHECK
BITS

FIGURE 7.15 TSC CODE TRANSLATOR

MAIN MEMORY

SEQUENTIAL
INSTRUCTION
EXECUTION

ALLOWED BRANCH

INVALID BRANCH
(ERROR)

4 BRANCH ALLOWED CHECK BIT
1= ALLOWED BRANCH
0= INVALID BRANCH

FIGURE 7.16 BRANCH ALLOWED CHECK

-263-

MAIN MEMORY

ODD
PARITY

EVEN
PARITY

ODD
PARITY

INSTRUCTION

DATA

INSTRUCTION

jpARITY BIT

FIGURE 7.17 DIFFERENT PARITY FOR INSTRUCTION AND DATA WORDS

SELF TESTING
a-------- y

NON SELF TESTING
A---------K

T.S.C. A
CHECKER 3

7

NORMAL
<01> OR <10>

ERROR
<00> OR <(ll>

NORMAL1
ERROR0

FIGURE 7.18 TWO RAIL (l-OUT-OF-2) TO SINGLE RAIL CONVERSION

SELF TESTING ! NON SELF TESTING
a-------- k;-*---------------- yi

e2T.S.C.
CHECKER

GATE 0 GATE 0INPUTSTEST
NORMAL =0
TEST =1

TEST e2 el
(CODE)

(a) CIRCUIT NORMAL
MODE(b) FAULT TABLE

TEST
MODE

0=SA0 detected
1=SA1 detected

FIGURE 7.19 TESTING THE TWO RAIL TO SINGLE RAIL CONVERTER

RECEIVER
(a)

TRANSMITTER

0

o

RECEIVER

D >

TRANSMITTER
(b)

TRANSMITTER

0 J

RECEIVE

o

FIGURE 7.20 TRANSMITTER AND RECEIVER CONFIGURATIONS

Bl

O
o

V

B2

B3 V

Bi
D>
•

tr&

•

O
7

E > &
• - 0 •

E> 1>
B2

B3

D>

D>

V V

FAULT
CHECKER(S) DETECTING

FAULT
Cl C2 C3

Bl 0/P X X X
B2 I/P X X X
B2 0/P X
B3 I/P X X X
B3 0/P X

*> * CODED BUS
B1-B3 - BUFFER PACKAGES
C1-C3 - TSC CHECKERS
FAULT - SINGLE FAULT IF

CODE IS PARITY
(a)

FAULT

CHECKER(S) DETECTING FAULT
Bl TRANSMITS

TO B3
B2 TRANSMITS

TO B3
Cl C2 Cl C2

Bl 0/P X X X X
B2 0/P X X X X
B3 I/P >: X X
U3 0/P x' ‘ X

* - CODED BUS
Bl,B2 - TRI-STATE BUFFER PACKAGES

B3 ■ BUFFER PACKAGE
Cl,C2 - TSC CHECKERS
FAULT - SINGLE FAULT IF CODE IS

PARITY
(b)

FIGURE 7.21 CHECKED BUS STRUCTURES

-265-

II B2

Bl

B3

o

o

o

o
D>

FAULT
CHECKER(S) DETECTING

FAULT
Cl C2 C3

Bl O/P X X X
11 X

B2 I/P X
B2 O/P X
.12 X
B3 I/P X
B3 O/P X

* - CODED BUS
B1-B3 - BUFFER PACKAGES
C1-C3 - TSC CHECKERS
11,12 - ISOLATOR PACKAGES
FAULT - SINGLE FAULT IF CODE IS PARITY

ISOLATOR FAULT - AS ABOVE, BUT NEVER AN INPUT
STUCK-AT FAULT OR INPUT TO
OUTPUT SHORT CIRCUIT

(a)

31 II

D>
O

B2 12

FAULT
CHECKER(S) DETECTING FAULT
Bl TX TO B3 B2 TX TO B3
Cl C2 C3 C4 Cl C2 C3 C4

Bl O/P X X X X
11' X X X X

B2 O/P X X X X
‘ :: X X X X
B3 I/P X X X >:
B3 0/P X X

* - CODED BUS
B1.B2 - TRI-STATE BUFFER PACKAGES

B3 ■ BUFFER PACKAGE
C1-C4 ■ TSC CHECKERS
11,12 - ISOLATOR PACKAGES
FAULT - SINCLE FAULT IF CODE IS PARITY

ISOLATOR FAULT - AS ABOVE, BUT NEVER AN OUTPUT
STUCK-AT FAULT OR INPUT TO
OUTPUT SHORT CIRCUIT

(b)

FIGURE 7.22 CHECKED BUS STRUCTURES WITH
ISOLATORS

-266-

ISOLATOR ISOLATOR

ISOLATOR

WIREWOUND
RESISTOR • CMOS BUFFER

---1Vcc

ISOLATOR
Vcc

L-------4

FIGURE 7.23 ISOLATOR CIRCUITS USED BY MOREIRA DE SOUZA

•“— AM— MV
INPUT

OUTPUT

BUS

FIGURE 7.24 ISOLATOR CIRCUITS USED BY AVIZIENIS

♦ 5v
lk

2N2369A
lk

►-
820R

INVERTING BUFFER

Ov

FIGURE 7.25 UNIDIRECTIONAL ISOLATOR USED IN CHAPTER $

-267-

II B2

Bl MAIN
BUS VC5,

<C2

C6,

a • b

12 B3

FAULT

CHECKER(S) DETECTING FAULT
Bl TX TO B2 Bl TX TO B3 B2 TX TO Bl B3 TX TO Bl

Cl C2 C3 C4 C5 C6 Cl C2 C3 C4 C5 C6 Cl C2 C3 C4 C5 C6 Cl C2 C3 C4 C5 C6
Bla X X X X X X X X X X
Bib X X X X X X X X X X
lib X X X X ■V
B2a X X X X X
B2b X X X X X

_.I2b X X X X X
_ B3a X X X X X
B3b X X X X X

A
B1-B3
C1-C6
11,12
FAULT

ISOLATOR FAULT

CODED BUS
TRI-STATE BIDIRECTIONAL BUFFER PACKAGES
TSC CHECKERS
BIDIRECTIONAL ISOLATOR PACKAGES
SINGLE FAULT IF CODE IS PARITY
AS ABOVE, BUT NEVER A STUCK-AT FAULT ON THE MAIN BUS OR
AN UNDETECTABLE TERMINAL TO TERMINAL SHORT CIRCUIT

(a) STRUCTURE
♦ 5v

lk- lkOA-37

2N2369A

2k2
MAIN
BUS

ENABLE

(b) Isolator
circuit

FIGURE 7.26 BIDIRECTIONAL BUS STRUCTURE AND ISOLATOR
l----

A
INPUTS (̂ 2 CHANGE FROM
<11> to<P0>via<(01>

TRANSITION

FIGURE 7.27 OUTPUT TIMING OF DECODER IN FIG 6.33

-268-

CHAPTER EIGHT : SELF CHECKING SYSTEMS AND
DEVICES : A REVIEW

8.1 : INTRODUCTION

One of the reasons that self checking systems are not
often designed using commercially available integrated
circuits is the high cost involved to do so. Many SSI and
MSI devices are required to implement such a system, as
the required functions are not available in LSI or VLSI
form. Possible solutions to this problem are to develop
circuits incorporating self checking (or fault tolerant)
mechanisms specfic to the function performed by that
circuit, or to develop specific self checking circuits
containing a set of mechanisms which allow self checking
to be incorporated in a system using traditional circuits.

Some circuits based on the first category are already
available. The Motorola 68000 and the Intel iAPX 432 are
two examples which have been already discussed in section
4.9. The most widespread fault tolerant device is an
interface circuit for Hamming single error correcting/
double error detecting (SEC/DED) coded memory, which is
available from several manufacturers.

If self checking techniques are taken into account during
the design of LSI/VLSI integrated circuits, this reduces
the hardware increase for the introduction of self check
ing at system level. It also enables designers who are
not familiar with self checking techniques to incorporate
them into a system.

A number of self checking devices have been proposed for
use in self checking systems. However, in general, self
checking versions of existing integrated circuits have not
been investigated. So, before reviewing a number of
proposed self checking devices, section 8.2 examines the
modifications required to convert an existing integrated
circuit into.a self checking form. Sections 8.3.1 to

-269-

8.3.8 then briefly review some proposed self checking
devices. Devices from both categories mentioned above are
included. Following this, sections 8.3.9 to 8.3.11 detail
various proposed self checking systems.

8.2 : SELF CHECKING INTEGRATED CIRCUITS

If a totally self checking system is to be constructed out
of integrated circuits (ICs) which have a built in self
checking ability, then all ICs must be available in a self
checking form. There must therefore be self checking NAND
gate packages (SSI) through to self checking microprocess
ors (VLSI). The problem is to select a self checking
technique which can be adapted for any application that
the IC might be used for.

If, for example, the outputs of a NAND gate package were
parity encoded, a parity checker could monitor the normal
gate outputs, as well as the additional pin required for
parity, to constantly check the output code for failures,
as shown in Fig. 8.1. However, - as previously discussed
for check bit prediction in section 7.5, any failure
producing an erroneous gate output within the IC will not
be detected. This is because the parity generation is
based on gate outputs. The only solution is to implement
the complete parity prediction technique by encoding the
gate inputs as well. This approach is certainly appropri
ate for VLSI devices, such as microprocessors, which have
a bus architecture. It is also the approach adopted by
Sedmak for his generalised self checking VLSI chip,
described in section 8.3.7.

Alternatively, and perhaps more appropriate for SSI
packages, is a duplication and comparison of internal
circuitry in normal or complementary form (see section
8.3.7). It is more appropriate, because each gate is
used, in general, for a completely independent purpose.
The NAND package shown in Fig. 8.1 now becomes that shown
in Fig. 8.2. Two additional pins are required for each IC ✓

-270-

to output the l-out-of-2 encoded error signal pair.
Signal pairs from each IC could drive individual fault
indicators (via latches), be merged in groups to drive
fewer indicators, or be merged to give a single fault
indication. The merging process would use n-input Morphic
AND gates, then available in IC form (see section 8.3.8).
However, inputs faults, such as stuck at lines due to
short or open circuits, right up to the input line fan-out
points within the IC (see Fig. 8.2) would not be detected.
Erroneous input signals would be fed to both copies of the
circuit. This problem would be minimised if the fan-out
point of each input was at its IC pin. Inputs could be
encoded and checked at this pin, if this was desired, but
error signals from each IC would be a true indication of
the operational state of the IC itself. An additional
problem to be avoided would be an internal fault which
caused the error signals to become stuck at <01> or <10>.

8.3 : PROPOSED SELF CHECKING SYSTEMS AND DEVICES

8.3.1 : 68000 Microprocessor

The Motorola 68000 microprocessor has already been dis
cussed in section 4.9.2 from the view point of its built
in test capabilities. Nicolaidis has evaluated a self
checking design of this processor C8.1D. He pays
particular attention to the designs of other researchers
for a self checking sequencer, indicating that in each
case there are some real failures within the circuit which
are not detected. In suggesting a satisfactory sequencer
he discusses aspects of self checking ROMs, PLAs and
arithmetic units.

8.3.2 : MIL-STD-1750A Microprocessor

One of the designs studied by Nicolaidis is the VLSI self
checking MIL-STD-1750A microprocessor proposed by Halbert
and Bose C8.2D. They make extensive use of PLAs to form
TSC building blocks, which are then interconnected to form

larger TSC circuits. Using this means they discuss two
major microprocessor subsystems, the arithmetic unit and
the microprogram controller. In both cases the objective
is 100% fault coverage.

8.3.3 : Microprogram Control Unit

Wong et al have designed a self checking microprogram
control unit C8.33 based on the Advanced Micro Devices
AM2910 microprogram controller C8.43. The effect of
physical failures on the outputs of each functional block
are checked, rather than each individual physical failure.
Fault assumptions are arbitrary failures in functional
units and unidirectional errors on control or data trans
fer buses and stored words. On this basis, Berger,
modified Berger codes and duplication codes are used. The
modified Berger code requires fewer check bits than a
normal Berger code. It is used to check n-bit data words
in which the number of ones is known to be always much
less than n (up to 3 in this instance). The unit uses
only three totally self checking checkers, all of which
are equality checkers.

8.3.4 : Four-Bit Microprocessor

Crouzet et al C8.5,8.63 consider the attributes of five
error detection codes; duplication, k-out-of-2k, Berger,
b-adjacent and residue. Using the constraints of MOS
circuit design, they detail the coding and checking cir
cuits required for each code in terms of the number of
gates (power levels), the number of transistors (size) and
the number of gate levels (time delay). This forms a basis
for code comparison. They then apply parity (single error
detection), duplication (multiple error detection) and k-
out-of-2k encodings to a specific 4-bit microprocessor.
A graphical representation of the processor unit is used
to apply each of the three coding techniques in turn, with
particular attention to the positioning of the checkers.
They conclude that the areas of the processor which employ

-272-

duplication require an increase in hardware which is of
the same order as the increase required by either of the
other two. Overall duplication is favoured because it is
easier to design and will detect a large set of faults.

8.3.5 : Error Detection Processor

Chavade et al C8.7,8.8D propose a self checking error
detection processor for use with commercially available
integrated circuits in the design of a self checking
system, as depicted in Fig. 8.3. The facilities of the
processor include:

1) Data comparison.
2) Code translation and checking (translation between

parity, 4-adjacent or SEC/DED Hamming codes and
duplication, or vice versa).

3) Watchdog timer (hardware/software errors).
4) Failure management (error data logging and recovery).

It is able to cope with duplicate synchronous or asynchro
nous processors and duplicate or encoded blocks devoted to
data transfer or storage. It is programmable to select
the operating mode, cascadable from the point of view of
fault signals and is ideally housed within a 40-pin
package.

8.3.6 : The PAD

The PAD is a development of the error detection processor
by the same team C8.93. It is again a self checking LSI
device for fault detection in a microcomputer and is used
with standard integrated circuits to form a self checking
system, as shown in Fig. 8.3.

The system must have twin CPUs but the memory and I/O
blocks can be either duplicated or encoded. For
duplicated parts the PAD provides:

-273-

1) Comparison.
2) Data exchange between CPUs.
3) CPU sychronisation.

For non duplicated parts it provides:

1) Generation and checking of three codes (single parity,
4-adjacent and SEC/DED Hamming codes).

2) Control of non duplicated peripherals.

In addition to these architecturally dependent functions,
the PAD also caters for the following:

1) A watch dog timer check.
2) Detection of memory protection violations.
3) Error management (transient error recovery).

The device allows CPU synchronisation to the nearest clock
cycle (micro synchronised), or CPU synchronisation at
program segment or task level (macro synchronised). All
the PAD fault detection mechanisms are implemented in self
checking logic. The phases adopted for designing the self
checking logic are described, along with the influence of
its integration.

8.3.7 : Generalised VLSI Chip

Sedmak has proposed a generalised self checking VLSI chip,
shown in Fig. 8.4, which has the following features
C8.10-8.123:

1) Functional logic which is duplicated in complementary
form.

2) N comparators to check the two functional block
outputs as well as intermediate results.

3) Redundant power inputs checked by comparison.
4) Output data and control information encoded in parity

or an error correcting code.
5) M input data and control line code checkers.

-274-

6) Error encoding and multiplexing logic to generate
encoded output error signals from the internal check
er outputs.

7) 4-phase input clock check.

Complementary logic is used for the duplicated circuitry,
because it eliminates the occurrence of identical mask,
cell or bridging faults in the two circuits. The signals
in and out of the complementary circuit are opposite to
those of its duplicate. The same physical devices are
used for sequential logic, but control signals and stored
data are opposite in polarity to those in the duplicate
circuit. An example of a circuit and its complement is
given in Fig. 8.5. Sedmak also proposes an error handling
chip to process the outputs from each individual self
checking VLSI chip. This chip, shown in Fig. 8.6, merges
and sorts the information to isolate a fault.

Overall this scheme results in:

1) Immediate detection of all single, most multiple and
most bridging faults.

2) Immediate detection of power and clock failures.
3) An opportunity to recover from these failures.
4) Automatic isolation of the failed chip or interchip

connections.
5) A chip count increase of 5.5% over a conventionally

checked VLSI design.

8.3.8 : Morphic AND Gate

In reference C8.133 Wakerley proposes a 4-input Morhic AND
gate with polarity control to allow input encodings in
either the duplication or l-out-of-2 codes. The circuit
is to be housed in a 14-pin package containing 4 x 2-input
gates, 16 x 4-input gates and two 8-input gates, as shown
in Fig. 8.7. This is the design given by equation (6.9)
and shown in Fig. 6.23b. Five of these chips would be
required for a 16-bit equality checker. One advantage of

-275-

using SSI gates is that they can be organised to be well
checked for single failures. The custom chip approach is
quite vulnerable to failures in which a pair of lines on
the chip become stuck at <10> or <01>. This can be avoid
ed by using a separate custom chip to generate each output
line of the pair (independent subcircuits), at the expense
of increasing the number of chips required. However,
assuming only unidirectional failures, the custom chip
approach is quite adequate.

8.3.9 : VLSI Building Blocks

Rennels et al have presented the results of a study to
establish a standard set of VLSI building blocks C8.143.
These blocks are assembled with commercially available
microprocessors and memory into fault tolerant distributed
computer configurations. The resulting multi-computer
architecture uses self checking computer modules. A
redundant bus system is employed for communication pur
poses between modules. The blocks use many of the tech
niques discussed in this Chapter. They are designed to
meet a number of important conditions as follows:

1) They must interface directly with a variety of
commercial microprocessors and memory.

2) Existing bus and I/O standards must be closely
followed.

3) The resulting system architecture must have a high
fault coverage.

The self checking computer module consists of four
building blocks.

1) An error detecting and correcting memory interface
which provides Hamming correction to damaged data,
replacement of a faulty bit with a spare, parity
encoding and decoding of internal buses and detection
of internal faults.

2) A Programmable Interface which can be programmed to
-276-

perforin either the function of a bus adapter or a bus
controller.

3) The Core which detects CPU faults by synchronously
comparing two CPUs, collects fault indications from
itself and other building blocks, attempts a recovery
from transient faults and disables the processor on
detection of a permanent fault.

4) Digital I/O to provide eight functions, which include
serial and parallel I/O with appropriate checking
techniques.

8.3.10 : Research Microcomputer

In the real time reasearch oriented microcomputer with
built in auto diagnostics, Moreira de Souza et al place a
great emphasis on safety, by preventing the transmission
of erroneous data to its outputs C8.153. Using commerci
ally available components, they achieve this with the
following:

1) Duplication and comparison of the CPU (Intel 8080).
2) Parity encoding of bit-sliced memory data and I/O

data.
3) Duplication and comparison of control circuitry.
4) A fault tolerant clock C8.163 with inhibit switches.
5) Bus isolation (described in section 7.8.2).
6) Fault Analysis Module.

The comparators, parity checkers and fault analysis module
are all implemented as self checking circuits. The 1-out-
of-2 encoded error signals from the various checkers are
processed by the fault analysis module, which indicates
the failed module and inhibits the clock. A system with
8 I/O ports, 4K words of RAM and 4K words of ROM requires
2.8 times the amount of hardware as a system without built
in autodiagnostics, but this figure decreases with in
creased memory and I/O. However, it is suggested that if
special checking circuits were available, this figure
could be reduced to a 1.15 increase.

-277-

8.3.11 : Self Checking Computer Costs

As a significant development from their early work, Carter
et al have studied the cost effectiveness of a self
checking computer design C8.173. The design is complete
ly self testing. It also has a retry capability without
speed degradation and significant additional hardware.
The processor unit consists of ten chip types. The
particular checking technique employed for each chip is
described, along with the additional hardware overheads
that this checking creates for each chip, in terms of the
number of additional gates required within the chip, the
number of additional chip pins required and the number of
additional chips.

They also propose a check chip which can perform any one
of the following functions:

1) Compute and check even byte parity on two bytes
producing 2 parity signals and one checkable 1-out-of-
2 pair.

2) Compute the parity of 27 lines producing a single
output.

3) Act as a 12-input Morphic AND gate, or as a 11-input
Morphic AND gate and check 4 odd parity lines, or
compare 2 pairs of lines, producing one checkable
l-out-of-2 pair.

Thirteen of these check chips are used within the self
checking computer. Overall, the additional hardware
required for checking purposes is again dependent on the
amount of memory, but for 8K words it is 38%. The system
has byte-sliced storage and is designed to detect all
single faults. This results in considerable multiple
fault coverage, typically 64-80%.

8.4 : CONCLUSIONS

-278-

The self checking devices and systems reviewed above show
that duplication and comparison, along with coding, are
the most widely used techniques for self checking pur
poses. Programmable logic arrays (PLAs) are often used to
implement the self checking mechansims.

Coding is principally applied to data transmission paths
(control, address and data information) and memory.
Duplication and comparison is employed for more complex
circuitry, such as control and arithmetic units.

Parity continues to be the most predominant form of coding
used, because of its minimum redundancy and because it
requires a minimum amount of circuitry for generation and
checking purposes. However, its error detection capabili
ties are becoming a major limitation, particlarly in VLSI
circuits, so more complex codes, such as Berger codes, are
beginning to be adopted. Control information is often
encoded in an m-out-of-n code.

Duplication and comparison is expensively employed because
it is so straightforward to implement. The technique
requires a minimum amount of design effort and will also
detect a large set of faults. Even if a complete module is
not duplicated, it is likely that the more complex parts
of it will be, simply because there is no other viable
technique. The duplicate circuitry can be constructed in
normal or complementary form, depending on whether it is
separate from, or integrated within the functional
circuitry.

The main aim of this investigation is to develop a micro
processor based system with fault diagnostics provided by
self checking circuits. Existing research most relevant
to this aim is the research oriented computer of Moreira
de Souza et al C8.153. However, whilst discussing the
various self checking techniques adopted in their system,
they do not discuss fault detection, fault indication and
error control logic in any detail. There is also no

-279-

comment on fault diagnosis for their system. In addition,
the research computer uses unidirectional data buses, so
there are no checking and isolation considerations for
bidirectional buses.

All of the above aspects are detailed in the description
of an experimental self checking computer, which follows
in Chapter 9.

-280-

8.5 : REFERENCES
8.1) Evaluation of a self-checking version of the

MC68000 microprocessor - M. Nicolaidis; FTCS-15*;
pp. 350-356.

8.2) Design approach for a VLSI self-checking MIL-STD-
1750A microprocessor - M. P. Halbert, S. M. Bose;
FTCS-14*; pp. 254-259.

8.3) The design of a microprogram control unit with
concurrent error detection - C. Y. Wong, W. K.
Fuchs, J. A. Abraham, E. S. Davidson; FTCS-13*;
pp. 476-483.

8.4) Am2910A microprogram controller; Bipolar Micropro
cessor Logic and Interface, 1985 Data Book;
Advanced Micro Devices Inc.; Sunnyvale, California,
USA; pp. 5/166-5/183.

8.5) Design of self-checking MOS-LSI circuits. Applica
tion to a four-bit microprocessor - Y. Crouzet, C.
Landrault; FTCS-9*; pp. 189-192.

8.6) Design of self-checking MOS-LSI circuits. Applica
tion to a four-bit microprocessor - Y. Crouzet, C.
Landrault; IEEE Trans. Comp.; Vol. C-29, No. 6;
June, 1980; pp. 532-537.

8.7) A monolithic self-checking error detection process
or - J. Chavade, M. Vergniault, P. Rousseau, Y.
Crouzet, C. Landrault;1980 Test Conf.*;pp. 279-286.

8.8) Design specifications of a self-checking detection
processor - Y. Crouzet, C. Landrault; FTCS-10*;
pp. 275-277.

8.9) The PAD : A self-checking LSI circuit for fault-
detection in microcomputers - J. Chavade, Y.
Crouzet; FTCS-12*; pp. 55-62.

8.10) Fault-tolerance of a general purpose computer
implemented by very large scale integration - R.
M. Sedmak, H.L. Libergot; FTCS-8*; pp.137-143.

8.11) Implementation techniques for self-verification
- R. M. Sedmak; 1980 Test Conf.*; pp. 267-278.

8.12) Design for self-verification: An approach for deal
ing with testability problems in VLSI-based designs
- R. M. Sedmak; 1979 Test Conf.*; pp. 112-120.

8.13) Error detecting codes, self checking circuits and
applications - J. F. Wakerly: Elsevier - North
Holland; New York; 1978; Chapter 8, pp. 175-206.

8.14) A study of standard building blocks for the design
of f^ult-tolerant distributed systems - D. A.

-281-

Rennels, A. Avizienis, M. Ercegovac; FTCS-8*; pp.
144-149.

8.15) A research oriented microcomputer with built in
auto-diagnostics - J. Moreira de Souza, E. Peixoto
Paz, C. Landrault; FTCS-6*; pp. 3-8.

8.16) Fault-tolerant digital clocking system - J. Moreira
de Souza, E. Peixoto Paz; Electronics Letters; Vol.
11, No. 18; September 4, 1975; pp. 433-434.

8.17) Cost effectiveness of self checking computer
design - W. C. Carter, G. R. Putzola, A. B. Wadia,
W. G. Bouricius, D. C. Jessep, E. P. Hsieh, C. J.
Tan; FTCS-7*; pp. 117-123.
* see section B.5.

-282-

f

PARITY
VENCODED
OUTPUT

V
PARITY
CHECK BIT
GENERATOR

TSC PARITY
CHECKER

FIGURE 8.1 NAND PACKAGE WITH ENCODED OUTPUT

FAN-OUT POINTS

ERROR
l-OUT-OF-2 CODE
f CHIP GO0D<01>or<10>
c CHIP BAD <007or<ll)/

TSC
EQUALITY
CHECKER

FIGURE 8.2 SELF CHECKING NAND PACKAGE

-283-

ADDRESS BUS 1

OUTPUTS

DATA BUS 1INPUTS
DATA BUS 2

CPU2

CPU1
DATA BITS
CHECK BITS

DUPLICATED
INPUT
CIRCUITRY

DETECTION
PROCESSOR

OR
PAD

DUPLICATED
MEMORY

DUPLICATED
MEMORY

DUPLICATED
INPUT
CIRCUITRY

NON
DUPLICATED
OUTPUT
CIRCUITRY

ADDRESS BUS 2

FIGURE 8.3 TYPICAL ARCHITECTURE OF A SYSTEM USING EITHER
THE ERROR DETECTION PROCESSOR OR THE PAD

JEn c o d e d e r r o r s i g n a l sENCODED CONTROL AND DATA OUTPUTS

COMPARATOR

CONTROL AND
DATA INPUTS

REDUNDANT
POWER INPUTS* *

CLOCK
INPUTS

INPUT CODE
CHECK 1

INPUT CLOCK
CHECK

INPUT CODE
CHECK m

COMPARATOR

INPUT POWER
COMPARATORS

ERROR ENCODING
AND

MULTIPLEXING
LOGIC

FUNCTIONAL
LOGIC

OUTPUT CODE
GENERATION

DUPLICATE
COMPLEMENTARY
LOGIC

OUTPUT CODE
GENERATION

FIGURE 8.4 GENERALISED VLSI CHIP

-284-

CO
DE
D

ME
MO

RY

CLK CLK'CK CK

(a) FUNCTIONAL CIRCUIT (b) COMPLEMENTARY CIRCUIT
FIGURE 8-5 COMPLEMENTARY LOGIC

TO PROCESSOR CLOCK, INTERRUPT LOGIC AND CONSOLE OR TO OTHER ERROR
^CONTROL AND DATA
_______ ^OUTPUTS

ENCODED ERROR SIGNALS HANDLING CHIPS

ERROR
PROCESSING

LOGIC
(f u n c t i o n a l)
\ FORM /

CLOCK
SELECTIONLOGIC

PROCESSOR
CLOCK INPUTS

FAULT
DETECTION

CIRCUITS
AND

ERROR
ENCODING

LOGIC

ERROR
PROCESSING

LOGIC
I DUPLICATE \
(c o m p l e m e n t a r y)

FORM /

CONSOLE
CLOCK INPUTS

CLOCK
SELECTION
LOGIC

ERROR SIGNALS OR OUTPUTS
FROM OTHER ERROR HANDLING CHIPS

FIGURE 8.6 ERROR HANDLING CHIP
CHIP

POLARITY
Al
A2
A3
A4

Bl
B2
B3
B4

' ■ $ > -
■ ■ $ > -
3 D -
ko-

*i 4-INPUT
MORPHIC

a2 AND
*3 GATE

a4 y41
y42

U1
b2
b3
t>4

Y1
Y2

FICURE 8.7 4-INPUT TSC COMPARATOR WITH INPUT
POLARITY CONTROL

-285-

CHAPTER NINE : AN EXPERIMENTAL SELF CHECKING COMPUTER

9.1 : INTRODUCTION

An experimental self checking computer, described in this
Chapter, brings together a substantial amount of the
theory, ideas and designs presented in Chapters 5 to 8. A
microprocessor based system is converted from being total
ly unchecked, to fully checked in certain specific areas.
The two principal aims of this computer are to provide
fault diagnosis to chip or circuit level, as appropriate,
and to demonstrate the implementation of various self
checking techniques.

A number of conditions are imposed on the unchecked and
checked designs:

1) The unchecked microprocessor based system should be
representative of typical designs and be implemented
with widely used integrated circuits.

2) The use of complex circuitry should be avoided in the
checked system.

The unchecked system is described in section 9.2. The
checked system is not intended, at present, to be totally
self checking, but section 9.3 discusses possible self
checking techniques for every aspect of the unchecked
system. Specific circuitry used in the checked system, is
also detailed. The fault detection and error control
circuits adopted in the experimental computer are des
cribed in section 9.4, whilst section 9.5 investigates
several practical implementations of TSC comparators.
Section.9.6 considers the testing of the resulting system.

9.2 : THE UNCHECKED SYSTEM

The experimental computer is a minimal microprocessor
based system using components from the Motorola 6800
family C9.13* It has three modules; central processing

-286-

unit (CPU), memory and input/output (I/O). Each module is
housed on a separate board, see Fig. 9.1.

The following letters are appended to each signal name,
principally to identify the bus signals within each board.
The address bus, A0-A15, is given as an example in each
case.

C - CPU board
M - memory board
I - I/O board
B - backplane

eg. AC0-AC15
eg. AMO-AMI5
eg. AI0-AI15
eg. AB0-AB15

A description of each board in the unchecked system is
given below.

The CPU board, illustrated in Fig. 9.2, consists of:

a) An MC6800 8-bit microprocessor C9.13.
b) An MC6875 2-phase clock generator C9.1D, with crystal

and reset switch.
c) One octal non inverting transceiver package, to buffer

the data bus to or from the backplane. Its direction
is controlled by the CPU board read/write line (R/WC).
It is enabled during the second clock phase (02 at 1).

d) Two octal non inverting line driver packages, to
buffer the address bus to the backplane. They are
enabled by the valid memory address (VMA) line.

e) One octal non inverting line driver package, to buffer
the control bus to the backplane. It is permanently
enabled.

The memory board, illustrated in Fig. 9.3, consists of:

a) One 2K (2048) words x 8-bit erasable programmable read
only memory (EPROM). It is enabled by addresses in
the range E000-E7F7^g and FFF8-FFFF^^. It cannot be
be enabled by a write operation. The EPROM contains
the Motorola Minibug II monitor routines, with addi-✓

-287-

tional commands to load, print and move memory
contents C9.23.

b) Two IK words x 4-bit random access memories (RAMs).
They are enabled by addresses in the range A000-
A3FF^g. A memory write operation can only take place
during 02.

c) A 3-to-8 line decoder from address lines 13 to 15 (A13
-A15). The decoder provides enables for memory and
I/O devices. It is enabled by VMA. Additional gates
provide specific enables for the I/O devices.

d) One octal non inverting transceiver package, to buffer
the data bus to or from the backplane. Its direction
is controlled by R/WM. It is enabled by addresses
in the range AOOO-BFFF^ and EOOO-FFFF^, during 02.

e) Two octal non inverting line receiver packages, to
buffer the address bus from the backplane. They are
permanently enabled.

f) One octal non inverting line receiver package, to
buffer the control bus from the backplane. It is
permanently enabled.

The I/O board, illustrated in Fig. 9.4, consists of:

a) An MC6850 Asynchronous Communications Interface Adap
tor (ACIA) C9.1D with an RS232 compatible line driver
and line receiver as a terminal interface. The ACIA
is enabled by addresses 8008^ and 8009^.

b) An MC14411 Bit Rate Generator C9.13 and crystal. This
provides the ACIA transmit and receive clocks, such
that the ACIA operates at 300 BAUD.

c) An MC6821 Peripheral Interface Adaptor (PIA) C9.13.
Peripheral data lines PB0-PB7 and peripheral control
lines CA2 and CB2 are assigned as outputs. They each
drive light emitting diodes (LEDs). Peripheral data
lines PA0-PA7 are assigned as inputs. A set of
switches provide a 0 or a 1 to each input. The PIA is
enabled by addresses 8004-8007^.

d) One octal non inverting transceiver package, to buffer
the data bus to or from the backplane. Its direction

is controlled by R/WI. It is enabled by addresses in
the range 8000-9FFF^g, during 02.

e) Two octal non inverting line receiver packages,, to
buffer the address bus from the backplane. They are
permanently enabled.

f) One octal non inverting line receiver package, to
buffer the control bus from the backplane. It is
permanently enabled.

9.3 : THE CHECKED SYSTEM

This section discusses self checking techniques for all
aspects of the unchecked system. In certain cases, the
specific hardware used in the experimental computer is
detailed.

9.3.1 : CPU

The CPU is duplicated and the outputs of the two process
ors compared, as shown in Fig. 9.5. This is the most
convenient technique to adopt. A self checking processor,
as proposed in sections 8.3.1 and 8.3.2, could be
implemented using discrete gates and devices, but this is
not practical or relevant to this experimental computer.

The compared outputs of the dual CPUs are the address and
data buses, plus control lines VMA, BA and R/W. The three
comparators, shown in Fig. 9.5, are totally self checking
(TSC). Their outputs can be merged into a single 1-out-
of-2 error signal. The outputs of the functional CPU
become the system signals. However, since the data bus is
bidirectional, and therefore a set of inputs as well as
outputs, information on this bus must be applied to both
CPUs during a processor read operation (R/W=l). This is
achieved with the tri-state unidirectional buffer shown in
Fig. 9.5. It is enabled during a processor read
operation only.

No additional circuitry is required to synchronise the two
-289-

6800 CPUs. They have a common clock ((f)l and (J>2 generated
from the MC6875) and during normal operation perform
identical operations from a reset condition.

The scheme of Fig. 9.5 could form the basis of a self
checking microprocesor, as described in section 8.2 for
a NAND gate package. All inputs would have to fan out to
both processors from their respective chip pins, in order
to minimise internal faults affecting both processors in
the same manner. This has also been discussed in section
8.2. In addition, all inputs to both processors ideally
need to be checked. The checking of clock, data bus, halt
and reset inputs is considered in other sections. The
rest of the inputs, NMI,IRQ, TSC and DBE, are not used and
therefore connected to the appropriate logic level. These
inputs are difficult to check, because they are static
levels. They could individually, or as a group, be
encoded with their encoding checked externally at the
relevant chip pins. Alternatively, they could become part
of the maintenance procedures for non self testing
circuitry, as discussed in section 7.8.4. Mechanisms
would be provided to exercise these normally static inputs
and the resultant response of the processors checked.
This process would be effected by a combination of hard
ware and software.

Power line failures also need to be considered, both with
in a chip and external to it. Short circuit decoupling
capacitors, for example, cause a power line failure and
are difficult to locate. Recently, however, fail safe
capacitors have been introduced, which predominantly fail
to an open circuit condition C9.31. Power rails are often
monitored for failures by light emitting diodes. The
generalised VLSI chip described in section 8.3.7 has
redundant power inputs, which are fed separately to the
functional and duplicate logic. They are checked intern
ally by comparison. However, in general, the technique of
feeding redundant inputs separately to each of the two
circuit copies and the internal checking of external

-290-

inputs, unless carefully implemented, should be avoided.
This is because failures external to the chip will then
cause it to generate an error signal. Replacing the chip
under these circumstances will be futile, since there is
nothing wrong with the chip itself. In the generalised
VLSI chip, it is assumed that the occurrence of input and
power failures can be specifically identified from the
encoded error signals. Static inputs and power rails are
not checked in the experimental computer.

9.3.2 : System and CPU Clocks

The MC6875 clock generator provides the CPU clocks, MPU01
and MPU02, plus the system clock, BUS02. The BUS02 clock
signal is checked with the TSC periodic signal checker
described in section 6.9.

Fig. 9.6 shows the output circuitry of the MC6875, from
which it can be seen that MPU01 and MPU02 are the Q and Q
outputs of a T-type flip-flop, whilst BUS02 is MPU01
inverted. BUS02 is fully checked for period, mark-space
and stuck-at faults. If this signal is correct, then
MPU01 cannot have period or mark-space faults. The only
fault which can affect it is a wire break between the
fan-out point of Q (see Fig. 9.6) and its integrated
circuit pin. This will give the appearance of a stuck-at
fault to the checker. Similarly, if BUS02 is correct,
then it is unlikely that MPU02 will be a signal of
different period or mark-space ratio, since it is gener
ated from the same flip-flop. Therefore, only stuck at
faults are considered possible on MPU02.

If BUS02 is fully checked, it is thus unnecessary to fully
check MPU01 and MPU02. These two signals only need to be
checked for stuck-at faults. Since MPU01 and MPU02
naturally form a l-out-2 encoded pair, this is achieved
by connecting them directly to the fault indication
circuitry. Fig. 9.6 shows the two checking mechanisms
employed. If a fault in the output flip-flop of the

-291-

MC6875 causes <MPU01,MPU02> to become stuck-at <01> or
<10>, this not a problem, because the fault will be detec
ted by the TSC periodic signal checker on BUS02.

9.3.3 : Reset Line

Part of the MC6875 clock chip is used to provide power-on
and manual reset facilities, as shown in Fig. 9.7. The
reset line, RSTC on the CPU board, is normally static at
1. However, during a manual reset it is at 0. A simple
fault detection mechanism is therefore a light emitting
diode (LED), driven form the reset line via a buffer.
This is illustrated in Fig. 9.7. The power-on reset might
not be observed, but a manual reset will cause the LED to
be lit for as long as the reset switch is depressed. If
the t.f d does not indicate during this operation, or is
permanently lit, the source of the failure can be easily
traced to the LED, its driver, the reset line, the MC6875
or the reset switch. This circuitry is therefore self
testing, assuming that the reset switch is depressed at
some point during normal operation.

9.3.4 : Data Transmission Paths

Single bit odd parity is used for all data transmission in
the experimental computer. It is chosen for the following
reasons:

1) Minimum generation circuitry - a standard MSI in
tegrated circuit.

2) Minimum checking circuitry - totally self checking
EXOR trees.

3) Minimum redundancy.
4) Adequate error detection capability.
5) Odd parity is maintained by high impendance buses.

The last two reasons are expanded in subsequent para
graphs .

-292-

All the line driver, line receiver and transceiver
integrated circuit packages used in the experimental
computer for data transmission are eight bits wide; i.e.
they contain eight of each particular device. A parity
bit is therefore added to each group of eight, or up to
eight lines. The data bus, address bus and a number of
control lines grouped together as a control bus, are all
parity encoded as follows:

1) Data Bus : 1 parity bit, DP, covering data lines D0-
D7.

2) Address Bus : 2 parity bits; API covering address
lines A0-A7 and AP2 covering address lines A8-A15.

3) Control bus : 1 parity bit, CP, covering control lines
02, VMA, R/W and RST.

The parity bit for each group of eight, or up to eight
signals is processed by an independent buffer, as indica
ted in Fig. 9.8.

Single bit parity will detect all single bit faults in a
word. It will also detect all faults affecting an odd
number of bits. A non transforming circuit for parity
encoded data, such as Fig. 9.8, is self testing for all
faults affecting less than all bits. This means that an
enable or power line failure, which causes an all 1 or an
all 0 output from the parity bit buffer or the data bit
buffers, will eventually be detected. If tri-state
buffers are used in the circuit of Fig. 9.8, then tie-up
resistors will maintain a correct odd parity word (nine
l's) on the bus when the buffers are in their high
impedance state. A similar situation occurs if a failure
in the direction line of a bidirectional buffer package
causes two sets of buffers to drive a bus.

The parity generation and checking used for each board is
now considered.

CPU Board : Four parity bit generators are required, as
-293-

indicated in Fig. 9.9. These are all 74LS280 9-bit odd/
even parity generators/checkers C9.4D. Input data to each
generator must be checked, because the generator is a non
code disjoint circuit; it will produce a correct parity
bit for erroneous input data. The address bus, data bus,
R/RC and VMAC are all checked by CPU comparison, whilst
02C and RSTC are checked by the mechanisms described in
sections 9.3.2 and 9.3.3 respectively.

The parity generator for the data bus also requires a tri
state buffer at its output, as shown in Fig. 9.9. This is
enabled for a processor write operation only (R/WC=0).
During a processor read operation, data bus parity is
generated, or supplied by the transmitting device.

All the parity generation circuits described above could
be included in the scheme of Fig. 9.5 for a self checking
microprocessor. The chip would then not only indicate an
internal failure, but have parity encoded outputs as well.

The three buses are checked on the CPU board with TSC EXOR
trees, as described in section 6.7.

I/O Board : Both the ACIA and PIA require parity genera
tion for the data bus during a processor read operation.
This is achieved with a 74LS280 parity generator and a
tri-state buffer, as shown in Fig. 9.10. The buffer is
enabled for a processor read operation from that particu
lar I/O device only, since other devices will supply
parity when they are read and the CPU board supplies
parity during a processor write operation. Parity is
checked on all three buses with TSC parity checkers.

Fig. 9.10 assumes that each I/O device is isolated from
others on the I/O board, so that the scheme presented is
repeated for every I/O device. This is true if the
isolating circuits are fully implemented, as suggested in
section 9.2.8. The I/O board then becomes two sub-
modules, one for the ACIA and one for the PIA. An

-294-

alternative structure is shown in Fig. 9.11, where the
ACIA and PIA share a single data bus parity generator.
The tri-state buffer connected to the output of the parity
generator, is now enabled when the processor reads either
the ACIA or the PIA; i.e. an I/O board read.

Memory Board : The memory board data, address and control
buses are all checked using TSC parity checkers. The use
of parity within the memory itself, is considered in the
next section.

Parity is also checked on all three buses of the back
plane.

9.3.5 : Memory

The EPROM used is 8-bits wide, whilst the RAM chips are 4-
bits wide. A single parity bit appended to each data word
is therefore inadequate to check many internal decoder
(addressing) failures. Three possible solutions are:

1) Use an 8-bit byte error detecting code for the EPROM
and a 4-bit byte error detecting code for the RAM.

2) Replace both types of memory with equivalent bit-
sliced devices.

3) Store the address parity bits with each data word.

The first solution is not adopted because of the added
complexity of circuitry required; a) for checking the
memory codes and b) for code translation between bus and
memory codes (see section 7.3.3) The additional redundant
memory required for this solution is, however, not a
problem. The second solution, whilst being suitable for
microprogrammed memory, is not so for conventional micro
processor based systems. It is rare, for example, to find
bit-sliced EPROMs employed in such a system.

The third solution is the one adopted in the experimental
computer, principally because the required parity bits are

-295-

already available. However, limitations of this technique
using parity have already been considered in section
7.3.2.

A second 2K words x 8-bit EPROM is added to the system to
hold the necessary check bits. This is referred to as the
check EPROM, whilst the existing EPROM is referred to as
the data EPROM. The control lines and address lines to
this check EPROM are identical to those used for the data
EPROM. Data and address parity bits are generated from
the data stored in the data EPROM and the address used to
access this data. This information is then loaded into
the check EPROM, before it is installed into the system.
Additional hardware is required to process its parity bits
and this is shown in Fig. 9.12.

The data line of the check EPROM used for data parity,
DPME, is connected directly to the data parity line of the
memory board, DPM. It is simply an additional line for
the data bus and therefore treated as such. There is no
parity generation required for * either type of memory.
During a processor read from EPROM, the address parity
bits in the check EPROM, APME1 and APME2, need to be
compared with corresponding address parity bits generated
on the CPU board. These are APM1 and APM2 respectively on
the memory board. This is achieved with the 2-bit TSC
equality checker shown in Fig. 9.12. Two tri-state
buffers are also required and these are enabled during a
processor read from EPROM, allowing APM1 and APM2 to be
presented to the equality checker. There they are
compared with APME1 and APME2 from the check EPROM. At all
other times, outputs APME1 and APME2, as well as outputs
from the two tri-state buffers, are in a high impedance
state. Tie-up resistors on all these four outputs
maintain identical inputs (l's) to the comparator. If
this mechanism fails, or a mismatch of address parity bits
occurs when the EPROMs are enabled, then the TSC equality
checker will indicate an error. Note that during normal
operation, both EPROMS are not enabled by a processor

-296-

write cycle.

A third IK words x 4-bit RAM is added to the system to
hold the three parity bits. This is referred to as the
check RAM, whilst the existing RAMs are referred to as the
data RAMs. The control and address lines to the check RAM
are identical to those used for the data RAMs. The
additional hardware required to process the parity bits is
shown in Fig. 9.13. As for the check EPROM, the check RAM
data parity line, DPMR, is connected directly to the
parity line of the memory board, DPM. Two tri-state
buffers are connected between the address parity bits of
the memory board, APM1 and APM2, and the corresponding
check RAM address parity bits, APMR1 and AMPR2. A TSC
equality checker compares the inputs and outputs of these
two buffers, as shown in Fig. 9.13. During a proccessor
read operation from RAM, the buffer outputs are disabled,
so the equality checker compares APM1 and APM2 with APMR1
and APMR2 respectively. At all other times, including a
processor write to RAM, the buffers are enabled, so the
equality checker compares ' identical signals. If these
buffers fail, or a mismatch of parity address bits occurs
when the RAM contents are read, then the TSC equality
checker indicates an error.

If the isolation circuits are fully implemented within the
system, both RAM and EPROM will become sub-modules of the
memory board, as indicated in the previous section for I/O
devices.

9.3.6 : Address Decoding

The 3-to-8 line decoder used for address decoding produces
a 1-out-of-n encoded output when enabled. However, as
indicated in section 6.8, if the enable is also included
as part of the output, then a 1-out-of-n code output is
always produced. Note that the 1-out-of-n code is active
low in this instance, i.e. a single 0 in n bits.

-297-

The effects of single failures within this type of decoder
have already been considered” in Fig. 6.36. On this basis,
the 1-out-of-n code checker described in example 6.7 is
adequate for checking the decoder outputs. The design of
example 6.7 is expanded in Fig. 9.14 to check a l-out-of-9
code. No modifications are required to check an active
low 1-out-of-n code. The decoder and its checker could
form the basis of a self checking decoder integrated
circuit.

The additional gates used to generate the ACIA and PIA
enables, ENA and ENP repectively, are best checked by
duplication and comparison, as shown in Fig. 9.14. The
duplicate circuit can be constructed in normal or comple
mentary logic. Alternatively, these gates can be replaced
with a 2-to-4 line decoder, which has AM2 and AM3 as
inputs and EN8/9 as an enable. This decoder can then be
checked using the l-out-of-5 checker, described in example
6.7. This scheme uses less packages than the original
gates with duplication and comparison. Only the main
decoder is checked in the final form of the experimental
computer.

9.3.7 s I/O Devices

The ACIA again uses the duplication and' comparison tech
nique employed for the CPU. The circuit for the ACIA is
given in Fig. 9.15. A tri-state unidirectional buffer is
also required, enabled this time by a processor write
operation to the ACIA (R/WI=0 and ACIA enabled). Both
devices then receive identical data information. Only the
functional ACIA drives the data bus during a read opera
tion. Outputs compared with TSC equality checkers are the
data bus (D0-D7), plus the RTS, lR$ and Tx Data signals.

The MC14411 bit rate generator has sixteen different
output clock rates. One of them is connected to both the
transmit and receive clock inputs of the ACIA (Tx Clk and
Rx Clk respectively). This clock signal is checked by the

TSC periodic signal checker described in section 6.9, as
shown in Fig. 9.16. The monostable periods of the checker
are adjusted to match the selected clock signal.

Input and output circuitry for the ACIA, which in this
case is an RS232 compatible receiver and driver respec
tively, can be duplicated and compared if this is desired,
see Fig. 9.17a. An alternative arrangement is shown in
Fig. 9.17b, which assumes an access to, at least, the
transmit data output and receive data input of both ACIAs.
This is possible in the experimental computer, but not if
the ACIA is constructed as indicated in Fig. 9.15. For a
given fault, Fig. 9.17a would also, in general, produce a
a different set of fault indications to Fig. 9.17b.

9.3.8 : Control Logic

The self checking computer has various individual gates,
or combination of gates, which process at least two
control signals (this includes enables), to produce
further control signals. In addition, a number of control
bus signals are inverted on each board to match the
required input levels of specific devices. Fig. 9.18
gives some examples of this control logic from the memory
board.

All control logic must be checked in a self checking
computer . In the experimental computer, all inputs to
this logic are taken from the control bus and/or the
address decoder outputs. Both the control bus and the
address decoder outputs are checked (parity and 1-out-of-n
respectively), so whilst the inputs to the control logic
are not, in general, encoded, they are checked. If this
circuitry uses gates from self checking logic packages, as
proposed in section 8.2, then it is inherently checked.
Alternatively, each circuit must be duplicated and
compared, as suggested for part of the address decoding
logic in section 9.3.6.

-299-

9.3.9 : Isolators

From section 7.8.2, isolation circuits should be installed
as follows:

1) A unidirectional isolation circuit in series with
every receiver, in a single transmitter to multiple
receiver structure - Fig. 9.19a.

2) A unidirectional isolation circuit in series with
every transmitter, in a multiple transmitter to single
receiver structure - Fig. 9.19b.

3) A bidirectional isolation circuit in series with every
slave transceiver 'A' bus connection, in a master
transceiver to multiple slave transceiver structure
- Fig. 9.19c.

In all cases, multiple must also include single; i.e.
single transmitter to single receiver and single trans
ceiver to single transceiver structures. In general,
then, there must ideally be an isolating circuit between
every transmitter (gate output) -and receiver (gate input).
On this basis, the experimental computer would require
many unidirectional and bidirectional isolating circuits.
This is clearly impractical, so a limited amount of these
circuits are included for evaluation.

In the experimental computer, isolating circuits are
placed between the backplane and the memory and I/O
boards, as shown in Fig. 9.20. Unidirectional isolators
are used for the control and address buses, with bi
directional isolators for the data bus. The circuits
adopted are those shown in Figs. 7.25 & 7.26b and derived
in Appendix B. Appendix B also presents a fault table for
each isolator. The non inverting line receivers buffering
the control and address buses from the backplane are
replaced with inverting types, since the unidirectional
isolators are inverting. The data bus requires an
additional TSC parity checker. This is between its
isolating circuits and the transceiver which buffers it to

-300-

or from the backplane, see Fig. 9.20. The bidirectional
isolators have a common control line, the base drive for
each transistor. Thus, in a similar manner to the trans
ceivers, independent drive buffers are provided for the
data bit isolators and the parity bit isolator, as shown
in Fig 9.20.

The fault table for the bidirectional isolator in Appendix
B demonstrates that both data paths must be used during
normal operation to fully check each isolating circuit
and its associated buffer. It also implies that there
must be at least two data paths to achieve this. The data
paths in this instance are the CPU board to the memory
board and the CPU board to the I/O board.

9.4 : FAULT INDICATION AND ERROR CONTROL LOGIC

The requirements of the fault indication and error control
logic, for diagnostic purposes, are as follows:

1) An indication of the output - from every TSC checker
at the falling edge of clock phase 02. The fault
detection circuits are therefore not monitored contin
uously. The falling edge of 02 is chosen, because it
terminates every processor cycle.

2) An ability to permanently indicate a fault until the
fault indication logic is reset. Permanent faults
will automatically do this, but a transient fault may
occur during a single cycle only and never be
observed.

3) An ability to halt the processor on detection of an
error. This prevents an error propagating throughout
the whole system, creating a misleading error indica
tion.

4) A means of manually halting the processor. The fault
indication logic can be observed without any system
activity (see section 9.6).

5) A means of testing all non self testing parts.

-301-

These requirements are achieved with the circuitry des
cribed below.

The l-out-of-2 encoded output pair from each TSC checker
is processed in the manner of Fig. 9.21, where an EXNOR
gate merges the output pair into a single line. An
additional EXOR gate then provides a means of testing this
and subsequent non self testing circuitry, as previously
discussed in section 7.8.1. A switch and buffered control
line are required to provide this test function. The
output from this EXOR/EXNOR arrangement feeds a J-K flip-
flop, which can be configured as a D-type flip-flop for
cyclic fault indication, or configured as a clocked S-R
latch for permanent fault indication. The configuration
of the J-K flip-flop is controlled manually, by a switch.
The flip-flop is clocked by 02 and reset by RST. Both of
these system signals are already checked (see sections
9.3.2 and 9.3.3). A light emitting diode is used as the
fault indicator, driven directly from the Q output of the
flip-flop.

In addition to feeding its own error indication circuit,
each checker output is also connected to an n-input
Morphic AND gate, in the manner of Fig. 9.22. This
converts all the l-out-of-2 encoded pairs to a single
l-out-of-2 encoded pair. This final pair is then merged
and latched, with the inclusion of a test gate, to produce
a signal which can halt the processor, if this is desired.
A switch shown in Fig. 9.22 controls this action. The
processor may be halted at any time, via another switch.
A light emitting diode indicates the state of the halt
line. This combination of switch and LED also allows the
halt line to be tested in a similar manner to the reset
line. An additional LED could be connected to the the Bus
Available (BA) line of the CPU, as this is directly affec
ted by a halt operation. However, this is unnecessary, as
a failure in either CPU will be detected by the comparison
process.

-302-

9.5 : PRACTICAL IMPLEMENTATION OF TOTALLY
SELF CHECKING COMPARATORS

Section 6.6 has given three structures for an n-input
Morphic AND gate. These are a 2-level AND/OR structure,
cascaded 2-input Morphic AND gates and cascaded 2-input
Morphic AND gates with level merging. The following types
of integrated circuit (IC) are now considered to implement
these structures.

1) Single gates.
2) 74LS51 AND-OR-INVERT gates C9.43.
3) 4-input Morphic AND gate (see section 8.3.8).

Fig. 9.23 compares the number of IC packages required for
an 8-input Morphic AND gate, constructed with the
appropriate type(s) of IC for each structure.

The 4-input Morphic AND gate would require the minimum
number of packages. Using the 74LS51 is the second best
solution, in terms of the number- of packages, but results
in six logic levels. The cascaded 2-input Morphic AND
gates with and without level merging both require the same
amount of packages, in this example, but the former
approach is achieved using less logic levels. The 2 level
AND/OR solution is totally impractical. Aside from the
128-input OR gates, it requires 256 packages. An
advantage of using SSI packages in TSC structures is
that, in general, the design can be well checked for
single package failures. Failures can occur in the 74LS51
and custom chips, which cause a pair of lines to become
stuck at <01> or <10>.

9.6 : TESTING THE EXPERIMENTAL COMPUTER

Possible checking mechanisms for each part of the experi
mental computer have been discussed in previous sections.
Not all these proposals have been adopted in the practical
system. Some sections have already detailed the actual

-303-

hardware added to the unchecked system. Fig. 9.24 shows
the complete schematic for the self checking computer as
implemented. Self checking techniques have been applied
to specific areas of the system for evaluation, so the
computer is not totally self checking. Exhaustively
testing the complete system is therefore inappropriate.
The areas which need to be tested are as follows:

1) System clock generation.
2) Reset (switch, logic and line).
3) Halt (switch and line).
4) Main address decoder.
5) Memory parity (EPROM and RAM).
6) Isolating circuits between backplane and memory and

I/O boards.

Appendix B has demonstrated that fault diagnosis is
assisted by fault indications when the system is inactive.
The situation is effected by halting both CPUs. Halting
a 6800 CPU causes its address bus, data bus and R/W line
to be put into a high impedance state, whilst VMA is
forced low. The system clock (02) remains active, as does
the system reset line. Fig. 9.25 details the effects of
halting the processor on the rest of the system. There
are no active memory or I/O enables. Tie-up resistors
force floating lines to a logic 1 state. As a result odd
parity is maintained on the address and data buses. The
system also enters a read mode (R/WC=1). Parity con
tinues to be generated throughout the whole system for the
control bus, and on the CPU board for the address bus.

Fig. 9.26 details the faults detected by the CPU, reset
line, halt line, system clock and main decoder checking
mechanisms. It also gives the checker which will detect
the faults in each case. Various faults were applied
to these areas to confirm the contents of Fig. 9.26. In
general, these were stuck-at faults, created by replacing
a line transmitter with a 0 or 1 source. In all cases,
the error control circuitry is set to halt the processor

-304-

on detection of an error. Timing faults were created in
the clock generation circuitry by adjusting the oscillator
frequency and also replacing the 6875 clock generator with
an external clock source. The software used for test
purposes is either the normal command routines of Minibug
II C9.23, or specially written routines. These programs
enable specific devices to be activated when required, or
specific data to be transmitted on the three buses.

Fig. 9.27 details the faults detected in the memory
circuits and by which checkers. Again, various stuck-at
faults and words with incorrect parity confirm these
results. A number of words with incorrect parity are
stored in the EPROMs when they are programmed, for test
purposes. RAM words with incorrect parity are obtained by
reading memory which has not previously been written to,
or storing words with incorrect parity.

Tests on the isolating circuits and their associated
buffers are based on the fault analysis tables given in
Appendix B. These fault tables-are modified for use with
the self checking computer in Figs. 9.28 and 9.29. All
the single faults in these tables were simulated in the
isolating circuits as they were developed, but are
repeated in the overall system to confirm the checker
indications. Both fault tables detail the faults detected
when the CPUs are halted, which, again, are confirmed by
practical fault simulation. However, since a number of
signals in the control bus are not permanently at 1 when
the CPUs are halted, faults detected during this condition
are detailed separately for this bus in Fig. 9.29.

Overall, the level of fault diagnosis in the experimental
computer is dependent on the level of fault detection,
which in turn is dependent on the type of checking
mechanisms used and the number of checkers provided.

The duplication and comparison of the CPU will detect most
faults (all except those which produce an identical change

-305-

in the outputs of both CPUs) However, the fault cannnot
be diagnosed to the functional CPU or its duplicate, so
both must be replaced if an error is signalled from the
CPU comparator (C5). Both devices would automatically be
replaced if they were within a single self checking chip.

In the three categories of faults for the clock generation
circuitry (period, mark-space and stuck-at faults) all
faults are detected with the two checkers employed (Cl and
C2). If only a subset of all faults is considered, then
the checking mechanisms can be greatly simplified from
those necessary to detect all faults. The predicted
effects on the address decoder outputs due to all single
internal faults, for example, has significantly reduced
the complexity of the required 1-out-of-n checker, since
it is only necessary for the checker to detect two output
errors (two or zero active outputs).

The single bit parity code, used for the encoding of all
buses in the experimental computer, will detect all faults
which cause an odd number of erroneous bits in an encoded
word. Assuming that all combinations of bits occur in
both the data information bits and the parity bit at some
time during normal operation, then all faults except the
bus stuck at a codeword will be detected eventually.
If all faults are to be detected immediately, then the
encoding must be capable of detecting all bit errors.

The comments made above for a parity encoded bus also
apply to the storage of parity encoded data in RAM or
EPROM. The comparison of address parity bits, stored
along side the data in memory, with generated address
parity bits during a memory read operation allows all
faults in the storage of these bits to be detected, as
well as faults in the comparison process. The comparison
process will also detect a number of internal memory
addressing errors. If the addressing errors detected are
inadequate, then a more sophisticated code than parity
will be required for the stored address check bits.

-306-

The diagnosis of an isolator fault from the checker
outputs to the buffer associated with that isolator is
dependent on two important factors. Firstly, the obser
vation of fault indications from a halted system, which
assist the fault diagnosis, and secondly, the use of
both data paths during normal operation (CPU board <— >
memory board and CPU board <— > I/O board), to ensure that
certain failures are detected. The latter factor requires
that the system is operated in a particular manner for the
detection of failures and is therefore an 'operation for
test'.

Another operation for test used in the experimental
computer, more as a confidence test rather than a
necessary operation for the detection of failures, is the
accessing of data from memory with known parity errors.
The manual operation of the reset, halt and test switches
are also operations for test.

-307-

9.7 : REFERENCES
9.1) M6800 microcomputer system design data,, plus data

sheets for MC6821 (DS 9435), MC6875 (DS 9485) and
MC14411 (ADI-306); Motorola Semiconductor Products
Inc.

9.2) Fault diagnostics for microprocessor based systems
- T. J. Hollis; Project report for the degree of
B.Sc. in Electrical Engineering; University of Bath,
England; 1980; Chapter 4 and Appendix 8.

9.3) Fail-safe capacitors - G. Lloyd; Electronic Engin
eering; June, 1984; pp. 71-2.

9.4) The TTL book for design engineers - The engineer
ing staff of Texas Instruments components group;
Texas Instruments; Fourth European edition; 1980.

-308-

BACKPLANE

DATA BUS

ADDRESS BUS

CONTROL BUS

DATA BUS

ADDRESS BUS

CONTROL BUS

DATA BUS

ADDRESS BUS

CONTROL BUS

MEMORY BOARD

CPU BOARD

I/O BOARD

FIGURE 9.1 BOARDS IN THE EXPERIMENTAL COMPUTER

-309-

-310-

CLOCK GENERATOR
MC6875

CPU
M6800 BUFFERS BACKPLANE

I
o
■To4MHz — Ov

f l
RESET3lX

XI UPU01

UPU0E2

X2

8US02

POR RJ

Ov

 VAr|-*-

02C-

VMAC

■02C

Ov-

01

02
D D -
D7

d b g

R555T A O -
A1S

H c il

TOT

IRIS' VUA

TSC BA

R5TC

A
V

R/WC-
E2C-

DC0-DC7 \
A

AC0-AC15 W£C-

R/WC

— VMAC

AC0-AC7 ■\
A

VMAC-

AC8-AC15 \
A

W C

■W ac

02C
VMAC
R/WC
ESTC

Ov-

\

A

DIR

/ — \

\ — /

U

>

= >

V

>
— \

— /

>
— \

— /

DBO-
DB7

ABO-
AB7

AB8-
AB15

02B
VMAB
R/WB
R5TB

FIGURE 9.2 SCHEMATIC FOR THE UNCHECKED CPU BOARD

BACKPLANE

DBO-
DB7 { % }

DMO—
DM7

ABO-
AB7

AB8-
AB15

02B
VMAB
R/WB
RETB

■\
■/

\y

c — Ov

>

u — Ov
b

>

— Ov
b

>

/^7^-ena/b
■EnE/T

3 TO 8 LINE
DECODER

02M

•EN8/9
-ENP
■ERA

AM13-
AM15

\y
VMAM

AMO-
AM7

YO — ENO'/T
Y1 — ER2/3'
Y2 — ER4/5
Y3

A - C
— EN6/7

YA — EN8/9-
Y3 — ERA/B

6 « — ERC7ff
Y7 ^ENE/F

WORDS X 4-BIT
RAM

AM2

AM3-

ENP

En a

1K WORDS X 4-BIT
RAM

AM8-
AM15

DMO-
DM3

AMO-
AM9

02M

02M
VMAM
R/WM
RETM

R/WM

A O -A fl

DMO-
DM7

AMO-
AM10

DM4-

AMO-
AM9

AD—Afl

2K WORDS X 8-BIT
EPROM

02M

R/WM

FIGURE 9.3

ERE7E
R/WM
W u

SCHEMATIC FOR THE UNCHECKED MEMORY BOARD

A 0 -A 9

BACKPLANE

DBO—
DB7

ABO-
AB7

A B 8-
AB15

02B
VMAB
R/WB
RSTB

\y

y

J\y

■\y

V
D R - - R /W I

\ —

& — Ov

>

— Ov

>

— Ov

>

021

•EN8/9
■ERF
■ERA
FIGURE 9.4

BIT RATE
GENERATOR

MC14411

1.84321
MHz

ACIA
MC6850

PIA
MC6821

Rx CLK

Tx CUC

D O -

Tx D a ta

0 7

RS
R x D a ta

R /W

E

C52
TO

R T ?
doy
cso m

CS1

RS232
COMPATIBLE
LINE DRIVER

AND
UNE RECEIVER

■ >
■

T
E
R
M
I
N
A
L

AI0‘
AIT >

R/WT
021-

rstvERA-
Y - C

D 0 - P B O -
0 7 PB7

CA2
RSO CS2

RSI

R/H
P A O -

E
PA7

RS
C52
CSO

CS1 v m

CA1 mar
C81

■+5v

470R
(X 10)

LED

+ 5 v

3k3
(X 8)

SCHEMATIC FOR THE UNCHECKED I/O BOARD

SELF CHECKING INTEGRATED CIRCUIT

CONTROL
INPUTS _

£n,02,DBE,
Reset.Holt.

NMI.IRO.TSC

Pr

FUNCTIONAL6800
r D O -
A 0 7

c a t

A O -
■___i A18

r a t

m r

1 W VMA

n o BA

DUPUCATE6800
VI 0 0 -
A 0 7

vac

A O -

w a n A t«

rat
X B B /W

nj VMA

n o BA

DATA BUS
(DO—D7)

ADDRESS BUS
(A0-A15)

•CONTROL OUTPUTS
(R/W.VMA.BA)

- H ERROR
1—OUT—OF—2

CMP - TSC EQUALITY CHECKER
_ *_ 1_zOUJj-OF-2_ENCODED_ PAJR______________ j

FIGURE 9.5 A SELF CHECKING 6800 MICROPROCESSOR

CLOCK GENERATOR MC6875

DrDinmr >1loO rtKlvJUIG
SIGNAL

ru rrv ro)II 7 Q

L3.

1—OUT—OF—2
TO

FAULT INDICATION
CIRCUITS

02C

TO CPUs AND
FAULT INDICATION

CIRCUITS
(1—OUT—OF—2)

FIGURE 9.6 CHECKING THE SYSTEM AND CPU CLOCKS

-313-

-vcc
CLOCK GENERATOR MC6875

RESET

Ov

vcc

?

. LED V

h > ^—
01

—

—
°

1
—

F U V kU T W K L S L rO U T
WESET

TO CPUs
RSTC
(CONTROL BUS)

FIGURE 9.7 CHECKING THE RESET LINE
BUFFERS

DATA BITS N
(C8)

PARITY BIT

FIGURE 9.8 PROCESSING PARITY ENCODED DATA
74LS280 PARITY r/*c ~

GENERATORS
At

DO—D7

A 8-A 15

CPUs

A 0-A 7

A - H S E V E N ----
TRI-STATE

BUFFER

V
A A -H S E V E N

■DPC
(ODD PARITY BIT)

)D C O -l
/(DATA

— N
r

DC7
/(DATA BITS)

APC2

A -H S E V E N
V) A C 8 ~ AC15

APC1

I M

v r
K

...)
Reset Out

7 /

^ A C 0 -A C 7

V
TSC PARITY

 CHECKER
OUTPUT IS

1—OUT—OF—2
ENCODED

CPC

02C
,VMAC
R/WC
RSTC

FIGURE 9.9 CPU BOARD PARITY

—314—

74LS280 PARITY
GENERATOR

A-HDPI
ISOLATING
BUFFERS

DIO—DI7

I/O DEVICETRI—STATE
BUFFER

D0-D7

API2

AI8-AI15

ADDRESS
UNES AS
REQUIRED

TSC
PARITY

CHECKER
API1

AJO-AJ7

CPI
02I

VMAI
CONTROL
UNES AS
REQUIREDDLMCE' ENABLE

I/O DEVICE PARITYFIGURE 9.10

74LS280 PARITY
GENERATOR

2 EVEHDPI
ISOLATING
BUFFERS

DIO—DI7

TRI-STATE
BUFFER

D0-D7

ACIA
API2 AIO

■N 021
/ R /M

*- £52

AI8-AI15

V
TSC

PARITY
CHECKER

AP11

D 0-D7AI0-AI7

PIAAIO
AH
021
R/Wl
rsti

£51

CPI
021

• VMAI

I/O BOARD PARITYFIGURE 9.11

-315-

2K WORDS x 8-BIT
EPROMS

APM1
DMO—DM7

APM2

ERROR
1—OUT—OF—2 E2M

EQUAUTY
CHECKER DPM

2 -B IT
CMP

DPME(DO)
APME1(D1)
APME2(D2)

A 0-A 10

DO—D7

A 0-A 10

D
A
T
A
E
P
R
D
M

C
H
E
CK
E
P
R
□M

FIGURE 9.12 EPROM PARITY
1K WORDS x 4 —BIT

RAMS

DMO—DM3

AMO—AM9

AM0-AM9
APM1

APM2-

DPM

ERROR
1—OUT—OF—2

2 -B IT
CMP

US
R/W

A 0 -A 9

US
R/W

DO—D3

A 0 -A 9

US
R/W

DPMR(DO)

APMR1(D1)

APMR2(D2)

A 0 -A 9

D
A
T
A
R
A
M

D
A
T
A
R
A
M

FIGURE 9.13 RAM PARITY

3 TO 8 LINE
DECOOEH

AM2

AM13-AM15 En a

ERROR
1—OUT—OF—2

YMAM-----

2-B IT TSC
EQUAUTY
CHECKER

TSC 1—OUT—OF—9
CHECKER

A-C
Y3
Y4
Y5
YB

YO

ERROR
1—OUT—OF—2

FIGURE 9.14 CHECKING THE ADDRESS DECODING

SELF CHECKINC INTECRATED CIRCUIT

FUNCTIONAL A CIA

INPUTS

R/W

Rx Data
Rx CUC DO-
Tx CLK D7

CSO
CS1
ESZ Tx Data
RS RTS
R/W IR5
E
DOT
m

DUPLICATE AQA

Rx Data
Rx CLK DO-
Tx CLK D7

CSO
CS1
TS2 Tx Data
RS RTS
R/W 1RTJ
E
ecu
THS

U ORPHIC

CMP - TSC EQUALITY CHECKER
* - 1—OUT—OF—2 ENCOOED PAIR

D A T A BU S (D0-D7)

OUTPUTS

ERROR
1—OUT—OF—2

FIGURE 9.15 A SELF CHECKING MC6850 ACIA

-317-

BIT RATE GENERATOR
MC14-411
Xln

SELECTED CLOCKF1 —
F13

Xout
TSC

PERIODIC
SIGNAL

CHECKER

ERROR
1—OUT—OF—2

FIGURE 9.16 CHECKING THE ACIA CLOCK

OUTPUT
DATASELF CHECKING

ACIA

ERROR

INPUT
DATAERROR

ERROR

FUNCTIONAL
OUTPUT

CIRCUITRY

COMPARE

DUPLICATE
OUTPUT

CIRCUITRY

FUNCTIONAL
INPUT

CIRCUITRY

DUPLICATE
INPUT

CIRCUITRY

COMPARE

Rx Data

Tx Data

SELF CHECKING
ACIA

OUTPUT
DATA

ERROR

INPUT
DATA

ERROR

ERROR

Rx Dato

TX Dato

COMPARE

Rx Dato

Tx Dato

COMPARE

INPUT

CIRCUITRY

OUTPUT

CIRCUITRY

INPUT

CIRCUITRY

FIGURE 9.17 CHECKING I/O CIRCUITRY

ERA7B
ERE7F 02M DATA BUS TRANSCEIVER C

R/V7M

02M

(a)

(b)

— o -

RAM R/W

-B2M

(c)

FIGURE 9.18 EXAMPLES OF MEMORY BOARD CONTROL
LOGIC

Uni

Uni
m

, v SINGLE TRANSMITTER
(a) TO MULTIPLE

RECEIVER STRUCTURE

Uni

Uni

, x MULTIPLE TRANSMITTER
(b) TO SINGLE

RECEIVER STRUCTURE

MASTER SLAVES

U ni = Unidirectional Isolator

, v MASTER TRANSCEIVER
(c) TO MULTIPLE SLAVE

TRANSCEIVER STRUCTURE

Bi = Bidirectional Isolator
FIGURE 9.19 POSITIONING OF ISOLATORS

-319-

BASE DRIVE

B
A
C
K
P
L
A
N
E

DPB

DBO-
DB7

APB2

A B 8 -
AB15

APB1

ABO-
AB7

CPB

02B
VMABi
R/WB
RSTB

V

V

V

V

Bi

Bi

Uni

Uni

Uni

U ni

Uni

Uni

BASE DRIVE

Kf \
y

\

V

/

■R/W*

■ENABLE*
■DP*

V

A d*o-
y d*7

y
<t>

V
i>

$>
V

4>

■ENABLE*

R/W*
• AP*2

A *8—
A*15

AP*1

A *0—
A *7

CP*

02*
VMA*
R/W*

^ 7 RST*
yi

M
E
M
□
R
Y
□
R
I
/
□

B
□
A
R
D

1 TSC
V*-7 PARITY V CHECKER

Uni = Bidirectional Isolator * = M (MEMORY BOARD)
Bi * Unidirectional Isolator OR 1 (I/O BOARD)

FIGURE 9.20 ISOLATORS IN THE EXPERIMENTAL Vcc
COMPUTER

1—OUT—OF—2
OUTPUT FROM
TSC CHECKER V ^ LED

>CK

CLR

RST

PERMANENT
TEST INDICATION

MODECYCLIC
Qv

FIGURE 9.21 FAULT INDICATION LOGIC
-320-

Vcc

1-OUT—OF—2 (2)
OUTPUTS

FROM TSC
CHECKERS

INDICATION MODE

LED

HALT ON
ERRORJ62TEST

HALT

Ov-

XX

n - INPUT
MORPHIC

AND GATE

I
ro FIGURE 9.22 ERROR CONTROL LOGICt—* ----------------I

‘ INTEGRATED CIRCUIT TYPE
STRUCTURE SINGLE GATES 74LS151 4-I/P MORPHIC AND

3 LEVELS CASCADED 4-I/P CATES
2-LEVEL 256 x 8-I/P AND CATES XX
AND/OR 2 x 128-I/P OR GATES XX 4-I/P GATE USES

IMPRACTICAL IN THIS FORM AND/OR STRUCTURE
CASCADED 6 LEVELS

2-I/P MORPHIC 24 x 2-I/P AND GATES 6 LEVELS 4 LEVELS
AND GATES 18 X 2-I/P OR GATES 7 PACKAGES 3 PACKAGES

(FIG. 6.27a) 10.5 PACKAGES
CASCADED 4 LEVELS

2-I/P MORPHIC 16 X 2-I/P AND GATES
AND GATES 2 X 2-I/P OR GATES XX XX
WITH LEVEL 8 X 4-I/P OR GATES XX XX
MERGING 4 X 4-I/P AND GATES

(FIG. 6.27b) 10.5 PACKAGES

FIGURE 9.23 INTEGRATED CIRCUIT PACKAGES FOR AN 8-INPUT MORPHIC AND GATE

,r*H >W
CLOCK

GENERATOR I
M E M Q R U Q A R D

Rfl RM

DECOOER y
DATA 1-f

PCEN4
U n i 1—OUT—O f—8

CHECKER
CNTRL \y

C12DATA 1 05 06
ADOR 1

OE j)
CIO IDATA 2

rjn
CPU

EPROM RAMJSL
DATA

I/O B O A R D

PI A

U n iHALT
C8HALT ON

ERROR
U n i

CIO
C11
Cl 2
cis~7̂-C14

FAULT INDICATION AND
ERROR CONTROL LOGIC

A d A

TEST

CLOCK
GENERATOR

[P̂ |
PARITY CENERATOR

RC.Rfl.RU.RI - T i e - u p re a i. to re on
a pp ro p ria te b u t u

R0M.R8I - T ie -up rea le to re on
d a to bua on ly

NO ENABLE SICNALS
SHO W FOR BUFFERS
B132.B5.B6 k B8

B ld lrectlono l la d a to r

fQiPl
TSC EQUALITY
CHECKER

SET OF 4
TSC PARITY
CHECKERS

U n i Un id irectiona l la o la to r
TRI-STATE BUFFER

FIGURE 9.24 SCHEMATIC FOR THE EXPERIMENTAL SELF CHECKING COMPUTER

CPU BOARD BACKPLANE

DC0-DC7, DPC (<>2«0) -> 1
DC0-DC7, DPC ($2*1) * 1 DB0-DB7, DPB -» 1
AC0-AC15 -) 1 AB0-AB15. APB1, APB2 -> 1
APCI, APC2 - 1 $2B _TLT
$2C _n_r VMAB ■ 0
VHAC - 0 R/RB « 1
r /Rc -> 1 ESTb * 1
Rstc - l CPB ~u-i_
CPC

MEMORY BOARD I/O BOARD

DMO-DM7, DPM
AMO-AMI5, APM1, APM2
$2M
VMAM
R/Rm
RSTM
CPM

l
- l

- 0
l

- l

DI0-DI7, DPI
AI0-AI15, API1, API2
$21
VMAI
r /Ri
RSTl
CPI

-> 1
• 1
_ru~
- 0
- l
- 1

ENO/1-ENE/F, ENA, ENf> - l -u~i_

_rv_r : CHANGING LEVEL
* 0 : DRIVEN LEVEL
* 1 s DRIVEN LEVEL

-» 1 : TIE-UP RESISTOR LEVEL

FIGURE 9.25 THE SYSTEM WITH CPUs HALTED

UNIT DETECTABLE FAULTS CHECKER DETECTING
FAULTS

CPU ALL FAULTS EXCEPT IDENTICAL
FAILURES IN BOTH PROCESSORS C5

RESET LINE ALL FAULTS C3
HALT LINE ALL FAULTS C4

CLOCK : BUS 02 PERIOD, MARK-SPACE, STUCK-AT Cl
: MPU$1,MPU$2 STUCK-AT C2

DECODER
NO ACTIVE OUTPUT

TWO ACTIVE OUTPUTS
(EVEN NO. OF ACTIVE OUTPUTS)

C12

(Checkers are those in Fig. 9.24)

FIGURE 9.26 VARIOUS SYSTEM FAULTS

-323-

DEVICE DETECTABLE FAULTS ERROR
CREATED

CHECKERS
DETECTING

FAULT
CPU

STATE

EPROM

ALL SINGLE AND MANY MULTIPLE FAULTS IN
DATA AND DATA PARITY BITS

DATA
PARITY C9D etc. READ

ALL FAULTS IN ADDRESS PARITY BITS
ADDRESS
PARITY CIO READ

ANY FAULT CAUSING THE EFFECTIVE INTERNAL
ADDRESS TO BE AN ODD HAMMING DISTANCE FROM
THE DESIRED ADDRESS IN ITS HIGH (A8-A15)

OR LOW (A0-A7) BYTES

RAM

ALL SINGLE AND MANY MULTIPLE FAULTS IN
DATA AND DATA PARITY BITS

DATA
PARITY C9D etc. READ

ALL FAULTS IN ADDRESS PARITY BITS
ADDRESS
PARITY Cll READ

ANY FAULT CAUSING THE EFFECTIVE INTERNAL
ADDRESS TO BE AN ODD HAMMING DISTANCE FROM
THE DESIRED ADDRESS IN ITS HIGH (A8-A15)

OR LOW (A0-A7 > BYTES
BUFFER
B5 ALL INTERNAL AND OUTPUT FAULT? ADDRESS

PARITY CIO* READ
BUFFER
B6 ALL INTERNAL AND OUTPUT FAULTS ADDRESS

PARITY Cll* READ/
WRITE

Notes : 1) Faults detected exclude pin stuck-at faults, except where stated.
2) An address parity error is an error in parity bits API and/or AP2.
3) The checkers are those in Fig. 9.24.
4) * indicates that a fault nay be detected when the CPUs are halted.
5) C90 is the data bus checker of C9.
6) Read * Read fron that device.
7) Read/Write ■ read/write froa/to any device.

FIGURE 9.27 MEMORY FAULTS

-324-

-325-

NORMAL OPERATION
CHECKER INDICATIONS SINGLE FAULTS DETECTED (DATA BUS ONLY, INCLUDING PARITY)

C6D C7D C8 C9D C13 C14D
X X X B3b SA0/1 A) , R B S/C A) , B 4 a SAO A)
X X X B3b SAO/I (=U),RB S/C A) , B 7 a SAO ibi

X X B3b SAO/I (4*M>, D1 0/C (A, D2 0/C <4^),RB S/C (fr̂ M)
X X X B4a SAO <<W),B4a SA1 (A , R B M S/C (A
X X X B7a SAO (4*M),B7a SA1 (A , RBI S/C (A

X X T1BE S/C or 0/C A),T1CE 0/C A),T1BC 0/C A) , B D 1 SAO A), RBI 0/C A) , B 4 a SA1 A) , R B M S/C A)
X TICE S/C (A , B D 1 SA1 (A) , D 1 S/C (A) ,T1BC S/C (A)

X X T2BE S/C or 0/C'A),T2CE 0/C A),T2BC 0/C A) , B D 2 SAO A) , R B 2 0/C A) , B 7 a SA1 A) , R B I S/C A)
X T2CE S/C (A , B D 2 SA1 < A) , D 2 S/C (A) ,T2BC S/C (A)

X X B4a SAO (b)
X X B7a SAO (^»)

CPUs HALTED
X X B3b SAO
X X X B4a SAO
X X X B7a SAO

NOTES : 1) X » fault indicated.
2) SAO • stuck-at-0 ; SA1 ■ atuck-at-1.
3) O/C ■ open circuit ; S/C ■ short circuit.

M M4) <— ■ read from memory board ; -* * write to memory board.
5) 4^ » read from I/O board ; ■ write to I/O board.
6) T1,RB1,D1,BD1 * any of these components in the bidirectional Isolators of II.
7) T2,RB2,D2,BD2 * any of these components in the bidirectional Isolators of 12.
8) CnnD is the data bus checker of Cnn.
9) Checkers, buffers. Isolators and bus tie-up resistors are those of Fig. 9.24.
10) Transistors, resistors, diodes and base drive buffers are those of Fig. B.5.

FIGURE-9.28 BIDIRECTIONAL ISOLATOR FAULTS

NORMAL OPERATIONl
CHECKER INDICATIONS SINGLE FAULTS DETECTED

C7* C9* C14*
X X X B3b SAO/1,RB S/C

X B4a SAO/1, ALL Tl FAILURES, RBI 0/C, RBE1 S/C, RC1 S/C
X B7a SAO/1, ALL T2 FAILURES, RB2 0/C, RBE2 S/C, RC2 S/C

X X RBI S/C
X X RB2 S/C

CPUs HALTED : ADDRESS BUSES 1 AND 2
X X X B3b SAO

X B4a SA1#
X B7a SA1#

CPUs HALTED : CONTROL BUS|
X X X 02B SAO , VMAB SA1, R/RB SAO, K5TB SAO, CPB SA1

X 02BM SAO , VMABM SA1, -R/RBM SAO, K3TBM SAO, CPBM SA1
X #2BI SAO , VMABI SA1, R/RBI SAO, K5TBI SAO, CPBI SA1

NOTES : 1) X =■ fault indicated.
2) SAO * stuck-at-0 ; SA1 = stuck-at-l.
3) O/C * open circuit ; S/C * short circuit.
4) Tl, RBI, RBE1, RC1 * any of these components in the

unidirectional isolators of II.
5) T2, RB2, RBE2, RC2 * any of these components in the

unidirectional Isolators of 12.6) BM * between II and B4.
7) BI * between 12 and B7.8) * * A1 for address bus 1 (A0-A7.AP1), A2 for address bus 2

(A8-A15.AP2) or C for the control bus (02,VMA,R/R,K3T,CP).
9) Checkers, buffers and isolators are those of Fig. 9.24.
10) Transistors and resistors are those of Fig. B.9.11) # * includes line between buffer and isolator.

FIGURE 9.29 UNIDIRECTIONAL ISOLATOR FAULTS

-326-

CHAPTER TEN : CONCLUSIONS AND FURTHER WORK

The purpose of this investigation has been twofold.
Firstly, to devise a method for the design of totally self
checking (TSC) circuits from first principles and, second
ly, to develop a microprocessor based system with on line
fault detection, so that faults can be diagnosed to
individual integrated circuits (XCs), without the need for
external equipment. These two objectives have been
brought together in the experimental self checking compu
ter of Chapter 9.

The first objective of the investigation has been achieved
with a technique based on the testing requirements of
single and cascaded logic gates. A TSC circuit is, by
definition, self testing and fault secure. Fault security
is automatic in a circuit where each output of the 1-out-
of-2 encoded pair is computed with an independent sub
circuit. Therefore it is only necessary to determine if
the circuit is self testing, for it to be TSC. This is
achieved in the case of 2-level AND/OR and OR/AND struc
tures with the method proposed in Chapter 6. The Boolean
function of the circuit depicted on a Karnaugh map is
visually inspected to determine if the circuit is self
testing. This is a rapid process, which will identify why
the circuit is not self testing, so that it can be
modified and re-evaluated.

The technique of using Karnaugh maps to design TSC
circuits is not suitable for TSC circuits with a large
number of inputs. However, complex TSC circuits or
networks are generally constructed from a number of
smaller.TSC circuits, either by design or necessity.
Examples are the TSC comparator and TSC 1-out-of-n code
checker respectively. The design of other TSC circuits,
including m-out-of-n and Berger code checkers, should be
attempted using the Karnaugh map method. The technique
does not cater for TSC circuits constructed from EXOR
gates, notably parity checkers, which have been largely

-327-

designed by intuition. This is an another area which
could be explored.

The second objective of the investigation has been
achieved by the application of a number of techniques to
convert a minimal, but typical, microprocessor based
system from being unchecked to fully checked. These
techniques include the parity encoding of all data trans
mission paths, the duplication of VLSI devices and control
circuitry, the storage of address parity bits in memory
and the installation of signal isolating circuits. Check
ing circuits are then added at strategic points in the
system to achieve the desired level of fault diagnosis
from their output indications. These checking circuits
check codes, compare two sets of inputs and check periodic
signals. Additional circuitry is provided to display and
process their outputs.

The major limitation of the checking circuits, is that if
they are designed strictly according to the Boolean
function of their specification,- then faults within them
can mask the indication of a fault in the system they are
monitoring. This problem is resolved by designing TSC
checkers. This then brings together the two original
objectives. The result is an experimental self checking
computer for the demonstration and evaluation of both
objectives.

The two principal objectives of the experimental computer
have also been met. In the areas which are checked,
faults in an IC or its associated components, such as
isolating circuits, are diagnosable to that chip. If only
board level fault diagnosis is necessary, then consider
ably less fault indication and error control logic will be
required.

The implementation of various self checking techniques has
also been demonstrated. These are duplication and com
parison, parity generation and checking, 1-out-of-n code

-328-

checking and periodic signal checking. It has been shown
that duplication and comparison along with parity encoding
are the two most widely used techniques.

The isolating circuits enhance the fault diagnosis of the
system, rather than assisting its self checking abiltites.
Overall, a considerable amount of additional hardware is
required, primarily for the self checking techniques, but
none of it is complex.

All types of single fault have been simulated in the
isolating circuits and many single and multiple faults in
other checked parts of the system. If the efficiency of
the fault detection mechanisms is to be evaluated for all
faults (single and multiple), then a computer simulation
of faults in the system will be more appropriate than a
physical fault simulation.

Additional checking mechanisms could be added to the
experimental computer to make it totally self checking.
Many more isolation circuits would then be required,
resulting in a considerable increase in the hardware for
checking. So far, there have been no constraints placed
on the amount of hardware used for checking purposes.
However, an examination of the checked computer reveals
that it already has considerably more than five times the
number of IC packages used in the original unchecked
system. Clearly, such a system will only be economically
viable if ICs are available which are self checking
versions of existing devices, or provide a set of checking
mechanisms for use with standard devices, as indicated in
Chapter 8.

If a single chip or group of chips can be identified as
faulty from the indications of the checking circuits,
which might require the combined indications from both a
halted and an operational system, then it would be possi
ble to display this information, in words, on a terminal.
This would extend the fault diagnosis capabilities of the

-329-

system from a manual to an automatic process and allow a
rapid replacement of the faulty chip(s). Alternatively,
this information could he used in fault tolerant applica
tions to effect error correction and/or error recovery.
In all cases it must be remembered that the checking
circuits are TSC, so that an indicated error may be due to
a fault in the checker itself and not a fault in the
signals it is monitoring.

Proposals have been given in Chapter 9 for the construc
tion of a self checking MC6800 microprocessor and a self
checking MC6850 ACIA. Both schemes use the duplication
and comparsion technique with the addition of a tri-state
buffer. The MC6821 PIA can be checked in a similar manner
to the ACIA, for its application in the experimental
computer. However, it is more difficult to construct a
general self checking PIA, because, externally, it is not
known which I/O lines have been programmed as inputs and
which as outputs. Access must be gained to the internal
data direction and control registers for this information,
or a redundant set of registers added externally. A self
checking PIA needs to be the subject of a separate
investigation.

The isolation circuits should be further developed to
remove existing limitations in their design. Certain
undetectable faults ideally need to be eliminated. In
addition, the circuits rely on there being more than one
data path, ie. a structure with a single transmitter and
greater than two receivers, for the detection of certain
faults. If the isolators are installed in single trans
mitter to single receiver structures, then a number of
additional faults become undetectable.

After further development, the isolating circuits can then
be integrated as a separate package, or within the devices
they are isolating. The latter is achieved by modifying
the input and output circuitry of a gate, so that a
physical stuck-at fault at an IC pin is impossible; i.e.

-330-

an input or output line of a gate can still be driven to a
logic 0 or 1 in the presence of an internal input or
output 'stuck-at' fault. However, whilst unswitched
receiver input isolators would assist fault diagnosis in
an unswitched single tranmitter to multiple receiver
structure, switched isolators in all switched structures
would not improve fault diagnosis, without the additional
checkers between each transmitter output or receiver
input and its isolating circuit. Some further investiga
tion is therefore required into this aspect of isolation
circuit integration.

The use of opto-couplers and transformers as isolating
circuits was considered during the development of these
circuits. Opto-couplers were rejected on the basis of
their cost, a relatively high input current and a large
propagation delay, whilst a commercially available trans
former bus isolator package was rejected because it would
not process a 1MHz clock waveform. However, both com
ponents, in principle, are ideal as isolation circuits,
particularly opto-couplers which are easily integrated,
and should therefore be investigated further.

In most of the discussion about self checking checkers,
only TSC checkers have been considered. The exception to
this is the 1-out-of-n code checker used in the experimen
tal computer, which, in general, is a self testing only
checker. However for its specific application to check
the outputs of a 3 to 8 line decoder, in which the effects
on these outputs of all single faults have been ascertain
ed, it is deemed to be TSC. Self testing only (STO) and
partially self checking (PSC) checkers could have been
employed in the experimental computer, since the immediate
detection of errors is not essential, only the eventual
detection of errors; i.e. there has been more of an
emphasis on self testing rather than fault security.
However, it is considered more important to develop and
evaluate checkers suitable for any application, hence the
bias towards TSC checkers. The additional hardware

-331-

required for TSC checkers is unlikely to be a problem when
they are integrated.

In Chapter 6 the process of level merging was presented
for TSC equality checkers constructed from cascaded 2-
input Morphic AND gates. The technique, in general,
reduces the circuitry required for these checkers and also
their propagation delay. Its application is, however,
dependent on the size of the comaprator. Whilst it is
ideal for comparators implemented with discrete logic, as
in the experimental computer, it is more likely than the
2-level AND/OR or OR/AND structures, also presented in
Chapter 6, will be adopted for integrated TSC comparators
with less than nine input pairs.

The theory and design of TSC sequential circuits has not
been extended from that given in Chapter 5, principally
because there was no requirement for them in the experi
mental computer. The most likely application of self
checking sequential circuits in such a system, aside from
any sequential control circuitry, is a multiple phase
clock generator. It would therefore be worth invest
igating the possibility of TSC sequential circuit design
using a method based on Karnaugh maps.

It would take some considerable time to create a complete
set of self checking versions of standard integrated
circuits. In addition, the amount of error processing
required in a system using self checking chips exclusive
ly, where each chip has a l-out-of-2 encoded output error
signal, would be vast. The fault coverage of such a
system would also have to be carefully analysed.

Overall, at present, it is considered more beneficial to
pursue the development and construction of integrated
circuits containing a set of self checking mechanisms,
including self checking checkers, which will allow self
checking to be incorporated into a system using standard
integrated circuits. The construction and development of

-332-

isolating circuit packages should also be pursued, so that
they and self checking checkers can be positioned to
provide adequate fault diagnostic information. A micro
processor based system can then be designed with a
minimum hardware overhead to provide the desired level of
self checking and fault diagnosis.

-333-

APPENDIX A : PRACTICAL IN-CIRCUIT EMULATION

Extensive in-circuit emulation has been practically im
plemented on the microprocessor based system depicted in
Fig. A.l, using a Millenium Microsystem Analyser (in-
circuit emulator). This work is detailed below.

A.l : OPERATION OF THE PROCESSOR SYSTEM

Refering to Fig. A.l, a terminal connected to the
'terminal1 programmable communications interface (PCI),
via RS232 or 20mA interfaces, can be effectively switched
through the 'processor' PCI and further RS232 or 20mA
interfaces to any one of sixteen processing units (com
puters). The communication path between the terminal and
its processor is 'full duplex'.

The processor is selected by a four bit binary code stored
in the route latch which controls a multiplexer/demulti-
plexer configuration, connecting the appropriate processor
to the processor PCI. This code is indicated (in hexa
decimal) on the (7-segement) route display.

Not all processors are available to the terminal, this
being controlled by the 'allowed processor' switches. In
addition, one of seven possible speeds of communication is
selected by the 'baud rate selection' switch.

Each system has four terminals, so the circuitry shown in
the dotted box in Fig. A.l is duplicated three times.
Note that the terminal and processor PCIs operate in
pairs.

A terminal connected via 20mA interfaces to the 'terminal'
PCI, provides monitoring and control for the whole system.

A.2 : THE TESTS

A set of seven programs was written to test the
-334-

system, using the operating system of the Microsystem
Analyser CA.1,A.2,A.3D. These reside in two EPROMs
located on the analyser. Prompt and fault messages are
displayed on the twenty character display of the instru
ment. The tests run individually, or in sequence under
emulator control and consist of the following:

1) Switch Test:
a) The emulator prompts for the 'allowed processor'

and 'baud rate selection' switches to be set to
5 5 ^ and then reads them to check this. An
error message gives the switch number and the
actual data read,

b) As for a), but switches set to AA-̂ g.

2) EPROM Test.
A checksum is compiled and verified for each EPROM
in turn. An error message gives the actual checksum
compiled.

3) RAM Test.
An 8-bit binary number, which starts at 00^,
Exclusively ORed with the most significant (MS)
address byte of the first location in memory and the
result stored in that location. The binary number
is then incremented, Exclusively Ored with the MS
address byte of the second location and stored in
that location. This procedure continues until all
the RAM has been written to. RAM contents are then
read back and compared with that written. An error
message details written and read data.

4) Display Test.
0, 1, 2 through to is written to route display
'0' and then repeated for displays 1, 2 and 3 in
succession. A software delay is incorporated
between changes, so that the sequence can be
observed. This is a purely visual test.

-335-

5) PCI Test 1.
Links are made between the processor PCI interfaces
and the terminal PCI interfaces, as detailed in Fig.
A.2a. For each connection indicated, a complete
binary count (00-FF^g) is transmitted at all possi
ble baud rates (110-19200 baud) from the processor
PCI to the terminal PCI and then vice versa.
Interrupts normally used to indicate 'transmitter
(TX) ready' and 'receiver (RX) ready' are inhibited.
The error message details the two PCIs in use, the
processor port selected, plus the direction and baud
rate of communication, along with one of three
faults:

a) No character transmitted.
b) No character received.
c) Character sent and character received (when

different).

6) PCI Test 2.
This is the same as for PCI test 1, except it uses
a different set of connections, as detailed in Fig.
A.2b, and also includes tests using the monitor PCI.

7) Interrupt Test.
Using the same links as for PCI test 2, this test
detects the occurrence of transmitter and receiver
interrupts for all PCIs, by transmitting 5 5 ^ at
all baud rates and in both directions; terminal to
processor and processor to terminal. The interrupts
are interrupt requests (IRQ) for the terminal and
processor PCIs and a non-maskable interrupt (NMI)
for the monitor PCI. An EPROM contains software
routines and vectors to handle the interrupts,
replacing the upper control EPROM of the board. A
prioritisation of interrupts occurs for the IRQ and
this is also tested. An error message for the
general interrupt test details the two PCIs in use,
the processor port selected, plus the direction and
baud rate of communication and one of four errors:

-336-

a) No IRQ detected.
b) Correct and actual levels of IRQ pribrity.
c) No NMI detected.
d) IRQ level detected instead of NMI.

The error message for the interrupt priority test
gives either a) or b) above.

A.3 : THE TESTS IN USE

The tests have proved to be an effective means of testing
and fault diagnosing the board, in what is essentially an
automated procedure, although the emulator halts on
errors. They also highlight the main limitation of in-
circuit emulation and for that matter functional testing,
which is circuit visibility, or rather a lack of it.

Consider the following example. In test 5) a PCI error is
detected with a fault message of 'NO RX" , i.e. the
receiving PCI has not detected a character. Referring to
Fig. A.3, it cannot be ascertained directly if the fault
lies within the:

i) Transmitting PCI - eg. theoretical but not physical
transmission.

ii) Transmitter Interface - eg. component failure,
iii) Interface Links - eg. not properly connected,
iv) Receiver Interface - eg. component failure,
v) Receiving PCI - eg. physical but not theore-tical

reception.

It is assumed that the main data, address and control
buses are functional, since this would have been determin
ed from previous tests.

The fault is located by running another test routine,
which continuously transmits a character at a predetermin
ed baud rate between a definable pair of PCIs. An
oscilloscope is then used to trace signal flow between the
two PCIs.

A.4 : REFERENCES
A.l Millenium Microsystem Analyser; Operators Manual;

Pub. No. 87000001, release 2.0 ;May 1980; Millenium
Systems Inc.

A.2 Programming with uSA Microsystem Analyser - B.
Hordos; uSA applications note no. 1; Millenium
Systems Inc.

A.3 Diagnostic programming for microprocessor-based sys
tems - B. Hordos; uSA applications note no. 2;
Systems Inc.

-338-

INTERRUPT PRIORITY
IRQ •

CLOCK |— * CPU 2KEPROM

TERMINAL

RX RDY TX RDY
TERMINALRX TX -- >PCI
2 XData and Address Buses, plus Control Linesy

7
O-^H 20*A V-»

20aA)t—
C

RX RX RDYMONITORPCITX TX RDY}NMI

MCNITGR/CCNTROLTERMINAL

Notesi-
a) 20mA/RS232 indicate aninterface of that type.
b) 3-

indicates a 'wired or' connection.

TerainoL

O— »jRS232[yt
: MPX

Froa Processors
O— ?j 2 0 * A > p

PROCESSOR RX TXPCI
RX RDY TX RDY

EKPX
hrd20** h-o
1 To
Processor!

/-A
W

ROUTELATCH

ROUTEDISPLAY

Route Control
PROCESSOR

V

o

SrV

+5V
9 OY

x8

BCDENCODED
SWITCH

ALLOWEDPROCESSORSWITCHES

BAUD RATE SELECTION

FIGURE A.l MICROPROCESSOR BASED SYSTEM USED WITH IN-CIRCUIT EMULATION

TERMINAL
PCI (No.) 0 1 2 3

CONNECTED
VIA INTERFACE (Type) RS232 20mA RS232 20mA RS232 20mA RS232 20mA

TO PROCESSOR
PORT (No.) 4 C 5 D 6 E 7 F

FOR SELECTION
BY PROCESSOR PCI (No.) 4 5 6 7

(a) CONNECTIONS FOR PCI TEST 1

TERMINAL
PCI (No.) 0]L • 3 8

CONNECTED
VIA INTERFACE (Type) RS232 20mA RS232 20mA RS232 20mA RS232 20mA 20mA

TO PROCESSOR
PORT (No.) 0 8 1 9 2 A 3 B F

FOR SELECTION
BY PROCESSOR PCI (No.) <I c 6I 1 4

(b) CONNECTIONS FOR PCI TEST 2

FIGURE A.2 PCI TEST CONNECTIONS

LINK RECEIVING
PCI

RECEIVER
INTERFACE

TRANSMITTER
INTERFACE

TRANSMITTING
PCI

(i) (ii) (ill) (iv) (v)

FIGURE A.3 PCI TEST EXAMPLE

-340-

APPENDIX B : SIGNAL ISOLATION CIRCUITS

B.l : INTRODUCTION

Sections 7.8.2 and 8.2.8 have demonstrated a need for
signal isolation circuits. These sections have also
discussed the positioning of isolators in various circuit
structures. This appendix summarises the work carried out
to design bidirectional and unidirectional isolating
circuits, principally for the self checking computer of
Chapter 9.

Isolating circuits are allowed to fail, but not in either
of the following two ways:

1) A stuck-at fault at the signal terminal connected to
the line from which it is providing isolation.

2) A undetectable short between the two signal terminals.

Both of these failures destroy the isolation properties of
the circuit. The effects of single failures appropriate
to each component used form the basis of fault tables for
the various isolation circuits. These are mainly short
and open circuits in resistors, diodes and transistor
junctions. All of these failures are based on discrete
components. Faults caused by substrate failures, (as
opposed to circuit failures) when the components are
integrated, are not considered.

The structure used to evaluate each isolating circuit is
one of the following:

1) Single transmitter to two receivers.
2) Two transmitters to a single receiver.
3) Master transceiver to two slave transceivers.

They are all assumed to represent one bit of a k-bit
parity encoded bus.

-341-

B .2 : SWITCHED UNIDIRECTIONAL ISOLATORS

The unidirectional isolating circuits used by Moreira de
Souza et al CB.13 in their research computer have already
been presented in section 7.8.2. The isolator they used
for single transmitter to multiple receiver structures,
a series resistor and CMOS buffer, is shown again in Fig.
B.la. Note that the receivers are assumed to be high
speed CMOS buffers CB.23, so the series CMOS buffer is now
unnecessary. It is also assumed that only one path, out
of the two indicated, is selected for data transmission
at any time. Fig. B.lb gives the fault table for this
structure. This reveals, as expected, that a short
circuit isolating resistor is undetectable. Moreira de
Souza et al overcome this problem by using wirewound
resistors, which have a small probability of short circuit
failures. However, wirewound resistors are expensive and
difficult to integrate, so an alternative solution is
required. The fault table in Fig. B.lb also shows that
certain faults will be indicated when no data path is
selected.

If the resistors in Fig. B.la are replaced by diodes, then
the circuit and fault table become those in Fig. B.2.
Some faults now create an indeterminate condition. This
occurs when the anode of a diode is stuck-at 1 (SA1) and
a 0 is applied to its cathode. The actual voltage levels
at either end of the diode will depend on the forward volt
drop across it, V̂ ., as well as the source resistances of
the SA1 fault and driving 0. For normal use, V̂ . should be
as low as possible, so that a transmitted 0 is still a 0
at each receiver ('O' + V̂ .). Germanium 0A47 diodes have
been used for practical purposes CB.33, but modern schott-
ky signal diodes are also suitable and readily integrated
CB.43.

The fault table in Fig. B.2b also shows that a short
circuit diode is, again, not detectable. This situation
can be resolved, however, by replacing the diodes with

✓

-342-

switched diodes, i.e. transistors. Each transistor is
turned on when the data flow is through its associated
buffer. The circuit and fault table for this configura
tion are given in Fig. B.3. The transistor and its base
resistor are selected on the basis of voltage and current
levels, propagation delay and rise times. In the proto
type, these were a Texas 2N2926A transistor CB.53 and a Ik
ohm resistor. From Fig. B.3b, there are a number of
indeterminate faults. A short circuit base resistor gives
the condition mentioned above. In this instance, it is
across the base-emitter junction of the transistor. This
condition, however, will only occur when that transistor
is active. A receiver input SA1 also results in a
similar condition, this time between the collector and the
emitter of the transistor, but again, only when that
transistor is active.

The other isolation circuit used by Moreira de Souza et
al is a series diode for single transmitter to multiple
receiver structures. This is shown again in Fig. B.4a.
Fig. B.4b gives the fault table -for this structure, which,
once again, has the indeterminate condition described
above. All other faults, though, are definitely detect
able. Replacing the diodes with transistors is therefore
unnecessary. If they were, a base drive buffer output
SA1 fault, i.e. the transistor permanently turned on (see
Fig. B.3a>, is not detectable in any case.

B. 3 : BIDIRECTIONAL ISOLATORS

The experimental self checking computer, described in
Chapter 9, has a bidirectional data bus. Moreira de Souza
et al do not consider isolators for such a bus CB.13.
Their memory and peripherals have separate data in and
data out lines, so the data bus consists of two unidirec
tional buses. The data bus of the experimental computer
could be split into two undirectional buses for isolation
purposes, but this would then not represent a conventional
system.

-343-

A master-slave transceiver bus structure is formed by the
merging of the structures in Figs. B.3a and B.4a. The
isolation circuits used in the structures of Figs. B.3a
and B.4a. are also merged to form an isolating circuit for
the master-slave structure. Then the overall circuit and
fault table become those in Fig. B.5. Another type of
indeterminate condition is now introduced. This occurs
when the cathode of a diode is stuck-at-0 (SAO) and a 1 is
applied to its anode.

In Fig. B.6 a full fault analysis is performed on the
fault table of Fig. B.5b. Indeterminate conditions have
been resolved by practical experiment; i.e. checker
indications represent the most likely effect of faults
which create inderminate conditions. A short circuit base
resistor is the only fault, in general, which is undetec
table. However, the buffer which supplies the transistor
base current may be doing so for more than one isolating
circuit. Depending on the drive capability of this buffer
and the value of the base resistors, then a short circuit
base resistor may sufficiently lower the output of the
buffer, so that some or all of the other transistors turn
off, in which case the fault will be detected. The
addition of a base-emitter resistor, as used in the next
section, is resisted, since it would make the isolating
circuits more complex.

For three fault indications identified in Fig. B.6, the
fault cannot be diagnosed to one of the three buffers.
Note that isolators are considered to be part of their
associated buffer. However, the fault indications for no
system activity, see Fig. B.6, resolve this problem.

B .4 : UNSWITCHED UNIDIRECTIONAL ISOLATORS

All the unidirectional and bidirectional structures con
sidered so far have assumed the data path to be switched.
This assumption is not satisfactory for address and

-344-

control buses, in particular, where all buffers are
permanently enabled. The single transmitter to multiple
receiver structure is the most appropriate for these
unidirectional buses. An alternative isolator to the
switched transistor is therefore required.

The first circuit evaluated for this purpose, was that
shown in Fig. B.7. It is similar to the input circuitry
of a standard TTL logic gate CB.63. However, it is
unusable, because two input faults are undetectable.
These are base-emitter and collector-emitter shorts in
transistor Tl. Various modifications were made to the
circuit to detect these faults. However, the modifica
tions then created a significant number of undetectable
faults in other parts of the circuit.

A conventional single stage transistor amplifier was then
considered, as shown in Fig. B.8a. Fig. B.8b gives the
fault table for this circuit. Note that a checker is not
required at the input of any receiver. Since the buffers
are permanently enabled, any fault indication at a
receiver input will also be indicated at its output.

The fault table in Fig. B.8b reveals that a short circuit
input resistor is not detected. This assumes that neither
the transmitter or the isolating transistor is destroyed.
The ideal solution is for a short circuit input resistor
to sufficiently drag down the output level of the trans
mitter, such as to turn off the transistor in all other
isolating circuits connected to this node. This does not
happen in the circuit of Fig. B.8a, because the input
level, under these conditions, is still higher than the
level at which the transistor turns off, referred to as
the trigger level. A transistor will turn off under these
conditions, though, if the resistance of its input
resistor is increased to greater than 10k ohms. However,
the propagation delay of the isolator is then unacceptably
increased. An alternative solution is to add a base-
emitter resistor to the circuit of Fig. B.8a. This will

-345-

divert current away from the base of the transistor,
thereby increasing the trigger input level. A value of
820 ohms was selected in the prototype for this purpose,
on the basis of trigger level and propagation delay.

Fig. B.9 shows the modified structure and its fault table.
Unfortunately, open circuit base-emitter and collector
resistors are both, in general, undetectable. An open
circuit collector resistor is equivalent to an open
circuit tie-up resistor. During its high impedance state,
a bus line with an open circuit tie-up resistor will
float. In this state it is possible for the line to look
like a 0. If so, the fault will be detected.

If a base-emitter resistor is open circuit, then undetec
table second faults, excluding collector resistor faults,
are a short circuit base resistor and an open circuit
base-emitter resistor in the other isolating circuit. The
probability of either of these faults occurring as second
faults, is small. The probability of detecting a second
fault, as well as the probability of the first fault not
being an open circuit base-emitter resistor, are both
high, typically greater than 90%.

In Fig. B.10 a full fault analysis is performed on the
fault table of B.8b. All indicated faults are diagnosable
to their source, one of the three buffers.

-346-

B .5 : REFERENCES
B.l) A research oriented microcomputer with built in

auto-diagnostics - J. Moreira de Souza, E. Peixoto
Paz, C. Landrault; FTCS-6*; pp. 3-8.

B.2) High-speed CMOS replacements for LS TTL promise
continued viability of jellybean logic - R. H.
Cushman; EDN; March 17, 1983; pp. 64-74.

B.3) Mullard Technical Handbook, Book One, Semiconductor
Devices, Part 3, Diodes; Mullard Ltd.; London,
England; September 1977.

B.4) 1A, 3A Schottky Rectifier Diodes; 11DQ, 31DQ series;
Bulletin E2126; International Rectifier; Surrey,
England.

B.5) Texas Instruments Semiconductor Components Data Book
Four, Transistors; Texas Instruments Ltd; Bedford,
England; 1971.

B.6) The TTL book for design engineers - The engineer
ing staff of Texas Instruments components group;
Texas Instruments; Fourth European edition; 1980.
* see below.

FTCS-1 : The 1st Annual International Symposium on Fault-
Tolerant Computing; Pasadena,California,USA; March 1971.

FTCS-2 : The 2nd Annual International Symposium on Fault-
Tolerant Computing; Boston, Massachusetts, USA; June
1972; IEEE Pub. No. 72 CH0623-4C.

FTCS-3 : The 3rd Annual International Symposium on Fault-
Tolerant Computing; Palo Alto, California, USA; June
1973; IEEE Pub. No. 73 CH0772-4C.

FTCS-4 : The 4th Annual International Conference on
Fault-Tolerant Computing; Urbana, Illinois, USA; June
1974; IEEE Pub. No. 74 CH0864-9C.

FTCS-5 : The 5th Annual International Symposium on Fault-
Tolerant Computing; Paris France; June 1975; IEEE Pub.
No. 75 CH0974-6C.

FTCS-6 : The 6th Annual International Symposium on Fault-
Tolerant Computing; Pittsburgh, Pennsylvania, USA; June
1976; I.EEE Pub. No. 76 CH1094-2C.

FTCS-7 : The 7th Annual International Conference on
Fault-Tolerant Computing; Los Angeles, California, USA;
June 1977; IEEE Pub. No. 77 CH1223-7C.

FTCS-8 : The 8th Annual International Conference on
Fault-Tolerant Computing; Toulouse, France; June 1978;
IEEE Pub. No. 78 CH1286-4C.

-347-

FTCS-9 : The 9th Annual International Symposium on Fault-
Tolerant Computing; Madison, Wisconsin, USA; June 1979;
IEEE Pub. No. 79 CH1396-1C.

FTCS-10 : The 10th Annual International Symposium on
Fault-Tolerant Computing; Kyoto, Japan; October 1980;
IEEE Pub. No. 80 CH1604-8.

FTCS-11 : The 11th Annual International Symposium on
Fault-Tolerant Computing; Portland, Maine, USA; June
1981; IEEE Pub. No. 81 CH1600-6.

FTCS-12 : The 12th Annual International Symposium on
Fault-Tolerant Computing; Santa Monica, California, USA;
June 1982; IEEE Pub. No. 82 CH1760-8.

FTCS-13 : The 13th Annual International Symposium on
Fault-Tolerant Computing; Milan Italy; June 1983; IEEE
Pub. No. 83 CH1894-5.

FTCS-14 : The 14th Annual International Conference on
Fault-Tolerant Computing; Kissimmee, Florida, USA; June
1984; IEEE Pub. No. 84 CH2050-3.

FTCS-15 : The 15th Annual International Symposium on
Fault-Tolerant Computing; Ann Arbor, Michigan, USA; June
1985; IEEE Pub. No. 85 CH2143-6

1979 Test Conf, : 1979 IEEE Test Conference; Cherry Hill,
New Jersey, USA; October 1979; IEEE Pub. No.
79 CH1509-9C.

1980 Test Conf. : 1980 IEEE Test Conference; Philadelphia,
Pasadena, USA; 11-13 November 1980; IEEE New York 1980.

Autotestcon '80 : IEEE Autotestcon '80; Washington, DC,
USA; 2-5 November 1980; IEEE New York 1980.

Infotech : Infotech State-of-the-Art Report on Computer
System Reliabilty, Series 3; Infotech Information Ltd.,
Maidenhead, England; 1975.

-348-

Vcc
B2RT

C2 B3 C4Cl

C5parity checker
(a) CIRCUIT

FAULT
B1 TX TO B2 B1 TX TO B3

Cl C2 C3 C4 C5 Cl C2 C3 C4 C5
B1 0/P SAO X* X* XA X XA XA XA X
B1 0/P SA1 X X X X X X X X
B2 I/P SAO XA X XA
B2 I/P SA1 X X X
B3 I/P SAO XA XA k
B3 I/P SA1 X X X

R1 0/C X X X
R1 S/C
R2 0/C X X X
R2 S/C
RT 0/C
RT S/C X X X X X X X X

(b) FAULT TABLE
Notes 1) B2/B3 enabled when transmission is via that buffer.

2) X - fault indicated.
3) X* • fault indicated with -no buffer enabled.
4) r. Iln fv.

 A V ► j^>-VRX follows VTX since Iln o.
tVTX VRX

5) pV. ... SAO Can still drive line regardless
" SA1 of fault.

acts as tie-down/up resistor
but i

Vcc.

■vW SAO
t

potential divider action
(assumed still at *1* in table above)

6) Tie-up resistors not required at C2/C3. In fact they
would be detrimental to circuit operation.

7) R1 S/C. R2 S/C and possibly RT 0/C not detected.

FIGURE B .1 RESISTORS AS UNIDIRECTIONAL ISOLATORS

-349-

D A

- o - t

Notes

ty checlcer
D1/D2 « 0A47

(a) CIRCUIT

FAULT B1 TX TO B2 B1 TX TO B3
Cl C2 C3 C4 C5 Cl C2 C3 C4 C5

B1 0/P SAO X* X* X* X XA X* X A X
B1 0/P SA1 X X X X X X X X
B2 I/P SAO X* X XA
B2 I/P SA1 # # # # # # * #
B3 I/P SAO X* X A X
B3 I/P SA1 # # » * # # 1 #

D1 0/C X X X
D1 S/C
D2 0/C X X X
D2 S/C

1)
2) X
3) XA
4) #
5) R1
6) R1

R2
R3

7) D1

(b) FAULT TABLE
B2/B3 enabled when transmission is via that buffer.

■ fault indicated.
= fault indicated with no buffer enabled.
• indeterminate fault : '0'-----1<]--SA1
and R2 keep B2 and B3 inputs at 1 when B1 outputs a
S/C a B1 0/P SA1 Any of these resistors open
S/C = B2 I/P SA1 ? circuit results in a floating
S/C a B3 I/P SA1) input and a possible fault.
S/C and D2 S/C are not detected.

FIGURE B.2 DIODES AS UNIDIRECTIONAL ISOLATORS - 1

-350-

V cc\

B1 R1

Cl

I

Vcc
ti :

r
C2

R2

R3 B2

■ t n -
C4

B4
BASE
DRIVE'<) > _ L

Vcc
T2 R5 B3

parity checker
Tl/2 * 2N2369A
R2/4 » lk

r — i nC3 C5
B5

R4 BASE
DRIVE

(a) CIRCUIT

FAULT
B1 TX TO B2 B1 TX TO B3
Cl C2 C3 C4 C5 Cl C2 C3 C4 C5

B1 0/P SAO X* X X X A X X
B1 0/P SA1 X X X X X X
B2 I/P SAO X* X*
B2 I/P SA1 # # #
B3 I/P SAO X A XA X
B3 I/P SA1 #- * *
B4 0/P SAO X X
B4 0/P SA1 X
B5 0/P SAO X X
B5 0/P SA1 X
T1BE 0/C X X
T1BE S/C X X
T1BC 0/C X X
T1BC S/C X
TICE O/C X X
TICE S/C X
T2BE 0/C X X
T2BE S/C X X
T2BC 0/C X X
T2BC S/C X
T2CE 0/C X X
T2CE S/C X
R2 0/C X x
R2 S/C # « *
R4 0/C X X
R4 S/C # « «

<b) FAULT TABLE
Notes : 1) B2/B3 enabled when transmission is via that buffer.

2) X - fault indicated.
3) X* - fault indicated with no buffer enabled.
4) # • indeterminate fault : '0' — SA1
5) Transistor BC S/C provides a diode (BE) as required,

except that it is permanently on.
6) R1 S/C ■ B1 0/P SA1) Any of these resistors open

R3 S/C ■ B2 I/P SA1 r circuit results in a floating
R5 S/C s B3 I/P SA1 ' input and a possible fault.

FIGURE B.3 TRANSISTORS AS UNIDIRECTIONAL ISOLATORS

-351-

VccB1 D1
B3

B2 Cl D2
C3 C4

C2 parity checker
Dl/2 * 0A47

(a) CIRCUIT

FAULT B1 TX TO B3 B2 TX TO B3
Cl C2 C3 C4 Cl C2 C3 C4

B1 0/P SAO X* X A X ** » X
B1 0/P SA1 X X X
B2 0/P SAO X* X A X XA XA X
B2 0/P SA1 X X X
B3 I/P SAO X A X X A X
B3 I/P SA1 # « * # « #
D1 0/C X X
01 S/C X
D2 0/C X X
D2 S/C X

(b) FAULT TABLE
Notes i 1) B1/B2 enabled when transmission is via that buffer.

2) X - fault indicated.
3) X* ■ fault indicated with no buffer enabled.
4) # - indeterminate fault i '0'-- 1<]--- SA1.
5) R keeps B3 input at 1 when B1 or B2 output a 1.
6) R S/C s B3 I/P SA1

R 0/C results in B3 input floating and a possible fault.

FIGURE B.4 DIODES AS UNIDIRECTIONAL ISOLATORS - 2

-352-

'parity checker
Tl/2 = 2N2369A
RBI/2 - 2k2
Dl/2 * 0A47R 1/2/3 -Ik (a) CIRCUIT

FAULT

r.l- 1
BlbSAl
B2a SAO
B3a SAO53a SAX
BD1 SA1

B1 TX TO B2
Cl C2 C3 C4 C5 C6

+ A

+ A + A

X

B1 TX TO B3
Cl C2 C3 C4 C5 C6
XA

+ A + A

B2 TX TO B1
Cl C2 C3 C4 C5 C6
XA
XA
XA

XA
X A

B3 TX TO B1
Cl
XA
XA
X A

C2

7 a

C3 C4 C5 C6

X*

;;ao
BD2 SA1

KhlJUQ-
RB2 S/C
D1 Q/C
.PI S/C.
D2 O/C
D2 S/C

T1BE O/C
TIRE S/C
T1BC S/C
TICE O/C
TICE S/C
T2BE O/C
T2BS S/C
T2BC O/C
T2BC S/C

0 / l
T2CE S/C

Notes 1)
2)
3)
4)
5)6)
7)

(b) FAULT TABLE
B2/B3 enabled when transmission is via that buffer.
X = fault indicated.
a = fault indicated with no buffer enabled.
» indeterminate fault : '0' «1----SA1
+ * indeterminate fault : SAO J<j----' 1'
Transistor BC S/C provides a diode (BE) as required
except that it is permanently on.
R1 S/C s Bib SA1) Any of these resistors open
R2 S/C 3 B2a SA1 \ circuit results in a floating
R3 S/C = B3a SA1) input and a possible fault.

FIGURE B.5 A BIDIRECTIONAL ISOLATING CIRCUIT

-353-

NORMAL OPERATION 1
CHECKER INDICATIONS SINGLE FAULTS DETECTED

Cl C2 C3 C4 C5 C6
X X X Bib SAO/1 lb),R\ S/C (^»),B2a SAO lb)

X X X Bib SAO/1 <^),R1 S/C (^>),B3a SAO lb)
X X Bib SAO /1 (4̂ 4-2), Dl O/C () , D2 O/C (4^),R1 S/C < ^ M >
X X X B2a SAO <^M),B2a SA1 (4^),R2 S/C (<^)
X X X B3a SAO (<^«^),B3a SA1 (^),R3 S/C

X X T1BE S/C or O/C (^)),T1CE O/C (^),T1BC O/C (^ > , BD1 SAO (^),RB1 O/C (^)),B2a SA1 (b), R2 S/C (^)
X TICE S/C { A , B D 1 SA1 (A),D1 S/C <) ,T1BC S/C (< b)

X X T2BE S/C or O/C <^),T2CE O/C (=U),T2BC O/C (^4),BD2 SAO (^),RB2 O/C (^),B3a SA1 <^>,R3 S/C lb)

X T2CE S/C (<rb , BD2 SA1 (A) , D 2 S/C (A) ,T2BC S/C (A)
X X B2a SAO (^)
X X B3a SAO (^)>

NO BUFFERS ENABLED
X Bib SAO
X X B2a SAO
X X B3a SAO

NOTES : 1) X * fault Indicated.
2) SAO * stuck-at-0 ; SA1 ■ stuck-at-l.
3) O/C - open circuit ; S/C * short circuit.
4) £ » read from B2 ; b . write to B2.
5) <2 * read from B3 ; b « write to B3.
6) For fault diagnostic purposes:

a) R1 associated with B1.
b) Dl, Tl, RBI, R2 and BD1 associated with B2.
c) D2, T2, RB2, R3 and BD2 associated with B3.

7) RBI or RB2 short circuit are both undetectable.
8) * . fault not diagnosable to Bl, B2 or B3 from checker indication.

FIGURE B.6 FAULT ANALYSIS FOR THE BIDIRECTIONAL ISOLATOR

Vcc
R2R1

T2Tl

OV
(a) CIRCUIT

T1BE S/C, TICE S/C and
R2 S/C not detected

FAULT C
T1BE O/C X
T1BE S/C
T1BC O/C X
T1BC S/C X
TICE O/C X
TICE S/C
T2BE O/C X
T2BE S/C X
T2BC O/C X
T2BC S/C X
T2CE O/C X
T2CE S/C X
R1 O/C X
R1 S/C X
R2 O/C X
R2 S/C

(b) FAULT TABLE

FIGURE B.7 UNSWITCHED UNIDIRECTIONAL
ISOLATOR - 1

B1

'v7 par:

L RB1 u
' AV

Cl OV
Vcc

RB2
— k

RC1 B2

Tl

RC2 B3

T2
Tl/2 * 2N2369A
RBI/2, RC1/2 - lk

C2

C3

(a) CIRCUIT

FAULT Cl C2 C3 FAULT Cl C2 C3
B1 0/P SAO X X X T2BE S/C X
B1 O/P SA1 X X X T2BC O/C X
B2 I/P SAO X T2BC S/C X
B2 I/P SA1 X tScE O/C X
B3 I/P SAO X T2CE S/C X
B3 I/P SA1 X RBI O/C X
TlBE O/C X RBI S/C
TlBE S/C X RC1 O/C
TlBC O/C X RC1 S/C X
TlBC S/C X RB2 O/C
TICE O/C X RB2 S/C
TICE S/C X RC2 O/C X
T2BE O/C X RC2 S/C

RU1 S/C, RB2 S/C, RC1 O/C and RC2 O/C
not detected

<b) FAULT TABLE

FIGURE B.8 UNSWITCHED UNIDIRECTIONAL
ISOLATOR - 2

-355-

Vcc
RC1 B2

B1

-H> RBI
v W —
RBE1
OV —

Tl
C2Cl

Vcc
RC2 B3

RB2
T27 parity checker

Tl/2 = 2N2369A
RBI/2, RC1/2 « lk

RBE1/2 * 820R
RBE2
OV -

C3

(a) CIRCUIT

FAULT Cl C2 C3 FAULT Cl C2 C3
Bib SAO X X k T2BC S/C X
Bib SA1 X X X T2CE O/C x
B2a SAO X T2CE S/C x
B2a SA1 X RBI O/C X
B3a SAO X RBI S/C X X
B3a“SAT- X RBE1 O/C
TlBE O/C k RBE1 S/C X
T1BE S/C X RC1 O/C
TlBC O/C X RCl S/C k
TlBC S/C X RB2 6/C X
TICE O/C k RB2 S/C k k
TICE S/C k RBE2 O/C
T2BE O/C X RBE2 S/C X
T2BE__S_/_£_ X RC2 O/C
T2BC O/C X RC2 S/C k

RBE1 O/C, RBE2 O/C, RC1 O/C and RC2 O/C
not detected

(b) FAULT TABLE

FIGURE B.9 UNSWITCHED UNIDIRECTIONAL
ISOLATOR - 3

CHECKER INDICATIONS SINGLE FAULTS DETECTED
Cl C2 C3
X X X Bib SAO/1

X B2a SAO/I, ALL Tl FAILURES, RBI O/C, RBE1 S/C, RCl S/C
X B3a SAO/I, ALL T2 FAILURES, RB2 O/C, RBE2 S/C, RC2 S/C

X X RBI S/C
X X RB2 S/C

NOTES 1)
2)
3)
4)

5)

X = fault indicated.
SAO * stuck-at-0 ; SA1 “ stuck-at-1.
O/C - open circuit ; S/C ■ short circuit.
For fault diagnostic purposes:
a) Tl, RBI, RBE1 and RC1 are associated with B2.
b) T2, RB2, RBE2 and RC2 are associated with B3.

RBE1, RBE2, RC1, or RC2 open circuit are all undetectable

FIGURE B.IO FAULT ANALYSIS FOR THE UNSWITCHED
UNIDIRECTIONAL ISOLATOR - 3

-356-

