3,551 research outputs found

    Phase Locked Loop Test Methodology

    Get PDF
    Phase locked loops are incorporated into almost every large-scale mixed signal and digital system on chip (SOC). Various types of PLL architectures exist including fully analogue, fully digital, semi-digital, and software based. Currently the most commonly used PLL architecture for SOC environments and chipset applications is the Charge-Pump (CP) semi-digital type. This architecture is commonly used for clock synthesis applications, such as the supply of a high frequency on-chip clock, which is derived from a low frequency board level clock. In addition, CP-PLL architectures are now frequently used for demanding RF (Radio Frequency) synthesis, and data synchronization applications. On chip system blocks that rely on correct PLL operation may include third party IP cores, ADCs, DACs and user defined logic (UDL). Basically, any on-chip function that requires a stable clock will be reliant on correct PLL operation. As a direct consequence it is essential that the PLL function is reliably verified during both the design and debug phase and through production testing. This chapter focuses on test approaches related to embedded CP-PLLs used for the purpose of clock generation for SOC. However, methods discussed will generally apply to CP-PLLs used for other applications

    An embedded tester core for mixed-signal System-on-Chip circuits

    Get PDF

    A DLL Based Test Solution for 3D ICs

    Get PDF
    Integrated circuits (ICs) are rapidly changing and vertical integration and packaging strategies have already become an important research topic. 2.5D and 3D IC integrations have obvious advantages over the conventional two dimensional IC implementations in performance, capacity, and power consumption. A passive Si interposer utilizing Through-Silicon via (TSV) technology is used for 2.5D IC integration. TSV is also the enabling technology for 3D IC integration. TSV manufacturing defects can affect the performance of stacked devices and reduce the yield. Manufacturing test methodologies for TSVs have to be developed to ensure fault-free devices. This thesis presents two test methods for TSVs in 2.5D and 3D ICs utilizing Delay-Locked Loop (DLL) modules. In the test method developed for TSVs in 2.5D ICs, a DLL is used to determine the propagation delay for fault detection. TSV faults in 3D ICs are detected through observation of the control voltage of a DLL. The proposed test methods present a robust performance against Process, supply Voltage and Temperature (PVT) variations due to the inherent feedback of DLLs. 3D full-wave simulations are performed to extract circuit level models for TSVs and fragments of an interposer wires using HFSS simulation tools. The extracted TSV models are then used to perform circuit level simulations using ADS tools from Agilent. Simulation results indicate that the proposed test solution for TSVs can detect manufacturing defects affecting the TSV propagation delay

    Phase Frequency Detector and Charge Pump for Low Jitter PLL Applications

    Get PDF
    In this paper a new technique is presented to improve the jitter performance of conventional phase frequency detectors by completely removing the unnecessary one-shot pulse. This technique uses a variable pulse-height circuit to control the unnecessary one-shot pulse height. In addition, a novel charge-pump circuit with perfect current-matching characteristics is used to improve the output jitter performance of conventional charge pumps. This circuit is composed of a pair of symmetrical pump circuits to obtain a good current matching. As a result, the proposed charge-pump circuit has perfect current-matching characteristics, wide output range, no glitch output current, and no jump output voltage. In order to verify such operation, circuit simulation is performed using 0.18 ÎĽm CMOS process parameters

    A built-in self-test technique for high speed analog-to-digital converters

    Get PDF
    Fundação para a Ciência e a Tecnologia (FCT) - PhD grant (SFRH/BD/62568/2009

    A PLL based built-in self-test for MEMS sensors

    Get PDF
    A new readout circuit for capacitive Micro-Electrical-Mechanical System (MEMS) devices has been proposed, developed and simulated in this thesis. The readout circuit utilizes a Phase Locked Loop (PLL) to convert variations of MEM capacitance to time domain signals. The proposed circuit demonstrates a robust performance against process, power supply and temperature variations due to inherent feedback of PLL systems. Post layout simulation results in Cadence environment using TSMC CMOS 65nm technology indicate that the implemented readout circuit can successfully measure and detect minor variations of MEMS capacitance from its nominal value

    Embedded Sensors and Controls to Improve Component Performance and Reliability Conceptual Design Report

    Get PDF
    The objective of this project is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant (NPP) components and systems. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration platform. I&C is intimately part of the basic millisecond-by-millisecond functioning of the system; treating I&C as an integral part of the system design is innovative and will allow significant improvement in capabilities and performance. As systems become more complex and greater performance is required, traditional I&C design techniques become inadequate and more advanced I&C needs to be applied. New I&C techniques enable optimal and reliable performance and tolerance of noise and uncertainties in the system rather than merely monitoring quasistable performance. Traditionally, I&C has been incorporated in NPP components after the design is nearly complete; adequate performance was obtained through over-design. By incorporating I&C at the beginning of the design phase, the control system can provide superior performance and reliability and enable designs that are otherwise impossible. This report describes the progress and status of the project and provides a conceptual design overview for the platform to demonstrate the performance and reliability improvements enabled by advanced embedded I&C

    Index to NASA Tech Briefs, 1974

    Get PDF
    The following information was given for 1974: (1) abstracts of reports dealing with new technology derived from the research and development activities of NASA or the U.S. Atomic Energy Commission, arranged by subjects: electronics/electrical, electronics/electrical systems, physical sciences, materials/chemistry, life sciences, mechanics, machines, equipment and tools, fabrication technology, and computer programs, (2) indexes for the above documents: subject, personal author, originating center

    Automated Mixed Traffic Vehicle (AMTV) technology and safety study

    Get PDF
    Technology and safety related to the implementation of an Automated Mixed Traffic Vehicle (AMTV) system are discussed. System concepts and technology status were reviewed and areas where further development is needed are identified. Failure and hazard modes were also analyzed and methods for prevention were suggested. The results presented are intended as a guide for further efforts in AMTV system design and technology development for both near term and long term applications. The AMTV systems discussed include a low speed system, and a hybrid system consisting of low speed sections and high speed sections operating in a semi-guideway. The safety analysis identified hazards that may arise in a properly functioning AMTV system, as well as hardware failure modes. Safety related failure modes were emphasized. A risk assessment was performed in order to create a priority order and significant hazards and failure modes were summarized. Corrective measures were proposed for each hazard

    Advanced flight control system study

    Get PDF
    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed
    • …
    corecore