126 research outputs found

    Thermography based breast cancer analysis using statistical features and fuzzy classifications

    Get PDF
    Medical thermography has proved to be useful in various medical applications including the detection of breast cancer where it is able to identify the local temperature increase caused by the high metabolic activity of cancer cells. It has been shown to be particularly well suited for picking up tumours in their early stages or tumours in dense tissue and outperforms other modalities such as mammography for these cases. In this paper we perform breast cancer analysis based on thermography, using a series of statistical features extracted from the thermograms quantifying the bilateral differences between left and right breast areas, coupled with a fuzzy rule-based classification system for diagnosis. Experimental results on a large dataset of nearly 150 cases confirm the efficacy of our approach that provides a classification accuracy of about 80%

    thermogram Breast Cancer Detection : a comparative study of two machine learning techniques

    Get PDF
    Breast cancer is considered one of the major threats for women’s health all over the world. The World Health Organization (WHO) has reported that 1 in every 12 women could be subject to a breast abnormality during her lifetime. To increase survival rates, it is found that it is very effective to early detect breast cancer. Mammography-based breast cancer screening is the leading technology to achieve this aim. However, it still can not deal with patients with dense breast nor with tumor size less than 2 mm. Thermography-based breast cancer approach can address these problems. In this paper, a thermogram-based breast cancer detection approach is proposed. This approach consists of four phases: (1) Image Pre-processing using homomorphic filtering, top-hat transform and adaptive histogram equalization, (2) ROI Segmentation using binary masking and K-mean clustering, (3) feature extraction using signature boundary, and (4) classification in which two classifiers, Extreme Learning Machine (ELM) and Multilayer Perceptron (MLP), were used and compared. The proposed approach is evaluated using the public dataset, DMR-IR. Various experiment scenarios (e.g., integration between geometrical feature extraction, and textural features extraction) were designed and evaluated using different measurements (i.e., accuracy, sensitivity, and specificity). The results showed that ELM-based results were better than MLP-based ones with more than 19%

    Meta-Analysis and Systematic Review of the Application of Machine Learning Classifiers in Biomedical Applications of Infrared Thermography

    Get PDF
    Atypical body temperature values can be an indication of abnormal physiological processes associated with several health conditions. Infrared thermal (IRT) imaging is an innocuous imaging modality capable of capturing the natural thermal radiation emitted by the skin surface, which is connected to physiology-related pathological states. The implementation of artificial intelligence (AI) methods for interpretation of thermal data can be an interesting solution to supply a second opinion to physicians in a diagnostic/therapeutic assessment scenario. The aim of this work was to perform a systematic review and meta-analysis concerning different biomedical thermal applications in conjunction with machine learning strategies. The bibliographic search yielded 68 records for a qualitative synthesis and 34 for quantitative analysis. The results show potential for the implementation of IRT imaging with AI, but more work is needed to retrieve significant features and improve classification metrics.info:eu-repo/semantics/publishedVersio

    Thermography based breast cancer detection using texture features and minimum variance quantization

    Get PDF
    In this paper, we present a system based on feature extraction techniques and image segmentation techniques for detecting and diagnosing abnormal patterns in breast thermograms. The proposed system consists of three major steps: feature extraction, classification into normal and abnormal pattern and segmentation of abnormal pattern. Computed features based on Gray Level Co-occurrence Matrices (GLCM) are used to evaluate the effectiveness of textural information possessed by mass regions. A total of 20 GLCM features are extracted from thermograms. The ability of feature set in differentiating abnormal from normal tissue is investigated using a Support Vector Machine classifier, Naive Bayes classifier and K-Nearest Neighbor classifier. To evaluate the classification performance, five-fold cross validation method and Receiver operating characteristic analysis was performed. The verification results show that the proposed algorithm gives the best classification results using K-Nearest Neighbor classifier and a accuracy of 92.5 %. Image segmentation techniques can play an important role to segment and extract suspected hot regions of interests in the breast infrared images. Three image segmentation techniques: minimum variance quantization, dilation of image and erosion of image are discussed. The hottest regions of thermal breast images are extracted and compared to the original images. According to the results, the proposed method has potential to extract almost exact shape of tumors

    Application of infrared thermography in computer aided diagnosis

    Get PDF
    The invention of thermography, in the 1950s, posed a formidable problem to the research community: What is the relationship between disease and heat radiation captured with Infrared (IR) cameras? The research community responded with a continuous effort to find this crucial relationship. This effort was aided by advances in processing techniques, improved sensitivity and spatial resolution of thermal sensors. However, despite this progress fundamental issues with this imaging modality still remain. The main problem is that the link between disease and heat radiation is complex and in many cases even non-linear. Furthermore, the change in heat radiation as well as the change in radiation pattern, which indicate disease, is minute. On a technical level, this poses high requirements on image capturing and processing. On a more abstract level, these problems lead to inter-observer variability and on an even more abstract level they lead to a lack of trust in this imaging modality. In this review, we adopt the position that these problems can only be solved through a strict application of scientific principles and objective performance assessment. Computing machinery is inherently objective; this helps us to apply scientific principles in a transparent way and to assess the performance results. As a consequence, we aim to promote thermography based Computer-Aided Diagnosis (CAD) systems. Another benefit of CAD systems comes from the fact that the diagnostic accuracy is linked to the capability of the computing machinery and, in general, computers become ever more potent. We predict that a pervasive application of computers and networking technology in medicine will help us to overcome the shortcomings of any single imaging modality and this will pave the way for integrated health care systems which maximize the quality of patient care

    Classification and Decision Making of Medical Infrared Thermal Images

    Get PDF
    Medical infrared thermal imaging (MITI) is a technique that allows safe and non-invasive recording of skin surface temperature distribution. The images gained provide underlining physiological information on the blood flow, vasoconstriction/vasodilatation, inflammation, transpiration or other processes that can contribute to skin temperature. This medical imaging modality has been available for nearly six decades and has proved to be useful for vascular, neurological and musculoskeletal conditions. Since the recordings are digital, in the form of a matrix of numbers (image), it can be computationally analyzed by a specialist mainly performing processing and analysis operations manually supported by proprietary software solutions. This limits the number of images that can be processed, making difficult for knowledge to evolve, expertise to develop and information to be shared. This chapter aims to disclose the medical imaging method, along with its particularities, principles, applications, advantages and disadvantages. The chapter introduces all available classification and decision making methods that can be employed using digital information, together with a literature review of their operation in the biomedical applications of infrared thermal imaging.info:eu-repo/semantics/publishedVersio

    Detection of Breast Thermograms using Ensemble Classifiers

    Get PDF
    Mortality rate of breast cancer can be reduced by detecting breast cancer in its early stage. Breast thermography plays an important role in early detection of breast cancer, as it can detect tumors when the physiological changes start in the breast prior to structural changes. Computer Aided Detection (CAD) systems improve the diagnostic accuracy by providing a detailed analysis of images, which are not visible to the naked eye. The performance of CAD systems depends on many factors. One of the important factors is the classifier used for classification of breast thermograms. In this paper, we made a comparison of classifier performances using two ensemble classifiers namely Ensemble Bagged Trees and AdaBoost. Spatial and spectral features are used for classification. Ensemble Bagged Trees classifier performed better than AdaBoost in terms of accuracy of classification, but training time required is higher than AdaBoost classifier. An accuracy of 87%, sensitivity of 83% and specificity of 90.6% is obtained using Ensemble Bagged Trees classifier

    A new approach for breast abnormality detection based on thermography

    Get PDF
    Breast cancer is one of the most common women cancers in the world. In this paper, a new approach based on thermography for the early detection of breast abnormality is proposed. The study involved 80 breast thermograms collected from the PROENG public database which consists of 50 healthy breasts and 30 with some findings. Image processing techniques such as segmentation, texture analysis and mathematical morphology were used to train a support vector machine (SVM) classifier for automatic detection of breast abnormality. After conducting several tests, we obtained very interesting and motivating results. Indeed, our method  showed a high performance in terms of sensitivity of 93.3%, a specificity of 90% and an accuracy of 91.25%. The final results let us conclude that infrared thermography with the help of an adequate automatic classification algorithm can be a valuable and reliable complementary tool for radiologist in detecting breast cancer and thereby helping to reduce mortality rates
    • …
    corecore