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Abstract: Atypical body temperature values can be an indication of abnormal physiological processes
associated with several health conditions. Infrared thermal (IRT) imaging is an innocuous imaging
modality capable of capturing the natural thermal radiation emitted by the skin surface, which is
connected to physiology-related pathological states. The implementation of artificial intelligence
(AI) methods for interpretation of thermal data can be an interesting solution to supply a second
opinion to physicians in a diagnostic/therapeutic assessment scenario. The aim of this work was to
perform a systematic review and meta-analysis concerning different biomedical thermal applications
in conjunction with machine learning strategies. The bibliographic search yielded 68 records for a
qualitative synthesis and 34 for quantitative analysis. The results show potential for the implementa-
tion of IRT imaging with AI, but more work is needed to retrieve significant features and improve
classification metrics.

Keywords: biomedical; classification; infrared thermal imaging; machine learning; skin cancer;
thermography

1. Introduction

Atypical body temperature value can be an indication of an abnormal physiological
process or health issue. Infrared thermal (IRT) imaging, also known as thermography, is an
imaging modality capable of capturing the natural thermal radiation emitted by an object
through the use of an IR camera [1]. In the case of the human body, this heat emission is
mainly dependent on underlying skin structures pertaining to the vascular and nervous
system [2]. This technique can be implemented in a static manner, by performing image
capture without stressing the skin area under assessment, or dynamically, through the
application in advance of a chemical, thermal or mechanical stimulus [3]. In either case,
the international accepted guidelines should be followed to assure proper measurements
and reproducibility of temperature readings [4,5]. Its innocuousness, combined with the
ability to perform a fast analysis at a low price, have made it an interesting method to
assist physicians in diagnosis and/or treatment monitoring of several pathologies, such as
diabetic foot [6], rheumatoid arthritis [7], breast tumors [8] and skin cancer [9].

The acquired temperature matrixes, i.e., thermograms, require image processing
strategies to retrieve temperature data that is meaningful for the condition under analysis.
Still, the understanding of this information is a challenging and time-consuming task
that can be eased through the implementation of artificial intelligence (AI) computational
methods based on machine learning (ML) algorithms [10]. Over the last years, thermal
information has been applied by researchers as input features for AI classifiers to give
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physicians a second opinion [11]. Support Vector Machines (SVM), Artificial Neural Net-
works (ANN), Decision Trees (DT), AdaBoost, k-Nearest Neighbour (k-NN), Naïve Bayes
(NB), Fuzzy methods and Random Forest (RF) are some of the examples of this type of
learning. The success of its implementation is commonly based on the metrics of accuracy
(ACC), sensitivity (SN) and specificity (SP), with higher rates being an indication of a good
ML algorithm. It is, however, of great importance to examine performance metrics as a
whole and not individually in order to avoid drawing poor conclusions [12].

The aim of this work was to assess the biomedical applications of thermal image data
with ML strategies. A systematic review is performed along with a meta-analysis based on
reported classification metrics.

2. Materials and Methods

The systematic review and meta-analysis were conducted following the PRISMA
(Preferred Reporting Items for Systematic re-views and Meta-Analyses) guidelines [13,14].
Relevant studies concerning the use of biomedical thermal data in conjunction with ML
algorithms were carefully selected and appraised, being part of the retrieved data used to
summarize their findings through statistical methods.

2.1. Information Sources

The reference sources Scopus, PubMed, ISI Web of Science and IEEE Xplore were used
for the bibliographic search. The syntax (TITLE- ABS- KEY (machine learning OR (ma-
chine classification) OR (artificial intelligence))) AND TITLE- ABS- KEY (thermography OR
(infrared imaging) OR (thermal imaging))) AND TITLE- ABS- KEY (biomedical)), ((machine
learning[Title/Abstract] OR (machine classification[Title/ Abstract]) OR (artificial intelli-
gence[Title/Abstract])) AND (thermography[Title/Abstract] OR (infrared imaging[Title/
Abstract]) OR (thermal imaging[Title/Abstract]) AND (biomedical[Title/Abstract]), TOPIC:
(machine learning OR (machine classification) OR (artificial intelligence)) AND TOPIC:
(thermography OR (infrared imaging) OR (thermal imaging)) AND TOPIC: (biomedi-
cal) and (((((((“All Metadata”:thermography) OR “All Metadata”:infrared imaging) OR
“All Metadata”:thermal imaging) AND “All Metadata”:machine learning) OR “All Meta-
data”:machine classification) OR “All Metadata”:artificial intelligence) AND “All Meta-
data”:biomedical) was used, respectively. The database Google Scholar was also searched
with the same keywords combination. To guarantee that the highest possible number of ar-
ticles was found, the operator OR was employed to include articles that applied alternative
terms and/or expressions to “thermography” and “machine learning”. No time restriction
was imposed, and publications were included from the first available date to March 2020.
A duplicate removal was performed after the bibliographic search.

2.2. Eligibility Criteria and Screening

After article selection, the title and abstracts were analyzed to exclude publications
that did not refer to the use of biomedical thermal data for ML applications. The first
eligibility criterion excluded publications that applied infrared imaging in the near and/or
medium IR section of the spectrum. Articles where artificial intelligence strategies were
not used to the assessment of a given pathology and/or treatment were also removed.
The third eligibility criterion kept only papers written in English. Reviews and opinion
articles were eliminated, as well as publications where the full text was unavailable online
and was still unavailable upon contact with authors—these constituted the fourth and
fifth criterion, respectively. Lastly, papers that did not present any quantitative metrics of
classification were also disregarded.

3. Results

The bibliographic research yielded 429 records after the removal of duplicates. The title
and abstract screening excluded an additional 305 publications that did not mention
the application of artificial intelligence algorithms to biomedical thermal data. From the
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remaining 124 articles, 27 were excluded due to the application of near and/or medium
infrared spectroscopy and 13 due to the implementation of learners on tasks non-related
to pathology appraisal. The third criterion discarded four articles, and nine reviews were
removed based on criterion number four. Finally, three papers were not considered for
this systematic review and meta-analysis, since no performance metrics were reported.
The remaining 68 articles underwent a qualitative synthesis, being divided by assessed
disease: breast cancer (39), skin neoplasm (3), diabetes disease (6) and other conditions
(19). The latter included studies concerning pathologies mentioned in less than three
publications. The quantitative synthesis was performed for 34 of the 68 encountered
publications and individually for breast cancer (22 studies) and diabetic foot (three studies),
since not all records reported the necessary metrics for the meta-analysis process and/or
focused on the diagnosis of a given pathology. A flow-diagram describing the phases of
this systematic-review and meta-analysis is presented in Figure 1 [13].
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Figure 1. Flow of information through the different phases of the systematic review [13].

The information retrieved from the encountered studies is summarized in Appendix A.

3.1. Qualitative Synthesis
3.1.1. Breast Cancer

Breast cancer diagnosis is the topic with the highest number of publications for the
application of thermal imaging in conjunction with ML algorithms. Ng et al. presented the
first studies using ANN to detect breast malignancies, but with low performance metrics of
ACC, SN and SP (58.5%, 54% and 67%) [15,16]. These results were improved further along
with a more elaborate approach focused on the use of biostatistical methods (SN = 81.2%,
SP = 88.2%) [17]. The main author also collaborated in the work of Tan et al. where fuzzy
rules were implemented for the construction of hidden layers in a neural network, yielding
good SN results (100%) in the proposed classification tasks [18]. The improvement of
classification parameters when fuzzy-neural networks are selected in place of single neural
networks was also confirmed by another author’s research [19,20]. Schaefer et al. studied
the number of ideal partitions in a fuzzy-rule based classification system for breast cancer,
reaching ACC, SN and SP values of 97.95%, 93.10% and 99.15%, respectively, as the number
of partitions increased [21,22]. A fuzzy model based on C-means clustering by Lashkari
et al. showed accuracy values of 75% for the screening of suspicious breast areas, a lower
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performance when compared to the supervised AdaBoost algorithm developed in their
previous work (88%) [23,24]. Other strategies to improve neural networks’ performance in
breast cancer classification refer to the extraction of features with wavelet transform [25],
or to numerical simulations conducted on various breast tissue composition models [26].

The preferred learner for breast cancer detection studies is based on Support Vector
Machines (SVM). Francis et al. studied the extraction of statistical and textural features
in the curvelet domain, classifying 91% of instances correctly [27]. The use of Principle
Component Analysis (PCA) in subsequent work to reduce the number of features, along
with dynamic thermal image acquisition, led to lower values of ACC (83.3%) [28]. A similar
approach, using only four clinically significant features, had previously achieved good
performance metrics with a larger dataset (ACC = 88.10%, SN = 85.71%, SP = 90.48%) [29].
The Radial Basis Function (RBF) kernel appears to be the best option for the implementa-
tion of SVM in breast cancer research, as proven in [30–33], as well as the use of textural
features retrieved from thermograms, all with high performance metrics. Gogoi et al. fo-
cused its work on the gathering of the best possible inputs that characterize healthy,
benign and malignant cases through temperature and intensity analysis (ACC = 83.2%,
SN = 85.5%, SP = 73.2%) [34]. SVM was the chosen learner after comparison with other AI
algorithms [35]. Satish et al. tried a different strategy, using local energy features of wavelet
sub-bands after temperature matrix normalization to classify normal and abnormal breast
thermograms with ACC = 91%, SN = 87.23% and SP = 94.34% with a SVM-Gaussian [8].

Apart from neural networks and support vector machines, studies with equally high
classification metrics can be found using AdaBoost [36], Bayesian classifiers [37] and k-
NN [38,39] classifiers. With the goal of achieving the best possible outcome, some authors
choose to test different AI learners, with SVM [40,41], k-NN [42,43], ANN [44,45] and
Decision tree [46] algorithms being the best options among the tested ones.

The use of ensemble classifiers has been frequent in recent years. Most work of
Krawczyk et al. is based on a pool of learners, which are as distinct as possible from
each other, in order to reduce complexity and avoid redundant information during the
classification stage [47–49]. A first approach used different feature inputs to train the differ-
ent classifiers and address class imbalance, evolving later for the one-class classification
strategy to increase learners’ sensitivity to minority classes [47,48]. Another way to surpass
data shortage is suggested by the author through feature space clustering, assigning each
cluster to the most competent classifier from the ensemble [50]. This last method gave the
best results with ACC = 90.02%, SN = 82.55% and SP = 91.89%.

Few implementations of ML non-related to breast cancer diagnosis were found.
Zadeh et al. used fuzzy active contours to segment suspected breast tumor areas
(ACC = 91.89%) and Saednia et al. developed a supervised ML algorithm based on Ran-
dom Forest to assess dermatitis caused by radiation therapy, reporting thermal markers
indicative of radiation-induced skin toxicity with an ACC of 87% [51].

3.1.2. Diabetes Disease

The combination of IR imaging with AI algorithms has proven its usefulness in
diabetic foot detection. Hernandez-Contreras et al. retrieved features representative of 3D
morphological patterns and position of the foot, which achieved ACC values of 94.33% with
an ANN classifier [52]. High classification rates (91%) were attained more recently with a
learner, also based on neural networks, fed with inputs collected after the analysis of surface
temperature distribution of the foot [6]. Adam et al. decomposed images of left, right and
bilateral foot to calculate entropy and texture features. The best performance was achieved
by a k-NN learner (ACC = 93.16%, SN = 90.31%; SP = 98.04%) [53]. Good classification
metrics for k-nearest neighbor were also presented by Vardasca et al. The authors first used
steady-state thermal images and built a computational tool for automatic image processing
and classification with a success rate of 92.5% [54]. Later on, the use of dynamically
acquired thermograms was tested by the same research group, achieving ACC = 81.25%,
SP = 80% and SN = 100% with k-NN [55]. Great results were also recently achieved by
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Cruz-Vega et al. [56] for the detection of changes in the plantar temperature of the foot.
The authors were the first to apply a deep learning structure for diabetic foot assessment,
retrieving ACC and SN values of 85.3% and 91.67%, respectively. Thirunavukkarasu et al.
presented the only study pertaining to diabetes disease that did not report on the evaluation
of diabetic foot [57]. Instead, thermal data and artificial intelligence were used as a pre-
screening tool for type II diabetes, through the analysis of tongue thermograms. The ANN
classifier was the top learner with an ACC of 94.28%.

3.1.3. Skin Cancer

The encountered studies that focused on the use of ML with thermal data for skin
cancer detection were conducted by the same group of authors. Magalhaes et al. first
tried to distinguish benign from malignant lesions with static IR imaging, reaching a low
ACC value of 60% with k-NN classifiers [58]. The overall results were slightly improved
when dynamic thermal information was added to the feature input set [59]. Recently,
the distinction of melanomas and nevi lesions was successfully performed, reaching ACC
and SN values of 84.2% and 91.3% [9].

3.1.4. Other Conditions

The assessment of other pathological conditions is also reported on the literature,
yet with less broadening. Papez et al. diagnosed carpal tunnel syndrome with artificial
neural network classifiers and IR data with an ACC of 82.2% [60]. The authors identified
relevant segments of the hand for improved classification, having tested this finding in a
larger data set further along. Nonetheless, the classifier performance decreased, making
the authors recommend their methodology only for the screening of severe cases [61].
Acharya et al. focused their research on dry eye disease, first for treatment monitoring
(k-NN: ACC = 99.88%; SN = 99.7%; SP = 100%) and then for diagnosis (k-NN: ACC = 99.8%;
SN = 99.8%; SP = 99.8%) [62,63]. The presence of rheumatoid arthritis disease and particular
areas of interest for improved diagnosis were identified by Frize et al. (Decision Trees:
SN = 96%; SP = 92%) [64], while Umapathy et al. used k-means methods to segment
hands, aiding in the evaluation of this health problem [7]. Other applications of infrared
thermography and ML algorithms include the evaluation of whiplash injury extent [65],
back pain [66], thyroid tumors [67], breathing [68], drunkenness state [69], exercise-induced
fatigue [70], hypertension [71], schizophrenia [72], burn wounds [73], facial recognition [74],
cardiovascular disease [75], hemodynamic shock [76] and stress recognition [77], with the
preferred classifiers being based on ANN [65,68,70,71,74,77], SVM [66,69,70,72], Decision
Trees [67] and Naïve-Bayes [75].

3.2. Quantitative Synthesis

The meta-analysis process required the number of True Positives (TP), False Negatives
(FN), True Negatives (TN) and False Positives (FP) for each study. Thus, studies that did
not report this information, nor supplied data sufficient to retrieve it, were not included in
the quantitative synthesis.

The software R was used with the “meta” package to perform univariate analysis and
retrieve sensitivity (SN), specificity (SP) and log of diagnostic odds ratio (DOR) forest plots
and the “mada” package to plot the summary receiver operating characteristic (SROC)
curve of all studies [78]. The plots were constructed with the information retrieved from
all studies included in the quantitative analyses process, independently of the studied
pathology. Thus, a better visual assessment of the distribution of the different metrics
among studies is possible.

The test for heterogeneity retrieved a high chi-square (χ2) value for the analysis of all
records, suggesting high heterogeneity between studies (Appendix B). The high values
of I2 encountered also support this idea [79]. Thus, a random effects model was used to
summarize the effects and different analyses that were made, separating studies focused
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on breast cancer and diabetic foot. Still, the values of χ2 and I2 remained high for breast
cancer studies, while being low for diabetic foot ones (Appendix B).

The values of sensitivity and specificity differed substantially among all studies
with SN ranging in [0.36–1] (Figure 2) and SP in [0.10–1] (Figure 3). The estimator of the
random effect model was 3.70 (95%CI, 3.10–4.21) (Figure 4.). The SROC curve presented
some scattering, with only few studies inside the 95% confidence interval region. Still,
most publications are located on the top left corner of the plot (Figure 5). For breast cancer,
SN and SP were in the ranges of [0.36–1] and [0.49–1] with a DerSimonian and Laird (DSL)
estimator of 3.74 (95%CI, 3.12–4.36). For diabetic foot, SN and SP were in the ranges of
[0.89–1] and [0.79–0.98] with a DSL estimator of 5.23 (95%CI, 4.02–6.45). The separate SN,
SP and log (DOR) estimates along with 95% confidence intervals (CIs) for breast cancer
and diabetic foot studies are included in Appendices C and D.
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4. Discussion

The literature search yielded 68 studies concerning the application of biomedical
thermal data with ML strategies. More than half of these were focused on breast cancer
diagnosis, yet its usage as a primary screening method is not recommended [80].
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There is a clear preference for the use of ANN (19 studies), SVM (17 studies) and
k-NN (9 studies) classifiers to achieve the best possible classification metrics, with only
some authors choosing ensemble approaches (9) (Appendix A). The large number of
successful implementation strategies already published, and the availability of pre-written
algorithms based on these learners in development and computing environment tools
such as WEKA, Spyder and Matlab, could be a justification for this choice. However,
in some cases, this leads to a poor or inexistent description of classification parameters,
training/testing conditions and/or number/type of input features selected, hindering the
reproducibility of such studies. The inexistence of staple classification parameters is also
clear and hampers a thorough meta-analysis.

When looking for breast cancer results, maximum performance was achieved by [39],
while [53] showed the best approach to aid diabetic foot diagnosis. Still, additional work
can be done to better the current methodologies.

For future work, most authors emphasize the need for improved feature selection
strategies to guarantee the inclusion of significant features, while keeping the number of
classification inputs as low as possible, thus reducing processing time [9,15,17,18,29,37,
39,41,53,63,65]. To improve classification metrics, IR data could be complemented with
information collected from other imaging modalities and/or biological tests [9,26,33,64,70].
The availability of a larger data sample is also mentioned by several studies across the
different pathologies, in order to perform more complete testing and ease the implemen-
tation of such methodologies in daily practices [9,16,25,26,31,44,46,52–54,58,60,63,65,67].
Apart from the mentioned suggestions, the implementation of parameter optimization dur-
ing the construction of the learner may yield better classification results, as well as the use
of strategies to deal with potential class imbalance problems. In addition, the construction
of user interfaces/dashboards designed to be utilized by health-care professionals would
simplify the introduction of ML aiding tools in day-to-day clinical activities.

From the visual verification of the metastatistics results, it is possible to conclude that
there is some heterogeneity between studies. The log DOR forest plot displays the highest
statistical heterogeneity, followed by the sensitivity and specificity ones, with the latter
showing a larger number of confidence intervals overlapping. This factor is also reflected
in the SROC curve since slight scattering is visible. This variability may partially be caused
by the comparison of studies that implement different learners for the classification of
distinct pathologies. Nonetheless, there is a good distribution of studies on the top left
corner of the SROC curve, showing a good balance between sensitivity measurements
and false positive rate, with the majority of SN and SP values at the highest range of
the scale (SN > 0.82, SP > 0.76). Thus, the interest of ML models for biomedical thermal
applications is indicated. The low χ2 value attained for diabetic foot studies, with a high
p-value, reveals that heterogeneity is insignificant (Appendix B). This fact, allied to the good
sensitivity and specificity of the encountered estimators, leads to the conclusion that the
use of biothermal data for diabetic foot assessment with artificial intelligence learners could
be an interesting diagnostic aiding tool. Still, this inference should be taken with caution,
due to the low number of studies included in the quantitative analysis. The similarity
between the metastatistic results for all studies, and for breast cancer separately, favors the
conclusion that thermographic data cannot be singularly used for breast tumor assessment.
The heterogeneity visible in the SN, SP and log (DOR) forest plots, with the summary
(DSL) being excluded by the error bars of some studies, is also an indication of this
assumption. Nonetheless, clinical heterogeneity could also have an impact on the high
statistical heterogeneity found, due to differences in population enrolled, disease severity
and followed methodology.

5. Conclusions

IR thermal imaging is a valuable imaging modality to assess physiological changes
with pathological causes, such as the ones encountered during neoplasm development and
rheumatic diseases. The use of artificial intelligence models for thermogram interpretation
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has showed positive results, combining a fast analysis with efficient classification. Still,
more work is needed to promote its usage on a daily basis in clinical scenarios. The search
for more discriminant features and larger data sets are the most important topics to improve
performance metrics. The use of IRT imaging with ML alone for breast cancer assessment
should be avoided, and additional metastatic studies for diabetic foot diagnosis are of
interest to strongly prove the usefulness of these tools. The combined use of IRT imaging
and ML methods should also be further extended to other pathological conditions, such as
skin cancer, in the hopes of easing detection and decreasing treatment costs.
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Appendix A

Table A1. Biomedical thermal applications and respective implemented base classifier, sample size, accuracy (ACC),
sensitivity (SN) and specificity (SP), chronologically ordered from oldest to latest.

Year (Ref.) Biomedical
Application

Best Overall
Classifier Sample Size ACC (%) SN (%) SP (%)

1990 [65] Whiplash injury ANN 20 90 80 100

2001 [15] Breast cancer ANN 83 58.5 54 67

2002 [16] Breast cancer ANN 200 40 62 67

2007 [18] Breast cancer ANN + fuzzy rules 78 (28 healthy,
43 benign, 7 cancer) - 100 60

2007 [21] Breast cancer Fuzzy-rules 146 thermograms 98

2008 [17] Breast cancer ANN 90 81.2 88.2

2008 [60] Carpal tunnel
syndrome ANN 56 patients (34 hands) 82.5

2009 [22] Breast cancer Fuzzy-rules 146 (29 malignant,
117 benign) 97.9 93.1 99.1

2009 [61] Carpal tunnel
syndrome ANN

251 hands
(132 healthy,

119 pathological)
72.2

2012 [29] Breast cancer SVM 50 (25 healthy,
25 malignant) 88.1 85.7 90.4

2012 [40] Breast cancer SVM 34 thermograms 88.2

2012 [20] Breast cancer ANN 200
(15 abnormal cases) 70 50 75

2012 [19] Breast cancer ANN 200
(15 abnormal cases) 97.5 93 97
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Table A1. Cont.

Year (Ref.) Biomedical
Application

Best Overall
Classifier Sample Size ACC (%) SN (%) SP (%)

2012 [64] Rheumatoid arthritis Decision Trees 52 (26 healthy, 26 ill) 96 92

2013 [36] Breast cancer AdaBoost 32 (9 malignant,
12 benign, 11 normal) 95

2013 [30] Breast cancer SVM 63 (29 healthy,
34 malignant) 100

2013 [47] Breast cancer Ensemble classifier 146 (29 malignant,
117 benign) 88.7 81.3 95.5

2013 [48] Breast cancer Ensemble classifier 146 (29 malignant,
117 benign) 87.4 82.1 88.7

2013 [50] Breast cancer Ensemble classifier 146 (29 malignant,
117 benign) 90.0 82.5 91.8

2013 [37] Breast cancer Naive-Bayes 98 (77 malignant,
21 healthy) 71.8 82 37

2014 [42] Breast cancer Euclidean Distance 50 (14 malignant,
19 benign, 17 cysts) 84 85.7 86.5

2014 [27] Breast cancer SVM 22 (11 normal,
11 abnormal) 90.9 81.8 100

2014 [28] Breast cancer SVM 36 (24 normal,
12 malignant) 83.3

2014 [49] Breast cancer Ensemble classifier 146 (29 malignant,
117 benign) 89.0 81.9 90.8

2014 [43] Breast cancer k-NN 40 (26 normal,
14 abnormal) 92.0 78.6 100

2014 [62] Dry-eye disease k-NN 81 (40 responded and
41 not responded) 99.8 99.7 100

2015 [66] Back Pain SVM

1000 (300 healthy,
200 faulty posture

and 500 lateral
spinal curvature)

90 88

2015 [31] Breast cancer SVM 63 (29 healthy,
34 malignant) 100

2015 [52] Diabetic Foot ANN 60 (30 non-diabetic,
30 diabetes) 94.3 97.3 91.3

2015 [38] Breast cancer k-NN 18 (9 normal,
9 abnormal) 99.4

2015 [41] Breast cancer SVM 50 (37 normal,
13 abnormal) 88 76.9 91.9

2015 [25] Breast cancer ANN

306 thermograms of
102 individuals
(123 unhealthy,

183 healthy)

90.4 87.6 89.7
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Table A1. Cont.

Year (Ref.) Biomedical
Application

Best Overall
Classifier Sample Size ACC (%) SN (%) SP (%)

2015 [44] Breast cancer ANN 22 (11 normal,
11 cancer) 90.9 81.8 100

2015 [26] Breast cancer ANN 240 92.8

2015 [63] Dry-eye disease k-NN 104 (83 ill, 21 healthy) 99.8 99.8 99.8

2016 [23] Breast cancer AdaBoost 67 87.4

2016 [24] Breast cancer Fuzzy C-Means 67 75

2016 [46] Breast cancer Decision Trees 50 (25 malignant,
25 normal) 98 96.6 100

2016 [32] Breast cancer SVM 80 (40 normal,
40 abnormal) 90 87.5 92.5

2016 [39] Breast cancer k-NN 80 (40 normal,
40 abnormal) 100 100 100

2016 [81] Breast cancer Fuzzy active
contours 60 91.8 85

2016 [67] Thyroid tumour Decision Trees 51 (30 abnormal,
21 normal) 98 95 99

2017 [68] Breath analysis ANN 1 subject
(25 experiments) 100

2017 [69] Drunkenness state SVM 41 100

2017 [33] Breast cancer SVM 240 (100 normal,
66 Benign, 78 Cancer) 94.8

2017 [70] Exercise
induced-fatigue Ensemble classifier 19 81.5

2017 [71] Hypertension ANN 28 (14 hypertensive,
14 normal) 89 85.7 92.9

2017 [7] Rheumatoid arthritis k-means
60 (30 arthritis

rheumatoid,
30 healthy)

83 86.6 79

2017 [72] Schizophrenia SVM 35 (18 moderately ill,
17 markedly ill) 94.3

2018 [73] Burn wounds Random Forest 34 85.3

2018 [74] Facial recognition ANN
3561 from 22 subjects

(2124 positive,
1437 negative)

85.5

2018 [53] Diabetic Foot k-NN

107 (51 healthy,
66 diabetic-33
neuropathic,

33 non-neuropathic)

93.1 90.3 98.0

2018 [35] Breast cancer SVM 407 (117 abnormal,
290 normal) 98 98 98

2018 [58] Skin neoplasms k-NN 85 (68 malignant,
17 benign) 60

2018 [45] Breast cancer Ensemble classifier
725 (219 cyst,
371 benign,

235 malignant)
73.3 78 88
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Table A1. Cont.

Year (Ref.) Biomedical
Application

Best Overall
Classifier Sample Size ACC (%) SN (%) SP (%)

2018 [82] Diabetic Foot k-NN 56 92.5

2019 [75] Cardiovascular
Disease (CVD) Naive-Bayes 20 (10 non-CDV,

10 CVD) 90 80 90

2019 [76] Hemodynamic shock RF
539 (253 continuous

intra-arterial
blood pressure)

73 65 82

2019 [77] Stress Recognition ANN
93 sets of data from

17 (9 males,
8 females)

78.3

2019 [34] Breast cancer SVM
60 (25 healthy,

23 benign,
12 malignant)

83.2 85.5 73.2

2019 [6] Diabetic Foot ANN

246 (150 diabetics
without

complications,
36 with

complications,
60 healthy)

91

2019 [59] Skin neoplasms SVM

320 (51 SCC,
118 BCC,

16 melanomas,
29 AK, 30 nevi, 14 SK,

11 cysts, 29 other
benign neoplasia and
22 scar tissue lesions)

84 91

2019 [9] Skin neoplasms SVM 46 (16 melanoma,
30 nevi) cooling 84.2 91.3 11

2019 [51] Breast cancer
treatment sequels RF 90 (75 training,

15 testing) 87

2019 [8] Breast cancer SVM 100 (47 abnormal,
53 normal) 91 87.2 94.3

2019 [55] Diabetic Foot Ulcer
(DFU) k-NN 39 (15 DFU ischemic

or infected) 81.2 80 100

2020 [57] Type II Diabetes
Mellitus (DM) ANN 140 (70 normal,

70 type 2 DM) 94.2

2020 [56] Diabetic Foot ANN 110 85.3 91.67

Appendix B

Table A2. Test for heterogeneity with χ2, respective p-values and I2 for all studies combined, as well
as for breast cancer and diabetic foot separately.

χ2 p-Value I2 (%)

All studies 185.559 <0.001 86.66

Breast cancer 96.474 <0.001 82.81

Diabetic foot 0.520 0.771 0.00
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48. Krawczyk, B.; Schaefer, G.; Woźniak, M. Combining one-class classifiers for imbalanced classification of breast thermogram
features. In Proceedings of the 2013 Fourth International Workshop on Computational Intelligence in Medical Imaging (CIMI),
Osaka, Japan, 3–7 July 2013; Volume 2013, pp. 36–41.

49. Krawczyk, B.; Schaefer, G. A hybrid classifier committee for analysing asymmetry features in breast thermograms. Appl. Soft
Comput. 2014, 20, 112–118. [CrossRef]

50. Krawczyk, B.; Schaefer, G.; Zhu, S.Y. Breast Cancer Identification Based on Thermal Analysis and a Clustering and Selection
Classification Ensemble. In Lecture Notes in Computer Science; Springer: Berlin, Germany, 2013; Volume 8211, pp. 256–265.

51. Saednia, K.; Tabbarah, S.; Lagree, A.; Wu, T.; Klein, J.; Garcia, E.; Hall, M.; Chow, E.; Rakovitch, E.; Childs, C.; et al. Quantitative
Thermal Imaging Biomarkers to Detect Acute Skin Toxicity From Breast Radiation Therapy Using Supervised Machine Learning.
Int. J. Radiat. Oncol. 2020, 106, 1071–1083. [CrossRef]

52. Hernandez-Contreras, D.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.; Ramirez-Cortes, J.; Renero-Carrillo, F. Automatic
classification of thermal patterns in diabetic foot based on morphological pattern spectrum. Infrared Phys. Technol. 2015, 73,
149–157. [CrossRef]

53. Adam, M.; Ng, E.Y.; Oh, S.L.; Heng, M.L.; Hagiwara, Y.; Tan, J.-H.; Tong, J.W.; Acharya, U.R. Automated detection of di-
abetic foot with and without neuropathy using double density-dual tree-complex wavelet transform on foot thermograms.
Infrared Phys. Technol. 2018, 92, 270–279. [CrossRef]

54. Vardasca, R.; Vaz, L.; Magalhaes, C.; Seixas, A.; Mendes, J. Towards the Diabetic Foot Ulcers Classification with Infrared Thermal
Images. In Proceedings of the 14th Quantitative Infrared Thermography Conference, Berlin, Germany, 25–29 June 2018. [CrossRef]

http://doi.org/10.1007/s11760-016-1018-y
http://doi.org/10.1016/j.infrared.2019.01.004
http://doi.org/10.1007/s13246-018-0681-4
http://doi.org/10.1016/j.ijthermalsci.2013.03.001
http://doi.org/10.1155/2013/264246
http://doi.org/10.1016/j.cmpb.2016.03.002
http://doi.org/10.1515/bmt-2014-0047
http://www.ncbi.nlm.nih.gov/pubmed/25720034
http://doi.org/10.1016/j.eswa.2014.04.027
http://www.ncbi.nlm.nih.gov/pubmed/26417334
http://www.ncbi.nlm.nih.gov/pubmed/26262151
http://doi.org/10.1590/2446-4740.05217
http://doi.org/10.1080/17686733.2016.1176734
http://doi.org/10.1016/j.asoc.2013.11.011
http://doi.org/10.1016/j.ijrobp.2019.12.032
http://doi.org/10.1016/j.infrared.2015.09.022
http://doi.org/10.1016/j.infrared.2018.06.010
http://doi.org/10.21611/qirt.2018.008


Appl. Sci. 2021, 11, 842 18 of 18

55. Vardasca, R.; Magalhaes, C.; Seixas, A.; Carvalho, R.; Mendes, J. Diabetic foot monitoring using dynamic thermography and
AI classifiers. In Proceedings of the 3rd Quantitative InfraRed Thermography Asia Conference (QIRT Asia 2019), Tokyo, Japan,
1–5 July 2019. [CrossRef]

56. Cruz-Vega, I.; Hernandez-Contreras, D.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.D.J.; Ramirez-Cortes, J.M. Deep Learning
Classification for Diabetic Foot Thermograms. Sensors 2020, 20, 1762. [CrossRef] [PubMed]

57. Thirunavukkarasu, U.; Umapathy, S.; Krishnan, P.T.; Janardanan, K. Human Tongue Thermography Could Be a Prognostic Tool
for Prescreening the Type II Diabetes Mellitus. Evid. Based Complement. Altern. Med. 2020, 2020, 1–16. [CrossRef] [PubMed]

58. Magalhaes, C.; Vardasca, R.; Mendes, J. Classifying Skin Neoplasms with Infrared Thermal Images. In Proceedings of the 14th
Quantitative InfraRed Thermography Conference (QIRT 2018), Berlin, Germany, 25–29 June 2018. [CrossRef]

59. Magalhaes, C.; Mendes, J.; Filipe, R.V.; Vardasca, R. Skin neoplasms dynamic thermal assessment. In Proceedings of the 2019
IEEE 6th Portuguese Meeting on Bioengineering (ENBENG), Lisbon, Portugal, 22–23 February 2019; Volume 2019, pp. 1–4.

60. Papež, B.J.; Palfy, M.; Turk, Z. Infrared Thermography Based on Artificial Intelligence for Carpal Tunnel Syndrome Diagnosis.
J. Int. Med. Res. 2008, 36, 1363–1370. [CrossRef] [PubMed]

61. Papež, B.J.; Palfy, M.; Mertik, M.; Turk, Z. Infrared Thermography Based on Artificial Intelligence as a Screening Method for
Carpal Tunnel Syndrome Diagnosis. J. Int. Med. Res. 2009, 37, 779–790. [CrossRef] [PubMed]

62. Acharya, U.R.; Tan, J.-H.; Vidya, S.; Yeo, S.; Too, C.L.; Lim, W.J.E.; Chua, K.C.; Tong, L. Diagnosis of response and non-response to
dry eye treatment using infrared thermography images. Infrared Phys. Technol. 2014, 67, 497–503. [CrossRef]

63. Acharya, U.R.; Tan, J.H.; Koh, J.E.; Vidya, K.S.; Yeo, S.; Too, C.L.; Chua, C.K.; Ng, E.; Tong, L. Automated diagnosis of dry eye
using infrared thermography images. Infrared Phys. Technol. 2015, 71, 263–271. [CrossRef]

64. Frize, M.; Ogungbemile, A. Estimating rheumatoid arthritis activity with infrared image analysis. Stud. Health Technol. Inform.
2012, 180, 594–598. [PubMed]

65. Egbert, D.; Kaburlasos, V.; Goodman, P. Neural Network Discrimination of Sublte Image Patterns. In Proceedings of the 1990
IJCNN International Joint Conference on Neural Networks, San Diego, CA, USA, 17–21 June 1990; pp. 517–524.

66. Koprowski, R. Automatic analysis of the trunk thermal images from healthy subjects and patients with faulty posture.
Comput. Biol. Med. 2015, 62, 110–118. [CrossRef]

67. Gopinath, M.P.; Prabu, S. Classification of thyroid Abnormalities on thermal image: A study and approach. IIOAB J. 2016,
7, 41–57.

68. Procházka, A.; Charvátová, H.; Vyšata, O.; Kopal, J.; Chambers, J.A. Breathing Analysis Using Thermal and Depth Imaging
Camera Video Records. Sensors 2017, 17, 1408. [CrossRef]

69. Koukiou, G.; Anastassopoulos, V. Fusion of Dissimilar Features from Thermal Imaging for Improving Drunk Person Identification.
Int. J. Signal Process. Syst. 2017, 5, 106–111. [CrossRef]

70. Lopez, M.B.; Del-Blanco, C.R.; Garcia, N. Detecting Exercise-Induced Fatigue Using Thermal Imaging and Deep Learning.
In Proceedings of the 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA),
Montreal, QC, Canada, 28 November–1 December 2017; Volume 2017, pp. 1–6.

71. Thiruvengadam, J.; Mariamichael, A. A preliminary study for the assessment of hypertension using static and dynamic IR
thermograms. Biomed. Tech. Eng. 2017, 63, 197–206. [CrossRef] [PubMed]

72. Jian, B.-L.; Chen, C.-L.; Chu, W.-L.; Huang, M.-W. The facial expression of schizophrenic patients applied with infrared thermal
facial image sequence. BMC Psychiatry 2017, 17, 1–7. [CrossRef] [PubMed]

73. Martínez-Jiménez, M.A.; Ramirez-GarciaLuna, J.L.; Kolosovas-Machuca, E.S.; Drager, J.; González, F.J. Development and
validation of an algorithm to predict the treatment modality of burn wounds using thermographic scans: Prospective cohort
study. PLoS ONE 2018, 13, e0206477. [CrossRef]

74. Wang, S.; Pan, B.; Chen, H.; Ji, Q. Thermal Augmented Expression Recognition. IEEE Trans. Cybern. 2018, 48, 2203–2214.
[CrossRef]

75. Jayanthi, T.; Anburajan, M. Model-based computer-aided method for diagnosis of cardiovascular disease using IR thermogram.
Biomed. Res. 2019, 30, 95–101. [CrossRef]

76. Nagori, A.; Dhingra, L.S.; Bhatnagar, A.; Lodha, R.; Sethi, T. Predicting Hemodynamic Shock from Thermal Images using Machine
Learning. Sci. Rep. 2019, 9, 1–9. [CrossRef]

77. Cho, Y.; Julier, S.J.; Bianchi-Berthouze, N. Instant Stress: Detection of Perceived Mental Stress Through Smartphone Photoplethys-
mography and Thermal Imaging. JMIR Ment. Health 2019, 6, e10140. [CrossRef]

78. Shim, S.; Kim, S.-J.; Lee, J. Diagnostic test accuracy: Application and practice using R software. Epidemiol. Health 2019, 41, e2019007.
[CrossRef]

79. Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560.
[CrossRef]

80. Gourd, E. Breast thermography alone no substitute for mammography. Lancet Oncol. 2017, 18, e713. [CrossRef]
81. Zadeh, H.G.; Haddadnia, J.; Seryasat, O.R.; Isfahani, S.M.M. Segmenting breast cancerous regions in thermal images using fuzzy

active contours. EXCLI J. 2016, 15, 532–550.
82. Silva, P.; Vardasca, R.; Mendes, J.; Restivo, M.T. Towards an Automated Analysis of Forearm Thermal Images During Handgrip

Exercise. In International Conference on Remote Engineering and Virtual Instrumentation; Springer: Cham, Germany, 2018; Volume 2,
pp. 498–506.

http://doi.org/10.21611/qirt.2019.027
http://doi.org/10.3390/s20061762
http://www.ncbi.nlm.nih.gov/pubmed/32235780
http://doi.org/10.1155/2020/3186208
http://www.ncbi.nlm.nih.gov/pubmed/32419801
http://doi.org/10.21611/qirt.2018.013
http://doi.org/10.1177/147323000803600625
http://www.ncbi.nlm.nih.gov/pubmed/19094447
http://doi.org/10.1177/147323000903700321
http://www.ncbi.nlm.nih.gov/pubmed/19589261
http://doi.org/10.1016/j.infrared.2014.09.011
http://doi.org/10.1016/j.infrared.2015.04.007
http://www.ncbi.nlm.nih.gov/pubmed/22874260
http://doi.org/10.1016/j.compbiomed.2015.04.017
http://doi.org/10.3390/s17061408
http://doi.org/10.18178/ijsps.5.3.106-111
http://doi.org/10.1515/bmt-2016-0237
http://www.ncbi.nlm.nih.gov/pubmed/28675748
http://doi.org/10.1186/s12888-017-1387-y
http://www.ncbi.nlm.nih.gov/pubmed/28646852
http://doi.org/10.1371/journal.pone.0206477
http://doi.org/10.1109/TCYB.2017.2786309
http://doi.org/10.35841/biomedicalresearch.30-19-004
http://doi.org/10.1038/s41598-018-36586-8
http://doi.org/10.2196/10140
http://doi.org/10.4178/epih.e2019007
http://doi.org/10.1136/bmj.327.7414.557
http://doi.org/10.1016/S1470-2045(17)30833-1

	Introduction 
	Materials and Methods 
	Information Sources 
	Eligibility Criteria and Screening 

	Results 
	Qualitative Synthesis 
	Breast Cancer 
	Diabetes Disease 
	Skin Cancer 
	Other Conditions 

	Quantitative Synthesis 

	Discussion 
	Conclusions 
	
	
	
	
	References

