403 research outputs found

    Multiplexing regulated traffic streams: design and performance

    Get PDF
    The main network solutions for supporting QoS rely on traf- fic policing (conditioning, shaping). In particular, for IP networks the IETF has developed Intserv (individual flows regulated) and Diffserv (only ag- gregates regulated). The regulator proposed could be based on the (dual) leaky-bucket mechanism. This explains the interest in network element per- formance (loss, delay) for leaky-bucket regulated traffic. This paper describes a novel approach to the above problem. Explicitly using the correlation structure of the sources’ traffic, we derive approxi- mations for both small and large buffers. Importantly, for small (large) buffers the short-term (long-term) correlations are dominant. The large buffer result decomposes the traffic stream in a stream of constant rate and a periodic impulse stream, allowing direct application of the Brownian bridge approximation. Combining the small and large buffer results by a concave majorization, we propose a simple, fast and accurate technique to statistically multiplex homogeneous regulated sources. To address heterogeneous inputs, we present similarly efficient tech- niques to evaluate the performance of multiple classes of traffic, each with distinct characteristics and QoS requirements. These techniques, applica- ble under more general conditions, are based on optimal resource (band- width and buffer) partitioning. They can also be directly applied to set GPS (Generalized Processor Sharing) weights and buffer thresholds in a shared resource system

    Analysis of jitter due to call-level fluctuations

    Get PDF
    In communication networks used by constant bit rate applications, call-level dynamics (i.e., entering and leaving calls) lead to fluctuations in the load, and therefore also fluctuations in the delay (jitter). By intentionally delaying the packets at the destination, one can transform the perturbed packet stream back into the original periodic stream; in other words: there is a trade off between jitter and delay, in that jitter can be removed at the expense of delay. As a consequence, for streaming applications for which the packet delay should remain below some predefined threshold, it is desirable that the jitter remains small. This paper presents a set of procedures to compute the jitter due to call-level variations. We onsider a network resource shared by a fluctuating set of constant bit rate applications (modelled as periodic sources). As a first step we study the call-level dynamics: supposing that a tagged call sees n0 calls when entering the system, then we compute the probability that at the end of its duration (consisting of, say, i packets) ni calls are present, of which n0,i stem from the original n0 calls. As a second step, we show how to compute the jitter, for given n0, ni, and n0,i; in this analysis generalized Ballot-problems have to be solved. We find an iterative exact solution to these, and explicit approximations and bounds. Then, as a final step, the (packet-level) results of the second step are weighed with the (call-level) probabilities of the first step, thus resulting in the probability distribution of the jitter experienced within the call duration. An explicit Gaussian approximation is proposed. Extensive numerical experiments validate the accuracy of the approximations and bound

    Teletraffic analysis of ATM systems : symposium gehouden aan de Technische Universiteit Eindhoven op 15 februari 1993

    Get PDF

    Some aspects of traffic control and performance evaluation of ATM networks

    Get PDF
    The emerging high-speed Asynchronous Transfer Mode (ATM) networks are expected to integrate through statistical multiplexing large numbers of traffic sources having a broad range of statistical characteristics and different Quality of Service (QOS) requirements. To achieve high utilisation of network resources while maintaining the QOS, efficient traffic management strategies have to be developed. This thesis considers the problem of traffic control for ATM networks. The thesis studies the application of neural networks to various ATM traffic control issues such as feedback congestion control, traffic characterization, bandwidth estimation, and Call Admission Control (CAC). A novel adaptive congestion control approach based on a neural network that uses reinforcement learning is developed. It is shown that the neural controller is very effective in providing general QOS control. A Finite Impulse Response (FIR) neural network is proposed to adaptively predict the traffic arrival process by learning the relationship between the past and future traffic variations. On the basis of this prediction, a feedback flow control scheme at input access nodes of the network is presented. Simulation results demonstrate significant performance improvement over conventional control mechanisms. In addition, an accurate yet computationally efficient approach to effective bandwidth estimation for multiplexed connections is investigated. In this method, a feed forward neural network is employed to model the nonlinear relationship between the effective bandwidth and the traffic situations and a QOS measure. Applications of this approach to admission control, bandwidth allocation and dynamic routing are also discussed. A detailed investigation has indicated that CAC schemes based on effective bandwidth approximation can be very conservative and prevent optimal use of network resources. A modified effective bandwidth CAC approach is therefore proposed to overcome the drawback of conventional methods. Considering statistical multiplexing between traffic sources, we directly calculate the effective bandwidth of the aggregate traffic which is modelled by a two-state Markov modulated Poisson process via matching four important statistics. We use the theory of large deviations to provide a unified description of effective bandwidths for various traffic sources and the associated ATM multiplexer queueing performance approximations, illustrating their strengths and limitations. In addition, a more accurate estimation method for ATM QOS parameters based on the Bahadur-Rao theorem is proposed, which is a refinement of the original effective bandwidth approximation and can lead to higher link utilisation

    Investigation of delay jitter of heterogeneous traffic in broadband networks

    Get PDF
    Scope and Methodology of Study: A critical challenge for both wired and wireless networking vendors and carrier companies is to be able to accurately estimate the quality of service (QoS) that will be provided based on the network architecture, router/switch topology, and protocol applied. As a result, this thesis focuses on the theoretical analysis of QoS parameters in term of inter-arrival jitter in differentiated services networks by deploying analytic/mathematical modeling technique and queueing theory, where the analytic model is expressed in terms of a set of equations that can be solved to yield the desired delay jitter parameter. In wireless networks with homogeneous traffic, the effects on the delay jitter in reference to the priority control scheme of the ARQ traffic for the two cases of: 1) the ARQ traffic has a priority over the original transmission traffic; and 2) the ARQ traffic has no priority over the original transmission traffic are evaluated. In wired broadband networks with heterogeneous traffic, the jitter analysis is conducted and the algorithm to control its effect is also developed.Findings and Conclusions: First, the results show that high priority packets always maintain the minimum inter-arrival jitter, which will not be affected even in heavy load situation. Second, the Gaussian traffic modeling is applied using the MVA approach to conduct the queue length analysis, and then the jitter analysis in heterogeneous broadband networks is investigated. While for wireless networks with homogeneous traffic, binomial distribution is used to conduct the queue length analysis, which is sufficient and relatively easy compared to heterogeneous traffic. Third, develop a service discipline called the tagged stream adaptive distortion-reducing peak output-rate enforcing to control and avoid the delay jitter increases without bound in heterogeneous broadband networks. Finally, through the analysis provided, the differential services, was proved not only viable, but also effective to control delay jitter. The analytic models that serve as guidelines to assist network system designers in controlling the QoS requested by customer in term of delay jitter

    Theories and Models for Internet Quality of Service

    Get PDF
    We survey recent advances in theories and models for Internet Quality of Service (QoS). We start with the theory of network calculus, which lays the foundation for support of deterministic performance guarantees in networks, and illustrate its applications to integrated services, differentiated services, and streaming media playback delays. We also present mechanisms and architecture for scalable support of guaranteed services in the Internet, based on the concept of a stateless core. Methods for scalable control operations are also briefly discussed. We then turn our attention to statistical performance guarantees, and describe several new probabilistic results that can be used for a statistical dimensioning of differentiated services. Lastly, we review recent proposals and results in supporting performance guarantees in a best effort context. These include models for elastic throughput guarantees based on TCP performance modeling, techniques for some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    Performance analysis of an asynchronous transfer mode multiplexer with Markov modulated inputs

    Get PDF
    Ankara : Department of Electrical and Electronics Engineering and the Institute of Engineering and Science of Bilkent University, 1993.Thesis (Ph.D.) -- Bilkent Iniversity, 1993.Includes bibliographical references leaves 108-113.Asynchronous Transfer Mode (ATM) networks have inputs which consist of superpositions of correlated cell streams. Markov modulated processes are commonly used to characterize this correlation. The first step through gaining an analytical insight in the performance issues of an ATM network is the analysis of a single channel. One objective of this study is the performance analysis of an ATM multiplexer whose input is a Markov modulated periodic arrival process. Based on the transient behavior of the nD/D/1 queue, we present an approximate method to compute the queue length distribution accurately. The method reduces to the solution of a linear differential equation with variable coefficients. Another general traffic model is the Markov Modulated Poisson Process (MMPP). We employ Pade approximations in transform domain for the deterministic service time distribution in an M MPP/D/1 queue so as to compute the distribution of the buffer occupancy. For both models, we also provide algorithms for analysis in the case of finite queue capacities and for computation of effective bandwidth.Akar, NailPh.D

    Application of learning algorithms to traffic management in integrated services networks.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027131 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore