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INTRODUCTION
Symposium 'Teletraffic analysis of ATM systems'

F. van den Dool
Eindhoven University of Technology & PIT Research, Leidschendam

Introduction

This is the second Symposium on 'Teletraffic Analysis of ATM systems'. The
problems that are facing us in ATM are attracting attention in various places through­
out Belgium and the Netherlands. Furthermore people from different disciplines are
working in this field. Therefore it is useful to facilitate that people meet and become
aware of each others work. On the one hand this may prevent overlap, on the other
hand collaboration may be the result. This is the main goal of the symposium.

The first symposium took place about 1~ year ago at PTT Research facilities in
Leidschendam with the title 'Performance aspects of ATM'. The reactions were very
positive. This stimulated the organisation of this second symposium.

ATM State of the art

We are now exactly 10 years from the advent of ATM. It was in 1983 that the first
proposals for ATM related techniques were introduced, almost at the same time in
France [Coudreuse 1983] and the United States [Turner 1983]. A lot has happened in
these ten years. The unworldly technicians advocating ATM in the beginning are now
joined by respectable telecommunication managers. Trials are being carried out on a
large scale. A striking example of this is the European trial between (provisionally) 5
network operators. Also plans to introduce ATM in the operational network are
becoming more and more serious: Nynex and IBM have announced plans to start
introduction of ATM in the network within two years.

In the mean time also terminal and LAN manufacturers have recognized the pos­
sibilities of ATM. As a result of this, tumultuous developments have taken place in the
area of cell based LANs. Although transfer methods of cell based LANs may be
different from ATM, the cell definition of most proposals are in accordance with that
of CCITT in order to facilitate the interworking with ATM (B-ISDN). An important
development is that a number of companies have founded the ATM Forum. This
Forum was created to stimulate the development and introduction of ATM products
and services. In August 1992 already 52 principal members were involved.
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Release 1 Release 2 Release 3

Recommendations 1993 1995 1997
by:

Network capabilities: point-to-point simple point-to-multi- broadcast
connections point connections connections

Bandwidth allocation peak rate traffic characteristics t- as in
based on: enabling statistical release 2

multiplexing

Signalling: extension of ISDN separation call and t- as in
signalling, connection control, release 2
B-ISUP and Q.93B BAP

Table 1: The three releases of B-ISDN protocols

For this symposium it is worth considering the situation of ATM standardization. The
scheduling of traffic control issues is aligned with other standardization activities of B­
ISDN capabilities, including signalling. Three releases of B-ISDN Recommendations
have been identified: a short term solution (release 1), a medium term solution (release
2) and a long term (target) solution (release 3). Some important aspects of the three
releases are presented in Table 1.

Traffic control is still one of the basic issues in ATM. The text on traffic control in the
so called B-ISDN release 1 is now stable (CCITT 1992). In this release, algorithms for
Usage Parameter Control (UPC) are not standardized, although two examples, the
'virtual spacer' and the 'continuous state leaky bucket' algorithm, are described in the
Annex to the Recommendation 1.371. However there is a growing consensus that this
should be the case, or at least that parameters for traffic characterization should be
defined in later releases.

The text on Connection Acceptance Control (CAC) in the draft Recommendation 1.371
is very general and it is not to be expected that procedures will be standardized.
However for the dimensioning and operation of the network these issues remain of
vital importance.

The Symposium

The contributions in this symposium highlight the fact that people from a number of
disciplines are looking at A1M because of the interesting problems that it presents.
The contributions range from studies on the behaviour of individual queues, stand
alone or in more complicated arrangements including queues in tandem, to the effects
these studies might have on traffic control issues.
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With respect to individual queue behaviour, the following topics are presented:
• 'Heuristics for loss probabilities in finite-buffer queues',

H.C. Tijms, Vrije Universiteit, Amsterdam.
• 'A simple delay variance formula for ATM queuing analysis',

G.A. Awater, Delft University of Technology
More complicated arrangements, e.g. in a switch, are highlighted with respect to:

• 'Optimization of ATM LDOLL queuing in case of multiple outlets',
B. Stravrov, Delft University of Technology.

• 'Queuing analysis of an ATM switch with correlated routing',
H. Bruneel and S. Wittevrongel, University of Ghent.

The behaviour of a number of queues in tandem is addressed in:
• 'Approximate end-to-end performance models in ATM networks',

BJ. van Rijnsoever, Eindhoven University of Technology.
Using the results from queuing analysis, network operation like UPC and CAC are
discussed in:

• 'Traffic control issues in ATM',
G.H. Petit, Alcatel-Bell Antwerp.

• 'The safety margin in the leaky bucket policing function',
M.J.G. Dirksen, PTT Research, Leidschendam.

Finally the performance of a MAC protocol for an ATM Passive Optical Network is
analyzed in:

• 'Performance analysis of a MAC protocol for a broadband network access
facility' ,
C. Blondia et aI, University of Nijmegen.

In this way a very broad spectrum of contributions will be presented, however all
related to the central theme ATM. We trust that a lot of discussion will be the result of
these stimulating presentations.

Acknowledgement

The author would like to thank J.C. van der Wal for his contribution on the status of
ATM standardization activities.
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HEUIUSTICS FOR FINITE-BUFFER QUEUES

by

Henk Tijms

Dept. of Econometrics, Vrije Universiteit, Amsterdam

Abstract The approximation of the loss probability in finite-buffer queues

is a practical problem of considerable interest. A new heuristic is given.

This heuristic is based on the equilibrium distribution of the corresponding

infinite-buffer queue. Numerical results show an excellent performance of the

heuristic.

Research Report 1991-29
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1. Result

A practical problem of considerable interest is the calculation of the

loss probability in a finite-capacity queueing system. Consider the GIIG/clN+c

queue with c servers and a finite buffer of capacity N, where any customer

finding upon arrival N+c other customers in the system is lost. It is assumed

that the traffic intensity p = AlJ./c is less than 1, where A is the average

arrival rate of customers and IJ. is the average service time per customer. The

assumption p<1 guarantees that the corresponding infinite-capacity

GI/G/c has an equilibrium probability distribution {1l(00),j=O,1, ...} with
J

denoting the long-run fraction of customers finding upon arrival j other

tamers present.

A common heuristic for obtaining the loss probability is:

queue
(00)

II
J

cus-

p
appl

00
~ (00)
L llJ '

J=N+c

Le., the steady-state probability that in the infinite-capacity queue a cus­

tomer finds upon arrival N+c or more other customers present. A more refined

heuristic improving the crude heuristic (l) is

(00 )
II

P
N+c (2)=

app2
1 - E

(00)
II

j>N+c
J

Le., the conditional steady-state probability that in the infinite-capacity

queue an arrival sees N+c other customers given that no more than N+c cus­

tomers are present.

A quantitative justification of the heuristic (2) was given in Schweit­

zer and Konheim Ill. In particular, it was shown in this reference that for

the loss probability the exact formula

A
(00 )

P N+c PN+C
=

loss N+c

E A
(00 )

k Pk
k=O
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applies to queueing systems with state-dependent Poisson input and exponential

services, where A
j

is the arrival rate when j customers are present and p~CXI)

denotes the time-average probability of having j customers present in the cor­

responding infinite-capacity queue. In case the arrival process is a Poisson

process the formula for P reduces to (2). Note that the heuristic (2) is
loss

exact for the M/M/clN+c queue.

The purpose of this paper is to present a third heuristic that is in

general an improvement upon the heuristic (2). The new heuristic is given by:

03

(l-p) L n:(CXI)
j

j=N+c
P =--~---

app3 03

1 ~ (03)
-p ~ n:

j=N+c
j

(3)

What is the rationale behind this heuristic? For the two particular queueing

systems M/G/clN+c with c=l and MIM/clN+c, the long-run fraction of time the

system is full equals:

03

(l-p) L
(03)

Pj
j=N+c

03

1 - L
(03)

P Pj
j=N+c

A unifying proof of this known result is given in the appendix, see also chap­

ter 4 in Tijms [31. The key element of the proof is to establish that the

first N+c-l state probabilities in the finite-capacity model are proportional

to the corresponding probabilities in the infinite-capacity model. Using the

above result and using twice the property that Poisson arrivals see time aver­

ages, the heuristic (3) follows. It is emphasized that the heuristic (3) uses

the customer-average probabilities rather than the time-average probabilities.

Heuristics involving only the equilibrium probabilities for the in­

finite-capacity model are very useful for practical purposes, since these

probabilities have to be computed only once. This is particularly convenient

when selecting buffer sizes. Moreover, the customer-average probabilities for

the infinite-capacity model are often easier to compute than the corresponding

probabilities for the finite capacity model. A further simplification of the

heuristics is possible when



(00) J
1l - cx-r

J
for j large enough,

3

(4)

for some constants cx>O and O<-r<1. This asymptotic expansion holds true in many

queueing systems. Then the decay factor -r can often be computed simply as the

root of a nonlinear equation in a single variable. The amplitude factor cx is

usually not so easy to obtain with the exception of the single-server queue

with Poisson arrivals and the multi-server queue with exponential services.

However, an approximation or simulation may be used to compute the amplitude

factor cx.

A numerical investigation of the three heuristics is given in Section 2.

The numerical results show that the new heuristic (3) performs very well for

practical purposes and usually improves the heuristic (2).

2. Numerical Results

A good battlefield for the heuristics (1), (2) and (3) are queueing sys­

tems with deterministic arrivals. In table 1 we give the approximate values

(1)-(3) and the exact value of the loss probability for several single-server

D/G/lIN+l queues with Erlang-k services. Similarly, table 2 deals with the

multi-server D/M/c/N+c queue. For both queueing systems the exact value of the

loss probability was obtained by solving the balance equations of an embedded

Markov chain. The infinite capacity versions of these queueing systems are

easy to solve. For the D/M/c queue the state probability 1l(00) equals r(3J+l-c
J

for j2:c-l, where the constants rand (3 are very easy to compute using explicit

expressions for the G/M/c queue obtained in Takacs [2]. A simple and fast al­

gorithm to compute the state probabilities 1l(00) for the DIE II queue is given
J k

in Tijms and Van de Coevering [5]. This algorithm exploits the asymptotic ex-

pansion (4).
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Table I. The loss probability for the DIE 11IN+l queue
k

p=0.8 p=0.9 p=0.95

N=3 N=8 N=5 N=15 N=lO N=35

E appl -3 -7 -3 -6 -2 -71.87xlO 1. 73xlO 9.84xlO 1. 84xlO 1.36xlO 4.36x10
4

app2 -3 -7 -3 -6 -3 -71.57x10 1. 46xlO 5.69xlO 1. 06xlO 4.65xlO 1. 48xlO

app3 -4 -8 -4 -7 -4 -83.74xlO 3.47xlO 9.92xlO 1. 84xlO 6.88xlO 2.18xlO

exact 5.50 x lO- 4 -8 -3 -7 -4 -8
5.09xlO 1. 23xlO 2.28xlO 7.69xlO 2. 43xlO

E appl -2 -4 -2 -3 -1 -43.51xlO 3.38xlO 9.01xlO 1. 23xlO 1.11xlO 6.30xlO
2

app2 -2 -4 -2 -4 -2 -4
2.15xlO 2.05xlO 3.34xlO 4.31xlO 2.29xlO 1.18xlO

app3 -3 -5 -3 -4 -3 -5
7.22xlO 6.76xlO 9.81xlO 1. 23xlO 6.22xlO 3.15xlO

-3 -5 -2 -4 -3 -5exact 8.63xlO 8.05xlO 1.08xlO 1. 35xlO 6.54xlO 3.30xlO

E appl -1 -2 - 1 -2 -1 -2
1.56xlO 1.53xlO 2.76xlO 3.23xlO 3.20xlO 2.41xlO

1

app2 -2 -3 -2 -3 -2 -3
6.43xlO 5.75xlO 6.86xlO 6.40xlO 4.43xlO 2.42xlO

app3 -2 -3 -2 -3 -2 -3
3.57xlO 3.10xlO 3.67xlO 3.33xlO 2.30xlO 1. 23xlO

-2 -3 -2 -3 -2 -3
exact 3.86xlO 3.33xlO 3.84xlO 3.44xlO 2.36xlO 1. 26xlO

The final table 3 gives the approximate values and the exact value of

the loss probability for the M/G/c/N+c queue. Here we substituted in the ap­

proximations (1)-(3) the asymptotic expansion (4) for the state probabilities
(co)

1r
j

, where the decay factor 1: was computed from the characteristic equation

for the M/G/c queue and the amplitude factor ex was computed from a simple ap­

proximation, see pp. 350-351 in Tijms [3]. For small loss probabilities and

nonlight traffic, the use of the asymptotic expansion is justified. It should

be noted that the larger the traffic intensity p, the earlier the asymptotic

expansion (4) applies. The calculations were done for Erlang-2 services

(c
2
=0.5) and hyperexponential services with the normalization of balanced

s

means (c
2
=2, 4). Here c2 denotes the squared coefficient of variation of the

S S

service time.
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Table 2. The loss probability for the D/M/c/N+c queue.

p=0.8 p=0.9 p=0.95

N=5 N=30 N=lO N=70 N=15 N=140
-2 -7 -2 -7 -1 -7

c=5 app1 3.55xlO 3.24x10 7.42x10 1. 90x10 1. 7lx10 4.11x10
-2 -7 -2 -7 -2 -8

app2 1.35xlO 1.20x10 1. 52xlO 3.68x10 1. 98xlO 4.05xlO
-3 -8 -3 -8 -2 -8

app3 7.3lx10 6.47x10 7.95x10 1. 90x10 1.02xlO 2.06x10
-3 -8 -3 -8 -2 -8

exact 7.84x10 6.93x10 8.24xlO 1. 97x10 1.04xlO 2.09x10

-2 -7 -2 -7 - 1 -7
c=lO app1 2.21 xlO 2.0lx10 6.11x10 1.57xlO 1. 56xlO 3.76xlO

app2 -3 -8 -2 -8 -2 -8
8.31 xlO 7.47xlO 1.24xlO 3.03x10 1. 79x10 3.70xlO

-3 -8 -3 -8 -3 -8
app3 4.49xlO 4.03x10 6.46x10 1.57xlO 9.l6x10 1. 88x10

-3 -8 -3 -8 -3 -8
exact 4.82xlO 4.3lxlO 6.70x10 1.62xlO 9.34xlO 1.91x10

c=25
-3 -8 -2 -7 -1 -7

app1 7.35x10 6.70x10 4.03xlO 1.03x10 1.30x10 3.13xlO

app2
-3 -8 -3 -8 -2 -8

2.74xlO 2.49xlO 8.03xlO 1. 99x10 1. 45xlO 3.08xlO

app3
-3 -8 -3 -8 -3 -8

1.48xlO 1.34xlO 4.l8xlO 1.03xlO 7.42xlO 1. 57xlO
-3 -8 -3 -8 -3 -8

exact 1.59x10 1.44x10 4.33x10 1.07x10 7.56x10 1. 59xlO

Table 3 The loss probability for the M/G/c/N+c queue with c=lO.

p=0.8 p=0.9 p=0.95

N=lO N=25 N=20 N=50 N=25 N=lOO
2

appl
-2 -4 -2 -4 -1 -4

c =0.5 2.37xlO 2.89xlO 4.26xlO 6.45xlO 1.53xlO 9.l8xlO
s

app2
-3 -5 -3 -5 -2 -5

6.15xlO 7.35xlO 5.77xlO 8.42xlO 1.l8xlO 6.06xlO

app3
-3 -5 -3 -5 -3 -5

4.84xlO 5.78xlO 4.43xlO 6.46xlO 8.94xlO 4.60xlO
-3 -5 -3 -5 -3 -5

exact 5.12xlO 6.11 xlO 4.55xlO 6.62x10 9.08x10 4.67xlO

c
2
=2 appl -2 -3 -1 -2 -1 -2

8.20xlO 9.95xlO 1.56xlO 1. 96xlO 3.42xlO 2.69xlO
s

app2
-2 -3 -2 -3 -2 -4

1.18xlO 1. 28xlO 1.22xlO 1. 34xlO 1. 70xlO 9.19xlO

app3 -2 -3 -2 -3 -2 -3
1.75xlO 1. 90xlO 1.81 xlO 2.00xlO 2.53xlO 1. 38xlO

-2 -3 -2 -3 -2 -3
exact 1.46xlO 1.51xlO 1.63xlO 1. 82xlO 2.37xlO 1. 32xlO

c
2
=4 appl -1 -2 -1 -2 -1 -11.33xlO 3.73xlO 2.60xlO 7.59xlO 5.56xlO 1. 22xlO

s

app2 -2 -3 -2 -3 -2 -31.24x10 3.l4xlO 1.39x10 3.29xlO 2.44xlO 2.77xlO

app3 -2 -3 -2 -3 -2 -32.98xlO 7.69xlO 3.39x10 8.15xlO 5.89xlO 6.90xlO

exact -2 -3 -2 -3 -2 -32.l4xlO 5.l0xlO 2.72xlO 6.70xlO 3.64xlO 5.18xlO
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Summarizing, the numerical results indicate that the new heuristic (3)

performs very well for practical purposes. Also, note that the crude heuristic

(1) commonly used in practice may perform very poorly. In all cases the value

of the new heuristic is of the same order of magnitude as the exact value of

the loss probability. This is what is typically needed when a heuristic is

used for dimensioning the buffer size.
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A Simple Delay Variance Formula for ATM Queueing Analysis

Geert A. Awater
Delft University of Technology

Telecommunications and Traffic Control Systems Group *

Abstract

An important QoS parameter of ATM supported con­
nections is delay jitter. One measure of jitter is the
statistical variance of the delay. Often, ATM queue­
ing analysis is performed in terms of the total num­
ber of customers in the queue, not individual waiting
times. For simple queueing systems the probability
distribution function of customer delays, and hence
the delay variance is easily found. This is not vi­
able anymore for the more complex service disciplines
that arise in the context of prioritized queueing. Lit­
tle's result provides the expected delay for almost any
queueing system in terms of the expected queue pop­
ulation. This paper proposes a formula that gives
the delay variance in terms of the population mean
and population variance for a wide class of queueing
systems.

1 Introduction

In this paper we will be concerned with the variable
delay that ATM cells experience when they are sent
through a network for fast packet switching. This
delay consists of three components, the transmission
delays that occur every time a cell is being put on
a transmission line, the propagation delay caused by
the finite speed of light and the total waiting time,
which is the time that cells spend waiting for trans­
mission links to become available.

For the lowestbitrate proposed for ATM, 149.95
Mbit/s (the SONET OC-3 payload throughput) a
cell's transmission time is less than 2.85 ps. This bit
rate is typically intended for access lines. Inside the
network transmission time will typically be shorter.

°Rm. 19.11, P.O. Box 5031, 2600 GA Delft, The Nether­
lands. e-mail: g.a.awater@et.tudelft.nl

Awater-A simple delay variance formula ...

The propagation delay is determined by the speed of
light, that travels 1 km at most in 3.33 ps. The mean
waiting time of a cell depends on the dimensions of
the buffers inside the network switches which the cell
passes, and on the transmission speeds of the links
that serve those buffers.

The delay jitter, on the other hand, is solely the result
of the variable waiting times that cells experience.
Jitter is to be kept as small as possible for real-time
traffic such as voice or compressed video, where the
time relation of the data has to be restored at the
receiver's end. This means that delay jitter has to be
filtered out without disturbing variations in the bit
rate. The smaller the delay variance is, the smaller
the dejitter buffers, the more simple or stable clock
recovery (phase locked loop) circuitry can be.

Thus, study of the delay jitter is a queueing prob­
lem. In queueing analysis the state of the queue is
preferably described by the number of cells or -in
queueing theoretical terms- customers in the queue,
rather than by the individual waiting times of the
customers. As a result, waiting time statistics are
not obtained directly from the analysis. For simple
queueing systems the waiting time distribution is al­
most always found easily from the customer distribu­
tion. In these cases the total workload which has to
be processed before the cell under consideration (or
tagged cell) can be transmitted, is straightforwardly
obtained from the number of customers in the sys­
tem upon the cell's arrival. If the governing arrival
process is assumed to be memoryless, the individual
customers have a 'random view' [6, p. 175], [10] of the
system, and thus we arrive at the individual waiting
time distribution.

As more and more authors indicate the necessity of
prioritized buffering in ATM systems, ATM queueing
analysis becomes increasingly difficult. More specif­
ically; the waiting time of a customer arriving at a

Page 1



Every customer has its own sojourn time random
variable. With the equilibrium sojourn time W we
mean the sojourn time of a customer that approaches
the system in equilibrium, i.e. after an infinitely long
time after the queueing system started operating.
The queueing system that we will be studying com­
plies to the following definitions:

terns, since that is most appropriate for ATM sys­
tems. However, the analysis is readily extendible to
continuous time systems. Time is marked with the
positive integer numbers t, t E {O, 1, ...}. We will
refer to the number of customers in system at time
mark t as the queue population, represented by the
random variable Q(t). The equilibrium random vari­
able Q is defined implicitly by its distribution:

Arrival process: Every time mark t E {O, 1,2, ...},
the number of customers that arrive is A(t). The
distribution of this random variable is indepen­
dent of t, say Pr{A(t) = k} = ak. Some au­
thors call this process Batch Geometric, referring
to the geometric distribution of the inter-arrival
time (with mean «(1 - ao)-l) of batches of cus­
tomers (with Pr{batch size = k} = ak/(I- ao)).
We choose however, for the name Compound
Binomial, which is motivated by its continuous
time equivalent being called Compound Poisson
process, where batches of customers with a gen­
eral distribution arrive according to a Poisson
point process. In the discrete time situation,
batches arrive according to a binomial process
(the number of batches arriving in an arbitrary
time interval is binomially distributed) with ar­
rival probability 1 - ao on every time mark.

Enqueueing: We confine the derivation in this pa­
per to lossless queueing systems. This means
that every arriving customer is allowed to enter
the queue, and once in it, will not be lost, which
implies that the queueing system must provide
infinite waiting room. Customers that arrive at
the same time mark are enqueued in random or­
der.

Departures: The system has a single exit, through
which at most one customer at each time mark
t departs from the queue. Customers leave the
queue in the order that they entered it (First In,
First Out). It is possible that a customer arriving
at t, departs immediately.

queue comes to depend on future arrivals, since cells
of a higher priority bypass the tagged cell. Now, it
is no longer easy -if possible at all- to obtain the
waiting time distribution. For cases like this it is
convenient to have a simple formula that translates
the customer distribution into waiting time variance,
just like Little's law provides the expected delay from
the expected queue population, without the need to
obtain the complete delay distribution.

To the author's knowledge, the only extensions to Lit­
tle's law that obtain moments of the waiting time
of customers from moments of the queue popula­
tion are concerned with queues that are fed with a
non-compound, memoryless customer arrival process.
Whitt [9] gives a broad review of these and other,
interesting extensions of Little's law. Keilson and
Servi study the conditions under which a distribu­
tional form of Little's law applies in [4]. One pre­
dominant condition is that the customer (cell) arrival
process has to be Poissonian. Although they focus
on continuous time systems, their results are easily
transferred to the discrete time domain. The com­
plication of queueing analysis in the ATM context, is
that at ATM buffers, typically, multiple cells can ar­
rive in a single time slot. This means that we have a
compound arrival process, where customers may ar­
rive in batches. In this paper we shall derive a formula
that provides a relationship between the variance of
the waiting time of customers and the first two mo­
ments of the customer population for discrete time
queues with a memoryless, compound arrival process.

The main part of this paper is concerned with the
derivation of the formula. Section 2 introduces some
conventions and techniques that are required for this
derivation. Section 3 discusses an extension to the
principles of discrete time embedded Markov chains,
if multiple arrivals per time slot -which is common
practice in ATM queueing systems- are possible. In
section 4 we relate the probability generating func­
tion (PGF) of the waiting time with that of the queue
population. This relation allows us to relate their mo­
ments, which is demonstrated in section 5. Finally,
in section 6 the formula is applied to a sample queue­
ing system for which no explicit waiting time density
function has been found yet.

2 Theoretical preliminaries

Pr{Q =q} = lim Pr{Q(t) =q},'-00
q = 0, 1, ...

We will start this section by defining the queueing
system and introducing some random variables. First
we will narrow down the analysis to discrete time sys-
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This definition does not exclude multiple-priority
queues, or multiple class queueing systems in gen-
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era!. A single class of a multiple-class system, can
be viewed as a system in itself, to which the equa­
tions may apply equally welt We also mention that
tbis queueing system is much more restricted than
is necessary for the derivation of Little's law, where
the only requirement is that no customers are lost in
the system. However, the class of systems that the
analysis applies to is still very broad.

We define PGF, or z-transform of a discrete ran­
dom variable X with probability distribution Pr{X =
k} = Zk as usual: X(z) = E~o Zkzk. We will make
use of its factorial moment generating property:

x(n)(1) = E{X(X - 1)·· ·(X - (n - I»} (1)

where x(n)(I) denotes the n-th derivative of X(z)
evaluated in z =1 and n =1,2, ...

An important PGF in this paper, is that of a sum,
say Z, of a random number Y of discrete random
variables Xl, ... , Xy:

where the Xi are i.i.d. random variables with PGF
X(z) and where Y is an independent random variable
with PGF Y(z). Clearly, ifY would be deterministic,
say Y = Ie, then Z(z) = (X(z»k, because of the
convolution property (see [6, p. 330]); the PGF of a
sum of independent random variables is the product
of their PGFs. However, since Y is a random variable
we have to uncondition on the various values that Y
can assume. This gives:

00

Z(z) =E(X(z»k . Pr{Y = Ie} =Y(X(z». (2)
k=O

Another prerequisite for the analysis is the PGF of
random variable B, that represents the number of
customers that arrive in the same batch, i.e. at the
same time mark as the tagged customer, but are en­
queued behind it. We define Pr{B = Ie} =6k. The
order in which customers of a batch are enqueued is
random. The probability that a tagged customer ar­
rives in a batch of i customers is iai/E{A}. With
probability Iii it has exactly Ie customers behind it,
provided that the batch size is larger than k. There­
fore, we find with the definition of arrival intensity
A =E{A}, that (as in [3]):

Awater-A simple delay variance formula ...

For the PGF of this random variable we get, using
B(z) = E~=o 6k z" and changing the order of sum­
mation:

1 00 1 - zk 1 - A(z)
B(z) =XE 1=7ak = A(I- z)' (4)

k=O

The n-th order derivative B(z) in the point z =1 can
be found directly by substituting for A(z) its series
expansion, which does always exist, since all moments
of the random variable A are known.

B(z) = -1 ~ (z - l)m A(m)(I)
~(I-z) L m!

m=l

= ! f: (z - l)n A(n+1)(I) (5)
~ n=O n! n +1

By inspection we find for the n-th derivative of B(z)
in z =1:

A(n+l)(I)
B(n)(I) = (n + 1)~' n =0, 1,. .. (6)

Another equality that we will be needing in the
next section is the discrete time analog of the re­
sult that has become known as PASTA (cf. [10]). This
acronym stands for 'Poisson Arrivals See Time Aver­
ages', meaning that the equilibrium probability that
a customer, that arrives according to a (possibly non­
stationary, possibly compound) Poisson process, finds
a system, with which the customers may interact to
be in a particular state, is equal to the fraction of
time that the system is in that state. This state does
not necessarily have to be the number of customers
in the system. This analog, that is due to Halfin (see
[2]) is sometimes called BASTA, which may stand for
Binomial Arrivals See Time Averages.

3 What you see is not always
what you leave

In the study of queueing systems, and as it turns out
also in this paper, it is often more convenient to model
the queue population immediately after the departure
of a customer. The random variable that symbolizes
the number of customers in the queue immediately
after departure of a customer, will be called U. More
colloquially we will refer to this number as 'What you
leave'. For the counterpart of this variable, i.e. the
number of customers immediately prior to the arrival
of a new customer, we adopt the term 'What you
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Figure 2: 'What you see' (.) is not 'what you leave'
(0) for more than unit population increments. The 0

depict 'what you see' plus the number of customers
enqueued behind 'you'.

see'. Thanks to the forementioned BASTA property,
we do not need to introduce yet another random vari­
able here, since Q has the identical distribution as the
queue populati<ln that arriving batches see.

For queueing systems at which at most one customer
arrives at a time and one or less departs at a time,
Kendall (cf. [5]) showed that Q and U have identical
distributions. The pleasant consequence of this equal­
ity, together with the BASTA result, is once we find
U, we also obtain the equilibrium probability distri­
bution of the queue population, that would have been
much harder to find directly. In [7] this fact is used
to carry out a discrete time queueing analysis.

Kendall's principle may become intuitively clear from
a glance at figure 1. There, the number of customers

Q(t)

4

3

2

1

o
o 5 10 15 20

t-+

again. Hence we find that what you see and what you
leave are related through their PGFs as follows:

We have now all necessary tools to proceed. The
preliminaries in section 2 will help to relate the PGF
of the sojourn time with U(z). Formula 7 provides
the link to go from U(z) to Q(z). From PGFs we can
go to moments using equation 1.

Q(t)

4

3

2

1

o
o 5 10 15 20

t-+

U(z) =Q(z)B(z). (7)

Where the number of class-Ie arrivals can be 0 or 1.
Now it has become possible to give an expression for
U(z) directly, if we observe that the number of cus­
tomers left behind in the queue by a tagged customer

Here we want to relate the PGF of the sojourn time
W(z) to U(z). Unfortunately this is not possible in
a straightforward manner as Kleinrock [6, eqn. 5.98]
or Keilson and Servi [4] do for continuous time, be­
cause here we have arrivals in batches. To deal with
this complication, we have to divide the customers
in classes. On entry in the queueing system, a cus­
tomer is assigned to class Ie if it was enqueued with k
customers of its own batch behind it. Each of these
classes has its own sojourn time random variable Wi:,
queue population QI: and traffic load AI:. The Ai: are
equal to the probability that more than k customers
arrive at a time mark, so:

Population and Delay PGF
Figure 1: 'What you see' (.) is 'what you leave' (0)

an in exemplary queueing system is plotted as a func­
tion of discrete time. The numbers of customers in
the queue that arriving batches see, are marked with
a solid bullet (.). The number of customers that de­
parting customers leave behind in the queue is des­
ignated with an open bullet (0). One can see that,
in the long run every. matches with a 0, and hence
that Q and U are distributed identically. For a formal
proof, we refer to [5] or [6, p. 232, ex. 5.6].

Figure 2 shows that if we permit queue population
increments greater than one, but at the same time do
not allow more than unit decrements, that customers
do not see what they leave anymore. Fortunately we
are able to deduct from the same picture that the
number of customers that an arriving customer sees,
plus the number of customers from the same batch
that it sees enqueued behind itself does have the same
equilibrium distribution as the number of customers
that departing customers leave behind, i.e. every 0

corresponds to a 0 in the long run. Since the number
of customers in a batch, and hence also the number
that is enqueued behind a tagged customer is inde­
pendent of Q, we may use the convolution property

4

AI: = E{number of class-k arrivals at t}
00

= 2: a. =Abl:.
.=1:+1

(8)
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of class k is equal to the number of customers that
were enqueued behind it initially, which is k, plus the
number of customers that arrived during the sojourn
time of that customer. The k customers that got en­
queued behind the tagged customer in the same batch
introduce the degenerated PGF z". Using equation 2
we see that the number of customers that arrived dur­
ing the sojourn time of our tagged class-A: customer
has PGF W,,(A(z». We use the convolution theo­
rem once more and then uncondition on the customer
class, which results in:

00

U(z) = I>"W"(A(z»b,,. (9)
"=0

5 Waiting time variance

By differentiating equation 9 we hope to arrive at
a relationship between the variances of Wand Q.
Just as a check we differentiate once and evaluate
the result in the point z = 1. Equation 1 implies
particularly that X'(l) =E{X}. Thereby we arrive
at:

00 00

E{U} = L: E{W"}'\b,, +L: kb"
"=0 "=0

= '\E{W} + E{B} (10)

Application of the same procedure to (7) yields:

E{U} =E{Q} + E{B}. (11)

Eliminating E{U} from the latter two formulae, gives
us E{Q} ='\.E{W}, in accordance with Little's law.

Now, we differentiate (9) twice and evaluate the result
in z =1.

U"(l) = B"(l) + ,\2W"(1) +E{W}A"(l) +

The last term of this equation is not easy to eval­
uate. As a first approximation we can assume that
E{W,,} ~ E{W}. As shown in [2], this approxima­
tion is exact if the batch size distribution is geometric.
This means that Pr{A = klA > O} = a· (1- a)", k =
1,2, ..., for some a E [0,1]. The current approxima­
tion is at its worst when the batch arrival intensity
1 - ao is very low, while at the same time the average
batch size N(l- ao) is very high, so that the waiting
time is highly dependent on the place in the batch.

If we substitute the approximation into equation 15
we have:

Q"(I) ~ ,\2W"(I) + 2E{Q}E{B}

= ,\2W"(I) + E{W}A"(I). (16)

The approximation can be rewritten in terms of vari­
ances as follows:

Var{Q} ~ VarpW} +Var{A}E{W}. (17)

In the appendix we pursue an exact evaluation of the
term 2 L:~=o kE{Q,,}. If the result obtained there is
substituted into equation 15, and rewritten in terms
of variances, we find that the initial approximation
(17) is augmented with an extra term:

Var{Q} = VarpW} + Var{A}E{W} +
p(B"(I) - 2E2{B}). (18)

Where p is defined as the queue utilization, or equiva­
lently, as the probability that the queue is not empty.
The reader may verify, by going through some te­
dious calculus, that the correction term vanishes for
a geometric batch size distribution.

00

2,\ L: E{W"}kb,, (12)
"=0

Then, equation 7 is dealt with in the same way, so:

U"(l) =Q"(l) +2E{Q}B'(1) +B"(l). (13)

Substituting (6) with n =1 for B'(l) in the second
term we obtain using Little's law:

U"(l) = Q"(l) + E{W}A"(l) + B"(I). (14)

Equating the right hand sides of (12) and (14), and
using Little's law for class-k customers: E{Q,,} =
'\"E{W,,} we find:

00

Q"(l) =,\2W"(1) + 2L kE{Q,,}.

"=0
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(15)

6 An application

In this section we will study the relationship between
load, mean delay and delay variance of a two-priority
ATM queueing system, described in [1]. The system,
called LDOLL queue, is designed to minimize the mean
delay of cells of the so called Low Delay (LD) class as
well as the loss probability ofthe other, Low Loss (LL)
class. This is accomplished by giving storage priority
to cells of the LL-class and retrieval priority to cells
of the LD-class.

More specifically the LDOLL queue is defined as fol­
lows. Cells arrive on N synchronized input channels
according to a Bernoulli process at a finite buffer with
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Var{W} =

a capacity of Q cells. The probability that a cell ar­
rives at a time mark is p for each channel. Hence the
batch size distribution is binomial:

Pr{A(t) = k} = (~) pk(1- p)N-k

A(z) = (1 - p(1 - z»N. (19)

The chance that an arriving customer is of the LD

type is r. With probability 1 - r it is of the LL type.
As a result, both customer classes also have binomial
batch size distributions.

During a time slot, in between two time marks, re­
trieval takes place first. Which type of cell to retrieve
is prescribed by the LDOLL threshold policy, that was
shown (in [1]) to minimize a linear combination of
mean LD cell delay and LL cell loss probability. This
retrieval policy is described using pseudo code:

if nLL < A and nLD > 0
retrieve an LD cell

else
if nLL > 0

retrieve an LL cell
else

do nothing.

Here nLD and nLL is the number of LD cells and LL

cells respectively, that are enqueued currently. The
threshold A E {I, ... ,Q} is a parameter with which
we can adjust the retrieval priority, so that a trade-off
between LD cell delay and LL cell loss probability can
be made. An increase of A reduces LD cell delay and
increases LL cell loss probability. For a decrease of A
it is just the other way round. For each class, cells
are retrieved in the same order in which they were
stored.

Cell storage takes place after cell retrieval. The
empty buffer space is alloted to the arriving LL cells
first. If not all the LL cells find a place, they may
push out any LD cell present in the queue, but not
cells of their own type. The remaining space is for
the LD cells, that do not have push-out rights. LD

cells and LL cells that cannot be placed in the buffer
are lost.

For this queueing system we did not succeed in find­
ing an explicit delay probability distribution. Yet we
want to be able to study the benefit of the LDOLL

threshold policies for delay variance, which now has
become possible with delay variance formula 18. Both
cell classes comply to the definitions in section 2, ex­
cept for the requirement of the absence of loss. Thus

Awater-A simple delay variance formula ...

we will use (18) as an approximation. Yet this ap­
proximation is very accurate, especially if the cell loss
probability does not become too high.

We will calculate the mean delay and delay variance
for various loads for three different queueing systems.

1. An LDOLL queue with a queue size of Q = 40
cells, N = 4 inputs and A =20, for both the LD

and the LL cells. Cells of both types arrive at the
queue in equal proportions (r = 0.5).

2. A discrete time M X /D/l/40 FIFO queue, with
the same cell arrival process as for the LDOLL

queue. The customer population of this queue
has the same statistics as the aggregate number
of customers in the LDOLL queue.

3. A discrete time M x/ D /1 FIFO queue, with the
same cell arrival process as for the LDOLL queue.
This system is considered in order to evaluate
what the effect of cell losses on the accuracy of
the delay variance formula is.

The population mean and variance of the LDOLL

queue were obtained from the equilibrium distribu­
tion that was calculated by straightforward, repeti­
tive multiplication of the (sparse) probability transi­
tion matrix with an initial population probability dis­
tribution vector. The multiplication was repeated un­
til the population statistics converged. Ifonly one cell
type is fed into the LDOLL queue, the queue reduces
to a M X /D/l/40 queue. Therefore this queue count
be calculated with the same model and the same tech­
nique, by setting r to 1. The population mean and
variance of the M x/ D/1 queue were obtained by sym­
bolic differentiation and evaluation in z = 1 of the
PGF of the queue population (refer to [3]):

Q(z) = (1 -;~) ~ ; z) A(z), (20)

where A(z) is defined as in (19), and the utilization
equals the offered traffic: p = Np.

The step from population mean and variance to de­
lay mean and variance was made with delay variance
formula 18, which for the case of a binomial batch
size distribution looks like:

Var{Q} - (1- q) . E{Q}
N2 q2 +

(N + I~~': -I) . Pr{Q > 0}(21)

where q is the arrival probability per channel, for
which we substituted p for the MX/D/I/40 and
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E{W}
20.------------------,M XID/l queue, and rp and (1- r)p for the LD and

LL cells respectively in the case of the LDOLL queue.
Pr{Q> O} for both the LD and the LL population was
obtained from the calculated probability distribution
vector. For the M XID/l queue, Pr{Q > O} =p.

In figures 3, 4 and 5 the results of the calculation
are plotted. The mean and variance axes are loga­
rithmic to make small differences at low loads visible.
From figure 3 we see that the mean delay of the fi­
nite M xIDII queue does not differ substantially from
that of the infinite counterpart, if the load p varies
from 0 to 0.95. Also, we observe that the LDOLL

threshold policies favor LD cells with respect to mean
delay.

In figure 5 we see that exactly the same may be con­
cluded for delay variance; LD cells have a smaller de­
lay variance than they would have in an identical, but
unprioritized queue. This reduction is paid for by the
LL cells that suffer a higher delay variance, but have
a smaller loss probability in return. Loss probability,
which is not a subject of this paper, is discussed in
references [8} and [1]. In the latter reference it was
argued that a reduction of delay is accompanied by
a reduction of delay variance. Figure 4 confirms this
statement.
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Appendix

The queue population consists of an integral number
of whole batches and one batch of which one or more
customers have already left the queue. This batch
we will call the residual batch. In order to assess the
class-k population, we observe that, provided that the
queue is not empty, the probability distribution of the
number of customers in the residual batch is equal to
that of B.

It is important to notice that the observation made
a.bove is not true for all queueing systems. For in­
stance, if we consider the waiting room of a queue
disregarding the server, then the first customer to en­
ter the system after a period in which server was idle,
is taken out of the queue immediately to be trans­
ferred to the server. This would alter the probability
distribution of the residual batch length. In general,
if the service time of a customer depends on its posi­
tion in the batch, the observation would not be valid.

We define CR as the number ofcustomers in the resid-
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Figure 3: Mean delay versus load for the Mx/ D/1
queue (- -*- -), for the MX I D/l/40 queue (-0-),
for the LD cells of the LDOLL queue (----t:r-) and for
the LL cells of the LDOLL queue (-0-).

ual batch. From our observation above, and account­
ing for a zero residual batch length if the queue is
empty:

CR(Z) = 1 - p(1 - B(z». (22)

Let N be the total number of other batches. The
number of customers in these batches is designated
with the variables Cn , n =1, ... , N. The number of
class-k customers in equilibrium is found as:

N

Qk = L I(Cn > k) + I(CR > k), (23)
n=1

where I(.) is the indicator function, that assumes the
value 1 if the parenthesized expression is true. Oth­
erwise it takes the value O. Note that the Cn are also
i.i.d. Therefore, taking expectations on both sides
yields:

E{Qk} = E{N} Pr{Cn > k} + Pr{CR > k}. (24)
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Figure 4: Delay variance versus mean delay, with load
as a parameter, for the M x/ D/1 queue (- -*- -), for
the M X / D/1/40 queue (-0-), for the LD cells of
the LDOLL queue (-6-) and for the LL cells of the
LDOLL queue (-0-).

Figure 5: Delay variance versus load for the MX/ D/l
queue (- -*- -), for the M X / D/1/40 queue (-0-),
for the LD cells of the LDOLL queue (-6-) and for
the LL cells of the LDOLL queue (-0-).

For the batch size distribution we have (independent
of n) : Pr{Cn > k} =>.,,/(1- ao). The above equa­
tion thus can be rewritten as:

00

00

were after in the following way:

(25)
E{N}

E{Q,,} = -1->." + Pr{CR > k}.
- ao

Summing over k gives us:

E{Q} = 1
E

{N} >. +E{CR}'
-ao

(26)

2 E{N} >.E{B} +
1- ao

00

Lk(k-1)Pr{CR=k}
"=0

The latter equation will be used to find E{N}/(1-ao)
later. For that we also have to know E{CR} which
equals pE{B}, as we see from differentiating (22).
With equation 25 this we can evaluate the term we

= 2 E{N} >.E{B} +C~(1).(27)
1- ao

This equation is finally rewritten, with the use of
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equations 26 and 22 as:
00

2E kE{QI:} =2(E{Q} - pE{B})E{B} + pB"(I).
1:=0

(28)
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An Approximate Model for the End-to-End
Performance in an ATM Netvvork
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Eindhoven University of Technology

Abstract

In an ATM network, the network performance must be ensured to each individual virtual
connection (VC). We model such a VC by a tandem queueing network of deterministic, single
server queues. This model is commonly solved for the end-to-end performance by decomposing
it into single queues and assuming Bernoulli cell routing. Here, the tandem queueing network
is decomposed into pairs of queues, thus accounting for the dependence between adjacent
queues. Furher, cell routing is modeled by an independent Markov chain, allowing some of
the true routing process to be retained. Focus is on the basic building block of this method:
the two tandem queues model. We show how this model can be solved by the algorithmic
procedure for queues of the M/G/I-type. We present a numerical example, which shows that
both aspects have a considerable effect on the network performance and thus deserve to be
incorporated into the model.

1 Introduction

The provider of an Asynchronous Transfer Mode (ATM) Network must ensure the network per­
formance to each individual virtual connection (VC). The network performance is measured in
terms of statistics on the loss and delay of packets (cells). This paper outlines an algorithmic
procedure to study for an ATM network the relation between end-to-end performance on the one
hand and configuration and traffic carried on the other hand.

We customarily model the ve under study by a tandem queueing network of single server
queues. Because the cell length and the transmission rate are constant throughout the network,
the service processes are deterministic and mutually synchronized. At each queue, the cells on the
VC under study interfere with cells on other VCs. This model is commonly solve for the end-to­
end performance by assuming that the queues are mutually independent of each other. See, e.g.,
[1, 2]. In that case, the analysis consists of modeling the traffic streams departing from the queues
and then evaluation of the performance in each queue. Another approach is to look for bounds on
the performance that can easily be evaluated, see [3].

Decomposition neglects the positive correlation between the waiting times of a cell in the
consecutive queues. As a consequence, the probability of large delay or of loss of consecutive cells
on the ve is underestimated. Assuming Bernoulli routing of cells, instead of routing according
to a cell's ve, may both increase and decrease the burstiness of the traffic stream arriving to the
next queue. An increase of the burstiness will cause an increase of the waiting times. So, accuracy
and effect depend on the traffic characteristics.

The approach considered in this paper is to decompose the t.andem queueing network into pairs
of queues, see Fig. 1. Thus, the correlation between the waiting times of a cell in two consecutive
queues - which may be expected to be the most import.ant - is taken into account. Cell routing is
modeled by an independent Markov chain. We choose this chain such t.hat the true routing process
is approximated: the number of randomly routed cells between two deterministically routed cells is
statistically (approximately) equal to the number of interfering cells arriving to the previous queue
between two arrivals on the ve under study. So, we have assumed that Bernoulli routing is a goud
model for the interfering cells. When studying the probability of loss or the delay distribution of

1
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Figure 1: Decomposition of the VC Model

a cell of the VC under study, we require the routing chain to make a transition that corresponds
to deterministic routing during the slot this cell is served. The departure process from a queue is
modeled by an on-off process.

In the remainder, we will focus on the basic building block of this method: the two tandem
queues model. Section 2 shows how it can be solved by the algorithmic procedure for M/G/I-type
queues presented in [4]. In section 3, we present numerical results on the correlation between the
queues and on the routing model. Finally, conclusions are drawn.

2 The two tandem queues model

In this section, we consider a tandem queues model comprising two single server queues. We show
how to calculate the steady-state probability distribution and the moments of the busy period
of the first queue. The waiting time distribution is obtained by observing a cell that arrives
to the system in equilibrium. The moments may be used to model the departure process from
the first queue. The servers have equal, deterministic service times and are synchronized. The
service time is chosen as unit of time. The buffer spaces of the first and the second queue are
infinite and finite, respectively. The service discipline is FCFS. Departures are assumed to occur
before arrivals. In a given time slot, the transition in a discrete time Markov chain Si, i E {I, 2},
with finite state space determines the probability distribution of the number of external arrivals
to the corresponding queue. 8 1 describes the arrivals due to both the VC under study and the
traffic interfering with it. The routing probability of a cell leaving the first queue depends on the
transition in the Markov chain R with finite state space during the same slot.

We describe the state of the system at slot boundaries by the Markov chain (X 1, X 2 , 8 2 , R, 8 1)

={X~, X~, 8;, Rn , 8~; n E N}. X~, X~ EN, denotes the number of cells waiting in the first
queue. X~ = 0 denotes that no or a single cell is waiting in the second queue and X~ = i, i E
{I, ... , (N2 -I)} denotes that i+ 1 cells are waiting. Jfthe states are ordered first according to the
state space of Xl and, given Xl, according to the state space of (X 2 , 8 2 , R, 8 1), it follows readily
that the transition probabilities matrix is of the M/G/I-type, see [4], where Xl is the level and
(X2, 8 2

, R, 8 1
) is the phase process: left transitions of Xl are by at most one and, except when

2



x~ = 0, X~+1 - X~ is independent of X~. The transition probabilities matrix looks like this:

Bo B1
Ao A1

o Ao A1

o 0 Ao A1 o
(1)

o
o
oo

It denotes the maximum number of arrivals in a slot to the first queue. Bi and Ai, 0 :$ i :$ / 1 , are
substochastic matrices. B = 2:[;0 Bi is the transition probabilities matrix of the phase process,
given that X~ =O. A =2:[;0 Ai is the transition probabilities matrix of the phase process, given
that X~ ? O. Bi and Ai are matrices of the joint probabilities of phase transitions and i arrivals
to the first queue. Ai is given by:

85+8l 8~

85 8~
o 85 8r

8l
0Ro+

0 0 85 Sl
S'l 82 32 0 00 1 1~

0 85 <::2 0 0'- /2

0 0 85 82 0 012

0 0R1 08l
82 82 82

0 h-1 /2

0 0 S5
Bi is given by:

35 +8l 8~ 812
0 0

85 82 82 0 01 h
0 85 8f 82 0 012

Bi= 0 0108l
85 8l 812 -1 82

/2

o o
12 is the maximum number of external arrivals in a slot to the second queue. 8j, i E {l,2},
j E {O, ... , Id, are matrices of the joint probabilities of transitions in Si and j arrivals to queue i.
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Sl = EJ~i Sf. Rj, j E {O, I}, are matrices of the joint probabilities of transitions in R and the
routing decision j. By aggregating the states in wich the second queue is empty and the state in
which there is one cell in the second queue, it is avoided that the matrices Ai and Bi are singular.

The steady-state probability distribution for the above system can be obtained by the algorithm
for M/G/1-type stochastic matrices described in [4J. The structure of the matrices Ai and Bi can
be exploited to some advantage in the algorithm. The basic steps of the algorithm are repeated
here for continuity. The system state is denoted by (i, j), i 2: 0, °~ j ~ M, where i denotes the
level and j the phase. Let Xi denote the steady-state probability vector corresponding to level
i, i.e., Xi = (p(i, 0), p(i, 1), ... , p(i, M)). Let Gjj'(k) denote the probability that starting in state
(i + 1, j) state (i, j') is the first state reached in level i and that this takes k steps, k 2: 1. Defining
the matrix G(k) = [Gjj'(k)] and the transform matrix G(z) = E~=l zkG(k), it follows readily
that G(z) satisfies:

h
G(z) = Z I:AiGi(Z)

i=O

(2)

We denote G(l) by G and the corresponding steady-state probability vector by g. G can be
obtained by an iterative algorithm, see [4, 3.6.4]. gl is the vector of the mean times to reach level
i from level i + 1, given the phase of the initial state, i.e., gl = 1zG(z)lz=1 e. Next, let I<jj/(k)
denote the probability that starting in state (0, j) state (0, j') is the first state reached in level
o and that this takes k steps, k 2: 1. Defining the matrix I«k) = [Kjj'(k)] and the transform
matrix I«z) =L~1 zk I«k), it follows readily that K(z) satisfies:

I,

K(z) = zI: BiGi(Z)
i=O

(3)

We denote K(I) by K and the corresponding steady-state probability vector by k. K follows by
insertion of G into 3. It is shown in [4, th.3.2.1] that when G is irreducible and the load of the
first queue is smaller than one, Xo is given by:

where k1 is the vector of the mean recurrence times to level 0 given the phase of the initial state,
i.e., k1 = 1z I«z)IZ=l e. Differentiation of 2 and 3 leads to expressions for 91 and k1 . Expressions
for higher moments can be obtained in the same way, although they get very complex even for
low moments. Xi, i> 0, is obtained by a recursive algorithm, see [5].

The moments of the busy period can obtained by considering the first queue at slot boundaries
during busy periods (including the slot boundaries starting and ending a busy period). By defining
the Markov chain in this way, the return time to level °equals the lengt.h of the busy period plus
one slot. The transition probabilities matrix is again of the MfGfI-type, see 1. The constituent
matrices are given by:

Ai
Bo

Bi =

S~•

Insertion of the expressions for Bi into 3 gives:

I«z) = (I - S~)-l(G(z) - zDo), (4)

so the moments of the return time to level 0 can easiliy be obtained from the moments of the time
to make a single left transition.
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Figure 2: Model for the traffic on the VC under study

3 An Erlang-2 process interfering with batch Bernoulli
processes

As a numerical example of the above model, we assume that the traffic on the VC under study
is a discrete time Erlang-2 process, see Fig. 2. A cell arrival occurs at transitions from state 1
to state O. The Erlang-2 process may be considered as a model for a deterministic process of
which the intervals between cells have been disturbed randomly. The interfering traffic streams
at both queues are modeled by batch Bernoulli processes with binomially distributed batch sizes.
The maximum batch size is 7, so that at most 8 cells may simultaneously arrive to any of the
queues. The routing Markov chain is also two-state. Transitions from state 1 to state 0 induce the
deterministic routing of a cell to queue 2; all other transitions correspond to random routing, with
fixed probability. The transition probabilities are chosen such that the first two moments of the
number of randomly routed cells between two deterministically routed cells equal the corresponding
moments of the number of interfering cells arriving to the previous queue between two arrivals 011

the VC under study. (It should be noted that this is not possible for all values of the moments).
The buffer size of the second queue is 40. In the remainder of this section, we compare routing
according to a Markov chain with Bernoulli routing and we assess the correlation of the waiting
times of a cell in the consecutive queues. Table 1 shows the set of configurations that has been
considered.

Table 2 shows the probability that a cell of the VC under study finds more than a given
number of cells waiting upon arrival in queue 2. We compare routing according to a Markov chain
with Bernoulli routing. As the Erlang-2 process is less bursty than a Bernoulli process, assuming
Bernoulli routing is expected to increase the probability of a given delay. This is confirmed by
the figures in the table. The increase is shown to become greater·, if probabilities further into the
tail of the waiting time distribution are considered. For cell loss probabilities it ranges between a
factor 1.1 and 4.2 and is a factor 1.6 for the basic configuration. Further, the increase is greater
(1) if the fraction of the load that is due to the VC is greater, (2) if the fraction of the load that
is due to crossing interference is greater, and (3) if the load due to interference is smaller.

Next, we assess the correlation of the waiting times of a cell in queue 1 and queue 2, see Table
3. (The routing process has been modeled by a Markov chain.) The table shows the probability
that a cell of the VC under study finds more than a given number of cells waiting upon arrival
in queue 2, conditioned on its waiting time in queue 1. The waiting times in queue 1 and queue
2 are expected to be possitively correlated. This is confirmed by the figures in the table. The
increase of the cell loss probability, given the waiting time in queue 1 is 0 and 40, respectively,
ranges between a factor 8.6 and 4.5· 106 and is a factor 6.7· 102 for the basic configuration. The
correlation is greater (1) if the fraction of the load that is due to crossing interference is smaller
and (2) if the load due to interference is smaller.
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Table 1: Configurations that have been considered

# Configuration Load on VC Load joining Load crossing
interference interference

0 Basic 0.100 0.300 0.100
1 Increase of fraction 0.200 0.200 0.100

of load due to VC
2 Decrease of fraction 0.033 0.367 0.400

of load due to VC
3 Increase of fraction 0.100 0.000 0.700

of load due to
crossing interference

4 Decrease of fraction 0.100 0.600 0.100
of load due to
crossing interference

5 Decrease of load 0.100 0.171 0.229
due to interference

6 Increase of load 0.100 0.364 0.486
due to interference

Table 2: Comparison of waiting time and loss in queue 2 for Markovian and Bernoulli routing

# Markovian Bernoulli .
P(wait. > 20) P(wait. > 30) P(loss) P(wait. > 20) P(wait. > 30) P(loss)

0 3.8ge-5 2.90e-7 2.68e-1O 4.92e-5 4.00e-7 4.21e-10
1 2.60e-5 1.57e-7 1. 17e-1O 4.36e-5 3.2ge-7 3.24e-l0
2 5.16e-5 4.34e-7 4.70e-l0
3 3.45e-5 2.00e-7 2.18e-1O 7.18e-5 5.79e-7 9.16e-10
4 2.83e-7 3.06e-1O 2.07e-14 2.96e-7 3.24e-l0 2.24e-14
5 1.45e-13 9.30e-20 1.04e-24 2.55e-13 1.9ge-19 1.80e-24
6 7.50e-2 1.77e-2 2.24e-4 7.97e-2 1.93e-2 2.69e-4
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Table 3: Waiting time and loss in queue 2 conditioned on the waiting time in queue I

# Waiting time in queue I = 0
P(wait. 2 > 20) P(wait. 2 > 30) P(loss 2)

0 2.34e-5 1.69e-7 1.15e-1O
3 3.07e-5 1.78e-7 1.78e-l0
4 8.95e-8 9.24e-ll 3.8ge-15
5 8.22e-14 5.55e-20 9.20e-25
6 4.92e-2 1.02e-2 7.84e-5

# Waiting time in queue 1 = 20
P(wait. 2 > 20) P(wait. 2 > 30) P(loss 2)

0 6.25e-4 8.43e-6 1.18e-8
3 8.62e-5 6.32e-7 8.22e-1O
4 3.24e-5 5.51e-8 5.06e-12
5 2.78e-9 2.05e-14 1.76e-20
6 1.I8e-l 3.0ge-2 4.32e-4

# Waiting time in queue 1 = 40
P(wait. 2 > 20) P(wait. 2 > 30) P(loss 2)

0 1.40e-3 3.65e-5 7.66e-8
3 1.04e-4 9.87e-7 1.54e-9
4 3.50e-4 1.56e-6 2.40e-IO
5 1.3Ie-8 7.53e-13 4.I4e-18
6 1.56e-1 4.62e-2 6.77e-4

4 Conclusions

We have presented a procedure to approximately determine the end-to-end performance on a VC
in an ATM network. It explicitly takes into account the correlation between the waiting times of a
cell in two consecutive queues and models the routing of cells according to their VC. In a numerical
example, both aspects have been shown to have a considerable effect on the network performance
and thus deserve to be incorporated into the model. Modeling the routing process accurately is
important if the fraction of the load that is due to the VC is high, if the fraction of the load that
is due to crossing interference is high, and if the load due to interference is small. Incorporating
the correlation is important if the fraction of the load that is due to crossing interference or the
load due to interference itself is small.

Next to obtaining more experience with the two tandem queues model, topics for further study
include modeling the departure process from the queues and the actual analysis of the end-to-end
performance.
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Extended Abstract
Optimization of ATM LDOLL Queueing in Case of Multiple

Outlets

Borut Stavrov Geert Awater Frits Schoute

The primary idea behind the ATM ( asynchronous
transfer mode ) is its ability to deal with serv­
ices with different bandwidth requirements. But
the services also differ in performance requirements.
Real time services for instance, require small cell
delay and delay jitter whereas data transmission
requires low cell loss probability.

The ATM cells can be divided in two classes: one
which demands low cell loss probability (LL cells)
and another with a small cell delay variation requi­
rement (LD cells). In [4] it is shown how this par­
titioning of the traffic stream in two classes with
complementary performance requirements can be
exploited for getting lower cell loss probability for
LL cells and smaller cell delay variations for LD
cells, for an ATM buffer with a single outlet. This
is done by giving storage priority to LL cells and
retrieval priority to LD cells. For the case of a
switching element with only one outlet (in fact a
multiplexer) it was shown that the set of optimal
policies consists of Q LDOLL (low delay or low loss)
threshold policies, which are robust in performance
and simple to implement.

This paper explores the possibilities of expanding
the ideas of a single server LDOLL queue to the
multiple outlet case where the outlets are sharing
buffer space. The multiple outlet LDOLL queue
can be modeled as a multidimensional discrete time
Markov chain. The state space is growing very fast
with the increase of Q (buffer size) and particulary
with the increase of M (number of outlets), namely

number of states = ( Q~M ) .

Therefore we are going to look at the rather simple
case (Q = 4, M = 2) which is still complex enough
Lo have all interesting properties of a multidimen­
sional LDOLL queue. This queue has four classes
of customers because there are two types of cells
(LL & LD) and two outlets (1 & 2).

1

In order to define a Markov model of the multidi­
mensional LDOLL queue we have to describe three
things:

• Arrival process

• Storage policy

• Retrieval policy

The LDOLL queue operates at CELL level. Assu­
ming that the traffic streams at BURST level are
mixed so well that the cell arrival at CELL level
doesn't depend on the previous arrivals, the arrival
process can be modeled as a Bernoulli process.

With a single outlet case the storage polic.y is ob­
vious, LL cells should always have storage priority
over LD cells. Newly arrived LL cells are also al­
lowed to replace the LD cells in the buffer. In the
multiple outlet case it is not so obvious what should
be done. For instance can a LLI cell replace a LD2
cell or maya LLI cell be replaced with a LL2 cell
etc. To answer all this dilemmas we are looking for
a storage policy which should be:

• optimal

• general

• order independent

Optimal means that the storage policy should result
in lowest possible loss probability for LL cells and
smallest average cell delay for LD cells. General
means that the policy should be a generalization of
the single outlet case and at the same time valid for
more complex cases (M > 2). The last requirement
insures that the state of the queue is independent
of the order in which the various types of cells, ar­
riving in a single time slot, are stored. The storage
policy which satisfies all this requirements can be
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for all possible values of the threshold. We call this
type 'myopic threshold', because of the property of
making decisions based upon the number of only
one type of cells. That means the decision of the
server 1 depends only on the number of LL1 cells
in the buffer. The myopic threshold policies are in
fact a straight-forward generalization of the optimal
threshold policies for the single server case.

The myopic threshold policies are very attractive
from an implementation and a generalization point
of view. Because of their simplicity they can ope­
rate at very high rates.

It is left for further research to explore the behavior
of the threshold policies in larger queues (Q > 4). It
will be particulary interesting to see the behavior of
the myopic threshold policies in queues with more
servers (M > 2).

described as follows: It gives storage priority to LL
cells over LD cells and it tries to keep the balance
between the total number of cells for outlet 1 and
for outlet 2. Keeping the balance means that, say,
a LL1 cell will overwrite a LL2 cell only if the total
number of cells for outlet 1 is less than the total
number of cells for outlet 2. The same principle
can favor LL1 cells over LL2 cells, LD1 over LD2
or LD2 over LD1. A direct consequence of this stor­
age policy is that Q (the size of the buffer) has to
be a multiple of M (number of outlets).

As a result of the optimization we ended up with
a set of 6 optimal policies. We compared the per­
formance of these policies with three different types
of threshold policies. The results are presented in
the delay-loss plane, which represents the multi­
objective space (see figure 1). A policy has an opti­
mal position in this space if no other policy can have
a lower mean delay for LD cells (futher west) and a
lower loss probability for LL cells (further south).
A few important conclusions can be drawn from it.
First it can be seen from the objective space that
the threshold policies are very close in performance
to the optimal ones. Second, there is one type of
threshold policies which yields an optimal policy

In order to find an optimal retrieval policy we want
to optimize over a set of retrieval policies which is
as large as possible. Therefore we allow the general
retrieval policy to be time, history and state de­
pendent. To find the optimal one from this large
set we used Markov decision theory. It is a versa­
tile and powerful tool to analyze sequential decision
processes in a Markov chain. It offers procedures
that minimize different object functions. The ob­
ject function that we have chosen is the Expected
average cost per unit of time criterion. In Markov
decision theory it is proved that the policy which [1]
minimizes the expected average cost has to be a
deterministic policy. Under any deterministic po-
licy the multidimensional LDOLL queue is irredu­
cible and finite and the object function reduces to a
simple linear combination of the state probabilities.
We want to find a set of policies which minimize the
expected LD cell delay and probability of LL cell
loss. To do that we expressed the object function as
a linear combination of those two objectives. That
can be accomplished with a properly chosen cost
function. The set of deterministic policies is still
very large (of order 230). To further reduce this as­
tronomically large set we used the value iteration
algorithm which is very suitable for problems with
large state spaces.
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Queueing analysis of an ATM switch with correlated routing.

by Herwig BRUNEEL and Sabine V./ITTEVRONGEL

Laboratory for Communications Engineering

University of Ghent

Si nt-Pietersnieuwstra.at 41

B-9000 Gent, Belgium.

Abstract.

In this paper we consider an ATM switching element with output queueing.

One separate infinite-<:apacity output buffer is used for each possible destination

(output). The cell arrival processes on the inlets of the switching element are of a

bursty nature. Specifica.lly, geometrically distributed on/off-periods are assumed to

describe this burstiness. Cells are routed from the inputs to the outputs of the

switching element in a uniform but correla.ted ma.nner, i.e., all cells belonging to the

same on-period are routed to the same destination, but all destina.tions are

equiprobable.

The queueing performance of the switch is analyzed here by a combination of

analytic techniques and a.pproximations. Close analytic upper bounds are obtained

for such measures as the means and the tail distributions of the buffer contents and

the cell delay in a tagged output buffer. The formulas are easy to evaluate and the

results are useful in practice, for instance, to calculate the cell loss ratio or the delay

jitter in an output queue. The influence of the degree of burstiness in the cell arrival

processes is investiga.ted. Also. the results are compared with the case of

uncorrelated routing.

The fi7'st author wishes to thank the Belgian National Fund for Scientific Research

(N.F. W.O) /07' support o/this 7'esearch.
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1. Introduction.

Although discrete-time queueing analysis has been applied (occasionally)

since over twenty years in the performance evaluation of various types of slotted

communication systems (see e.g. [1-7]), the conception of ATM-based multiservice

networks seems to have caused an increased interest in discrete-time models since

the end of the 1980's. In particular, discrete-time approaches have been adopted on

various occasions for the queueing analysis of (ATM) statistical multiplexers and

(ATM) switching elements. In both these a.pplications, a finite number of random

traffic sources deliver data units ("cells") to a common buffer, from which cells are

transmitted at the rate of one per slot as long as the buffer is nonempty. In case of a

multiplexer, all cells have the same (common) destination and the cell sources are

directly connected to the common buffer via the inlets of the multiplexer. In case of

switching elements, however, a, routing mechanism (between the sources and various

destinations) determines the actual arrival process of cells in the buffer

(corresponding to one of many destinations). A queueing model for a multiplexer

thus essentially implies a statistical description of the traffic sources that generate

the cells to be transmitted. Studying the queueing performance of a switching

element, however, also requires an (additional) statistical description of the applied

routing mechanism, and is therefore, in general, more complicated.

Performance studies of multiplexers and switches can be categorized

according to the nature of the sources, Le., the cell arrival processes on the inlets,

and, in the case of switching elements, according to the nature of the routing

mechanism. The simplest models assume uncorrelated arrival streams on the inlets;

examples include [1, 3, 4, 8] for multiplexers and [9-15] for switching elements (with

independent routing mechanism). However, in view of the rather complicated traffic

patterns which may occur in multiservice networks, several researchers have also

concerned themselves with more general, Le., "nonindependent" or "bursty" arrival

models, during the last several years. Although other types of characterizations have

been used as well, source models of the on/off-type have been particularly popular,

both in the continuous-time (see e.g. [16]) and the discrete-time domain [6, 17-24].

Concentrating on the discrete-time studies, we note that [6, 17-21] deal with

multiplexers, whereas [22-24] have to do with switching elements. In [6, 17-20] both

the on-periods and the off-periods of the traffic sources are modeled as

geometrically distributed random variables. A somewhat deviating source model is

considered in [21]' where the on-periods are modeled as geometrically distributed
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multiples of a given fixed number of slots. The same source models are also found in

switching element analyses : geometric on/off-periods in [22-23] and geometric

multiples of a fixed interval for the on-periods in [24].

As to the statistical description of the routing process, most studies where the

arrival processes on the inlets of the switch are modeled as uncorrelated , such as

[9-15], have also assumed uncorrelated routing mechanisms (no correlation between

the destinations of consecutive cell arrivals on any given inlet). Among the studies

with on/off-type input processes, independent uniform routing of cells was assumed

in [22], whereas in [23-24] various types of correlation in the routing process were

also considered. However, to the best of the authors' knowledge, a full queueing

analysis has never been reported for sources with geometric on/off-periods in case of

"fully correlated routing", i.e., in case that all the cells arriving during the same

on-period are destined for the same output, a situation which is rather likely to

occur in practice. The purpose of the present paper is exactly to provide this kind of

analysis. In order to do so, we have adapted an analytic method, developed in [24],

to tackle the problem, which is basically a combination of a generating-functions

approach with bounding (approximation) techniques. As a result, approximate

analytic formulas are obtained for various quantities of interest. Specifically, the

analysis yields close upper bounds for such measures as the means and the tail

probabilities of the buffer contents and the cell delay in a tagged output queue of the

switching element.

The outline of the paper is as follows. In section 2, we describe the switching

element under study and state the main elements of the mathematical model. In

section 3, we establish a fundamental functional equation in terms of a trivariate

generating function which characterizes the queueing behavior of the tagged output

buffer. Section 4 concentra.tes on the steady-state cell arrival process in the tagged

output buffer and introduces bounds for some remaining unknowns of the analysis.

These approximations a.re then used in sections 5 and 6 to derive dose upper bounds

for the mean and the tail probabilities of the buffer occupancy. In section i,

corresponding bounds a.re derived for the cell delay. Section 8 is concerned with

verifying the accuracy of the analytic approximations. Finally, in section 9, we

present a number of numerical examples and investigate the influence of the

burstiness of the sources and the correlation in the routing process on the

performance of the switch.
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2. Mathematical model.

In this paper we consider a symmetric switching element for ATM cells, with

N inlets and N outlets. Cells enter the switch via one of the inlets and are then

routed to one of the outlets (according to their destination address) where they are

temporarily buffered in a designated output queue (output buffer) to await the

transmission of earlier cell arrivals with the same destination. Synchronous

transmission is used on both the input links and the output links of the switch, i.e.,

time is divided into fixed-length slots and at most one ATM cell is transmitted

during each slot on any of these links. Note that due to the slotted transmission

mode on the outlets of the switch, a cell can never leave the output buffer before the

end of the slot right after its arrival slot.

We assume that cell arrivals on the inlets of the switching element are

generated by N independent sources with identical statistical characteristics. The

sources are of a bursty nature, which will be described by means of an on/off-type of

model. Specifically, we assume that each source stochastically alternates between an

active state ("on") and a passive state ("off"). When active, a source generates

exactly one ATM cell per slot; when passive, a source does not generate any ATM

cells at all. The lengths of the active and passive periods of a source are modeled

here as independent, geometrically distributed random variables, with parameters a

and f3 respectively, i.e.,

Prob[active period = n slots] = (I_a)an- I , n ~ I ;

Prob[passive period = n slots] = (1-f3)f-1 , n ~ I .

This implies that the sources are correlated in a first-order Markovian way : the

probability that. anygive11 so~rcei~~ctiv;.~r.tassive in any given slot is fully

determined by the state of ihi$s()U~ceintneprevious slot. Specifically, if p(YIX)

denotes the probability that a source is currently in state Y, given that it was in

state X in the preceding slot, we have

p(active Iactive) = a;

p(passivelactive) = 1-f3;

p(passive Iactive) = I-a;

p(passive Ipassive) = f3 .

Note that the classical Bernoulli arrival model is obtained here as a special case, i.e.,

for a + f3 = 1.
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The average load of one source is defined as the fraction of time (slots) this

source spends in the active state, and is thus given by

E [act ive per iod]
p= =

E[active period] + E[passive period]

1
I-a

1 + 1
I-a 1-/3

where E[...] denotes the expected value of the expression between square brackets.

This implies that, in general, the mean lengths of active and passive periods can be

expressed as

E[active period] = 1 K
I-a = 1 P

and

E[passive period] = 1 K
1=/1 = - ,p

for some value of the real quantity K. It is clear that the statistical properties of a

source can be fully characterized by the parameters p and K (instead of a and 13) :

the load p is a measure for the ratio of the active and passive periods, whereas the

constant K (in the sequel referred to as the "burstiness factor") is representative for

the absolute lengths of these periods. High values of K are indicative of a high degree

of correlation in the cell arrival process. A classical (uncorrelated) Bernoulli arrival

process (with load p) corresponds to K=1.

As mentioned before, we assume in this paper that the destination addresses

of consecutive cell arrivals on a given inlet are not independent. Specifically, we

assume that all the ATM cells generated by a given source during the same active

period belong together and have exactly the same destination. Cells generated

during different active periods (of a given source), however, are routed ent.irely

independently. In addition, all the destination addresses are equiprobable (in the

long run). Stated otherwise, we are considering in this paper uniform and

independent routing of bursts (Le., active periods) rather than (individual) cells.

We observe that the (eventual) cell arrival process in a selected ("tagged")

output queue is determined by the interaction between source characteristics and

routing mechanism. Specifically, in each slot, each of the inlets of the switching
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element, from the point of view of the tagged output queue, may be either "active"

(if it delivers a cell to the tagged output queue) or "blocked" (if it does not). An

inlet is active (state A) if it receives a cell from the corresponding source and this

cell is routed to the tagged output. An inlet may be blocked (B) for several reasons:

either it does not receive any cells from the associated source (state Bl), or it does

receive a cell from the source, but this cell is not routed to the tagged output (state

B2). We therefore conclude that, from the point of view of the tagged output queue,

each inlet can be characterized by a three-state Markov chain with states A, Bl and

B2, and transition probabilities as indicated in Fig. 1.

1- a

(1-~)(N-1)

N
~

N

~

a~ Q
\
' \ 1- a

.~-- ........
/' "r '

A) 'B 1

Fig. 1 Markov chain model of an inlet.

3. Fundamental relationships and functional equation.

Let us define the random variables ek and vk as the number of cell arrivals in

the tagged output queue and the non-tagged output queues reSPectively, i.e., the

number of inlets in state A and B2 respectively, during slot k. Then, in view of Fig.

1, ek and vk can be derived from ek- 1 and vk- 1 as follows:

N-ek_Cvk_l

+ L di ,
i=l

(1)

and



N-ek_1- vk_l

+ L fi
i=l

i

(2)

Here the ci's and the c\ 's are Li.d. random variables with probability generating

function (pgf)

t:. C. c'.
C(z) = E[z 1] = E[z 1] = 1 - a + az ,

whereas the pairs (di'fi) are Li.d. with joint pgf

(3)

(4)

Moreover, the c.'s and the c'.'s and the pairs (d.,f.) are mutually independent
1 1 1 1

(because they refer to different inlets ofthe switching element).

Let sk be the random variable representing the number of cells stored in the

tagged output queue at the beginning of slot k, i.e., just after slot (k-l). Then the

evolution of the buffer occupancy is described by the following equation,

(5)

where (.)+ denotes max(O,.). Equations (1), (2) and (5) imply that the set

{(ek- 1, vk_ 1' sk)} is a Markov chain. Let us define the three-dimensional joint pgf

of (ek- 1, vk- 1 ' sk) as

From (5) it then follows that

+
ek vk sk+ 1 [ek vk (sk-1) ]

P k+1(x,y,z) = E[x y z ] = E (xz) y z

Next, using (1) and (2) a.nd avera.ging over the distributions of the cils, the c'i's and

the (d.,f.)'s yields
1 I
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[
e v ( )+]N C xz k-l C k-l sk-1

Pk+1(x,y,z) = [Q(xz,y)] E [~] [~] z ,

where the expectation is over the joint distribution of (ek- 1, vk- 1' sk). As sk=O

implies that ek- 1=0, it follows that

Pk+1(x,y,z) = [Q(xz,y)]N {~pdQr~~~~J' QrWy), z]

N .

+ [l-~] Probl'k=O] ~prOb[Vk_l=j I sk=O) [Qr~i~y)r]

We now assume that the average number of cell arrivals in the tagged output

queue is strictly less than 1, so that the queueing system can reach a steady state. In

this case

1i m Pk+ 1(x,y,z) = 1im Pk(x,y,z) = P(x,y,z) ,
k-lOO k-loo

where P(x,y,z) is the steady-state joint pgf. Therefore, P(x,y,z) must satisfy the

following functional equation :

P(x,y,z) = [Q(xz,y)]N {} P [Q?I~~) ,Qr~i~y) , z]

+ [l-}] Po U[QrWy)]] , (6)

where PO is the steady-state probability of an empty buffer. The U-function is

defined as

(7)

Unfortunately, we are not able to derive from (6) an explicit expression for

P(x,y,z) or not even for 5(z) = P(l,l,z), which is the steady-state pgf of the buffer

contents. In order to get more information about the behavior of the tagged output

queue, we now consider only those values of x,y and z for which the arguments of the
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P-function on both sides of (6) are equal to each other, i.e., x = Q?~~~;') and

y = Q?~~~Y) . Using (3) and (4) it is easy to see that this is equivalent to

(8)(l-a)y
x = 1 - a + ay(l-z)

and

y = 1 - a + ay

13 + Y [(N-l)y + xz]
(9)

From (8) and (9), x and y can be solved in terms of z. It is easily verified that for a

given value of z, y satisfies a third-order equation. Hence, there are three sets of

solutions. Here we only select a set of solutions which has the additional property

that x=y=l for z=l, which is denoted by x(z) and ~(z). Choosing x=x(z) and

y=~(z) in (6) yields a linear equation for the function P(x(z),~(z),z), which has the

following solution:

P(x(z),~(z),z) =
(z-l) PO 'Ps(z) G(z)

z - G(z) (10)

where

N
G(z) £ [Q(X(z)z,~(z))]N = [13 +Y [(N-1)~(z) + x(z)z]] (11 )

and

'Ps(z) £ U(~(z)) . (12 )

From these definitions, we have G(l)=l and 'Ps(1)=1. The unknown parameter Po
can be determined from the normalization equation P(x(z),~(z),z)Iz=l = 1. By

using de I'Hospital's rule, we find Po = 1 - G'(l). However, in equation (10), 'Ps(z)

is unknown. Nevertheless, it is possible to derive upper bounds for the mean and the

tail distribution of the buffer occupancy, as we will describe in the following.
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4. Unconditional and conditional arrival process in the steady state.

Let s denote the number of cells stored in the tagged output queue just after a

slot in the steady state, while e and v represent the number of arriving cells in the

tagged output queue or non-tagged output queues respectively, during that slot.

The two-dimensional joint pgf of the steady-state random variables e and v is

defined as N(x,y) ~ E[xe yV] . As e and v can be considered as the (steady-state)

numbers of inlets (of the switching element) in state A or B2 respectively, N(x,y)

can be expressed as

N(x,y) = [ p(B1) + peA) x + p(B2) Y ] N ,

where p(A), p(Bl) and p(B2) denote the steady-state probabilities of finding an

inlet in state A, B1 or B2 respectively. These probabilities can easily be found by

solving the balance equations for the Markov chain in Fig. 1. As a result we obtain

N
N(x,y) = [1- P +*x+(NN1)Py] , (13)

which is also intuitively clear. Equation (13) describes the arrival process in the

steady state. The marginal pgf E(x) of e can be obtained by setting y=l in (13). The

marginal pgf V(y) of y can be derived by setting x=l in (13).

Next, we consider the unknown conditional probability mass function

Prob[v=j Is=O], appearing in (7). Since s=O also implies that e=O, it is reasonable to

think that the difference between the arrival processes to the non-tagged output

queues observed when s=O or when e=O respectively, is very small, i.e.,

Prob[v=j Is=O] ~ Prob[v=j Ie=O] . (14)

Furthermore, as s=O implies that few cells were sent to the tagged output queue

during several previous slots, due to the correlated routing, we have

Prob[v=j Is=O] > Prob[v=j Ie=O], for large j .

Using equation (14) in (7), with equations (12) and (13), then yields

(15 )
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N
A ~ j __ NiO,~(z))

'PS(Z) ~ 'Pe(Z) - ,l..J Prob[v=j\e=O] I~(z)] I'l'(O,l)

j=O

(16)

On the other hand, it is clear that, under the condition that s=O, for large j, the

probability that j cells are sent to the non-tagged output queues is larger than in

the unconditional case. That is,

Prob[v=j Is=O] > Prob[v=j], for large j .

Substituting Prob[v=j Is=O] in (7) by Prob[v=j], we obtain from (12)

N

'Ps(z) ~ cp(z) A LProb[v=j] [~(z)]j = N(I,~(z))
j=O

= [1 - (NN1)p + (NN1)p ~(z)] N .

5. Upper bounds of the mean buffer occupancy in the steady state.

(17)

(18)

As mentioned before, the pgf S(z) of s can be expressed as S(z) = P(l,l,z). In

order to obtain the mean buffer occupancy S, we evaluate the first derivative of (10)

with respect to z at z=l. This leads to

where

dP I -, I G"(l )az z=1 - CPs (1) + G (1) + 2[1 - G'(I)J , (19)
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Since X(I) = ~(1) = 1, we have ~IZ=l = S'(I) = s ,~IZ=1 = E'(l) en *lz=1 =
V'(I) . So equa.tion (19) yields

S = "'s'(l) + G'(I) + 2[?"£161(1)J - E'(I) X'(I) - V'(I) {'(I) . (20)

Here G'(I)and G"(I) can be expressed in terms of X'(I), ~'(1), X"(l) and ~"(1) by

using (11), whereas these derivatives of X(z) and ~(z) can be -derived from equations

(8) and (9). We note in particular that G'(l) = p, so that PO = I-p, which is

expected. Hence, the only unknown term left in (20) is "'s'(I), where 'Ps(z) is defined

in (12). Although we are not able to obtain '" (z), two upper bounds of s can bes
derived as follows.

N
From the definition of the V-function in (7), a(dVI -1 = ~ j Prob[v=j Is=O]

z- . 0J=
is the average number of cell arrivals during a slot to the non-tagged output queues

when s=O. The inequality in (15) shows that ~I z=l is larger than
N
.~ j Prob[v=j le=O] . Since", (z) = U(~(z)) and ~'(1) = - 1':'£1'*< 0, we have
J=O s
"'s'(l) < "'e'(l). Using this inequality in (20) leads to the following upper bound for

the mean buffer occupancy :

2s< s £ p + ili:UP~ [1 + 2 K+p-1 _ ~pK]
u(1) mn=PT I-p-p (21 )

Next, from (17), ~I z=l is also larger than V'(l), the mean value of v. Since

~'(1) < 0, this implies that", '(1) < ",'(1). Based on this inequality, a second uppers
bound of scan be obtained, i.e.,

.)

s< s ~ p +~ [1 + 2 K+p-l]
u(2) mn=PT 1-p

Comparing (21) with (22), we see that SU(2) is always larger than sU(l)'

(22)
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6. Upper-bound tail distribution of the buffer occupancy.

It has been observed that, for a wide range of discrete-time queueing systems,

the tail distribution of the buffer occupancy has a geometric form, i.e., for some

threshold T,

Prob[s=n] ~ B "(n , n> T. (23)

Numerical results have revealed that this is also true for the queueing system under

study. In this section we will present an analytical approach to obtain the geometric

decay rate "( and upper bounds for the coefficient B. In this way, we can derive an

upper-bound tail distribution of the queue length.

The geometric decay rate 1.

From the inversion formula for z-transforms it follows that Prob[s=n] can be

expressed as a weighted sum of negative powers of the poles of S(z). Since the

modulus of all these poles is larger than one, it is obvious that for large n, Prob[s=n]

is dominated by the contribution of the pole with the smallest modulus. Let us

denote this dominating pole by zOo To ensure that the tail distribution is

nonnegative anywhere, zo must necessarily be real and positive. Furthermore, we

assume that zo has multiplicity one. The obtained results prove that this assumption

is correct. Therefore, with respect to the asymptotic behavior of the buffer

occupancy, S(z) can be approximated as

S(z) I\i 0
z-z 'o

(24)

where 0 is the residue of S(z) in the point z=zO. Taking the inverse z-transform of

(24) thus gives rise to the following asymptotic result:

Prob[s=n] ~ _ ~ [L] n ,
zo zo

Comparing (25) to (23), we have

n > T. (25)
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1
"'1== -

Zo

and

B=
()

Zo

(26)

(27)

As in [21, 22, 24], it can be argued tha.t Zo is also the pole with the smallest modulus

of P(X(z),~(z),z). Hence, in view of (10) and (11), Zo is a real root of

(28)

and can be obtained numerically by using, for instance, the Newton-Raphson

algorithm, where in each step x(z) and ~(z) are calculated from (8) and (9).

Selecting the correct solution of (8) and (9) is one of the problems here. It can be

solved on the basis of the observation (not proved here) that 0 < ~(z) < 1 for all real

z > 1. Finally, we note from equations (8), (9) and (28) that the unknown

conditional probability mass function Prob[v=j Is=O] has no influence on zO' which

means that "'I can be calculated exactly.

Upper bounds for the coefficient B of the geometric form.

When the number of cells stored in the tagged output queue just after a given

slot is sufficiently large (» N), we may think that the number of cell arrivals

during this slot (which is not larger than N) has nearly no impact on the total buffer

occupancy. That is, if n is sufficiently large (n > T), we may assume that the

conditional probabilities Prob[e=i, v=j Is=n) are nearly independent of n, and

approach to some limiting values for n -+ 00, denoted by w(i,j), with corresponding

joint pgf n(x,y), i.e.,

Prob[e=i, v=jls=n) N w(i,j) , n > T. (29)

Now, let i'l"(i,j Ik,f) denote the one-step transition probability that there are i

cell arrivals in the tagged output queue and j cell arrivals in the non-tagged output

queues in the current slot, given tha.t there were k and f cell arrivals respectively in
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the previous slot. Then, we have (for large n)

Prob[e=i, v=j Is=n] = ~[e=i, v=j, s=n1
P rob[s=n]

N N-k

L L 1l"(i,jlk,f) Prob[e=k, v=/, s=n+l-i]
k=O (=0=

Prob[s=n]

Taking the limit for n -+ 00, and using equations (23), (26) and (29), the above

equation leads to

N N-k

Zo w(i,j) = zOi L L 1l"(i,j Ik,e) w(k,e)

k==O £==0
o~ i ~ N , 0 ~ j ~ N-i .

From (30), the following equation for the pgf D(x,y) can then be derived:

(30)

(31)

As can be expected intuitively, it is possible to show that the solution D(x,y) of (31)

has the same form of expression as N(x,y). Specifically, D(x,y) can be expressed as

(32)

where O'~ and 0'; are the (conditional) probabilities of finding an inlet in state A or

B2 respectively, when the number of cells in the tagged output queue is extremely

large. Using equations (31) and (32), O'~ and 0'; can be derived explicitly as

liN* (1-,8) Zo (zO . - a)
0'1 = ---:;-1j7'lt"Nr-----=------=-----..1-rj'<"l"N------------,l'jN'IIT

N(z + 1 (.1)( ) + (l-(.I)(zO-l)zOo - a - IJ Zo - azO IJ

and
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So the joint pgf n(x,y) can be obtained analytically.

Using equation (29), the joint pgf P(x,y,z) can now be approximately

expressed as

N N-i T

P(xS,z) rv L, LLProb[e=i, v=j, s=n] xi yj zn

i=O j=O n=i

T

+ n(x,y) [S(Z) - LProb[s=n] zn]

n=O

(33)

For x= x(z) and y=~(z), we know that Zo is a pole of both the P-function and S(z).

Since T is finite, multiplying by (z-zO) on both sides of equation (33) and taking the

z ~ Zo limit, yields

(34)

where 0 is the residue of S(z) at z=zO' as defined in (24). The quantity 7J can be

obtained from equation (10) with de I'Hospital's rule as

Finally, from (27), (34) and (35), we find that the coefficient B is given by :

(36)

In equation (36), the quantity e,?s(zO) is unknown. However, as mentioned

before, it can be shown that 0 < ~(z) < 1 for all real z > 1. In particular, this is also
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true for z=zO. Therefore, from the inequalities in (15) and (li), and the definitions

of cpe(z) and cp(z) in (16) and (18), it follows that cps(zO) is upper bounded by both

cpe(zO) and cp(zO)· Using these two values as approximations for cps(zO) in (36)

therefore yields two upper bounds for the coefficient B, denoted as B
U

(l) and B
U

(2)

(corresponding to cpe(zO) and cp(zO) respectively).

7. The cell delay.

We define the delay of a cell as the number of slots between the end of its

arrival slot and the end of the slot during which the cell is transmitted and thus

leaves the output queue. In [26], the following relationship was established between

the pgf of the system contents S(z) and the pgf of the cell delay D(z), for

discrete-time single-server queueing systems with general, possibly correlated,

arrivals:

D(z) = S(z) - S(O) =
1 - S(O)

S(z) - PO

1 - PO
(37)

Using this equation, the moments of the cell delay can be derived in terms of the

moments of the system contents. For instance, for the mean cell delay d, we have

d = D'(l) = i'(l)
- Po

s
p

(38)

in agreement with Little's theorem. Using the upper bounds obtained for S, we then

get corresponding upper bounds for d. Also, with (37), the tail distribution of the

cell delay can be found from the tail distribution of the system contents. We have:

[ ] 0 [1]nIB nProb d=n ~ - - - - = - "V- zo zo p pi' n> T. (39)

That is, the tail distribution of the delay also has a geometric form, with the same

decay rate as the tail distribution of the system contents.
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8. Numerical versus analytical results.

In order to check the accuracy of the analytical results derived in the previous

sections, we have also analyzed the tagged output queue under the assumption of a

finite, but "large" waiting room, using the same type of three-dimensional state

description as in the analytical approach. In this case, however, a numerical solution

of the resulting balance equations, rather than a solution in terms of generating

functions, was performed. As the dimension of the set of balance equations grows

rapidly with the number of inlets/outlets N of the switch and the (finite) size of the

tagged output queue, this numerical approach was only practica.ble for small switch

sizes, low to intermedia.te traffic loads, and relatively small values for the burstiness

factor. (These restrictions do not exist for the analytical method.) Some results are

presented below for N=4 and various values of p and K.

5'(1)

- numerical- upper bound 2

~
< :i"
,/
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/
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!
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i
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I

I31
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I
I

2j

I
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p
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0+----------,---------
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Fig. 2 Mean buffer contents versus load p upper bounds and numerical

results, for N=4 and K=I, 2.
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In Fig. 2, we have plotted the analytical upper bounds 8u(l) and 8u(2) for the

mean buffer contents, as well as numerical results, versus the load p, for K=l and

K=2. As one can see, 8u(l) is very close to the numerical results, which could be

expected, based on equation (14). It is also clear that the difference between 8u(2)

and the numerical results becomes larger as p and K increase, whereas 8u(1) is also

accurate for large p and K. Similar conclusions can be drawn for the mean cell delay

<I, as is illustrated in Fig. 3.

0'(1)
6,--------------------------~

-..... upper bound 1 - upper bound 2 - numerical

5 /
.I

4

3

2

0.3 0.4 0.5
P

-;

-/'

0.6

Fig. 3 Mean cell delay versus load p ; upper bounds and numerical results, for

N=4 and K=l, 2.

In Fig. 4, we compare the upper-bound tail distribution of the queue length

given by BU(l) 1n with numerical results, for K=2 and various values of the loa.d p.

The figure illustrates that the approximate method described above gives a very

tight upper bound for the tail of the distribution. Moreover, the numerical results

confirm that the analytical approach to obtain Zo and 1 is correct. In Table 1, we

compare the derived upper bounds for the coefficient B, with numerical results. As

expected, BU(l) is smaller than BU(2)' Furthermore, BU(l) is very close to the

numerical results.
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Ta.ble 1 Coefficient B of the geometric form: upper bounds and numerical
results, for N=4.

p 1< BU(l) BU(2) numerical

0.2 1 0.36950 0.37472 0.36884
0.4 1 0.24030 0.24991 0.23841
0.6 1 0.13393 0.14162 0.13246
0.4 2 0.05076 0.05232 0.05052
0.6 2 0.04853 0.05093 0.04814

Probls-nl
1.0E+00 "..-----------------------

1.0E-01

1.0E-02
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1.0E-04

1.0E-05
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..... upper bound 1 - numerical
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n
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1.0E-09 +-------.---,---~:,_--______r---,___---=:.....-­

o

Fig. 4 Prob[s=n) versus n : upper bound 1 and numerical results, for N=4,

K=2 and p=0.2, 0.4, 0.6 .

In our analytical approach, discussed in the previous sections, we have

assumed an unlimited storage capacity for the (tagged) output queue. In practice,

however, buffers are always of finite size, and a fraction of the arriving cells will be

lost. It is important to be able to predict this so-called cell loss ratio (CLR) for a

switch with a given configuration, and a prescribed buffer size S for the output

queues. One way to deal with this problem is to solve the balance equations for the

system by numerical means, and, from this, calculate the exact CLR-values.
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However, as mentioned before, this becomes extremely time-consuming (and error

prone) for high values of Nand S. In order to overcome this difficulty, we have

devised a heuristic approach to predict the cell loss ratio for a finite buffer from the

tail distribution of the buffer contents in an unlimited-eapacity queue. Specifically,

our heuristic formula is based on the observation that the overflow probability in a

continuous-time M/M/l/S queueing system, for high values of S, is nearly equal to

the product of the probability of having more than S customers in an M/M/l

system, and a "correction factor" equal to I-p , where p is the load. Using the same
p

formula in the current discrete-time context, we thus approximate the cell loss ratio

for an output buffer of size S as follows:

CLR:::! Prob[s > S] I-p- P ,

where, in view of (23),

Prob[s> S] = JL ,S+11-,

(40)

(41)

In Table 2, we compare the actual cell loss ratio (obtained by numerically solving a

set of balance equations) with the heuristic in (40)-(41), for various values of p, K

and S, using either B
U

(I) or B
U

(2) as an upper bound for B in equation (41). The

results in Table 2 show that our heuristic approach leads to estimates of the CLR

which, in general, are somewhat higher than the actual CLR, and, for realistic values

of the load (p=0.8), are even quite close. We therefore believe that this approa.ch

can be very useful in practice for buffer dimensioning purposes.

Table 2 Cell loss ra.tio and Prob[s>S] I-p for N=4.
p

Prob[s>S] I;P

p K S CLR upper bound 1 upper bound 2

0.2 1 8 1.216008E-7 1.587516E-7 1.609946E-7
0.4 1 15 1.248172E-6 1.846438E-6 1.920328E-6
0.6 1 30 2.335455E-5 3.416390E-5 3.612570E-5
0.8 1 20 4.259122E-2 4.614403E-2 4.833701E-2
0.2 2 15 8.780028E-6 1.609i71 E-.5 1.624636E-5
0.4 2 40 4.700978E-7 8.483441E-7 8.744366E-7
0.6 2 30 3.050019E-3 4.7i1488E-3 5.007.526E-3
0.8 2 30 6.405418E-2 6.552858E-2 6.845530E-2
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9. Discussion.

Ha.ving demonstrated in the previous section the validity of the analytic

techniques developed in this paper, we now present some further results, obtained by

applying these techniques in the range of parameters where a numerical approach is

unpractical. Fig. 5 shows the mean buffer occupancy in an output queue versus the

load, for a switch with 16 inlets a.nd outlets, for various values of the burstiness

fa.ctor K of the sources. From the position of the curves in this figure, it is clear that,

for a given value of the mean loa.d p, the burstiness of the sources has a tremendous

impact on the mean number of cells in the output queue. Specifically, we note that

the congestion in an output queue may be seriously underestimated if a Bernoulli

arrival process is used as an approximation for bursty traffic, since Bernoulli arrivals

correspond to K=l, while bursty sources will typically give rise to much higher

values of K. Similar conclusions can be drawn from Fig. 6, where we have plotted

the cumula.tive tail probabilities Prob[s > n] of the output buffer occupancy versus

n, at a given load p=O.6 , for different burstiness factors K.

In Figs. 7 and 8, we compare the correlated routing mechanism investigated

in this paper, to the case of uncorrelated routing, which was studied in [22], for a

switching element with 16 inlets and outlets. Specifically, Fig. 7 shows the mean

output-queue contents versus the load, and Fig. 8 shows the tail probabilities

Prob[s > n] versus n, at a load p=O.8 . Several conclusions can be drawn from Figs.

7 and 8. First, it can be observed that the required buffer space in an output queue

is always much higher in the case of correlated routing than in the case of

uncorrelated routing, regardless of the burstiness factor K of the sources, although

the performance deteriorates more if the sources are more bursty. Second, the

influence of the burstiness factor K on the level of congestion in an output queue is

much more pronounced in case of correlated routing than for uncorrelated routing.

This can be intuitively understood by the observation that independent destination

addresses from cell to cell more or less "destroy" most of the burstiness of the arrival

stream between the inlets of the switching element and the entrance of an output

queue, while a correla.ted routing mechanism in some sense simply passes the

burstiness of the sources to the entrance of the output queues. Third, routing

correlation has a. more substantial impact on the queueing behavior of a switch than

input correlation (i.e., burstiness of the sources), although, in general, we may

conclude that both types of correlation amplify eachother's effect.
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Fig. 5 Upper bound 1 of the mean buffer contents versus load p, for N=16

and K=l, 2, 5, 10, 20, 50, 100.
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Fig. 6 Upper bound 1 of Prob[s>n] versus n, for N=16, p=0.6 and 1\:=1, 2, 5,

10, 100.
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Mean buffer contents versus load p for correlated routing (upper

bound 1) and uncorrelated routing (exact), for N=16 and K=l, 10.

o_.~~~==;:===...=.....=....=:.....:=....:;......=.....=:.~----,---~

0.1

Fig. 7

Prob[s>n]
1.0E+00

1.0E-01

1.0E-02

1.0E-03

1.0E-04

1.0E-05

1.0E-06

K-1 ".
1.0E-07

1.0E-08

correlated routing

uncorrelated routing

200150100
n

50

1.0E - 09 -+-.----..:.....,-~----.__-------,--­

o

Fig. 8 Prob[s>n] versus 11 for correlated routing (upper bound 1) and

uncorrelated routing (exact), for N=16, p=O.8 and K=l, 10.
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10. Conclusions.

In analyzing the performance of an ATM switching element with bursty

sources and correlated routing, we have derived explicit upper bounds for the means

and tail distributions of the system contents of a tagged output queue and the delay

of a cell. These upper bounds were obtained under the assumption of an

infinite-capacity queue, by combining a generating-functions approach with

approximation techniques. Comparison with numerical results shows that the

obtained upper bounds are very tight, and can even be used to predict ceIl Ioss ratios

in finite-capacity buffers. We have also observed that the queueing performance of

the switching element deteriorates as the burstiness of the sources and/or the

amount of correlation in the routing process get higher.
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BELL TELEPHONE TRAFFIC PARAMEYERS AND DESCRIPTORS
ALCATEL

T TRAFFIC PARAMETER: Specification of a particular traffic aspect

- QUALITATIVE i.e. source type (e.g. telephony)
- QUANTITATIVE (e.g. Peak Cell Rate)

REQUIREMENTS:. User/terminal understable for possible
auto-compliance testing

• Participate in CAC schemes for meeting network
performance requirements

• Enforceable by UPC/NPC mechanisms

T ATM TRAFFIC DESCRIPTOR: Generic list of ATM traffic parameters

T SOURCE TRAFFIC DESCRIPTOR: Subset of traffic parameters of a particular
source selected from the ATM traffic
descriptor
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ALC.TEL
BELL TELEPHONE VPC/VCC ATM CELL TRAFFIC SPECIFICATION

T STATISTICAL APPROACH

• Conventional in teletraffic theory
• Ideal for addressing CAC issues
• No real-time compliance testing i.e. UPC/NPC possible

T OPERATIONAL APPROACH

• Focus on real-time conforming/non-conforming cells
• Use of worst-case traffic patterns as input for CAC
• Rule based parameter definition and compliance testing

at physical interfaces (private/public UNI) with

GENERIC CELL RATE ALGORITHM
(GCRA)
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ALCATEL

BELL TELEPHONE PEAK CELL RATE (PCR)

T PCR REFERENCE MODEL
GCRACT,O)

I

GCRACT,t)
I

T PCR DEFINITION (CBR + VBR SOURCES)

• LOCATION: PHY-SAP in an equivalent terminal
representing the VPC/VCC

• BASIC EVENT: Request to send an ATM_PDU in the equivalent terminal
• DEFINITION: The PCR (Rp) of an ATM VPC/VCC =1IT

T: minimum Inter Arrival Time (lAT)
between two basic events
= VPC/VCC peak emission interval

i.e. A RULE BASED DEFINITION USING GCRA (T,'t)
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ALC.ATEL

BELL TELEPHONE

... ORIGIN OF CDV

CELL DELAY VARIATION (COV) TOLERANCE

• Access to slotted transfer medium
• Terminal multiplexing e.g. OAM cell insertion
• Cell multiplexing within Customer Premises Equipment (CPE) before UNI

... CONSEQUENCES OF CDV ON PEAK EMISSION INTERVAL

• Cell dispersion:
• Cell clumping:

... CDV TOLERANCE 't

IAT > T
IAT < T

• Distortion measure for cell clumping effect of a VPC/VCC at
a physical inferface

... GeRA(T,'tl

• Conformance testing of VPC/VCC ATM peak cell rate at UNI
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BELL TELEPHONE

T CELL CLUMPING

IMPACT OF COV

T B Nmax Load
(# conn.) (Erlang)

25 1 60 0.80

50 1 60 0.80

75 2 60 0.80

150 3 42 0.56

225 4 33 0.44

300 5 27 0.36

375 6 22 0.29

• As 't increases ==> minimum spacing between cells decreases
• Maximum number of compliant back-to-back cells

B = 1 + [ -r / (T-1 )l - with

[Xl-: largest integer smaller than X
Tand t expressed in cell time units

• Large t values drastically impact the
allocation of network resources

T CELL DISPERSION
Impact of the CDV tolerance on the link load

efficiency for the example of 2 Mbps CBR
sources (T =75).

• Large dispersion impacts dejittering buffer sizes and end-to-end
delays for circuit emulation services
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BELL TELEPHONE SUSTAINABLE CELL RATE & BURST TOLERANCE

T SCR REFERENCE MODEL

T SCR DEFINITION (VBR SOURCES)

• LOCATION: PHY-SAP in an equivalent terminal
representing the VPC/VCC

• BASIC EVENT: Request to send an ATM_PDU in the equivalent terminal
• DEFINITION: The SCR (Rs) and the burst tolerance 'ts of

an ATM VPC/VCC is defined by the GCRA(Ts''ts)
based on the arrivals of basic events where Ts = 1IRs
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BELL TELEPHONE INTERPRETATION OF SCR AND BURST TOLERANCE

T THE SCR IS NOT THE MEAN RATE OF A STOCHASTIC CELL
GENERATION PROCESS

T GCRA(Ts,-ts) DETERMINES THE MAXIMUM BURST SIZE (MBS) THAT
MAY BE TRANSMITTED AT PEAK CELL RATE (1 IT)

with [Xl -: largest integer smaller than X

MBS
1.,.1.1.1.1.1111111111111111,111,111,11111111111111,11,111111111111.1.1.1.,.'.111111111111111111

••
T

1.1.1.1.1.1.1111111111.1111111111.1111111111.,1,1111111.1111111111.1111111111.111111111111111111

T MAXIMUM NUMBER M OF CELLS WITHlN ANY SLIDING WINDOW
OF DURATION 'ts:

M = MBS + 1
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ALC.ATEL
BELL TELEPHONE

... PURPOSE

CONNECTION TRAFFIC DESCRIPTORS

• Unabiguous specification (explicitly or implicitly) of the
traffic characteristics of an ATM VPC/VCC for conformance testing
at the UNI (private/public)

... DEFINITION

• Source traffic descriptor e.g.

• CDV tolerance 't

PCR [MANDATORY]
SCR and 'ts [OPTIONAU

• GCRA configuration rule i.e. interconnection pattern of cell rate
monitoring algorithms
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BELL TELEPHONE

.. PURPOSE

USER-NETWORK TRAFFIC CONTRACT

• Efficient operation of traffic control functions namely
Usage Parameter Control (UPC) and Connection Admission
Control (CAC)

.. DEFINITION

• Connection traffic descriptor
• Requested Quality of Service (QoS) class
• . Compliant connection definition

(e.g. a certain amount of cells may be non-compliant)
for complinat VPC/VCCs, the requested QoS will be supported
for non-compliant VPC/VCCs, the network need NOT to respect
the negotiated QoS
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ALC"TEL
BELL TELEPHONE QoS CLASS & CELL LOSS PRIORITY (CLP)

T ATM VPC/VCC NEGOTIATES A SINGLE QoS CLASS

T QoSCLASS

• Cell transfer delay (irrespective of CLP)
• Cell delay variation sensitivity (irrespective of CLP)
• Cell loss ratio for CLP=O substream
• Cell loss ratio for CLP=1 substream

T PEAK CELL RATE (PCR) AND CLP

• Parameter for CLP=O substream }. I CDV t I
• Parameter for aggregate CLP=0+1 cell flow sing e 0 erance L

• Parameters for OAM substream (optional TOAM and LOAM)

T SUSTAINABLE CELL RATE (SCR) AND ClP

• Parameters for CLP=O and/or CLP=1 and/or CLP=0+1?
(SeRO, LS0, SCR1, LS1, SCRO+1, 'ts0+1)



BELL TELEPHONE EXHAUSTIVE USER-NETWORK TRAFFIC CONTRACT
ALC .... TEL

SOURCE TRAFFIC
DESCRIPTOR
AT PHY-SAP

• PCRO
• PCRO+1
• PCROAM
• SCRO. 'tS

O

• SCR1. 'ts
1

• SCRO+1. 'ts0+1

• User data CDV tolerance 't

• OAM flow CDV tolerance 't

• GCRA configuration rule

• Cell transfer delay
• Cell delay variation sensitivity
• Cell loss ratio CLP=O
• Cell loss ratio CLP=1

CONNECTION TRAFFIC
DESCRIPTOR AT UNI

REQUESTED
QoSCLASS

USER-NETWORK
TRAFFIC
CONTRACT

• Compliant connection definition
• Experimental traffic parameters

for proprietary use e.g. within
private ATM networks
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ALCATEL

BELL TELEPHONE UPC/NPC OPEN ISSUES

... GCRA =REFERENCE ALGORITHM FOR CHECKING COMPLIANCE OF THE
PCR (SCR) WITH RESPECT TO THE CONTRACTED TOLERANCE
't ('ts) ON A PER CELL BASIS

• UPC/NPC algorithm not (y-et?) standardized
• UPC/NPC transparancy w.r.t. GCRA
• Definition of a compliant connection
• Separate OAM cell flow enforcement
• Cell rate granularity and coding

- T(Ts) versus Rp = 1/T (Rs =1/Ts)
• Upperbounds and granularity of tolerances t ('ts)
• UPC/NPC and CLP

- discard versus tagging options
- update of state variables (CLP=O versus CLP=O+1)
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BELL TELEPHONE CAC OPEN ISSUES (cont.)

T MULTIPLEXING SCHEME/PROCEDURE REQUIREMENTS

• Unambiguous definition of the ClP usage
- QoS indicator <==> Discard Eligibility indicator
(TRAFFIC CONTROL) (CONGESTION CONTROL)

• CDV tolerance limit as a function of PCR value for secure
peak bandwidth allocation

• Statistical multiplexing using SCR and burst tolerance
- network utilization = f( ATM network queue sizes,

linkrates,
peak cell rate (PCR),
CDV tolerance 't,

sustainable cell rate (SCR),
burst tolerance 'ts)

• Need for fast resource management procedures?
• Need for shaping/spacing functions?
• Unambiguous definition and assessment of ATM-Iayer

statistical network performance measures
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BELL TELEPHONE

... PURPOSE:

STUDY CASE

STUDY OF THE THROUGHPUT AND RESPONSIVENESS CHARACTERISTICS OF
A UPC FUNCTION, BASED UPON THE GENERIC CELL RATE ALGORITHM (GCRA),
FOR NON-COMPLIANT ATM CONNECTIONS SUPPORTING CONSTANT BIT RATE
(CBR) SERVICES AS A FUNCTION OF THE CDV TOLERANCE 't

... SCHEMATIC REPRESENTATION:

Single CBR source

T

UPC/NPC......- ...
GCRA(Tc''t)

150 Mb/s

Vout

't=0?
't = 1 ?
't » 1 ?

Provisional definition of compliant CBR source:

T>= Tc :
T< Tc:

COMPLIANT
NON-COMPLIANT O Transfer to

Slotted Medium
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BELL TELEPHONE

... ALGORITHM

GENERIC CELL RATE ALGORITHM

IF (PredictedAT <= ActualAT)
THEN

BEGIN
PredictedAT := ActualAT + Tc ;
ReturnStatus(Go);
END

ELSE
IF (PrdecitedAT > ActualAT + 't)

THEN ReturnStatus(NoGo)
ELSE

BEGIN
PredictedAT := PredictedAT + Tc;
ReturnStatus(Go);
END;

Symposium "TeJetroffic Analysis of ATM Systems' Technische Universiteit Eindhoven/930215/017



BELL TELEPHONE UPC THROUGHPUT CHARACTERISTICS
ALC .... TEL

Ideal upe behaviour Vc = 15Mbit/sec
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ALCATEL
BELL TELEPHONE UPC RESPONSIVENESS CHARACTERISTICS
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BELL TELEPHONE UPC RESPONSIVENESS CHARACTERISTICS (cont.)
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ALC.TEL
BELL TELEPHONE CONCLUSIONS

.. IDEAL UPC INPUT-OUTPUT BEHAVIOUR CAN BE ATTAINED BY CHOOSING A
SUFFICIENTLY HIGH 't VALUE ('t = T ? ) TO ACHIEVE THROUGHPUT FAIRNESS

.. HOWEVER A HIGH CDV TOLERANCE VALUE 't LEADS TO A LARGER REACTION
TIME TO DETECT CONTRACT VIOLATIONS

.. ON THE CONTRARY, SMALL 't VALUES MIGHT LEAD TO A SIGNIFICANT
LOSS OF CELLS WHEN THE CONTRACTED BIT RATE FOR CBR SOURCES IS
MARGINALLY EXCEEDED (THROUGHPUT UNFAIRNESS)

.. IN ABSENCE OF SPACERS IN THE ATM NETWORK, MUCH MORE NETWORK
RESOURCES ARE REQUIRED TO CATER FOR LARGE 't VALUES (CAC HAS TO
BE BASED ON WORST CASE ON-OFF PATTERNS, PASSING TRANSPARANTLY
THE UPC)

MORE IN DEPTH STUDIES ARE REQUIRED TO UNDERSTAND
THE RELATIONSHIPS BETWEEN THE CONNECTION TRAFFIC
DESCRIPTORS AT THE UNI AND THEIR IMPACT ON THE UPC

THROUGHPUT AND RESPONSIVENESS CHARACTERISTICS IN
REALISTIC TRAFFIC CASES.

SympOsium rreletrafflC Analysis of ATM Systems' Technische Universiteit Eindhoven/930215/02 Z.



The Safety Margin in the Leaky Bucket
Policing Function

M.l.G. Dirksen1

Abstract
To guarantee the network performance objectives in ATM networks policing of the individual cell streams is
necessary. Due to the asynchronous multiplexing technique, cell streams may experience a variable delay (jitter)
before they arrive at the policing function. Despite the jitter, cells originatingfrom a compliant source must pass
the policing function. Therefore, the policing function must set its parameters in such way that a safety margin
is provided. This paper presents an analytical approach to dimension the parameters ofthe lea/cy bucket policing
algorithm such that it never discards cells from a cell stream suffering from jitter. In addition it is investigated
how the safety margin is influenced if it is allowed that the policing function discards cells from a cell stream
experiencing an extreme amount ofjiller.

1 Introduction

It has been recognized that in high speed transmission networks traffic control must be based on preventive
congestion control rather than reactive congestion control to guarantee the network performance objectives. In
particular in ATM networks the Connection Acceptance Control (CAC) and the Usage Parameter Control (UPC)
functions take care of a guaranteed network performance [1]. The task of the CAC is to establish whether
sufficient network resources are available to allow a new connection. The CAC only accepts new connections
as long as the network performance objectives are still met. At call set up the user has to declare a number of
parameters (e.g. to characterize the connection and to indicate the required Quality of Service, etc.) upon which
the CAC bases its decision. If the connection is allowed, these parameters are fixed in a traffic contract. Once
a connection is admitted, the UPC, generally known as the policing function, monitors the offered traffic of each
individual connection passing the User Network Interface to the network. The policing function takes action (e.g.
discards cells) if the connection does not comply to the traffic parameters embodied in the traffic contract This
way the Quality of Service of all existing connections can be guaranteed. The CAC should take into account the
worst case traffic passing through the policing function to avoid impairments to other connections.

According to ccnT [1] the Peak Cell Rate is a mandatory traffic parameter which must be declared at call set
up. The peak cell rate determines the maximwn rate at which the source is allowed to submit ATM cells to the
network. However, if several ATM cell streams are multiplexed, cells of one connection may be delayed while
cells of another are sent first at the output of the multiplexer. As a consequence the individual ATM cells may
experience beside a fixed delay (e.g. propagation delay), a variable delay component, known as jitter. This
variable delay is more or less random and depends among others on the traffic mix and the multiplexing
protocol. Due to this Cell Delay Variation (CDV) cells may arrive at the policing function temporary spaced
more closely to each other than transmitted by the source. The policing function momentarily observes a cell
rate higher than the agreed peak cell rate and may decide to discard these cells. However. th~ policing function
should not discard cells in an ATM connection if the source conforms to the traffic contract negotiated at
connection establishment Therefore, the policing function must allow a safety margin between the peak cell rate
and the actual policed cell rate, to accommodate for the effects of the maximum CDV. The larger the safety
margin, the worse the traffic the policing function must allow to the network. Since the CAC must be based on
the worst case traffic that can pass the policing function, it is evident to keep the safety margin as small as
possible. If the CDV is not bounded at a point where the policing function is performed, it is not possible to
design a suitable policing function mechanism. Therefore, CCITI states that the cell delay tolerance should be
declared by the user at call set up to properly dimension the policing function parameters.

'1be author is with PTf Research. Dr. Neher Laboratories; SL Paulusstraat 4; P.O. Box 421; 2260 AK Leidschendam; The Netherlands.
E-mail: MJ.G.DiIXsen@research.ptt.n1



This paper presents for a specific policing algorithm. the leaky bucket. how to detennine the size of the policing
parameters to ensure that a cell slream suffering from jitter is policed correctly. In this paper it is assumed that
the source transmits at a constant peak cell rare (CBR source) and the declared peak cell rate can be expressed
as a fraction x/y of the link rate (both x and y are integers). Based on two traffic parameters. the peak cell rate
and the maximum CDV. the required values of the policing parameters are derived such that cells from a
compliant source are never discarded. However. it may happen that the probability that this worst case CDV
occurs is extremely small. much smaller than the cell loss probability that due to buffer overflow or transmission
errors. In that case the network operator may decide to reduce the safety margin such that the probability the
policing function discards cells. suffering from extreme jitter. is in the same order of magnitude as the probability
of e.g. buffer overflow. If the safety margin is reduced. less network resources (like link and buffer capacity)
have to be reserved and the CAC may allow more connections resulting in a better network efficiency.

2 The leaky bucket algorithm

In the literature several algorithms for the policing function have been proposed such as the moving window.
the jumping window. the leaky bucket and a number of variants [2.3]. They differ with respect to the reaction
time to parameter violations. the allowed worst case traffic and the implementation complexity. In this paper the
leaky bucket algorithm [4.5.6] is used because of its good performance together with a low implementation cost

The leaky bucket controls the amount of traffic entering the network through three parameters: the splash value
S. the leak value L and the bucket limit Blim' The values of these parameters are detennined and fixed at call set
up and fix the amount of traffic that is able to pass the policing function. In addition to these parameters there
is a variable B,,,,. representing the level in the leaky bucket Each time a cell is passed to the network, the value
of the bucket level B/", is increased with the splash value S. Meanwhile. the bucket level is periodically
decremented with the leak value L. If a cell arrives at the policing function. the bucket level is compared with
the bucket limit If the bucket level is smaller or equal to the bucket limit. the cell is passed to the network and
the bucket level is increased with the splash value S. If upon a cell arrival the bucket level is larger than the
bucket limit. the cell is discarded. The leaky bucket does not queue the cells. either the cell is passed to the
network or the cell is discarded.

The leak to splash ratio LIS controls the allowed sustained cell rate that is passed to the network. The ratio B/;,,/S
detennines the amount of clustering of cells. The required safety margin to cope with jitter can either be obtained
by increasing the leak to splash ratio LIS. thus allowing a higher sustained cell rate. or by increasing B/;,,/S
resulting in admitting a more 'bursty' cell stream to the network.

If the cell inter arrival time does not match an integer multiple of slot times. the bucket limit may have to be
set to a value larger than zero even if the cell stream is not multiplexed with other cell streams. Fig~ I shows

LBIw[\j1 S I

---r---- -- '------ ---
lime

cell stream
transmilled
on slotted link

cell stream
generated
by the source

I
ffifI

I
lliI

,Ell

Figure 1: Even for a constant cell rate source. the bucket limit may be set to a value larger than zero due to
the slotted structure ofATM.
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Figure 2: Worst case situation occurs ifa cell endures a maximum jitter while other cells experience a cell delay
as small as possible.

a cell stream with a cell inter arrival time 3.4 (=17/5). Since the source has to wait until the beginning of a new
slot, the cell inter arrival time on the link alternates between 3 and 4 such that the long term average cell inter
arrival time equals 3.4. If the leak to splash ratio is chosen equal to the peak cell rate LIS = 5/17, it appears that
the bucket limit must be set to BIi../S =4/17. Although not formally proven. empirically it has been found that
for constant cell rates equal to a fraction of xly of the link rate (x and y both integers) the bucket limit becomes

L
B,;", = S

gcd(L's)
S

(1)

where gcd(L,S) means the 'greatest common divisor' of the terms Land S. The formula holds only if LIS =x/y.

3 Dimensioning the leaky bucket parameters

3.1 The worst case cell stream
The worst case situation occurs if a cell encounters a maximum CDY, while the next celis of the same
connection encounter a delay as minimal as possible. Figure 2 shows the worst case situation for a CBR cell
stream with a cell inter arrival time TCIA = 6 and a maximum jitter of I_x = 21. The upper line corresponds to
the cell stream as transmitted by the source starting at a moment T. The lower line corresponds to the cell stream
arriving at the policing function a time T + Tmi. later. Tmi• is the minimal delay for a cell to travel from the
source to the policing function. The cell transmitted at moment T by the source suffers from the maximum jitter,
and thus arrives at moment T + I_x at the policing function. Subsequent celis of the connection arrive at the
policing function experiencing the minimal possible delay. In case TCIA is larger than I_x this means subsequent
celis do not experience any queueing delay. If TCIA is smaller than or equal to I""", then a number of celis arrive
in consecutive slots as in figure 2. In general it appears that in the worst case situation the cell stream arriving
at the policing function consists of a 'bursty' phase and a 'stationary' phase. Figure 3 shows an example of a
worst case cell stream arriving at the policing function with TCIA =16 suffering a maximum jitter I""", =100.

'bursty' phase 'stationary' phase
I I I I '

~.~... ·x·············· ·x·············· ·x·············· ·x····
I
a

Figure 3: 'Bursty' and 'stationary' phase of a worst case cell stream (TCIA = 16, I""", = 100).

During the 'bursty' phase there are a celis in consecutive slots. followed by ~ empty slots. Then. celis arrive
spaced TCIA slots apart. Before these observations can be used to derive the required bucket limit, the parameters
a and ~ have to be expressed in the 'known' parameters TCIA and I""""

Let tl be the number of time slots since T and tz the number of lime slots since T + Tm... Cells are generated by
the source at instances

where t/(o.) denotes the time slot that contains the a lh cell and L...Jrepresents the integer part of the expression.
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A similar equation can be obtained for the cell stream arriving at the policing function. As long as the cell stream
is in the 'bursty' phase. cells arrive at instances

where 12(a) represents the time slot number where cell a arrives at the policing function. As long as 1/(a) is
smaller than or equal to 12(a), then cell a belongs to the 'bursty' phase. From this. and the two equations above
a can be obtained:

The number of cells in the bursty phase corresponds to the nearest integer lower than or equal to the right hand
expression:

l imax Ia= +1
TelA -I

The number of empty slots before the 'stationary' phase begins is the difference between the time slot number
of the first cell of the stationary phase and the fIrst time slot after the last cell of the bursty phase.

P =axTOA - (imax+a)

3.2 The leak rate
The leak rate is determined by the amount L that is decremented from the bucket level per slot time. The leak
to splash ratio LIS determines the sustained cell rate that is allowed to the networlc. The lower bound for this
value corresponds to the peak cell rate 1fTCIA negotiated at call set up. If the leak to splash ratio is chosen equal
to 1fTCIA' then any clustering of cells due to jitter has to be absorbed by the bucket limit

If a lower bucket limit is desired. LIS must be chosen higher so that after a splash a larger amount leaks away.
A special case is if the allowed sustained cell rate is chosen equal to the cell rate in the bursty phase. In the
bursty phase a cells must be allowed in a+~ time slots. The corresponding leak to splash ratio becomes:

L a
s=(X;jr

If LIS is chosen equal to the cell rate in the bursty phase. the bucket just becomes empty if the fIrst cell of the
stationary phase arrives.

4
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Figure 4: Bucket level/or various LIS values (TelA = 16. J_x =: 100)
aJ LIS =7/12 (bit rate in bursty phase)
bJ LIS =: l/6 (Blev1 = Blevl)
c) LIS = 1116 (bit rate in stationary phlJse)

3.3 The bucket limit
Once the leak and the splash have been chosen. the corresponding bucket limit can be calculated. To detennine
B,,,,, the bucket level has to be observed at two moments. The first moment is when a cells have arrived in
consecutive slots. The second bucket level of interest is when the first cell of the stationary phase arrives. The
highest bucket level of these two moments corresponds to the bucket limit B,;",. Which bucket level is higher
depends on the chosen leak to splash value. see Figure 4.

The fllst bucket level is determined after a time slots when a-I splashes have been added to the bucket while
a-I times an amount L has leaked away. The bucket level is increased to

B'",I = (a-l)xS - (a-l)xL = (a-l)x(S-L) (11)

The second bucket level under investigation is 13 slots later when the fllSt cell of the 'stationary' phase arrives.
At that moment one splash has been added to the bucket while the bucket leaked (13+1) time slots a value L:

(12)

The bucket limit B,;", is the maximum of the two bucket levels B'",I and B,..2' Which bucket level must be chosen
depends on the value of S - (13+1)L. The two bucket levels B'",I and B,..2are equal if this expression is zero. This
corresponds to a leak to splash ralio of

If a higher leak to splash ratio is chosen 81..., is larger than B''''2 else B'",2 is larger than B,,,,,. The bucket limit
can be derived from (11) and (12) and written in one fonnula becomes

B,,,,, =(a-i)x(S-L) + IS - (13 +1)xL)>O (14)

The tenn enclosed by 1... 1>0 is only taken into account when its value is larger than zero. If a and Pare
substituted in Equation (14), we obtain:
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(IS)

It should be noted that this fonnula holds only if TCIA is an integer value. However. the fonnula can easily be
extended to hold for any TClA =ylx. Though it is not fonnally proven it appears that for a fractional TClA the
bucket limit must be set to the sum of equation (IS) and equation (1). Moreover it should be noted that this only
holds if LIS =xly. while equation (IS) holds van any LIS. Finally it can be concluded that equation (15) also
holds for fractional TClA if

4 Reducing the safety margin

In the previous paragraph a fonnula has been derived to dimension the leaky bucket parameters such that never
a cell is discarded due to jitter. However it may be that the worst case situation is likely to happen only with
a very small probability. If the probability that the worst case situation occurs is much lower than lhe agreed cell
loss probability. it may be advantageous for the network operator to reduce lhe safety margin. As a result the
policing function may discard celis of a cell stream suffering from extreme jitter. but as long as lhe probability
that the policing function discards cells of a compliant source is in the same order of magnitude as the cell loss
probability. the Quality of Service objectives are still mel Moreover, if the safety margin is reduced less network
resources have to be claimed and can be used for other connections. lhus increasing the network efficiency.

4.1 The simulation model
In order to investigate the size of the required safety margin to keep lhe cell discard probability below a
predefmed fIXed value simulations have been perfonned for various traffic situations. The simulation model is
shown in figure 5. A constant bit rate (CBR) source is multiplexed with some interfering background traffic
before it arrives at the policing function. In the FIFO multiplexer the CBR source is subject to jitter due to
interference with lhe background traffic. As background traffic a number of other CBR sources is chosen. each
with a different cell rate. In addition. as a worst case approximation for this type of background traffic a bulk
traffic generator has been used that generates cells according to a poisson distribution.

The following parameters characterize the simulation:
o The load of the CBR source under investigation PCBR'

o The total load in the multiplexer P'oI'
o The number of interfering CBR sources N. (not relevant for the poisson case.)
o The leak value L and the bucket limit 8/"". (the splash value S is fixed to 1.)

RotN8:-- i

~ A.""tlllO••d

background
traffic

Figure 5: Simulation model with parameters.

L.S
>----------1 BPI

policing
function

6



4.2 Effects of simulation parameters on the safety margin
It appears that the higher the total load P,ot' the higher the bucket limit must be chosen to obtain the same cell
discard probability. This may be evident. since a higher Ptol means more interference resulting in a larger
fluctuations in the buffer occupancy.

A more interesting aspect is if the load of the CBR source PCBR is changed while maintaining the total load at
a constant value. For a low CBR load there is a large amount of background traffic. In this case the CBR cell
stream experiences more cell delay variation, but since the cell stream has a large cell inter arrival time, the
effect on the cell stream may not be large. On the other hand, for a CBR source with a high cell rate there is
only a small amount of interfering traffic, but if a cell experiences extra delay, it may affect the cell stream
considerably. Figure 6 shows the average experience queueing delay normalized to the cell inter arrival time of
the tagged CBR source. It appears there is a load where the jitter has a maximum effect on the CBR cell stream.
This effect can be found again in figure 7 where the required bucket limit is shown to obtain a cell discard
probability for several PCSR at a constant p,,,,.

• PobIon
0..35 ........ - ... ... ... ... - ... ... - ... ... ... ... ... ... ... .. ... ... ... .. ... ... .. ... ... .. ... ...

i'
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Figure 6: Average experienced queueinf? delay normali:ed to TelA/or various PCSR at a constant P,or
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Figure 7: Cell discard probability as function of 8/;",for several values of PCBR (Pr." = 0.8. N = 1(0).
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Figure 8: Cell discard probability as function of B,imfor various number of background sources
(P,ot = 0.8, PCSR =50% of P,ot)·

Another point of interest is when the number of background sources is varied. The number of background
sources puts an upper limit to the number of cells arriving simultaneously at the multiplexer. The higher the
number of background sources, the more jitter may be experienced. This can be seen in figure 8 where the
influence of the number of background sources is shown on the required bucket limit to obtain a fixed cell
discard probability.

Finally it has been investigated how the bucket limit is affected if the leak to splash ratio is changed. Simulations
have been performed for LIS settings such that the policing function allowed a sustained cell rate ranging from
0% to 10% higher than the negotiated peak cell rate. It appeared that the bucket limit was not much affected
in this range. Since a higher LIS setting directly translates into allocating more bandwidth, it is recommended
to keep LIS as close as possible to the negotiated peak cell rate.

4.3 Comparing the results with the 'always safe' scenario
In this paragraph the bucket limit in the 'always safe' scenario (worst case dimensioning) is compared with the
required bucket limit if a small cell discard probability is allowed. Table I shows for various loads of the CBR
source the bucket limits in the 'always safe' scenario and the required bucket limit if a cell discard probability
lower than 10-7 is allowed. It appears that in the 'always safe' case the required bucket limit grows for increasing
PCSR' irrespective of the amount of background traffic. Only the number of background sources determines the
maximum jitter. From the simulations it is observed that the decreasing amount of background traffic has an
influence on the required bucket limit, although the number of background sources does not change. This is
because the 'always safe' scenario only takes into account that N cells may arrive simultaneously at the
multiplexer, but not that for a decreasing amount of background traffic the probability that N cells arrive
simultaneously becomes smaller.

Table 2 presents the required bucket limits if the number of background sources is varied The bucket limit for
the 'always safe' case as well as for a cell discard probability lower than 10,7 is shown. As expected the more
background sources are present the more the maximum CDV can be and the higher the bucket limit must be set
This applies to both the 'always safe' dimensioning and the 10-7 quantile dimensioning. However, it appears that
for increasing number of background sources the required bucket limits diverge from each other. This happens
because the 'always safe' scenario only takes the number of sources into account and not the probability that
N cells arrive simultaneously. If the background load is kept constant then for increasing number of background
sources the probability that all sources transmit a cell at the same time becomes smaller.

8



PCBR B/jM B1""

(in % of p",.) (Worst case (l0·7

scenario) quantile)

10 8.04 > 1.2

30 24.16 3.8

50 40.2 5.5

70 56.48 5.9

90 72.68 4.5

Table 1: Bucket limits for various PCBR (P,ot = 0.8.
N = 100).

5 Conclusions

No. of B1,," B,;".
Sources (Worst case (l0·7

scenario) quantile)

4 1.8 > 1.3

13 5.4 2.9

100 40.2 5.5

Poisson 00 6.7

Table 2: Bucket limits for various number of
background sources (P,ot = 0.8. PCSR is 0.4).

Inherent to the asynchronous way celIs are multiplexed in ATM, individual celIs may experience a variable delay
component in addition to a fixed delay. This variable cell delay is known as jitter. The amount of jitter
experienced depends on the load in the system, the traffic mix and the used multiplexing strategy. Ifcell streams
are multiplexed before they arrive at the policing function, the policing function must cope with this jitter to

vent that cells from a conforming source are discarded. This paper presented a formula to derive the
peters of the leaky bucket policing function such that no cell is discarded due to jitter. The formula is only
based upon the peak cell rate of the source and the maximum jitter a cell may encounter. The formula holds for
the following domains:

• Tad. is an integer value and L and S may adopt any positive value.

• The formula holds if Tad. has a fractional value and LIS is chosen equal to or larger than I/ITc/J.
In this case the effects of the slotted structure of ATM are not visible any more.

• If TCIA is a fractional number and LIS is chosen equal to the negotiated peak cell rate IITclA then the
formula is extended to account for the effects of the slotted structure of ATM. Although this case has
not been formally proven, strong intuitive arguments indicate the correctness of the formula.

The only situation which is not covered is if TCIA is a fractional number and lilTaJ < LIS < IffC/A"

It appears that the required bucket limit may become rather large, especially if the peak cell rate is high and/or
the maximum jitter is large. If the probability that the 'worst case' situation occurs is much lower than the
probability that a cell is lost due to other causes. the network. operator may choose to lower the bucket limit until
the cell discard probability of the policing function of a compliant cell stream is in the same order of magnitude
as the objected cell loss probability. If this strategy of reducing the safety margin is pursued. less network
resources have to be allocated for this connection and the resulting spare capacity may be used for other
connections.

Therefore simulations have been performed to compare the parameter dimensioning in the 'always safe' scenario
(worst case dimensioning) with a quantile dimensioning where a small cell discard probability is permitted. Two
important conclusions can be drawn:

• The first one is if the CBR load is increased while the total load and the number of background
sources is kept at a constant value. It appears that in the 'always safe' case the bucket limit increases,
while from the simulation results it is observed that there is a maximum in the bucket limit curve: for
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high CBR loads the required bucket limit decreases. This can be explained as follows: For a high CBR
load there is less interfering traffic thus the probability that the 'worst case' situation occurs becomes
smaller. The 'always safe' scenario is based on the worst case, while the quantile dimensioning also
takes the probability into account.

• The second conclusion can be drawn if the number of background sources is increased, while both
the CBR load and the total load remains constant. In this case the bucket limit in both the 'always safe'
as in the quantile dimensioning case increases. However, the required bucket limit in the 'always safe'
case grows almost linearly with the number of background sources. while the bucket limit in the
quantile dimensioning seems to approach an asymptote. This is because 'always safe' case takes only
the worst case into account irrespective of the probability that this worst case situation occurs.

Which strategy should be chosen (either the 'always safe' strategy or the quantile dimensioning strategy) is left
to the network operator. The 'always safe' dimensioning is robust and guarantees that every cell of a compliant
source is passed to the network independent of the amount of jitter experienced. But for high peak cell rates
ancVor a large maximum jitter the safety margin becomes rather large. The quantile dimensioning strategy polices
the cell streams more tightly, thus enabling the reduction of claimed network resources, while the Quality of
Service objectives are still met. However, the required safety margin to keep the cell discard probability below
a desired value depends on the total load in the system, the share of the load of the source and the number of
background sources. To maintain the same cell discard probability the policing parameters should be adapted
for each new connection set up or release.
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Abstract

This paper describes a MAC protocol for a broadband network access

facility, using a passive optical network (PON) with a tree structure. This

protocol will he implemented in the demonstrator of the RACE project R2024

(Broadband Access Facilities). Access to the shared medium is controlled by

means of a request/permit mechanism. The bandwidth allocation algorithm

approximates a global FIFO strategy and enforces the peak bitrate of each

Network Termination. In order to guarantee a limited reaction time, the

notion of Request Block is introduced. Using an appropriate queueing model,

the reaction speed of the protocol on changing traffic situations, is evaluated.
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1 Introduction

Big bussiness customers need and can afford a dedicated fiber access to the B-ISDN.

For small bussiness and residential customers on the other hand, sharing the access

resources may be much more efficient and cost-effective. Recent progress in the

area of optical transmission technology (optical fibers, passive optical splitters and

combiners) make a Passive Optical Network (PON) a good candidate for such an

access medium. In particular when the advantages of a PON are combined with

the statistical multiplexing capabilities of the Asynchronous Transfer Mode (ATM),

the outcome may be a highly efficient, reliable and cost-effective broadband access

facility.

We let N Network Terminations (NT) share the access medium by means of a

PON with a tree structure (see Figure 1).

The passive tree is characterized by the existence of points where one fiber is con­

nected to many by means of an optical splitter. A single fibre coming from the

Line Termination (LT) can be connected to many termination points. Major cost

savings can be achieved because of the resource sharing between users. Both the

exchange end and the segments of the external plant (cabling, splicing, installation),

are common to a number of users, so the network is economic for existing telephony

and data services. Tree topologies strongly fit the geographical constraints of the

local loop and the already trenching and ducting.

The access to the shared medium is arbitrated by the Medium Access Control

(MAC) protocol. A tree structure lends itself very well to a protocol with centralized

control. It is defined by

• The way the central control is informed about the state of the NTs (e.g. the

number of cells that are waiting in the buffer of the NT)

• The way the NTs are informed when a cell can be sent (i.e. permission to

access the medium)

• The way the bandwidth is distributed among the NTs.

The MAC protocol treated in this paper uses a request/permit mechanism. Each

NT declares its required bandwidth by sending requests to the master of the protocol

located in the Line Termination (LT) (at the root of the tree). Each NT is allowed
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to send two types of requests. The first type of request is coupled to upstream ATM

cells. These requests contain the number of cells waiting for transmission in the

NT. Using such mechanism, an NT can only reveal its bandwidth needs when it is

allowed to send an ATM cell. This could lead to a slow reaction to changing traffic

situations. Therefore, the protocol is provided with a second type of request. The

so called Request Blocks, contain requests originating from several NTs, not coupled

to upstream ATM cells. They are issued during idle periods and allow the protocol

to react fast.

The MAC protocol allocates the available bandwidth to the NTs according to a well­

defined algorithm (see later), based on the received information from the requests.

The NTs are informed about this obtained bandwidth by means of permits. Such a

permit authorizes the NT to send a cell. The MAC protocol proposed in this paper

is cell-based, meaning that an issued permit refers to the transmission of a single cell.

The MAC protocol determines the information flow at the entrance of the B­

ISDN, and therefore has a major impact on the overal performance of the system.

In particular, the shape of the traffic entering the network, a major issue in ATM

networks, is highly influenced by the MAC protocol. The proposed permit distribu­

tion algorithm takes this into account in two different ways:

(i) the permit distribution algorithm approximates a global FIFO strategy in order

to minimize cell delay variation and to make the mechanism fair,

(ii) cells originating from an NT are spaced (see also [3] and [7]). The peak bit rate

an NT is allowed to produce is defined to be the sum of the peak bit rates of each of

the connections (VCI/VPI) carried by this NT, as agreed upon at call set up. The

MAC protocol enforces a minimum distance (equal to the inverse of the peak bit

rate) between consecutive cells of an NT.

The MAC protocol should be suitable for all possible B-ISDN services, in par­

ticular also for constant bit rate (CBR ) services. For these services, stringent

requirements concerning cell delay and delay jitter have to be guaranteed. In many

MAC protocols (e.g. DQDB ), special measures are taken for CBR services, such

as pre-arbitrated access. Hence, an important question is whether for the proposed

protocol such a special treatment for CBR sources is necessary (e.g. by introducing

priorities [2]). The bundle-spacer used by the permit distribution algorithm can

introduce some jitter due to the fact that what is spaced is the sum of the connec­

tions and not each connection individually. The cell delay variation introduced on
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an individual connection is studied in [1].

The protocol as presented in this paper will be implemented in the demonstra­

tor system of the Broadband Access Facilities project of the European research

programme RACE (project R2024).

Section 2 of this paper describes the MAC protocol in detail. In Section 3 we

evaluate the reaction speed of the protocol. The results for the reaction speed are

based on a busy period analysis of the global FIFO queue. Finally, in Section 5

conclusions are drawn.

2 The MAC Protocol

Consider N Network Terminations (NT) sharing the access medium by means of

a Passive Optical Network (PON) with a tree structure (see Figure 1). In this

section, we describe the Medium Access Control (MAC) protocol, used to arbitrate

the access to the shared medium. The main function of the MAC protocol is to

avoid collisions of traffic originating from the different NTs connected to the PON.

Moreover it should aim at

• Efficiency: the overhead introduced by the MAC protocol should be low.

• Performance: the delay and delay variance introduced by the MAC proto­

col should be kept within certain bounds defined by the Quality of Service

requirements, in particular for CBR traffic.

• Fairness: one NT should not be subject to more access delay than another.

Each NT advertises its bandwidth requirements through requests which are sent to

the master of the protocol located in the Line Termination (LT). These requests

contain information about the state of the queue in the NT (e.g. number of cells

waiting for transmission). Using these requests, together with parameters agreed at

call set up, the MAC protocol allocates dynamically the available upstream band­

width to the various NTs, by means of a well defined bandwidth allocation algorithm.

The NT's are then informed about the allocated bandwidth by means of permits.

When an NT receives a permit, it is allowed to send one cell upstream. In what

follows we give a detailed description of the various components of the protocol.
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2.1 Requests

Each NT may send requests in two different ways :

• Coupled with upstream cells. An upstream cell originating from NTj is pre­

ceded by a MAC information field (request) containing the NT buffer length.

• Request Blocks (RB) : When requests coupled with upstream cells are used,

an NT can only reveal its state to the LT when it has received a permit to

send an upstream cell. Clearly, this may lead to slow reaction on changing

traffic situations (as a typical example consider an on/off. source which switches

from off. to on; as a request can only be issued when an upstream cell is sent,

the NT may never be able to declare its required bandwidth). To overcome

this drawback, Request Blocks are introduced. A request block is built with

the requests of a number of consecutive NTs. An RB can take the place of an

ATM cell (i.e. ATM cell (424 bits) + physical layer preamble (17 bits) + MAC

information field (7 bits)). Hence, a request block may have a length of 448

bits. This determines the number of NTs that can advertise their bandwidth

requirement (i.e. queue length) per RB : each NT needs 32 bits (physical layer

overhead (17 bits) + MAC information field (7 bits) + CRC (4 bits) + spare

bits (4 bits)). Hence, per Request Block, 14 NTs can send their status to the

LT. For implementation reasons, it is assumed that only 9 NTs can send their

status per RB.

Figure 2 shows the upstream information structure, both for ordinary cells and

request blocks.

2.2 Permits

The output of the Bandwidth Allocation Algorithm (see next section) consists of

permits. We distinguish two kinds of permits.

• Permits for ATM cells. When according to the allocation algorithm, an NT is

allowed to send a cell, then the LT issues a permit containing the address of this

NT and adds it to a downstream ATM cell (downstream traffic is broadcasted,

and hence there need not to be a coupling between this downstream cell and

the permit). An additional bit, namely the permit class bit CL, is added to

indicate that the permit addresses an ATM cell (CL=l).
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• Permits for Request Blocks. When during a time slot, no permit is generated

for an ATM cell, the LT issues a permit for a Request Block (permit class

bit CL=O). In this case, the permit field contains the address of the NT (e.g.

NTi) that is the first to send a request in the request block. The next NT to

send a request in the RB is NTi+I up to NTi+S •

Hence, the LT issues permits for RB whenever it has no permits for ATM cells to

send, and therefore, the idle periods of the upstream traffic (i.e. no ATM cells are

sent) are used for transmitting RBs. In that way, the spared upstream bandwidth

capacity is used to increase the reaction speed of the protocol on changing traffic

situations. Figure 3 shows the downstream information structure, both for Permits

for ATM cells and Permits for Request Blocks.

2.3 The Bandwidth Allocation Algorithm

We describe how the bandwidth is allocated among the NTs, or equivalently, how

the permits are distributed (therefore, the algorithm is also called the Permit Dis­

tribution Algorithm). The main characteristics of this algorithm are

(i) Enforce the peak bit rate per NT by spacing the cells

(ii) Approximate a global FIFO discipline (over all NTs) for fairness reasons and

to minimize the delay variance

(iii) Use the available buffer capacity in the NTs to store the cells that wait for

transmission (distributed buffering).

The peak bit rate of each NT is calculated as the sum of the peak bit rates of each

of its connections (VCI/VPI). The MAC protocol counts the number of new cell

arrivals (deduced from the request) and assigns the necessary permits to the NT.

These permits are then put into a FIFO queue together with permits for the other

NTs, with the additional constraint that a minimal distance between two consecu­

tive permits for the same NT is enforced. This minimal distance is determined by

the inverse of the peak bit rate.

In this way, the actual queueing takes place in the NT, while the central control of

the PON maintains a permit FIFO queue, by which the transmission instants and

the order in which the different NTs are emptied, are governed. Now we show how

this distribution algorithm can be efficiently implemented.
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Consider N NTs, NT., ... , NTN, each provided with a buffer. Let tj be the inverse

of the sum of the peak bit rates of each of the connections carried by NTj • The value

of tj will determine the minimal number of slots allowed between two consecutive

cells originating from NTj • NTj is said to be ready to send a cell, whenever a cell is

present in the buffer of NTj and the number of time slots since the last transmission

is at least tj.

The central controller of the PON maintains a global permit FIFO queue and two

counters for each NT, the function of which is explained in what follows.

(i) The global permit FIFO queue contains permits for NTs corresponding to cells

which are ready to be sent. A permit for NTj is put in the global permit FIFO

queue as soon as this NT has a cell ready to be sent.

(ii) Two counters per NT are maintained, a countdown counter and a request counter.

For connection i, i = 1, ... , N, we have that

• the countdown counter CNTDOWN_GNTR(i) is given the value tj, at the

moment the permit for NTj is put in the virtual FIFO queue. Its value is

decreased by 1, at each time slot of the outgoing line. Counting down stops

as soon as CNTDOWN_GNTR(i) $ 0

• the request counter REG_CNTR(i) is increased each time a request comes in

by the number of arrivals since the last request. It is decreased by 1 whenever

a permit for NTj is put in the global permit FIFO queue.

Let us now describe how the protocol itself works. As soon as a permit for

NTj is put in the global permit FIFO queue, tj is added to the countdown counter

GNTDOWN _C NTR(i) and the countdown process starts (each time slot

GNTDOWN_CNTR(i) is decreased by 1). When the two conditions

CNTDOWN_CNTR(i) $ 0 and REQ_CNTR(i) > 0

are both satisfied,then

(1) a permit for NTj is put into the global permit FIFO queue,

(2) REQ_CNTR(i):= REQ_CNTR(i)-1.

When this permit comes at the head of the global FIFO queue, it is sent to NT;

and the first cell in the buffer of NT; is transmitted.

If at the end of the countdown process (i.e. as soon as CNTDOWN _CNTR(i) $ 0),

REQ_C NTR(i) = 0, then the countdown process goes sleeping, and when the next
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request for this NT arrives, besides increasing REQ_CNTR(i), the countdown pro­

cess of NTi will be waked up again. This makes the two above conditions true, so

that a permit is put immediately in the global FIFO queue. Remark that letting the

countdown counter become negative and adding the real value ti to it , is done in

order to achieve higher granularity of the peak bit rates than when the countdown
counter and t i would be integers.

Figure 4 shows an example to illustrate the operation of the permit distribution

algorithm. In this example,

• The LT issues a permit for NT!.

• A request, originating from NT2 , is sent to the LT, resulting in an increase of
REQ_CNTR(2).

• The conditions REQ_CNTR(3) f; 0 and CNTDOWN_CNTR(3) :::; 0 are

satisfied, hence a permit for NT3 will be put in the global FIFO queue.

• A permit for NTN has been put in the global FIFO queue, and REQ_CNTR(N)

is decreased by 1 and CNTDOWN_CNTR(N) is incresed by tN.

2.4 Robustness of the Protocol

In order to operate correctly, the NTs must declare their bandwidth requirement

(using requests coupled with upstream cells or using Request Blocks), through the

number of newly arrived cells since the last request. This value is added to the

REQ_CNTR. However, the loss of a request may lead to the situation that cells

remain in the NT buffer forever. In order to avoid this situation, the request contains

the queue length of the NT. The MAC controller must be able to compute the

number of new arrivals from this queue length. In order to do so, it must maintain

the number of permits that have been generated for which the upstream cell has not

been received yet, for one of the following reasons:

• The permit is still waiting in the global FIFO to be transmitted

• The permit is underway between the LT and NT

• The cell is underway between the NT and the LT.

;,From this number and the new queue length, the LT can compute the number of

newly arrived cells since the last request.
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3 Evaluation of the Reaction Speed

3.1 The Reaction Time

The Request Blocks have been introduced to guarantee fast reaction on changing

traffic situations. By issueing permits for RBs during idle periods of the global FIFO

queue, no bandwidth is wasted, but an NT has to wait for an idle period during

which a permit for an RB is generated which contains his address. The aim of this

section is to evaluate this waiting time (i.e. the reaction time). Apart from being a

measure for access delay and delay jitter, the reaction time is also a measure for the

required buffer capacity in the NT. Indeed, consider an on/off source which switches

from the off to the on state. Between this instant and the arrival of the first permit

for an RB, the source generates cells which have to be stored in the NT buffer. After

having issued a request in an RB, the NT has to wait a complete round trip delay

(without taking the possible waiting time in the FIFO into account) before the first

cell of the burst can be actually transmitted. In what follows we assume a maximum

NT-LT distance of 10 km, resulting in a round-trip delay of 100 J-ts.

The time an NT has to wait before the first permit for an RB, which it is allowed to

use to issue a request, arrives,consists of a sequence of busy and idle periods of the

global FIFO. Indeed, assume that the first cell arrives while the FIFO is busy. At

the end of that busy period, a permit for an RB, adressing 9 NTs, will be issued. If

our tagged NT belongs to this sequence of NTs, it may issue a request. Otherwhise,

it has to wait one (or possibly more) busy period/idle period times before it can

issue a request, depending on its address and on the length of the idle periods of the

global FIFO. In a worst case, when each idle period consists of exactly one slot and

the first permit addresses the group of NTs next to the group of the tagged NT, the

tagged NT has to wait 8 slots (i.e. 8 idle periods) and 8 busy periods, before it can

issue a request.

In what follows, we introduce a queueing model which enables to evaluate the reac­

tion time.

3.2 A queueing model for the reaction time

Tag an NT which generates traffic according to an on/off source model. Assume the

background traffic (i.e. traffic originating from the other NTs) to be CBR traffic

(i.e. deterministic streams) having the same period (i.e. the interarrival time of cells

of each source is the same) and random phases. The aim of this study is to identify
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worst case situations and determine the reaction time under these conditions. In a

forthcoming study we treat this problem where the background traffic is assumed

to consist of VBR sources.

Consider a single server queue with a deterministic server. We let the service time

be the length of one time slot (i.e. the time needed to transmit 448 bits). Hence,

for a 600 Mbit/s link, the service time equals 0.75J.ls. The input process consists of

the superposition of N independent identical deterministic arrival streams having

a common period, say D slots. This queueing system is known in literature as the

N*D/D/1 system (see [6] for a continuous-time analysis and [4] for a discrete-time

analysis).

When the load P = N / D < 1, then a busy period of this system is smaller than

D. Let PB(1) denote the probability that the lenght of a busy period is 1 time slots,

o< 1< D , Virtamo [6] has proved the following closed form formulas

N-1 D - N 1'-2(D _1)N-I-1
PB(1) = °,_1 D _ N +1 DN-2

Denoting P1( I) the probability that the length of an idle period is more than 1slots,

then

In what follows we use the previous formulas to evaluate

• the impact of the bit rate of the background traffic on the reaction speed (in

order to identify worst case conditions), given the bit rate of the tagged source

and the total load Pi

• the impact of the bit rate of the tagged source on the required buffer capacity

in the NT, given the bit rate of the background traffic and the total load p.

• The required buffer capacities in the NT to cope with this reaction time and

the round-trip delay.

Since we are interested in buffer capacities and cell delay variations, we shall always

compute the 10-9 -quantile of the distributions.

3.3 Impact of the bit rate of the background traffic

Consider the N*D/D/l system described above for a 600 Mbit/s link. Assume a

constant load p, and let the bit rate of the sources, i.e. the period D, vary. For
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D = Dx , we compute the number of sources N = Nx , such that the load equals

p = 0.8. The result for the length of the busy period is used to compute its 10-9
_

quantile for different values of Dx • The following table summarizes the results. The

1O-9-quantile of the length of the busy period is given in slots.

bit rate D N 10-9 -quantile

64 kbit/s 9375 7500 572

560 kbit/s 1071 857 386

1 Mbit/s 600 480 298

2 Mbit/s 300 240 195

10 Mbit/s 60 48 49

60 Mbit/s 10 8 9

From this table we remark that the lower the bit rate, the longer the busy period

becomes. If we assume 64 kbit/s sources, the resulting process is periodic with

period 9375 time slots. During 7500 of these time slots, the server is busy, while

during the remaining 1875 slots it is idle. If on the other hand we assume 10 Mbit/s

sources, then during 48 slots of the 60 slots period, the server is busy. Hence, clearly

the first case generates longer busy periods. In fact, the arrival process tends to a

Poisson process, leading to long busy periods.

3.4 Impact of the bit rate of the tagged source

Tag an NT which at time to switches from an off state to an on state. Cells arrive

periodically with arrival rate A bit/s, or equivalently, with a period of Dt slots.

Assume that the background traffic is modeled by N deterministic arrival streams

with common period D such that

1 N
p = D

t
+ D·

We consider two cases for the background traffic :

(i) 2 Mbit/s sources: D = 300 slots

(ii) 64 kbit/s sources: D = 9375 slots.

In view of the previous section, (ii) clearly represents a worst case, which is improb­

able to occur. Using the formulas for the busy period, we can compute the number

11



of cell arrivals of the tagged source in the NT during a busy period of the global

FIFO. We consider several bit rates of the tagged source. The 1O-9 -quantile of the

length of the busy period is expressed both in slots and in number of arrivals of the

tagged source in the NT.

(i) Case 1 : background sources of 2 Mbit/s.

bit rate number of busy period busy period

tagged source background sources in slots in arrivals

150 Mbit/s 165 74 20

100 Mbit/s 190 102 18

50 Mbit/s 215 142 13

15 Mbit/s 232 176 5

10 Mbit/s 235 183 3

5 Mbit/s 238 190 2

1 Mbit/s 240 194 0.3

(ii) Case 2 : background sources of 64kbit/s.

bit rate number of busy period busy period

tagged source background sources in slots in arrivals

150 Mbit/s 5156 102 27

100 Mbit/s 5938 162 29

50 Mbit/s 6719 283 25

15 Mbit/s 7266 453 12

10 Mbit/s 7344 490 9

5 Mbit/s 7469 525 5

1 Mbit/s 7484 552 1

The length of the busy period is longer when the bitrate of the tagged source is

low since the number of background sources in this case is high (total load is constant

p = 0.8). This is not the case when the duration of a busy period is expressed in

number of cell arrivals from the tagged source.
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3.5 Required buffer capacity in the NTs

For the evaluation of the reaction time we consider worst case conditions. First, the

tagged NT has to wait for 9 permits for an RB before it can transmit a request in

an RB (this event happens with probability 1/9). Secondly, according to the results

given in Section 3.2, the probability that an idle period of one slot occurs is given

by

()
1 N2 1

PI 1 =1 - (1 - D) - (1 - D _ N +1)'

Hence, for both the cases where the background traffic consists of a superposition

of 2 Mbit/s sources or 64 kbit/s sources, the probability of having 8 consecutive idle

periods of one slot (assuming that these events are independent) is not negligable.

Therefore, under the assumption that the consecutive busy period/idle period pairs

are independent, we let the reaction time be the duration of a sequence of 8 busy

period/idle period (of one slot) pairs. The next tables give the reaction time (in

number of arrivals of the tagged source) and the needed buffer capacity of the tagged

NT when besides the reaction time, also a complete round-trip delay of 100 p.s is

taken into account.

(i) Case 1 : background sources of 2 Mbit/s.

bit rate number of reaction time required buffers

tagged source background sources in arrivals in cells

150 Mbit/s 165 159 194

100 Mbit/s 190 145 167

50 Mbit/s 215 101 112

15 Mbit/s 232 38 42

10 Mbit/s 235 26 29

5 Mbit/s 238 14 15

1 Mbit/s 240 3 4

(ii) Case 2 : background sources of 64kbit/s.
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bit rate number of reaction time required buffers

tagged source background sources in arrivals in cells

150 Mbit/s 5156 218 253

100 Mbit/s 5938 230 252

50 Mbit/s 6719 200 212

15 Mbit/s 7266 96 99

10 Mbit/s 7344 69 72

5 Mbit/s 7469 37 38

1 Mbit/s 7484 8 8

Remark that the independence assumption of consecutive busy period/idle period

pairs leads to a conservative estimation. Indeed, the probability of having a long

second busy period decreases with increasing length of the first busy period (since

the number of deterministic streams is constant).

4 Conclusions

We have described a MAC protocol for a broadband access facility using a passive

optical network with a tree structure. The protocol uses a request/permit mech­

anism to control the access to the shared medium. The available bandwidth is

allocated by means of a strategy which approximates a global FIFO queue and such

that the peak bit rate is enforced. In order to guarantee a limited reaction time

on changing traffic situations, Request Blocks have been introduced. They allow

quick NT queue status information transfer to the LT. They are scheduled during

idle periods of the global FIFO queue. A busy period analysis permits to give a

first evaluation of this reaction time. Clearly more detailed models and analysis are

needed.
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Figure 1: PON with a Tree Structure
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