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Abstract
PERFORMANCE ANALYSIS OF AN ASYNCHRONOUS 
TRANSFER MODE MULTIPLEXER WITH MARKOV 

MODULATED INPUTS

Nail Akar
Ph. D. in Electrical and Electronics Engineering

Supervisor:
Assoc. Prof. Dr. Erdal Arikan 

August 1993

Asynchronous Transfer Mode (ATM) networks have inputs which consist of superpositions of 

correlated cell streams. Markov modulated processes are commonly used to characterize this 

correlation. The first step through gaining an analytical insight in the performance issues of an 

ATM network is the analysis of a single channel. One objective of this study is the performance 

analysis of an ATM multiplexer whose input is a Markov modulated periodic arrival process. 

Based on the transient behavior of the n D l D f l  queue, we present an approximate method 

to compute the queue length distribution accurately. The method reduces to the solution of 

a linear differential equation with variable coefficients. Another general traffic model is the 

Markov Modulated Poisson Process (MMPP). We employ Pade approximations in transform 

domain for the deterministic service time distribution in an M MPP/D/1 queue so as to compute 

the distribution of the buffer occupancy. For both models, we also provide algorithms for 

analysis in the case of finite queue capacities and for computation of effective bandwidth.

K eyw ords: ATM, statistical multiplexing, fluid models, Markov modulated

processes, traffic control in ATM networks, effective bandwidth.



ö z e t
MARKOV MODÜLELİ GİRDİLERLE BESLENEN BİR 

EŞZAMANSIZ AKTARIM MODU ÇOĞULLAYICISININ BAŞARIM
ANALİZİ

Nail Akar
Elektrik ve Elektronik Mühendisliği Doktora

Tez Yöneticisi:
Doç. Dr. Erdal Arıkan 

Ağustos 1993

Eşzamansız Aktarım Modu (ATM) ağlarının girdileri ilintili paket akışlarından oluşur. Bu 

ilintiyi tarif edebilmek için genel olarak Markov modüleli süreçler kullanılmaktadır. ATM 

ağlarını kavrayabilmek için öncelikle tek bir ATM çoğullayıcısının başarım analizini yapmak 

gerekir. Bu çabşmanın amaçlarından biri girdisi Markov modüleli periyodik varış süreci olan 

bir ATM çoğullayıcısının başarım analizini yapmaktır. Bu analizi yapabilmek için nD/D/1  

kuyruğunun geçici davranışına dayanarak kuyruk uzunluğu dağıbmını bulan yaklaşık bir 

yöntem önerilmektedir. Bu dağılım ise doğrusal ve değişken katsayıb türevsel bir denklemin 

çözümüyle elde edilir. ATM ağları için genel olarak kullanılan bir başka trafik modeli ise 

Markov modüleli Poisson sürecidir (MMPP). M M PP/D/1 kuyruğunun dağılımını hesaplamak 

amacıyla sabit servis zamanı için dönüşüm uzayında Pade yaklaştırmaları kullanılmıştır. Bu 

iki model için ayrıca sonlu kuyruk kapasiteleri durumunu inceleyen ve eşdeğer bant genişliği 

hesaplayan yöntemler önerilmiştir.

Anahtar
sözcükler: ATM, istatiksel çoğullama, sıvı akış modelleri, Markov modüleli

süreçler, ATM ağlarında trafik denetimi, eşdeğer bant genişliği.
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Chapter 1

Introduction

1.1 A synchronous Transfer M ode

The Asynchronous Transfer Mode (ATM) is considered by CCITT, International Con­

sultative Committee for Telephone and Telegraph, (now the International Technological 

Union - Telecommunications Section, or ITU-TS) as the preferred transfer mode for B- 

ISDN (Broadband Integrated Services Digital Network) [26]. Unlike traditional networks, 

the B-ISDN will be required to support a wide mix of services (e.g., voice, low- and high­

speed data, image and video) over a common ATM transport network. In an ATM 

based network, all information is conveyed using fixed size packets (called “cells”). To 

achieve high speed integrated transport, the ATM network adopts a simplified transport 

protocol ba^ed on hardware cell switching [7],[48].

A basic factor that favors ATM is its capability to handle “bursty” traffic via the 

use of statistical multiplexing. Bursty calls generate traffic at high rates for short 

periods of time and traffic at much lower rates at other times [22]. Burstiness of 

a call is simply described in [7] as the ratio between the maximum and the average 

information rates during the holding time of the call. The average bit rate and the 

burstiness are important measures to describe the traffic stream associated with a



particular service. These two measures of interest actually depend on particular coding 

and compression techniques used to transport a service. Table 1.1 shows these traffic 

parameters for certain broadband services in order to demonstrate the diversification 

of traffic characteristics in the B-ISDN [7]. A service type is a set of services that 

have the same Quality of Service (QoS) requirements. ATM should satisfy the different

Chapter 1. Introduction 2

Service type
Voice
Interactive data
Bulk data
Standard quality video
High definition TV
High quality video telephony

Mean bit rate
32 kbits/s

1-100 kbits/s
1-10 Mbits/s

20-30 Mbits/s
100-150 Mbits/s

2 Mbits/s

Burstiness

10
1-10
2-3
1-2

Table 1.1: Some services and their characteristics.

QoS requirements of different services. These requirements are usually measured in 

terms of maximum delays and cell loss rates. Figure 1.1 shows approximate delay 

and loss requirements for some expected services [22],[58]. Services such as voice and 

real time video have strict delay requirements. If cells are not delivered within their 

delay requirements, they are considered lost due to the real time nature of the services. 

Delay jitter, the standard deviation concerning delays, should also be small so that the 

information can be reconstructed in a continuous fashion. In many cases, a certain 

amount of loss is tolerable although lost cells will have some adverse effects on real-time 

traffic. Data traffic, such as transfer of files, can generally be characterized by a flexible 

delay requirement and a strict loss sensitivity.

ATM cells consist of an header and an information field. These cells are transmitted 

over a virtual circuit and routing is performed based on the information in the header. 

The cell transmission time is equal to a slot length and slots are allocated to a call 

on a demand basis. Since bursty traffic does not require continuous allocation of the 

bandwidth at its peak rate, a large number of bursty traffic sources can share the 

bandwidth, thus increasing resource utilization. ATM can also support continuous
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Cell loss probability

10-4

10-6

10-8

10- 1 0

Voice File transfer

Interactive
data

Interactive
compressed

video

Image

1 10 10^  10^  10“*

Maximum cell delay variation (ms)

F igure  1.1: Approximate ATM traffic performance requirements.

bit-rate services by allocating bandwidth bcised on their bit rates. This multiplexing 

could lead to more efficient use of resources, but may require new kinds of bandwidth 

management and traffic control. In the next section, we address the statistical 

multiplexing concept in more detail.

1.2 S tatistica l M ultiplexing

An ATM network model is shown in Figure 1.2. The bit stream from an individual 

source is first segmented into cells at the edge of the network and a header is attached to 

each cell. The cells are then transported to the destination through the network and the 

bit stream is reconstructed at the receiving side by stripping the header and “playing 

out” the cells. In both the access nodes and the output buffers of the intermediate 

switches, the key factors in performance deterioration are cell losses and delays due to
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queueing. There are other performance deterioration factors (e.g., cell segmentation 

delay, cell loss, and cell misdelivery due to header field errors due to transmission, etc.) 

which are independent of incoming traffic and are out of scope of this dissertation. Our 

objective in this dissertation is to obtain a fundamental understanding of the queueing 

characteristics when traffic from several bursty sources are multiplexed on network links. 

We study this problem for a concentrator where a single link carries multiplexed cell 

streams (shown in Figure 1.3).

Let us further consider an ATM switch (shown in Figure 1.4) to understand how 

statistical multiplexing takes place inside an ATM network. We will describe the basic 

properties of the switch that will yield our ATM multiplexer model.

There are actually different queueing schemes proposed for an ATM switch depending 

on where the queues are employed (i.e., inputs or outputs). Input queueing solution 

has a significant throughput limitation [21]. We therefore consider the output queueing 

solution [21],[53] in which there is a reserved buffer for each output port and the incoming
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cell streams

Figure 1.3: Cells multiplexed on a single link.

cells are allowed to use these reserved buffers of the output ports they are destined for. 

This is in contrast with completely shared buffers (central queueing) [21] where the total

Ii

h

h

In

F igure  1.4: N  x N  non-blocking ATM switch: output queueing solution.

memory is common to all connections. The approach in output queueing is that, cells 

of different inputs destined to the same output can be transferred through the switching 

element during one cell time. However, only a single cell may be served by an output in a 

cell time, causing possible output contention. This contention is solved by queues which 

are located at each output of the switching element. The switching device is assumed 

to be internally non-blocking in the sense that no cell is blocked in the switching fabric
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when being transferred to the output ports, cell blocking is only due to possible buffer 

overflows. The control of the output queues is based on a simple FIFO (first-in-first- 

out) discipline to ensure that cells belonging to a certain connection will remain in the 

correct sequence. Priority mechanisms that will change this control are out of scope of 
this dissertation.

With this kind of an operation, the incoming lines from bursty traffic sources are said 

to be “statistically multiplexed” on the output port they are destined for. Statistical 

multiplexing occurs when the capacity of the output channel is less than the sum 

of the connection peak bandwidths, but is larger than their average total bandwidth 

requirement. The statistical gain is the factor by which the sum of the peak bandwidths 

can exceed the output channel’s capacity while satisfying the QoS requirements, or in 

other words, the throughput gain in using statistical multiplexing instead of deterministic 

multiplexing (e.g., time or frequency division multiplexing). Statistical multiplexing, 

therefore, relies on the input channels being bursty due to variable information transfer 

rates. This statistical gain directly depends on the bandwidth allocation and traffic 

characteristics of the input channels.

Achieving any statistical gain results in a nonzero probability of cell level overload 

or congestion. Congestion can be eliminated to a limited extent by using large storage 

capacity buffers. The buflFers will absorb excess information until the sum of the input 

rates drops below the output rate of the multiplexer. The larger the buffer, the greater 

the overload that can be absorbed, but this occurs at the expense of large queueing delays 

which cannot be tolerated by real time applications. Therefore, this delay constraint 

makes it inconvenient to use very large buffer sizes which would have ensured very low 

probabilities of buffer overflow.

It is the risk of potential cell losses and delays in a high-speed network which 

necessitates new traffic control schemes. Teletraffic analysis is necessary to clarify the 

fundamental properties of statistical multiplexing in ATM networks and to develop 

effective bandwidth management and congestion control [9],[27]. The next section briefly 

addresses a particular congestion control strategy which is called the call admission
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control.

1.3 Call A dm ission Control

The design of B-ISDN based on ATM technology depends on the definition of an effective 

traffic control mechanism capable of guaranteeing required quality of service for a wide 

variety of connection types. The term “traffic control” includes the actions of routing 

and resource allocation, necessary for setting up virtual connections as well as the 

protective measures required to maintain throughput in overload situations [43]. The 

high transmission speeds and the widely differing traffic characteristics and quality of 

service requirements require novel procedures for congestion control in ATM networks.

Many of the congestion control schemes developed for existing networks fall into the 

class of reactive control. Reactive control reacts to the congestion after it happens and 

tries to bring the degree of network congestion to an acceptable level. Due to high 

transmission speeds, reactive control is, in general, found to be ill-suited for use in ATM 

networks [2],[62]. Unlike reactive control where control is invoked upon the detection 

of congestion, preventive control does not wait until congestion occurs but attempts 

to prevent the network from reaching an unacceptable level of congestion. The most 

common and effective approach is to control the traffic at the entry points to the network 

(e.g., access nodes). This approach is especially effective due to the connection-oriented 

feature of ATM networks. With connection-oriented transport, a decision to admit new 

traffic can be made based on the knowledge of the state of the route which the traffic 

would follow [59].

One of the major preventive controls is call admission control which determines 

whether to accept or reject a new connection at the time of call set-up. When a new 

connection is requested, the network examines the call’s performance requirements (e.g., 

acceptable end-to-end delay and cell loss probability) and traffic characteristics (e.g., 

peak rate, mean rate, mean burst length, etc.). The network then examines the current



load and decides whether or not to admit the new call. A call admission policy therefore 

limits the number of calls in the system so as to give proper QoS guarantees to different 

services.

A conservative admission policy (e.g., peak rate bandwidth allocation) allows 

relatively low loading on the network links and minimizes the probability of cell level 

congestion. Such an approach, on the other hand, results in a higher level of call blocking 

relative to a more aggressive admission policy [17]. Therefore, efficient call admission 

procedures are required, especially for users with predictable traffic parameters, in order 

to provide an adequate use of network resources. In this dissertation, we will also consider 

a particular call admission policy that depends on the notion of effective bandwidth. For 

various models, it has been shown that an effective bandwidth can be associated with 

each source, and that the queue can deliver its performance guarantee by limiting the 

sources served so that their effective bandwidths sum to less than the capacity of the 

link.

The characterization of statistical gain mentioned in the preceding section and the 

definition of an effective bandwidth depend critically on how the traffic is generated. We 

now give a survey on traffic modeling and ATM multiplexer performance analysis with 

special emphasis on multiplexers fed by sources as Markov modulated rate processes.

Chapter 1. Introduction 8

1.4 Traffic M odeling and ATM M ultiplexer  

Perform ance A nalysis

When variable bit rate sources (VBR sources) are multiplexed in an ATM network, 

there arise queues fed by a particular form of correlated arrival process. Accurate 

traffic modeling is necessary to characterize this arrival process which is composed of a 

superposition of packet streams generated by these variable bit rate sources. Depending 

on the bit rate variability, these sources may be classified as (Figure 1.5):
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• on-ofF sources,

• more general piecewise constant rate sources,

• continuously varying rate sources.

a) on/ofF source

b) rate varying by steps

c) rate varying continuously

Figure 1.5: Variable bit rate sources

Many Forms oF data-, speech- and image-based communication are expected to exhibit 

output oF the first kind while the latter two may be more typical to multi-media and 

VBR video communications [40]. In this dissertation, we will rather Focus on on-ofF type 

source modeling.

Bit rate variability manifests itself in the network by the changing frequency of cell 

arrivals. Sources employing constant bit rate coding schemes transmit cells periodically 

at a frequency determined by their bit rate. On-off sources emit cells periodically during 

activity periods, or “bursts”, of variable length alternating with silence times, also of 

variable length. The superposition of on-off sources has been studied, notably, in the 

context of packetized speech [6],[19] for which the silence times and the activity times are 

modeled to be exponentially distributed with means 1/A and l /p,  respectively [5],[61]. 

The bit stream belonging to an on-off source is therefore characterized by a 2-state 

continuous-time Markov chain (Figure 1.6). This 2-state model can easily be extended
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Figure  1.6: 2-state Markov model for an on/off source.

to construct an A'^-state Markov chain to describe the superposition process of N  on- 

off sources of the same type (Figure 1.7). The birth-death model in Figure 1.7 might

F igure  1.7: Birth-death model for the superposition of N  on/off sources.

also be used to characterize a single video source without scene changes [2],[46]. In 

case scene changes are taken into account, the above model should be extended to a 

multi-dimensional birth-death process [46].

Let us focus our attention to the birth-death process. In an arbitrary state, say n, of 

the Markov process whose state holding time is exponentially distributed with parameter 

cr„ =  (A'̂  — n)A -f np, n sources independently transmit cells periodically with the same 

period. Generally, we call such an arrival process a Markov Modulated Periodic Arrival 

Process (MMPAP). When such a process is offered to a deterministic server, we call 

the resulting system the MMPAP/D/1 queue (Figure 1.8). This queueing system has 

turned out to be one of the most challenging problems of teletraffic theory in recent years 

due to its practical significance in the ATM context. It has long been known that the 

apparently convenient device of assuming that the superposition of a large number of 

independent on-off sources yields a Poisson arrival process can lead to quite inaccurate 

results [6],[47]. More accurate queueing models must take into account the correlated 

nature of the cell arrival process which possesses basically two kinds of correlation [47]:
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active idle active

MUX I
network

link

F igure  1.8: Statistical multiplexing of on-off sources (MMPAP/D/1 queue).

• negative correlation of cell arrivals in successive time slots due to the periodic cell 

emissions of active sources,

• positive correlation between the average arrival rates in successive periods of length 

greater than the inter-cell time of the multiplexed sources.

Various modeling approaches in the literature attempt to account for these correlation 

effects while providing computationally tractable performance analysis schemes. A 

promising approach is to approximate the superposition nonrenewal point process by 

a renewal process [47] in which positive correlations are accounted for by the choice of 

the second moment of the packet interarrival time distribution.

An approach which has proved more popular is to approximate the arrival process 

by a Markov Modulated Poisson Process (MMPP): the arrival process is governed by 

the evolution of a discrete-space Markov process; when in state n, cells are generated 

according to a Poisson process with intensity A„. The resulting queue is called the 

M M PP/D/1 queue since the packet lengths are fixed in the ATM environment (see 

Figure 1.9). The more general queueing system named the MMPP/G/1 queue for which 

packet service times have a general distribution is solved algorithmically in [20] using 

matrix geometric methods [39]. The technique suggested by Neuts [39] is iterative and 

has been criticized in [6] to have a slow convergence rate. A 2-state MMPP is proposed 

in [20] where four parameters (state transition rates and the two arrival intensities) of 

the MMPP are chosen to match four particular arrival process characteristics of the
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Ai A2

C packets/s

buffer deterministic
server

F igure 1.9: The MMPP/D/1 queue.

superposition process. Other choices for the four fitting parameters have also been 

proposed in [3],[35] to yield more accurate results. In [25], the superposition of N  

on-off sources is modeled by an A^-state MMPP where the arrival intensity is simply 

proportional to the number of active sources, in other words, an on-off source is assumed 

to generate packets with respect to a Poisson process in activity times. Figure 1.10 

demonstrates the underlying multiplexing system in Ide’s work [25]. MMPP models are

active idle active

n MUX
network

link

F igure  1.10: Statistical multiplexing of on-off sources (Poisson arrivals during on 
periods).

also employed in [45] to characterize not only the packetized voice traffic but also a 

superposed video arrival process.

On the computation side, when the number of states of the Markov chain increase, 

numerical problems occur in solving the state equations of the MMPP/D/1 queue to 

determine the performance mecisures of interest. Spectral expansion techniques [13] are
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shown to reduce this complexity in the MMPP/M/1 framework for which packet lengths 

are assumed to be exponentially distributed. The deterministic service time is in general 

hard to tackle in the MMPP framework. Certain Erlang distributions are therefore used 

to approximate the deterministic service time distribution in [45],[56],[60].

The use of point process models, such as the MMPP, can be criticized on two counts

[40]:

• they do not accurately represent short term correlation effects,

• performance evaluation remains complex.

Simpler models, which also capture the long-term correlation characteristics of the 

arrival process, are obtained through the so-called fluid flow approximations. In these 

models, the cell arrivals are approximated by uniform and continuous arrival of fluid, 

in other words, the concept of packetization is absent. This appears to be a reasonable 

approximation when the cell interarrival times are small compared to the time between 

arrival rate changes.

Fluid flow models have attracted the attention of many researchers in the 

telecommunications literature due to their simplicity. The superposition of a finite 

number of on/off sources is considered in [1] where the arrival rate is modulated with 

respect to the state of a Markov chain as in MMPP (see Figure 1.11). A computationally

active idle active

network
link

Figure 1.11: Statistical multiplexing of two-state fluid sources, 

efficient algorithm is also given, however, the model does not give accurate results for low
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to moderate traffic when packet layer contention dominates over burst layer contention

[36]. The model proposed in [1] is extended for the finite buffer case in [54] to solve 

for the information loss rate, a critical value in ATM networks. In [49], the authors 

give a general algebraic theory for separable Markov Modulated Fluid Sources (MMFS). 

This actually removes the restriction of the on-off type modeling of a single source. In 

addition, the work presented in [49] is capable of treating a superposition of nonidentical 

MMFS, thus allowing multi-state and multi-class traffic into the buffer. The common 

feature of continuous time fluid flow models is that the solution to the queue length 

distribution is given in terms of a linear differential equation with constant coefficients. 

Discrete time models with correlated input described in [34] are also the members of 

the family of fluid flow approximations. In spite of their shortcoming in accurate traffic 

modeling, many extensions of fluid flow models have been proposed to analyze more 

sophisticated queueing systems (e.g., queues with overload control [11],[63]). In [46], the 

authors employ fluid flow models to evaluate the performance of a statistical multiplexer 

fed with variable bit rate video sources.

The negative correlation between cell arrivals in successive slots is a local phenomenon 

occurring while the composition of active sources remains constant. When the overall 

arrival rate remains below multiplex capacity, the system behaves like the so-called 

' ^ D i / D / l  queue: a superposition of independent periodic sources of possibly different 

periods and random phase is offered to a deterministic server (see Figure 1.12). The

MUX J _  J _
network

link

Figure 1.12: ^ A / D / l  queue.

system is called the nD/ D/ l  queue if all the users have an identical period (Figure
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1.13). The TiDfD/l  queueing system is solved in [8] and revisited more recently in

MUX
network

link

Figure 1.13: n D/ D/ l  queue.

[4],[44],[57]. Among these approaches, the technique in [4] based on the Ballot theorems 

[52] seems to be the most efficient one in terms of computational complexity. The more 

general superposition of sources with different periods is considered in [31] and [44], 

where accurate approximate formulas for the queue length distribution are derived.

The concept of effective bandwidth has been used to propose admission control policies 

in ATM based networks. In [23] and [24], flui has shown that for a simple model of an 

unbuffered resource, the probability of resource overload can be held below a desired level 

by requiring that the number of calls N{ accepted from sources of class f, i = 1 ,2 ,.. . ,  m, 

satisfies

t
where C  is interpreted as the capacity of the resource, and e, is the effective bandwidth 

of each source of class i. Kelly [28], Gibbens and Hunt [16], Guerin, Ahmadi and 

Naghshineh [18], and Elwalid and Mitra [12] offer different approaches to effective 

bandwidth for buffered resources. Kelly finds effective bandwidth for GI/G/1 queues 

(queues with general and independent interarrival and service time distribution). In 

[16], effective bandwidth of on-off type fluid sources is derived for the asymptotic regime 

of large buffers and small buffer overflow probabilities. Guerin et al. [18] independently 

obtain the formulas in [16] and extend them through heuristics. In [12], the authors 

extend the results of [16] to multi-state sources both in the MMFS and MMPP/M/1 

frameworks. They show that the effective bandwidth of a Markovian source is the



Chapter 1. Introduction 16

maximal real eigenvalue of a matrix derived from the source and channel characteristics, 

and of dimension equal to the number of states.

1.5 O bjectives and O utline o f the Thesis

In this dissertation, we have considered the queueing analysis of a statistical multiplexer 

which plays a fundamental role in the performance evaluation of ATM networks. The 

system of interest is a FIFO buffer located at one of the output ports of an ATM switch 

which is capable of multiplexing variable bit rate sources. What makes the problem 

challenging is that the interarrival times of the incoming cell streams to the multiplexer 

are correlated. Teletraffic modeling approaches attempt to characterize this correlation 

to provide computationally tractable analysis schemes. For voice and video sources, it 

has widely been accepted that, the arrival rate of information to the multiplexer changes 

with respect to the state of an underlying continuous-time, discrete-state Markov process. 

These type of arrivals are called Markov modulated rate processes. In this model, we 

also need to specify the distribution of the interarrival times of the cell arrivals whose 

rates are governed by a Markov process in order to have a complete characterization of 

the input traffic. Among the continuous-time approaches, fluid flow models, periodic 

arrival processes, and Poisson processes are essentially used in the literature to capture 

this cell generation process.

The case of a buffer offered with a Markov modulated periodic arrival process is the 

most accurate model for a wide variety of input traffic types, including voice, video, 

and interactive data. Despite the accuracy in traffic modeling, no exact solution is 

available for the so-called MMPAP/D/1 queue. Fluid flow approximations and MMPP- 

beised approaches are among the most popular techniques that attempt to give a solution 

for the buffer occupancy or the waiting time in this system. These proposed methods 

in general suffer from inaccuracy since they are incapable of capturing the short term 

cell scale fluctuations. Fluid models have especially attracted the attention of many 

researchers in this field due to the ease of computation of the performance measures of
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interest despite the inaccuracies encountered in low to moderate traffic regimes. MMPP 

based models (i.e., MMPP/D/1 queueing system) seem to be more appropriate in terms 

of accuracy but they suffer from numerical problems especially when the number of 

states in the Markov chain are large. Our main goal in this dissertation is improving 

the accuracy of the fluid flow approximations by better traffic modeling but preserving 

its ease of computation. In other words, our objective is to derive the queue length 

distribution in both the MMPAP and MMPP frameworks while making use of fluid flow 

techniques.

We now describe the contributions of the thesis and the significance of the results we 

have obtained.

a) Fluid flow approximations.

• A new derivation of the queue length distribution is provided in transform 

domain.

• The underlying method in this derivation is readily extendible to more 

sophisticated queueing systems (i.e., MMPP/D/1 queue), basically an 

appropriate characterization of the transient behavior of a simpler system 

(i.e., M/G/1 queue) is required.

b) ATM  multiplexer analysis offered with a superposition of on-off sources.

We extend the fluid flow technique by incorporating also the short-term cell layer 

fluctuations, in an approximate way, within the same model. For the case when 

the system is momentarily underloaded and the number of active sources is fixed, 

a simple relation is derived. This relation shows that, over complete periods, the 

queue length evolves as the maximum of a fluid flow term and the queue length in 

equilibrium. This relation is then used to obtain the following results.

• Via a linear interpolation of the queue length for the nD/D/ l  queue which is 

exactly known at certain time epochs, a new approximation is proposed for 

the MMPAP/D/1 queue.
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• The solution to the queue length distribution is given in terms of a linear 

diflPerential equation as in the fluid queue. The difference is that, in the fluid 

queue, the coefficients of the differential equation are constants, in the solution 

presented here, they are variable.

• This approximation captures the short term cell scale fluctuations and is 

therefore able to approximate the queue length distribution accurately ir­

respective of the utilization in the system. Assessment of the approximation’s 

performance is made via a numerical study of a packetized voice multiplexer.

• The solution procedure is quite similar to fluid flow approximations, the 

essential difference being the determination of a certain linear operator 

obtained by a number of matrix exponentiations and matrix multiplications. 

Methods that can decrease the computational effort in computing this linear 

operator are presented through numerical examples.

• The case of finite buffers is also investigated. The underlying method is based 

on an extension of [54] where fluid flow approximations are used to solve for 

a packetized voice multiplexer of finite size.

• An effective bandwidth may be assigned to an MMPAP in the asymptotic 

regime of large buffers and small overflow probabilities which is the same as 

assigned to an MMFS.

c) MMPP/D/1 queue.

We provide a novel proof for the transform expression of the unfinished work in an 

M M PP/G/1 queue based on Takacs’ integro-differential equation that describes 

the transient behavior of the M/G/1 queue. The deterministic service time 

distribution is then approximated by several Pade approximations of different 

orders in transform domain. A Pade approximation is simply a rational function 

for which a number of first coefficients of its Taylor series expansion match with 

those of the original function. In our Ccise, the original function is the Laplace 

transform of the probability density function of the deterministic service time. The 

number of coefficients to be matched depends on the order of the particular Pade
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approximation. The significance of these results lie under the fact that the algebraic 

theory developed for Markov modulated fluid sources [49] and the MMPP/M/1 

system [13] is readily extendible to the MMPP/D/1 queue using the Pade theory. 

Our results are:

• Instead of Erlang distributions, Pade approximations in transform domain are 

employed for the deterministic service time which give more accurate results 

when the computational complexities of these proposed methods are forced 

to be the same. The underlying reason is that, use of Pade approximations 

allows one to exactly match the higher order moments of the deterministic 

service time distribution whereas Erlang distributions don’t have this nice 

property. To give an example, the zero variance of the deterministic service 

time which plays a critical role in the performance of the queueing system can 

be captured by a simple Pade approximation. On the other hand, no matter 

how one can choose the degree of approximation in using Erlang distributions, 

the zero variance cannot be captured exactly.

• A simple relationship between the fluid flow models and the MMPP/D/1 

queue in transform domain is obtained via the use of Pade theory.

• The approximations proposed for the MMPP/D/1 system follow closely the 

fluid flow methodology and may benefit from the results obtained in the 

literature for the fluid models. This benefit is shown to be possible if finding 

computationally efficient algorithms is of concern. In order to demonstrate 

the viability of this benefit, a procedure is given when the input traffic is a 

superposition of many 2-state MMPP’s of the same type.

• The extension to finite buffers (i.e., M M PP/D /l/K  queue) is also presented. 

The computational complexity of the proposed algorithm is independent of 

the buffer size and therefore, the computation is tractable even for large buffer 

sizes.

• An effective bandwidth assignment is shown to be possible for an MMPP in 

the asymptotic regime of large buffers and small overflow probabilities.
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We believe that Table 1.2 will be helpful in clarifying the issues encountered in traffic 

modeling and performance evaluation of ATM networks. This table attempts to 

summarize the previous work and the methods we propose in certain perspectives to 

yield an easy understanding. In this table, we present the queueing models used in 

certain references and in this dissertation.

reference no. of 
act. sources

arrival
type

serv. time 
distr.

no. traf.
clctsses

model 
app./exact

solution 
app./exact

Anick [1] Markov mod. fluid fluid 1 app. exact
Stern [49] Markov mod. fluid fluid >1 app. exact
Heffes [20] Markov mod. Poisson general 1 app. exact
ElwaUd [13] Markov mod. Poisson exp. >1 app. exact
B liar gava [4] fixed periodic determ. 1 exact exact
Roberts [44] fixed periodic determ. >1 exact app.
Chapter 3 Markov mod. periodic determ. 1 exact app.
Chapter 4 Markov mod. Poisson determ. >1 app. app.

Table 1.2: A brief survey of teletraffic analysis of ATM multiplexers.

The organization of the material is as follows. Chapter 2 is devoted to the analysis 

of an ATM multiplexer with MMFS models. We then examine the MMPAP/D/1 

queue in Chapter 3 and propose an approximate technique to evaluate the queue length 

distribution in this system. The objective of Chapter 4 is the analysis of the MMPP/G/1 

queue, and in particular, the MMPP/D/1 system. Conclusions and suggestions for future 

work are given in Chapter 5.



Chapter 2

Markov M odulated Fluid Sources

In ATM networks, information arrives to the multiplexer at a rate which fluctuates 

randomly, often with a high degree of correlation in time as explained in the preceding 

chapter. Accurate capture of these statistical fluctuations is facilitated by modeling the 

time-varying arrival rate to be governed by a Markov process. If the information arrives 

uniformly on each line of the multiplexer with a rate controlled by the state of the Markov 

process and the server similarly removes information from the queue uniformly, then this 

model is generally called the Markov modulated fluid model and finds its roots in the 

works of [1],[15]. This model is also called the uniform arrival and service model (UAS) 

in the packetized voice framework [54].

The performance of the multiplexer when the traffic offered is fixed, has two distinct 

components corresponding to congestion phenomena, which are generally referred to as 

cell layer congestion and burst layer congestion [42]. Let us have in mind a superposition 

of homogeneous on-off sources. Cell layer congestion occurs due the simultaneous arrival 

of cells from independent sources when the overall cell arrival rate due to active sources is 

less than the multiplex capacity. Burst layer congestion occurs when the overall arrival 

rate exceeds the multiplex capacity; buffer content continues to grow as long as the 

arrival rate excess exists.

21
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As many authors have noted, the fluid flow models are well matched to the ATM 

environment at the burst layer [11],[40],[37]. Several major reasons have been mentioned:

• the small and uniform cell size and the constant interarrival time of the cells in a 

burst (periodic packet arrivals for continuous bit oriented (CBO) sources) fit easily 

in the fluid framework and are difficult to handle in the queueing framework,

• the computational complexity encountered in solving the fluid models in the finite 

buffer case does not depend on the buffer size while this complexity increases in 

the queueing model.

The major disadvantage of the fluid model is that, it cannot handle the short-term 

queue length increases at the cell layer since it removes the concept of packetization from 

the real arrival process. This is actually why the fluid flow approximation techniques 

generally do not produce accurate results in light to moderate traffic regimes particularly 

when the packet layer contention dominates over the burst layer contention. One of the 

main goals of this dissertation is to improve the accuracy of the fluid flow approximation 

by refining upon the source model while taking advantage of the ease in computation 

encountered in fluid models.

The organization of this chapter is as follows. First, the buffer occupancy and queueing 

delay expressions are obtained in a general Markov modulated setting. Then, the case 

of a superposition of two-state on-off sources being fed into a multiplexer is discussed. 

Finally, a new mathematical formulation is developed in this particular case which yields 

an expression for the stationary queue length distribution. The formulation here can 

easily be generalized to buffers with more sophisticated input traffic models including 

Markov modulated Poisson sources and Markov modulated periodic sources. These 

models will be investigated in the forthcoming chapters in which the relationships and 

performance comparison of these models and the fluid flow models will be examined. 

This is one of the reasons why we include a brief presentation of Markov modulated fluid 

sources in this dissertation. Except for the alternative mathematical formulation that 

we propose, the exposition that follows is mainly based on [49].
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2.1 Problem  Form ulation and Analysis

Consider a buffer with arrival rate \{S{t)) where S(t) is the state of a finite irreducible 

Markov process at time t. Let the service rate be C. Let X{t)  (non-negative random 

variable) be the buffer content at time t. Within the fluid flow framework, the behavior 

of X{t)  in the infinite buffer case is described by

^  = A (S (())-C , A '> 0 . (2.1)

Without any loss of generality, s € S is assumed to be integer-valued, that is;

S ( i)€  { 0 ,1 ,2 ,. . . , iV}.

In view of ATM multiplexers, the size of the Markov chain, -f 1, depends on the 

total number of individual sources that can be multiplexed on a common link. In the 

sequel, we will describe this dependence when a number of homogeneous on-off sources 

are statistically multiplexed.

Now let
P{t,s,x)  = Pr{S{t) = s,AT(i) < x}.

Since the modulating Markov process is finite and irreducible, its equilibrium 

probabilities
7Tj = lim Pr{S(t) = s}t-*-oo

exist. The mean arrival rate A to the buffer is expressed as

A = 5]7r,A(s),
5GS

by which we can find the system utilization

p = \¡C.

A necessary and sufficient condition for the existence of equilibrium probabilities F(s, x) 

for the joint process (S, X)  in the infinite buffer case is p < 1. We therefore assume that 

this condition is fulfilled in which case

F{s,x)  =  Hm P (t,s ,x ).
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Let M(s,u)  be the transition rate from state u to state s for the underlying modulating 

process for u 7  ̂ s, and define

M(s,s)  = - Y , M { n , s ) .

The forward Kolmogorov differential equation defining the function P(t ,s ,x)  for this 

system is [49]

- ^ + d { s ) —  = Y^M{s,u)P{t ,u,x) ,  (2.2)

where

d{s) = A(s) -  C.

In order to find the equilibrium probabilities of the joint process, we set ^  = 0 in 

equation (2 .2) to obtain

d(s)— F(s,x) = J 2 M( s , u)F(u, x ). (2.3)

The equation (2.3) represents a set of -f 1 linear ordinary differential equations which, 

with suitable boundary conditions, can be solved uniquely for F(·). Without loss of 

generality, we assume A(s) 7  ̂ C for each s, otherwise the set of equations in (2.3) become 

singular. In this case, one equation becomes algebraic and may be removed. Denoting

now

F(x) = [ f (0,i ) n i . i )  ■■■ F(N,x)  

D =  diag{d{j)}, ;  = 0 ,1 ,. . . ,  Â ,

M  =  [M (i,;)j, = 0,1,...,AT,

equation (2.3) can be rewritten as

D — F{x) = MF{x),  
dx

(2.4)

where M  is the transpose of the infinitesimal generator matrix for the underlying Markov 

process and D is called the drift matrix. The solution to (2.4) then takes the form
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where each pair (z„, satisfies the eigenvalue-eigenvector problem

zD<f> = M(f).

Now let S-  and S+ be the set of states such that A(s) < C and A(s) > C, respectively. 

Also let and d+ be the cardinality of the corresponding sets. It is well-known that 

[1],[49], if the Markov chain is reversible then the differential system described by (2.4) 

has real eigenvalues, only one at the origin, negative, and — 1 positive.

The boundary conditions can easily be formed by observing that

1) F(oo) = 7T = I 7To 7Ti 
Markov process.

is the stationary distribution of the underlying

2) =  0 for Zn > 0, otherwise the solution for the stationary queue length 

distribution grows without bound.

3) For s G 5+, the queue is always increasing, so the queue length cannot be zero. 

Therefore F(s, 0) =  0 for s G 5"+.

Employing these boundary conditions, one can obtain the unique solution for the 

differential equation (2.4). The resulting queue length cumulative distribution function 

(cdf) is then written by the following expression:
N

Pr{queue length < x} = Y^F(n,x) . (2.5)
71=0

The problem dealt with is in fact a standard eigenvalue problem and a solution subject 

to the boundary conditions is, in principle, straightforward. However, it becomes 

intractable because of its size since the number of equations (e.g., -f- 1 in the above

framework) can range from hundreds to tens of thousands in typical situations in ATM 

based networks. Therefore, special structure of the system equations should be taken 

into account in order to avoid numerical problems.

We now consider the multiplexing of several calls of on-off type onto a single link with 

capacity C. Let P  denote the peak rate of one call in packets/sec. The link is shared
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by N  statistically identical and independent calls alternating between active and idle 

periods, which are assumed to be exponentially distributed with mean values fx~̂  and 

A“ ‘, respectively (see Figure 1.11). Each call generates information at a rate P  when 

active and at rate zero when idle. This model has indeed been used for packet voice with 

speech detection [6],[36],[54].

The number of active calls at time f, S{t), is represented as a continuous-time birth- 

death process. When S(<) == n, the mean arrival rate to the multiplexer is Pn. If 

p{ti, m)  =  M{m, n) is defined to be the transition rate from state 7i to state m, the birth 

and death rates are given [54] by

p(n,n + l) =  ( N — n)X, n = 0,1, . . .  , N  -  I, 

p{n,n — l) =  np, n — l , 2 , . . . , N .

We also define the total probability flow rate out of state n, <r„,

<r„ = (N  — n)A + np.

Within this framework, (2.4) holds with

D = diag{Pn — C},n  = 0 ,1 ,. . . ,  Â ,

and

M =

-(To p(l,0)
p(0,1) -(Ti p(2,1)

p(l,2) -(T2 p(3,2)

p{ N - 2 , N - \ )  -(JN-i p { N , N - l )  
p { N - l , N )  -CN

(2.6)

In [1], this particular structure of the infinitesimal generator matrix is made use of 

in order to evaluate explicitly the eigenvalues and the eigenvectors of the associated 

differential system, thus providing a computationally efficient method for the analysis of
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a statistical multiplexer in case a single class of traffic is present. There the eigenvalue 

problem is reduced to a set of uncoupled quadratic equations for this birth-death process.

In practice, the queueing delay distribution may be of greater interest. In fact, the 

buffer occupancy corresponds, with a change of scale, to the virtual waiting time (delay 

seen by an arriving cell). Taking into account the change of scale, we have

Pr{delay <  (} =  ^  J2 nF{n,Ct), (2.7)

where a = is the average fraction of active calls. This can be verified by observing 

that an arbitrary cell arrives in state n with probability Then,

Pr{cell delay < 0  ~  Pr{cell delay < i, cell arrives at state n}

7r„n
= ^2  ^^{c^ll delay < t | cell arrives at state 

= Pr{queue length < Ct \ chain state =  n}
7T„n

qN
J2nF{n,Ct)

The next section is devoted to our alternative formulation of the same problem using 

transform domain techniques. The significance of this formulation will be clear when we 

extend it to more general Markovian sources in the subsequent chapters.

2.2 A n A lternative Formulation

Consider the same traffic model. Let X{t)  be the buffer content and S(t) be the state 

of the Markov chain at time t. We then define the following stationary probabilities (as 

t oo. At —+ Q·̂ ):

Fb{n^x) = Pr{S(t) -  n}Fb{n,x), (2.8)

where
Fb{n,x) =  Pr{X{t)  < X i S(i -f At) = n,S(t) ^  S{t + At)}
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and

where

Fe(n,x) = Fr{S(t)  = n}Fe(n,x),

Fe(n, x) = Fr{X(t)  < x j S ( t  + At)  7  ̂ S(i), S(0 = n}.

(2.9)

Note that, since S(t) is the state of a continuous-time Markov chain, given S(<), the 

buffer content X(t)  is independent of S(i -f At). This fact yields

Fe(n,x) = Fr{X(t )  < X I S(i) = n}.

and we therefore write

Fe(n,x) = Fr{X(t )  < x,S(t)  — n}. (2.10)

To interpret, Fb(n, x) is the equilibrium probability that the queue length is less than 

X given that a state transition to state n is about to occur. Similarly, Fe(n,x) is the 

stationary probability that the queue length is less than x given that a state transition 

from state n is about to occur. In other words, we observe the queue length at the time 

epochs when state transitions occur and henceforth define the corresponding random 

variables. Recall that the state holding time at state n is exponentially distributed with 

parameter cr„, which is in fact, the total flow rate out of state n. Conditioning on the 

state holding time and by exploiting the fluid flow model (i.e., queue length changes with 

a rate C — Fn  at state n), we can now write

/•oo
F e(n ,x )=  /  F b { n , x ( C  — Fn)t)anexp{—crnt)dt, x > 0 .  (2-11)

One can verify by using the equality (2.11) the following relationships:

Fe{n,x) =  < ^b(n, x) * { p ^  exp{ - ^ ^ )u { - x ) ) ,  X > 0, Fn < C 

F b { n , x ) * { p ^ e x p { - ^ ^ ) u { x ) ) ,  x > 0 ,  Fn > C
(2.12)

where * is the convolution operator and u{·) is the unit step function. In case Fn < C, 

the equality holds for x > 0, but the term on the right-hand side may be nonzero for
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a: < 0 whereas Fe{n, x) must equal zero in this interval. In other words, the expression 

(2.12) suggests that Fe(n,x) is the orthogonal projection of the term (when Pn < C)

onto the positive a:-axis. On defining A (n ,s) and Fe{n,s) as the Laplace transforms of 

Fb(n,x) and Fe{n,x), respectively, Fe{n,s) turns out to be the Toeplitz operator with 

symbol H  operating on Fb{n,s) [14], where

<T„ 1

Then, in case Pn  < C we have [14]

Fc{n,s) = [H{s)Fb{n,s)], (2.13)

where [•]j denotes the stable part of transform [·]. To explain, since Fg is a nonnegative 

random variable, the unstable part of the above transform corresponding to negative 

queue lengths should be removed when Pn < C. In regard of this.

Fe{n,s) = < Pn -C s+—£n_
P n - C

Cn h(n,3)
if Pn < (7, 

if Pn > C.

Remark that

(2.14)

(2.15)

Fb{n,x) =

Our objective now is to express FbS in terms of Fg's. For this purpose, we rewrite 

Fb{n,x) in equation (2.8) as t oo. At  —* O·**:

E,n^n Pr jXj t )  < X, s{t + At) = n, Sjt) = m}
Em/n Pr{S{t  + At) = n I S(t) =  m}Pr{S(t) = m}

_  Em^in < a: I S(t +  At) =  n, S(t) =  m}Pr{S(t + At) -- n j S(t) = m}7Tn
Em,inP("i»«)^mAt

Fe{m,x)p{m,n)w^
~  Em^in n)TTrn
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Multiplying the last equality by 7r„ and recalling the balance equations of the Markov 
process:

7TnO-„ = P(^,n)Tr^
m^n

we have

or, in transform domain,

(TnFb{n,x)= ^  p(m ,n)Fe(m ,i),
m^n

cTnFb{n,s)=  ^  p(m,n)Fe(m,s).
mj n̂

(2.16)

Substituting equations (2.15) and (2.16) into (2.14) and solving for Fe{n,s), one finally 
obtains

( s / - I > - i M ) A ( 5 ) =  [ Fe(0,0) Fe(l,0) ··· Fe(Co,0) 0 ··· 0
iT

where Fe(s) is the Laplace transform of Fe{x) and Co is the largest integer n such that 

Pn < C. This transform equation is actually the transform domain equivalent of the 

equation (2.4) with the imposed boundary conditions. One can now easily write down 

the buffer occupancy cdf;

N
Pr{queue length < a:) Prjqueue length < a;, chain state = n},

n=0
N

= ^i^e(w,a:). (by definition (2.10))
n = 0

This kind of an alternative formulation in terms of transform domain equations 

provides a major advantage; it forms a basis for obtaining similar results for queues 

and point processes in which the traffic sources are Markov modulated Poisson processes 

or Markov modulated periodic sources which are the topics of the forthcoming chapters. 

The stationary probability definitions for Fj(n, x) and Fe(n, x) will be the same as well 

as the interconnecting equations (2.16) for these upgraded models. The underlying 

reason is that these interconnecting equations are only dependent upon the modulating 

Markov chain but not the type of arrivals (i.e., Poisson, periodic, etc.). What will
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mainly differ is the relation between Fb{n,x) and Fe{n,x) as in equation (2.14) which 

will critically depend on how cell generation takes place. The main approach is to obtain 

a counterpart to equation (2.14) for the MMPAP/D/1 and the MMPP/D/1 queues 

through the transient behaviors of the nZ)/T>/l and M/D/1 systems, respectively.

The emerging high-speed networks, particularly the ATM-based broadband ISDN, are 

expected to integrate through statistical multiplexing large numbers of traffic sources 

having a broad range of burstiness characteristics. The fluid flow model is suggested 

to be a prime instrument for analyzing such systems since it handles the essential 

characteristics of the traffic process at the burst layer. With this model, besides a single 

class of traffic with each connection having two states, multi-state and multi-class traffic 

feeding finite buffers with overload control are also examined in the literature [11],[32] 

with computationally tractable algorithms. Despite being computationally tractable 

and extendible for analysis to more complicated queueing systems encountered in ATM 

networks, fluid flow models do not generally give accurate results for low to moderate 

loads. In the subsequent chapters, we attempt to overcome this drawback in accuracy by 

using more accurate source modeling, such as the MMPP, but using the same analytical 

methods used for solving the fluid models.

A typical instrument for controlling congestion is the admission control which limits 

the number of calls and guarantees a grade of service determined by the cell loss 

probability in the multiplexer. Fluid flow models have made it possible to assign an 

effective bandwidth to each source which is an explicitly identified, simply computed 

quantity, varying between the mean and peak bit rates of the source depending on its 

burstiness and the grade of service requirements of the call [12],[16], [18]. This quantity 

has been shown in the above-mentioned references to yield efficient call admission 

procedures in the natural asymptotic regime of small cell loss probabilities and large 

buffer sizes. This in turn enables us to extend the model and analysis to a network of 

channels using approximations such as the Erlang fixed point procedure for a standard 

circuit-switched network [29]. One other objective of this study is that the use of the 

same mathematical framework as in fluid flow models will make it possible to assign an
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effective bandwidth to calls of more sophisticated type (e.g., MMPP type).



Chapter 3

M arkov M odulated Periodic 

Arrival Process

In this chapter, we focus on a particular category of multiplexers whose inputs consist 

of periodic packet streams. Periodic packet generation is a major feature of continuous 

bit stream oriented (CBO) sources. With fixed-length packets as in ATM networks, 

each CBO source generates packets periodically with the period being the packetization 

time. Depending on the nature and the bit rate of the underlying application, the 

periods separating successive packets (or the packetization times) can widely differ. The 

queueing system that models the sharing of a network link by such incoming connections 

is actually a single server queue with periodic arrivals and deterministic service times. 

We call this system as an n D/ D/ l  queue (n denotes the number of connections) when 

all connections have an identical period and a X̂ Z),·/£)/! queue where multiple periods 

are allowed to coexist.

In our queueing model, it is assumed that a silence detection mechanism exists for 

CBO sources in the sense that each user alternates between active (on) and idle (off) 

times of variable length. Sources generate packets periodically at a constant rate during 

active times and they generate no data during idle times. The 2-state continuous-time 

Markov chain model will be used to describe the above-mentioned traffic stream (Figure

33
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1.6). In this model, the idle times and the activity times are exponentially distributed 

with means 1/A and 1/p, respectively. The TV-state Markov chain (Figure 1.7) now 

describes the superposition process of N  on/off sources where the state of the Markov 

chain is defined to be the number of active sources. In an arbitrary state, say n, of 

the Markov chain whose state holding time is exponentially distributed with parameter 

=  (TV — n)A + np, n sources independently transmit cells with an identical period. 

In general, we call this arrival process a Markov Modulated Periodic Arrival Process 

(MMPAP). Even though the Markov process that governs an MMPAP is arbitrary in 

the above definition, throughout this chapter we rather focus on the birth-death model 

(Figure 1.7) due to its practical significance. This way of traffic modeling enables us to 

appropriately characterize a packet stream originated by a fixed-bit rate coding scheme 

employed on a 2-state on/oif source with a silence detection mechanism.

Given the network link speed and the traffic parameters of an individual source, we 

are interested in the probability distribution of the buffer content as a function of the 

number of users. This distribution is derived for a discrete-time queueing system which 

operates in a slotted fashion; a slot defines the base unit for data generation and data 

transmission. In particular, in each slot, the link is capable of transmitting one packet 

and an active source generates at most one packet within that time. Such a slotted 

operation is an adequate representation for ATM networks where data transmission is in 

the form of fixed-size packets (cells). Incoming cells are then transmitted on the network 

link and stored in the multiplexing buffer when the aggregate input rate exceeds the 

capacity of the link (Figure 1.8).

The method developed here is valid for discrete-time queueing schemes where the 

modulating process is a continuous-time Markov chain. This choice is due to the discrete­

time operation of ATM multiplexers and the continuous-time nature of the fluid flow 

approximations on the basis of which we make the performance comparisons. This is 

significant because, our approach combines the discrete-time nature of periodic arrivals 

in a slotted system and the continuous-time nature of the underlying Markov chain. The 

framework presented here can readily be reformulated to cover other models (e.g., both



Chapter 3. Markov Modulated Periodic Arrival Process 35

the multiplexer and the chain work in continuous-time (or in discrete-time)).

Consider now the superposition of on-off sources in Figure 1.8 which is offered to 

the ATM multiplexer; when the instantaneous arrival rate is less than the link rate 

and the number of active sources is fixed, the queueing system behaves as the nD/Df l  

queue. The change in the number of active sources (n) which is governed by the Markov 

chain in Figure 1.7 forces us to examine the transient behavior of the nD/ D/ l  queue 

which turns out to have a crucial role in our analytical approach. Actually, the focus 

of this chapter is on the derivation of relationships between fluid sources and CBO 

sources, arrival rates of which are Markov modulated in the same manner, through an 

approximation of the transient behavior of the n D/ D/ l  queue. This approximation 

is mainly based on an interpolation of the queue length of the nD/ D/ l  queue whose 

distribution is exactly known at certain epochs. The ceise of multiple periods have not 

been investigated due to the lack of exact results in the literature for the steady-state 

distribution of the queue length of the Y/,Di/D/l  queue. The solution to the buffer 

content distribution for the overall problem is then reduced to the solution of a linear 

differential equation with variable coefficients whereas in fluid flow approximations, the 

corresponding equation is simply linear with constant coefficients. Numerical results are 

given in order to demonstrate the performance of our proposed performance analysis 

scheme. Finally, effective bandwidth calculation of on-off sources based on this scheme 

is presented.

The method used in solving for the steady-state distribution of the queue length for 

the Markov modulated periodic arrival case is composed of two main stages. The first 

stage consists of an approximation to the transient behavior of the discrete-time nD/D/ l  

queue in a continuous-time framework. In the second stage, we extend our results for 

the n D / D / l  queue to solve for the continuous-time Markov model which characterizes 

the input traffic. Let us then first consider the nD/ D/ l  queue.
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3.1 n D / D / 1  Queue

Throughout this section, we assume that the number of active users (n) is fixed. In 

our queueing model, the time axis is slotted, where each time slot is ais long as the 

transmission time of a single packet. The packets arriving to the queue are served on 

a first-come-first-serve basis and the queue has infinite size. Each one of the n active 

sources transmits fixed length packets with a period of R  slots, independent of other 

sources. In an arbitrary frame of R  slots, each input source’s packet can be in any 

of these R  slots with equal probability. The source rate in packets/sec is denoted by 

P  and the service rate of the buffer is denoted by C, which actually equals to PR  

packets/sec. Without loss of generality, we assume that the departures take place at the 

beginning of slots, and arrivals during slots. We define the following random variables 

for k = 1 ,2 ,. . . ,  i?,

Qk =  queue length at the end of slot,

ak = number of arrivals in the slot.

Note that

Ol + (*2 +

The queueing discipline is the following:

Qo

+ an = n.

Qk = <
if A: = 0

max((5jt-i — 1,0) + Cfc if A: > 0 

By iteration on Ar, one can check using algebraic manipulations that

Q i  =  max(ai,(5o + fli -  1)

Q2 =  max(a2,ai + 02 -  l,Qo +  fli + «2 -  2)

Qn =  max(0n, Qo + n -  R) 

where the random variable Qn is defined via
R

(3.1)

(3.2)
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Note that if n < i?, (Jr —̂ On as r —+ oo for fixed n. Let us first focus our attention 

on the probability distribution for (J„. This steady-state queue length distribution when 

n < R is explicit!}' given in [4];

n
(3.3)

Note that the buffer cannot contain more than n packets in the steady-state, that is 

Pr{Qn > ?) =  0» q We also define the cumulative distribution function (cdf) of (J„

Q M  =  P’i Q .  < 9).

In [4], the change in the number of active sources, n, is assumed to happen slowly. In 

this case, the queue length reaches its steady-state distribution (J„(·) whenever n < R. 

The equation (3.3) is then sufficient to compute the distribution of the queue length 

and the queueing delay assuming that n does not exceed R so that the queueing system 

is stable. Considering the Markov model (Figure 1.7) which governs the number of 

incoming active sources, we have two significant observations: 1) there are possible 

overload states (n > R) in which case there is no limiting distribution 2) even for the 

underload states (n < R), the state holding time may not be long enough for the queue 

length to reach its steady-state distribution Qn(·) before the Markov chain makes a 

transition to another state. Therefore, an accurate capture of the transient behavior of 

the n D / D j l  queue turns out to be the major issue for our purposes. This problem is 

addressed in the next section.

3.2 A n A pproxim ation to the Transient Behavior 

o f th e n D / D / \  Queue

In order to obtain the queue length evolution equations for n < R, we iterate on equation 

(3.1) on an 72-slot basis so that by periodicity of arrivals we have

Qkft = max{Qn,Qo +k{n -  R)), A: = 1 ,2 ,... (3.4)
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There is, in fact, a strong interconnection between periodic models and fluid flow models. 

In the latter models, information is assumed to arrive uniformly to the multiplexer 

and the server similarly removes information from the queue, in a continuous manner. 

The computational tractability and buffer size independent solvability of fluid flow 

approximation techniques suggest a further study of this interconnection.

If we define Q{t) as the queue length at time t, the fluid flow approximations suggest 

that [1]:

Q{t) = max(0, Qo + {Pn -  C)t). (3.5)

Note that Q{t) may take noninteger values due to the absence of the concept of 

packetization in fluid models.

There are two major differences between the expressions (3.4) and (3.5). The first 

term fissociated with the short term fluctuations of the queue length is the random 

variable Qn in the periodic model whereas it equals zero in the fluid model. This is in 

fact why the fluid flow models do not give accurate results in light to moderate traffic 

when several on/off sources are multiplexed on a common link, as noted by [6],[36]. The 

second term associated with the dynamical behavior of the queue length in (3.5) is just 

a linear interpolation of the corresponding term in (3.4).

For the overload states, since the probability that the queue length is zero at some 

time epoch is negligible, fluid flow approximation gives accurate results in the analysis 

of the transient response of the queue. Taking (3.4) as our key equality, our approach 

is mainly based on interpolating the second term as in (3.5) while preserving the first 

term, Qn, which captures the short term fluctuations in the packet layer. In regard of 

this, we approximate Q{t) by

Q(‘) = (3.6)
m ax{Q n ,Q o  + {Pn — C)t), n < R

Qo + {Pn — C)t, n >  R

The accuracy of this approximation for the nDlDf l  average queue length is examined 

in Figures 3.1-3.4 and compared with simulation results and fluid flow approximations.

Each of these figures corresponds to a specific {R, n) pair and the buffer is allowed to
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20 40 60

t (in slots)

80 100

c) Q(0) = 50

F igu re  3.1: Comparison of approximations for the expected value of the queue length
for the ceise i? = 10 and n =  8 (underload).
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Figure  3.2: Performance of the proposed approximation for the expected value of the
queue length for the case i? =  10 and n =  12 (overload).
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o) Q(0) = 10

50 100 150

t (in slots)

200 250 300

F igu re  3.3: Comparison of approximations for the expected value of the queue length
for the case R = 48 and n =  40 (underload).
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50 100 150

t (in slots)

200 250 300

b) 0(0) = 2

F igure  3.4: Performance of the proposed approximation for the expected value of the
queue length for the case i? =  48 and n = 50 (overload).
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start from different initial conditions. The major observation is that, the approximation 

(3.6) is very accurate for all the traffic regimes for both underload and overload operation 

when the initial buffer content is not in the vicinity of zero. Even in this case, the 

approximation is satisfactory for the underload case and is able to track the simulation 

curve after the queue length reaches its steady-state distribution. When the queue is in 

the overload regime, if the queue starts from an almost empty initial length, the proposed 

approximation underestimates the expected queue length. This is due to the assumption 

that the server will never be idle, however there are actually occasions which yield 

empty queues even when the aggregate incoming rate exceeds the multiplex capacity. 

The probability of the queue being empty at some time epoch decreases rapidly with 

increasing initial buffer content.

Better results compared with fluid flow approximations are always obtained 

irrespective of degree of utilization in the system. While choosing the (R, n) pairs, 

we let the number of active users n be close to the period R, this actually corresponds 

to the worst-case performance of the approximation (3.6). It is not difficult to visualize 

that when R  and n are farther apart, the performance will tend to improve. In the 

next section, the fundamental approximation (3.6) will be used to derive formulas for 

the queue length cumulative distribution function when the number of active users (n) 

is modulated by our birth-death model (Figure 1.7).

3.3 M M P A P /D /1 Queue

Let us now consider the traffic model in Figure 1.7 and concentrate on a particular state 

(n,0 < n < N)  of the Markov chain. Let Fb{n, x) and Fe{n, x) be defined in the same way 

as in the definitions (2.8) and (2.9), respectively. Recall that, the state holding time at 

state n is exponentially distributed with parameter cr„ which equals {N — n) \  + nfi, which 

is the total probability flow rate out of state n. We assume that each time the Markov 

system changes a state, a complete phase randomization of all the sources is assumed 

to occur whereas for the original system, an active source’s phase is independent of the
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other sources’ state transitions. With this assumption, the stationary queue length at 

the moment of state transition to n and Q„ become independent.

By exploiting the approximation in (3.6) and with the above assumption one obtains

Fg(̂ n̂  xj
Ti <c. R

Ff {n,x) ,  n > R (3.7)

where

Fj(n,x) = (^j  Fb{n,x + {C — Pn)t)<7„ exp(—(T„i)di^ w(x), 

and the subscript /  denotes the fluid flow term. We can therefore write

* (^^exp(^ |> f;^)ti(-a ;)), x > 0, n < R  
Ff{n,x) =  ̂ Fb(n,x), n = R  (3.8)

î j)(7i, x) * ( Pn—C ®̂ P((7-̂ Fn X ^  0. n R

Note the analogy between the above expression and the output equation (pertaining to 

Fj{n,x))  of a first order linear system with the input Fb{n,x). This analogous linear 

system is anti-causal in the case n < R  whereas it is causal when n >  R. Writing down 

the state equations of this system, we now have

^ F / ( n ,  x) =  x) + ^ Fb{n, x), X > 0, n ^  R. (3.9)

The balance equations of the continuous-time Markov chain are now employed to relate 

Ffr(n, x )’s to Fe(n,x)’s (see the derivation of equation (2.16)):

anF b{n ,x)  =  p(m,n)Fe(m,x), 
m^n

(3.10)

in which p(m,n)  is defined to be the state transition rate from state m to state n. 

Actually, for our birth-death model,

p (n ,n -l-l) =  {N — n)X, n =  0 ,1 ,. . . ,  N — 1, 

p(n,n —1) = n/x, n = 1 ,2 ,. . . ,  Â .
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Combining (3.7),(3.9) and (3.10), we finally obtain the following differential equations 

for Ff(n,  a;)’s:

V ^ / ( n , x )  +
1

P n - C p(m,n)Q,ri(x}F/(m,x), n ^  R
тфп

F, (R, x)  Y ,  p{m,R)Q„{x)F,(m,x). (3.11)
тфН

In the above equations, Qm{^) = 1> Vx > 0,m > R. If the term Qn(x) is further taken 

as unity Vn, n = 0 ,1 , . . . ,  then the above equations are equivalent to the fluid flow 

equations [1] up to a similarity transformation. The equation belonging to Fj{R,x)  is 

algebraic and may be eliminated. This is achieved by substituting the second expression 

in the first equations of (3.11) so that by defining

F i { x ) = \  F,(i),x) F, ( l ,x)  ■·· F i [ R - \ , x )  f / ( i ? + l , i )  ■■■ Fi(N,x)

we finally have

— Ff(x) = A{x)Ft{x), X >0.  
dx (3.12)

Here the N  x N  matrix A{x) is determined through a suitable arrangement of the 

differential equations in (3.11). Actually,

A { x )  =  Ai^ X Ç: [г, г + 1), г G 0 < г < Д — 2,

and
A{x) = A, ж G [7? — 1, oo)

for some appropriate constant matrices A,’s and A, due to the piecewise constant 

structure of the distributions (5n(·)’̂ · Given the initial condition F/(0), the differential 

equation (3.12) has a unique continuous solution described by

F/(x) = exp(Aj(x -  i))F/(i), x G [г, г + 1], 0 < г < i? — 2, (3,13)

and
Ff{x) = exp(A(x — { R — l)))Fj{R — 1), x > R — 1. (3-14)

In order to find the initial condition, we make use of the following observations:
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1) For n > R, the queue is always increasing, so the queue length cannot be zero. 

Therefore, Ff(n,0) = 0 ior n > R.

2) The matrix A is, in fact, equivalent to the state matrix in fluid flow models, 

therefore it is known to have R — 1 positive real eigenvalues, N  — R  negative 

real eigenvalues and an eigenvalue at the origin. In order for the solution not to 

blow up as X oo, the coefficients associated with the positive eigenvalues of A 

should be set to zero by the choice of F/(0).

3) Defining 7T„ to be the the equilibrium probability of n sources being active, we 

write
Ff{n, oo) = 7T„, 0 < n < A'’.

To explain the observation 3), F/(n,oo) = Fe(n,oo), which equals 7t„, the 

equilibrium probability of n sources being active (by definition).

Now, let Zi be a stable eigenvalue of A  and (j)i be its corresponding right eigenvector. 

Then, by observation 2) and (3.14), the solution to Ff{x) can be written in the form

N - R
Fj{x) — Fj{oo) +  ^  exp(z,(x -  R-\- l))a,<ji,·, x > i? -  1

which yields

i=l

N - R
Fj{R -  1) = Fj{oo) + 53

t=l
(3.15)

where a ,’s are coefficients to be determined. The relationship between F}(0) and 

Fj{R — 1) now needs to be established. Using (3.13), one can write

R-2
F,(R -  1) =  ZF,(0) = ( n  exp(-4.))i>(0). (3.16)

t=0

Besides, by observation 1), i^/(0) is in the form

F;(0) = /
0
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where /  is of size R x 1. Combining (3.15) and (3.16), one can solve for a ,’s and / ,  and 

thus the initial condition Ff{0) through a linear matrix equation of size N.  In fact, if 

we define

$ -  ^(f)i (j)2 · · · <!)N-R j 

a = [ Ol 0,2 O-N-R

then

and
/

$a + Fj[oo) — Z i f

Zi - * ]  F/(«J), (3.17)

where Zi is composed of the first R  columns of Z. Having found the initial condition, 

the solutions given in (3.13) and (3.14) complete our description of the stationary queue 

length distribution through the equation (3.7). The essential difference between the 

method presented here and computations encountered in solving the fluid flow models is 

the computation of the linear operator Z  defined in (3.16).

Using equality (3.7), one can evaluate Fe(n,a;)’ from F /(n ,x )’s so that the overall cdf 

of queue length is written as the sum of the individual elements Fe(n, x) (by (2.10)):

N
Pr(queue length < x) = y ;  F,(n,x). (3.18)

n=0

One other goal is actually finding the distribution of the queueing delay rather than the 

queue length. Queue length can easily be converted to queueing delay by substituting Ct 

for X. However, to form the cdf of the queueing delay, each Fe(n, x) should be weighted 

before summation (see for the derivation of equality (2.7)):
N

(3.19)
1

Pr(delay < t  sec.) = —̂  ^  n Fe{n . , C t )

where

a =
X fi

is the average fraction of sources being active.
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3.3.1 N um erical Exam ples

We first consider a packetized voice system with line speed 320 kbits/s, voice peak rate 

32 kbits/s, mean active period 353 ms and mean silent period 650 ms. The mean number 

of packets in a talkspurt is approximately 22. The packets are 64 kbytes and the packet 

transmission time is 1.6 ms. This corresponds to a link rate of 320 kbits/s, which is 

not the ATM rate. We refer to this example since many authors have concentrated on 

this packetized voice framework [1],[20] to demonstrate their results for the analysis of 

statistical multiplexing.

The simulation results are obtained based on the discrete-time queueing scheme as 

described in Section 3.1. In the simulation, the continuous-time random variables, the 

active and idle periods, are first chosen from the corresponding exponential random 

variables and then rounded to the nearest slot-times. Within an active period, the 

packets from an individual voice source are transmitted in a periodic manner, each 

source’s phase being uniform between 0 and — 1 (i? = 10 for this example). In Table 

3.1, the mean waiting time in the queue with respect to the number of voice sources 

by our analysis method and the fluid flow approximation is given and these values are 

compared with the simulation results. The analysis method proposed in this paper gives 

highly accurate results independent of the degree of utilization in the system whereas 

fluid flow approximation is only satisfactory in the heavy load regime. Figures 3.5 and

3.6 are devoted to the queue length survivor function, which are obtained for the cases

=  15 and 20, respectively. In both cases, the method we propose is able to capture 

the simulation curve for the buffer survivor function very accurately.

We then extend the example to the case where the link speed =  1.536 Mbits/s and 

the packet transmission time = 0.333 ms {R = 48 in this case). This is actually the 

classical packetized voice example found in the literature [36],[54]. To avoid numerical 

inaccuracies in the calculation of the initial condition F/(0), we approximate A, by A for 

i > 9. Actually, a closer study of Qn{·) shows that this leads to an error no more than 

2% for each entry of A,. We note that, as can be verified easily, fluid flow approximation
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F igure  3.5: Comparison of the queue length survivor function for our proposed method
with simulation results and the fluid flow approximation =  15, = 10, utilization
= 0.52).
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X (in cells)

F ig u re  3.6: Comparison of the queue length survivor function for our proposed method
with simulation results and the fluid flow approximation = 20, i? = 10, utilization
=  0.70).
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No. voice 
sources

simulation 
results (ms.)

95 % conf. 
interval

approximations [ms
analysis fluid flow

0.0929 ±0.0021 0.0948 0.00
0.1638 ±0.003 0.1591 0.00
0.2474 ±0.003 0.2383 0.00

12 0.4716 ±0.0035 0.4813 0.0023
14 0.6474 ±0.0065 0.6918 0.0383
16 1.044 ±0.03 1.136 0.269
18 2.205 ±0.04 2.311 1.199
20 5.32 ±0.26 5.46 4.09
22 13.64 ±0.38 13.61 12 .0 2
24 35.53 ±0.96 35.16 33.40
25 61.6 ±2.0 58.8 57.0
26 111.0 ±3.5 105.6 103.8
27 258.1 ±8.7 224.6 222.9

Table 3.1: Comparison of approximations of the mean waiting time with the simulation 
results for the case R = 10.

is equivalent to setting

Ai = A, V i> 0 .

We further use the trapezoidal approximation [55]:

e x p { A i ) ^ { I - A i / 2 ) - \ l  + Ai/2) (3.20)

to avoid eigensystem calculations. The results associated with the mean waiting time in 

the queue is given in Table 3.2.

The queue length survivor functions, for the cases N  = 60, 90, and 120 are presented 

in Figures 3.7-3.9, respectively. Remarkably accurate results are obtained for all the 

cases compared with the fluid flow approximations in spite of the employment of the 

above-mentioned approximations. The numerical results provided here demonstrate 

three significant aspects of our proposed method:

• mathematical formulation is simple and similar to fluid flow models but always
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F igure  3.7: Comparison of the queue length survivor function for our proposed method
with simulation results and the fluid flow approximation {N = 60, i? = 48, utilization
= 0.44).
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X (in cells)

F ig u re  3.8: Comparison of the queue length survivor function for our proposed method
with simulation results and the fluid flow approximation (Â  = 90, /2 =  48, utilization
=  0.66).
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F igure  3.9: Comparison of the queue length survivor function for our proposed method
with simulation results and the fluid flow approximation = 120, R = 48, utilization
= 0.88).
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No. voice simulation 95 % conf. approximations [ms]
sources results (ms.) interval analysis fluid flow

60 0.1243 ±0.0004 0.0774 0.00
80 0.222 ±0.001 0.186 0.00
90 0.298 ±0.003 0.290 0.00

100 0.431 ±0.016 0.482 0.02
110 0.976 ±0.077 1.096 0.36
12Ô 4.52 ±0.2 4.72 3.49
125 12.51 ±0.7 12.20 10.14
130 36.91 ±1.15 36.20 32.60
132 66.0 ±5.2 64.26 57.90
134 151.5 ±12.7 142.7 124.6

Table 3.2: Comparison of approximations of the mean waiting time with the simulation 
results for the case i? = 48

yields better results,

• the method provides satisfactory results through all traffic regimes,

• besides the averaged performance criteria (e.g., mean queueing delay, mean buffer 

size), the method is able to capture the whole cdf of the queue length.

Before going through a second example, let us focus our attention on the 

computational complexity of the proposed algorithm. The main difference between the 

algorithm presented here and the fluid flow approximations lies under the computation 

of the operator Z  defined in (3.16). This requires the computation of — 1 matrix 

exponentials of size + 1 and R - 2 matrix multiplications of size + 1. It is in fact 

possible to decrease this number of matrix exponentiations and matrix multiplications 

without significantly degrading the performance of the algorithm.

Note that, the convergence rate of A{ to the matrix A as i R — 2 is fast. This 

can be concluded from the equation (3.3) where Pr[Qn > <l) approaches zero quickly as 

Ç —f n — 1. One can therefore approximate A{ by A Îor i > j  — I, for some appropriate
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j ,  j  < R  — 1. The revised version of the algorithm then reduces to computing

Z  «  (JJexp(/l,·)),
t'=0

(3.21)

and solving for the unknowns a,’s and /  through the continuity of the solution of the 

differential equations at x = j  instead of the continuity at x = i? — 1 as in the exact 

version of the algorithm. This revised scheme which we call a j'^-order approximation, 

requires the computation of j  matrix exponentials and j  — I matrix multiplications. 

Recall that

Ai «  A, Ve > 0,

in fluid flow approximations, therefore this technique can be interpreted as a 0*^-order 

approximation of our proposed analysis scheme in our context.

We now investigate the performance of the ji‘̂ -order approximations we have proposed 

in the following example. We consider an ATM multiplexer that serves LAN (Local 

Area Network)-generated data streams. The cell emission process for an individual LAN 

source is widely recognized to be adequately represented by means of an on-off source 

model [3]. Let us consider a set of N  independent and homogeneous LAN sources 

characterized by i) the peak rate Fp ii) the activity factor p, defined as the ratio between 

the average bit rate and Fp iii) mean burst length Lj. We choose a reference LAN source 

as in [3] which is characterized by Fp — 10 Mbits/s, p = 0.1, and Lb = 16250 bytes, where 

these values are representative of a large class of information flows arising from LAN’s 

accessing to an ATM network. As for the multiplexer, we assume an output capacity 

equal to 150 Mbits/s (ATM transport rate) and a cell length of 53 bytes. Note that R  

= link rate /  user peak rate = 1 5  for this specific example.

In Figure 3.10, the queue length survivor function computed via our proposed method 

is plotted along with the simulation results for the cases Â  = 45 (utilization = 0.3), 

N  = 75 (utilization = 0.5), and N  = 105 (utilization = 0.7). For the three particular 

regimes, the method matches closely with the simulation results whereas the fluid 

flow approximation only captures the asymptotic behavior. Figure 3.11 addresses the 

performance issues of j ‘̂ -order approximations when N  = 75 and the mean burst length
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of each user, U,  equals 16250 bytes. The notation (j) in the figure denotes the 

order approximation. We observe that as the degree of approximation increases, the 

performance of the approximation scheme improves. The performance of the exact 

version of the algorithm (may also be referred as the 14‘'*-order approximation, since 

— 1 = 14 for this example) and the performance of the 5'^-order approximation are 

more or less the same. The degree of freedom in choosing the order j  of the approximation 

scheme gives us a chance to play out with accuracy and computational load. If you pay 

more (increase j),  you get more (increase accuracy). In regard of the results presented 

here, you don’t have to pay much (the choice of j  =  4 or 5 is enough for all practical 

purposes). For this example, in terms of the asymptotic behavior, all the approximations 

give almost the same results, but this is not always the case. We demonstrate this fact 

through the following multiplexer example where we change the mean burst length L(, 

to 500 bytes. Figure 3.12 presents the results of the exact version of the algorithm for 

three different utilizations. What differs from the previous example is that the fluid flow 

approximation now captures the asymptotic slope but not the asymptotic constant. The 

asymptotic behavior of the simulation curve (which agrees well with the analysis) is not 

the same as that of the fluid flow approximations but is only parallel to that. Note that, 

accuracy of fluid flow approximations deteriorates as the load is decreased (e.g., A^=45). 

Regardless of the utilization of the queueing system, our method gives acceptable results 

for all X. When N  = 75 and Lt, = 500, we present our results obtained via j ‘̂ -order 

approximations in Figure 3.13. The results are similar to the previous one (Figure 3.11) 

except that the increase in accuracy in finding the asymptotic constant by using j ‘̂ -order 

approximations now becomes significant.

One can further decrease the computational load by using efficient methods to 

compute the matrix exponential. One of the methods is to use the trapezoidal 

approximation (3.20), but a further discussion of numerical matrix exponentiation 

techniques is out of scope of this dissertation. We refer to [38] for a detailed survey 

of already-existing methods to compute the matrix exponential while keeping in mind 

that performance investigation of these methods for the analysis of the queueing system 

of interest might be a future research topic.
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F igure  3.10: Queue length survivor function for N  =  45, N  = 75, and N = 105 when
Lb = 16250 bytes.
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F igu re  3.11: Queue length survivor function obtained via j ‘*-order approximations for
=  75 and Lb = 16250 bytes.
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F igure  3.12: Queue length survivor function for N  =  45, N = 75, and N =  105 when
Lb = 500 bytes.
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F igure  3.13: Queue length survivor function obtained via j ‘*-order approximations for
N  = 75 and Lb = 500 bytes.
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3.4 F in ite Buffers

Within this framework, it is also possible to extend the results obtained for the queue 

length cdf to the case where the buffers are of finite size. This extension is provided 

based on the formulation of [54] in which fluid flow techniques are successfully applied 

for a packet-speech multiplexer of finite size.

Let K  be the buffer size in packets and assume that K  > R, which is typically the 

case. Now, let ¿r.’s be the eigenvalues of A (no stability constraint is now imposed) and 

(pi's be the corresponding right eigenvectors. Then, F/{x) can be written for large x as
N

Ff{x) = ]^exp (2,(a: — R A l))a,< ,̂·, K  > x > R — I, (3.22)
i=l

where a ,’s are coefficients to be determined. We also let to be the probability that the 

chain is in state n and the queue is held at its upper limit K. Defining Ff{n, K~) (which 

equals Fe(n, K~))  as limi_A- F/(n, x), Un is simply the difference between F/(n, K~) and 

the overall probability of n active lines

Un = TTn- Ff{nJ<~).

For the finite buffer case, the observation 1) on page 46 is still valid while for n < R, 

the queue is always decreasing, so the queue would never be on its limit. Therefore,

= 0, Fj{n,K~) = 'Kni n < R. (3.23)

Defining

$ =

a =

7T =

<f>l <t>2

Gl 0,2 

7To 7Ti

<f>N 

ON 

TTK-I
iT

D = diag{exp(^,(/i -  R + 1))},

the expression (3.22) together with the boundary condition (3.23) implies that

^Da
7T

*
(3.24)
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where ♦ means a don’t care vector. The boundary condition 1) and the continuity 
argument of Ff{x) at x = R -  1 now suggest that

Фа = Zi f , (3.25)

where Z\ is as defined before. Letting be composed of the first R  rows of the matrix 

we obtain by (3.24) and (3.25) the following expressions for the unknowns /  and a:

(3.26)

The initial condition /  together with the coefficients a,’s found above completes the 

analysis for the finite buffer case. The queue length and queueing delay expressions are 

the same as in (3.18) and (3.19), whereas the rate of the packet loss, pioss, which occurs 

when the buffer is full can be determined from u„’s as follows [54]:

-Ф
-1

0
a 0 Ф1

-
ж

Plo
n=R+l

3.5 Effective Bandwidth

In the preceding sections, the focus is on the analysis of many on-off sources of a single 

type onto a communication link. When the uniform arrival and service model (UAS 

model) is eissumed to describe the traffic characteristics of an on-off source, the so-called 

fluid flow approximation techniques [1] provide efficient algorithms for calculating the 

probability that the buffer is exceeded in realistically sized systems. Within the same 

framework, we have examined the case for which the on-off sources generate packets 

periodically in the active times. The relationship between this model and the UAS 

model has been investigated in two main perspectives; accuracy in traffic modeling and 

computational requirements. Two generalizations are natural to consider. Firstly, we 

would like to be able to consider a single channel offered more than just one type of call 

which introduces the existence of multiple periods at the input of the link buffer. We note 

that this requires an approximation to the transient behavior of the queue.
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Secondly, one would like to be able to consider a network of such channels. Effective 

bandwidth approximation of a call is an adequate approach for this purpose. To explain, 

suppose calls of m different types are offered to our channel and we wish to know how 

many of each type of call the channel can handle while proving a reasonable grade of 

service. In other words, we want to find the following region in the m-dimensional space:

A{B,p) -  {N  -  (Ni ,N 2,. . . ,  Nm) : P;v{queue length > 5} < p}. (3.27)

where B  is the buffer size and p is the maximum packet loss probability that each user 

can tolerate. In connection-oriented networks this problem is called the call admission 

problem since when a call comes the network checks whether the new user vector N  

satisfies (3.27) and decides on accepting or rejecting the new call. It is reasonable to 

approximate A(B, p) by

A { B , p ) ^ { N · .  X)e.iV. < C } ,
i

where e,· is the effective bandwidth assigned to type i and C is the channel capacity. 

This approximation enables one to view the channel as a standard circuit-switched link 

which in turn provides the extension of the model and analysis to a network of channels 

through approximations such as the Erlang Fixed Point Procedure [29].

When UAS model is used in an ATM network, effective bandwidth approximation 

is possible in the asymptotic regime B ^  oo and p —> 0 in such a manner that 

logp/B  —> ^ 6 [—00, 0]. Our aim in this section is to emphasize that the same 

approximation is also valid for the Markov modulated periodic arrival process in this 

asymptotic regime. We will not restate the technical details associated with the effective 

bandwidth approximation for Markov modulated fluid sources in [12] but only the 

corresponding results in the cited reference together with certain explanations which 

we find necessary to build up the interconnection between periodic models and UAS 

models.

We now define

Fe{x) =  {Fe(n,x)}, n = 0, 1, . . . ,A^
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D = diag{Pn -  C}, n = 0 ,1 ,...,

M  = generator matrix for the Markov chain,

so that the governing system of differential equations (3.12) can be rewritten as

d
dx DFe{x) = MFe{x), X > R - l . (3.28)

Since the stationary state distribution has a bounded solution, it has the spectral 
representation

^e(x) = X) ai(f>i exp(zix) + tt
i:Re Zt <0

where tt =  n = 0,1---- , N  and the pair (z,, 4>i) is an eigenvalue-eigenvector pair.
Such pairs are solutions to the eigenvalue problem

zD(f> = M(j). (3.29)

Note that this is the same eigenvalue problem posed for Markov modulated fluid sources. 

In other words, under the same modulation, fluid sources and periodic sources have the 

same spectral expansion for large x except for the coefficients a ,’s. Indexing now the 

eigenvalues with negative real parts

0 > zi > Re Z2 >■■ ■

the real eigenvalue zi is called the dominant eigenvalue. Let the stationary buffer overflow 

distribution be given by (?(x), {x > R  — 1):

G{x) =  Prjqueue length > x]

» j

When a: —+ oo, the eigenvalue Z\ will dominate so that we can write

G{x) ~  —oi(X^ <^i(i))exp(2Tix) as X ^  oo. (3.30)

Note that plots of logG(x) vs. x approach linearity as x increases and the slope 

approaches zj and this slope is the same in both the UAS model and the periodic model.
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This is because the models have the same eigenvalue-eigenvector pairs in this regime (see 
equations (2.4) and (3.29)).

It is now convenient to view C as a variable parameter and to write down the 

eigenvalues to be a function of C, z{C). The inverse problem requires C to be obtained 

for given z. The key fact in this connection is that the inverse problem is also an 

eigenvalue problem. Writing then C = g{z), the equation (3.29) becomes

where

g{z)4> = A{z)(f>,

A{z) = A -  -M , A = diag{Pn}.z
In the above equation, g{z) is an eigenvalue of the matrix A{z) in which z is a parameter. 

gi(z) is called the maximal real eigenvalue; if g{z) is any other eigenvalue then Reg(z) < 

9i{^)·

The maximal real eigenvalue has the following properties [12];

i) 5̂ 1 (0) =  mean source rate, gi{—oo) = peak source rate,

ii) g[(z) < 0 , (z < 0)

iii) The dominant eigenvalue zi is the unique solution in (—oo, 0) satisfying gi{zi) = C.

We now consider the admission control problem for an asymptotic regime in which 

B  —> oo, p —> 0 in such a manner that log p /B  C Actually, the graph of logp vs. B

has the following description in the prescribed regime:

logp = ^B + k,

for which k is a finite translation parameter. Then, by (3.30),

—̂—  = A:oexp((zi — ^)B), as B oô
P

for some constant kg. Notice by property ii) that gi{z) decreases as z increases, hence 

if p i(0  < ^  z:i < ^ and thus G{B)/p —> 0 as j3 —̂ co. The admission control
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criterion is satisfied in this case. Similarly, if gi(() > C then  ̂ and G{B)lp oo, 

so the admission criterion is violated. The above result justifies the use of the term 

effective bandwidth for the quantity 5'i(0· We let e = e(M, A; B,p) denote the effective 

bandwidth of the superposition (M, A) in the system for which the admission criterion 

is Gi^B) < p. That is,

e{M,A]B,p) = gi{^) (3.31)

where is f^e maximal real eigenvalue of the matrix A — ^M  and  ̂ = \ogp/B.

Bad news is that computation of the maximal real eigenvalue of the matrix above 

turns out to be difficult if the number of states of the underlying Markov chain is large. 

Good news is that if the incoming traffic is made up of a superposition of independent 

individual sources then computation of the effective bandwidth of the aggregate source 

can be made through computation of the effective bandwidths of those simpler individual 

sources. Actually, the effective bandwidth is an additive quantity in this asymptotic 

regime. We will give the following powerful result in [12] where all technical results are 

given for fluid sources. Since the asymptotic slopes of the buffer overflow function of fluid 

sources and periodic sources are the same, the result is also valid for periodic sources.

P ro p o sitio n  3.1. Suppose there are K  Markov modulated periodic sources,

(1 < fc <  K), offered to an ATM multiplexer. M^^^ is the generator matrix of the 

underlying Markov chain and Â *̂  is the rate matrix (in packets/sec.) associated with 

source k. Let the admission control criterion be G{B) < p. Suppose B oo and p 0 

in such a manner that log p /B  —» i  G [—oo,0j. If

< c ,
k

then the admission criterion is satisfied. I f  the inequality sign is reversed then the 

admission criterion is violated. Here, maximal real eigenvalue of =
AW -  □

To give an example, an on-off source with exponentially distributed on and off periods
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is obtained by setting

M  =
—A p 0 0

and A =
A —p 0 P

In this case, it can easily be verified that

Pz + X + f i -  {{Pz + A + p f -  4APz)'/2
9i{^) = 2z (3.32)

which is a simply computed quantity in terms of P, A, and p. But for sources with more 

than two states, it is in general difficult to give such explicit expressions for the effective 

bandwidth.



Chapter 4

Fade Approximations in the 

Analysis of the M M P P /D /1  

System

The performance analysis of integrated services networks whose inputs consist of a 

superposition of different packetized sources has been an intense area of research in 

the recent years. The Markov Modulated Poisson Process (MMPP) is indeed one of 

the general input traffic models for ATM networks the performance analysis of which 

is essential in clarifying the features of statistical multiplexing of bursty sources and 

developing efficient resource management schemes.

The packet arrival intensity for an MMPP is modulated with respect to the state 

of a continuous-time A-state Markov chain. To explain, let the state of the Markov 

chain be denoted by n € {1 ,2 ,..., N}. The generator matrix of the Markov process is 

denoted by M; Af(n, m) is the transition rate from state m to state n and M(n, n) = 

— The equilibrium probability of the Markov chain being in state n is

denoted by 7r„. Within each state n of the Markov chain, the packet arrival process is a 

Poisson process with rate A„ packets/sec. This arrival process is offered to a server which 

is specified to be deterministic with rate C packets/sec. since packet lengths are fixed

69
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in an ATM environment. Such a system is called an MMPP/D/1 queue (see Figure 

1.9). We are interested in the queue length distribution function with respect to the 

utilization in the system given the underlying Markov chain and the associated Poisson 
rates of packet arrivals.

The deterministic service time is in general hard to tackle. The assumption that 

packet lengths are exponentially distributed with mean being the deterministic service 

time of the multiplexer yields an MMPP/M/1 queue which is easier to handle. However, 

this brings overestimates in the queue length since the behavior of this system over 

a given period of time is identical to the behavior of an M/M/1 queue and therefore 

experiences higher frequency fluctuations in system occupancy than does the real queue 

(M/D/1 queue) over that period of time [6]. Here, we propose a method based on 

Pade approximations in the transform domain. A Pade approximant is actually the 

ratio of two polynomials constructed from the coefficients of the Taylor series of the 

function which needs to be approximated to ensure analytical tractability. The freedom 

in choosing the degrees of these two polynomials yields different approximations whose 

accuracy improves as these degrees increase. The number of coefficients in the Taylor 

series expansion of the function that the Pade approximant can capture is called the 

order of the approximation. In this respect, fluid flow approximations and MMPP/M/1 

queues are shown to be obtained through first order Pade approximations for the service 

time, the original system being the MMPP/D/1 queue. Motivated by this fact, we use 

more sophisticated approximations which capture not only the mean but also higher order 

terms of the service time distribution and whose computational complexities are no worse 

than the complexity encountered while solving the MMPP/M/1 queue. The authors of 

[45] use Erlang distributions [30] in time domain to approximate the deterministic service 

time. Recall that the exponential distribution is the first order Erlang distribution 

for the deterministic service time. Since any other Erlang distribution will involve an 

additional complexity in the solution of the MMPP/D/1 queue in our framework, we 

only concentrate on the particular MMPP/M/1 queueing system to make comparisons.

Another contribution here is a new derivation of the unfinished work distribution
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expression in transform domain for the MMPP/G/1 queue. Our proof is simple and based 

upon the Takacs integro-differential equation which describes the transient behavior of 

the M/G/1 queue. Through the transform domain counterpart of this equation, we 

obtain transform domain formulas for the unfinished work distribution in an MMPP/G/1 

queue. Our formulation is able to include the case when the service time is approximated 

by Padé approximants. The essential point to note is that a Padé approximant is not 

necessarily associated with a physical distribution (i.e., may possibly contain higher order 

derivatives of the Dirac delta function at the origin or may involve negative probabilities).

There is in fact a rich underlying theory developed for Markov modulated fluid sources 

[49] and the MMPP/M/1 queue [13] which provides efficient algorithms for calculating 

the stationary state distribution of the corresponding system. This turns out to be 

especially significant when many identically distributed sources are superposed and fed 

into a FIFO buffer. In this case, the algebraic theory gives an exact decomposition of 

the overall system into many smaller subsystems and is therefore able to avoid numerical 

problems when the number of states in the Markov chain tend to increase. Our proposed 

method is naturally capable of making use of this theory through the use of Padé 

approximations. The theory is quite general and ensures an easy treatment of more 

sophisticated performance evaluation problems in ATM networks.

The organization of this chapter is as follows. We first focus on the transient behavior 

of the M/G/1 queue from which we obtain transform domain formulas for the steady- 

state buffer occupancy distribution in an MMPP/G/1 queue. Employing particular 

Padé approximants of different orders for the deterministic service time distribution, 

we give a numerical example (for a packetized voice multiplexer) to demonstrate the 

performance comparison of these approximations in the context of MMPP/D/1 queues. 

Computational aspects are then discussed and a powerful algorithm is presented which 

works for the case the input traffic to the buffer is a superposition of many 2-state 

MMPP’s of the same type. We then present a numerically efficient algorithm for the 

M M PP/D /l/K  queue where the buffer size is assumed to be finite. Finally, bandwidth 

assignment problem to a call of MMPP type is addressed.
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4.1 Transient Analysis o f the M /G /1  Queue

In this section, we take a closer look at the unfinished work U{t) (time required to empty 

all the packets present in the system at time t) in an M/G/1 queue and derive the forward 

Kolmogorov equation for its time-dependent behavior. Here we give an account of the 

solution to U{t) (see [30] for a detailed analysis) to establish the notation and setting 
for the statement of our results.

We wish to derive the probability distribution function for U{t) given its initial value 
at time zero. Accordingly, we define

Q{w,t) = Pr{U{t)<w\U{0)}. (4.1)

The arrival rate to the queue is Poisson with rate A packets/sec. Let x be the random 

variable associated with the service time. We then define the following functions:

B{x) = Pr{x < x}.

" f°°— / exp{—sx)b{x)dxJo-

Note that b{x) and B{x) are the probability distribution function (pdf) and the cdf of 

the service time, respectively. We now wish to relate the probability Q{w, t + At) to 

its possible values at time t. We observe that we can reach this state from t if, on the 

one hand, there had been no arrivals during this increment of time (this occurs with 

probability 1 — XAt +  o(At)) and the unfinished work was no larger than w + At at time 

t; or if, on the other hand, there had been an arrival in this increment of time (with 

probability AAt + o(Ai)) such that the unfinished work at time t, plus the new increment 

of work brought by this customer do not exceed w. These observations lead us to the 

following equation:

Q(tn, i-f  At) = (1 -  AAi)(5(u^ +A<,t)-l-AAt J ^B{w -  x ) ^ Q { x , t ) d x  -bo(Ai), (4.2) 

where Q
d:cQ{x,t) = — Q{x,t)dx 

ux



Chapter 4. Fade Approximations in the Analysis of the MMPP/D/1 System 73

is the pdf for unfinished work at time t. Expanding our distribution function on its 

first variable and making some manipulations on (4.2), one finally obtains the Takacs 

integro-differential equation for U{t):

dQ{w,t) dQ{w,t)
dt dw

fOO
\Q{w^t) + ^ B{w — x)dxQ{x,t). (4.3)

Jo

Takacs [50] shows that this equation is good for almost all u; > 0 and i > 0; it does 

not hold at those w and t for which dQ{w^t)/dw has an accumulation of probability 

(namely, an impulse). Now defining

A
W*(s, t)=  /  exp{-sw)dQ^{w,t), 

Jo-

we obtain

and, similarly, we have

fOO
I Q(w,t)exp(—sw)dw = 

Jo-

fOO
/ B(w)exp{—sw)dw = 
Jo-

W ( s , t )
(4.4)

B ( i )

Taking the Laplace transform on the first variable of each side of (4.3), one obtains

S CfX s s

where Qo{t) is some suitable function that is to be subtracted to compensate for the 

impulsive terms since the Takacs integro-differential equation does not contain these 

impulses. The equation (4.5) can then be rewritten as

dW*{s,t)
dt

= { s - \  + \B {s ) )W {s ,  t) -  sQo{t). (4.6)

Takacs gives the solution to this equation in [51]. We may now transform on our second 

variable t by first defining the double transform

Q**{s,r) = f exp{—rt)W*{s,t)dt. 
Jo

We also need the definition

Qo(^) = /  exp{-rt)Qo{t)dt 
Jo
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One may now transform equation (4.6) to obtain

Q**{s,r) =
r — s + A — \B{s)

(4.7)

where the unknown function (Jo(^) is determined by insisting that the transform Q**{s, r) 

be analytic in the region Re{s) > 0,i?e(r) > 0. The expression (4.7) will be the 

fundamental equation which will lead us to the stationary queue length distribution 

for the MMPP/G/1 queue in the next section.

4.2 M M P P /G /1  Queue

This section is devoted to the analysis of the MMPP/G/1 queue. Consider now the 

Markov chain that governs the Poisson rate of arrivals with the infinitesimal generator 

matrix M .  Note that the state holding time at state n is exponentially distributed with 

parameter cr„ = —M {n ,n ) .  Let us now focus on a particular phase n of the MMPP in 

which the arrival process is Poisson with rate A„. We now define Q¿,(n,w) and Qe(n,w) 
to be the equilibrium unfinished work cdf’s at the moment of state transition to n and at 

the moment of state transition from n, respectively. Our objective is to find the relation 

between these two cdf’s in transform domain via the use of equation (4.7). For this 

purpose let Q{n, w\ t) be the unfinished work cdf t seconds after the chain has made a 

state transition to n and that the initial unfinished work has the cdf Qb{n,w).  It is now 

easy to write
J fOO
' Q(n,w,t)anexp(-crnt)dt. (4.8)
0

Also let Obi'll·, and Qe{n,s) be the Laplace transforms of Qb{n,w) and Qe{n,w), 

respectively. At a closer look at the definitions of the preceding section, we then directly 

make the following substitutions

Q{n,w,t)

Qb(n,s)

s)

Q{w,t) (e</.(4.1)) 

™  (.,.(4.4))

<̂ n<?**(-S,Cr„)
(e?.(4.7))
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so that one can write by (4.7)

g  = ^_sQb{n,s)— sQ*{a„)
 ̂ <Jn “   ̂+ Ayi — XnB[s)

(^n{Qb{n, s)  -  Ql{(Tn))

CTyi — 5  +  A „  — XnB(s) (4.9)

where the unknown constant Qn{<̂ n) is chosen by insisting that the transform Qe{n, s) 
be analytic in the region Re{s) > 0.

We define the transform vectors

l y . ( s )  =  { M 4 ( n , s )  ^  I „ 4 ( n , s ) } ,  v K ( i )  =  =  > r „ O i ( n , s ) ) . (4.10)

Actually, We(s) is called the Laplace transform of the virtual delay distribution in an 

MMPP/G/1 queue [20]. Replacing X{t) by U(t) in the derivation of equality (2.16), we 

immediately obtain

c.Wi(n,s)= Y ,M ( n  , m)\Ve{m, s).
m:̂ n

Substituting (4.10) and (4.11) in (4.9), one has Vn = 1 ,2 ,.. . ,  Â ,
N

(5 -  A„ + A„5(s))We(n,s) + M{n,m)We{m,s) = 7T„(7„g*(cr„).
m = l

One may alternatively rewrite the above equation in matrix form:

We{s) = [sI + M - R  + RB{s)]-^yo,

where

(4.11)

(4.12)

(4.13)

R  =  d i a g { A i , A 2 , . . . ,  A jv)

and
yo =  {7r„<T„(?;((T„), n =  1 , 2 , . . . ,  A }

should be determined by insisting that the transform be analytic in the region Re{s) > 0. 

Whenever limi_oo .̂s is typically the case,

yo(n) = lim sWe(n,s),

= 7T„ lim sQe(«,s),s—̂00

— ^nQ -i
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which then equals to the probability of the system being empty and the chain residing 

in state n. In this case, the expression (4.13) is equivalent to the virtual waiting 

time distribution given in [20] found by matrix analytic methods. Since the Fade 

approximants of B{s) do not necessarily have this limiting property (will be explained 

in the following development), the expression (4.13) is more general than the result in 

[20].

4.3 Fade Approxim ations in the  

M M P P /D /1  Queue

Let us now focus our attention to the special case of the service time being deterministic, 

for which
b{x) = uo{x -  1/C),

where Uo(·) is the Dirac delta function and the associated Laplace transform is simply 

an exponential function of s:

B{s) = exp{—s/C).

When the service time has a general distribution, we have used the unfinished work 

(or virtual waiting time) to describe the queueing behavior in order to conform to the 

literature. In the deterministic server case, we rather prefer to use the queue length as 

the entity of interest to facilitate the understanding of the development in this section 

in view of the other Markov modulated models examined in the preceding chapters.

Let Fb{n,x) and Fe{n,x) be defined in the same way as in the equations (2.8) and 

(2.9), respectively. We similarly define

Fe{x) =  {Fe(n,x)}, Fe{s) = L[F {̂x)],

where L{·) denotes the Laplace transform. The queue length distribution is simply 

related to the virtual waiting time via the following;

Fix)  = Weix/C),
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Peis) = CWeisC).

The equation (4.13) is therefore reduced to

Fe(-s) =  [s(7/ + M  -  Ä + Ä exp(-s)] ^o, (4.14)

where /o =  Cyo. However, the constant vector /o is to be determined using the poles 

of the overall system, which with an irrational term in the denominator is difficult to 

handle. Therefore, we make use of rational Fade approximants of the irrational transform 

exp(—s) so as to determine a solution for the buffer content distribution. In fact, a Fade 

approximation with parameters n and m  is a rational function

Rn,mi^) —Qm(s)'

where Pn(s) and Qm{s) are polynomials of order n and m, respectively, and the first 

(n +  m + 1) terms of its Taylor series expansion equal to those of the Taylor expansion 

of exp(—s), or equivalently the first (n + m) moments of the original service time 

distribution. A closed form expression for Rn,m exists [55] and is given by

^  / s _  Er=o("^ + « - * ) i  C(n,i) i - i y  s'
EiLo("^ + n -  ¿)! C{m, i) s'

where
Cin,i) = -

n\
i\ (n — e)!

In case Rn,m(s) is used as an approximant for exp(—s), the transform of the queue length 

cdf, Fe(s) is written as

Peis) =  [sCI + M - R  + R R n M ] - ' f o · (4.15)

An interesting observation is that, if the Fade approximant i?i,o(s) = 1 -  s is employed, 

then Peis) becomes

Pei s )  =  [ s C I  +  M - R  +  R i l - s ) ] - ^ f o ,

=  [ s i C I - R )  +  M ] - ^ f o ,
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which is in fact equivalent to the expression suggested for the Markov modulated fluid 

sources [1],[49]. When the approximation 72o.i(<s) = 1/(1 + 5) is imposed, the transform 
of the virtual waiting time We{s) is rewritten by equation (4.13):

W M  = \sI + M - R  + B(-^rVo,
s  +  C

which reduces to the virtual waiting time distribution [20] in an MMPP/M/1 queue, 

in which the service time has an exponential distribution with mean 1/(7. In this 

respect, fluid flow approximations and MMPP/M/1 queues turn out to be first order Pade 

approximations for the original M M PP/D /l queue. These observations are remarkable 

in their owns since it is now possible to unify some of the proposed approximations used 

for the analysis of statistical multiplexing in ATM networks in this framework.

Our main objective is to use the information on higher order moments of the service 

time distribution while preserving the degree of the characteristic polynomial

^(s) =  det((s(77 + M -  R)Q^{s) + RPn{s))

same as in the MMPP/M/1 queue (i.e., 2N). This determinantal degree denoted by 

d is one of the major factors that determine the numerical efficiency of the suggested 

approximation. Note that

d = N  max(m T 1, n).

Under this degree constraint, there are actually three more rational functions as Pade 

approximants of exp(—s);
1 - s / 2

721,1(5) — 

722,0(5) = 

722,1(5) =

1 +  s/2 
1 — s + s^/2

i
1 - 2 s /3  + s2/6

1 + s/3
We now sketch an outline of our solution technique for each approximation Rn,mis)]

1) Define tt = 7Ti 712 71A7
■iT

and then obtain the spectral expansion of Fe(x);

(4. 16)Fe{3:) = n + Oi exp(zii)^,,
t: Re z, <0
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and

[{ziCI + M -  R)Qm{zi) +  RPn{zi)\4>i =  0.

2) Use the initial value theorem for Laplace transforms in (4.15) to obtain the linear 

relationship between Fe(0) and ¿xh'e(x) U=0+·

To explain this stage of the procedure, N  equations are needed to solve for the 

N  unknown coefficients (a,’s). These equations can easily be constructed by the 

above-mentioned linear relationship which is inherent in the equation (4.15).

3) Combine 1) and 2) to find out a^s from a set of N  linear equations.

4) The overall cdf of the queue length is the sum of the individual elements of Fe(n, a;):

Pr(queue length < x) = J^Fe(n,x) .
n=l

The cdf associated with the queueing delay is a bit different [20]:

(4.17)

1 N
Pr(delay < t sec.) = t  X) A„Fe(n, Ct)

^ n=l
(4.18)

where
N

A — ^ y ^nAn
n=l

is the mean rate of the incoming packet stream. □

To explain the above procedure neatly, let us assume that R 2,\{s) is imposed as a 

Fade approximation for the deterministic service time. We then obtain the N  (2,, <̂ ,) 

pairs satisfying

[{ziCI + M -  R){\ + Zi/3) + R{1 -  2zil3 -f zf/6)]<f>i = 0, 

in the first step. For the second step, observe by (4.15) that the following equation holds:

(As^ + Bs + M)F,{s) = (1 -b s/3)/o, (4.19)
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where

Now defining

we immediately have

s i  - A - ^

M  s I  + BA-^

, A C l  R
^  = T + 6 ’

B = C I - R + Y .

W  = A(5) =  l i f 2(x )],

' h { s )  '

h ( s )  _

Fe(0)
fo — BFe{0) + s{fo/S — y4Fe(0))

But by using the initial value theorem on (4.19),

Fe(0) = lim sFe{s)
s—*oo  ̂ '

A-^fo

(4.20)

the term s(fo/3 — /IFe(O)) vanishes in the second entry of the right-hand side of (4.20). 

Taking this fact into account, we obtain by (4.20) that

¿i^a(x)U=0+ = ^-'^2(0),

= A - \ f o - B F { 0 ) ) ,  

= ( 3 / -  A-'5)Fe(0), 

= AFe(O). (4.21)

This completes the second step of the procedure for i?2,i('S)· Similar procedures apply 

for the other approximants, but we omit these details in this context. In the third step, 

we first define

$ = I <t>2 ·■· I >

Z = diag{zi,Z2,...,^A^},

a = [ fli (22 as
r ·



Then the initial values for the queue length cdf and the queue length distribution function 

can be written in state form in terms of the coefficient vector a via the use of (4.16) as 
follows:

F e (0 )  =  7T +  $ a ,

— Fe{x)\x=o ·̂ = ^Za.

This then immediately yields by (4.21) that

^Z a  = A(7t + $a),

by which

a = ($Z -  A$)-1A7t.

At this point, we are done with the third step. We complete the procedure by noting 

that the eigenvalues and the eigenvectors z,’s and (̂ ,’s of the system together with the 

coefficients a .’s determine exactly the queue length cdf through the expression (4.16).

4.3.1 N um erical Exam ples
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We now demonstrate our results in the following example, in which a superposition of 

bursty voice sources feeds a deterministic server. The voice sources in their active times 

are assumed to generate packets with respect to a Poisson process, the rate of which 

is determined by the peak rate of an individual source (see figure 1.10). This model 

for packetized voice has indeed been examined in [25]. We consider a packetized voice 

system with a line speed 10 times the voice peak rate 32 kbits/s, mean active period 353 

ms and mean silent period 650 ms. The mean number of packets generated in an active 

period is 22. The transmission time of a single packet is 1.6 ms.

In Table 4.1, comparison of the average waiting time of the queueing system is given 

when the above-mentioned Fade approximations are used. The results are obtained by 

varying the number of voice sources. A parameter pair (n, m) in this table refers to the 

approximation associated with (exp(-s) «  i?„,m(5))· The simulation results are based
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No. simulation 95 % conf. approximations [ms]
sources results interval (1.0) (O.I) (1,1) (2.0) (2,1)

4 0.2179 ±0.0007 0.00 0.4348 0.2181 0.2185 0.2192
6 0.331 ±0.001 0.00 0.659 0.331 0.331 0.331
8 0.478 ±0.002 0.00 0.947 0.475 0.477 0.476

10 0.676 ±0.0025 0.00 1.335 0.674 0.676 0.674
12 0.977 ±0.005 0.002 1.897 0.970 0.975 0.972
14 1.483 ±0.015 0.038 2.787 1.475 1.486 1.478
16 2.465 ±0.025 0.268 4.332 2.449 2.476 2.458
18 4.528 ±0.06 1.199 7.222 4.497 4.549 4.514
20 9.05 ±0.1 3.56 12.94 8.96 9.05 8.99
22 19.52 ±0.1 12.02 24.89 19.00 19.14 19.03
24 43.0 ±0.6 34.6 52.6 43.3 43.6 43.4
26 120.3 ±1.5 105.4 136.2 119.4 119.7 119.5
28 1064 ±95 940 1049 1001 1002 1002

T able  4.1: Performance comparison of the Fade approximations in terms of the mean 
waiting time.

on the discrete-time MMPP/D/1 queue. Note that, while the first two approximations 

(0,1) and (1,0) match only the first moment (mean), the approximations (1,1), (2,0), and 

(2,1) match the first two and the first three moments, respectively, of the original service 

time distribution. Since the second moment of the service time distribution is critical 

in the mean waiting time expression of the M/G/1 queue in the Pollaczek-Khinchin 

formula [30], we expect the latter three approximations to give remarkably accurate 

results. This is in fact the case; all these three approximations find the mean waiting 

time within 95 % confidence intervals when compared with simulations. However, we 

did not gain anything in terms of average waiting time estimates by using this third 

moment information in (2,1) which in a way resembles the Pollaczek-Khinchin formula 

for the mean waiting time in an M/G/1 queue since mean queueing delay only depends 

on the mean arrival and service rates and the second moment of the service time. The 

approximation (0,1) (MMPP/M/1 queueing model) overestimated the packet delay for
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all possible loads, degree of overestimation decreased with increasing load. The fluid 

model (1,0) does not work for low to moderate loads, but works pretty well in heavy 

traffic.

In Figures 4.1, 4.2, 4.3, and 4.4, the queue length survivor function Pr (Queue length 

> x) is plotted for the three Fade approximations (1,1), (2,0), and (2,1) for the cases N  

(number of voice sources) being 8, 10, 15, and 20, respectively.

Except for a small deviation from the simulation results for very small x, all 

three approximations give satisfactory results, the approximation (2,1) being the most 

accurate one. When load increases, the performance of the approximations tends to be 

indistinguishable. In ATM networks, it is believed that the most important performance 

measures of statistical multiplexers include the tail probabilities Pr(queue length > x) 

for large x (the asymptotic behavior) as well as the averaged measures (e.g., mean 

delay, mean delay jitter). The packetized voice example presented here shows us 

that, these measures can closely be approximated with the use of Fade approximations 

without a need for cumbersome simulations. This fact has long been known in circuit 

theory [41]; asymptotic waveform evaluation techniques (or Fade approximations in 

transform domain terminology) are capable of capturing the asymptotic behavior of 

the approximated function as well as certain prespecified weighted averages belonging 

to that particular function. We believe that this particular application of Fade theory 

to queueing systems of this nature will be significant especially in developing certain 

congestion control schemes in ATM networks.

4.4 C om putational A spects

Up to now, we have concentrated on the use of Fade approximations for the deterministic 

service time distribution and based on this, we presented a novel algorithm to compute 

the queue length distribution for the MMFF/D/1 queue. We have shown that it is 

possible to obtain accurate approximations for the queue length distribution via simple



Chapter 4. Fade Approximations in the Analysis of the MMPP/D/1 System 84

10

X (in packets)

15 20

F igure  4.1: Performance comparison of the Fade approximations in terms of the queue
length survivor function (Â  =  8, utilization = 0.28).
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N=10

F ig u re  4.2: Performance comparison of the Fade approximations in terms of the queue
length survivor function {N = 10, utilization =  0.35).
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F ig u re  4.3: Performance comparison of the Fade approximations in terms of the queue
length survivor function (Â  = 15, utilization = 0.52).
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F ig u re  4.4: Performance comparison of the Fade approximations in terms of the queue
length survivor function (N = 20, utilization = 0.70).
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Fade approximants (e.g., i?2,i(-s) approximation yielding a determinantal degree d = 

2N). The computational load of the algorithm consists of an eigenvalue-eigenvector 

problem of size d (first step of the algorithm) and a matrix inversion problem of size 

d — N  (second step of the algorithm). Furthermore, the computational complexity of 

the first step of the algorithm can be significantly reduced if the incoming MMPP is 

obtained from a superposition of many MMPP’s of smaller dimension. This is in fact 

the case for ATM networks; individual sources are typically modeled to have an on/off 

type behavior and can be characterized as in [25] by two-state MMPP’s. The aggregate 

traffic to be statistically multiplexed then turns out be a superposition of many two- 

state M M PP’s. We examine below in a much general setting how this computational 

complexity reduction takes place if we consider the case where there are K  independent 

sources, each represented by an A-state continuous-time, irreducible generator matrix 

G. The rate of the Poisson stream of packets from an individual source in state i is 

A,(e =  1 ,2 , . . . ,  N). Our objective in this section is to extend for the MMPP/D/1 queue 

the algebraic theory developed for fluid models [1],[11] and MMPP/M/1 queues [13] that 

gives the exact decomposition of the eigenvalue problem of the overall system into many 

small eigenvalue problems.

Although the approach taken here can easily be applied for each Fade approximation 

Rn,m{s), we will focus on the approximation exp(—s) «  R 2,i{s) since it has been shown 

to give the best results among the ones that yield the same determinantal degree of V’(-s).

Let the state of the source i be denoted by s(¿) where s(¿) € { 1 ,2 , . . . ,A}. The 

unaggregated state of the sources is given by s = {s(l), s(2 ),. . . ,  s(A)}. We let the state 

space of the unaggregated process by

nN,K = { k \ k e Z ^ , l <  k{i) < A ).

The generator of the unaggregated source process is

M  = G 0  (7 0  · · · 0  G,

a A-fold Kronecker sum on G, where A®  B = [aijB], A ®  B  = A®  I  + I  ® B  [39]. The
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associated rate matrix R  is

i? = A © A © - - - © A ,

where A = diag{Ai, A2, . . . ,  A /̂}. The formula for Fe{s) is

Fe(s) = [{sCI + M -  R )(l +  s/3) + R{1 -  2s/3 + 5V6)]"*(1 +  s/3)/o

hy which the associated eigenvalue problem is written as

[{zCI + M -  R){1 + z/3) + R{1 -  2z/3 + zye)]<f> = 0.

(4.22)

(4.23)

Due to the Kronecker sum form of M  and i?, it is not difficult to show the equivalence 

between (4.23) and the existence of a set of K  numbers t>i,U2, . . . ,  u/<- satisfying

K
[{zvil +  G — A)(l +  z/3) + A(1 — 2z/3 + 2^/6)]u,· = 0, u, =  C. (4.24)

»=1

If (4.24) holds, then the eigenvector is in the Kronecker product form;

(j) = Ui 0  U2 ® ® UK-

Letting g i{z)  to be the i‘" eigenvalue (¿ = 1,2, . . . ,  N )  of the matrix

(4.25)

B(z) = A ( 1  -  z / 6 )  G
1 zj'i z 

by use of (4.24), each k G 'Hm.k gives an equation

K
= C, (4.26)

i=l
whose solutions 2; are the solutions to the coupled eigenvalue problem in (4.24).

We now consider the aggregated system representation a = {<t(1),<t(2), . . .  ,a(A^)} 

where a(i) is the number of sources in state i. We also denote the set of all aggregated 

sources by S. Note that for any cr € S the aggregated counterpart of (4.26) is

N

i=i
(4.27)

whose solution 2 is also a solution to (4.26) for every k € 'Hm,k that is aggregated to

cr. The solutions to (4.27) together with (4.24) and (4.25) gives an exact decomposition
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of the eigenvalue problem of the entire aggregated system. At this stage, we avoid 

presenting technical details of the general algebraic theory corresponding to the 

eigenvalues and eigenvectors of the aggregated system, the reader may refer to [1],[13], 

and [11] for a detailed discussion of related issues. We rather prefer to give a procedure 

without technical proofs for the case = 2 so as to clarify the concept of extension of 

the general theory to the case of Fade approximations in the analysis of the MM PP/D/1 

queue.

Although the ideas can easily be generalized to multi-state sources as in [13], we rather 

concentrate on the case =  2 in which the aggregated state representation is

0 < h j  < K, i + j  = K.

We also let the generator matrix of an individual source to be

—a ¡3
G =

a

In regard of the works done in [13] and [11], an algorithm is developed below to compute 

the queue length distribution whose Laplace transform is given in (4.22).

A lgo rithm .

1) When K  is odd, for each 0 < i define the degree polynomial

P {z\i) = {iği -I- {K -  i)ğ2 -  C z{l + z/S)){{K -  i)ğı + ig2 - C z { l  + z/3)), 

where ğı{z) and g2{z) are solutions of

I t l  -  B{z) 1=  0, B{z) =  -A zV e z{k -  G/3) -  G.

W ithout an explicit knowledge of ği{z), it is also possible to write P{z-,i) as

P{z-i) = C'^z‘̂ {\ + z l 3 f - K C z { \  + zl3)tr{B{z))

A i{K  -  i ) t r \ ^ z ) )  + {K^ -  4i{K -  i)) I B(z) I .

K{oc\2  "f C{ot -f- /9)

Here tr(-) and ( · [ denote the trace and the determinant of a matrix, respectively. When

the ergodicity condition
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is satisfied, the polynomial P{z;i) has two roots in the interval (zj < z\) in the interval 

(—00,0) and two roots in the interval [0,oo). Let

A ,· A ,·
Zi =  Z-i, Z f i - i  =  Z2-

When K  is even, repeat the procedure described above for 0 < e < y  — 1, and then 

define the 2”*̂ degree polynomial

P(z-,K/2) = f t r { B { z ) ) - z C ( l + z / 3 ) ,

a root 2e of which lies in (-oo , 0). Now let zk/2 = -̂ e· In this stage of the procedure, the 

eigenvalues of the aggrcgiited system are completely found in terms of the roots of 4'^ 

degree polynomials.

2) For each 0 < i < K , solve the eigenvalue problem

i -A z f /6  +  z.(A -  G/Z) -  G)u = /XU, (4.28)

K - j
(  K  - i ]

/
M i )  =  E

( ' ]/=max(0,K'-j-i) V

and define ui and U2 to be the eigenvectors in (4.28) associated with the larger and the 

smaller eigenvalue, respectively. The entries of the eigenvector (f>i associated with the 

eigenvalue z is now written as a summation;

K - j - l  )

Finally, the queue length cdf Fe{j,x) is

K
Fe(j, x) = + cLi exp(^ .̂x)<? .̂(i), (4.29)

i=0

where itj is the probability of j users being in the 2'̂ '̂  state.

3) We use the initial value theorem for the formula (4.22) to show that

dx
Fe(x) AFe(O) (4.30)

where
A = 3 I - { ^  + ^ r \ C I - R + f ) .
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Here, M  is the generator matrix for the aggregated process where the state of the 

aggregated process is the number of sources in the 2""̂  state and R  is the corresponding 

rate matrix. Defining

$ — <̂̂0 <i>i ■·■ j )
Z = diag{zo,zi,...,2rft-}, 

"  =  [

0,0 O i

7To 7Tl

the equation (4.30) reduces to

from which one obtains

^Z a  = A(7t +  $a),

a = {^Z  -  A4>)-^Air.

The eigenvalues and the eigenvectors z,’s and <̂ ,’s of the aggregated system together 

with the coefficients a ,’s determine exactly the queue length cdf through the expression 

(4.29). □

In regard of the algorithm presented here, let us quantify the reduction obtained in 

computational complexity. Note that, the eigenvalues of the overall system are obtained 

through a set of polynomial root finding problems of the form given in the first step 

of the algorithm. These polynomials are all of 4** degree and there are (K  + l)/2  

such polynomials when K  is odd {K/2 polynomials of 4*̂  degree and a polynomial of 

degree two when K  is even). Since the number of states (number of individual sources 

in the 2"*̂  state constitute the state of the superposition process) of the superposition 

process is +  1, in the original version of the algorithm, the computation consists 

of an eigenvalue problem of size 2{K +  1). In other words, the 0{K ^) computational 

complexity of the eigenvalue problem in the original version of the algorithm can be 

made to have a 0{K )  complexity in case the MMPP is obtained from a superposition 

of many identical two-state MMPP’s. Although quantification is rather involved, we 

can still achieve a large computational gain in the general case of a superposition of
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a number of heterogeneous multi-state MMPP sources. This can be concluded from 

equation (4.26) where an eigenvalue of the overall system can be computed from the 

parameterized eigenvalues of the subsystems through a nonlinear algebraic equation.

In ATM networks, buffering memory in switching nodes is limited. Cells have to 

be buffered at ATM switches and may have to be dropped (lost) in the case of buffer 

overflow. The cell loss rate is a key parameter in performance analysis since resource 

allocation in ATM networks is based on the desired quality of service which is generally 

expressed in terms of bounds on the loss rate. In the next section, we extend the 

algorithm proposed for infinite buffers to the case of buffer sizes limited to a finite number 

K  of cells. This extension yields a buffer size independent computational complexity and 

performance analysis turns out to be tractable even for large buffer sizes.

4.5 M M P P /D / l /K  Queue

In this section, we are interested in computing the queue length distribution for the 

M M P P /D /l/K  queue for which the buffer is capable of storing only K  cells. We 

subdivide the analysis into two parts, first we consider the case of infinite buffers 

with a state-space realization of the differential equation governing the queue length 

distribution. At this step, the realization is general so that it covers the use of an 

arbitrary Pade approximation for the deterministic service time distribution. We then 

extend the analysis to cover the case of finite queue capacities.

Infinite Queue Capacity

Let an arbitrary Pade approximation

^n(^)
Q m ( s )

be imposed as an approximation of exp(—s). The polynomials Pn(s) and (5m(>s) are

assumed to have degrees n and m, respectively. Then the queue length distribution in



Chapter 4. Fade Approximations in the Analysis of the MMPP/D/1 System 94

(4.15) can be rewritten as

F,(s) = [sCI + M - R  + R ^ ^ ] - ' h
Qm\^)

= Qm{s)[{sCI + M -  R ) Q M  + RPn{s)]-^fo 

=: Q,n{s)H{s)-^U

The polynomial matrix H{s) = [{sCI A M  — R)Qm{s) + i?P„(s)] has degree

(4.31)

k = max(m + 1, n), (4.32)

that is, i i  can be written as

H{s) = Hts'· + + - + H i S  +Ho, (4.33)

for some constant matrices Hi, i =  0 ,1 , . . . ,A:, with Hk assumed to be nonsingular. 

Similarly, the polynomial Qm{s) is of the form

Qm{s) — ■̂ +  · · · +  q\S +  qo,k-2 (4.34)

since deg(Qm{s)) = m < k. We are now ready to obtain a state-space realization for the 

transform expression in (4.31). We first define

' i - l

F \x )  = ^ F , { x ) , i  = l ,2 , . . . , k ,

and

F,{x) =

F'{x)
F^{x)

F'^ix)

where the subscript c refers to a concatenation of the column vectors F'. Using the

equation (4.31), one can show that the following ordinary differential equation is valid:

- j - F c ( x )  =  A i F c { x ) ,  X >  0 ,  ax
(4.35)
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where
0 I 0 0

0 0 I 0

0 0 0 I

- ^ 0 - i f . -H2 · ·· -Hk

^Hi, i = 0,1,·· •,A* -  1.

and

On the other hand, the initial condition can be shown to be related to the vector /0 

through the following equalities:

F \ 0 )  =  Q k - iy = :Z i fo

F \0 )  =  Q k-ifo  -  E  = :  Z . / o ,  t  -  2 , 3 , . . . ,  A:,
J=1

where

Q i  =  i  =  0 , 1 , . . . ,  A: -  1.

The solution to the linear differential equation (4.35) then takes the form

^2
F c { x )  =  exp(Aia:) / 0· (4.36)

The unknown vector /0 in the expression (4.36) can be computed using the conventional 

techniques in [20] based on matrix analytic methods. Another alternative is to use 

spectral expansion techniques in Section 4.3 and compute /0 by imposing that no unstable 

mode of the dynamical system (4.35) is excited. Our concern here is introducing a 

new mathematical framework for the MMPP/D/1 system that can be extended to the 

M M P P /D /l/K  queues, i.e., to the case of finite buffers, which is considered below.



Chapter 4. Fade Approximations in the Analysis of the MMPP/D/1 System 96

Finite Queue Capacity

Let the queue capacity be denoted by K. When a new arrival finds fewer than K  

packets in the queue waiting to be served, it is admitted to the system. Following the 

scheme in [10],[54], the following differential equation is valid in the interval 0 < x < K:

d
dx Fc{x) = AiFc{x), (I < X < K, (4.37)

^c(O) =
^2

/o.

Note that the vector /o in (4.37) is different from that of equation (4.36).

On the other hand, if an arrival occurs at time t and the instantaneous queue length at 

that time is above A", the packet associated with that arrival is dropped. From the queue 

length point of view, it is convenient to visualize the incoming MMPP characterized by 

the matrix pair (M, R) to change to another MMPP described by the matrix pair (M, 0) 

whenever the number of packets in the queue is K. This is equivalent to assuming 

that no arrivals will occur and the MMPP will be constituted of only its modulating 

process. Also note that the queue length cannot exceed K  + I since there is only one 

server. Then one can obtain as in (4.35) the following differential equation in the interval 

K  < x  < K  4-1·.

^F c (x ) = A2F,(x), K < x < K  + 1. (4.38)

In this equation, the matrix A 2 is of the form

Ao =

0 I 0 0

0 0 I  ·· 0

0 0 0 ·· I

—Go - G i —O2 ■ ■■ —Gk-i

where

G(s) =  (s C I +  M ) Q M  =  Gks'‘ +  G k-is '‘ -^ +  · · · +  G i s  +  G o ,
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and Gx — Gj  ̂^Gix t — 0,1,..., ̂  — 1.

We are now prepared to compute the queue length distribution in a M M PP/D/1/K 

system except for the boundary conditions. The boundary condition at a: =  +  1 is

e<isy to write since i) queue length cannot exceed K -{■ I, ii) stationary probability of the 

queue length being K  + 1 is zero, i.e., there may not be a jump in the queue length cdf 

vector at a; = /t' +  1. Based on these two observations, one can write

F \ K  + l ) ^ F e ( K  + l) = x. (4.39)

Making use of the continuity of the solution of the two differential equations (4.37) and 

(4.38) at a; =  K , one can rewrite (4.39) as

I  0 0 exp(/l2)exp(/li/t') fo = 7T. (4.40)

The unknown vector fo can be solved through the linear matrix equation (4.40) of size 

N k. At this stage, any algorithm for computing matrix exponentials [38] can be used 

to compute the left hand side of (4.40). Once the column vector fo is computed, the 

solution to the differential equations for Fc is easy to write:

Fc{x) = exp(Aix)
^2

fo, 0 < x  < K,

Fc{x) = exp(A2(a: — K))Fc{K), K  < x < K  + 1. 

The stationary queue length cdf Fe{x) is then expressed as

Fe(x) =  F \x )  = I  0 0 Fc{x). (4.41)

Cell losses occur when arrivals find K cells waiting in the buffer. The cell loss rate, pioss,
is therefore described by the following expression

eR{x -  Fe{K))
Ploss —

(4.42)
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where e is a row vector of ones and A is the mean arrival rate. □

Approximate computation of the queue length distribution in the M M PP/D /l/K  

queue is shown to be given in terms of the solution of two linear differential equations 

(4.37) and (4.38). The core of the computation lies in solving the linear equation (4.40) 

which consists of efficiently computing two matrix exponentials of size N k  where N  is 

the number of states of the MMPP and k is given in (4.32). We now show through 

numerical examples that a Pade approximation yielding a degree k = 3 will suffice for 

all practical purposes in order to compute the queue length distribution. Note that the 

computational complexity of the algorithm is independent of the queue capacity, thus 

avoiding numerical problems, especially for large buffer sizes.

4.5.1 N u m erica l E xam ples

In this section, we investigate the performance of the proposed approximation scheme to 

compute the cell loss rate in a M M PP/D /l/K  queue. We consider an ATM multiplexer 

that serves LAN (Local Area Network)-generated data streams. The cell emission process 

for an individual LAN source is widely recognized to be adequately represented by means 

of an on-off source model [3]. Let us consider a set of N  independent and homogeneous 

LAN sources characterized by i) the peak rate Fp ii) the activity factor p, defined as 

the ratio between the average bit rate and Fp iii) mean burst length Li,. We choose a 

reference LAN source as in [3] which is characterized by Fp — 10 Mbits/s, p = 0.1, and 

Lb = 16250 bytes, where these values are representative of a large class of information 

flows arising from LAN’s accessing to an ATM network. As for the multiplexer, we 

assume a gross output capacity equal to 150 Mbits/s (ATM transport rate) and a cell 

length of 53 bytes, 48 of which constitutes the cell payload and the net output capacity 

is therefore equal to 135.85 Mb/s.

We approximate the superposition of N  such on-off sources by means of a two-state

MMPP using the asymptotic matching technique proposed in [3]. This technique is

shown in [3] to be much more effective than the matching method used in [20] in capturing



Chapter 4. Fade Approximations in the Analysis of the MMPP/D/1 System 99

the cell loss rate. Our concern is the performance assessment of our proposed algorithm 

for the M M PP /D /l/K  queue rather than examining the performance of the asymptotic 

matching technique which has already been shown in [3] to be accurate in computation 

of the loss rate. Therefore, in the performance assessment procedure, our simulations 

are based on the two-state MMPP model obtained by means of the asymptotic matching 

technique.

Figure 4.5 is devoted to the computation of the cell loss rate for the case = 40 

via certain Pade approximations. The notation (n,m) denotes the use of a Pade 

approximation Rn,m(s) for the deterministic service time. Recall that the key parameter 

that determines the computational load is the variable k which equals to max(m -|- l ,n)  

when a Pade approximation Rn,m(s) is imposed. In Figure 4.5, we show that even 

with a simple Pade approximant (e.g., (2,2) approximation yielding k = 3), high 

accuracies in cell loss rate computation can be maintained. The Pade approximation (0,1) 

overestimates the loss rate whereas the approximations (1,1) and (2,1) underestimate 

this quantity. We do not cover in Figure 4.5 more advanced approximations (e.g., (3,3) 

approximation) since their performances are quite the same as that of the approximation 

(2,2) (we observed at most a 2 % difference in the cell loss rate approximations of (2,2) 

and (3,3) for this example).

The final example is given in Figure 4.6 in which the cell loss rate approximation 

obtained by using the Pade approximation (2,2) is compared with the simulation results 

as the number of the LAN sources are varied. Irrespective of the buffer size and the 

number of users (or equivalently, the load), the Pade approximation (2,2) results in a 

very accurate approximation of the cell loss rate.

4.6 E ffective B andw idth

In this section, we are concerned with the problem of effective bandwidth approximation

of a call of MMPP type offered to a deterministic server. The same problem in the



Chapter 4. Fade Approximations in the Analysis of the MMPP/D/1 System 100

15 25 35 45 55 65
buffer size (in cells)

75 85 95

F igure  4.5: Cell loss rate approximations (Â  = 40, utilization =  0.29).
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F igu re  4.6: Cell loss rate with respect to the buffer size obtained by Fade approximation
(2,2) as N  is varied.
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case of Markov modulated periodic arrivals has been considered in Section 3.5. In 

the exposition that follows, we will extend the results there to the case of Markov 

modulated Poisson sources and state an analog of Proposition 3.1 as a solution for the 

call admission problem in the prescribed asymptotic regime of large buffers and small 

buffer overflow probabilities. In what follows, the Fade approximation will be

used to approximate the transform of the service time distribution.

We use the same notation in Section 4.2 so that M  is the generator matrix of 

the underlying Markov chain and R  is the rate matrix associated with that source 

whose effective bandwidth is our objective. When this process is fed into a statistical 

multiplexer, the stationary queue length has the following spectral representation

Fe{x) =  X) ai4>iexp{zix)+ · ,̂
i:Re(zi)<0

where tt =  n = and the pair (z,·,<̂ ,·) is an eigenvalue-eigenvector pair.

Such pairs are solutions to to the generalized eigenvalue problem

[{zCI + M -  R){1 + z/3) +  R (l -  2z!3 + zV6)]<  ̂= 0. (4.43)

Indexing the eigenvalues with negative real parts

0 > 2i > Re{z2) > ·· ·

we call the real eigenvalue zi as the dominant eigenvalue and we also note that

logG(x)--------------> Z\ diS X OO,
X

where G{x) denotes the buffer survivor function. Writing C = g{z) in (4.43), we obtain 

an equivalent expression for (4.43):

( \ l i(  r ^ ( l - ^ / 6 )  Mg{z)4, = A(z)4, = I (J ^  ^^3 ) -  -]4>· (4.44)

Note the additional term (1 - z /6 ) / ( l  +  z/3) contrary to the expression (3.32) suggested 

for both Markov modulated fluid and periodic sources. Here, g{z) is an eigenvalue of 

the matrix A{z) in which z is a parameter. Paralleling the development in Section 3.5,
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gi{z) is called the maximal real eigenvalue among the ones that satisfy (4.44) for some 

<f>. This particular eigenvalue has the following remarkable properties (proof is omitted 

due to its length but can be made along the lines followed in [12], principal observation 

being the essential non-negativity of A{z) in the interval (—3,0]).

i) gi{z) is a decreasing function of 2 in (-3 ,0]. Besides, lim^^o-5 1(2) =  A (mean 

source rate) and lim2_>_3+ gi{z) — -f-00.

ii) The dominant eigenvalue zi is the unique solution in (-3 ,0] satisfying gi(zi) = C.

We next examine the admission criterion {G{B) < p} in the asymptotic regime of large 

buffers B  and small overflow probabilities p. Our result is

P ro p o s itio n  4.1. Suppose P 00 and p 0 in such a manner that logp/B  (  E 

(-3 ,0 ]. I f

9 ii0  < C,

then the admission criterion is satisfied. If the inequality sign is reversed then the 

admission criterion is violated. Here, ^i(^) is the maximal real eigenvalue of

( i + i / 3 )  r

On the basis of the above result, the effective bandwidth of a single source is simply

e{M ,R ;B ,p )= g iiO ·

For a two-state MMPP source with the parameter pair (M, R)

(4.45)

M =
—A p 

A —p
and R =

0 0

0 P

gi(z) is the following simply computed quantity

, , P (z)z  +  A + /1 -  {{P(z)z + \  + f i f  -  i\P {z)z ) '/^
M ^) = -------------------------------
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in which
^ ( ^ ) A P ( 1 - z/6)

(1 + 2/ 3 )
We next investigate, as in Section 3.3, the decomposition of the expression in (4.45), 

when the source (M, R) is the aggregate of K  sources, {1 < k < K).

P ro p o s itio n  4.2. Suppose there are K  Markov modulated Poisson sources,

(1 < k <  K ), offered to a multiplexing buffer. Let the admission criterion and the 

asymptotic regime be as in Proposition 4-1· I f

k

then the admission criterion is satisfied. I f  the inequality sign is reversed then the 

admission criterion is violated. Here, maximal real eigenvalue of

(i + i/3 ) r
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Conclusions and Suggestions for 

Future Work

In this dissertation, we have considered the queueing analysis of an ATM multiplexer 

fed by sources modeled as Markov modulated processes. We have focused on the 

MMPAP/D/1 and MMPP/D/1 queueing systems due to their wide-spread use in the 

performance analysis of ATM networks.

For the MMPAP/D/1 system, an approximation based on the transient behavior of 

the n D /D jl  queue is proposed which is capable of capturing cell scale fluctuations. 

The computation encountered is similar to fluid flow approximations except for the 

determination of the linear operator Z  (see def. (3.16)). Our suggestions for further 

research are:

• Computation of the operator Z  (see def. (3.16)) is the main part of the overall 

algorithm. Although certain methods are presented to decrease this computation, 

there is still work to be done towards obtaining further adequate approximations 

to ensure tractability particularly when the number of sources to be multiplexed 

are increased.

• The case of different periods needs to be investigated. In our framework,

105
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this requires the stationary queue length distribution expression in a J2D i/D /l 

queue for which an exact solution is not available. For this purpose, accurate 

approximations proposed for the J^D i/D /l  system (see [31],[44]) can be made use 

of.

• Work needs to be done for analysis of queues with priority management. We note 

that our methodology is suitable to use in partial buffer sharing mechanisms [33] 

to which fluid flow techniques are proven to apply [11],[63].

• A more general notion of effective bandwidth is required which takes into account 

of not only the buffer overflow probability in FIFO queues but also in queues with 

priority management.

For the M M PP/D/1 system, we employ Pade approximations for the deterministic 

service time distribution in transform domain. We also show that fluid flow approxima­

tions and MMPP/M/1 queues are obtained via first order Pade approximations for the 

M M PP/D/1 system. We obtain particular Pade approximations which involve no more 

computational complexity than the one encountered in solving the MMPP/M/1 queue. 

The performance of these approximations is demonstrated in the case of a packetized 

voice multiplexer. An algorithm is presented for the finite buffered MMPP-driven queue 

(i.e., M M PP /D /l/K  queue) with a computational complexity independent of the buffer 

size. Our suggestions for further research are;

• Justification of MMPP as a general traffic model in ATM networks is necessary.

• Examining the use of Pade approximations in approximating the performance of 

general queueing systems rather than the particular MMPP/D/1 system is one 

direction of future research.

• There is work to be done in order to propose simple schemes to approximate the 

asymptotic behavior of the cell loss rate with respect to the buffer size which can 

in turn be employed in call admission control.



Chapter 5. Conclusions and Suggestions for Future Work 107

We have proposed methods for the teletraffic analysis of an ATM multiplexer offered 

with a class of Markov modulated processes. We believe that these methods can be made 

use of to develop traffic control strategies in an ATM network. These strategies possibly 

include buffer dimensioning, bandwidth allocation and routing. Improved performance 

analysis schemes will alleviate the dependence on simulations and help propose new 

congestion control strategies that may turn B-ISDN into a successful reality.
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