146 research outputs found

    Long range LiDAR characterisation for obstacle detection for use by the visually impaired and blind

    Get PDF
    Obstacle detection and avoidance is a huge area of interest for autonomous vehicles and, as such, has become an important research topic. Detecting and identifying obstacles enables navigation through an ever changing environment. This work looks at the technology used in self-driving vehicles and examines whether the same technology could be used to aid in navigation for visually impaired and blind (VIB) people. For autonomous vehicles, obstacle detection relies on different sensor modalities to provide information on the vehicles surroundings. A combination of the same sensors placed on a white cane could be used to perform free-space assessment over the whole height of the user and provide additional environmental information not available from the cane alone. This provides its own challenges and advantages. The speeds are much slower when dealing with pedestrians and scanning can be achieved by the movement of the cane. However, the weight and size must be significantly reduced. The full system will be integrated into a smart cane and will consist of four main sensors as well as range sensors. The aim of this work is to report on the characterisation of a long range LiDAR (up to 10m) that will be integrated into a smart white cane developed as part of the INSPEX H2020 project

    International Conference on Technology and Innovation in Sports, Health and Wellbeing (TISHW)

    Full text link

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Autonomous wheelchair with a smart driving mode and a Wi-Fi positioning system

    Get PDF
    Wheelchairs are an important aid that enhances the mobility of people with several types of disabilities. Therefore, there has been considerable research and development on wheelchairs to meet the needs of the disabled. Since the early manual wheelchairs to their more recent electric powered counterparts, advancements have focused on improving autonomy in mobility. Other developments, such as Internet advancements, have developed the concept of the Internet of Things (IoT). This is a promising area that has been studied to enhance the independent operation of the electrical wheelchairs by enabling autonomous navigation and obstacle avoidance. This dissertation describes shortly the design of an autonomous wheelchair of the IPL/IT (Instituto Politécnico de Leiria/Instituto de Telecomunicações) with smart driving features for persons with visual impairments. The objective is to improve the prototype of an intelligent wheelchair. The first prototype of the wheelchair was built to control it by voice, ocular movements, and GPS (Global Positioning System). Furthermore, the IPL/IT wheelchair acquired a remote control feature which could prove useful for persons with low levels of visual impairment. This tele-assistance mode will be helpful to the family of the wheelchair user or, simply, to a health care assistant. Indoor and outdoor positioning systems, with printed directional Wi-Fi antennas, have been deployed to enable a precise location of our wheelchair. The underlying framework for the wheelchair system is the IPL/IT low cost autonomous wheelchair prototype that is based on IoT technology for improved affordability

    An Orientation & Mobility Aid for People with Visual Impairments

    Get PDF
    Orientierung&Mobilität (O&M) umfasst eine Reihe von Techniken für Menschen mit Sehschädigungen, die ihnen helfen, sich im Alltag zurechtzufinden. Dennoch benötigen sie einen umfangreichen und sehr aufwendigen Einzelunterricht mit O&M Lehrern, um diese Techniken in ihre täglichen Abläufe zu integrieren. Während einige dieser Techniken assistive Technologien benutzen, wie zum Beispiel den Blinden-Langstock, Points of Interest Datenbanken oder ein Kompass gestütztes Orientierungssystem, existiert eine unscheinbare Kommunikationslücke zwischen verfügbaren Hilfsmitteln und Navigationssystemen. In den letzten Jahren sind mobile Rechensysteme, insbesondere Smartphones, allgegenwärtig geworden. Dies eröffnet modernen Techniken des maschinellen Sehens die Möglichkeit, den menschlichen Sehsinn bei Problemen im Alltag zu unterstützen, die durch ein nicht barrierefreies Design entstanden sind. Dennoch muss mit besonderer Sorgfalt vorgegangen werden, um dabei nicht mit den speziellen persönlichen Kompetenzen und antrainierten Verhaltensweisen zu kollidieren, oder schlimmstenfalls O&M Techniken sogar zu widersprechen. In dieser Dissertation identifizieren wir eine räumliche und systembedingte Lücke zwischen Orientierungshilfen und Navigationssystemen für Menschen mit Sehschädigung. Die räumliche Lücke existiert hauptsächlich, da assistive Orientierungshilfen, wie zum Beispiel der Blinden-Langstock, nur dabei helfen können, die Umgebung in einem limitierten Bereich wahrzunehmen, während Navigationsinformationen nur sehr weitläufig gehalten sind. Zusätzlich entsteht diese Lücke auch systembedingt zwischen diesen beiden Komponenten — der Blinden-Langstock kennt die Route nicht, während ein Navigationssystem nahegelegene Hindernisse oder O&M Techniken nicht weiter betrachtet. Daher schlagen wir verschiedene Ansätze zum Schließen dieser Lücke vor, um die Verbindung und Kommunikation zwischen Orientierungshilfen und Navigationsinformationen zu verbessern und betrachten das Problem dabei aus beiden Richtungen. Um nützliche relevante Informationen bereitzustellen, identifizieren wir zuerst die bedeutendsten Anforderungen an assistive Systeme und erstellen einige Schlüsselkonzepte, die wir bei unseren Algorithmen und Prototypen beachten. Existierende assistive Systeme zur Orientierung basieren hauptsächlich auf globalen Navigationssatellitensystemen. Wir versuchen, diese zu verbessern, indem wir einen auf Leitlinien basierenden Routing Algorithmus erstellen, der auf individuelle Bedürfnisse anpassbar ist und diese berücksichtigt. Generierte Routen sind zwar unmerklich länger, aber auch viel sicherer, gemäß den in Zusammenarbeit mit O&M Lehrern erstellten objektiven Kriterien. Außerdem verbessern wir die Verfügbarkeit von relevanten georeferenzierten Datenbanken, die für ein derartiges bedarfsgerechtes Routing benötigt werden. Zu diesem Zweck erstellen wir einen maschinellen Lernansatz, mit dem wir Zebrastreifen in Luftbildern erkennen, was auch über Ländergrenzen hinweg funktioniert, und verbessern dabei den Stand der Technik. Um den Nutzen von Mobilitätsassistenz durch maschinelles Sehen zu optimieren, erstellen wir O&M Techniken nachempfundene Ansätze, um die räumliche Wahrnehmung der unmittelbaren Umgebung zu erhöhen. Zuerst betrachten wir dazu die verfügbare Freifläche und informieren auch über mögliche Hindernisse. Weiterhin erstellen wir einen neuartigen Ansatz, um die verfügbaren Leitlinien zu erkennen und genau zu lokalisieren, und erzeugen virtuelle Leitlinien, welche Unterbrechungen überbrücken und bereits frühzeitig Informationen über die nächste Leitlinie bereitstellen. Abschließend verbessern wir die Zugänglichkeit von Fußgängerübergängen, insbesondere Zebrastreifen und Fußgängerampeln, mit einem Deep Learning Ansatz. Um zu analysieren, ob unsere erstellten Ansätze und Algorithmen einen tatsächlichen Mehrwert für Menschen mit Sehschädigung erzeugen, vollziehen wir ein kleines Wizard-of-Oz-Experiment zu unserem bedarfsgerechten Routing — mit einem sehr ermutigendem Ergebnis. Weiterhin führen wir eine umfangreichere Studie mit verschiedenen Komponenten und dem Fokus auf Fußgängerübergänge durch. Obwohl unsere statistischen Auswertungen nur eine geringfügige Verbesserung aufzeigen, beeinflußt durch technische Probleme mit dem ersten Prototypen und einer zu geringen Eingewöhnungszeit der Probanden an das System, bekommen wir viel versprechende Kommentare von fast allen Studienteilnehmern. Dies zeigt, daß wir bereits einen wichtigen ersten Schritt zum Schließen der identifizierten Lücke geleistet haben und Orientierung&Mobilität für Menschen mit Sehschädigung damit verbessern konnten

    Shanghai Service Robot

    Get PDF
    A robotic base and control program capable of following a user was created that linked TwinCAT automation software, and Visual Studios C++. Microsoft’s Kinect sensor and Xbox Controller were used for communication between the robot and the user. The robot used skeletal gestures, speech recognition, and remote commands to accomplish task

    Proof-of-concept of a single-point Time-of-Flight LiDAR system and guidelines towards integrated high-accuracy timing, advanced polarization sensing and scanning with a MEMS micromirror

    Get PDF
    Dissertação de mestrado integrado em Engenharia Física (área de especialização em Dispositivos, Microssistemas e Nanotecnologias)The core focus of the work reported herein is the fulfillment of a functional Light Detection and Ranging (LiDAR) sensor to validate the direct Time-of-Flight (ToF) ranging concept and the acquisition of critical knowledge regarding pivotal aspects jeopardizing the sensor’s performance, for forthcoming improvements aiming a realistic sensor targeted towards automotive applications. Hereupon, the ToF LiDAR system is implemented through an architecture encompassing both optical and electronical functions and is subsequently characterized under a sequence of test procedures usually applied in benchmarking of LiDAR sensors. The design employs a hybrid edge-emitting laser diode (pulsed at 6kHz, 46ns temporal FWHM, 7ns rise-time; 919nm wavelength with 5nm FWHM), a PIN photodiode to detect the back-reflected radiation, a transamplification stage and two Time-to-Digital Converters (TDCs), with leading-edge discrimination electronics to mark the transit time between emission and detection events. Furthermore, a flexible modular design is adopted using two separate Printed Circuit Boards (PCBs), comprising the transmitter (TX) and the receiver (RX), i.e. detection and signal processing. The overall output beam divergence is 0.4º×1º and an optical peak power of 60W (87% overall throughput) is realized. The sensor is tested indoors from 0.56 to 4.42 meters, and the distance is directly estimated from the pulses transit time. The precision within these working distances ranges from 4cm to 7cm, reflected in a Signal-to-Noise Ratio (SNR) between 12dB and 18dB. The design requires a calibration procedure to correct systematic errors in the range measurements, induced by two sources: the timing offset due to architecture-inherent differences in the optoelectronic paths and a supplementary bias resulting from the design, which renders an intensity dependence and is denoted time-walk. The calibrated system achieves a mean accuracy of 1cm. Two distinct target materials are used for characterization and performance evaluation: a metallic automotive paint and a diffuse material. This selection is representative of two extremes of actual LiDAR applications. The optical and electronic characterization is thoroughly detailed, including the recognition of a good agreement between empirical observations and simulations in ZEMAX, for optical design, and in a SPICE software, for the electrical subsystem. The foremost meaningful limitation of the implemented design is identified as an outcome of the leading-edge discrimination. A proposal for a Constant Fraction Discriminator addressing sub-millimetric accuracy is provided to replace the previous signal processing element. This modification is mandatory to virtually eliminate the aforementioned systematic bias in range sensing due to the intensity dependency. A further crucial addition is a scanning mechanism to supply the required Field-of-View (FOV) for automotive usage. The opto-electromechanical guidelines to interface a MEMS micromirror scanner, achieving a 46º×17º FOV, with the LiDAR sensor are furnished. Ultimately, a proof-of-principle to the use of polarization in material classification for advanced processing is carried out, aiming to complement the ToF measurements. The original design is modified to include a variable wave retarder, allowing the simultaneous detection of orthogonal linear polarization states using a single detector. The material classification with polarization sensing is tested with the previously referred materials culminating in an 87% and 11% degree of linear polarization retention from the metallic paint and the diffuse material, respectively, computed by Stokes parameters calculus. The procedure was independently validated under the same conditions with a micro-polarizer camera (92% and 13% polarization retention).O intuito primordial do trabalho reportado no presente documento é o desenvolvimento de um sensor LiDAR funcional, que permita validar o conceito de medição direta do tempo de voo de pulsos óticos para a estimativa de distância, e a aquisição de conhecimento crítico respeitante a aspetos fundamentais que prejudicam a performance do sensor, ambicionando melhorias futuras para um sensor endereçado para aplicações automóveis. Destarte, o sistema LiDAR é implementado através de uma arquitetura que engloba tanto funções óticas como eletrónicas, sendo posteriormente caracterizado através de uma sequência de testes experimentais comumente aplicáveis em benchmarking de sensores LiDAR. O design tira partido de um díodo de laser híbrido (pulsado a 6kHz, largura temporal de 46ns; comprimento de onda de pico de 919nm e largura espetral de 5nm), um fotodíodo PIN para detetar a radiação refletida, um andar de transamplificação e dois conversores tempo-digital, com discriminação temporal com threshold constante para marcar o tempo de trânsito entre emissão e receção. Ademais, um design modular flexível é adotado através de duas PCBs independentes, compondo o transmissor e o recetor (deteção e processamento de sinal). A divergência global do feixe emitido para o ambiente circundante é 0.4º×1º, apresentando uma potência ótica de pico de 60W (eficiência de 87% na transmissão). O sensor é testado em ambiente fechado, entre 0.56 e 4.42 metros. A precisão dentro das distâncias de trabalho varia entre 4cm e 7cm, o que se reflete numa razão sinal-ruído entre 12dB e 18dB. O design requer calibração para corrigir erros sistemáticos nas distâncias adquiridas devido a duas fontes: o desvio no ToF devido a diferenças nos percursos optoeletrónicos, inerentes à arquitetura, e uma dependência adicional da intensidade do sinal refletido, induzida pela técnica de discriminação implementada e denotada time-walk. A exatidão do sistema pós-calibração perfaz um valor médio de 1cm. Dois alvos distintos são utilizados durante a fase de caraterização e avaliação performativa: uma tinta metálica aplicada em revestimentos de automóveis e um material difusor. Esta seleção é representativa de dois cenários extremos em aplicações reais do LiDAR. A caraterização dos subsistemas ótico e eletrónico é minuciosamente detalhada, incluindo a constatação de uma boa concordância entre observações empíricas e simulações óticas em ZEMAX e elétricas num software SPICE. O principal elemento limitante do design implementado é identificado como sendo a técnica de discriminação adotada. Por conseguinte, é proposta a substituição do anterior bloco por uma técnica de discriminação a uma fração constante do pulso de retorno, com exatidões da ordem sub-milimétrica. Esta modificação é imperativa para eliminar o offset sistemático nas medidas de distância, decorrente da dependência da intensidade do sinal. Uma outra inclusão de extrema relevância é um mecanismo de varrimento que assegura o cumprimento dos requisitos de campo de visão para aplicações automóveis. As diretrizes para a integração de um micro-espelho no sensor concebido são providenciadas, permitindo atingir um campo de visão de 46º×17º. Conclusivamente, é feita uma prova de princípio para a utilização da polarização como complemento das medições do tempo de voo, de modo a suportar a classificação de materiais em processamento avançado. A arquitetura original é modificada para incluir uma lâmina de atraso variável, permitindo a deteção de estados de polarização ortogonais com um único fotodetetor. A classificação de materiais através da aferição do estado de polarização da luz refletida é testada para os materiais supramencionados, culminando numa retenção de polarização de 87% (tinta metálica) e 11% (difusor), calculados através dos parâmetros de Stokes. O procedimento é independentemente validado com uma câmara polarimétrica nas mesmas condições (retenção de 92% e 13%)

    Distributed, Low-Cost, Non-Expert Fine Dust Sensing with Smartphones

    Get PDF
    Diese Dissertation behandelt die Frage, wie mit kostengünstiger Sensorik Feinstäube in hoher zeitlicher und räumlicher Auflösung gemessen werden können. Dazu wird ein neues Sensorsystem auf Basis kostengünstiger off-the-shelf-Sensoren und Smartphones vorgestellt, entsprechende robuste Algorithmen zur Signalverarbeitung entwickelt und Erkenntnisse zur Interaktions-Gestaltung für die Messung durch Laien präsentiert. Atmosphärische Aerosolpartikel stellen im globalen Maßstab ein gravierendes Problem für die menschliche Gesundheit dar, welches sich in Atemwegs- und Herz-Kreislauf-Erkrankungen äußert und eine Verkürzung der Lebenserwartung verursacht. Bisher wird Luftqualität ausschließlich anhand von Daten relativ weniger fester Messstellen beurteilt und mittels Modellen auf eine hohe räumliche Auflösung gebracht, so dass deren Repräsentativität für die flächendeckende Exposition der Bevölkerung ungeklärt bleibt. Es ist unmöglich, derartige räumliche Abbildungen mit den derzeitigen statischen Messnetzen zu bestimmen. Bei der gesundheitsbezogenen Bewertung von Schadstoffen geht der Trend daher stark zu räumlich differenzierenden Messungen. Ein vielversprechender Ansatz um eine hohe räumliche und zeitliche Abdeckung zu erreichen ist dabei Participatory Sensing, also die verteilte Messung durch Endanwender unter Zuhilfenahme ihrer persönlichen Endgeräte. Insbesondere für Luftqualitätsmessungen ergeben sich dabei eine Reihe von Herausforderungen - von neuer Sensorik, die kostengünstig und tragbar ist, über robuste Algorithmen zur Signalauswertung und Kalibrierung bis hin zu Anwendungen, die Laien bei der korrekten Ausführung von Messungen unterstützen und ihre Privatsphäre schützen. Diese Arbeit konzentriert sich auf das Anwendungsszenario Partizipatorischer Umweltmessungen, bei denen Smartphone-basierte Sensorik zum Messen der Umwelt eingesetzt wird und üblicherweise Laien die Messungen in relativ unkontrollierter Art und Weise ausführen. Die Hauptbeiträge hierzu sind: 1. Systeme zum Erfassen von Feinstaub mit Smartphones (Low-cost Sensorik und neue Hardware): Ausgehend von früher Forschung zur Feinstaubmessung mit kostengünstiger off-the-shelf-Sensorik wurde ein Sensorkonzept entwickelt, bei dem die Feinstaub-Messung mit Hilfe eines passiven Aufsatzes auf einer Smartphone-Kamera durchgeführt wird. Zur Beurteilung der Sensorperformance wurden teilweise Labor-Messungen mit künstlich erzeugtem Staub und teilweise Feldevaluationen in Ko-Lokation mit offiziellen Messstationen des Landes durchgeführt. 2. Algorithmen zur Signalverarbeitung und Auswertung: Im Zuge neuer Sensordesigns werden Kombinationen bekannter OpenCV-Bildverarbeitungsalgorithmen (Background-Subtraction, Contour Detection etc.) zur Bildanalyse eingesetzt. Der resultierende Algorithmus erlaubt im Gegensatz zur Auswertung von Lichtstreuungs-Summensignalen die direkte Zählung von Partikeln anhand individueller Lichtspuren. Ein zweiter neuartiger Algorithmus nutzt aus, dass es bei solchen Prozessen ein signalabhängiges Rauschen gibt, dessen Verhältnis zum Mittelwert des Signals bekannt ist. Dadurch wird es möglich, Signale die von systematischen unbekannten Fehlern betroffen sind auf Basis ihres Rauschens zu analysieren und das "echte" Signal zu rekonstruieren. 3. Algorithmen zur verteilten Kalibrierung bei gleichzeitigem Schutz der Privatsphäre: Eine Herausforderung partizipatorischer Umweltmessungen ist die wiederkehrende Notwendigkeit der Sensorkalibrierung. Dies beruht zum einen auf der Instabilität insbesondere kostengünstiger Luftqualitätssensorik und zum anderen auf der Problematik, dass Endbenutzern die Mittel für eine Kalibrierung üblicherweise fehlen. Bestehende Ansätze zur sogenannten Cross-Kalibrierung von Sensoren, die sich in Ko-Lokation mit einer Referenzstation oder anderen Sensoren befinden, wurden auf Daten günstiger Feinstaubsensorik angewendet sowie um Mechanismen erweitert, die eine Kalibrierung von Sensoren untereinander ohne Preisgabe privater Informationen (Identität, Ort) ermöglicht. 4. Mensch-Maschine-Interaktions-Gestaltungsrichtlinien für Participatory Sensing: Auf Basis mehrerer kleiner explorativer Nutzerstudien wurde empirisch eine Taxonomie der Fehler erstellt, die Laien beim Messen von Umweltinformationen mit Smartphones machen. Davon ausgehend wurden mögliche Gegenmaßnahmen gesammelt und klassifiziert. In einer großen summativen Studie mit einer hohen Teilnehmerzahl wurde der Effekt verschiedener dieser Maßnahmen durch den Vergleich vier unterschiedlicher Varianten einer App zur partizipatorischen Messung von Umgebungslautstärke evaluiert. Die dabei gefundenen Erkenntnisse bilden die Basis für Richtlinien zur Gestaltung effizienter Nutzerschnittstellen für Participatory Sensing auf Mobilgeräten. 5. Design Patterns für Participatory Sensing Games auf Mobilgeräten (Gamification): Ein weiterer erforschter Ansatz beschäftigt sich mit der Gamifizierung des Messprozesses um Nutzerfehler durch den Einsatz geeigneter Spielmechanismen zu minimieren. Dabei wird der Messprozess z.B. in ein Smartphone-Spiel (sog. Minigame) eingebettet, das im Hintergrund bei geeignetem Kontext die Messung durchführt. Zur Entwicklung dieses "Sensified Gaming" getauften Konzepts wurden Kernaufgaben im Participatory Sensing identifiziert und mit aus der Literatur zu sammelnden Spielmechanismen (Game Design Patterns) gegenübergestellt
    corecore