2,401 research outputs found

    Deep Learning Methods for Classification of Gliomas and Their Molecular Subtypes, From Central Learning to Federated Learning

    Get PDF
    The most common type of brain cancer in adults are gliomas. Under the updated 2016 World Health Organization (WHO) tumor classification in central nervous system (CNS), identification of molecular subtypes of gliomas is important. For low grade gliomas (LGGs), prediction of molecular subtypes by observing magnetic resonance imaging (MRI) scans might be difficult without taking biopsy. With the development of machine learning (ML) methods such as deep learning (DL), molecular based classification methods have shown promising results from MRI scans that may assist clinicians for prognosis and deciding on a treatment strategy. However, DL requires large amount of training datasets with tumor class labels and tumor boundary annotations. Manual annotation of tumor boundary is a time consuming and expensive process.The thesis is based on the work developed in five papers on gliomas and their molecular subtypes. We propose novel methods that provide improved performance. \ua0The proposed methods consist of a multi-stream convolutional autoencoder (CAE)-based classifier, a deep convolutional generative adversarial network (DCGAN) to enlarge the training dataset, a CycleGAN to handle domain shift, a novel federated learning (FL) scheme to allow local client-based training with dataset protection, and employing bounding boxes to MRIs when tumor boundary annotations are not available.Experimental results showed that DCGAN generated MRIs have enlarged the original training dataset size and have improved the classification performance on test sets. CycleGAN showed good domain adaptation on multiple source datasets and improved the classification performance. The proposed FL scheme showed a slightly degraded performance as compare to that of central learning (CL) approach while protecting dataset privacy. Using tumor bounding boxes showed to be an alternative approach to tumor boundary annotation for tumor classification and segmentation, with a trade-off between a slight decrease in performance and saving time in manual marking by clinicians. The proposed methods may benefit the future research in bringing DL tools into clinical practice for assisting tumor diagnosis and help the decision making process

    A Survey on Surrogate-assisted Efficient Neural Architecture Search

    Full text link
    Neural architecture search (NAS) has become increasingly popular in the deep learning community recently, mainly because it can provide an opportunity to allow interested users without rich expertise to benefit from the success of deep neural networks (DNNs). However, NAS is still laborious and time-consuming because a large number of performance estimations are required during the search process of NAS, and training DNNs is computationally intensive. To solve the major limitation of NAS, improving the efficiency of NAS is essential in the design of NAS. This paper begins with a brief introduction to the general framework of NAS. Then, the methods for evaluating network candidates under the proxy metrics are systematically discussed. This is followed by a description of surrogate-assisted NAS, which is divided into three different categories, namely Bayesian optimization for NAS, surrogate-assisted evolutionary algorithms for NAS, and MOP for NAS. Finally, remaining challenges and open research questions are discussed, and promising research topics are suggested in this emerging field.Comment: 18 pages, 7 figure

    Overview Of The NOAA/ESRL Federated Aerosol Network

    Get PDF
    To estimate global aerosol radiative forcing, measurements of aerosol optical properties are made by the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL)’s Global Monitoring Division (GMD) and their collaborators at 30 monitoring locations around the world. Many of the sites are located in regions influenced by specific aerosol types (Asian and Saharan desert dust, Asian pollution, biomass burning, etc.). This network of monitoring stations is a shared endeavor of NOAA and many collaborating organizations, including the World Meteorological Organization (WMO)’s Global Atmosphere Watch (GAW) program, the U.S. Department of Energy (DOE), several U.S. and foreign universities, and foreign science organizations. The result is a long-term cooperative program making atmospheric measurements that are directly comparable with those from all the other network stations and with shared data access. The protocols and software developed to support the program facilitate participation in GAW’s atmospheric observation strategy, and the sites in the NOAA/ESRL network make up a substantial subset of the GAW aerosol observations. This paper describes the history of the NOAA/ESRL Federated Aerosol Network, details about measurements and operations, and some recent findings from the network measurements

    Overview of the NOAA/ESRL Federated Aerosol Network

    Get PDF
    To estimate global aerosol radiative forcing, measurements of aerosol optical properties are made by the National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL)’s Global Monitoring Division (GMD) and their collaborators at 30 monitoring locations around the world. Many of the sites are located in regions influenced by specific aerosol types (Asian and Saharan desert dust, Asian pollution, biomass burning, etc.). This network of monitoring stations is a shared endeavor of NOAA and many collaborating organizations, including the World Meteorological Organization (WMO)’s Global Atmosphere Watch (GAW) program, the U.S. Department of Energy (DOE), several U.S. and foreign universities, and foreign science organizations. The result is a long-term cooperative program making atmospheric measurements that are directly comparable with those from all the other network stations and with shared data access. The protocols and software developed to support the program facilitate participation in GAW’s atmospheric observation strategy, and the sites in the NOAA/ESRL network make up a substantial subset of the GAW aerosol observations. This paper describes the history of the NOAA/ESRL Federated Aerosol Network, details about measurements and operations, and some recent findings from the network measurements.NOAA Climate Program Office’s Atmospheric Chemistry, Carbon Cycle, and Climate (AC4) progra

    Spatiotemporal anomaly detection: streaming architecture and algorithms

    Get PDF
    Includes bibliographical references.2020 Summer.Anomaly detection is the science of identifying one or more rare or unexplainable samples or events in a dataset or data stream. The field of anomaly detection has been extensively studied by mathematicians, statisticians, economists, engineers, and computer scientists. One open research question remains the design of distributed cloud-based architectures and algorithms that can accurately identify anomalies in previously unseen, unlabeled streaming, multivariate spatiotemporal data. With streaming data, time is of the essence, and insights are perishable. Real-world streaming spatiotemporal data originate from many sources, including mobile phones, supervisory control and data acquisition enabled (SCADA) devices, the internet-of-things (IoT), distributed sensor networks, and social media. Baseline experiments are performed on four (4) non-streaming, static anomaly detection multivariate datasets using unsupervised offline traditional machine learning (TML), and unsupervised neural network techniques. Multiple architectures, including autoencoders, generative adversarial networks, convolutional networks, and recurrent networks, are adapted for experimentation. Extensive experimentation demonstrates that neural networks produce superior detection accuracy over TML techniques. These same neural network architectures can be extended to process unlabeled spatiotemporal streaming using online learning. Space and time relationships are further exploited to provide additional insights and increased anomaly detection accuracy. A novel domain-independent architecture and set of algorithms called the Spatiotemporal Anomaly Detection Environment (STADE) is formulated. STADE is based on federated learning architecture. STADE streaming algorithms are based on a geographically unique, persistently executing neural networks using online stochastic gradient descent (SGD). STADE is designed to be pluggable, meaning that alternative algorithms may be substituted or combined to form an ensemble. STADE incorporates a Stream Anomaly Detector (SAD) and a Federated Anomaly Detector (FAD). The SAD executes at multiple locations on streaming data, while the FAD executes at a single server and identifies global patterns and relationships among the site anomalies. Each STADE site streams anomaly scores to the centralized FAD server for further spatiotemporal dependency analysis and logging. The FAD is based on recent advances in DNN-based federated learning. A STADE testbed is implemented to facilitate globally distributed experimentation using low-cost, commercial cloud infrastructure provided by Microsoftâ„¢. STADE testbed sites are situated in the cloud within each continent: Africa, Asia, Australia, Europe, North America, and South America. Communication occurs over the commercial internet. Three STADE case studies are investigated. The first case study processes commercial air traffic flows, the second case study processes global earthquake measurements, and the third case study processes social media (i.e., Twitterâ„¢) feeds. These case studies confirm that STADE is a viable architecture for the near real-time identification of anomalies in streaming data originating from (possibly) computationally disadvantaged, geographically dispersed sites. Moreover, the addition of the FAD provides enhanced anomaly detection capability. Since STADE is domain-independent, these findings can be easily extended to additional application domains and use cases

    Privacy-preserving machine learning system at the edge

    Get PDF
    Data privacy in machine learning has become an urgent problem to be solved, along with machine learning's rapid development and the large attack surface being explored. Pre-trained deep neural networks are increasingly deployed in smartphones and other edge devices for a variety of applications, leading to potential disclosures of private information. In collaborative learning, participants keep private data locally and communicate deep neural networks updated on their local data, but still, the private information encoded in the networks' gradients can be explored by adversaries. This dissertation aims to perform dedicated investigations on privacy leakage from neural networks and to propose privacy-preserving machine learning systems for edge devices. Firstly, the systematization of knowledge is conducted to identify the key challenges and existing/adaptable solutions. Then a framework is proposed to measure the amount of sensitive information memorized in each layer's weights of a neural network based on the generalization error. Results show that, when considered individually, the last layers encode a larger amount of information from the training data compared to the first layers. To protect such sensitive information in weights, DarkneTZ is proposed as a framework that uses an edge device's Trusted Execution Environment (TEE) in conjunction with model partitioning to limit the attack surface against neural networks. The performance of DarkneTZ is evaluated, including CPU execution time, memory usage, and accurate power consumption, using two small and six large image classification models. Due to the limited memory of the edge device's TEE, model layers are partitioned into more sensitive layers (to be executed inside the device TEE), and a set of layers to be executed in the untrusted part of the operating system. Results show that even if a single layer is hidden, one can provide reliable model privacy and defend against state of art membership inference attacks, with only a 3% performance overhead. This thesis further strengthens investigations from neural network weights (in on-device machine learning deployment) to gradients (in collaborative learning). An information-theoretical framework is proposed, by adapting usable information theory and considering the attack outcome as a probability measure, to quantify private information leakage from network gradients. The private original information and latent information are localized in a layer-wise manner. After that, this work performs sensitivity analysis over the gradients \wrt~private information to further explore the underlying cause of information leakage. Numerical evaluations are conducted on six benchmark datasets and four well-known networks and further measure the impact of training hyper-parameters and defense mechanisms. Last but not least, to limit the privacy leakages in gradients, I propose and implement a Privacy-preserving Federated Learning (PPFL) framework for mobile systems. TEEs are utilized on clients for local training, and on servers for secure aggregation, so that model/gradient updates are hidden from adversaries. This work leverages greedy layer-wise training to train each model's layer inside the trusted area until its convergence. The performance evaluation of the implementation shows that PPFL significantly improves privacy by defending against data reconstruction, property inference, and membership inference attacks while incurring small communication overhead and client-side system overheads. This thesis offers a better understanding of the sources of private information in machine learning and provides frameworks to fully guarantee privacy and achieve comparable ML model utility and system overhead with regular machine learning framework.Open Acces

    Why High-Performance Modelling and Simulation for Big Data Applications Matters

    Get PDF
    Modelling and Simulation (M&S) offer adequate abstractions to manage the complexity of analysing big data in scientific and engineering domains. Unfortunately, big data problems are often not easily amenable to efficient and effective use of High Performance Computing (HPC) facilities and technologies. Furthermore, M&S communities typically lack the detailed expertise required to exploit the full potential of HPC solutions while HPC specialists may not be fully aware of specific modelling and simulation requirements and applications. The COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications has created a strategic framework to foster interaction between M&S experts from various application domains on the one hand and HPC experts on the other hand to develop effective solutions for big data applications. One of the tangible outcomes of the COST Action is a collection of case studies from various computing domains. Each case study brought together both HPC and M&S experts, giving witness of the effective cross-pollination facilitated by the COST Action. In this introductory article we argue why joining forces between M&S and HPC communities is both timely in the big data era and crucial for success in many application domains. Moreover, we provide an overview on the state of the art in the various research areas concerned
    • …
    corecore