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Abstract

Data privacy in machine learning has become an urgent problem to be solved, along with

machine learning’s rapid development and the large attack surface being explored. Pre-trained

deep neural networks are increasingly deployed in smartphones and other edge devices for a

variety of applications, leading to potential disclosures of private information. In collaborative

learning, participants keep private data locally and communicate deep neural networks updated

on their local data, but still, the private information encoded in the networks’ gradients can be

explored by adversaries. This dissertation aims to perform dedicated investigations on privacy

leakage from neural networks and to propose privacy-preserving machine learning systems for

edge devices.

Firstly, the systematization of knowledge is conducted to identify the key challenges and ex-

isting/adaptable solutions. Then a framework is proposed to measure the amount of sensitive

information memorized in each layer’s weights of a neural network based on the generalization

error. Results show that, when considered individually, the last layers encode a larger amount

of information from the training data compared to the first layers. To protect such sensi-

tive information in weights, DarkneTZ is proposed as a framework that uses an edge device’s

Trusted Execution Environment (TEE) in conjunction with model partitioning to limit the

attack surface against neural networks. The performance of DarkneTZ is evaluated, including

CPU execution time, memory usage, and accurate power consumption, using two small and six

large image classification models. Due to the limited memory of the edge device’s TEE, model

layers are partitioned into more sensitive layers (to be executed inside the device TEE), and a

set of layers to be executed in the untrusted part of the operating system. Results show that

even if a single layer is hidden, one can provide reliable model privacy and defend against state

of art membership inference attacks, with only a 3% performance overhead.

This thesis further strengthens investigations from neural network weights (in on-device ma-

chine learning deployment) to gradients (in collaborative learning). An information-theoretical

framework is proposed, by adapting usable information theory and considering the attack out-

come as a probability measure, to quantify private information leakage from network gradients.

The private original information and latent information are localized in a layer-wise manner.

After that, this work performs sensitivity analysis over the gradients w.r.t. private informa-

tion to further explore the underlying cause of information leakage. Numerical evaluations are

i



conducted on six benchmark datasets and four well-known networks and further measure the

impact of training hyper-parameters and defense mechanisms. Last but not least, to limit the

privacy leakages in gradients, I propose and implement a Privacy-preserving Federated Learn-

ing (PPFL) framework for mobile systems. TEEs are utilized on clients for local training,

and on servers for secure aggregation, so that model/gradient updates are hidden from adver-

saries. This work leverages greedy layer-wise training to train each model’s layer inside the

trusted area until its convergence. The performance evaluation of the implementation shows

that PPFL significantly improves privacy by defending against data reconstruction, property

inference, and membership inference attacks while incurring small communication overhead

and client-side system overheads. This thesis offers a better understanding of the sources of

private information in machine learning and provides frameworks to fully guarantee privacy

and achieve comparable ML model utility and system overhead with regular machine learning

framework.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Advances in memory and processing resources and the urge to reduce data transmission la-

tency have led to a rapid rise in the deployment of various Deep Neural Networks (DNNs) on

constrained edge devices (e.g., wearable, smartphones, and consumer Internet of Things (IoT)

devices). According to a large-scale investigation of deep learning usage on smartphones, uti-

lizing deep learning functions in applications becomes more popular [XLL+19] and gains more

downloads and reviews (see Figure 1.1). Among these applications, 81% regard deep learning

as their core features, and 71% of them are for image-related usages.
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Figure 1.1: Popularity of deep learning (DL) applications vs non-DL applications in terms of
Million Downloads and Thousand Reviews, data source from research [XLL+19].
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Compared with centralized infrastructures (i.e., Cloud-based systems), hybrid and edge-based

learning techniques enable methods for preserving users’ privacy, as raw data can stay lo-

cal [OST+18]. Nonetheless, recent work demonstrated that there is still private information

leakage from local models [YLP+19, HAPC17, YGFJ18, MSDCS19, SZH+18].

Challenge 1: Understanding private information leakage from local models’ weights.

The local model can be used by adversaries aiming to compromise the confidentiality of the

model itself or that of the participants in training the model [SSSS17, YGFJ18]. The latter

is part of a more general class of attacks, known as Membership Inference Attacks (refer to as

MIAs henceforth). MIAs can have severe privacy consequences [LQS+13, SZH+18] motivating

several studies to focus on tackling them [ACG+16, Mir17, JE19a]. Predominantly, such miti-

gation approaches rely on differential privacy [DR+14, EPK14], whose improvement in privacy

preservation comes with an adverse effect on the model’s prediction accuracy. Figure 1.2 shows

an overview that information leaks from the trained model, while several techniques can be used

to mitigate such leakage. One mitigation that deserves more investigation is Trusted Execution

Environment (TEE). Nevertheless, the defenders are still unclear about privacy issues they will

encounter; how, where, and in which degrees the privacy leakage happens. For example, we

do not know if there are types of private information that can leak other than membership

information. The first research question this thesis aims to answer is Q1: How, where, and

in which degrees does the private information leak from a DNN model in general? This seems

to be a tough question to answer and may relate to the unsolved problem, the generalization

mystery of DNN models, but we aim to first have an overall understanding of such privacy

leakage. At least when it comes to TEE protection, we can have a general view of which parts

of DNN models are more sensitive and are the priority to protect.

Challenge 2: Developing privacy-preserving edge system for on-device ML. It is

observed that edge devices are now increasingly equipped with a set of software and hardware

security mechanisms powered by processor (CPU) designs offering strong isolation guarantees.

System designs such as Arm TrustZone [Arm09] can enforce memory isolation between an un-

trusted part of the system operating in a Rich Execution Environment (REE), and a smaller
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Figure 1.2: An overview of disclosing private information from a pre-trained DL model (Left)
and the technique of the Trusted Execution Environment (Right).

trusted component operating in hardware-isolated TEE, responsible for security-critical opera-

tions. If one could efficiently execute sensitive DNNs inside the trusted execution environments

of mobile devices, this would allow us to limit the attack surface of models without impair-

ing their classification performance. Previous work has demonstrated promising results in this

space; recent advancements allow for high-performance execution of sensitive operations within

a TEE [HSS+18, HZG+18, TGS+18, GHZ+18b, TB18]. These works have almost exclusively

experimented with integrating DNNs in cloud-like devices equipped with Intel Software Guard

eXtensions (SGX). However, this paradigm does not translate well to edge computing due to

significant differences in the following three factors: attack surface, protection goals, and com-

putational performance. The attack surface on servers is exploited to steal a user’s private

data, while the adversary on a user’s edge device focuses on compromising a model’s privacy.

Consequently, the protection goal in most works combining deep learning with TEEs on the

server (i.e., [GHZ+18b] and [HSS+18]) is to preserve the privacy of a user’s data during infer-

ence, while the protection on edge devices preserves both the model privacy and the privacy of

the data used in training this model. Lastly, edge devices (such as IoT sensors and actuators)

have limited computational resources compared to cloud computing devices; hence one cannot

merely use performance results derived on an SGX-enabled system on the server to extrapolate

measurements for TEE-enabled embedded systems. In particular, blindly integrating a DNN,

or specifically, the most widely-used architecture Convolutional Neural Network (CNN) or one

feature extractor followed by a classifier, in an edge device’s TEE might not be computationally
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practical or even possible. A systematic measurement of the effects of such designs on edge-like

environments would be useful for later development, which is one important work this thesis

aims to perform. Thus, the research question I aim to answer here is: Q2: Is it practical to

store and execute a sequence of sensitive DNN’s layers inside the TEE of an edge device?

Since DNNs follow a layered architecture, this can be exploited to partition a DNN, having

a sequence of layers executed in the untrusted part of the system while hiding the execution

of sensitive layers in the trusted, secure environment. This part of the work utilizes the TEE

(i.e., Arm TrustZone) and performs a unique layer-wise analysis on Convolutional Neural Net-

works to illustrate the privacy repercussions of an adversary on relevant neural network models

on edge devices with the corresponding performance effects. Specifically, one research ques-

tion this thesis aims to answer here is Q3: Are any partitions useful to both effectively and

efficiently tackle realistic attacks against DNNs on mobile devices? Answering the above two

questions helps us to understand running machine learning at the edge. However, there are still

two factors requiring further investigations: i) other privacy-related attacks besides MIA, and

ii) the privacy issues when sharing the on-device trained/fine-tuned DNNs. These two issues

become more complicated, especially in sharing intermediate model updates in collaborative or

federated ML.

Challenge 3: Understanding private information leakage from gradients. Using

collaborative learning [MMR+17, YLCT19], private data owners (having personal [HRM+18],

medical [RHL+20], financial [LTJZ20], or governmental [ZZS+22] dataset) are increasingly in-

centivized to participate in training a deep neural networks (DNN) model for a target task.

Instead of sharing their private datasets, participants only share the gradients (or updated pa-

rameters) of the locally trained model at each iteration. The motivation of these methods is to

utilize local computational power and comply with data protection regulations [EUd]. However,

as noted by previous works that propose privacy-related attacks [ZLH19a, ZMB20, MSDCS19,

GBDM20, NSH19], the shared gradients might be enough for an attacker (either the central

server or one of the participants) to infer the private attributes of the data owners, known

as Attribute/Property Inference Attack (PIA), or to reconstruct their private data, known as
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Data Reconstruction Attacks (DRA). These ever-increasing attacks on the shared gradients call

into doubt the privacy promised by collaborative/federated machine learning algorithms. More

importantly, it is not fundamentally understood which layers of a DNN can potentially leak

more private information, and to what extent different types of private information are stored

in the shared gradients of each layer.

Despite many empirical privacy attacks on specific applications of collaborative learning, only a

few works have recently started preliminary investigations on the performance of these attacks

and the possibility of defending against them [HGS+21, LWH+22, URPPK22]. [LWH+22]

further developed a Python-based software that can be reused partially for conducting and

measuring attacks.

Following previous works, there still exist several open questions. i) Available measurements

are mainly experimental; although there are some works [ZB20, FNJ+20] that explain why

data reconstruction attacks can be successful in certain applications, we still lack a unifying

theory for measuring different types of information contained in shared gradients. ii) Previous

investigations are coarse-grained and look at the DNN model as a whole, meaning they do not

localize which layers in a target DNN contain more private information for specific attacks. iii)

Previous approaches only present the results of applying existing attacks and defenses, and do

not allow us to understand the underlying justifications of how in general information leakage

can be linked to other properties of DNN gradients; e.g., the sensitivity to the changes in the

input data. Specifically, the research questions summarized to understand private information

leakage from gradients are Q4: Can we propose a theoretical-based measurement (e.g., informa-

tion theory) to quantify and localize private information leakages in a fine-grained way? and

Q5: Can we use any measurement to understand the underlying justifications of who these

information leakages link to properties of gradients?

In this thesis, I first propose a measurement framework based on information theory. Informa-

tion theory has been used for measuring the amount of original or latent information that is

captured in the outputs of different layers of a DNN and how this information evolves during

the training procedure [TPB00, GVDBG+19, SZT17, SBD+19, APS19]. To understand the
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information flow through DNN layers in the forward pass, the Shannon mutual information

(MI) [SZT17, SBD+19, GVDBG+19] between each layer’s intermediate representations and the

input data (i.e., the original info) or the output label (i.e., the public latent info) is estimated

during each iteration. Nevertheless, it is well-known that the estimation of Shannon entropy

and MI for high-dimensional data can have a high bias or variance [Pan03, BBR+18]. Fur-

thermore, these estimations are even more difficult if one wants to adapt them to gradient

produced in backpropagation, where analyses based on the data processing inequality (DPI)

are not applicable anymore (see section 5.1.3 for an explanation of this difficulty).

This part of the work aims to bridge the gap between the aforementioned line of works and pro-

pose an information-theoretical framework to measure private information leakage from DNN

gradients in a fine-grained and computable manner. Instead of the classical Shannon MI, this

thesis adapts usable information [XZS+20] (i.e., predictive V-information) to measure the ‘like-

liness’ of a successful attack using a particular (family of) attack models, given that the attacker

is able to obtain a subset of the gradients. Disregard the other types of attacks, I focus on

two main types of private information: i) original information, the observed data in training

datasets which are aimed by DRA, and ii) latent information, i.e., attributes of the observed

data which are aimed by AIA; in this way, the framework covers most existing, critical infor-

mation leakages on gradients. The proposed measure is based on the probability of recovering

certain information (for attribute inference attacks) or of obtaining certain similarities (for data

reconstruction attacks). To enable the measure to be generalized to private information of any

granularity/dimensions, I consider the outcomes of every attack as a probability distribution

over the attacker’s aim, and I approximate the density of this probability distribution. Such

a framework is able to quantify and localize the private information in a layer-wise manner to

better understand the “private information flow” through gradients of a DNN’s layers.

In support of this proposed measure and to further explore the underlying cause of information

leakage, a sensitivity analysis can be performed over the gradients w.r.t. the two types of

private information. This approach is inspired by the concept that sensitivity of gradients

w.r.t. input/output can reflect model robustness [NBA+18], and robustness, in turn, is related

to privacy risks [HCY21]. As sensitivity computation relies only on the trained model itself, it
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can help to understand leakages independently of the attack model. Therefore, these sensitivity

analyses are used to validate the results of the proposed usable information measure.

Challenge 4: Developing privacy-preserving system for collaborative learning. With

such dedicated privacy leakage analysis on shared gradients, we can design the framework to

perform collaborative learning, or more specifically federated learning, in a privacy-preserving

way. Federated learning (FL) is a particular way of training deep neural networks (DNNs) on

multiple devices locally and building an aggregated global model on a server. It has drawn sig-

nificant attention from academia (e.g., [GKN17, KMA+19, LKX+20]) and industry, and is even

being deployed in real systems (e.g., Google Keyboard [BEG+19]). Unlike traditional machine

learning (ML), where a server collects all user data at a central point and trains a global model,

in FL, users only send the locally updated model parameters to the server. This allows training

a model without the need for users to reveal their data, thus preserving their privacy. As above

mentioned, recent works have shown that adversaries can execute attacks to retrieve sensitive

information from the model parameters themselves [ZLH19a, MSDCS19, GBDM20, HAPC17].

Prominent examples of such attacks are reconstruction [HAPC17, GBDM20] and various types

of inference attacks [HAPC17, MSDCS19]; specifically, they are data reconstruction attacks,

attribute inference attacks, and membership inference attacks as mentioned. Note that in FL

scenarios, such attacks can be launched both at the server and client sides.

Motivated by these attacks, researchers have recently introduced several countermeasures to

prevent them. Existing solutions can be grouped into three main categories depending on

whether they rely on: (i) homomorphic encryption (e.g., [AHW+17, LKX+20]), (ii) multi-party

computation (e.g., [BIK+17]), or (iii) differential privacy (e.g., [GKN17, MRTZ18, DR+14]).

While homomorphic encryption is practical in both high-end and mobile devices, it only sup-

ports a limited number of arithmetic operations in the encrypted domain. Alternatively, the

use of fully homomorphic encryption has been employed to allow arbitrary operations in the

encrypted domain, thus supporting ML. Yet, this comes with too much computational over-

head, making it impractical for mobile devices [NLV11, SEA20]. Similarly, current multi-party

computation-based solutions incur significant computational overhead making it impossible to
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be used on edge devices. The mechanism of differential privacy (DP) provides a theoreti-

cally grounded way to add noise for privacy guarantee and has been already used in practice

(e.g., Apple’s iPhone DP system), but it can fail to provide sufficient privacy. This is highly

likely to happen when the granularity of privacy is small, e.g., pixel-level private information

on images [ZLH19a]. To guarantee such privacy, the level of differentially private noise addi-

tion goes very high which can even fully destroy the model utility (i.e., impossible to train the

model). Besides, differentially private training impacts the fairness of the model. For example,

when the classes of the training dataset are unbalanced, differentially private training tends to

ignore classes of minority due to the stronger noises added to them for reducing the probability

of re-identifying them [JE19a, BPS19]. This leads to more difficulties in federated learning set-

tings. Current differentially private training also increases the system overhead (execution time

and memory usage) because batch-based training is broken into micro-batches as the need for

pre-sample gradient clipping [TM21, SVK20]. Overall, none of the existing solutions meets all

requirements, hampering their adoption. Thus, this part of the work still considers hardware-

based Trusted Execution Environments (TEEs) as a promising way to preclude attacks against

DNN model parameters and gradients. All these advantages – together with the recent com-

moditization of TEEs both in high-end and mobile devices – make TEEs a suitable candidate

to allow fully privacy-preserving ML modeling. However, in order to keep the Trusted Com-

puting Base (TCB) as small as possible, current TEEs have limited memory. This makes it

impossible to simultaneously place all DNN layers inside the TEE, as above mentioned, it may

be more realistic to use TEEs to conceal only the most sensitive DNN layers from adversaries,

leaving other layers unprotected [GHZ+18b, MSK+20]. While this approach was sufficient to

mitigate some attacks against traditional ML where clients obtain only the final model, in FL

scenarios the attack surface is significantly larger. FL client devices are able to observe distinct

snapshots of the model throughout the training, allowing them to realize attacks at different

stages [MSDCS19, HAPC17]. Therefore, it is of utmost importance to protect all DNN layers

using the TEE. The last research question is Q6: How to protect all layers, and what are the

performance and cost if all layers are protected with TEEs during federated learning?
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1.2 Contributions

Information theory-based privacy leakage measures. By answering research question

Q1 and in combination with research questions Q4 and Q5, this thesis proposes to utilize layer-

wise generalization errors to measure memorized privacy in models. I further introduce an

information-theoretical explanation for private information leakage under the usable informa-

tion theory [XZS+20]. The proposed measure allows us to quantify the privacy risks of any

selected subset of the shared gradients through a probabilistic view of the attacker’s aim. Due

to the nature of usable information theory, this framework enables us to differentiate attackers

with different levels of computational power, and thus better understand how much latent and

original information leakage can occur. New attacks proposed in the future can be easily inte-

grated into this framework by including them into the defined attack family. This may require

re-performing some evaluations based on new attacks, but the final measurement results are

grounded under usable information theory.

Utilizing the proposed framework, I perform a layer-wise localization of private information

flow in the backpropagation process of DNNs. The characterizations reveal that fully-connected

layers in benchmark DNN classifiers usually contain the highest latent and original information.

It is believed that such understanding can help to achieve better data protection in environments

where one can choose to hide or protect a subset of the DNN layers, e.g., split learning [TCCS20],

differential privacy [MAE+18], or trusted execution environments [MSK+20].

Using a heuristic, a general-purpose measure based on gradient sensitivity, the “predictability”

of information leakage is examined. This gives us an additional tool to validate the proposed

measure of usable information in an attack-independent manner.

I extensively evaluate the effect of training hyperparameters and defense mechanisms on the

probability of information leakage. It is shown that more epochs do not significantly reduce the

amount of information leakage, but gradient aggregation can significantly reduce it. The result

also shows that applying dropout and differential privacy on more sensitive layers can achieve

better performance in alleviating information leakage.
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On-device privacy-preserving ML framework. To first answer the two questions, Q2 and

Q3, this thesis designs a framework, namely DarkneTZ, which enables an exhaustive layer-

by-layer resource consumption analysis during the execution of a DNN model. DarkneTZ

partitions a model into a set of non-sensitive layers ran within the system’s REE and a set

of sensitive layers executed within the trusted TEE. I use DarkneTZ to measure, for a given

DNN on two small and six large image classification models, the underlying system’s CPU

execution time, memory usage, and accurate power consumption for different layer partition

choices. I demonstrate the prototype of DarkneTZ using the Open Portable TEE (OP-TEE)1

software stack running on a Hikey 960 board.2 OP-TEE is compatible with the mobile-popular

Arm TrustZone-enabled hardware, while the choice of hardware closely resembles common

edge devices’ capabilities [YAA+18, PZLL19]. The results show that DarkneTZ only has 10%

overhead when fully utilizing all available secure memory of the TEE for protecting a model’s

layers. These results illustrate that REE-TEE partitions of certain DNNs can be efficiently

executed on resource-constrained devices.

Then, I develop a threat model considering state-of-the-art MIAs against DNNs. I implement

the respective attacks and use DarkneTZ to measure their effectiveness (adversary’s success

rate) for different model partition choices. Results of this part of the work show that by

hiding a single layer (the output layer) in the TEE of a resource-constrained edge device,

the adversary’s success rate degrades to random guess while (a) the resource consumption

overhead on the device is negligible (3%) and (b) the accuracy of inference remains intact. I

also demonstrate the overhead of fully utilizing TrustZone for protecting models, and show that

DarkneTZ can be an effective first step towards achieving hardware-based model privacy on

edge devices.

Privacy-preserving federated learning framework. To answer the last research question

Q6, this thesis proposes Privacy-preserving Federated Learning (PPFL), the first practical

framework to fully prevent private information leakage at both server and client-side under

FL scenarios. PPFL is based on greedy layer-wise training and aggregation, overcoming the

1 https://www.op-tee.org/ 2 https://www.96boards.org/product/hikey960/

https://www.op-tee.org/
https://www.96boards.org/product/hikey960/
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constraints posed by the limited TEE memory, and providing comparable accuracy of complete

model training at the price of a tolerable delay. This layer-wise approach supports sophisticated

settings such as training one or more layers (block) each time, which can potentially better deal

with heterogeneous data at the client-side and speed up the training process.

To show its feasibility, I implement and evaluate a full prototype of PPFL system including

server-side (with Intel SGX), client-side (with Arm TrustZone) elements of the design, and

the secure communication between them. The experimental evaluation shows that PPFL pro-

vides full protection against data reconstruction, property inference, and membership inference

attacks, whose outcomes are degraded to random guessing (e.g., white noise images or 50% pre-

cision scores). PPFL is practical as it does not add significant overhead to the training process.

Compared to regular end-to-end FL, PPFL introduces a 3× or higher delay for completing

the training of all DNN layers. However, PPFL achieves comparable ML performance when

training only the first few layers, meaning that it is not needed to train all DNN layers. Due

to this flexibility of layer-wise training, PPFL can provide a similar ML model utility as end-

to-end FL, with fewer communication rounds (0.54×), and a similar amount of network traffic

(1.002×), with only ∼15% CPU time, ∼18% memory usage, and ∼21% energy consumption

overhead at client-side.

This work is the first to build a DNN model in a FL setting with privacy-preserving guarantees

using TEEs, by leveraging the greedy layer-wise training and training each DNN layer inside

each FL client’s TEE. Thus, PPFL satisfies the constraint of TEE’s limited memory while

protecting the model from the aforementioned privacy attacks. Interestingly, the classifiers

built atop each layer may also provide personalization opportunities for the participating FL

clients.

1.3 Thesis Outline

Chapter 2 provides a literature review on privacy-preserving ML and the potential use of

TEEs. I systematize the knowledge based on existing research and products that applies con-
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fidential computing techniques (e.g., TEEs) for machine learning. Specifically, § 2.1 describes

the pipeline and paradigms of ML and existing attack surfaces; § 2.2 outlines the threat model,

key components, and tools around confidential computing; § 2.3 summarizes key challenges

and existing solutions of using confidential computing for ML; § 2.4 presents the challenges and

solutions of guaranteeing ML integrity with confidential computing.

Chapter 3 presents a layer-wise privacy analysis method for the DNN model, more specifi-

cally, weights based on layers’ maximum and minimum generalization errors. § 3.1 gives an

introduction, and then § 3.2 presents the proposed approach including the problem definition

and the method of sensitive information exposure; § 3.2 shows the evaluation results using

the information exposure method; § 3.4 shows some initial measurements when using TEEs to

protect machine learning models; § 3.5 discusses the results and then concludes this chapter.

Chapter 4 provides a dedicated on-device privacy-preserving ML solution using TEEs based

on the previous development. After introduction and related work (§ 4.1), the design and main

components of DarkneTZ are presented (§ 4.2). § 4.3 provides implementation details and

describes the evaluation setup (the implementation is available online3), while § 4.4 presents the

system performance and privacy evaluation results. Lastly, § 4.5 discusses further performance

and privacy implications that can be drawn from the systematic evaluation.

Chapter 5 further presents an information-theoretical framework, by adapting usable infor-

mation theory and considering the attack outcome as a probability measure, to quantify private

information leakage from network gradients. Specifically, the used notation, gradient sharing,

and information flow concept are clarified in § 5.1; § 5.2 formulates the problem based on us-

able information with computational constraints for both initial private information and latent

private information; § 5.3 further provides gradient sensitivity measure to reason about the

leakage; § 5.4 shows the numerical evaluation using information theory and sensitivity analysis;

§ 5.5 discusses and concludes the gradient leakage measurements.

Chapter 6 provides the proposed framework to achieve privacy-preserving federated learning

3 https://github.com/mofanv/darknetz

https://github.com/mofanv/darknetz
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(PPFL). § 6.1 gives the introduction and related work needed to understand the design atop

TEEs and greedy layer-wise training; § 6.2 describes the threat model and assumptions in

this federated learning setting; § 6.3 presents an overview of the proposed system and its

functionalities and detail how the framework employs layer-wise training and aggregation in

conjunction to TEEs; § 6.4 describes the implementation of the system and evaluation setup;

§ 6.5 shows the evaluation results, and § 6.6 gives the conclusion.

Chapter 7 concludes by summarizing the contribution and achievements, and then discusses

open challenges and future outlook.
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Chapter 2

Background and Literature Review

Machine learning (ML) has been widely recognized as the most ubiquitous approach to learn-

ing patterns from data. ML applications exist across data processing of online surfing, fi-

nancial data, health care, autonomous cars, and almost every field around us. Due to the

wide applications, ML is run on heterogeneous devices – from distributed IoT/mobile de-

vices to the high-performance computing center. This at the same time also opens a large

attack surface in ML’s security and privacy, which has been explored by recent research,

e.g., ML model stealing [OSF19, TZJ+16], model inversion [FJR15, HZL19], model/data poi-

soning [FCJG20, CLL+17], data reconstruction [ZLH19a, YMV+21], membership/attribute in-

ference [SSSS17, MSDCS19].

ML faces security and privacy issues mainly due to i) the complexity of pipelines that involve

many system/software stacks and ii) the weak robustness and low interpretability of ML algo-

rithms. A full ML pipeline covers the collecting of raw data, the complete training and inference

phases, and the later use of the trained ML model for prediction. Because data owners, the

host of ML computation, the model owners, and result receivers are most likely to be different

entities, the pipeline can be segmented across mutually mistrusting individuals and is left with

a broad attack surface. In addition, considering that the ML algorithm at the current stage

has relatively weak robustness (e.g., shown with adversarial examples [GSS14] or poisoning

attacks [CLL+17]), a small change to the training process could cause large negative impacts

that are hard to detect.
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Meanwhile, Confidential Computing (CC) has emerged as one promising approach to achieving

confidential ML. CC1 is the protection of data in use, in addition to data protection in storage

and transmission, by performing the computation in a hardware-based Trusted Execution En-

vironment (TEE). The TEE is an isolation technique that establishes an isolated area (called

enclaves or trust world, conventionally) where one can run codes inside in parallel with the nor-

mal operating system. The TEE has already been incorporated into most modern processors

(e.g., Arm and Intel). The rapid growth of CC also pushes a line of research work that adopts

it for ML [OSF+16, TB18, HSS+18, LLP+19, MHK+21] and it is also increasingly built as

commercial products (e.g., CC service from Microsoft Azure [cca], Amazon Web Services [ccn],

Google Cloud [ccg], etc.) Although many attempts have been made and several limitations are

found, there is still no systematization of the challenges, and it is still unclear what are the

key scientific and engineering obstacles and how to overcome them in order to run ML with

confidential computing. This chapter presents a systematic analysis of CC-assisted solutions to

alleviate the security and privacy problems in ML.

2.1 Machine Learning

Machine learning (ML) automates the pattern learning from large datasets in the sense that

analysts do not need to manually explore data’s latent features and their correlations [JM15,

LBH15]. This section looks into the ML pipeline, common paradigms, and attack surfaces that

exist among them.

2.1.1 Pipeline

The ML pipeline codifies and automates the workflow to produce and apply ML algorithms or

models. It generally covers most cases when using ML, which consist of multiple sequential

steps: data preparation, model training, model deployment/inference, and possible retrain-

ing/updates on the existing model.

1 Definition in the whitepapers [Conb, Cona] by Confidential Computing Consortium, one project at the Linux

Foundation.
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Data preparation. Data are the basis for ML as we can imagine because ML requires tons

of inputs to attempt “trial and error” and learn the patterns. In supervised learning [LBH15],

all data are labeled, and this usually needs extensive efforts of human annotation; in semi-

/un-supervised learning [ZG09, BCG+19, Le13], parts/all of the data are unlabeled due to its

difficulty or saving the manpower; in reinforcement learning [SB18], data are in the form of

sequences of action, observations, and rewards. No matter in any form, ML is always data-

hungry. Before the learning starts, many efforts have to be made to obtain a large amount

of data in order to cover all possible features they have in their distribution. Still, data aug-

mentation [SK19b, XDH+20] is necessary to increase the amount of data by adding slightly

modified copies or synthetic copies of existing data. Collected data are usually partitioned as

the training set and the test set (sometimes additionally, the validation set) for training and

evaluating the ML model.

Model training. Most model training aims to acquire a function fθ(x), where model pa-

rameters θ ∈ Θ the parameter space, capable of mapping an input x to a predicted decision

ŷ = fθ(x), a value near to the true decision y. The form of fθ(·) excluding θ is called model

hyperparameters, which are determined by selected model architectures e.g., the type of layers,

the number of neurons, etc. Searching of the best θ set usually is achieved by minimizing the

loss ℓ(y, fθ(x)) using Stochastic Gradient Descent (SGD) [LBB+98, Bot10] on training sets,

i.e., stepped descent by θ ←− θ − η∇θfθ(x), where η is the step size multiplier known as the

learning rate. The loss is backward propagated through the model, which is called backward

propagation. After reaching a good performance on the validation set (or the other subset

apart from the training set in cross-validation [K+95, AC10]), the model training stops. Then,

fθ(·)’s final model utility/accuracy is reported on the test set.

Model deployment/Inference. By feeding one unseen input data xnew into the ML function,

one can get the prediction ŷ = fθ(xnew). This is called the inference stage. This inference could

happen at both the model provider side or the data owner side depending on the trust and

collaboration form between the model provider and the users. In typical cases of ML inference,

the model needs to be deployed i) on a server-side device to support centralized service e.g., ML
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inference as a service, or ii) on the users’ devices for local inference distributively.

Retraining/Updates. ML models require retraining/updating their parameters, in order to

adapt to data with unseen features over time. This usually is achieved by fine-tuning the

model with newly collected data, especially on the last layers of the model when having limited

data samples. Two examples of such a technique are i) back-propagation on the last layer

only [Mar18] and ii) low-shot learning with weights imprinting on the last layer [QBL18]. The

reason for updating the last layers preferentially is that the first layers tend to learn more general

features that all input data should have, while the last layers learn more specific features that

do not cover some new incoming data [PY09, YCBL14, ZF14].

2.1.2 Paradigm

Due to the increasing privacy/security concern raised by sharing data and network/computation-

resource constraints, the stages of the ML pipeline are located to different participants for a

better trade-off among utility, privacy, and cost. Based on the location of the main ML compu-

tation (e.g., training or inference), there are two main categories: centralized machine learning

and federated machine learning.

Centralized machine learning. In centralized ML, the training or inference computations

are conducted at a central place such as a server [ABC+16, YXW+17]. For both training

and inference, the data have to be collected and stored at/near the center, and then the ML

function performs training or inference on them. However, this raises privacy concerns about

others’ data. Therefore, centralized ML is usually chosen for the cases where the collected

data are public (or non-private) or the data contributors are collaborators or have any form of

trust/contracts with the center.

Distributed/federated machine learning. When data owners do not have the willingness

to share data, distributed/federated ML is one solution, where, instead of the private data,

the ML model is sharing among participants [LAP+14, MMR+17]. In ML inference, the model

owner distributes its ML model to end-users, so that users can perform inference locally on their
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devices. In terms of training, the terminology ‘federated learning (FL)’ [MMR+17, LSTS20,

KMA+19] has been used intensively referring to the paradigm that users send the locally up-

dated model parameters to the server without the need of revealing their data. Unfortunately,

recent works have shown that adversaries can still execute attacks to retrieve sensitive infor-

mation from the model parameters themselves [GBDM20, MSDCS19, ZLH19a].

2.1.3 Attack surface

The attack surface can cover many places within the complete pipeline. Here, I categorize

existing attacks based on the core underpinning of information security2 into: i) confidentiality,

i.e., privacy of data and intellectual property of models, ii) integrity of the ML process. The

attacks on every vulnerability in the ML pipeline can be viewed in light of confidentiality and/or

integrity.

Confidentiality-related attacks. These attacks are curious-but-honest, i.e., interested in ex-

ploring (unauthorized) sensitive information of data and the model, but honestly performing ML

training/inference without changing the computation results. They usually exist in the pipeline

stages of model training, model deployment/inference, or model updates, due to that data and

models owned by different participants have to be used. In centralized ML, without advanced

protections, the computation host can directly access incoming data [RGC15, HTGW18]. Sim-

ilarly, in federated ML, the host who orchestrates all clients’ local training can access their

updated models and further infer private information about their local data using these mod-

els [GBDM20, MSDCS19, NSH19]. Several common attacks are i) Data Reconstruction At-

tacks [ZLH19a, GBDM20, HAPC17], aiming at reconstructing original input data based on the

observed model or its gradients, ii) Attribute Inference Attacks [MSDCS19, JG18], aiming at

inferring the value of users’ private properties in the training data, and iii) Membership Infer-

ence Attacks [NSH19, SSSS17], aiming at learning whether specific data instances are present

in the training dataset. As one example, if one patient has medical-related images that have
2 The full CIA triad includes Confidentiality, Integrity, and Availability, but the attacks specifically aim at ML

system’s Availability, e.g., Denial-of-Service (DoS) attacks, have not drawn much attention from both industry

and academia currently.
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been used to train a ML model, without observing the original images, one adversary aims

to disclose private information from the model. By performing data reconstruction attacks, it

reveals the original images directly; by performing attribute inference attacks, it reveals the

properties of the images such as the patient’s gender, race, etc.; by conducting membership

inference attacks, it discloses whether these images have been participating in training the ML

model.

On the other side, the confidentiality of models can be targeted. A model that has been

trained with great effect (e.g., computation power, data cleaning, and collection) is considered

the intellectual property of its owner, e.g., machine learning as a service (MLaaS) hosted by

Amazon Web Services (AWS). In such cases in inference, one possible attack, called model

stealing, is to counterfeit the functionality of this model by exploiting black-box access [OSF19,

YYZ+20, TZJ+16], e.g., querying a large number of prediction results.

Integrity-related attacks. There are dishonest attacks that aim at actively changing the

training/inference results, which harms the ML integrity. One famous attack is the adversarial

example [GSS14, MDFFF17]. By adding calibrated noises to one image/audio, it leads to

wrong prediction results but the input with noisy perturbation is invisible to human beings.

Although this attack manipulates input data, it breaks the integrity of ML inference. Another

example is the model poisoning attack in FL that could lead to Byzantine fault [FCJG20]. Such

fault can easily occur because the server does not control all clients’ local training and cannot

verify that their behaviors follow the promised training processes. For example, if one error in

values of local updated parameters has been aggregated into the global model, the complete

global model will become unusable. Furthermore, one can manipulate the training set e.g., by

adding data with calibrated noisy labels [TTGL20]. This fools the classifier to have wrong

boundaries for some specifically chosen data points. Backdoors can be added in such a way,

and the attackers/other users will be able to trigger such backdoors in later use after model

deployment [LMBL20, BVH+20].

While-box or black-box. Another wide-used way to understand attack surfaces is based

on whether one attack requires access to the internal architecture of a ML model [PMSW18,
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SDS+19]. Regarding the black-box attack, for example, model stealing usually starts from the

outside without any a-priori information and aims to learn the model itself, which is black-

box. Membership inference attacks on data privacy are usually black-box because it is already

efficient according to previous research [SDS+19, YGFJ18], and white-box access does not

significantly increase the attack ‘advantage’. The white-box attack includes almost all data re-

construction attacks, some adversarial example attacks, attribute inference attacks, etc. These

attacks usually require detailed model parameters/gradients in order to be performed or have

reasonable performance. The readers are referred to [PMSW18] for more details about security

and privacy vulnerability in ML.

2.2 Confidential Computing and Trusted Execution En-

vironments

Confidential computing (CC) [Pro] is a quickly emerging technology that provides a level of

assurance of confidentiality and integrity when executing codes on data using Trusted Execu-

tion Environments (TEE). Nowadays, most Cloud service vendors have started providing CC

services (e.g., Google Cloud, Microsoft Azure, etc) using the TEE solution supplied by proces-

sor manufacturers such as Arm, Intel, and AMD. This section first presents the threat model

considered in CC, its components, and then Software Development Kits (SDK) useful for ML

application developers.

2.2.1 Threat models

The CC provides a higher level of trust than normal execution by considering a stronger ad-

versary who has full privileged access to the normal Rich Operating System (OS) [Glo15].

This adversary could be the device owner itself, malicious third-party software installed on

the devices, or a malicious or compromised OS. Indeed, in CC, a group of individuals can be

mutually mistrusting. When one individual demands a remote host to perform computation
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with its (sensitive) code and/or data, the remote host usually can directly access the code and

data and consequently learn sensitive information from it.

The TEE [Glo15], an isolated environment running in parallel with the Rich OS, allows to

securely store data and execute arbitrary code on an untrusted device almost at native speed

through secure memory compartments. The recent commoditization of TEEs both in high-end

and mobile devices makes it an ideal candidate to achieve confidentiality and integrity in ML.

However, TEEs are vulnerable to side-channel attacks [CVM+21], physical attacks [LKO+21],

those that exploit weaknesses in TEEs [LJJ+17] and their SDKs [Van19], etc [CSFP20]. Also,

Denial-of-Service (DoS) attack on the availability is hard to defend against and is not considered

within the standard TEE threat model.

2.2.2 Key components

Trust establishment and attestation. The CC establishes a high level of trust among

mutually distrusting individuals based on the TEEs and (remote) attestation. Its Root of

Trust (RoT) is based on hardware-assisted cryptographic keys (usually called Endorsement

keys), which will be attested to ensure the integrity of the TEE system [Glo15, CD16]. Thus,

one local individual can trust a remote TEE; after it transmits its data or codes to another

participant (i.e., the host)’s TEE, the computation host with root privilege cannot access or

counterfeit the promised execution.

Remote attestation [CD16, HCF04] is the method that lets the user determine the level of

trust/integrity of the remote TEE. It enables a user to authenticate the hardware and soft-

ware configuration of a remote host, and check that the intended software is securely running

inside the TEE. This attestation is usually conducted by a third party besides the user and

host [CGL+11]. A typical attestation server is the processor manufacturer/vendor such as the

SGX attestation service provided by Intel [JSR+16]. Thus, by default, the assumption is that

the host who uses the SGX equipment, e.g., a Cloud, is not Intel and does not collude with
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Intel, which also usually is the case in practice.3

Trusted Execution Environments. The core component in CC is the isolation called

Trusted Execution Environments [Glo15]. In general, the TEE is a secure region inside the

main processor. Both hardware and software approaches are used to isolate this region. TEE

implementations differ from each other for different processor manufacturers (e.g., Arm, Intel,

AMD). Specifically, implementing all these TEEs requires hardware-level modifications4, and

due to that processors are different implementations of the Instruction Set Architecture (ISA),

modifications on the hardware for TEEs, consequently, the changes on the software stack, can-

not follow the same design. For example, Intel Software Guard eXtensions (SGX) [CD16] only

has secure aware components inside the CPU including Instruction Decoder, Page Miss Han-

dler, and Memory Encryption Engine; Arm TrustZone [MBG19, NMB+16] includes Processor

and AXI bus with secure bit extension as the main components inside its System on Chip

(SOC), and more other components such as Interrupt Controller, TrustZone Memory Adapter

(TZMA), etc.

Table 2.1 summarizes common hardware-assisted TEEs with their providers, supported proces-

sors, and other features. Among them, Arm TrustZone is developed from a very early period;

therefore, it is the most widely-used TEE on mobile/ubiquitous devices but constricted with the

smallest secure memory size, the only single secure world supported, and restricted third-party

application-level changes. To overcome it, Arm proposes Confidential Compute Architecture

(CCA) working in parallel with TrustZone. Most recent TEEs support multi-enclaves and

larger secure memory sizes with different Trust Compute Base (TCB) sizes. TEEs that include

an OS inside a software stack usually have a large TCB size. However, a larger TCB size can

probably provide higher usability to developers and users. For example, if the TEEs consider

kernel, instead of application, as the highest access level, there is no requirement to change

when deploying normal applications into TEEs.

3 Nitro Enclave provided by AWS uses its own remote attestation service (e.g., AWS Key Management Service).

In this case, one AWS Nitro Enclave customer provides assurances to their downstream customer. 4 There are

software-assisted isolation techniques without the needs of hardware supports (e.g., seL4), but we usually do

not consider them as they have lower security assurance and are not the mainstream in confidential computing.
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2.2.3 Partitioning frameworks for developers

With the low-level hardware and system stacks, it is still hard for application developers to

utilize TEEs. Hence, depending on the use-cases, various software vendors provide deployment

and partitioning frameworks for running a diverse set of workloads within enclaves. For ex-

ample, more recently Amazon Nitro enclaves and Red Hat’s Enarx support running the same

binary within different types of TEEs. These systems are inspired by Haven[BPH15] that ports

Drawbridge[PBWH+11], a Windows library OS, inside an SGX enclave. Similarly, Graphene-

SGX [TPV17] ports the Linux-based Graphene library OS in an enclave. Scone [ATG+16]

tries to reduce TCB by porting musl-libc and a portion of Linux Kernel Library (LKL) 5.

TrustShadow [GLX+17] also protects unmodified applications from the host OS by trapping

applications exceptions and system calls inside TrustZone, passing the calls to the OS, and

verifying the output after parameter marshaling.

As another approach, various TEE partitioning frameworks are proposed to split applications

into trusted and untrusted components; such as Intels SGXSDK [Cor19a], Microsofts Open

Enclave [Cor19b], Googles Asylo [Goo18], OP-TEE [opt], and Keystone [LKS+20]. There

are also language-specific partitioning frameworks such as Civet [TSJ+20] for porting Java

classes into an SGX enclave, TLR (Trusted Language Runtime) [SRSW14] for running portions

of C# applications inside TrustZone, and Glamdring [LPM+17] a compiler for partitioning

applications into SGX enclaves via code annotation. Table 2.2 summarises primary commercial

TEE frameworks. However, not all of them are feature-rich enough to support ML use cases.

Particularly, mobile vendors (e.g., Qualcomm TEE [Qua19], Trustonic TEE [Tru], or Huawei

TEE [BWM20]) only allow for limited TEE operations such as secure storage to avoid security

risks inside TrustZone secure world which enables attackers to take full control of the device.

This is a key reason for TEE applications to utilize SGX due to less privileged execution of

enclaves in userspace as well as ease of programming.

5 sgx-lkl https://github.com/lsds/sgx-lkl.

https://github.com/lsds/sgx-lkl
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Figure 2.1: Overview flow of Confidential Computing which utilizes the untrusted host’s Trusted
Execution Environment to protect the model and data in machine learning.

2.3 Confidential Computing Solution for Machine Learn-

ing

2.3.1 Overview

In CC, data/model owners provision their data/model to the untrusted host’s TEE for ML

(see Figure 2.1). Specifically, after they finish the preparation of the model and/or data,

they perform remote attestation to assure the integrity of the remote TEE, and then establish

secure channels with the TEE. Afterward, data/models are provisioned to the TEE, where

model training or inference will be performed. The final results will be returned, i.e., a trained

model will be transmitted out in training, or the data label will be returned back to the user in

inference. Note that in practice the host, model owners, data owners, and result receivers can

be distinct entities, and thus, some may not exist in some cases. I further classify these cases

according to the nature of the host: Server or Client (see Figure 2.2).

Server-side ML protection. A server-like host aims to provide ML service to its customers.

Based on the specific ML function, it can provide i) Inference as a Service (e.g., [GTS+18,
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Figure 2.2: Server-side ML (Left) and client-side ML (Right) protection using Trusted Execu-
tion Environments.

LLP+19]) or ii) Training as a Service (e.g., [HSS+18, HCS18]). In both cases, schemes should

protect data privacy. That is, data have to be secretly provisioned to the untrusted server’s

TEE no matter for inference or training. However, the ownership of the ML model can belong

to not only a third party (e.g., extra model owners/providers) but also to the untrusted server

itself. The latter case only exists for ML inference, because inference does not change the model

parameters. In contrast with it, training leads to updates on the model parameters, which can

consequently leak private information of the data.

Client-side ML protection. A client-like host usually acts as the downstream user of a server,

and thus it performs ML based on some ML functions or models provided by the server. Several

common use cases are i) on-device inference (e.g., [BFJ+20]), the client conducts predictions on

its own data with another individual’s model, ii) on-device personalization (e.g., [MSK+20]),

the client personalizes the model based on its data for later inference, and iii) federated learning

(e.g., [MHK+21]), the client trains the model continuously to contribute a global model owned

by another party (e.g., server). In all these cases, the client owns the data. However, the model

could be considered to be confidential, e.g., the model itself can leak private information, or as

intellectual property, e.g., the model costs its owner or the server significant effort to train.
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2.3.2 Key challenges

The key challenges mostly lie in the feasibility and effectiveness of deploying ML into TEEs

due to TEEs’ limitations.

Constrained execution environments. TEEs usually have constrained resources for trading

off the size of TCB. As given in Table 2.1, commonly used hardware TEEs, e.g., SGX, pro-

vide 128MB secure memory, while TrustZone only provides up to 16∼64MiB secure memory

depending on software stack implementations. Such memory sizes are highly limited com-

pared to the memory consumed by current ML algorithms, which can reach hundreds of MBs

or GB. Although page swapping could increase available memory, it leads to significant over-

head (e.g., 100∼1000×) [LLP+19, KQG+19]. In addition, processor capabilities are also lim-

ited when running in the TEE mode. For example, TrustZone supports single-threading only.

SGX supports multi-threading but this could lead to bugs that can be exploited by attackers

(e.g., AsyncShock [WKPK16]). Indeed, increasing computational resources is always preferable

for ML developers but it can reduce the reliability of the TEE.

SDK supports. Modern ML framework typically requires numerous libraries and cross-

compilation to support efficient data loading and computations e.g., matrix multiplication.

However, most TEEs that are built on hardware only provide basic low-level SDKs. Even

though open source TEE frameworks have been developed to support sandbox/container (see

Table 2.2), it is still hard to port all necessary libraries into it. For example, WebAssembly sup-

ports compiling binaries from many modern languages, e.g., Rust, which could have available

ML libraries, such as autograd [Asa], but they have much-limited functionality compared to

Tensorflow or PyTorch [PGM+19]. OS-based containers can provide richer libraries, but still,

the lightweight version OS cannot have a rich environment same as the normal OS. Porting a

normal OS to TEEs is also infeasible because it either exceeds the TEEs’ size limits or leads to

a huge TCB.

Privacy protection effectiveness. By deploying ML inside TEEs (for training/inference),

the untrusted host itself cannot access the ML computations anymore. However, running
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inside TEEs does not automatically disable all potential privacy leakages. This is because

the other parts of the ML pipeline can leak private information somehow, and due to that

the produced result, e.g., trained models or predicted data labels, will be transmitted out

of the TEE and can be used to exploit private information [ZLH19a, MSDCS19, JSB+19].

Therefore, one particular strategy could have inconsistent protection effectiveness, for different

ML scenarios and different types of defined privacy [MBM+21a, MBM+21b]. As one example,

while hiding model parameters (along with gradient updates and activations) inside TEEs can

defend against data reconstruction attacks, it has very low efficiency for membership inference

attacks as most membership information can leak from the model’s outputs, i.e., the prediction

results transmitted out of the TEE [JSB+19, SDS+19, GHZ+18b]. Therefore, for one specific

TEE use case, the target privacy should be defined clearly, and the achieved protection efficiency

also requires explicit analyses.

2.3.3 Existing solutions

Previous research has been dedicated to achieving ML with TEEs, and some aim to overcome

the above challenges. Previous research is summarized in Table 2.3.

Complete ML training/inference inside TEEs. The most straightforward way is to de-

ploy the complete ML training/inference process inside TEEs. In such a case, the maximum

capability of the ML task is strictly limited to the space constraint. The strategy to take is to

use memory space efficiently – trading off the total number of the model’s layers and the number

of neurons – and to maximize the ML efficiency of each “bit” inside TEEs. Specifically, several

practical approaches are listed as follows. i) Conducting inference instead of training. Training

consumes much more computational resources because of backward propagation (e.g., memory

used to save model gradients). ii) Choosing a small batch size. A large batch size leads to

large memory usage because every sample in this batch produces its own activations for all

model layers. iii) Balancing the feature extractor (e.g., convolutional layers) and the classifier

(e.g., fully connected layers). A properly designed feature extractor can decrease the feature

dimension and capture key features, enabling a small classifier to achieve good performance.
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Table 2.3: Previous research that uses Trusted Execution Environments to guarantee the con-
fidentiality of machine learning

Work & Year
Trusted Computing Machine Learning

Advanced Features
TEE Type SDK DL

Framework
Training Location Protect

Aim

Obliv. MP’16
[OSF+16]

SGX Intel SGX SDK fast CNN S D Data-obliviousness

Chiron’18 [HSS+18] SGX Intel SGX SDK Theano S D Multi-enclaves, Ryoan VM

PRIVADO’18
[GTS+18]

SGX Intel SGX SDK ONNX S D Compiler, data-obliv.

Myelin’18 [HCS18] SGX Intel SGX SDK TVM S D DP for data obliviousness

Slalom’18 [TB18] SGX Intel SGX SDK Eigen S D Freivalds algorithm + GPU

Graviton’18 [VVB18] GPU-TEE CUDA RT
driver

Caffe S D secure CUDA for TEE on GPUs

Occlumency’19
[LLP+19]

SGX Intel SGX SDK Caffe S D On-demand loading, Channel-based

partition

TensorSCONE’19
[KQG+19]

SGX Intel SGX SDK Tensorflow S D Docker supported, Compiler

YerbaBuena’19
[GHZ+19]

SGX Intel SGX SDK Darknet S D Layer-wise partition, Privacy measurement

OMG’20 [BFJ+20] TrustZone SANCTUARY TFLite Mi-
cro

C M -

DarkneTZ’20
[MSK+20]

TrustZone OP-TEE Darknet C M Layer-wise partition, Privacy measurement

TrustFL[ZLZ+20] SGX Intel SGX SDK TensorFlow C TI GPU-outsourcing, Random samlping

Telekine’20 [HJM+20] GPU-TEE ROCm &
CUDA

MXNet S D Timing attacks, data-obliv.

MLCapsule’21
[HZG+21]

SGX Intel SGX SDK Eigen C M -

Trusted-DNN’21
[LLX+21]

TrustZone OP-TEE - C M Weights & Feature-map partition

Mem-Eff.’21
[TGGW21]

SGX Azure CC
(VM)

Darknet S D Channel & Y-plane partition

PPFL’21 [MHK+21] SGX +
TrustZone

OE SDK + OP-
TEE

Darknet C + S D Layerwise training, Privacy measurement

Goten’21 [NCW+21] SGX Intel SGX SDK Eigen S D GPU-outsourcing, Non-colluding servers

Citadel’21 [ZXY+21] SGX SCONE Tensorflow S M + D Multi enclaves for training and aggregation

Training: Not available; Available
Location: S = Server; C = Client
Protection Aim: D = Data privacy; M = Model intellectual property; TI = Training integrity
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Here note that most modern neural networks being tested during the evaluation of these works

are such convolutional neural networks because of their wide range of applications. That is,

convolutional layers are well designed for feature extraction, and fully connected layers are

suitable for the classifier atop the former extractor.

Partitioned execution. To avoid exceeding the maximum secure computational resource

and memory swapping, one way is to utilize partitioned execution to actively optimize the

memory usage in ML. Figure 2.3 shows two types of partitioned execution: i) Layer-based

partition [GHZ+18b, MSK+20, MHK+21], which works for models with layer architecture in

general, and ii) Feature map-based partition [LLX+21, TGGW21], which specifically aims to

convolutional layers due to their high memory cost. Among them, whether to keep the first

part or the last part inside TEEs (cases 1○ and 2○) depends on the privacy protection goal.

Rolling on layers inside TEEs (case 3○) naturally works for ML inference, because one input

propagates forward throughout layers and never goes back; that is, it works in the way that the

next layers are loaded into a TEE until one layer’s computation executes finished in the TEE.

Rolling on feature maps (cases 4○ and 5○) reduce the realtime memory usage by applying GEMM

(i.e., General matrix multiply) and img2col (i.e., Image to column format transform) functions

on divided sections and channels of feature maps. However, this disables parallelization and can

increase computation time. Furthermore, due to that training involves backward propagation

where more resources are required, partitioned execution is more necessary than inference. This

could lead to higher overhead for cases 1○, 2○, and 3○, because a higher volume of buffer is

transmitted between the TEE and normal OS. Note that the partition should not change the

model architecture (unlike the model partition in the design of AlexNet [KSH12]), in order to

enjoy higher flexibility to support generic ML models.

GPU outsourcing. In addition to optimizing the limited secure space, one can also extend

the space, e.g., to outsource the computation to faster GPUs. However, GPUs are untrusted;

one way to address this issue is to use CPU-TEE (e.g., SGX) to coordinate the computation

delegation and to establish a secret sharing protocol between the CPU-TEE and untrusted

GPUs. In such a way, GPUs are able to perform executions on a “nonsensitive version” of the
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Layer-based Partition

Feature map-based Partition

� Keep last part in TEE� Keep first part in TEE �Rolling, on layers in TEE

� Rolling, on sections in TEE � Rolling, on channels in TEE

Figure 2.3: Partition on the ML process (shown with model architectures) in order to protect
it or a part of it inside TEEs.

(TEE) computation, e.g., masked by one-time pads [TB18, NCW+21]. This can also accelerate

the ML’s linear computation i.e., matrix multiplication. Another way is to support the TEE on

GPUs, e.g., GPU-TEE. Previous research [VVB18, HJM+20] achieves GPU-TEE by providing

the necessary software stack such as runtime, drivers, API, etc. Since existing GPU-TEE

solutions are on software only, it lacks a hardware-based root and thus has a lower level of trust.

Also, GPU outsourcing may weaken the trust model, which deserves careful investigation in a

later stage of research.

Attacks for privacy measurement. Measuring the protection effectiveness is usually done

by performing a form of attack directly. Whether to and which attack to perform depends

on the threat model defined when using TEEs for protection. For example, for the original

input protection with TEEs, attacks to reconstruct input data are performed [GHZ+18b], while

there is no need to conduct membership inference attacks. By contrast, TEE protection on
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membership information does not take care of other private information and only be measured

with membership inference attacks [MSK+20]. As far as we know, there is still a lack of

theoretical analysis on privacy leakage when utilizing TEEs for protection.

2.4 Confidential Computing Helping Machine Learning

Integrity

Intuitively, deploying ML training/inference process inside TEEs can avoid malicious modifica-

tions to this process and therefore provides integrity. However, in practice, as the other parts

of the ML pipeline still can be breached, protecting only the training/inference stage does

not always guarantee integrity. Indeed, for partitioned execution to tackle space-constrained

problems, the training happening outside can also be modified maliciously. In this section, we

present the key challenges in guaranteeing ML integrity with TEEs and the solutions that exist

or can be adapted.

2.4.1 Key challenges

Large attack surface. There is a large attack surface to breach integrity; however, one cannot

expect to deploy the complete ML life-cycle inside TEEs to achieve an integrity guarantee

due to the TEE’s small size. This resource limit issue is even more serious compared with

the issue we met when guaranteeing confidentiality. Specifically, while a curious-but honest

(i.e., confidentiality-related) adversary has the goal to explore specific private information,

the integrity-related adversary can be diverse – it cannot only aim at actively changing the

ML process but also just want to break the process by covertly changing one bit. Indeed, to

disclose confidential information, adversaries usually explore the target data or the model which

contains memorized information. Remained information may also gradually decrease along

with more aggregated information in training. However, to breach integrity, one just needs to

change one step in the training process (even in one bit) among participants (e.g., Byzantine
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attacks [FCJG20]), and this malicious change can also be triggered at other stages e.g., data

preparation, etc.

Uncontrolled input/output space. While deploying ML training/inference inside TEEs

can avoid unauthorized direct changes in the produced result/models, the upstream pipeline,

i.e., input space, is uncontrolled. Editing the inputs and their labels can affect the later ML

process (e.g., called “dirty” inputs/labels), which is also the practice of performing some attacks

(e.g., poisoning attacks). Adversarial examples [GSS14, MDFFF17] to add calibrated noises

can seriously perturb the integrity of the input space because the noisy perturbation is hard

to be detected. In addition to that, the downstream pipeline can also be edited maliciously,

e.g., an server-side adversary fakes the result after the ML algorithm inside the TEE makes a

prediction and transmits this result out.

Low interpretability of ML. The difficulty of detecting integrity perturbation is also caused

by the low interpretability of current ML/DL [LXL+21]. Specifically, current practitioners

train ML models using SGD, i.e., weights of neurons are updated iteratively to find the optimal

solution by “itself”. Also, there is no comprehensive theoretical framework to interpret the

internal steps of ML training. Therefore, one cannot determine whether the weight value of

a neuron is uncompromised or not without rerunning the ML process again using the same

setting. With such low interpretability, malicious changes, such as the adversarial perturbation

in inputs and the changes in model training, are hard to trace and detect. Currently, algorithm-

based approaches are being proposed to alleviate this situation, such as by removing outliers

that are considered unreasonable bits [FCJG20], by further training the model on adversarial

inputs [TKP+18], or by cryptography protocols [CGJvdM21]. However, using a system-based

isolation technique (i.e., TEEs) to deal with the interpretability issue is not straightforward.

One may still need to find a way to assure key elements of the ML pipeline is trustworthy by

using TEEs.
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2.4.2 Existing/adoptable solutions

Assurance mechanisms. To assure the integrity of ML training/inference, one way is to rerun

the complete or a part of the process inside TEEs. As an example, the heaviest computation

in ML is the matrix multiplication which is preferable to be outsourced to distrusted GPUs

for acceleration. To verify whether this matrix multiplication is honestly performed, one can

use Freivald’s algorithm which utilizes randomization to reduce time complexity from O(n2.373)

(best-known matrix multiplication algorithm) to O(kn2) with a probability of failure less than

2−k [MR96, TB18]. Besides, based on the nature of iterative training of ML, one can also sample

and verify only a fraction of the training process in TEEs to reduce the overhead [ZLZ+20].

This will require backups for every several training iterations to reach a checkpoint faster,

where Merkle hash tree-based method [Mer80] can be used to reduce the storage overhead. It

is shown to be sufficient that the soundness error is less than 1% even for the adversaries who

have honestly completed 90% of training rounds [ZLZ+20]. One can expect that there will be

more efficient ways of sampling and checking, but such assurance only guarantees the integrity

of the training/inference process and does not provide the guarantee for other stages in the ML

pipeline.

Input/output space control. The integrity of input/output in the ML pipeline needs to be

assured considering that the input/output space is far more uncontrollable than the training/in-

ference process. One way that is generally used for data assurance and can also be adopted

in ML input control is to require the digital signature for the data generation. This is done

by hashing the generated sensor data (inside TEEs for example) to produce hash values, and

after that, sensor data can be authenticated using this hash value [Mer89, Coh87, KFPC16].

At a later stage, the digital signature would also work in a similar way as remote attesta-

tion when outputting prediction results, considering that the result receiver trusts the TEE’s

behavior. However, it is not easy especially for supervised learning because the data genera-

tion usually involves human annotation that is out of control of the digital signature. Even

in semi-/un-supervised learning, it is possible to generate adversarial data without breach-

ing sensors/TEEs, e.g., by changing physical surroundings or doing abnormal behaviors that
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the ML does not expect to learn. Indeed, one can also adopt detection mechanisms, such

as [BF99, CIKW16, BJG20], trying to identify fake/dirty inputs (e.g., inside TEEs). There

is still a large area to explore in order to assure the integrity of the input space in the ML

pipeline.
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Chapter 3

Privacy Measure of Neural Network

Weights

3.1 Introduction and Related Work

On-device DNNs have achieved impressive performance on a broad spectrum of services based

on images, audio, and text. Examples include face recognition for authentication [VFGJ16],

speech recognition for interaction [MPA+16] and natural language processing for auto-correction [BD17].

However, DNNs memorize the training data in their parameters information [ZBH+17, YGFJ18,

ZF14]. Thus, keeping DNNs accessible in user devices leads to privacy concerns when training

data contains sensitive information.

Previous works have shown that a reconstruction of the original input data is easier from

the first layers of a DNN, when using for inference the layer’s output (activation) [GHZ+18b,

OST+18, OST+17]. In addition, the functionality of the parameters of each layer is different.

For example, parameters of first layers trained (on images) output low-level features, whereas

parameters of later layers learn higher-level features, such as faces [ZF14].

It is hypothesized that the memorization of sensitive information from training data differs

across the layers of a DNN and, in this chapter to answer Research Question 1, I present

an approach to measure this sensitive information. The result shows that each layer behaves
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differently on the data they were trained on compared to data seen for the first time, by

quantifying the generalization error (i.e., the expected distance between prediction accuracy

of training data and test data [YGFJ18, SSSSS10]). This work further quantifies the risk of

sensitive information exposure of each layer as a function of its maximum and minimum possible

generalization error. The larger the generalization error, the easier the inference of sensitive

information from training set data.

I perform experiments by training VGG-7 [SZ14] on three image datasets: MNIST [LCB10],

Fashion-MNIST [XRV17], and CIFAR-10 [KH09]. The results show that the last layers memo-

rize more sensitive information about training data, and the risk of information exposure of a

layer is independent of the dataset.

To protect the most sensitive layers from potential white-box attacks [MSDCS19, HAPC17,

NSH18], I leverage a resource-limited Trusted Execution Environment (TEE) [CBL+18, OSF+16,

HSS+18] unit, Arm’s TrustZone, as a protection example. Experiments are conducted by train-

ing the last layers in the TEE and the first layers outside the TEE. Results show that the over-

head in memory, execution time, and power consumption is minor, thus making it an affordable

solution to protect a model from potential attacks.

3.2 Proposed Approach

3.2.1 Problem definition

Let M(θ) be a DNN with L layers, parameterized by θ = {θl}Ll=1, where θl is the matrix

with the parameters of layer l. Let X = {Xk}Kk=1 be the training set of K images Xk. Let

S = {Sk}
Ks

k=1 ⊂ X, a randomly selected subset of X with Ks = ⌊K/2⌋, be the private dataset

and T = {Tk}
Kt

k=1 ⊂ X, with T ∩ S = ∅, be the non-private dataset.

As training M(θ) on S might embed some information of Sk in the parameters of each layer,

this work aims to quantify the exposure of sensitive information in each θl. The sensitive
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Figure 3.1: The proposed framework for measuring the risk of exposing sensitive information in
a deep neural networkM trained on a private dataset S. Mb andMs are obtained by fine-tuning
the parameters of a target layer l on the whole training set X (i.e., both S and non-private
training set T ) and S, respectively.

information we are interested in analyzing is the absence or presence of any Sk in the training

data.

3.2.2 Sensitive information exposure approach

This research leverages the fact that M(θ), trained on S, has a higher accuracy of predicting

classes of data points from S than from another dataset, T . The difference in prediction ac-

curacy indicates the generalization error [YGFJ18, SSSSS10] of M(θ) and how easy it is to

recognize whether a data point Xk was in S during training. I define the risk of sensitive infor-

mation exposure of each θl based on the maximum and minimum possible generalization errors

(see Figure 3.1). A larger difference in the maximum and minimum of generalization error could

show the more sensitive information exposure which results in inferring more accurately the

absence or presence of data in the training data (i.e., membership inference attack [YGFJ18]).

To obtain the maximum generalization error, one can increase the chance of overfitting θl to S

by fine-tuning θl and by freezing parameters of other layers of M . We call this model Ms(θs).
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If C(Ms,Si) is the distance between Ms and Si measured by the cost function used in training,

we quantify ϵs, the generalization error of Ms(θs), based on its different behaviour on S and T :

ϵs = ETi∈T [C(Ms,Ti)]− ESi∈S[C(Ms,Si)], (3.1)

where E[·] is the mathematical expectation.

To obtain the minimum generalization error without forgetting S, we can create a baseline

Mb(θb) by fine-tuning θl on X and by freezing the parameters of the other layers of M . This

fine-tuning makes θbl generalized on both T and S, which can be quantified as:

ϵb = ETi∈T [C(Mb,Ti)]− ESi∈S[C(Mb,Si)]. (3.2)

M(θ), Ms(θs) and Mb(θb) share the same layers, except the target layer l. Therefore, the

differences in each pair of

{ETi∈T [C(Ms,Ti)],ETi∈T [C(Mb,Ti)]},

and

{ESi∈S[C(Ms,Si)],ESi∈S[C(Mb,Si)]},

are due to different parameters of layer l.

Therefore, we quantify RMs , the risk of sensitive information exposure of layer l, by comparing

the generalization error of Ms and Mb:

RMs =
ϵs − ϵb
ϵs

. (3.3)

The larger RMs , the higher the risk of exposing sensitive information.
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3.3 Measuring Information Exposure

3.3.1 Model and datasets

I use VGG-7 as the DNN M , which has seven convolutional layers (16C3-16C3-MP-32C3-32C3-

MP-32C3-32C3-MP-64FC-10SM). Each layer is followed by Rectifier Linear Unit (ReLU) [NH10]

activation function.

I use three datasets: MNIST, Fashion-MNIST, and CIFAR-10. MNIST includes 60k training

images of 28 × 28 × 1 handwritten digits of 10 classes (i.e., 0 to 9). Fashion-MNIST contains

60k 28 × 28 × 1 images of 10 classes of clothing, namely T-shirt/top, trouser, pullover, dress,

coat, sandal, shirt, sneaker, bag, and ankle boot. CIFAR-10 includes 50k training 32× 32× 3

images of 10 classes including airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and

truck.

I split each training set into set S and set T , as explained in Sec. 3.2.1. I use 20 epochs

for MNIST, 40 epochs for Fashion-MNIST, and 60 epochs for CIFAR-10 to reach a relatively

reasonable accuracy (similar to previous research [LCB10, KNHa]). The accuracy of VGG-7 on

MNIST, Fashion-MNIST, and CIFAR-10 is 99.29%, 90.55%, and 71.63%, respectively. I then

fine-tune M as Ms and Mb with 10 epochs for MNIST, 20 epochs for Fashion-MNIST, and

30 epochs for CIFAR-10. These epochs are half of the previous numbers in order to fine-tune

models but do not overfit them.

3.3.2 Results and discussion

Generalization error. Figure 3.2 shows the generalization errors of Ms and Mb. For all

three datasets, the baseline model Mb, as expected, has higher generalization errors than the

model Ms, whose layer l is overfitted to dataset S, while the generalization error of CIFAR-

10 is greater than that of Fashion-MNIST that in turn is greater than that of MNIST. A

more complex dataset (e.g. CIFAR-10) is associated with a larger difference between S and T
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Figure 3.2: Generalization errors of Ms and Mb trained on half of the training set, S, of (a)
MNIST, (b) Fashion-MNIST, and (c) CIFAR-10 for fine-tuning each target layer. Error bars
represent 95% confidence intervals.

compared to a less complex dataset (e.g. MNIST), so it is harder to generalize the model to

predict T by training with S.

As one goes through the convolutional layers, the generalization error of Ms increases, while

the generalization error of Mb decreases until the 5th or 6th layer. A possible explanation is

that the first layers memorize generic information (e.g. colors, and corners), whereas the last

layers memorize more specific information that can be used to identify a specific image. For

example, fine-tuning the last layers using S leads Ms to memorize specific information of S,

which consequentially increases the generalization errors of Ms when predicting T .

Sensitive information exposure. Figure 3.3 shows the risk of sensitive information exposure

for each layer of VGG-7 on all three datasets. The first layer has the lowest risk, and the risk

increases as one go through the layers, with the last convolutional layer having the highest

sensitive information exposure, which is 0.63 for both MNIST and Fashion-MNIST and 0.5 for

CIFAR-10. This confirms the bigger derivation of the generalization error of Ms from Mb in

the last layers than in the first layers. In addition, the order of layers in terms of sensitive

information exposure is almost the same across all three datasets.

I also compute the risk per neuron for each layer by normalizing the risk of sensitive information

exposure by the total number of neurons of the layer (Figure 3.4). This excludes the impact

of layers’ sizes and then gives a deeper understanding of which layers’ neurons contain more

sensitive information per unit. Such an understanding provides us with which layers’ neurons to
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Figure 3.5: Using a TEE to protect the most sensitive layers (last layers) of an on-device deep
neural network.

protect with a higher priority considering the fixed size of the protection area (e.g., TEE). The

results show the risk per neuron increases as one moves through convolutional layers. Neurons

in the late convolutional layers have high capabilities in memorizing sensitive information,

whereas the fully connected layer (layer 7) has a much smaller risk per neuron.

3.4 Exploration of Protection using TEEs

3.4.1 Evaluation setup

This section presents an implementation and evaluates the cost of protecting the last layers

of an on-device DNN during fine-tuning by deploying them in the TrustZone of a device (see

Figure 3.5). TrustZone is ARM’s TEE implementation that establishes a private region on the

main processor. Both hardware and software approaches isolate this region to allow trusted

execution. As TEEs are usually small, one can only protect the most sensitive layers of the

model and use the normal execution environment for the other layers.

I use Darknet [Red16] DNN library in Open Portable TEE (OP-TEE)1, a TEE framework based

1 https://www.op-tee.org
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Figure 3.6: Execution time, memory usage, and power usage for protecting layers of VGG-7
trained on MNIST (left column) and CIFAR-10 dataset (right column) using the TrustZone of
device. The x-axis corresponds to several last layers included in the TrustZone. O refers to
the calculation of cost function; SM, FC, D, MP, and C refer to the softmax, fully connected,
dropout, maxpooling, convolutional layers of VGG-7. The number of layers with trainable
parameters in the TrustZone are 1, 2, 3, and 4. The dashed line represents the baseline, which
runs all the layers outside the TrustZone. Error bars represent 95% confidence intervals.
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on TrustZone, of a Raspberry Pi 3 Model B. This model of Raspberry Pi 3 runs instances of

OP-TEE with 16 mebibytes (MiB) TEE’s memory. The choice of Darknet [Red16] is due to its

high performance and small dependencies.

I fine-tune the pre-trained VGG-7 (from the previous section) with MNIST and CIFAR-10,

respectively. Continuous layers are deployed in the TrustZone from the end for simplicity, in-

cluding both layers with (i.e., the convolutional and fully connected layer) and without (i.e., the

dropout and maxpooling layer) trainable parameters.

3.4.2 Results and discussion

Figure 3.6 shows the execution time (in seconds), memory usage (in MB), and power con-

sumption (in Watt, using RuiDeng USB Tester (UM25C)2) of securing a part of the DNN in

the TrustZone, starting from the last layer, and continuing adding layers until the maximum

number of layers the zone can hold.

The resulting execution times are MNIST: F(7,232) = 3658, p < 0.001; CIFAR-10: F(7,232) =

2396, p < 0.001 and memory usage is MNIST: F(7,232) = 11.62, p < 0.001; CIFAR-10: F(7,232) =

20.01, p < 0.001. The increase however is small compared to the baseline (Execution time:

1.94% for MNIST and 1.62% for CIFAR-10; Memory usage: 2.43% for MNIST and 2.19% for

CIFAR-10). Moreover, running layers in the TrustZone did not significantly influence the power

usage (MNIST: F(7,232) = 1.49, p = 0.170; CIFAR-10: F(7,232) = 1.61, p = 0.132).

Specifically, deploying the dropout layer and the maxpooling layer in the TEE increases both

the execution time and memory usage. The reason is that these two types of layers have no

trainable parameters, and for Darknet, the dropout and maxpooling are directly operated based

on the trainable parameters of their front layer. Therefore, to run these two types of layers

in the TEE, their front layer (i.e., fully connected/convolutional layers) needs to be copied

into the TEE, which increases the cost. For layers with parameters that I aim to protect (1,

2, 3, and 4 in Figure 3.6), deploying fully connected layers (i.e., 1, 2) in the TEE does not

increase the execution time accumulated on the first layers, and does not increase the memory
2 http://www.ruidengkeji.com
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usage. Deploying convolutional layers (i.e., 3 and 4) leads to an increase in execution time but

does not increase memory usage when using MNIST. The second convolutional layer (i.e., 4)

only increases memory usage when using CIFAR-10. However, exhausting the most available

memory of the TEE can also cause an increase in overhead, so the reason for this increment of

memory usage needs more analysis. Overall, for the implementation, protecting fully connected

and convolutional layers has lower costs than other layers without trainable parameters with

the TEE.

3.5 Summary

In this chapter, I proposed a method to measure the exposure of sensitive information in each

layer of a pre-trained DNNmodel based on their generalization errors. It is shown that the closer

the layer is to the output, the higher the likelihood that sensitive information of training data is

exposed, which is opposite to the exposure risk of layers’ activation from test data [GHZ+18b].

I did initial evaluations on the use of TEE to protect individual sensitive layers (i.e., the last

layers) of a deployed DNN. The results show that TEE has a promising performance at a low

cost.

It is worth noting that because there can exist interactions across layers, training one layer

while freezing all other layers may lead to biases because training two layers separately and

adding them performance gain will have different results than training these two layers together.

On one side, the former one could be an estimation of the second one as shown in [LZC+22].

However, we still need to be aware of such differences and better test the privacy leakage based

on real attacks or other metrics.

Furthermore, the evaluation can be improved by more fine-grained measurements, such as

separating kernel space and user space’s execution time and memory usage. Besides, the power

measurement (UM25C) unit only has a precision of 3Hz which may be not sufficient enough to

capture changes in power usage when switching between TrustZone’s normal world and secure

world. Thus, utilizing more accurate power measurement equipment in the next step can give a
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deeper understanding of that. In addition, more datasets and models need to be tested to show

the consistency of the results. The next step would also include the investigation of protecting

the later layers of a DNN against, among other attacks, such as white-box membership inference

attacks [NSH18] to demonstrate the real privacy guarantee performance of the such defense.
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Chapter 4

On-device Privacy-preserving ML

System

In this chapter, I aim to develop a dedicated edge ML framework preserving the private in-

formation leakage from DNN models aiming at Research Questions 2 and 3. This follows the

results of the privacy measure of DNNs’ weights in the previous chapter; I aim to develop

this system to protect the last layers. Moreover, each layer of the model memorizes different

information about the input, and they are more empirical studies showing similar patterns.

Yosinki et al. [YCBL14] found that the first layers (closer to the input) are more transferable

to new datasets than the last layers. That is, the first layers learn more general information

(e.g., ambient colors in images), while the last layers learn information that is more specific to

the classification task (e.g., face identity). The memorization difference per layer has been veri-

fied both in convolutional layers [ZF14, YCN+15] and in generative models [ZSE17]. Evidently,

an untrusted party with access to the model can leverage the memorized information to infer

potentially sensitive properties about the input data which leads to severe privacy risks.

Starting with the related work and knowledge, I focus on the defense against popular private

information leakage related to membership inference, specifically one SOTA white-box mem-

bership inference attack, and polish the on-device privacy-preserving ML system to achieve

high defense performance with low system cost.
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4.1 Introduction and Related Work

4.1.1 Membership inference attack (MIA)

. With successful training (i.e., the model converging to an optimal solution), a DNN model

“memorizes” features of the input training data [YGFJ18, RBU18], which it can then use

to recognize unseen data exhibiting similar patterns. However, models have the tendency to

include more specific information about the training dataset unrelated to the target patterns

(i.e., the classes that the model aims to classify) [YGFJ18, CLG01].

MIAs form a possible attack on devices that leverage memorized information on a model’s layers

to determine whether a given data record was part of the model’s training dataset [SSSS17].

A real-world example of MIA is that one adversary queries a remote ML model with one

patient’s medical records to determine whether these medical records have participated in

training the model, and consequently, the patient’s membership information is leaked. In a

black-box MIA, the attacker leverages models’ outputs (e.g., confidence scores) and auxiliary

information (e.g., public datasets or public prediction accuracy of the model) to train shadow

models or classifiers without accessing internal information of the model [SSSS17, YGFJ18].

However, in a white-box MIA, the attacker utilizes the internal knowledge (i.e., gradients and

activation of layers) of the model in addition to the model’s outputs to increase the effectiveness

of the attack [NSH18]. It is shown that the last layer (model output) has the highest membership

information about the training data [NSH18]. A white-box adversary is considered as the

threat model, as DNNs are fully accessible after being transferred from the server to edge

devices [XLL+19]. In addition to this, a white-box MIA is a stronger adversary than a black-

box MIA, as the information the adversary has access to in a black-box attack is a subset of

that used in a white-box attack.
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4.1.2 Deep learning in the TEE

Trusted execution environment (TEE). A TEE is a trusted component that runs in parallel

with the untrusted Rich operating system Execution Environment (REE) and is designed to

provide safeguards for ensuring the confidentiality and integrity of its data and programs. This

is achieved by establishing an isolated region on the main processor, and both hardware and

software approaches are utilized to isolate this region. The chip includes additional elements

such as unchangeable private keys or secure bits during manufacturing, which helps ensure that

untrusted parts of the platform (even privileged OS or hypervisor processes) cannot access TEE

content [CD16, Arm09].

In addition to strong security guarantees, TEEs also provide better computational performance

than existing software protections, making them suitable for computationally-expensive deep

learning tasks. For example, advanced techniques such as fully homomorphic encryption enable

operators to process the encrypted data and models without decryption during deep learning

but significantly increase the computation cost [NLV11, AAUC18]. Conversely, TEE protection

only requires additional operations to build the trusted environment and the communication

between trusted and untrusted parts, so its performance is comparable to normal executions in

an untrusted environment (e.g., an OS).

Deep learning with TEEs. Previous work leveraged TEEs to protect deep learning models.

Apart from the unique attack surface and thus protection goals considered in this research,

these also differ from this approach in one more aspect: they depend on an underlying com-

puter architecture that is more suitable for cloud environments. Recent work has suggested

executing a complete deep learning model in a TEE [CD16], where during training, users’ pri-

vate data is transferred to the trusted environment using trusted paths. This prevents the

host Cloud from eavesdropping on the data [OSF+16]. Several other studies improved the

efficiency of TEE-resident models using Graphics Processing Units (GPU) [TB18], multiple

memory blocks [HSS+18], and high-performance ML frameworks [HCS18]. More similar to my

approach, Gu et al. [GHZ+18b] partitioned DNN models and only enclosed the first layers in
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an SGX-powered TEE to mitigate input information disclosures of real-time fed device user

images. In contrast, membership inference attacks become more effective by accessing infor-

mation in the last layers. All these works use an underlying architecture based on Intel’s SGX,

which is not suitable for edge devices. Edge devices usually have chips designed using Reduced

Instruction Set Computing (RISC), peripheral interfaces, and much lower computational re-

sources (around 16 mebibytes (MiB) memory for TEE) [EKA14]. Arm’s TrustZone is the most

widely used TEE implementation in edge devices. It involves a more comprehensive trusted

environment, including the security extensions for the AXI system bus, processors, interrupt

controller, TrustZone address space controller, etc. Camera or voice input connected to the

APB peripheral bus can be controlled as a part of the trusted environment by the AXI-to-

APB bridge. Utilizing TrustZone for on-device deep learning requires more development and

investigation because of its different features compared to SGX.

4.1.3 Privacy-preserving methods

An effective method for reducing the memorization of private information of training data in

a DNN model is to avoid overfitting via imposing constraints on the parameters and utilizing

dropouts [SSSS17]. Differential Privacy (DP) can also obfuscate the parameters (e.g., adding

Gaussian noise to the gradients) during training to control each input’s impact on them [ACG+16,

YLP+19]. However, DP may negatively affect the utility (i.e., the prediction accuracy) if

the noise is not carefully designed [RRL+18]. In order to obfuscate private information only,

one could apply methods such as generative neural networks [XRZ+19] or adversarial exam-

ples [JSB+19] to craft noises for one particular data record (e.g., one image), but this requires

additional computational resources which are already limited on edge devices.

Server-Client model partition. General information processed in the first layers [YCBL14]

during the forward propagation of deep learning often includes more important indicators for

the inputs than those in the last layers (which is opposite to membership indicators), since

reconstructing the updated gradients or activation of the first layers can directly reveal private

information of the input [AHW+18, DB16]. Based on this, hybrid training models have been
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proposed which run several first layers at the client-side for feature extraction and then upload

these features to the server-side for classification [OST+17]. Such partition approaches delegate

parts of the computation from the servers to the clients, and thus, in these scenarios, striking

a balance between privacy and performance is of paramount importance.

Gu et al. [GHZ+18b] follow a similar layer-wise method and leverage TEEs on the cloud to

isolate the more private layers. Clients’ private data are encrypted and then fed into the cloud

TEE so that the data and the first several layers are protected. This method expands the clients’

trusted boundary to include the server’s TEE and utilizes an REE-TEE model partition at the

server which does not significantly increase clients’ computation cost compared to running the

first layers on client devices. To further increase training speed, it is also possible to transfer

all linear layers outside a cloud’s TEE into an untrusted GPU [TB18]. All these partitioning

approaches aim to prevent leakage of private information of users (to the server or others),

yet do not prevent leakage from trained models when models are executed on the users’ edge

devices.

4.2 DarkneTZ Framework

I now describe DarkneTZ, a framework for preserving DNN models’ privacy on edge devices,

and I start with the threat model.

4.2.1 Threat model

An adversary with full access to the REE of an edge device (e.g., the OS) on edge devices is

considered: this could be the actual user, malicious third-party software installed on the devices,

or a malicious or compromised OS. One only trusts the TEE of an edge device to guarantee

the integrity and confidentiality of the data and software in it. In particular, it is assumed that

a DNN model is pre-trained using private data from the server or other participating nodes.

It is further assumed that the model providers can fully guarantee the model privacy during
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Figure 4.1: DarkneTZ uses on-device TEE to protect a set of layers of a deep neural network
for both inference and fine-tuning.

Note: The trusted compute base—or trust boundary—for the model owner on edge devices is the TEE of the
device.

training on their servers by utilizing existing protection methods [OSF+16] or even by training

the model offline, so the model can be secret provisioned to the user devices without other

privacy issues.

4.2.2 Design overview

DarkneTZ design aims at mitigating attacks on on-device models by protecting layers and the

output of the model with low cost by utilizing an on-device TEE. It should be compatible with

edge devices. That is, it should integrate with TEEs which can run on hardware technologies

that can be found on commodity edge devices (e.g. Arm TrustZone), and use standard TEE
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system architectures and corresponding APIs.

This research proposes DarkneTZ, illustrated in Figure 4.1, a framework that enables DNN

layers to be partitioned as two parts to be deployed respectively into the REE and TEE of edge

devices. DarkneTZ allows users to do inference with or fine-tuning of a model seamlessly—the

partition is transparent to the user—while at the same time it considers the privacy concerns

of the model’s owner. Corresponding Client Application (CA) and Trusted Application (TA)

perform the operations in REE and TEE, respectively. Without loss of generality, DarkneTZ’s

CA runs layers 1 to l in the REE, while its TA runs layers l+1 to L located in the TEE during

fine-tuning or inference of a DNN. This DNN partitioning can help the server to mitigate several

attacks such as MIAs [NSH18, MSK+19], as the last layers have a higher probability of leaking

private information about training data.

DarkneTZ expects sets of layers to be pre-provisioned in the TEE by the analyst (if the frame-

work is used for offline measurements) or by the device OEM if a version of DarkneTZ is

implemented on consumer devices. Note that in the latter case, secret provisioning of sensi-

tive layers can also be performed over the air, which might be useful when the sensitive layer

selection needs to be dynamically determined and provisioned to the edge device after supply.

In this case, one could extend DarkneTZ to follow a variation of the SIGMA secure key ex-

change protocol [Kra03], modified to include remote attestation, similar to [ZZQ+19]. SIGMA

is provably secure and efficient. It guarantees perfect forward secrecy for the session key (to

defend against replay attacks) while its use of message authentication codes ensures server and

client identity protection. Integrating remote attestation guarantees that the server provisions

the model to a non-compromised edge device.

4.2.3 Model preparation

Once the model is provisioned, the CA requests the layers from devices (e.g., solid-state disk

drive (SSD)) and invokes the TA. The CA will first build the DNN architecture and load

the parameters of the model into normal memory (i.e., non-secure memory) to process all

calculations and manipulations of the non-sensitive layers in the REE. When encountering
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(secretly provisioned) encrypted layers that need to be executed in the TEE, which is determined

by the model owner’s setting, the CA passes them to the TA. The TA decrypts these layers

using a key that is securely stored in the TEE (using secure storage), and then it runs the

more sensitive layers in the TEE’s secure memory. The secure memory is indicated by one

additional address bit introduced to all memory system transactions (e.g., cache tags, memory,

and peripherals) to block non-secure access [Arm09]. At this point, the model is ready for

fine-tuning and inference.

4.2.4 DNN partitioned execution

The forward pass of both inference and fine-tuning passes the input a0 to the DNN to produce

activation of layers until the last layer, i.e., layer l’s activation is calculated by al = f(wlal−1+

bl), where wl and bl are weights and biases of this layer, al−1 is activation of its previous

layer and f is the non-linear activation function. Therefore, after the CA processes its inside

layers from 1 to l, it invokes a command to transfer the outputs (i.e., activation) of layer l

(i.e., the last layer in the CA) to the secure memory through a buffer (in shared memory). The

TA switches to the forward net TA function corresponding to the invoked command to receive

parameters (i.e., outputs/activation) of layer l and processes the following forward pass of the

network (from layer l+ 1 to layer L) in the TEE. In the end, outputs of the last layer are first

normalized as âL to control the membership information leakage and are returned via shared

memory as the prediction results.

The backward pass of fine-tuning computes gradients of the loss function L(aL, y) with respect

to each weight wl and bias bl, and updates the parameters of all layers, {wl}Ll=1 and {bl}Ll=1 as

wl = wl−η ∂L(aL,y)
∂wl and bl = bl−η ∂L(aL,y)

∂bl , where η is a constant called the learning rate and y

is the desired output (i.e., called label). The TA can compute the gradient of the loss function

by receiving y from CA and backpropagate it to the CA in order to update all the parameters.

In the end, to save the fine-tuned model on devices, all layers in the TA are encrypted and

transferred back to the CA.
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4.3 Experiment Settings

4.3.1 Models and datasets

This research first uses two popular DNNs, namely AlexNet and VGG-7, to measure the sys-

tem’s performance. AlexNet has five convolutional layers (i.e., with kernel size 11, 5, 3, 3, and

3) followed by a fully-connected and a softmax layer, and VGG-7 has eight layers (i.e., seven

convolutional layers with kernel size 3, followed by a fully-connected layer). Both AlexNet

and VGG-7 use ReLU (Rectifier Linear Unit) activation functions for all convolutional layers.

The number of neurons for AlexNet’s layers is 64, 192, 384, 256, and 256, while the number of

neurons for VGG-7’s layers is 64, 64, 124, 124, 124, 124, and 124. The networks are trained and

used to conduct inference on CIFAR-100 and ImageNet Tiny. Image classification datasets are

used, as a recent empirical study shows that the majority of smartphone applications (70.6%)

that use deep learning are for image processing [XLL+19]. Moreover, the state-of-the-art MIA

being considered is demonstrated against such datasets [NSH18]. CIFAR-100 includes 50k

training and 10k test images of size 32 × 32 × 3 belonging to 100 classes. ImageNet Tiny is a

simplified ImageNet challenge that has 100k training and 10k test images of size 64 × 64 × 3

belonging to 200 classes.

In addition to this, this work uses six available DNNs (Tiny Darknet (4 megabytes (MB)), Dark-

net Reference (28MB), Extraction [SLJ+15] (90MB), Resnet-50 [HZRS16] (87MB), Densenet-

201 [HLVDMW17] (66MB), and Darknet-53-448 (159MB)) pre-trained on the original Ima-

geNet [DDS+09] dataset to measure DarkneTZ’s performance during inference. All pre-trained

models can be found online1. ImageNet has 1000 classes, and consequently, these DNN models’

last layers occupy larger memory that can exceed the TEE’s limits, compared to models with

100/200 classes. Therefore, for these six models, Only their last layer in the TEE is evaluated.

To evaluate the defense’s effectiveness against MIAs, this research uses the same models as

those used in the demonstration of the attack[NSH18] (AlexNet, VGG-7, and ResNet-110).

This ResNet with 110 depth is an existing network architecture that has three blocks (each has

1 https://pjreddie.com/darknet/imagenet/

https://pjreddie.com/darknet/imagenet/


4.3. Experiment Settings 59

36 convolutional layers) in the middle and another convolutional layer at the beginning and

one fully connected layer at the end [HZRS16]. Published models trained (with 164 epochs)

on CIFAR-100 [KNHb] online2 are used. Three models on ImageNet Tiny3 are trained with

300 epochs as target models (i.e., victim models during attacks). Models with the highest

valid accuracy are used after training. this research follows [NSH18]’s methodology, and all

training and test datasets are split into two parts with equal sizes randomly so that the MIA

model learns both Member and Non-member images. For example, 25K of training images and

5K of test CIFAR-100 images are chosen to train the MIA model, and then the model’s test

precision and recall are evaluated using 5K of training images and 5K of test images in the rest

of CIFAR-100 images.

4.3.2 Implementation and evaluation setup

This work develops an implementation based on the Darknet [Red16] DNN library. This par-

ticular library is used because of its high computational performance and small library depen-

dencies which fits within the limited secure memory of the TEE. I run the implementation on

Open Portable TEE (OP-TEE), which provides the software (i.e., operating systems) for an

REE and a TEE designed to run on top of Arm TrustZone-enabled hardware.

For TEE measurements, I focus on the performance of deep learning since secret provisioning

only happens once for updating the model from servers. 128-bit AES-GCM is implemented

for on-device secure storage of sensitive layers. This implementation is tested on a Hikey 960

board, a widely-used device [YAA+18, AAD18, DBJL18, BGJ+19] that is promising to be

comparable with mobile phones (and other existing products) due to its Android open source

project support. The board has four ARM Cortex-A73 cores and four ARM Cortex-A53 cores

(pre-configured to 2362MHz and 533MHz, respectively, by the device OEM), 4GB LPDDR4

SDRAM, and provides 16MiB secure memory for trusted execution, which includes 14MiB for

the TA and 2MiB for TEE run-time. Another 2MiB shared memory is allocated from non-secure

memory. As the Hikey board adjusts the CPU frequency automatically according to the CPU

2 https://github.com/bearpaw/pytorch-classification 3 https://tiny-imagenet.herokuapp.com/

https://github.com/bearpaw/pytorch-classification
https://tiny-imagenet.herokuapp.com/
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temperature, I decrease and fix the frequency of Cortex A73 to 903MHz and keep the frequency

of Cortex A53 as 533Mhz. During experiments, a 120 seconds system sleep is introduced per

trial to make sure that the CPU temperature begins under 40°C to avoid underclocking.

Edge devices suffer from limited computational resources, and as such, it is paramount to

measure the efficiency of deep learning models when partitioned to be executed partly by the

OS and partly by the TEE. In particular, I monitor and report CPU execution time (in seconds),

memory usage (in megabytes), and power consumption (in watts) when the complete model

runs in the REE (i.e., OS) and compare it with different partitioning configurations where more

sensitive layers are kept within the TEE. CPU execution time is the amount of time that the

CPU was used for deep learning operations (i.e., fine-tuning or inference). Memory usage is

the amount of the mapping that is currently resident in the main memory (RAM) occupied by

the process for deep learning-related operations. Power consumption is the electrical energy

consumption per unit time that was required by the Hikey board.

More specifically, the REE’s /proc/self/status is utilized for accessing the process infor-

mation to measure the CPU execution time and memory usage of the implementation. CPU

execution time is the amount of time for which the CPU was used for processing instructions of

software (as opposed to wall-clock time which includes input/output operations) and is further

split into (a) time in user mode and (b) time in kernel mode. The REE kernel time captures

together (1) the time spent by the REEs kernel and (2) the time spent by the TEE (including

both in user mode and kernel mode). This kernel time gives us a direct perception of the

overhead when including TEEs for deep learning versus using the same REE without a TEE’s

involvement.

Memory usage is represented using resident set size (RSS) memory in the REE, but the mem-

ory occupied in the TEE is not counted by the RSS since the REE does not have access to

gather memory usage information of the TEE. The TEE is designed to conceal this sensitive

information (e.g., both CPU time and memory usage); otherwise, the confidentiality of TEE

contents would be easily breached by utilizing side-channel attacks [WCP+17]. To overcome

this, an abort is triggered from the TEE after the process runs stably (memory usage tends to
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be fixed) to obtain the memory usage of the TEE.

To accurately measure the power consumption, a Monsoon High Voltage Power Monitor 4 is

used, a high-precision power metering hardware capable of measuring the current consumed

by a test device with a voltage range of 0.8V to 13.5V and up to 6A continuous current. It

is configured to power the Hikey board using the required 12V voltage while recording the

consumed current in a 50Hz sampling rate.

For conducting the MIA, I use a machine with 4 Intel(R) Xeon(R) E5-2620 CPUs (2.00GHz),

an NVIDIA QUADRO RTX 6000 (24GB), and 24GB DDR4 RAM. Pytorch v1.0.1 [PGC+17]

is used as the DNN library.

4.3.3 Measuring privacy in MIAs

The adversarial strategy in this setting is defined based on state-of-the-art white-box MIAs

which observe the behavior of all components of the DNN model [NSH18]. White-box MIAs

can achieve a higher accuracy in distinguishing whether one input sample is presented in the

private training dataset compared to black-box MIAs since the latter only have access to the

models’ output [YGFJ18, SSSS17]. Besides, white-box MIAs are also highly possible in on-

device deep learning, where a model user can not only observe the output, but also observe

fine-grained information such as the values of the cost function, gradients, and activation of

layers.

This research evaluates the membership information exposure of a set of the target model’s

layers by employing the white-box MIA [NSH18] on these layers. The attacker feeds the target

data to the model and leverages all possible information in the white-box setting including

activation of all layers, the model’s output, loss function, and the gradients of the loss function

with respect to the parameter of each layer. It then separately analyses each information

source by extracting features from the activation of each layer, the model’s output, and the loss

function via fully connected neural networks with one hidden layer, while using convolutional

neural networks for the gradients. All extracted features are combined in a global feature vector
4 https://www.msoon.com/

https://www.msoon.com/
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that is later used as an input for an inference attack model. The attack model predicts a single

value (i.e., Member or Non-member) that represents the membership information of the target

data (please refer the interested readers to [NSH18] for a detailed description of this MIA). I

use the test accuracy of the MIA model trained on a set of layers to represent the advantage

of adversaries as well as the sensitivity of these layers.

To measure the privacy risk when part of the model is in TEE, this MIA is conducted on the

target model in two different settings: (i) starting from the first layer, the later layers are added

one by one until the end of the network, and (ii) starting from the last layer the previous layers

are added one by one until the beginning of the network. However, the available information

of one specific layer during the fine-tuning phase and that during the inference phase are

different when starting from the first layers. Inference only has a forward propagation phase

which computes the activation of each layer. During fine-tuning and because of the backward

propagation, in addition to the activation, gradients of layers are also visible. In contrast to

that, attacks starting from the last layers can observe the same information in both the inference

and fine-tuning since layers’ gradients can be calculated based on the cost function. Therefore,

in setting (i) activation, gradients, and outputs are utilized. In setting (ii), only the activation

of each layer is used to evaluate inference and use both activation and gradients to evaluate

fine-tuning, since the outputs of the model (e.g., confidence scores) are not accessible in this

setup.

4.4 Evaluation Results

This Section first evaluates the efficiency of DarkneTZ when protecting a set of layers in the

TrustZone to answer Question 2. To evaluate system efficiency, this research measures CPU

execution time, memory usage, and power consumption of the implementation for both

training and inference on AlexNet and VGG-7 trained on two datasets. The last layers are

protected (starting from the output) since they are more vulnerable to attacks (e.g., MIAs)

on models. The cost layer (i.e., the cost function) and the softmax layer are considered as

a separate layer since they contain highly sensitive information (i.e., confidence scores and
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(a) CPU time of training
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(b) CPU time of inference

Figure 4.2: The CPU time of each step of training models or conducting inference on CIFAR-
100 and ImageNet Tiny, protecting consecutive last layers using TrustZone.

Note: For example, when putting the last layers in the TrustZone, 1 refers to the cost function and the
softmax layer, 2 includes 1 and the previous fully-connected layer, 3 includes 2 and the previous convolutional
layers, etc. Horizontal dashed lines ( and ) represent the baseline where all layers are out of the
TrustZone. 20 times for each trial, and error bars are 95% CI. Several error bars of data points are invisible as
they are too small to be shown in this figure as well as the following figures.

cost function). Starting from the last layer, I include the maximum number of layers that

the TrustZone can hold. To answer Question 3, I use the MIA success rate, indicating

the membership probability of target data (the more DarkneTZ limits this, the stronger the

privacy guarantees are). I demonstrate the effect on performance and discuss the trade-off

between performance and privacy using MIAs as one example.
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(c) Inference with Alexnet
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(d) Inference with VGG-7

Figure 4.3: The CPU time of each step of training models or conducting inference on CIFAR-
100, protecting consecutive last layers using TrustZone.

Note: The x-axis corresponds to several last layers included in the TrustZone. CT, SM, FC, D, MP, and C
refer to the cost, softmax, fully connected, dropout, maxpooling, convolutional layers. 1, 2, 3, 4, and 5 in the
x-axis are corresponding to the x-axis of Figure 4.2. Horizontal dashed lines ( ) represent the baseline
where all layers are out of the TrustZone. 20 times for each trial, and error bars are 95% CI.

4.4.1 CPU execution time

As shown in Figure 4.2, the results indicate that including more layers in the TrustZone results

in an increasing CPU time for deep learning operations, where the most expensive addition

is to put the maximum number of layers. Figure 4.2a shows the CPU time when training

AlexNet and VGG-7 with TrustZone on CIFAR-100 and ImageNet Tiny dataset, respectively.

This increasing trend is significant and consistent for both datasets (CIFAR-100: F(6,133) =

29.37, p < 0.001; F(8,171) = 321.3, p < 0.001. ImageNet Tiny: F(6,133) = 37.52, p < 0.001;

F(8,171) = 28.5, p < 0.001). It is also observed that protecting only the last layer in the TrustZone

has a negligible effect on the CPU utilization while including more layers to fully utilize the

TrustZone during training can increase CPU time (by 10%). For inference, the increasing trend
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(b) Inference on CIFAR-100

Figure 4.4: The CPU execution time in user mode and kernel mode of each step of training the
model or conducting inference on CIFAR-100, protecting consecutive last layers using Trust-
Zone.

Note: Horizontal dot-dashed lines ( ) represent the baseline where all layers are out of the TrustZone. 20
times for each trial. CPU time in user mode in Figure 4.4b is too small to be shown

is also significant (see Figure 4.2b). It only increases CPU time by around 3% when protecting

only the last layer which can increase up to 10× when the maximum possible number of layers

is included in the TrustZone.

To further investigate the increasing CPU execution time effect, I analyzed all types of layers

(both trainable and non-trainable) separately in the TrustZone. Trainable layers have parame-

ters (e.g., weights and biases) that are updated (i.e., trainable) during the training phase. Fully

connected layers and convolutional layers are trainable. Dropout, softmax, and maxpooling lay-

ers are non-trainable. As shown in Figure 4.3, different turning points exist where the CPU

time significantly increases (p < 0.001) compared to the previous configuration (i.e., one more

layer is moved into the TrustZone) (Tukey HSD [AW10] was used for the post hoc pairwise

comparison). When conducting training, the turning points appear when putting the max-

pooling layer in the TrustZone for AlexNet (see Figure 4.3a) and when putting the dropout

layer and the maxpooling layer for VGG-7 (see Figure 4.3b). All these layers are non-trainable.

When conducting inference, the turning points appear when including the convolutional layers

in TrustZone for both AlexNet (see Figure 4.3c) and VGG-7 (see Figure 4.3d), which are one

step behind those points when conducting training.
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One possible reason for the increased CPU time during inference is that the TrustZone needs

to conduct extra operations (e.g., related secure memory allocation) for the trainable layer, as

shown in Figure 4.3c and Figure 4.3d where all increases happen when one trainable layer is

included in the TrustZone. Since I only conduct one-time inference during experiments, the

operations of invoking TEE libraries, creating the TA, and allocating secure memory for the

first time significantly increased the execution time compared to the next operations. Every

subsequent inference attempt (continuously without rebuilding the model) does not include

additional CPU time overhead. Figure 4.4 also shows that most of the increased CPU execution

time (from ∼0.1s to ∼0.6s) is observed in the kernel mode—which includes the execution in

TrustZone. The operation that needs to create the TA (to restart the TEE and load TEE

libraries from scratch), such as one-time inference, should be taken care of by preloading the

TA before conducting inference in practical applications.

During training, the main reason for the increased CPU time is that protecting non-trainable

layers in the TrustZone results in an additional transmission of their previous trainable layers

from the REE to the TrustZone. Non-trainable layers (i.e., dropout and max-pooling layers)

are processed using a trainable layer as the base, and the non-trainable operation manipulates

its previous layer (i.e., the trainable layer) directly. To hide the non-trainable layer and to

prevent its next layer from being transferred to the REE during backward propagation (as

mentioned in Section 4.2.4), I also move the previous convolutional layer to the TrustZone,

which results in the turning points of the training that are one layer in front of the turning

points during inference. Therefore, in practical applications, I should protect the trainable layer

and its previous non-trainable layer together, since only protecting the non-trainable layer still

requires moving its trainable layer into TrustZone and does not reduce the cost.

4.4.2 Memory usage

Training with the TrustZone does not significantly influence the memory usage (in the REE)

as it is similar to training without TrustZone (see Figure 4.5a). Inference with TrustZone

uses less memory (in the REE) (see Figure 4.5b) but there is still no difference when more
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(b) Memory usage of inference
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(c) Power consumption of training
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(d) Power consumption of inference

Figure 4.5: The memory usage and power consumption of training models, while conducting
training or inference on CIFAR-100 and ImageNet Tiny, protecting consecutive last layers using
TrustZone.

Note: Horizontal dashed lines ( and ) represent the baseline where all layers are outside the TrustZone.
20 times for each trial, error bars are 95% CI.

layers are placed into TrustZone. Memory usage (in the REE) decreases since layers are moved

to TrustZone and occupy secure memory instead. I measure the TA’s memory usage using all

mapping sizes in secure memory based on the TA’s abort information. The TA uses five memory

regions for sizes of 0x1000, 0x101000, 0x1e000, 0xa03000, and 0x1000 which is 11408KiB in

total for all configurations. The mapping size of secure memory is fixed when the TEE run-

time allocates memory for the TA, and it does not influence when moving more layers into the

memory. Therefore, because of the different model sizes, a good setting is to maximize the TA’s

memory mapping size in TrustZone in order to hold several layers of a possible large model.
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Figure 4.6: Performance on protecting the last layer of models trained on ImageNet in Trust-
Zone for inference.

Note: 20 times per trial; error bars are too small to be visible in the plot.

4.4.3 Power consumption

For training, the power consumption significantly decreases (p < 0.001) when more layers are

moved inside TrustZone (see Figure 4.5c). In contrast, the power consumption during inference

significantly increases (p < 0.001) as shown in Figure 4.5d. In both training and inference

settings, the trend of power consumption is likely related to the change in CPU time (see

Figure 4.2). More specifically, trajectories of them in the figures have the same turning points

(i.e., decreases or increases when moving the same layer to the TEE). One reason for the

increased power consumption during inference is the significant increase in the number of CPU

executions for invoking the required TEE libraries that consume additional power. When a large

number of low-power operations (e.g., memory operations for mapping areas) are involved, the

power consumption (i.e., energy consumed per unit time) could be lower compared to when a

few CPU-bound computationally-intensive operations are running. This might be one of the

reasons behind the decreased power consumption during training.

System performance on large models. This research also tests the performance of Dark-

neTZ on several models trained on ImageNet when protecting the last layer only, including the
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Table 4.1: Training and testing accuracy (Acc.) and corresponding MIA precision (Pre.) with
or without DarkneTZ (DTZ) of all models and datasets.

Dataset Model
Train
Acc.

Test
Acc.

Attack
Pre.

Attack
Pre.

(DTZ)

CIFAR
-100

AlexNet 97.0% 43.9% 84.7% 51.1%
VGG-7 83.8% 62.7% 71.5% 50.5%
ResNet-100 99.6% 72.4% 88.3% 50.6%

ImageNet
Tiny

AlexNet 40.3% 31.5% 56.7% 50.0%
VGG-7 57.1% 48.6% 54.2% 50.8%
ResNet-110 62.1% 54.2% 54.6% 50.2%

softmax layer (or the pooling layer) and the cost layer in TrustZone, in order to hide confidence

scores and the calculation of cost. The results show that the overhead of protecting large models

is negligible (see Figure 4.6): increases in CPU time, memory usage, and power consumption

are lower than 2% for all models. Among these models, the smaller models (e.g., Tiny Darknet

and Darknet Reference model) tend to have a higher rate of increase of CPU time compared

to the larger models (e.g., Darknet-53 model), indicating that with larger models, the influence

of TrustZone protection on resource consumption becomes relatively less.

System performance summary. In summary, it is practical to process a sequence of sensitive

DNN models layers inside the TEE of a mobile device. Putting the last layer in the TrustZone

does not increase CPU time and only slightly increases memory usage (by no more than 1%).

The power consumption increase is also minor (no more than 0.5%) when fine-tuning the models.

For inference, securing the last layer does not increase memory usage but increases CPU time

and power consumption (by 3%). Including more layers to fully utilize the TrustZone during

training can further increase CPU time (by 10%) but does not harm power consumption.

One-time inference with multiple layers in the TrustZone still requires further development,

such as utilizing the preliminary load of the TA, in practical applications. Note that in some

cases utilizing TEEs gains better performance than the baseline; this may also be due to the

pre-loading of some TEE driver and software stacks.
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Figure 4.7: Precision and recall of white-box membership inference attacks when first or last
layers of the model, trained on CIFAR-100, are protected using TrustZone.

Note: For first layer protection, 1 refers to the first layer, 2 refers to the first and the second layer, etc. For
last layer protection, 1 refers to the last layer (i.e., the output layer), 2 refers to the last and second last layer,
etc. 0 means that all layers are out of the TrustZone. Dashed lines at 50% represent baselines (i.e., random
guess). Each trial has been repeated 5 times, and the error bars are 95% CI

4.4.4 Privacy measurement

This research conducts the white-box MIA (Section 4.3.3) on all target models (see Section 4.3.1

for the choice of models) to analyze the privacy risk while protecting several layers in the

TrustZone. I used the standard precision and recall metrics, similar to previous works [SSSS17].

In this context, precision is the fraction of records that an attacker infers as being members, that

are indeed members in the training set. The recall is the fraction of training records that had

been identified correctly as members. The performance for both models and MIAs is shown in

Table 4.1. Figure 4.7 shows the attack success precision and recall for different configurations of

DarkneTZ. In each configuration, a different number of layers is protected by TrustZone before I

launch the attack. The configurations with zero layers protected correspond to DarkneTZ being

disabled (i.e., with this defense disabled). In particular, I measure the MIA adversary’s success

following two main configuration settings of DarkneTZ. In the first setting, I incrementally add

consecutive layers in the TrustZone starting from the front layers and moving to the last layers

until the complete model is protected. In the second setting, I do the opposite: I start from the

last layer and keep adding previous layers in TrustZone for each configuration. The results show

that when protecting the first layers in TrustZone, the attack success precision does not change
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Figure 4.8: Precision of white-box membership inference attacks on models trained on CIFAR-
100 when only outputs are protected using TrustZone.

Note: Dashed lines at 50% represent baselines (i.e., random guess). 5 times for each trial, and error bars are
95% CI.

significantly. In contrast, hiding the last layers can significantly decrease the attack success

precision, even when only a single layer (i.e., the last layer) is protected by TrustZone. The

precision decreases to ∼50% (random guessing) no matter how accurate the attack is before

the defense. For example, for the AlexNet model trained on CIFAR-100, the precision drops

from 85% to ∼50% when I only protect the last layer in TrustZone. Precision is much higher

than recall since the number of members in the adversary’s training set is larger than that of

non-members, so the MIA model predicts member images better. The results also show that the

membership information that leaks during inference and fine-tuning is very similar. Moreover,

according to [NSH18] and [SSSS17], the attack success precision is influenced by the size of

the attackers’ training dataset. I used relatively large datasets (half of the target datasets) for

training MIA models so that it is hard for the attacker to increase success precision significantly

in the defense setting. Therefore, by hiding the last layer in TrustZone, the adversary’s attack

precision degrades to 50% (random guess) while the overhead is under 3%.

This research also evaluated the privacy risk when DarkneTZ protects the model’s outputs

in TrustZone by normalizing it before outputting prediction results. In this configuration, I

conduct the white-box MIAs when all other layers (in the untrusted REE) are accessible by the
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adversary. This means that the cost function is protected, and the confidence score’s outputs are

controlled by TrustZone. Three combinations of models and datasets, including AlexNet, VGG-

7, and ResNet on CIFAR-100 are selected as they were identified as more vulnerable (i.e., with

high attack precision see Table 4.1) to MIAs [NSH18]. DarkneTZ is set to control the model’s

outputs in three different ways: (a) top-1 class with its confidence score; (b) top-5 classes with

their confidence scores; (c) all classes with their confidence scores. As shown in Figure 4.8 all

three methods can significantly (p < 0.001) decrease the attack success performance to around

50% (i.e., random guess). Therefore, it is highly practical to use DarkneTZ to tackle MIAs: it

incurs low resource consumption cost while achieving high privacy guarantees.

4.5 Discussion and Summary

4.5.1 System performance

Effects of the model size. This chapter showed that protecting large models with TrustZone

tends to have a lower rate of increase of CPU execution time than protecting small models

(see Figure 4.6). One possible explanation is that the last layer of a larger model uses a lower

proportion of computational resources in the whole model compared to that of a smaller model.

This work has also examined the effect of different hardware: The implementation of DarkneTZ

has been executed with similar model sizes on a Raspberry Pi 3 Model B (RPi3B), and it is

found to have a lower rate of increase of cost (i.e., lower overhead) than when executed on

the Hikey board [MSK+19]. This is because the Hikey board has much faster processors opti-

mized for matrix calculations, which renders additional operations of utilizing TrustZone more

noticeable compared to other normal executions (e.g., deep learning operations) in the REE.

Moreover, results show that a typical configuration (16MiB secure memory) of the TrustZone

is sufficient to hold at least the last layer of practical DNN models (e.g., trained on ImageNet).

However, it is challenging to fit multiple layers of large models in a significantly smaller TEE. I

tested a TEE with 5MiB secure memory on a Grapeboard5: only 1,000 neurons (corresponding

5 https://www.grapeboard.com/

https://www.grapeboard.com/
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to 1,000 classes) in the output layer already occupy 4MiB memory when using floating-point

arithmetic. In such environments, model compression, such as pruning [HMD15] and quanti-

zation [WLL+19, JKC+18], could be one way to facilitate including more layers in the TEE.

Lastly, it is found that utilizing TEEs for protecting the last layer does not necessarily lead to

resource consumption overhead, which deserves further investigation in future work. Overall,

results show that utilizing TrustZone to protect outputs of large DNN models is effective and

highly efficient.

Extrapolating for other mobile-friendly models. Tiny Darknet and Darknet Reference

have been used for testing DarkneTZ’s performance on mobile-friendly models (for ImageNet

classification). Another widely-used DNNs on mobile devices, Squeezenet [IHM+16] and Mo-

bilenet [HZC+17], define new types of convolutional layers that are not supported in Darknet

framework currently. It is expected that these have a similar privacy and TEE performance foot-

print because of the comparable size of model (4MB, 28MB, 4.8MB, 3.4MB for Tiny Darknet,

Darknet Reference, Squeezenet, and Mobilenet, respectively), floating-point operations (980M,

810M, 837M, 579M), and model accuracy (58.7%, 61.1%, 59.1%, and 71.6% for Top-1)6.

Improving performance. Modern mobile devices usually are equipped with GPU or special-

ized processors for deep learning such as NPU. The current implementation only uses the CPU

but can be extended to utilize faster chips (i.e., GPU) by moving the first layers of the DNN

that is always in the REE to these chips. By processing several layers of a DNN in a TEE

(SGX) and transferring all linear layers to a GPU, Tramer et al. [TB18] have obtained a 4x to

11x increase for verifiable and private inference in terms of VGG16, MobileNet, and ResNet.

For edge devices, another way for expediting the deep learning process is to utilize TrustZone’s

AXI bus or peripheral bus, which also has an additional secure bit on the address. Accessing a

GPU (or NPU) through the secure bus enables the TrustZone to control the GPU so that the

confidentiality of DNN models on the GPU cannot be breached and achieve faster executions

for partitioned deep learning on devices.

6 https://github.com/albanie/convnet-burden and https://pjreddie.com/darknet/tiny-darknet/

https://github.com/albanie/convnet-burden
https://pjreddie.com/darknet/tiny-darknet/
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4.5.2 Models’ privacy

Defending against other adversaries. DarkneTZ is not only capable of defending MIAs

by controlling information from outputs but also capable of defending other types of attacks

such as training-based model inversion attack [FJR15, YZCL19] or GAN attack [HAPC17] as

they are also highly dependent on the model’s outputs. In addition to that, by controlling the

output information during inference, DarkneTZ can provide different privacy settings depend-

ing on different privacy policies to servers correspondingly. For example, options included in

experiments are outputting Top-1 only with its confidence scores, outputting Top-5 with their

ranks, or outputting all classes with their ranks which all achieve strong defense against MIAs.

Recent research [JSB+19] also manipulates confidence scores (i.e., by adding noises) to defend

against MIAs, but their protection can be broken easily if the noise addition process is visible

to the adversaries of a compromised OS. DarkneTZ also protects layers while training models

and conducting inference, so that it leaves broader use cases that deserve further investigations.

Preserving model utility. By ”hiding” (instead of obfuscating) parts of a DNN model with

TrustZone, DarkneTZ preserves a model’s privacy without reducing the utility of the model.

Partitioning the DNN and moving its more sensitive part into an isolated TEE maintains

its prediction accuracy, as no obfuscating technique (e.g., noise addition) is applied to the

model. As one example of obfuscation, applying differential privacy can decrease the prediction

accuracy of the model [YLP+19]. Adding noises to a model with three layers trained on MNIST

leads to the model accuracy drop by 5% for small noise levels (ϵ = 8) and by 10% for large

noise levels (ϵ = 2) [ACP19, ACG+16]. The drop increases to around 20% for large-level noises

when training on CIFAR-10 [ACG+16]. To obtain a higher accuracy when using differential

privacy, one needs to train the model with more epochs, which is challenging for larger models

since more computational resources are needed. In recent work, carefully crafted noise is added

to confidence scores by applying adversarial examples [JSB+19]. Compared to the inevitable

decreasing utility of adding noise, DarkneTZ achieves a better trade-off between privacy and

utility compared to differential privacy.
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4.5.3 Limitations & Next steps

The issue of private information leaked from layers’ gradients becomes more serious considering

that DNN models’ gradients are shared and exchanged among devices in collaborated/federated

learning. [MSDCS19]’s work successfully shows private (e.g., membership) information about

participants’ training data using their updated gradients. Recent research [ZLH19b] further

reveals that it is possible to recover images and texts from gradients at pixel-level and token-

level, respectively, and the last layers have a low loss for the recovery. Although DarkneTZ

supports running on-device training and inference, this has not been tested on a federated

learning setting. Indeed, by limiting information exposure of layers, these types of attacks

could be weakened. Advanced protection for federated learning will be further investigated in

later sections. More importantly, how and why private information leaks from intermediate

gradients are unclear. Without such an understanding, it is also not reasonable to directly

design the corresponding protections. Therefore, one theoretically founded measurement of

privacy leakage from neural network gradients is further investigated in the next chapter.
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Chapter 5

Privacy Measure of Neural Network

Gradients

In this chapter, I further strengthen the privacy measure of neural network gradients since it is

found that gradients, the intermediate results in collaborative/federated learning, complicate

the privacy-related issues beyond sharing neutral network weights. This is a natural step con-

sidering that on-device trained models are increasingly shared with third parties like servers

or other devices in collaborative/federated learning. Privacy attacks on collaborative learning

are usually conducted on the exposed elements such as the gradients [MSDCS19, ZLH19a] and

intermediate representation [WSZ+19]. The attacker can even actively participate in the train-

ing stage [HZL19]. Thus, in this chapter, I aim to establish a formal definition of such private

information leakage from gradients which answers Research Questions 4 and 5. Specifically, I

establish a privacy measurement framework based on V-information. This gives grounds for

privacy leakage with an information theory basis. In addition, I also aim to provide a further

justification on why such privacy leakage happens. Built on top of the generalization idea, I

utilize the sensitivity of gradients with respect to private information as the indicator of privacy

leakage. Below I first present the notation that will be intensively used and related work for

privacy measures of neural network gradients.
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5.1 Introduction and Related Work

Notation. This part uses lower-case italic (e.g., x), lower-case bold italic (e.g., x), and upper-

case bold italic (e.g., X) for deterministic scalars, vectors, and matrices, respectively. Besides,

roman-type upper-case (e.g., X) and lower-case (e.g., x) denote random variables (of any di-

mensions) and their instances, respectively. Table 5.1 summarises frequently used notations.

Table 5.1: Frequently used notation in this chapter for privacy measures in neural network
gradients.

Symbol Description

X, X and x Original input data or original information
G, G and g Gradient matrix or information as random variable
y, Y and y Label of input data or information as random variable
p, P and p Latent attribute or latent information
A and a Attack aim as random variables

I(X;G) Shannon mutual information between X and G
f ∈ V function f in predictive family V of one attacker
f [g](a) Probability of achieving attack aim a with f on g

ÎV(G→ A) Empirical usable information from G to A under V

J(G)
l

(X) Input-gradient Jacobian of layer l

R(X)
l

, R(p)
l

Original and latent information risk of layer l

G
(0)
l

, G(1)
l

Linear subspaces of l’s gradients w/o and w/ an attribute

dGr(G
(0)
l

,G
(1)
l

) Grassmann distance between subspaces

5.1.1 Gradient sharing

In collaborative machine learning, multiple participants train a common model on their local

private datasets [MMR+17, KMA+19]. The gradients computed over one batch of a participant’s

data is denoted by G1 = ∂ℓ(X,y,W 0)
∂W 0 , where X and y denote the local training data and its

corresponding labels, W 0 refers to the current model parameters, and ℓ(·) refers to the training

loss function. The G1 consists of the gradients of all model layers w.r.t.the training data;

which in typical collaborative learning settings is what is sent to other participants or a central

server. Conventionally, this process is called FedSGD [MMR+17]. To save some communication

budgets, it is preferable to consecutively update the received model on more than one batch
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of local data before sharing, called FedAvg [MMR+17]. After updating the model on the t-th

batch, the updated parameters are W t = W 0 +
∑t

i=1 G
i, where Gi is the gradients of W i

computed based on the i-th batch of sampled data. When it is not necessary, I might remove

the superscripts and refer
∑t

i=1 G
i as G and W t as W , for simplicity. Although commonly a

participant shares the last snapshot of the updated model that consists of the original model and

computed gradients (i.e., W 0+G), this practically amounts to sharing G since all participants

know W 0. Private information can then be compromised by the attacker as this G could

contain original private information (e.g., X) or some latent attribute information of it. The

gradient sharing can be among participants or through a central server; depending on the

specific settings [MHK+21, ZLH19a, KMA+19]. Gradients shared by the central server are

usually aggregated across the participants, meaning that disclosing the private information of

a specific participant from the aggregated gradients becomes harder. The considered attacks

include both, but I do not distinguish them as fundamentally disclosing information from

gradients on the central server and participants is the same and only differs in the level of

gradient aggregation.

5.1.2 Attack and defense measurements

Here I focus on the gradient-based attacks that have been massively studied in recent three

years because they are easier to conduct and harder to detect. These attacks are usually

based on training some generative adversarial networks and optimizing an attack objective

function [HAPC17, ZLH19a]. These gradient-based attacks are categorized into: i) the original

information, to reconstruct the input data [HZRS16, ZB20, GBDM20, YMV+21], which I regard

as data reconstruction attacks (DRA), and ii) the latent information, to infer attributes of the

input data [MSDCS19], which I regard as attribute inference attacks (AIA).

Indeed, this type of attack is considered as a severer privacy violation because it does not

require full or even any access to the participation and only needs one or a small number of

snapshots of gradients. Besides, due to that the attack can be conducted on “static” gradients

directly, investigating such attacks could potentially provide a fundamental understanding of
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how the produced gradients are correlated to their inputs.

Along with the rising concern of sharing gradients, studies have also started to investigate

the performance of current defenses against these attacks. Table 5.2 gives the works that are

most related to ours. In addition to the measurement of (semi-standard) defense techniques

such as differential privacy (DP) and dropout, [URPPK22] suggested applying simple model

adaptation, such as increasing of models’ depth and the number of clients, which drops the

attack success rates in general. [LWH+22] further developed a python-based software ML-

doctor that can be reused partially for conducting attacks and measuring with some defense

mechanisms. However, they have several key downsides as above mentioned; they are most

likely coarse-grained and purely empirical and do not provide underlying justifications for these

private information leakages.

Table 5.2: Related works of measurements on attacks and defenses on neural network gradients.

Ref. Attack Defenses Evaluation and results

[HGS+21] DRA Gradient pruning,
MixUp, InstaHide

Discover two strong assumptions that current
DRAs implicitly make; summarize defenses
and their combinations on defending against
DRAs (e.g., computation cost estimation)

[URPPK22] DRA Differential privacy,
layer width and
number, number of
clients, batch size,
dataset complexity
(coarsely)

Generative encoder and Deep Leakage from
Gradients (DLG) attacks for DRA; SSIM and
PSNR as metrics for images; model hyperpa-
rameters have significant influences on existing
attacks

[LWH+22] AIA Differential privacy,
knowledge distilla-
tion, dataset com-
plexity, overfitting,
epochs

Black-box and white-box access using shadow
or partial dataset for AIAs; DP-SGD and
Knowledge Distillation can only mitigate some
of the inference attacks; a modular re-usable
software ML-Doctor

5.1.3 Information flow via neural networks

An information-theoretically motivated approach to analyzing the information flow through

DNN layers is using Shannon information theory. Some previous works have put efforts into

analyzing intermediate representations of the input data in a layer-wise manner to understand
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TL−2

<latexit sha1_base64="BLjXqYXp8uZmqotWl0OmN1FhY5A=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHcWJJSUHcFNy5cVOgL2hAm00k7dCYJM5NCCf0TNy4UceufuPNvnLRZaOuBgcM593LPnCDhTGnH+bY2Nre2d3ZLe+X9g8OjY/vktKPiVBLaJjGPZS/AinIW0bZmmtNeIikWAafdYHKf+90plYrFUUvPEuoJPIpYyAjWRvJteyCwHkuRteZ+9nhdm/t2xak6C6B14hakAgWavv01GMYkFTTShGOl+q6TaC/DUjPC6bw8SBVNMJngEe0bGmFBlZctks/RpVGGKIyleZFGC/X3RoaFUjMRmMk8p1r1cvE/r5/q8NbLWJSkmkZkeShMOdIxymtAQyYp0XxmCCaSmayIjLHERJuyyqYEd/XL66RTq7r16t1TvdKoF3WU4Bwu4ApcuIEGPEAT2kBgCs/wCm9WZr1Y79bHcnTDKnbO4A+szx9oxpN8</latexit>

GL−1

<latexit sha1_base64="AMUIQ3gJLEvElqL+2gSJ53uFrns=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgxpJIQd0VXOjCRQX7gDaEyXTaDp1MwsykUEL+xI0LRdz6J+78GydtFtp6YOBwzr3cMyeIOVPacb6t0tr6xuZWebuys7u3f2AfHrVVlEhCWyTikewGWFHOBG1ppjntxpLiMOC0E0xuc78zpVKxSDzpWUy9EI8EGzKCtZF82+6HWI9lmN5lfvpw4Wa+XXVqzhxolbgFqUKBpm9/9QcRSUIqNOFYqZ7rxNpLsdSMcJpV+omiMSYTPKI9QwUOqfLSefIMnRllgIaRNE9oNFd/b6Q4VGoWBmYyz6mWvVz8z+slenjtpUzEiaaCLA4NE450hPIa0IBJSjSfGYKJZCYrImMsMdGmrIopwV3+8ippX9bceu3msV5t1Is6ynACp3AOLlxBA+6hCS0gMIVneIU3K7VerHfrYzFasoqdY/gD6/MHUzKTbg==</latexit>

GL

<latexit sha1_base64="UbGq70Rv19r3jpqqboVVGpDeKGg=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIQd0VXOjCRQX7gHYsmTRtQ5PMkGSUMsx/uHGhiFv/xZ1/Y6adhbYeCBzOuZd7coKIM21c99sprKyurW8UN0tb2zu7e+X9g5YOY0Vok4Q8VJ0Aa8qZpE3DDKedSFEsAk7bweQq89uPVGkWynszjagv8EiyISPYWOmhJ7AZK5Fcp/3kNu2XK27VnQEtEy8nFcjR6Je/eoOQxIJKQzjWuuu5kfETrAwjnKalXqxphMkEj2jXUokF1X4yS52iE6sM0DBU9kmDZurvjQQLracisJNZSr3oZeJ/Xjc2wws/YTKKDZVkfmgYc2RClFWABkxRYvjUEkwUs1kRGWOFibFFlWwJ3uKXl0nrrOrVqpd3tUq9ltdRhCM4hlPw4BzqcAMNaAIBBc/wCm/Ok/PivDsf89GCk+8cwh84nz/3q5LL</latexit>

G1

<latexit sha1_base64="R9E8ORfX/EdHJk9TDcEuXZbB91I=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRkpqLuCC11WsA9ox5JJM21okhmSjFKG+Q83LhRx67+482/MtLPQ1gOBwzn3ck9OEHOmjet+Oyura+sbm6Wt8vbO7t5+5eCwraNEEdoiEY9UN8CaciZpyzDDaTdWFIuA004wuc79ziNVmkXy3kxj6gs8kixkBBsrPfQFNmMl0ptskHrZoFJ1a+4MaJl4BalCgeag8tUfRiQRVBrCsdY9z42Nn2JlGOE0K/cTTWNMJnhEe5ZKLKj201nqDJ1aZYjCSNknDZqpvzdSLLSeisBO5in1opeL/3m9xISXfspknBgqyfxQmHBkIpRXgIZMUWL41BJMFLNZERljhYmxRZVtCd7il5dJ+7zm1WtXd/Vqo17UUYJjOIEz8OACGnALTWgBAQXP8ApvzpPz4rw7H/PRFafYOYI/cD5/AM6kkrA=</latexit>

X

<latexit sha1_base64="fss4pXCqu2Z0yOxahbgBgi20/LY=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRkpqLuCG5cV7APboWTSTBuax5BkhDL0L9y4UMStf+POvzHTzkJbDwQO59xLzj1Rwpmxvv/tra1vbG5tl3bKu3v7B4eVo+O2UakmtEUUV7obYUM5k7RlmeW0m2iKRcRpJ5rc5n7niWrDlHyw04SGAo8kixnB1kmPfYHtWIusOxtUqn7NnwOtkqAgVSjQHFS++kNFUkGlJRwb0wv8xIYZ1pYRTmflfmpogskEj2jPUYkFNWE2TzxD504Zolhp96RFc/X3RoaFMVMRuck8oVn2cvE/r5fa+DrMmExSSyVZfBSnHFmF8vPRkGlKLJ86golmLisiY6wxsa6ksishWD55lbQva0G9dnNfrzbqRR0lOIUzuIAArqABd9CEFhCQ8Ayv8OYZ78V79z4Wo2tesXMCf+B9/gDvdJER</latexit>

…T1

<latexit sha1_base64="+wp3aG9iTtKT3zhMlP1qqpbqjnk=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxIoboruHFZoS/oDCWTZtrQJDMkGaEM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OmHCmjet+O6Wt7Z3dvfJ+5eDw6PikenrW03GqCO2SmMdqEGJNOZO0a5jhdJAoikXIaT+c3ed+/4kqzWLZMfOEBgJPJIsYwcZKvi+wmSqRdRYjb1StuXV3CbRJvILUoEB7VP3yxzFJBZWGcKz10HMTE2RYGUY4XVT8VNMEkxme0KGlEguqg2yZeYGurDJGUazskwYt1d8bGRZaz0VoJ/OMet3Lxf+8YWqi2yBjMkkNlWR1KEo5MjHKC0BjpigxfG4JJorZrIhMscLE2JoqtgRv/cubpHdT9xr1u8dGrdUo6ijDBVzCNXjQhBY8QBu6QCCBZ3iFNyd1Xpx352M1WnKKnXP4A+fzBxZtkbE=</latexit>

T2

<latexit sha1_base64="SIr5E83QkXV+HPmNoVm1R7/MDJQ=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUgroruHFZoS/oDCWTZtrQJDMkGaEM/Q03LhRx68+482/MtLPQ1gOBwzn3ck9OmHCmjet+O6Wt7Z3dvfJ+5eDw6PikenrW03GqCO2SmMdqEGJNOZO0a5jhdJAoikXIaT+c3ed+/4kqzWLZMfOEBgJPJIsYwcZKvi+wmSqRdRajxqhac+vuEmiTeAWpQYH2qPrlj2OSCioN4VjroecmJsiwMoxwuqj4qaYJJjM8oUNLJRZUB9ky8wJdWWWMoljZJw1aqr83Miy0novQTuYZ9bqXi/95w9REt0HGZJIaKsnqUJRyZGKUF4DGTFFi+NwSTBSzWRGZYoWJsTVVbAne+pc3Sa9R95r1u8dmrdUs6ijDBVzCNXhwAy14gDZ0gUACz/AKb07qvDjvzsdqtOQUO+fwB87nDxfxkbI=</latexit>

TL

<latexit sha1_base64="FBAiLLtytt73KwYMA588hYNjmvU=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxIQd0V3LhwUaEv6Awlk2ba0CQzJBmhDP0NNy4UcevPuPNvzLSz0NYDgcM593JPTphwpo3rfjuljc2t7Z3ybmVv/+DwqHp80tVxqgjtkJjHqh9iTTmTtGOY4bSfKIpFyGkvnN7lfu+JKs1i2TazhAYCjyWLGMHGSr4vsJkokbXnw4dhtebW3QXQOvEKUoMCrWH1yx/FJBVUGsKx1gPPTUyQYWUY4XRe8VNNE0ymeEwHlkosqA6yReY5urDKCEWxsk8atFB/b2RYaD0ToZ3MM+pVLxf/8wapiW6CjMkkNVSS5aEo5cjEKC8AjZiixPCZJZgoZrMiMsEKE2NrqtgSvNUvr5PuVd1r1G8fG7Vmo6ijDGdwDpfgwTU04R5a0AECCTzDK7w5qfPivDsfy9GSU+ycwh84nz8/WZHM</latexit>

① Forward propagation:

② Backward propagation:

<latexit sha1_base64="Mcojr4iCXfWiF6VN7JD5rUbEL2U=">AAACBHicbZDLSsNAFIYn9VbrLeqym8EiuJCSSFGXBTcuXFToTZoQJtNJO3QyCTMToYQs3Pgqblwo4taHcOfbOGkjaOsPAx//OYc55/djRqWyrC+jtLK6tr5R3qxsbe/s7pn7B10ZJQKTDo5YJPo+koRRTjqKKkb6sSAo9Bnp+ZOrvN67J0LSiLfVNCZuiEacBhQjpS3PrDqpEyI1FmF6l53+YDvzbpzMM2tW3ZoJLoNdQA0UannmpzOMcBISrjBDUg5sK1ZuioSimJGs4iSSxAhP0IgMNHIUEummsyMyeKydIQwioR9XcOb+nkhRKOU09HVnvqVcrOXmf7VBooJLN6U8ThTheP5RkDCoIpgnAodUEKzYVAPCgupdIR4jgbDSuVV0CPbiycvQPavb5/XGbaPWbBRxlEEVHIETYIML0ATXoAU6AIMH8ARewKvxaDwbb8b7vLVkFDOH4I+Mj2+Kbpii</latexit>

{Y,TL}

X

<latexit sha1_base64="fss4pXCqu2Z0yOxahbgBgi20/LY=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRkpqLuCG5cV7APboWTSTBuax5BkhDL0L9y4UMStf+POvzHTzkJbDwQO59xLzj1Rwpmxvv/tra1vbG5tl3bKu3v7B4eVo+O2UakmtEUUV7obYUM5k7RlmeW0m2iKRcRpJ5rc5n7niWrDlHyw04SGAo8kixnB1kmPfYHtWIusOxtUqn7NnwOtkqAgVSjQHFS++kNFUkGlJRwb0wv8xIYZ1pYRTmflfmpogskEj2jPUYkFNWE2TzxD504Zolhp96RFc/X3RoaFMVMRuck8oVn2cvE/r5fa+DrMmExSSyVZfBSnHFmF8vPRkGlKLJ86golmLisiY6wxsa6ksishWD55lbQva0G9dnNfrzbqRR0lOIUzuIAArqABd9CEFhCQ8Ayv8OYZ78V79z4Wo2tesXMCf+B9/gDvdJER</latexit>

<latexit sha1_base64="5C3eT5zPaNKkpsTtRNbZ04uEfiY=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy4r2Ad0hpJJM21okhmSjFCG+Q03LhRx68+482/MtLPQ1gOBwzn3ck9OmHCmjet+O5WNza3tnepubW//4PCofnzS03GqCO2SmMdqEGJNOZO0a5jhdJAoikXIaT+c3RV+/4kqzWL5aOYJDQSeSBYxgo2VfF9gM1Ui6+cjb1RvuE13AbROvJI0oERnVP/yxzFJBZWGcKz10HMTE2RYGUY4zWt+qmmCyQxP6NBSiQXVQbbInKMLq4xRFCv7pEEL9fdGhoXWcxHaySKjXvUK8T9vmJroNsiYTFJDJVkeilKOTIyKAtCYKUoMn1uCiWI2KyJTrDAxtqaaLcFb/fI66V01vetm66HVaLfKOqpwBudwCR7cQBvuoQNdIJDAM7zCm5M6L86787EcrTjlzin8gfP5AxoQkbE=</latexit>

W1

<latexit sha1_base64="Bw0wZ7pNq6IXBdcKPuaSOaW+OCw=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUUl0W3LisYB/QGUomzbShSWZIMkIZ+htuXCji1p9x59+YaWehrQcCh3Pu5Z6cMOFMG9f9dkpb2zu7e+X9ysHh0fFJ9fSsp+NUEdolMY/VIMSaciZp1zDD6SBRFIuQ0344u8v9/hNVmsXy0cwTGgg8kSxiBBsr+b7AZqpE1l+MGqNqza27S6BN4hWkBgU6o+qXP45JKqg0hGOth56bmCDDyjDC6aLip5ommMzwhA4tlVhQHWTLzAt0ZZUximJlnzRoqf7eyLDQei5CO5ln1OteLv7nDVMT3QYZk0lqqCSrQ1HKkYlRXgAaM0WJ4XNLMFHMZkVkihUmxtZUsSV461/eJL1G3WvVmw/NWrtZ1FGGC7iEa/DgBtpwDx3oAoEEnuEV3pzUeXHenY/VaMkpds7hD5zPHxuUkbI=</latexit>

W2

<latexit sha1_base64="zb2eP0qAcTH7FKD89lhUjQiCF0o=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxIqS4Lbly4qGAf0BlKJs20oUlmSDJCGfobblwo4tafceffmGlnoa0HAodz7uWenDDhTBvX/XZKG5tb2zvl3cre/sHhUfX4pKvjVBHaITGPVT/EmnImaccww2k/URSLkNNeOL3N/d4TVZrF8tHMEhoIPJYsYgQbK/m+wGaiRNabD++H1ZpbdxdA68QrSA0KtIfVL38Uk1RQaQjHWg88NzFBhpVhhNN5xU81TTCZ4jEdWCqxoDrIFpnn6MIqIxTFyj5p0EL9vZFhofVMhHYyz6hXvVz8zxukJroJMiaT1FBJloeilCMTo7wANGKKEsNnlmCimM2KyAQrTIytqWJL8Fa/vE66V3WvWW88NGqtRlFHGc7gHC7Bg2towR20oQMEEniGV3hzUufFeXc+lqMlp9g5hT9wPn8AQvyRzA==</latexit>

WL

…

<latexit sha1_base64="NjaTPCq9/kSWBa6eYzIMnKB8CQc=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy4r2Ad0hpJJM21okhmSjFCG+Q03LhRx68+482/MtLPQ1gOBwzn3ck9OmHCmjet+O5WNza3tnepubW//4PCofnzS03GqCO2SmMdqEGJNOZO0a5jhdJAoikXIaT+c3RV+/4kqzWL5aOYJDQSeSBYxgo2VfF9gM1Ui6+cjPqo33Ka7AFonXkkaUKIzqn/545ikgkpDONZ66LmJCTKsDCOc5jU/1TTBZIYndGipxILqIFtkztGFVcYoipV90qCF+nsjw0LruQjtZJFRr3qF+J83TE10G2RMJqmhkiwPRSlHJkZFAWjMFCWGzy3BRDGbFZEpVpgYW1PNluCtfnmd9K6a3nWz9dBqtFtlHVU4g3O4BA9uoA330IEuEEjgGV7hzUmdF+fd+ViOVpxy5xT+wPn8AXN8kew=</latexit>

Wl

<latexit sha1_base64="hsJxhyoDf3SmTLoH0toZLykD2xo=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxIqS4LblxW6As6Q8mkmTY0yQxJRihDf8ONC0Xc+jPu/Bsz7Sy09UDgcM693JMTJpxp47rfTmlre2d3r7xfOTg8Oj6pnp71dJwqQrsk5rEahFhTziTtGmY4HSSKYhFy2g9n97nff6JKs1h2zDyhgcATySJGsLGS7wtspkpkncWIj6o1t+4ugTaJV5AaFGiPql/+OCapoNIQjrUeem5iggwrwwini4qfappgMsMTOrRUYkF1kC0zL9CVVcYoipV90qCl+nsjw0LruQjtZJ5Rr3u5+J83TE10F2RMJqmhkqwORSlHJkZ5AWjMFCWGzy3BRDGbFZEpVpgYW1PFluCtf3mT9G7qXrPeeGzUWo2ijjJcwCVcgwe30IIHaEMXCCTwDK/w5qTOi/PufKxGS06xcw5/4Hz+AG7nkek=</latexit>

Tl

<latexit sha1_base64="5C3eT5zPaNKkpsTtRNbZ04uEfiY=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy4r2Ad0hpJJM21okhmSjFCG+Q03LhRx68+482/MtLPQ1gOBwzn3ck9OmHCmjet+O5WNza3tnepubW//4PCofnzS03GqCO2SmMdqEGJNOZO0a5jhdJAoikXIaT+c3RV+/4kqzWL5aOYJDQSeSBYxgo2VfF9gM1Ui6+cjb1RvuE13AbROvJI0oERnVP/yxzFJBZWGcKz10HMTE2RYGUY4zWt+qmmCyQxP6NBSiQXVQbbInKMLq4xRFCv7pEEL9fdGhoXWcxHaySKjXvUK8T9vmJroNsiYTFJDJVkeilKOTIyKAtCYKUoMn1uCiWI2KyJTrDAxtqaaLcFb/fI66V01vetm66HVaLfKOqpwBudwCR7cQBvuoQNdIJDAM7zCm5M6L86787EcrTjlzin8gfP5AxoQkbE=</latexit>

W1

<latexit sha1_base64="Q/nUenTkpO2eCd2XRne0flOQ3p8=">AAAB+XicbVBNS8NAFHypX7V+RT16WSyCF0siRT0WvHjwUMHaQhvCZrtpl+4mYXdTKCH/xIsHRbz6T7z5b9y0OWjrwMIw8x5vdoKEM6Ud59uqrK1vbG5Vt2s7u3v7B/bh0ZOKU0loh8Q8lr0AK8pZRDuaaU57iaRYBJx2g8lt4XenVCoWR496llBP4FHEQkawNpJv2wOB9ViKrJv72f2Fm/t23Wk4c6BV4pakDiXavv01GMYkFTTShGOl+q6TaC/DUjPCaV4bpIommEzwiPYNjbCgysvmyXN0ZpQhCmNpXqTRXP29kWGh1EwEZrLIqZa9QvzP66c6vPEyFiWpphFZHApTjnSMihrQkElKNJ8ZgolkJisiYywx0aasminBXf7yKnm6bLhXjeZDs95qlnVU4QRO4RxcuIYW3EEbOkBgCs/wCm9WZr1Y79bHYrRilTvH8AfW5w9q8JN7</latexit>

WL−1

<latexit sha1_base64="3umvNPnP5T7mdLMnyx22orV5tiw=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRkp6rLgxoWLCvYB7VgyaaYNTTJDklHKMP/hxoUibv0Xd/6NmXYW2nogcDjnXu7JCWLOtHHdb2dldW19Y7O0Vd7e2d3brxwctnWUKEJbJOKR6gZYU84kbRlmOO3GimIRcNoJJte533mkSrNI3ptpTH2BR5KFjGBjpYe+wGasRNrJBultNqhU3Zo7A1omXkGqUKA5qHz1hxFJBJWGcKx1z3Nj46dYGUY4zcr9RNMYkwke0Z6lEguq/XSWOkOnVhmiMFL2SYNm6u+NFAutpyKwk3lKvejl4n9eLzHhlZ8yGSeGSjI/FCYcmQjlFaAhU5QYPrUEE8VsVkTGWGFibFFlW4K3+OVl0j6veRe1+l292qgXdZTgGE7gDDy4hAbcQBNaQEDBM7zCm/PkvDjvzsd8dMUpdo7gD5zPHw9Yktg=</latexit>

WL

…<latexit sha1_base64="RfAVtHgw9FGWGa0i5jWE+GC7//E=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclRkp6rLgQpcV7APasWTSTBuaZIYko5Rh/sONC0Xc+i/u/Bsz7Sy09UDgcM693JMTxJxp47rfzsrq2vrGZmmrvL2zu7dfOThs6yhRhLZIxCPVDbCmnEnaMsxw2o0VxSLgtBNMrnO/80iVZpG8N9OY+gKPJAsZwcZKD32BzViJ9CYbpDwbVKpuzZ0BLROvIFUo0BxUvvrDiCSCSkM41rrnubHxU6wMI5xm5X6iaYzJBI9oz1KJBdV+OkudoVOrDFEYKfukQTP190aKhdZTEdjJPKVe9HLxP6+XmPDKT5mME0MlmR8KE45MhPIK0JApSgyfWoKJYjYrImOsMDG2qLItwVv88jJpn9e8i1r9rl5t1Is6SnAMJ3AGHlxCA26hCS0goOAZXuHNeXJenHfnYz664hQ7R/AHzucPJ2iS6A==</latexit>Gl

<latexit sha1_base64="iXrWdLjSxZxNDAluIiPLaVkSlUw=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBIvgqsxIUZcFNy4r2Ae0Y8mkmTY0yQxJRinD/IcbF4q49V/c+Tdm2llo64HA4Zx7uScniDnTxnW/ndLa+sbmVnm7srO7t39QPTzq6ChRhLZJxCPVC7CmnEnaNsxw2osVxSLgtBtMb3K/+0iVZpG8N7OY+gKPJQsZwcZKDwOBzUSJtJsNU54NqzW37s6BVolXkBoUaA2rX4NRRBJBpSEca9333Nj4KVaGEU6zyiDRNMZkise0b6nEgmo/nafO0JlVRiiMlH3SoLn6eyPFQuuZCOxknlIve7n4n9dPTHjtp0zGiaGSLA6FCUcmQnkFaMQUJYbPLMFEMZsVkQlWmBhbVMWW4C1/eZV0LureZb1x16g1G0UdZTiBUzgHD66gCbfQgjYQUPAMr/DmPDkvzrvzsRgtOcXOMfyB8/kDP/iS+A==</latexit>

Wl

<latexit sha1_base64="hsJxhyoDf3SmTLoH0toZLykD2xo=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxIqS4LblxW6As6Q8mkmTY0yQxJRihDf8ONC0Xc+jPu/Bsz7Sy09UDgcM693JMTJpxp47rfTmlre2d3r7xfOTg8Oj6pnp71dJwqQrsk5rEahFhTziTtGmY4HSSKYhFy2g9n97nff6JKs1h2zDyhgcATySJGsLGS7wtspkpkncWIj6o1t+4ugTaJV5AaFGiPql/+OCapoNIQjrUeem5iggwrwwini4qfappgMsMTOrRUYkF1kC0zL9CVVcYoipV90qCl+nsjw0LruQjtZJ5Rr3u5+J83TE10F2RMJqmhkqwORSlHJkZ5AWjMFCWGzy3BRDGbFZEpVpgYW1PFluCtf3mT9G7qXrPeeGzUWo2ijjJcwCVcgwe30IIHaEMXCCTwDK/w5qTOi/PufKxGS06xcw5/4Hz+AG7nkek=</latexit>

Tl

Figure 5.1: Markov chain in forward propagation (from layer 1 to L) and backward propagation
(from layer L to 1). W refers to weights; G refers to gradients; T refers to intermediate
representations.

the flow of information in the forward propagation of a DNN [MMB10, CHM+15, HQL+20].

The visualization of data representations (i.e., layers’ outputs) and model’s parameters in-

dicate that early layers mostly learn general information about data distribution (e.g., face

color), while latter layers learn sample-specific information related to the underlying task

(e.g., face identity) [ZF14, MV15, YCN+15]. For theoretical justifications of such forward

propagation analyzes, the widely adopted method has been Shannon mutual information (MI

or I(·; ·), hereinafter) [Sha48, Sha49]. Specifically, for an observed data sample X, labelled

with Y, the layer-by-layer computations (from layer 1 to L) form a Markov chain (see Fig-

ure 5.1- 1○). According to the data processing inequality (DPI) [TPB00], I(X;T) and I(Y;T)

should not increase during the forward propagation, which is extensively studied for DNNs

in [TPB00, SZT17, GVDBG+19], where authors show how to quantify information flow in

forward propagation. Note that there is an implicit assumption that weights W do not have

prior information about one specific X and the corresponding set of T in order to apply this

estimation.

However, it is still challenging (and we are not aware of any properly designed method) to apply

similar methods for analyzing backward propagation for reliable estimation. The computation

of gradients Gl in the backward propagation form a more complicated Markov chain (see Fig-

ure 5.1- 2○), as one G is formed based on i) the gradients of its latter layer, ii) the intermediate
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representations of its former layer extracted in the forward propagation, and iii) the weights

of this layer. This does not form a DPI because one T contains information about X and Y.

Also, due to that the weights keep updating during backward propagation, the above-mentioned

implicit assumption is much unlikely to be held.

5.2 Problem Formulation

5.2.1 Usable information definition

The concept of usable information [XZS+20] has been recently introduced as a generalization

of Shannon MI [Sha48] to account for both computational constraints and empirical evidence

in ML. Usable information relies on a predictive family V , the definition of which allows in-

corporating the computational power of a specific (set of) attackers. More importantly, usable

information relaxes the famous data processing inequality condition and takes into account that

more information can be empirically extracted more information from the data by processing

it using some advanced ML models than only by observing the data.

This section provides an adaptation of usable information for measuring how much private

information is contained in a DNN’s gradients that can be exploited by a targeted family of

attackers. Specifically, the goal is to define a usable information-based quantity to measure

which layer(s) in a DNN carry more original or latent information about the private data. This

complies with the fact that the amount of private information leakage incurred by sharing the

gradients can be measured through a customized framework that takes the attackers’ power into

account. The setting considered is as follows: a family of computationally bounded adversaries

V aims to predict the outcome of a real-valued random variable, e.g., the ability to recover

private information. To this end, the adversaries in V can use any observed subset of the

shared gradients as side information. I present below the general definition of measuring the

probabilistic attacker’s aim; after this, I will show how to use it for specific attacks.

Let the random variable G denote the shared gradients and the random variable A denote the
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attacker’s aim, e.g., the information the attacker aims to successfully extract or the goal that

the attacker’s aims to reach in the reconstruction of the original data. Let V denote the family

of attack models that an attacker can use. For g ∼ G and any attack model f ∈ V , f [g] denotes

the probability distribution over A computed based on the received gradients g. Similarly, f [∅]

denotes the prior distribution given no gradient information ∅; this thus represents attackers

who make a random guess for the private information they aim to infer. Then, for some a ∼ A,

f [g](a) ∈ R is defined as the value of the density evaluated at a, i.e., the probability that an

attacker can successfully reach its aim by observing an instance of gradients g.

Definition 5.1 (Empirical usable private information in gradients) Let V, G, and A

be defined as above. Given a dataset D = (gi, ai)Di=1 of the obtained gradients gi and the

corresponding attack aims ai, the usable information from G to A given D is (empirically)

computed as

ÎV(G→ A;D) = inf
f∈V

1

|D|

∑

ai∈D

− log f [∅](ai)

− inf
f∈V

1

|D|

∑

gi,ai∈D

− log f [gi](ai),
(5.1)

It is worth remarking that the attack family V can contain multiple attack models; the inf

is then computed as the empirically best-performing model in that family. For an attack

family consisting of only one attack model, computing usable information is a probabilistic

generalization of the attack success rate1 In order to apply the probabilistic measure of private

information contained in gradients, a probability distribution, e.g., f [g], is required over the

outcome of attacks. To achieve that one needs to i) define what is used to measure the outcome

of an attack, e.g., based on one chosen metric, ii) define what outcome the attacker aims to

achieve, e.g., a good enough success rate, iii) compute the probability of obtaining a.

In the following sections, I explain the privacy terminology, introduce the definition of specific

attack models used to extract private information, and how to define probability distributions

1 As a technicality, one needs to ensure that there exists an f ′ ∈ V such that both f ′[g] = Q and f [∅] = Q for

some probability distribution Q, i.e., the model can ignore the side information so that the definition maintains

non-negativity (see [XZS+20] for more details).
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over them for V-information.

5.2.2 Privacy terminology

Let us distinguish between two types of private information:

• Original information, i.e., the explicit data considered to contain private information

about its owner, such as a complete private image used for model training.

• Latent information, i.e., implicit data contained in or related to the original informa-

tion, such as attributes/properties or parts of the image.

The starting point of this distinction between two types of information is inspired by corre-

sponding attacks, i.e., data reconstruction attacks (DRA) and attribute/property information

attacks (AIA), as they exist in different conditions and have different attack aims. The original

information leakage is then measured by how much information about a client’s private training

data X an attacker can extract, and the latent information leakage risk is measured by how

much information about latent information P an attacker can extract from the gradients.

It is obvious that P can be extracted from X, i.e., once the original data is recovered one

can identify the attributes presented in the data. However, this does not imply that the two

types of information are equivalent in terms of their cause and localization. Specifically, while

the ability to extract latent information from original information holds true, the reverse does

not. Knowing the attribute present in a subset of the data does not allow recovering the orig-

inal information since P usually has lower entropy than X. When recovering original data, a

unique global minimizer of (5.3) does not always exist or maybe computationally very hard to

find [ZB20, FNJ+20]. This is in turn related to the fact that aggregation, i.e., the computa-

tion/aggregation of the gradients over larger batches of data, can protect original information,

but still allows extracting whether the majority of the data had a certain attribute. Further-

more, the computational power of the attacker is crucial in determining what kind of information

it is able to extract. According to DPI in the forward propagation (see Section 5.1.3), informa-

tion of X is refined in the latter layers of a DNN; however, this may then result in an attacker
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with smaller computational power still being able to extract P. Thus, original information and

latent information are considered separately due to the differences in layer-wise localization and

their required computational power. I explain the different adversaries on them in detail in the

following sections.

5.2.3 Attacker: Original information

Definition 5.2 (Data reconstruction attacker) Let VDRA present the attack family of the

data reconstruction attacker. The attacker has access to some subset of gradients g and aims

to infer the original data sample x ∼ X:

VDRA(g)→ x̂ (5.2)

The attackers in VDRA aim to minimize the distance between x̂ and x such that they achieve

their target reconstruction quality.

To reconstruct the original data, state-of-the-art DRAs [ZLH19a, ZMB20, GBDM20] usually

start by randomly initializing dummy data and feeding it into the model to get dummy gradi-

ents. Then, the dummy data is optimized such that the dummy gradients get close to the real

gradients. More specifically, the DRA tries to minimize the following objective by updating

both dummy input x̂ and dummy label ŷ,

argminx̂,ŷ dist(ĝ, g), (5.3)

where ĝ and g denote the dummy and observed gradients, respectively, and dist(·, ·) can be any

suitably chosen distance metric for them. For example, [ZLH19a, ZMB20] used ||ĝ − g||p with

p-norm, while [GBDM20] used cosine similarity between ĝ and g. The attack will be successful

if minimizing the above distance will result in the dummy input data being close to the real

private information, which can reach high accuracy (e.g., to a pixel-wise level for images) as

shown in [ZLH19a, ZMB20, GBDM20].
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Note that x̂ and ŷ can be one individual data point or a batch of data points. For a batch size

B > 1, the optimizer can have B! different permutations, so that choosing the right gradient

descent direction is complicated - as a solution a single training sample can be updated in each

optimization step [ZLH19a]. It may fail when gradients have sufficient aggregation (e.g., a large

batch size) because the optimization becomes hard to solve (i.e., more variables to optimize

over than we have constraints) when the gradients of multiple images are aggregated together

[ZLH19a, ZB20].

Probabilistic measure for original information. To derive f [g] for original information,

we first need to define a metric for measuring the successfulness of one attack. This can be any

suitable metric that measures the similarity between original information and reconstruction

information, depending on the data types (e.g., images or audios) and the focus (e.g., better

realization for machines or humans). As one example, both Peak signal-to-noise ratio (PSNR)

and Structural Similarity Index (SSIM) can be measures of images; however, the latter is

defined based on the human visual system and thus is more suitable for measuring human

perception [WBSS04, HZ10] while the former is easier to compute on machines. Here I consider

using SSIM as the metric. For one reconstruction data x̂ of one particular attack result based on

g, SSIM(x̂, x) is a quantity which measures the perceptional similarity between reconstructed

and original data, where SSIM(x̂, x) = l(x̂, x)c(x̂, x)s(x̂, x), a combination of luminance (l),

contrast (c), and structure (s). SSIM lies within a range of [0, 1], with the value of 1 being

achieved for a close-to-perfect reconstruction.

Lets define a successful attack aim a as observing SSIM ≥ aT for some user-chosen threshold

aT . We then estimate f [g] as follows: i) fix a gradient subset g, ii) for R randomly initialized

reconstructions we perform the reconstructions and compute SSIM to obtain a set of values

{g, SSIMi}Ri=1, iii) using these R samples we compute the probability of obtaining a for those

samples using an empirical estimate of the probability:

f [g](a) =

∑R
i=1 1SSIMi≥aT

R
, (5.4)

where many reconstructions were successfully divided by the total number of reconstructions.
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When having no side information, the best one could do is reconstruct a random image; similar

to the above, one can compute in how many samples SSIMi ≥ aT , i = 1, ..., R; for aT > 0

this will typically result in a f [∅](a) value close to 0. While computationally expensive due

to repeating the attack for the R reconstruction initialization, such a framework allows us to

compute the probabilistic success rate of reconstructing the data using a subset of gradients

g. It is worth remarking that for other types of data one can adopt measures in similar ways

(e.g., PSNR for audio).

5.2.4 Attacker: Latent information

Extracting original information is not always feasible; especially when the gradients the attacker

has access to are aggregated over many samples. In those cases extracting ‘high-level’ infor-

mation (i.e., information that is more abstract and with lower entropy) may be more realistic.

That is, instead of recovering the exact data point, an attacker [MSDCS19, GWY+18, NSH19]

aims to recover latent information such as various attributes of data points.

Definition 5.3 (Attribute inference attacker) Let VAIA be the attribute attacker. The at-

tacker has access to some subset of gradients g and aims to infer the target sample’s attribute

p ∼ P is:

VAIA(g)→ p̂. (5.5)

The success rate or advantage of VAIA is defined as the ability to recover the correct attribute.

It is assumed that in practice the attacker has access to auxiliary batches of data with an

attribute and without an attribute. The attacker was able to collect a set of gradients {g0i }
T
i=1

and {g1i }
T
i=1, without and with the attribute, respectively, where T refers to the iterations in

which the attacker obtained the model and computed the gradients. Using these two sets of

gradients the model then trains a binary classifier. Specifically, one AIA tries to minimize the

following objective by updating parameters θ of the classifier based on auxiliary set of gradients
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{g0i }
T
i=1 and {g1i }

T
i=1 and the corresponding labels 0 and 1,

argminθ dist(p̂, p), (5.6)

where p̂ is the predicted attribute, and dist(·, ·) can be a chosen distance metric such as the

cross-entropy loss. Then given a new gradient sample one can classify it as coming from a

dataset where the (majority of) data samples are with or without the chosen attribute.

The success of such an attack thus relies on how well the classifier can distinguish the samples

from the gradients with the attributes from those without. Note that the membership inference

attack (MIA) is another well-known attack that infers the existence of a particular client’s

data in the training dataset [NSH19, SSSS17]. This membership information can be inferred

using the same method in Equation (5.6) and may be regarded as a kind of ‘high-level’ latent

information reflecting the data point’s existence.

Probabilistic measure for latent information. For latent information the attack aim is

the successful inference of an attribute, e.g., infer the presence of an attribute a = 1. It is worth

remarking that this can easily be generalized to a set of more than two attributes since we can

convert the attack aim to be binary: i) with the attribute or ii) without the attribute. To derive

f [g], I use the above-mentioned auxiliary data to compute the gradients and use these to train

a binary classifier. Denote the output of the model by ŷ, i.e., a two-dimensional vector. For

a = 1 we can transform it into a probability as follows (similar to [XZS+20] and Section 4.2 of

[Bis06])

f [g](1) =
e{ŷ}1

e{ŷ}0 + e{ŷ}1
, (5.7)

where {ŷ}1 represents the element of y corresponding to a = 1 and similarly one would derive

the probability of a = 0. Then, f [∅](a) = 1
2 , i.e., the value of the uniform distribution over the

outputs ({ŷ}0 = {ŷ}1 = 0.5).
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5.2.5 The role of computational power

Shannon MI relies on the implicit assumption that “the attacker is computationally unbounded”.

If this is indeed the case, then both original and latent information are equally well-extractable

from the first layer, as having given X we can theoretically infer any Y. For a computationally

unbounded attacker, the information in the consequent layers can only decrease, in accordance

with the DPI. But in practice, the computational power and also the knowledge of the attacker

are limited. One can then reasonably expect that the latter layers in a model are able to ex-

tract features that are more useful for the target task (i.e., the classification at hand), so that

the usable information for the task Y, that is captured in the gradients, should be increasing

throughout the layers. Consequently, one may also assume that other attributes besides the

main task are also easier to extract from the latter layers. This would seemingly be in violation

of the DPI; however, it can be reconciled under the framework of usable information [XZS+20]

which allows for the usable information to increase throughout the network due to these com-

putational constraints. This does not imply that less latent information is present in earlier

layers, but earlier layers will require the attacker to perform more heavy computations on this

data to infer P.

The computational constraints also imply bounds in terms of the computational power of the

attacker. In fact, from [XZS+20] the following holds: if U ⊆ V and f1[∅](a) = f2[∅](a) for

f1 ∈ V and f2 ∈ U , then

ÎV(G→ A;D) ≥ ÎU(G→ A;D). (5.8)

5.3 Sensitivity Measure on Private Information

Having defined the usable information measure for quantifying the amount of private informa-

tion in the gradients in the previous section, I now explain how to reason about the leakage

based on the gradient sensitivity measure and validate the efficacy of usable information. The

sensitivity measure is motivated in two ways: i) it gives further insight into model character-
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istics that facilitate private information leakages, and ii) it allows us to measure information

leakage in a way that does not depend on the attack models and thus allows us to validate

the proposed method without making any explicit assumption on the attackers’ aims. In the

following, I explain how gradient sensitivity, which previously has been studied for examining

model robustness and generalization [NBA+18, DLJ+18], can be expanded into metrics to be

used for studying both original and latent information.

5.3.1 Sensitivity justification

Consider again the objective in Equation (5.3). In cases where the objective function dist(ĝ, g)

has multiple or very flat minima, solving the optimization and thus recovering the true original

data reconstruction will be more challenging as multiple solutions with similar objective func-

tion values may exist. Therefore, the success of data reconstruction depends on the structure

of the objective function. Previous work has introduced rank-based metrics to quantify the

ability to find the unique optimizer [ZLH19a] relying on the fact that the optimization problem

can be rewritten as a system of equations. If more parameters exist than equations, no unique

solution will exist. Alternatively, one could choose a metric that accounts for the flatness of

the loss function (and hence the gradients) in parameter or input space. As these flat minima

are a common occurrence in the loss functions of DNNs [DVSH18], having a metric that is

able to account for this is essential. This notion of sensitivity based on flatness has also been

applied in measuring model robustness on adversarial example attacks [ZKS+18, DLJ+18]. A

model that is non-sensitive to certain changes in inputs is expected to have high robustness. On

the other hand, by bounding the sensitivity of outputs w.r.t. inputs leveraging differential pri-

vacy, one can certify model robustness to changes in input i.e., adversarial examples, proposed

in [LAG+19].
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5.3.2 Sensitivity of gradients w.r.t. original information

For quantifying the original information leakage, the gradients sensitivitymetric is quite straight-

forward: I compute the sensitivity of the gradient w.r.t. the private input via the Jacobian

matrix of the gradients. I use the following intuition to measure private information leakage: if

the gradient sensitivity is low and thus gradients change insignificantly when altering the input,

reconstructing the input will be more challenging as more possible reconstructions with similar

accuracy will exist. This research will utilize the Jacobian matrix of the gradients w.r.t. the

input (similar to input-output Jacobian [NBA+18, SGSR17]) to reflect how sensitive the gradi-

ents are when changing the input, i.e., a sensitivity measure on gradients. The input-gradient

Jacobian is calculated by:

J(G)
l (X) =

∂gl(X)

∂X
=

∂

∂X

(

∂ℓ(X,y,W )

∂Wl

)

, (5.9)

where gl(.) represents the function that produces layer l’s gradients Gl. Besides, ℓ(·) is the

loss function over X, ground truth y, and parameters of the complete model W , so gl(·)

can be regarded as the partial derivative of ℓ(·) w.r.t. layer l’s parameters Wl (i.e., backward

propagation).

Then we compute the Frobenius norm (referred to F -norm) of the above input-gradient Jaco-

bian matrix [NBA+18], which indicates the general original information risk. As in our case

Jacobians are compared across layers with different sizes, I include two other norms, i.e., 1-

norm, and the ∞-norm. Using different norms will help in capturing adversaries with different

capabilities, similar to [CBG+17, LAG+19] where p-norm reflects how the attacker measures

distance between two data samples (e.g., 1-norm reflects all dimensions of the data sample, and

∞-norm reflects on one dimension). Thus, given K data samples, I compute the Jacobian with

p-norm (referred to as ‘Jacobian p-norm’ hereinafter) averaged over the data samples as the
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leakage risk of the original information (X) in layer l’s gradients:

R(X)
l = E∆X

[

∥gl(X)− gl(X +∆X)∥p
]

=
1

K

K
∑

k=1

∥

∥

∥
J(G)
l (Xk)

∥

∥

∥

p

(5.10)

where p = F, 1, or ∞. Note that the size of Gl may still have an impact on the computed

sensitivity. A larger Gl size can result in a larger sensitivity in terms of 1-norm and F -norm.

When reconstructing high-dimensional input data, a large Gl size is necessary, which can be

reflected by these norms.

5.3.3 Sensitivity of gradients w.r.t. latent information

For attacks on latent information [MSDCS19], the success of the attack lies in the ability of the

classifier to distinguish between whether certain gradients were computed over data that did

or did not have a certain attribute. Specifically, it relies on how accurate the classifier trained

on samples with or without an attribute can become (see Section 5.2.4).

For two reasons, computing the sensitivity of gradients w.r.t. latent information is not as

straightforward as original information. First, the latent information (the private label) is not

explicitly fed into the DNN, and thus the backpropagation computational graph cannot be used

to compute ∂g
∂p . Second, in Equation (5.10), the sensitivity is computed separately over each

sample input, but a large number of inputs have the same latent information and the attack’s

classifier only produces a binary prediction. Thus, the fine-grained sensitivity measure in (5.10)

cannot be directly used to collect the amount of latent (i.e., coarse) data in the gradients.

Therefore, to quantify the changes in gradients, this work offers a more coarse-grained approach.

First, the target dataset is separated into two parts based on the presence of one specific latent

information, and then the subspace distance between gradients computed on these two parts of

the dataset is compared. This still follows the same intuition as understanding how sensitive

the gradients are w.r.t. latent information but considers a more ‘high-level’ measurement.
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Let us assume that a dataset S consists of two disjoint subsets: S0, whose samples do not have

the target latent information, and S1, whose samples have the target latent information. Then

one can obtain the corresponding gradients of layer l computed on these two subsets by:

G
(0)
l = EX∈S0

[gl(X)] and G
(1)
l = EX∈S1

[gl(X)]. (5.11)

For each pair of matrices G
(0)
l and G

(1)
l (in l ∈ {1, ..., L}), let G

(0)
l and G

(1)
l denote their

corresponding linear subspaces, respectively. To measure the difference between the com-

puted gradients with and without target latent information, the Grassmann geodesic dis-

tance [Drm00, YL16] between these two subspaces can be computed as the leakage risk of

this latent information p in layer l’s gradients:

R(p)
l = dist(G(0)

l ,G(1)
l ) = dGr(k,n)(G

(0)
l ,G(1)

l )

=
(

∑k

i=1
θ2i

)1/2

,

(5.12)

where Gr(k, n) denotes the Grassmann manifold, and bothG
(0)
l andG

(1)
l are elements of Gr(k, n)

and are k-dimensional linear subspace in Rn. k is the layer l’s gradient size Nl×Nl−1. θi for i ∈

{1, ..., k} are principal angles between the two subspaces which can be computed using numerical

methods [BG73]. Here the Grassmann distance is used; other common distances defined on

Grassmannians (e.g., Asimov) [YL16] can be derived similarly.

5.4 Numerical Evaluation

In this section, to validate the proposed usable information (Section 5.2.1) measure, I first

provide a comprehensive experimental evaluation using benchmark datasets and DNN archi-

tectures, and then I utilize the sensitivity measure (Section 5.3) to further verify the integrity

of the proposed measure.
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Table 5.3: Models and datasets used in experiments.

Model Architecture Datasets

LeNet [LBB+98] C6(5)-P(2)-C16(5)-P(2)-F120-F84-O CIFAR-100,
LFW, CelebA,
& PubFig

AlexNet [KSH12] C8(5)-C16(3)-P(2)-C32(3)×3-P(2)-F120-F84-O
VGG9 [SZ14] C8(3)-C16(3)×2-P(2)-C32(3)×3-P(2)-F256-F128-O

TextClf [Kim14] C16(3)-P(2)-C16(8)-P(2)-F50-O IMDB & CSI

Notations. Ci(j): a convolutional layer with i 2D filters each of size j × j. Fi: a fully connected layer with i neurons. P(j): a

max-pooling layer with a window size of j × j. O: the output classification layer with Y classes (depending on the dataset).

5.4.1 Evaluation setup

Model. This research performs experiments on four DNNmodels that are mostly used by previ-

ous works on privacy threats of collaborative learning [ZLH19a, ZMB20, GBDM20, MSDCS19,

NSH19]. See Table 5.3 for the details of each DNN’s architecture. The number of neurons in

the output layer is adjusted based on the number of classes of the dataset used to train. All

models use ReLU activation functions for Conv and FC layers (except the output layer with

Softmax).

Datasets. I conduct evaluations on six datasets that have been used in previous works

for DRA or AIA evaluations. LeNet, AlexNet, and VGG9 models are trained on CIFAR-

100 [KH09] and three other image datasets with attributes, including Labeled Faces in the

Wild (LFW) [HMBLM08], Large-scale CelebFaces Attributes (CelebA) [LLWT15], and Public

Figures Face Database (PubFig) [KBBN09]. TextClf is trained on two text datasets : IMDB re-

views [MDP+11] and CSI corpus [VD14]. LFW contains 13233 face images (cropped as 62×47

RGB). All images are labeled with around 100 attributes such as gender, race, age, hair color,

etc. I use a subset of the cropped version (i.e., 15000 images of 64× 64 RGB) of CelebA which

contains face images of celebrities with 40 attribute annotations such as gender, hair color,

eyeglasses, etc. I also use a cropped version (100 × 100 RGB) of PubFig which contains 8300

facial images made up of 100 images for each of 83 persons [PSZC11], marked with 73 attributes

(e.g., gender, race, etc). In IMDB reviews [MDP+11] dataset, each review is labeled with sen-

timent and length, and in CSI corpus [VD14], each corpus review is labeled with sentiment,

veracity, length, etc.
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Training setup. I conduct experiments on a cluster with 50 nodes where each has 4 In-

tel(R) Xeon(R) E5-2620 CPUs (2.00GHz), one/two NVIDIA RTX 6000 GPU(s) (24GB), and

24GB/48GB DDR4 RAM. PyTorch v1.4.0 is used for both usable information (e.g., conduct-

ing DRAs and AIAs) and sensitivity computations. I refer to the previous research [ZMB20,

MSDCS19] for attack settings.

5.4.2 Layer-wise localization of information leakages

Attack families. This research defines an attack family (with computational bounds) that

covers the most recent attacks including [ZLH19a, ZMB20, GBDM20, MSDCS19] to compute

the empirical usable information as in Equation (5.1). In particular, for original information,

the attack family includes deep learning techniques with the same training hyperparameters

used in the previous attacks [ZLH19a, ZMB20, GBDM20]. Moreover, for the latent information,

random forests are included in the attack family with the hyperparameters tuned in a state-

of-the-art manner based on previous successful attacks [MSDCS19]. In general, to empirically

achieve the Infima over the attack family in Equation (5.1), one needs not only to include the

state-of-the-art attacks in the literature but also to perform hyperparameter tuning for learning

better attack models. I remark that any new-coming attacks can be added to the attack family

and their results can be merged into current results without redoing the computation of previous

attack models.

Usable original information. To measure layer-wise information leakage, I perform attacks

on individual layers. First, I found that all existing DRAs fail in achieving any meaningful

outcome when using gradients of only one layer. I thus measure the leakage on the set of at

least two consecutive layers at a time. Specifically, in Figure 5.2, set {1} denotes layers 1 and

2, set {2} denotes layers 2 and 3, etc. Figure 5.2 (Left) shows the results of the results of

the attack family (measured with inf), which includes DLG [ZLH19a], iDLG [ZMB20], and

Inverting Gradients [GBDM20]. In Figure 5.2 (right), I show the results of a single attack:

iDLG attack model [ZMB20].
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Figure 5.2: Original information leakage measured by usable information with thresholds from
0.05 to 0.8 (with a step size of 0.05) in each 2-layer set. The left figure shows the results of
Infimum over attack family [ZLH19a, ZMB20, GBDM20]. The right figure shows the results of
iDLG model only [ZMB20].

The results of the attack family, including three attacks, indicate that for LeNet the leakage

is monotonically decreasing for thresholds larger than 0.5, but for deeper DNNs, i.e., AlexNet

and VGG9, the leakage is highest in the middle layer-sets. The iDLG attack [ZMB20] model

shows a little different pattern where the original information leakage risk generally decreases

when moving from the first 2-layer set to the last 2-layer set. This could probably be due to

that the cosine similarity used in Inverting Gradients [GBDM20] for the cost function could

better capture gradient differences than the euclidean distance used by [ZMB20], especially for

middle layers in more complicated DNN architectures. Thus, Inverting Gradients outperforms

iDLG in most cases, so that the former will represent the final original information leakage over

the defined attack family. Still, one common observation is that for both attack models the

last layer-set has the lowest level of information leakage.

Usable latent information. For latent information, the work additionally trains the TextClf

on the two text datasets and put CIFAR100 aside because it does not have multiple attributes.

Also, since each dataset can have multiple types of attributes considered as private latent

information, I compute usable information on all these (private) attributes and then fit smooth

curves using nonparametric local weighted (i.e., LOESS) regression [CD88] to clarify the general

trend across layers. I also normalize the computed usable information of one model with the
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Figure 5.3: Latent information leakage, measured by usable information, in each layer’s gra-
dients. Scattered points refer to private attributes being measured for different datasets and
classification tasks. Blue lines give the LOESS regression curve. Dashed lines ( ) separate the
feature extractor and the classifier of the model.
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Figure 5.4: Original information leakage risks, measured by sensitivity ([Left] F -norm; [Right
Bottom] 1-norm; [Right Top] ∞-norm), in each layer’s gradients, based on CIFAR100 ( ),
LFW ( ), CelebA ( ), PubFig ( ) dataset. Error bars are 95% confidence intervals.

maximum value of its layer for comparability across models and tasks. As in Figure 5.3, the

results show that the latent information leakage risk follows a trend that increases when moving

through the feature extractor layers, reaches its maximum at the first classifier layer, and then

decreases. This tendency is similar across all models. In addition, the results based on usable

information also confirm the analysis in Section 5.1.3 that the private information flow in

gradients does not satisfy DPI.

5.4.3 Sensitivity analysis

This research further performs sensitivity analysis to evaluate information leakage by measuring

the gradient changes w.r.t. inputs.

Sensitivity of gradients w.r.t. original information. This work computes Equation (5.10)

to measure original information leakage risks. As shown in Figure 5.4 (Left) for the F -norm,
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Figure 5.5: Latent information leakage risks, measured by subspace distances, in each layer’s
gradients. Scattered points correspond to private attributes. Blue lines give the LOESS regres-
sion. Dashed lines ( ) refer to the feature extractor-classifier connection.

the sensitivity in overall shows a similar pattern as the usable information with the attack

model of [ZMB20] in Figure 5.2. Specifically, gradients of the first layers are more sensitive to

changes in inputs compared to the latter layers, thus they could potentially carry more private

original information that can be detected by adversaries easier. Besides, 1-norm sensitivity

results, in Figure 5.4 (Right-Top), have a similar pattern with the attack model of [GBDM20],

where DNNs’ middle parts, i.e., around the connection from feature extractor to classifier, get

the highest information leakage. We know that the difference for attacks in usable information

probably is due to the distance measure in their cost functions, i.e., iDLG [ZMB20] used 2-

norm while Gradient Inverting attack model [GBDM20] used cosine similarity. This information

leakage may be tied with the sensitivity of gradients w.r.t. the input (i.e., private information)

with p-norm where p links to attack models with different capabilities.

Sensitivity of gradients w.r.t. latent information. This work computes Equation (5.12) to

measure latent information leakage risks. Similar to usable information, I measure all possible

attributes of used datasets and again plot the regression curves for each model. As Figure 5.5

shows, R(p)
l generally follows a similar trend as the latent information risks computed using

usable information. That is, the layers related to the classifier have higher leakage risks than

the feature extractor layers. Most risks are either in the classifier’s first layer or the second

layer. While this is slightly different from the results in Figure 5.3 where the first layer always

has the highest leakage, the overall trend remains the same. Notice that several scattered points

closely coincide, and the last layer has a lower risk compared to that in usable information.

One explanation is that this measure may tend to capture the extreme risks among layers so
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the first and second layers of the classifier show significantly higher leakage risks than the other

layers. Overall, the computation measuring gradient changes (i.e., sensitivity) depends only on

the gradients is easy to compute and can capture the main pattern of layer-wise leakage risks

measured by attack-based usable information.

5.4.4 Impacts of training hyperparameters

We now analyze how some training hyperparameters in collaborative learning affect gradient-

based information leakages. For computing original information leakage, I fix the threshold to

evaluate the expected performance of attack models for different hyperparameter values. Here,

instead of computing usable information for different thresholds, I fix the threshold to evaluate

the expected performance of attack models. Specifically, I remark that a given threshold in

Equation (5.1) provides a tunable parameter for measurement depending on whether the con-

sidered situation is severe or mild, but this could be troublesome for general measurement as

suitable thresholds required in every setting are unknown. In particular, I fix the threshold to

the expectation of attack outcomes’ probability distribution; then for one individual attack on

one sample we have aT = Ea∼A(f [g]). In such a way, I evaluate the expected performance of

one attack on g.

Aggregation levels. Performing aggregation before sharing gradients with others is a common

strategy in collaborative learning. This could be the local aggregation (e.g., batch size in

FedSGD or multiple steps in FedAvg) and also the global aggregation over updates of all clients.

For the aggregation measurement of one target’s (victim) original or latent information, I

mix it with multiple gradients of non-target information, i.e., information irrelevant to the

private information targeted by adversaries. The empirical results show that aggregation can

significantly reduce gradients’ information leakage risks (see Figure 5.6). Specifically, disclosing

target original information from gradients that have been updated on non-target information

with an amount 10 times larger than the amount of target information can be very difficult

(e.g., a batch size of 10 in [ZLH19a, ZMB20]). When gradients are mixed with non-target

information which is 30 times the amount of target information, the original information risk
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Figure 5.6: Influence of gradient aggregation on risks of original information [Left two] and
latent information [Right two], measured on LeNet trained on CIFAR100 and LFW, respectively
(Note: Points corresponding to failed trials of attacks are not plotted. Logarithmic scale is used
in some plots for better visualization).

measured by sensitivity is extremely low (near zero). Also, extracting latent information from

30∼50 times non-target information is hard (e.g., 30∼50 participants in [MSDCS19]).

Epochs. This part measures the information leakage risks of gradients at specific epochs (from

1 to 100) during training. After epochs of training, the information leakage from gradients is

calculated. The results show that overall the epoch only has a negligible impact on leakage

risks (see Figure 5.7). Except for the leakage risk drop in the first several epochs (i.e., first

10 epochs for original information and first 20 epochs for latent information), epochs barely

change gradients leakage risks. This may be due to the fact that the magnitude of the updated

gradients does not change significantly throughout these epochs (for fixed learning rate). In such

a sense, in the first epochs, the machine learning optimizer quickly converges somewhere near

the optimum and increases the model accuracy very quickly; in later epochs, the optimization

becomes slower, and consequently, the magnitude of gradient changes stabilizes. It is expected

that with (much) more epochs of training, the information leakage may significantly change due

to overfitting or convergence, but the analysis shows that with a reasonable number of epochs,
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Figure 5.7: Influence of training epoch on risks of original information [Left] and latent infor-
mation [Right], measured on LeNet trained on CIFAR100 and LFW, respectively.

it does not impact the leakage a lot.

5.4.5 Impact of defense mechanisms

Dropping fraction or number of gradients. In Figure 5.8, I present the usable information

results when only parts of the gradients are available as side information. It is shown that with a

particular dropping rate, the first layer of the classifier always has the highest usable information

for the target property. Having only 5% of the gradients (or even 1% of the sensitive layers)

available can still leak a great amount of private property information compared with having

complete gradients. However, the way of keeping a fixed fraction of gradients can be influenced

by the total number of gradients of the layer. I then measure the usable information from a

fixed number of gradients from each layer. Interestingly, the results still show that classifiers’

first layers contain the most private latent information.

Differential privacy. Adding DP noises before releasing gradients could be one way to reduce

the privacy risks. Here I follow [SS15, JE19b], i) to clip gradients using l2-norm and then ii) to
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Figure 5.8: Usable information of the ‘race’ attribute in a fixed number of gradients (Top) and
a fraction of gradients (Bottom) from each layer of the neural network.
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Figure 5.9: Influence of training epoch on risks of original information [Left] and latent infor-
mation [Right], measured on LeNet trained on CIFAR100 and LFW, respectively.

add Gaussian noises. Specifically, I set the max norm as 1 for all cases and adjust the standard

deviation σ of Gaussian noises from 100to 10−4. Noises are only added every time before

releasing gradients; that is, pre-sample noise addition for DRAs, and pre-batch (32 samples)

noise addition for AIAs. I do not report the privacy budget because this is not a fully DP

training (i.e., I do not test accuracy and focus on privacy analysis). Note that adding noises

to gradients does not change the derivative results of ∂gl(X)
∂X , i.e., sensitivity. The empirical

results are given in Figure 5.9 showing that DP can reduce the privacy risks of both original

and latent information because noises can perturb information in gradients. In addition, adding

noises to the first layers tends to have higher effectiveness in alleviating original information
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risks, as the risks do not change significantly in terms of the last layers. Similarly, noises could

provide better protection in the last layers when it comes to latent information. This again

highlights the locations of different types of information and the need for potential layer-wise

DP protection.

5.5 Discussion and Summary

5.5.1 Localization of the most sensitive layers

The location of the most sensitive layers in a model can change depending on the type of

information and the attack family I consider. More specifically, the analysis showed that the

nodes in the first layer or nodes in the middle layers of some deeper neural networks can

contain the most sensitive information of the original input [GBDM20, ZLH19a]. Regarding

latent information, it is found that the first FC layers (typically placed after the last Conv

layer) are the most sensitive layers. One explanation for these observations is that latent

information is more specific than the original information, X, but still more general than output

information, Y, thus it may be best captured in layers between them. Specifically, an attribute

is a high-level feature; the FC layer classifies the feature maps from the previous Conv layers,

and it can contain distinguishable high-level latent information such as the property. Similarly,

the last Conv layer is likely to have more latent information than previous Conv layers, because

initial Conv layers learn more general information (e.g., ambient colors or edge in images), while

the latter Conv layers focus on high-level latent information (e.g., face identity) [ZF14, MV15].

5.5.2 Insights gained from gradient sensitivity

Sensitivity is a local measure that allows accounting for flatness in the objective function mini-

mized in DRA attacks (Equation (5.3)). This flatness is known to occur in neural network loss

functions [DVSH18], and therefore the proposed sensitivity metric can be a valuable tool in

understanding sensitive information leakage. In addition, a low sensitivity has been linked to
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increased robustness of trained models [SGSR17]. Adapting the tools that were consequently

introduced to improve robustness can help design better defenses against original information

leakage. The gradient subspace distances are a novel metric introduced with the aim of cap-

turing more coarse-grained information. As sensitivity in itself is a local measure to capture

latent information leakages, subspace distances are a valuable extension. Defined as the dis-

tance between gradients with and without target information, it helps inform in which trained

models leaks can happen, or in other words whether the weights of the models are trained in

such a way that they are able to distinguish between attributes.

5.5.3 Localization for the design of protection mechanisms

The characterization allows us to localize which layers/nodes in which layers leak the most

sensitive information. This highlights opportunities for designing defenses that are flexible

and practical at a layer-wise level. For example, fully homomorphic encryption (FHE)-based

approaches fully respect the model privacy but it leads to high runtime overhead. The analysis

can be used towards solutions utilizing FHE only on the sensitive part of the model during

training. In addition, given the resource constraints on edge devices, TEE-based approaches

with model partitioning have also become a promising approach. Specifically, during learning,

one can deploy and run the most sensitive layers (e.g., the last Conv layer and the first FC layer)

inside the TEE using model partitioned execution techniques across trusted and untrusted

environments similar to [MSK+20]. The measures could also provide insights for layer-wise,

federated training of models [MHK+21, WYS+19], which could further reduce the privacy risk

by exposing only specific layers instead of the complete model.

5.5.4 Insights for defense mechanisms

There are privacy-preserving techniques proposing to add noise to gradients (i.e., DP), share

fewer gradients, or use dimensionality reduction and regularization (e.g., Dropout). However,

none of them can protect against latent or original information leakage without significantly
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compromising model utility [MSDCS19, ZLH19a]. The ability to localize the most sensitive

layers can allow adding noise only where necessary. As one example, clipping or adding noises

differently for layers in DP [MAE+18, PSY+19] and directly hiding layers in TEEs [MSK+20,

GHZ+18a] could be one promising protection without compromising the utility of the other

layers and the quantification helps in understanding and designing these layer-wise protection

mechanisms.

5.5.5 Limitations & Next steps

Overall there are several points to improve the work in this chapter: i) It is expected that DNNs

with skip connections (e.g., ResNet [HZRS16]) could give similar results because they usually

have a unidirectional gradient flow, but this needs further experiments. Information leakages

in other widely used networks such as Recurrent [She20] or Graph [WPC+20] neural networks

need investigating; ii) More defense mechanisms can be analyzed using the proposed metrics.

For example, the influence of differential privacy can provide a further understanding of the

linkage between information leakages and gradient changes; iii) Factors other than sensitivity

deserve further exploration. Bayesian-based generalization analysis [WI20], distribution shift,

or concept drift may provide another way to theoretically characterize information leakages

from another perspective.

Based on the results of privacy measurement, it is expected we would need to protect all layers

in order to defend against all private-related attacks. This will require the DarkneTZ system

to be changed because it does not support fitting the complete training process inside TEEs.

More advanced training techniques are needed to achieve such a goal. Therefore, in the next

step, I aim to propose one privacy-preserving method to fully guarantee privacy in federated

learning atop TEEs.
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Chapter 6

Privacy-preserving Federated Learning

System

Running ML inside TEEs can hide model parameters from REE adversaries and consequently

preserve privacy, as already used for light data analytics on servers [SCF+15, OSF+16] and for

heavy computations such as DNN training [HSS+18, TB18, GHZ+18b, MSK+20]. However,

due to TEEs’ limited memory size, the work in the previous chapter runs only part of the

model (e.g., sensitive layers) inside the TEE [MSK+20, MH19]. Only the last layers are run

with a Trusted Application inside TEEs to defend against MIAs, and it leaves the first layers

unprotected. DarkneTZ’s evaluation showed no more than 10% overhead in CPU, memory,

and energy on edge-like devices, demonstrating its suitability for client-side model updates in

FL, but some layers will be left outside. Due to the broad attack surface on neural network

gradients, it will be necessary to protect all gradients in a proper way so that we can defend

against all possible attackers and meanwhile do not introduce high system overhead.

In this chapter, I aim to provide a system that achieves privacy-preserving collaborative/feder-

ated learning, motivated by the privacy measurement results from the previous chapter, i.e., all

layers can leak some types of private information. This helps to answer Research Question 6.

More specifically, these privacy leakages include original data leakage, attribute information

leakage, and membership inference leakage. However, protecting all layers at once is infeasible



106 Chapter 6. Privacy-preserving Federated Learning System

due to the limited secure memory space provided by TEEs; consequently, the training process

requires to be partitioned in some ways.

This chapter aims at client-server federated learning, i.e., one server orchestrates multiple clients

to train one global model. Below I first revisit some related works including TEE and privacy-

related attacks. I then present the framework, Privacy-preserving Federated Learning, a greedy

layer-wise training method to run ML inside collaborated TEEs to defend against all the above-

mentioned attacks.

6.1 Introduction and Related Work

This section provides the background needed to understand the way TEEs work (Sec. 6.1.1),

existing privacy risks in FL (Sec. 6.1.2), privacy-preserving ML techniques using TEEs, as well

as core ideas behind layer-wise DNN training for FL (Sec. 6.1.3).

6.1.1 Revisiting TEEs

A TEE enables the creation of a secure area on the main processor that provides strong confi-

dentiality and integrity guarantees to any data and codes it stores or processes. TEEs realize

strong isolation and attestation of secure compartments by enforcing a dual-world view where

even compromised or malicious system (i.e., privileged) software in the normal world – also

known as the Rich Operating System Execution Environment (REE) – cannot gain access to

the secure world. This allows for a drastic reduction of the TCB since only the code running in

the secure world needs to be trusted. Another key aspect of TEEs is that they allow arbitrary

code to run inside almost at native speed. In order to keep the TCB as small as possible, cur-

rent TEEs have limited memory; beyond this, TEEs are required to swap pages between secure

and unprotected memory, which incurs a significant overhead and hence must be prevented.

Over the last few years, significant research and industry efforts have been devoted to devel-
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oping secure and programmable TEEs for high-end devices (e.g., servers1) and mobile devices

(e.g., smartphones). This work leverages Intel Software Guard Extensions (Intel SGX) [CD16]

at the server-side, while in the client devices we rely on Open Portable Trusted Execution En-

vironment (OP-TEE) [Lin20]. OP-TEE is a widely known open-source TEE framework that

is supported by different boards equipped with Arm TrustZone. While some TEEs allow the

creation of fixed-sized secure memory regions (e.g., of 128MB in Intel SGX), some others (e.g.,

ARM TrustZone) do not place any limit on the TEE size. However, creating large TEEs is

considered to be bad practice since it has proven to significantly increase the attack surface.

Therefore, the TEE size must always be kept as small as possible independently of the type of

TEEs and devices being used. This principle has already been adopted by the industry, e.g., in

the HiKey 960 board the TEE size is only 16MiB.

6.1.2 Privacy risks in FL

Below I give a brief overview of the three main categories of privacy-related attacks in FL: data

reconstruction, attribute inference, and membership inference attacks.

Data Reconstruction Attack (DRA). The DRA aims at reconstructing original input

data based on the observed model or its gradients. It works by inverting model gradients

based on generative adversarial attack-similar techniques [AHW+17, ZLH19a, GBDM20], and

consequently reconstructing the corresponding original data used to produce the gradients.

DRAs are effective when attacking DNN’s early layers, and when gradients have been only

updated on a small batch of data (i.e., less than 8) [ZLH19a, GBDM20, MSK+20]. As the

server typically observes updated models of each client in plaintext, it is more likely for this

type of leakage to exist at the server. By subtracting updated models with the global model,

the server obtains gradients computed w.r.t. clients’ data during the local training.

Attribute Inference Attack (AIA). The goal of AIAs is to infer the value of private prop-

erties in the input data. This attack is achieved by building a binary classifier trained on

1 Recently, cloud providers also offer TEE-enabled infrastructure-as-a-service solutions to their customers

(e.g., Microsoft Azure Confidential).
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model gradients updated with auxiliary data and can be conducted on both server and client

sides [MSDCS19]. Specifically, attribute information, which also refers to the feature/latent

information of the input data, is easier to be carried in stronger aggregation [MBM+21a]. Even

though clients in FL only observe multiple snapshots of broadcast global models that have

been linearly aggregated on participating clients’ updates, attribute information can still be

well preserved, providing attack points to client-side adversaries.

Membership Inference Attack (MIA). The purpose of MIAs is to learn whether specific

data instances are present in the training dataset. One can follow a similar attack mechanism

as AIAs to build a binary classifier when conducting MIAs [NSH19], although there are other

methods, e.g., using shadow models [SSSS17]. The risk of MIAs can exist on both the server and

client sides. Moreover, because membership is ‘high-level’ latent information, adversaries can

perform MIAs on the final (well-trained) model and its last layer [NSH19, SSSS17, YGFJ18].

6.1.3 Layer-wise DNN training for FL

Instead of training the complete DNN model in an end-to-end fashion, one can train the model

layer-by-layer from scratch, i.e., greedy layer-wise training [BLPL06, LBLL09]. This method

starts by training a shallow model (e.g., one layer) until its convergence. Next, it appends one

more layer to the converged model and trains only this new layer [BEO19]. Usually, for each

greedily added layer, the model developer builds a new classifier on top of it in order to output

predictions and compute training loss. Consequently, these classifiers provide multiple early

exits, one per layer, during the forward pass in inference [KHD19]. Furthermore, recently this

method was shown to scale for large datasets such as ImageNet and to achieve performance

comparable to regular end-to-end ML [BEO19]. Notably, all previous studies on layer-wise

training focused on generic ML.

Contribution. Our work is the first to build a DNN model in a FL setting with privacy-

preserving guarantees using TEEs, by leveraging the greedy layer-wise training, and to train

each DNN layer inside each FL client’s TEE. Thus, PPFL satisfies the constraint of TEE’s
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limited memory while protecting the model from the aforementioned privacy attacks. Inter-

estingly, the classifiers built atop each layer may also provide personalization opportunities for

the participating FL clients.

6.2 Threat Model and Assumptions

Threat model. A standard FL context is considered where multiple client devices train a

DNN locally and send their (local) model parameters to a remote, centralized server, which

aggregates these parameters to create a global model [MMR+17, BEG+19, KMA+19]. The

goal of adversaries is to obtain sensitive information embedded in the global model through

data reconstruction [ZLH19a, GBDM20] or inference attacks [MSDCS19, NSH19]. Two types

of (passive) adversaries are considered: (i) users of client devices who have access to distinct

snapshots of the global model and (ii) the server’s owner (e.g., a cloud or edge provider) who

has access to the updated model gradients. Adversaries are assumed to be honest-but-curious,

meaning that they allow FL algorithms to run as intended while trying to infer as much in-

formation as possible from the global model or gradients. Adversaries can have full control

(i.e., root privileges) of the server or the client device and can perform their attacks against

any DNN layer. However, attacks against the TEE, such as side-channel attacks (e.g., Voltpil-

lager [CVM+21]), physical attacks (e.g., Platypus [LKO+21]) and those that exploit weaknesses

in TEEs (e.g., [LJJ+17]) and their SDKs (e.g., [Van19]) are out of scope here.

Assumptions. It is assumed that the server and enough participating FL client devices have

a TEE whose memory size is larger than the largest layer of the DNN to be trained. This

is the case in current FL DNNs. However, in the unlikely case that a layer does not fit in

available TEEs, the network design needs to be adjusted with smaller, but more layer(s), or

a smaller training batch size. It is also assumed that there is a secure way to bootstrap trust

between the server TEE and each of the client device TEE (e.g., using a slightly modified

version of the SIGMA key exchange protocol [Kra03, ZZQ+19], or attested TLS [KSC+18]),

and that key management mechanisms exist to update and revoke keys when needed [PKE18].
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Finally, it is assumed that the centralized server will forward data to/from its TEE. Yet, it

is important to note that if the server was malicious and would not do this, this would only

affect the availability of the system (i.e., the security and privacy properties of our solution

remain intact). This type of Denial-of-Service (DoS) attack is hard to defend against and is

not considered within the standard TEE threat model.

6.3 PPFL Framework
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Figure 6.1: Schematic diagram of PPFL. Main phases follow the system design in [BEG+19].

This section first presents an overview of the proposed system and its functionalities (Sec. 6.3.1),

and then details how the framework employs layer-wise training and aggregation in conjunction

to TEEs in FL (Sec. 6.3.2).

6.3.1 System overview

This work proposes a Privacy-preserving Federated Learning framework that allows clients to

collaboratively train a DNN model while keeping the model’s layers always inside TEEs during

training. Figure 6.1 provides an overview of the framework and the various steps of the greedy

layer-wise training and aggregation. In general, starting from the first layer, each layer is

trained until convergence, before moving to the next layer. In this way, PPFL aims to achieve

full privacy preservation without significantly increasing system costs. PPFL’s design provides

the following functionalities:

Privacy-by-design Guarantee. PPFL ensures that layers are always protected from adver-
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saries while they are being updated. Privacy risks depend on the aggregation level and fre-

quency with which they happen, when exposing the model or its layers [MSDCS19, GBDM20,

MBM+21a]. In PPFL, lower-level information (i.e., original data and attributes) is not exposed

because updated gradients during training are not accessible from adversaries (they happen in-

side the TEEs). This protects against DRAs and AIAs. However, when one of such layers is ex-

posed after convergence, there is a risk of MIAs. I follow a more practical approach based on the

observation that membership-related information is only sensitive in the last DNN layer, making

it vulnerable to MIAs as indicated in previous research [NSH19, SDS+19, MSK+20, MBM+21a].

To avoid this risk in the final model, PPFL can keep the last layer inside the clients’ TEEs

after training.

Device Selection. After the server and a set of TEE-enabled clients agree on the training of a

DNN model via FL, clients inform the server about their TEE’s memory constraints. The server

then (re)constructs a DNN model suitable for this set of clients and selects the clients that can

accommodate the model layers within their TEE. In each round, the server can select new

clients and the device selection algorithm can follow existing FL approaches [NY19, HLW+20].

Secure Communication Channels. The server establishes two secure communication chan-

nels with each of its clients: (i) one from its REE to the client’s REE (e.g., using TLS) to

exchange data with clients and (ii) a logical one from its TEE to the client’s TEE for securely

exchanging private information (e.g., model layer training information). In the latter case, the

transmitted data is encrypted using cryptographic keys known only to the server and client

TEEs and is sent over the REE-REE channel. It is important to note that the secure REE-

REE channel is only an additional security layer. All privacy guarantees offered by PPFL are

based on the hardware-backed cryptographic keys stored inside TEEs.

Model Initialization and Configuration. The server configures the model architecture,

decides the layers to be protected by TEEs, and then initializes model parameters inside the

TEE (step 2○, Fig. 6.1). The latter ensures clients’ local training starts with the same weight

distribution [MMR+17, WYS+20]. In addition, the server configures other training hyper-

parameters such as learning rate, batch size, and epochs, before transmitting such settings to
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the clients (step 3○, Fig. 6.1).

In cases of typical ML tasks such as image recognition where public knowledge is available such

as pre-trained DNN models or public datasets with features similar to the client’s private data,

the server can transfer this knowledge (especially in cross-device FL [KMA+19]) in order to

bootstrap and speed up the training process. In both cases, this knowledge is contained in the

first layers. Thus, the clients leave the first layers frozen and only train the last several layers

of the global model. This training process is similar to the concept of transfer learning [PY09,

Bro20, TS10], where, in this case, public knowledge is transferred in a federated manner.

In PPFL, the server can learn from public models. Thus, during initialization, the server first

chooses a model pre-trained on public data that have a similar distribution to private data.

The server keeps the first layers, removes the last layer(s), and assembles new layer(s) atop

the reserved first ones. These first layers are transferred to clients and are always kept frozen

(step 1○, Fig. 6.1). New layers, attached to the reserved layers, are trained inside each client’s

TEE, and then aggregated inside the server’s TEE (steps 2○∼ 6○, Fig. 6.1). In learning from

public datasets, the server first performs an initial training to build the model based on public

datasets.

Local Training. After model transmission and configuration using secure channels, each client

starts local training on their data on each layer via a model partitioned execution technique

(step 4○, Fig. 6.1). I detail this step in Sec. 6.3.2.

Reporting and Aggregation. Once local training of a layer is completed inside TEEs, all

participating clients report the layer parameters to the server through secure channels (step 5○,

Fig. 6.1). Finally, the server securely aggregates the received parameters within its TEE and

applies FedAvg [MMR+17], resulting in a new global model layer (step 6○, Fig. 6.1).
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6.3.2 Layer-wise training and aggregation

In order to address the problem of limited memory inside a TEE when training a DNN model,

I modify the greedy layer-wise learning technique proposed in [BLPL06] for general DNN train-

ing [BEO19], to work in the FL setting. The procedure of layer-wise training and aggregation

is detailed in the following Algorithms 1 and 2. Note that Algorithm 2 “ClientUpdate” is one

sub-function to be called inside Algorithm 1.

Algorithm 1. This algorithm details the actions taken by PPFL on the server side. When not

specified, operations are carried out outside the TEE (i.e., in the REE). First, the server initial-

izes the global DNN model with random weights or public knowledge (steps 1○- 2○, Fig. 6.1).

Thus, each layer l to be trained is initialized (θl) and prepared for broadcast. The server checks

all available devices and constructs a set of participating clients whose TEE is larger than the

required memory usage of l. Then, it broadcasts the model’s layer to these participating clients

(step 3○, Fig. 6.1), via ClientUpdate() (see Algorithm 2). Upon receiving updates from all

participating clients, the server decrypts the layer weights, performs secure layer aggregation

and averaging inside its TEE (step 6○), and broadcasts the new version of l to the clients for the

next FL round. Steps 2○∼ 6○ are repeated until the training of l converges, or a fixed number of

rounds are completed. Then, this layer is considered fully trained (θ0
l ), it is passed to the REE,

and is broadcasted to all clients to be used for training the next layer. Interestingly, PPFL

also allows grouping multiple layers into blocks and training each block inside client TEEs in a

similar fashion as the individual layers. This option allows for better utilization of the memory

space available inside each TEE and reduces communication rounds for the convergence of more

than one layer at the same time.

Algorithm 2. This algorithm details the actions taken by PPFL on the client side. Clients load

the received model parameters from the server and decrypt and load the target training layer

l inside their TEEs. More specifically, in the front, this new layer l connects to the previous

pre-trained layer(s) that are frozen during training. In the back, the clients attach on l their

own derived classifier, which consists of fully connected layers and a softmax layer as the model
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Algorithm 1: PPFL-Server with TEE

11 Input:

• Number of all clients: N

• TEE memory size of Client n: S(n)

• Memory usage of layers {1, ..., L} in training (forward and backward pass in total):
{S1, ..., SL}

• Communication rounds: R

2 Output: Aggregated final parameters: {θ0
1, ...,θ

0
L}

% Layer-wise client updates ;
3 for l ∈ {1, ..., L} do

% Select clients with enough TEE memory
4 Initialize participating client list J = {}
5 for n ∈ {1, ..., N} do
6 if S(n) > Sl then
7 J←− J ∪ {n}

8 Initialize θl (parameters of layers l) in TEE

9 for r ∈ {1, ..., R} do
10 for j ∈ J do

% clients’ local updating to get client j’s weight copy: see Algorithm 2
11 θ

(j)
l =ClientUpdate(l,θl)

% FedAvg with Secure Aggregation
12 θl =

1
size(J)

∑

j∈J θ
(j)
l in TEE

13 Save θl from TEE as θ0
l in REE

14 return {θ0
1, ...,θ

0
L}

exit. Then, for each epoch, the training process iteratively goes through batches of data and

performs both forward and backward passes [LBH15] to update both the layer under training

and the classifier inside the TEE (step 4○, Fig. 6.1). During this process, a model partitioned

execution technique is utilized, where intermediate representations of the previously trained

layers are passed from the REE to the TEE via shared memory in the forward pass. After local

training is completed (i.e., all batches and epochs are done), each client sends via the secure

channel the (encrypted) layer’s weights from its TEE to the server’s TEE (step 5○).

Model Partitioned Execution. The above learning process is based on a technique that con-

ducts model training (including both forward and backward passes) across REEs and TEEs,
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Algorithm 2: ClientUpdate(l,θl) with TEEs

11 Initialization:

• Local dataset X : data {x} and labels {y}

• Trained final parameters of all previous layers, i.e., θ0
1,θ

0
2, ...,θ

0
l−1

• Number of local training epochs: E

• Activation function: σ() and loss function: ℓ

• Classifier: C()

2 Input:

• Target layer: l

• Broadcast parameters of layer l: θl

3 Output: Updated parameters of layer l: θl

% Weights and biases of layers 1, ..., (l − 1) and l
4 for i ∈ {1, ..., l − 1} do
5 {Wi, bi}←− θ0

i

6 {Wl, bl}←− θl in TEE

% Training process
7 for e ∈ {1, .., E} do
8 for {x,y} ∈ X do

% Forward pass
9 Intermediate representation T0 = x

10 for i ∈ {1, ..., l − 1} do
11 Ti = σ(WiTi−1 + bi)

12 Tl = σ(WlTl−1 + bl)
13 ℓ←− ℓ(C(Tl),y)

% Backward pass
14

∂ℓ
∂C to update parameters of C

% Updating layer l
15 Wl ←−Wl +

∂ℓ
∂Wl

; bl ←− bl +
∂ℓ
∂bl

16 θl = {Wl, bl} in TEE

17 return θl

in TEE

namely model partitioned execution. The transmission of the forward activations (i.e., inter-

mediate representation) and updated parameters happens between the REE and the TEE via

shared memory. On a high level, when a set of layers is in the TEE, activations are transferred

from the REE to the TEE (see Algorithm 2). Assuming global layer l is under training, the
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layer with its classifier C(.) is executed in the TEE, and the previous layers (i.e., 1 to l− 1) are

in the REE.

Before training, layer l’s parameters are loaded and decrypted securely within the TEE. During

the forward pass, local data x are inputted, and the REE processes the previous layers from 1

to l− 1 and invokes a command to transfer the layer l− 1’s activations (i.e., Tl−1) to the secure

memory through a buffer in shared memory. The TEE switches to the corresponding invoked

command in order to receive layer l− 1’s activations, and then it processes the forward pass of

layer l and classifier C(.) in the TEE.

During the backward pass, the TEE computes the C(.)’s gradients based on received labels y

and outputs of C(.) (produced in the forward pass) and uses them to compute the gradients of

the layer l in the TEE. The training of this batch of data (i.e., x) finishes here, and there is no

need to transfer l’s errors from the TEE to the REE via shared memory, as previous layers are

frozen outside the TEE. After that, the parameters of layer l are encrypted and passed to the

REE, ready to be uploaded to the server, corresponding to the FedSGD [CPM+16]. Further,

FedAvg [MMR+17] which requires multiple batches to be processed before updating, repeats

the same number of the forward and backward passes across the REE and the TEE for each

batch of data.

Algorithmic Complexity Analysis. Next, this work analyzes the algorithmic complexity of

PPFL and compares it to standard end-to-end FL. For the global model’s layers l ∈ {1, . . . , L},

I denote the forward and backward pass cost on layer l as Fl and Bl, respectively. The cor-

responding cost on the classifier is denoted as Fc and Bc. Then, in end-to-end FL, the total

training cost for one client is:

(

L
∑

l=1

(Fl + Bl) + Fc + Bc

)

· S · E (6.1)

where S is the number of steps in one epoch (i.e., number of samples inside local datasets

divided by the batch size). As in PPFL all layers before the training layer l are kept frozen,

the cost of training layer l is (
∑l

k=1 Fk + Fc + Bl + Bc) · S ·E. Then, by summation, we can get
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the total cost of all layers as:

(

L
∑

l=1

l
∑

k=1

Fk +
L
∑

l=1

Bl + L · (Fc + Bc)

)

· S · E (6.2)

By comparing Equations 6.1 and 6.2, we can see the overhead of PPFL comes from: (i) repeated

forward pass in previous layers (l ∈ {1, . . . , l − 1}) when training layer l, and (ii) repeated

forward and backward pass for the classifier atop layer l. Due to that backward pass usually

triples the computation cost of the forward pass only, so most overhead will come from the

classifier training.

6.4 Implementation & Evaluation Setup

This section first describes the implementation of the PPFL system (Sec. 6.4.1), and then detail

how we assess its performance on various DNN models and datasets (Sec. 6.4.2) using different

metrics (Sec. 6.4.3). This work follows common setups of past FL systems [MMR+17, WYS+20]

and on-device TEE works [MSK+20, AS19].

6.4.1 PPFL prototype

I implement the client-side of PPFL by building on top of DarkneTZ [MSK+20], in order to

support on-device FL with Arm TrustZone. In total, I changed 4075 lines of code of DarkneTZ

in C to add functionalities including i) training any chosen layers (e.g., middle layers) inside

TEE; ii) saving and loading any chosen layers; iii) communicating with a server. I run the

client-side on a Hikey 960 Board, which has four ARM Cortex-A73 and four ARM Cortex-A53

cores configured at 2362MHz and 533MHz, respectively, as well as a 4GB LPDDR4 RAM with

16MiB TEE secure memory (i.e., TrustZone). Since the CPU power/frequency setting can

impact the TrustZone’s performance [AS19], I execute the on-device FL training with full CPU

frequency. In order to emulate multiple device clients and their participation in FL rounds, I

use the HiKey board in a repeated, iterative fashion, one time per client device. I implement
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the server-side of PPFL on generic Darknet ML framework [Red16] by adding 751 lines of C

code based on Microsoft OpenEnclave [Mic20] with Intel SGX. For this, an Intel Next Unit

of Computing (ver.NUC8BEK, i3-8109U CPU, 8GB DDR4-2400MHz) was used with SGX-

enabled capabilities.

Besides, I developed a set of bash shell scripts to control the FL process and create the com-

munication channels. For the communication channels between server and client to be secure,

I employ standard cryptographic-based network protocols such as SSH and SCP. All data leav-

ing the TEE are encrypted using the Advanced Encryption Standard (AES) in Cipher Block

Chaining (CBC) mode with random Initialization Values (IV) and 128-bit cryptographic keys.

Without loss of generality, I opted for manually hardcoding the cryptographic keys inside

the TEEs ourselves. Despite key management in TEE-to-TEE channels being an interesting

research problem, I argue that establishing, updating, and revoking keys do not happen fre-

quently and hence the overhead these tasks introduce is negligible compared to one from the

DNN training.

The implementation of PPFL server and client is available for replication and extension: https:

//github.com/mofanv/PPFL.

6.4.2 Models and datasets

This work focuses on Convolutional Neural Networks (CNNs) since the privacy risks considered

here (Sec. 6.2 and 6.3.1) have been extensively studied on such DNNs [MSDCS19, NSH19].

Also, layer-based learning methods mostly aim at CNN-like DNNs [BEO19]. Specifically, in

this PPFL evaluation, I employ DNNs commonly used in the relevant literature (Table 6.1).

Experimental analysis used MNIST and CIFAR10, two datasets commonly employed by FL

researchers. Note that in practice, FL training needs labeled data locally stored at the client’s

side. Indeed, the number of labeled examples expected to be present in a real setting could

be fewer than what these datasets may allocate per FL client. Nonetheless, using them allows

comparison of results with state-of-art end-to-end FL methods [LSZ+18, WYS+20, GBDM20].

https://github.com/mofanv/PPFL
https://github.com/mofanv/PPFL
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Table 6.1: DNNs used in the evaluation of PPFL.

DNN Architecture
LeNet [LBB+98, MMR+17] C20-MP-C50-MP-FC500-FC10
AlexNet [KSH17, BEO19] C128×3-AP16-FC10
VGG9 [SZ14, WYS+20] C32-C64-MP-C128×2-MP-D0.05-C256×2

-MP-D0.1-FC512×2-FC10
VGG16 [SZ14] C64×2-MP-C128×2-MP-C256×3-C512×3

-MP-FC4096×2-FC1000-FC10
MobileNetv2 [SHZ+18] 68 layers, unmodified refer to [SHZ+18] for details

Architecture notation: Convolution layer (C) with a given number of filters; filter size is 5× 5 in LeNet and
3× 3 in AlexNet, VGG9, and VGG16. Fully Connected (FC) with a given number of neurons. All C and FC
layers are followed by ReLU activation functions. MaxPooling (MP). AveragePooling (AP) with a given stride
size. Dropout layer (D) with a given dropping rate.

Specifically, LeNet is tested on MNIST [LBB+98] and all other models are tested on CI-

FAR10 [KH09]. The former is a handwritten digit image (28×28) dataset consisting of 60k

training samples and 10k test samples with 10 classes. The latter is an object image (32×32×3)

dataset consisting of 50k training samples and 10k test samples with 10 classes. This work fol-

lows the setup in [MMR+17] to partition training datasets into 100 parts, one per client, in

two versions: i) Independent and Identically Distributed (IID) where a client has samples of all

classes; ii) Non-Independent and Identically Distributed (Non-IID) where a client has samples

only from two random classes.

6.4.3 Performance metrics

The evaluation of PPFL prototype presented in the next section focuses on assessing the frame-

work from the point of view of (i) privacy of data, (ii) ML model performance, and (iii) client-

side system cost. Although ML computations (i.e., model training) have the same precision

and accuracy no matter in REEs or TEEs, PPFL changes the FL model training process into

a layer-based training. This affects ML accuracy and the number of communication rounds

needed for the model to converge (among others). Thus, I devise several metrics and perform

extensive measurements to assess overall PPFL performance. I conduct system cost measure-

ments only on client devices since their computational resources are more limited compared to

the server. All experiments are done with 10% of the total number of clients (i.e., 10 out of
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100) participating in each communication round. I run FL experiments on PPFL prototype

(Sec. 6.4.1) to measure the system cost. To measure privacy risks and ML model performance, I

perform simulations on a cluster with multiple NVIDIA RTX6000 GPUs (24GB) nodes running

PyTorch v1.4.0 under Python v3.6.0.

Model Performance. This research measures three metrics to assess the performance of the

model and PPFL-related process:

1. Test Accuracy : ML accuracy of test data on a given FL model, for a fixed number of com-

munication rounds.

2. Communication Rounds : Iterations of communication between server and clients needed to

achieve a particular test accuracy.

3. Amount of communication: Total amount of data exchanged to reach a test accuracy. Trans-

mitted data sizes may be different among communication rounds when considering different

layers’ sizes in layer-wise training.

Privacy Assessment. The research measures the privacy risk of PPFL by applying three

FL-applicable, privacy-related attacks:

1. Data Reconstruction Attack (DRA) [ZLH19a]

2. Attribute Inference Attack (AIA) [MSDCS19]

3. Membership Inference Attack (MIA) [NSH19]

I follow the proposing papers and their settings to conduct each attack on the model trained

in FL process.

Client-side System Cost. I monitor the efficiency of client on-device training, and measure

the following device costs for PPFL-related process information:
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1. CPU Execution Time (s): Time the CPU was used for processing the on-device model

training, including time spent in REE and the TEE’s user and kernel time, which is reported

by using function getrusage(RUSAGE SELF).

2. Memory Usage (MB): I add REE memory (the maximum resident set size in RAM, accessible

by getrusage()) and allocated TEE memory (accessible by mdbg check(1)) to get the total

memory usage.

3. Energy Consumption (J): Measured by all energy used to perform one on-device training step

when the model runs with/without TEEs. For this, I use the Monsoon High Voltage Power

Monitor [Mon20]. I configure the power to Hikey board as 12V voltage while recording the

current in a 50Hz sampling rate. Training with a high-performance power setting can lead

to high temperature and consequently under-clocking. Thus, I run each trial with 2000 steps

continuously, starting with a 120s cooling time.

6.5 Evaluation Results

This section presents the experimental evaluation of PPFL aiming to answer a set of key

questions.

6.5.1 Effectiveness of PPFL thwarting known privacy-related at-

tacks

To measure the exposure of the model to known privacy risks, this work conducts data re-

construction, attribute inference, and membership inference attacks (i.e., DRAs, AIAs, and

MIAs) on the PPFL model. While training AlexNet and VGG9 models on CIFAR10 in an

IID setting. I compare the exposure of PPFL to these attacks against a standard, end-to-end

FL-trained model. Table 6.2 shows the average performance of each attack in the same way

it is measured in literature [ZLH19a, MSDCS19, NSH19]: Mean-Square-Error (MSE) for the

DRA, Area-Under-Curve (AUC) for the AIA, and Precision for the MIA.
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Table 6.2: Results of three privacy-related attacks (DRA, AIA, and MIA) on PPFL vs. end-
to-end (E2E) FL. Average score reported with 95% confidence interval in parenthesis.

Learning
Method

Model
Privacy-related Attack

DRA, in MSE α AIA, in AUC δ MIA, in Prec. ϵ

E2E
AlexNet
VGG9

0.017 (0.01)
0.008 (¡0.01)

0.930 (0.03)
0.862 (0.05)

0.874 (0.01)
0.765 (0.04)

PPFL
AlexNet
VGG9

∼1.3 ∼0.5
0.506 (0.01)
0.507 (¡0.01)

αMSE (mean-square error) measures the difference between constructed images and target images (range is
[0,∞), and the lower MSE is, the more privacy loss); δAUC refers to the area under the receiver operating
curve; ϵPrec. refers to Precision. The range of both AUC and Prec. is [0.5, 1] (assuming 0.5 is for random
guesses), and the higher AUC or Prec. is, the more privacy loss).

From the results, it becomes clear that, while these attacks can successfully disclose private in-

formation in regular end-to-end FL, they fail in PPFL. As DRAs and AIAs rely on intermediate

training models (i.e., gradients) that remain protected, PPFL can fully defend against them.

The DRA can only reconstruct a fully noised image for any target image (i.e., an MSE of ∼1.3

for the specific dataset), while the AIA always reports a random guess on private properties

(i.e., an AUC of ∼0.5). Regarding the MIA on final trained models, as PPFL keeps the last

layer and its outputs always protected inside the client’s TEE, it forces the adversary to access

only previous layers, which significantly drops the MIA’s advantage (i.e., Precision≈0.5). Thus,

PPFL fully addresses privacy issues raised by such attacks.

6.5.2 Communication cost

Predefined ML Performance. Next, the research measures PPFL’s communication cost

to complete the FL process, when a specific ML performance is desired. For this, I first

execute the standard end-to-end FL without TEEs for 150 rounds and record the achieved ML

performance. Subsequently, I set the same test accuracy as a requirement, and measure the

number of communication rounds and amount of communication required by PPFL to achieve

this ML performance.

In this experiment, I set the number of local epochs at clients as 10. I use SGD as the

optimization algorithm and set the learning rate as 0.01, with a decay of 0.99 after each epoch.
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Momentum is set to 0.5 and the batch size to 16. When training each layer locally, I build

one classifier on top of it. The classifier’s architecture follows the last convolutional (Conv)

layer and fully-connected (FC) layers of the target model (e.g., AlexNet or VGG9). Thus, the

training of each global model’s layer progresses until all Conv layers are finished. I choose

AlexNet and VGG9 on CIFAR10, because MNIST is too simple for testing. Then, the classifier

atop all Conv layers is finally trained to provide outputs for the global model. Note that I also

aggregate the client classifiers while training one global layer to provide the test accuracy after

each communication round. I perform these experiments on IID and Non-IID data.

Overall, the results in Table 6.3 show that, while trying to reach the ML performance achieved

by the standard end-to-end FL system, PPFL adds a small communication overhead, if any,

to the FL process. In fact, in some cases, it can even reduce the communication cost, while

preserving privacy when using TEEs. As expected, using Non-IID data leads to lower ML

performance across the system, which also implies less communication cost for PPFL as well.

The reason why in many cases PPFL has reduced communication costs, while still achieving

comparable ML performance, is that training these models on datasets such as CIFAR10 may

not require training the complete model. Instead, during the early stage of PPFL’s layer-wise

training (e.g., first global layer+classifier), it can already reach good ML performance, and in

some cases even better than training the entire model. I explore this aspect further in the

next subsection. Consequently, and due to the needed rounds being fewer, the amount of

communication is also reduced.

The increased cost when training VGG9 is due to the large number of neurons in the classifier’s

FC layer connected to the first Conv layer. Thus, even if the number of total layers considered

(one global layer + classifier) is smaller compared to the latter stages (multiple global layers +

classifier), the model size (i.e., number of parameters) can be larger.

Indeed, we usually are aware that by training any of these models on CIFAR10 [MMR+17] for

more communication rounds, either the PPFL or the regular end-to-end FL can reach higher

test accuracy such as 85% with standard FedAvg. However, the training rounds used here are

sufficient for our needs, as the goal is to evaluate the performance of PPFL (i.e., what is the
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Table 6.3: Communication overhead (rounds and amount) of PPFL to reach the same accuracy
as end-to-end FL system.

Model Data
Baseline
Acc.α

Comm.
Rounds

Comm.
Amount

LeNet IID 98.93% 56 (0.37×)δ 0.38 ×
Non-IID 97.06%ϵ - -

AlexNet IID 68.50% 97 (0.65×) 0.63 ×
Non-IID 49.49% 79 (0.53×) 0.53 ×

VGG9 IID 63.09% 171 (1.14×) 2.87 ×
Non-IID 46.70% 36 (0.24×) 0.60 ×

αAcc.: Test accuracy of 150 communication rounds in end-to-end FL;
δ1× refers to no overhead; ϵPPFL reaches a maximum of 95.99%.

Table 6.4: Time duration of FL phases in one communication round, when training LeNet,
AlexNet and VGG9 models with PPFL and end-to-end (E2E) FL.

Model Method
Duration of FL phases (s)

B.castα Training Upload Aggr.δ Total

L
eN

et

E2E 4.520 2691.0 6.645 0.064 2702.3
PPFL 18.96 6466.2 7.535 1.887 6496.5
- layer 1 4.117 1063.3 1.488 0.426 1069.8
- layer 2 4.670 2130.6 1.627 0.692 2138.3
- layer 3 5.332 2315.2 1.745 0.676 2323.6

- clf.ϵ 4.845 957.16 2.675 0.093 964.87

A
le
xN

et

E2E 14.58 3772.0 6.122 0.061 3792.8
PPFL 57.24 14236 16.89 3.290 14316
- layer 1 16.20 2301.8 4.690 0.129 2322.9
- layer 2 12.56 4041.1 4.777 0.174 4058.8
- layer 3 10.31 4609.4 5.388 0.243 4625.6

- clf. 18.17 3283.8 2.033 2.744 3309.5

V
G
G
9 E2E 14.10 2867.1 8.883 0.067 2890.2

PPFL 353.5 21389 173.8 4.066 21924
- layer 1 127.5 4245.7 95.58 0.375 4469.5
- layer 2 77.22 2900.6 24.82 0.207 3003.1
- layer 3 79.18 3703.1 24.84 0.223 3807.6
- layer 4 27.05 2987.9 12.15 0.235 3027.6
- layer 5 21.47 2404.4 9.137 0.347 2435.7
- layer 6 10.95 2671.0 4.768 0.571 2687.9

- clf. 10.11 2476.4 2.478 2.108 2493.2

αB.cast: Broadcast; δAggr.: Aggregation; ϵclf.: Classifier.

cost for reaching the same accuracy), and not to achieve the best possible accuracy on this

classification task.

Communication Duration of FL Phases. The next experiment investigates the wall-clock



6.5. Evaluation Results 125

time needed for running PPFL’s phases in one communication round: broadcast of the layer

from server to clients, training of the layer at the client device, upload the layer to the server,

aggregate all updates from clients and apply FedAvg. Depending on each layer’s size and TEE

memory size, batch size can start from 1 and go as high as the TEE allows. However, since

the models are uneven in layer sizes (with VGG9 being the largest), I set the batch size to 1

to allow comparison, and also capture an upper bound on the possible duration of each phase

in each model training. Indeed, it is confirmed that increasing batch size for small models that

allow it (e.g., AlexNet with batch size=16), incrementally reduces the duration of phases.

Table 6.4 shows the breakdown of time taken for each phase, for three models and two datasets

(LeNet on MNIST; AlexNet and VGG9 on CIFAR10) and IID data. As expected, layer-wise

FL increases the total time compared to end-to-end FL because each layer is trained separately,

but the previously trained and finalized layers still need to be processed in the forward pass.

In fact, these results are in line with the complexity analysis shown earlier in Sec. 6.3.2, i.e., to

finish the training of all layers, layer-wise training introduces a 3× or higher delay, similar to

the number of layers. On the one hand, we could argue that applications can tolerate this

additional delay if they are to be protected from privacy-related attacks, despite the execution

time increase being non-negligible and up to a few hours of training. Indeed, models can be

(re)trained on longer timescales (e.g., weekly, monthly), and rounds can have a duration of 10s

of minutes, while being executed in an asynchronous manner. On the other hand, training one

layer in PPFL costs similar time to the end-to-end FL training of the complete model. This

highlights that the minimum client contribution time is the same as end-to-end FL: clients can

choose to participate in portions of an FL round, and in just a few FL rounds. For example, a

client may contribute to the model training for only a few layers in any given FL round.

Among all FL phases, local training costs the most, while the time spent in server aggregation

and averaging is trivial, regardless if it is non-secure (i.e., end-to-end FL) or secure (PPFL).

Regarding VGG9, layer-wise training of early layers significantly increases the communication

time in broadcast and upload, because the Conv layers are with a small number of filters

and consequently the following classifier’s FC layer has a large size. This finding hints that

selecting suitable DNNs to be trained in PPFL (e.g., AlexNet vs. VGG9) is crucial for practical
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performance. Moreover, and according to the earlier FL performance results (also see Table 6.2),

it may not be necessary to train all layers to reach the desired ML utility.

6.5.3 PPFL performance comparable to state-of-art FL
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Figure 6.2: Test accuracy of training LeNet, AlexNet, and VGG9 models on IID and Non-IID
datasets when using PPFL.

Note: Horizontal dashed lines refer to the accuracy that the centralized training reaches after every 50 epochs.
End-to-end (E2E) FL trains the complete model rather than each layer, and the ‘Layer No.’ at x-axis are only
applicable to PPFL.

In these experiments, I reduce the number of communication rounds that each layer in PPFL is
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Figure 6.3: System performance of the client devices when training LeNet, AlexNet, and VGG9
using PPFL, measured on one step of training (i.e., one batch of data).

Note: The light grey bar ( ) refers to learning without TEEs, and the black bar ( ) refers to overhead when
the layer under training is inside the TEE. Percentage (%) of the overhead (averaged on one model) is shown
above these bars. Horizontal dashed lines signify the cost of end-to-end FL. In x-axis, ‘c’ refers to ‘classifier’.

trained to 50, finish the training process per layer, and compare its performance with centralized

layer-wise training, as well as regular end-to-end FL. The latter trains the full model for all

rounds up to that point. For example, if PPFL trains the first layer for 50 rounds, and then

the second layer for 50 rounds, the end-to-end FL will train all the model (end-to-end) for 100

rounds.

As shown in Figure 6.2, training LeNet on the “easy” task of MNIST data (IID or not) leads

quickly to high ML performance, regardless of the FL system used. Training AlexNet on IID

and Non-IID CIFAR10 data can lead to test accuracy of 74% and 60.78%, respectively, while

centralized training reaches 83.34%. Training VGG9, which is a more complex model on IID

and Non-IID CIFAR10 data leads to lower performances of 74.60% and 38.35%, respectively,

while centralized training reaches 85.09%. Note that the drop of performance in PPFL when

every new layer is considered into training. This is to be expected, since PPFL starts from

scratch with the new layer, leading to a significant performance drop in the first FL rounds.

Of course, towards the end of the 50 rounds, PPFL performance matches and in some cases

surpasses that of end-to-end FL.

In general, with more layers being included in the training, the test accuracy increases. Inter-

estingly, in more complex models (e.g., VGG9) with Non-IID data, PPFL can lead to a drop

in ML performance when the number of layers keeps increasing. In fact, in these experiments,

it only reaches ∼55% after finishing the second layer and drops. One possible reason for this
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degradation is that the first layers of VGG9 are small and may be not capable of capturing het-

erogeneous features among Non-IID data, which consequently has a negative influence on the

training of the latter layers. On the other hand, this reminds us that we can have early exits for

greedy layer-wise PPFL on Non-IID data. For example, clients that do not have enough data,

or already have high test accuracy after training the first layers can quit before participating

in further communication rounds. Overall, the layer-wise training outperforms end-to-end FL

during the training of the first or second layer.

This part further discusses possible reasons for PPFL’s better ML performance compared to

end-to-end FL. On the one hand, this could be due to some DNN architectures (e.g., VGG9)

being more suitable for layer-wise FL. For example, training each layer separately may allow

PPFL to overcome possible local optima at which the backward propagation can “get stuck”

in end-to-end FL. On the other hand, hyper-parameter tuning may help improve performance

in both layer-wise and end-to-end FL, always with the risk of overfitting the data. Indeed,

achieving the best ML performance possible was not the focus, and more in-depth studying

is needed in the future, to understand under what setups layer-wise can perform better than

end-to-end FL.

6.5.4 Client-side system cost

This research further investigates the system performance and costs on the client devices with

respect to CPU execution time, memory usage, and energy consumption. Figure 6.3 shows

the results for all three metrics, when training LeNet on MNIST, AlexNet, and VGG9 on

CIFAR10, on IID data. The metrics are computed for one step of training (i.e., one batch

of data). More training steps require analogously more CPU time and energy but do not

influence memory usage since the memory allocated for the model is reused for all subsequent

steps. Here, I compare PPFL with layer-wise training without TEEs, to measure the overhead

of using the TEE. Among the trained models, the maximum overhead is 14.6% for CPU time,

18.31% for memory usage, and 21.19% for energy consumption. In addition, when training

each layer, PPFL has comparable results with end-to-end training (i.e., horizontal dashed lines
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Figure 6.4: Test accuracy of training AlexNet and VGG9 models on CIFAR10 (IID and Non-
IID) when using PPFL with blocks of two layers in TEE.

Note: horizontal dashed lines refer to the accuracy that the end-to-end (E2E) FL reaches after 50
communication rounds.

in Figure 6.3).

6.5.5 PPFL ML and system costs when blocks of layers were trained

in clients

As explained in Algorithm 1 of Sec. 6.3.2, if the TEEs can hold more than one layer, it is also

possible to put a block of layers inside the TEE for training. Indeed, heterogeneous devices and

TEEs can have different memory sizes, thus supporting a wide range of block sizes. For these

experiments, it is assumed that all devices have the same TEE size and construct 2-layer blocks,

and measure the system’s test accuracy and ML performance on CIFAR10. The performance of

three or more layers inside TEEs could be measured in a similar fashion (if the TEE’s memory

can fit them). I do not test LeNet on MNIST because it can easily reach high accuracy (around

99%) as shown earlier and in previous studies [MMR+17, WYS+20].
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Figure 6.5: System performance of the client devices when training AlexNet and VGG9 models
on CIFAR10 when using PPFL with blocks of two layers in TEE.

Note: This uses the same settings as in Figure 6.4, measured on one step of training. The light grey bar ( )
refers to learning without TEEs, and the black bar ( ) refers to overhead when the block’s layers under
training are inside the TEE. Percentage (%) of the overhead is shown above these bars. Horizontal dashed
lines refer to the cost of end-to-end FL. ‘c’ refers to ‘classifier’.

Table 6.5: Reduction of communication rounds and amount when training 2-layer instead of
1-layer blocks.

Model Data Comm. Rounds Comm. Amount
AlexNet IID 0.65× −→ 0.18× 0.63× −→ 0.27×

Non-IID 0.53× −→ 0.29× 0.53× −→ 0.44×
VGG9 IID 1.14× −→ 0.43× 2.87× −→ 1.07×

Non-IID 0.24× −→ 0.11× 0.60× −→ 0.27×

Results in Figure 6.4 indicate that training blocks of layers can reach similar or even better

ML performance compared to training each layer separately (i.e., see Fig. 6.2). It can also

improve the test accuracy of complex models such as VGG9, for which I noted a degradation

of ML performance caused by the first layer’s small size and incapacity to model the data (see

Fig. 6.2). In addition, compared to training one layer at a time, training 2-layer blocks reduces

the total required communication to reach the desired ML performance. In fact, while aiming

to reach the same baseline accuracy as in Table 6.3, training 2-layer blocks requires half or less

communication cost than 1-layer blocks see Table 6.5. Also, layer-wise training outperforms

end-to-end FL for similar reasons as outlined in Figure 6.2.

Regarding the system cost, results across models show that the maximum overhead is 13.24%

in CPU time, 32.71% in memory usage, and 14.47% in energy consumption (see Fig. 6.5).

Compared to training one layer at a time, training layer blocks does not always increase the

overhead. For example, overhead when running VGG9 drops from 13.22% to 8.46% in CPU,



6.5. Evaluation Results 131

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 5 10 15 20 25 30 35 40 45 50

Communication rounds

Te
st

 A
cc

.

(a) Transfer from MobileNetv2

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 5 10 15 20 25 30 35 40 45 50

Communication rounds

Te
st

 A
cc

.

Learning methods

● Centralized
1 layer & IID
1 layer & Non−IID
3 layers & IID
3 layers & Non−IID

(b) Transfer from VGG16

Figure 6.6: Test accuracy of training on CIFAR10 (IID and Non-IID) with public models
MobileNetv2 and VGG16, pre-trained on ImageNet.

Note: Both models are trained and tested with 1 and 3 FC layers attached at the end of each model.
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Figure 6.7: System performance of client devices when training with transferred public models
on CIFAR10, measured on 1 step of training.

Note: Light grey bar ( ): learning without TEEs; Black bar ( ): overhead when layers under training are in
TEE. Percentage (%) of overhead shown above bars. MN1: MobileNetv2 with one layer for training (i.e., ‘1
layer’ in Figure 6.6a). VGGs: a small size of VGG16.

from 2.44% to 3.17% in memory usage, and from 21.19% to 14.47% in energy consumption.

One explanation is that combining layers into blocks amortizes the cost of “expensive” with

“cheap” layers. Interestingly, PPFL still has a comparable cost with end-to-end FL training.

6.5.6 Bootstrapping the PPFL with public models help

This research investigates how the backend server of PPFL can use existing, public models to

bootstrap the training process for a given task. For this purpose, I leverage two models (Mo-

bileNetv2 and VGG16) pre-trained on ImageNet to the classification task on CIFAR10. Because

these pre-trained models contain sufficient knowledge relevant to the target task, training the
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last few layers is already adequate for a good ML performance. Consequently, I can freeze all

Conv layers and train the last FC layers within TEEs, thus protecting them as well. By default,

MobileNetv2 has one FC layer, and VGG16 has three FC layers at the end. I test both cases

that one and three FC layers are attached and re-trained for these two models, respectively.

CIFAR10 is resized to 224×224 in order to fit with the input size of these pre-trained models. I

start with a smaller learning rate of 0.001 to avoid divergence and a momentum of 0.9 because

the feature extractors are well-trained.

Test Accuracy. Figure 6.6 shows that the use of pre-trained first layers (i.e., feature extrac-

tors) to bootstrap the learning process can help the final PPFL models reach test accuracy

similar to centralized training. Interestingly, transferring pre-trained layers from VGG16 can

reach higher test accuracy than MobileNetv2. This is expected because VGG16 contains many

more DNN parameters than MobileNetv2, which provides better feature extraction capabilities.

Surprisingly, attaching and training more FC layers at the end of any of the models does not

improve test accuracy. This can be due to the bottleneck of the transferred feature extractors,

which, since they are frozen, they do not allow the model to fully capture the variability of the

new data.

Client-side System Cost. In order to measure client-side cost under this setting, we need to

do some experimental adjustments. The VGG16 (even the last FC layers) is too large to fit in

TEEs. Thus, I reduce the batch size to 1 and proportionally scale down all layers (e.g., from

4096 to 1024 neurons for one FC layer). Indeed, scaling layers may lead to biases in results,

but the actual performance cannot be worse than this estimation. As shown in [MSK+20],

larger models have less overhead because the last layers are relatively smaller compared to the

complete size of the model.

Interestingly, results shown in Figure 6.7 indicate that when we train and keep the last FC

layers inside the client’s on-device TEEs, there is only a small overhead incurred in terms of

CPU time (6.9%), memory usage (1.3%), and energy consumption (5.5%) in either model.

These results highlight that transferring knowledge can be a good alternative for bootstrapping

PPFL training and keeping system overhead low. In addition, note that when the server does
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not have suitable public models, it is possible to first train a model on public datasets that

have a similar distribution to local datasets.

6.5.7 Bootstrapping the PPFL with public datasets help

The server can potentially gather data that have a similar distribution to clients’ private data.

In initialization, the server trains a global model based on the gathered data rather than using

one existing model. Then, the server broadcasts the trained model to clients’ devices. Clients

feed their private data into the model but update only the last layers inside the TEE during

local training. Also, only the last layers being trained are uploaded to the server for secure

aggregation. Because the server holds public data, it is expected that it retrains the complete

model before each communication round in order to keep fine-tuning the first layers. Here, I fix

the communication rounds to 20 and measure only the test accuracy. It is expected the system

cost to be similar to transferring from models because, similarly, only the last layers are trained

at the client-side.

Test accuracy results are shown in Figure 6.8. It is indicated that in general when the server

holds more public data, the final global model can reach a higher test accuracy. This is as

expected since the server gathers a larger part of the training datasets. With complete training

datasets, this process will finally become centralized training. Nevertheless, this indication is

not always held. For example, in the IID case (see the two left plots in Figure 6.8), when

training all layers, servers with public data of 0.1 fraction outperform servers without public

data, i.e., the end-to-end FL, while regarding Non-IID of CIFAR10, servers with 0.1 fraction

cannot outperform that without public data (see right plots in Figure 6.8b). One reason for

it is that the first layers, which are trained on public datasets, cannot represent all features of

privacy datasets. It is also observed that when the server does not have enough public data

(e.g., 0.1 fraction), training only the last 1 or 2 layers can lead to extremely low performance

or even failure. Still, this is because the first layers cannot represent sufficiently the clients’

datasets.

Another observation is that the number of training last layers does not have a significant
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Figure 6.8: Test accuracy when learning with public datasets. The short red line ( ) starting
from y-axis refers to end-to-end FL.

Note: Each trail runs for 10 times, and error bars refer to 95% confidence interval. In the top left figure, test
accuracy is very high and almost the same, as the range of y-axis is set as the same for the same dataset
(i.e., MNIST here). In the bottom right figure (i.e., for CIFAR10), several trails fail to train and thus
corresponding points are not plotted.

influence on test accuracy in terms of IID cases, especially when the server holds more public

data. This is because learning from IID public data is able to represent the feature space of the

complete (private) training datasets. However, the results change when it comes to the Non-

IID case. The number of training last layers has a significant influence on test accuracy. For

instance, regarding VGG9, training only the last 1 or 2 layers at the client-side performs much

worse compared to training 3 or 4 layers (see right plots in Figure 6.8b). Moreover, training 3

or 4 layers tends to have better test accuracy than training more layers (e.g., all layers). One

explanation is that the feature extraction capability of the first layers is good enough when

the server has many public data, so fine-tuning these first layers at the client (e.g., training all

layers) may destroy the model and consequently drop the accuracy.

Overall, by training only the last several layers at the client-side, PPFL with public datasets
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can guarantee privacy, and in the meanwhile, achieve better performance than that of training

all layers.

6.6 Discussion and Summary

PPFL’s experimental evaluation showed that:

• Protecting the training process (i.e., gradient updates) inside TEEs, and exposing layers

only after convergence can thwart data reconstruction and attribute inference attacks. Also,

keeping a model’s last layer inside TEEs mitigates membership inference attacks.

• Greedy layer-wise FL can achieve comparable ML utility with end-to-end FL. While layer-

wise FL increases the total of communication rounds needed to finish all layers, it can reach

the same test accuracy as end-to-end FL with fewer rounds (0.538×) and amount of commu-

nication (1.002×).

• Most PPFL system cost comes from clients’ local training: up to ∼15% CPU time, ∼18%

memory usage, and ∼21% energy consumption in client cost when training different models

and data, compared to training without TEEs.

• Training 2-layer blocks decreases communication cost by at least half and slightly increases

system overhead (i.e., CPU time, memory usage, energy consumption) in cases of small

models.

• Bootstrapping PPFL training process with pre-trained models can significantly increase ML

utility, and reduce overall cost in communications and system overhead.

Use cases. I here present two use cases that can incorporate the technique I develop in this

chapter along with the privacy measurement given in previous chapters.

Use case 1: Speech recognition is the key component in voice control where a ML model has

been the dominant approach to achieving it. The ML model usually requires updates based
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on persons who use it, in order to personalize the model and to achieve a higher recognition

accuracy in a federated learning way (similar to Google Keyboard’s Next Word Prediction

model trained in the federated learning way). However, giving end users access permission to

edit the model would cause privacy leakage about other participants as we discussed such as

data reconstruction and attribute information. Such privacy leakage will disclose the speech

and voice that the end users have, which may be extremely private, so that end users are not

willing to share their model. The Privacy-preserving Federated Learning framework prevents

these potential privacy leakages, and end users would be more likely to share their model to

improve the model accuracy. The provided privacy measurement tool can give end users a sense

that how much privacy they are keeping while improving the their model accuracy, in order to

further promote them to share their locally trained model.

Use case 2. More ML-based modules have been increasingly deployed on the vehicle for state-

of-the-art functions like auto-driving. Obtaining performant ML-based modules is extremely

hard because vehicular environments are multifarious. One approach is that the vehicle trains

such a ML model locally during its daily operation and then shares the model with the server

for deriving one highly performant global ML model. However, this will leak private informa-

tion about other uses because the shared model may be attacked. Such private information

could contain detailed geographic information, location information, human speech in the car,

driving behaviors, etc. More importantly, this information can be used in turn to attack the

vehicle which probably causes life-threatening conditions. By utilizing the Privacy-preserving

Federated Learning method to protect the model training, all vehicles will benefit from perfor-

mance gains by sharing the trained model and still keep their private information. This further

pushes forwards the development of V2X (vehicles-to-everything) considering that all entities

and interactions can cause fatal problems to the vehicle ML system without protection.

Limitations. The attacks tested in this thesis assume the classic ‘honest-but-curious’ adver-

sary [PMB14]. In ML, however, there are also dishonest attacks or active attacks such as back-

door [SKSM19, BVH+20] or poisoning attacks [FCJG20], whose goal is to actively change the

global model behavior, e.g., for surreptitious unauthorized access to the global model [JFK20].
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In the future, one meaningful investigation can be how TEEs’ security properties defend against

such attacks. I further discuss all other limitations and potential future works in the next chap-

ter.
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Chapter 7

Conclusion and Future Outlook

7.1 Thesis Achievement

Protecting Machine Learning with the Confidential Computing technique is still challenging

nowadays. Although many studies have been dedicated to running the training and inference

processes inside TEEs, it is still facing the limitation of trust resources in CC. What is severer is

that the current protection only provides the confidentiality and integrity of that specific stage

in the complete ML pipeline. Malicious behaviors at other stages, especially at the upstream

stage like data preparation, can cause huge negative impacts on the ML pipeline but are almost

impossible to detect and defend against.

Confidential Computing achieves a hardware-based root-of-trust that can establish a more

trustworthy execution environment for ML activities. However, we should rethink whether

“hiding” the training/inference process inside such enclaves is the optimal solution, considering

the conflict between the large scale of the complete ML pipeline and the need for small TCB. One

promising way is to use TEEs wisely and to focus on the key or the most sensitive components,

e.g., putting modules like a data signature verifier, a training integrity checker, or an output

nosier inside TEEs. Therefore, the questions of utmost importance are how to choose modules

to be run inside TEEs and how to design them in efficient and effective ways, which deserve

further exploration.
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This thesis first demonstrated a technique to improve model privacy for a deployed, pre-trained

DNN model using an on-device Trusted Execution Environment (TrustZone). I have applied the

protection to individual sensitive layers of the model (i.e., the last layers), which encode a large

amount of private information on training data with respect to Membership Inference Attacks.

this work analyzed the performance of the protection on two small models trained on the

CIFAR-100 and ImageNet Tiny datasets, and six large models trained on the ImageNet dataset,

during training and inference. The evaluation indicates that, despite memory limitations, the

proposed framework, DarkneTZ, is effective in improving models’ privacy at a relatively low

performance cost. Using DarkneTZ adds a minor overhead of under 3% for CPU time, memory

usage, and power consumption for protecting the last layer, and of 10% for fully utilizing a

TEE’s available secure memory to protect the maximum number of layers (depending on the

model size and configuration) that the TEE can hold. It is believed that DarkneTZ is a step

towards stronger privacy protection and high model utility, without significant overhead in local

computing resources.

Furthermore, quantifying the information flow in backward propagation and information leak-

ages associated with the computed gradients is still a conundrum, as it remains unclear in what

part of the model, and for what kind of attacks, leakages happen. This research presented a

framework that encompasses usable information on attack models and generalizes it by measur-

ing the information loss from gradients over a certain family of attack models. I also presented

gradient-based metrics. These metrics work directly on the trained model and are motivated

by the mathematical formulation of successful attacks. Empirical results show that the layer-

wise analysis provides a better understanding of the memorization of information in neural

networks and facilitates the design of flexible layer-level defenses for establishing better trade-

offs between privacy and costs. Specifically, mathematically-grounded tools are introduced to

better quantify information leakages and applied these tools to localize sensitive information in

several models over different datasets and using different training hyperparameters.

In line with the privacy analysis, this thesis proposed PPFL, a practical, privacy-preserving fed-

erated learning framework, which protects clients’ private information against known privacy-

related attacks. This system adopts greedy layer-wise FL training and updates layers always
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inside Trusted Execution Environments (TEEs) at both server and clients. I implemented

PPFL with mobile-like TEE (i.e., TrustZone) and server-like TEE (i.e., Intel SGX) and em-

pirically tested its performance. For the first time, the possibility is shown to fully guarantee

the privacy and achieve comparable ML model utility with regular end-to-end FL, without

significant communication and system overhead.

7.2 Open Challenges and Future Outlook

There are open challenges that cannot be fully addressed in this thesis. In this section, I detail

these open challenges and future outlooks.

Privacy and Cost Trade-off. The proposed frameworks guarantee ‘full’ privacy by keeping

layers inside TEEs. However, executing computations in secure environments inevitably leads

to system costs. To reduce such costs, one can relax their privacy requirements, potentially

increasing privacy risks due to inference attacks with higher “advantage” [ZKK20]. For example,

clients who do not care about high-level information leakages (i.e., learned model parameters),

but want to protect the original local data, can choose to hide only the first layers of the model in

TEEs. It is expected that by dropping clients already achieving good performance when training

latter layers, one could gain better performance. This may further benefit personalization and

achieve better privacy, utility, and cost trade-offs.

Model Architectures. The models tested in the layer-wise ML framework are linear links

cross consecutive layers. However, the framework can be easily extended to other model archi-

tectures that have been studied in standard layer-wise training. For example, one can perform

layer-wise training on (i) Graph Neural Networks by disentangling feature aggregation and

feature transformation [YCWS20], and (ii) Long Short-Term Memory networks (LSTMs), by

adding hidden layers [SK19a]. There are other architectures that contain skipping connections

to jump over some layers such as ResNet [HZRS16]. No layer-wise training has been investi-

gated for ResNets, but training a block of layers could be attempted by including the jumping

shortcut inside a block.
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Accelerating Local Training. The frameworks use only the CPU of client devices for local

training. Training each layer does not introduce parallel processing on a device. Indeed,

more effective ways to perform this compute load can be devised. One way is that clients

could use specialized processors (i.e., GPUs) to accelerate training. The design can integrate

such advances mainly in two ways. First, the client can outsource the first, well-trained, but

non-sensitive layers, to specialized processors that can share computation and speed-up local

training. Second, recently proposed GPU-based TEEs can support intensive deep learning-like

computation in high-end servers [HJM+20, JTK+19]. Thus, such TEEs on client devices can

greatly speed-up local training. However, as GPU-TEE still requires a small TCB to restrict

the attack surface, PPFL’s design can provide a way to leverage limited TEE space for privacy-

preserving local training.

Federated Learning Paradigms. The framework was tested with FedAvg, but there are

other state-of-art FL paradigms that are compatible with PPFL. The system leverages greedy

layer-wise learning but does not modify the hyper-parameter determination and loss function

(which have been improved in FedProx [LSZ+18]) or aggregation (which is neuron matching-

based in FedMA [WYS+20]). Compared with the system that trains one layer until con-

vergence, FedMA, which also uses layer-wise learning, trains each layer for one round and

then moves to the next layer. After finishing all layers, it starts again from the first. Thus,

FedMA is still vulnerable because gradients of one layer are accessible to adversaries. The

system could leverage FedMA’s neuron-matching technique when dealing with heterogeneous

data [KBW+21]. Besides, the framework is compatible with other privacy-preserving techniques

(e.g., differential privacy) in FL. This is useful during the model usage phase where some users

may not have TEEs. Such a system can also be useful to systems such as FLaaS [KKP20]

that enable third-party applications to build collaborative ML models on the device shared by

said applications. In addition, there exists decentralized FL where clients communicate pair-

to-pair [KKU+20, TGZ+18, MXNV20]. Our design fits into these decentralized FL paradigms

without difficulty by leveraging all clients’ TEEs for layer-wise training, and there is no need

to change other FL workflow.
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[AW10] Hervé Abdi and Lynne J Williams. Tukeys honestly significant difference (HSD)

test. Encyclopedia of Research Design. Thousand Oaks, CA: Sage, pages 1–5,

2010.

[BBR+18] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair,

Yoshua Bengio, Aaron Courville, and Devon Hjelm. Mutual information neural

https://asylo.dev/
https://asylo.dev/


estimation. In International Conference on Machine Learning, pages 531–540,

2018.

[BCG+19] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital

Oliver, and Colin A Raffel. Mixmatch: A holistic approach to semi-supervised

learning. Advances in Neural Information Processing Systems, 32, 2019.

[BD17] Jerome R Bellegarda and Jannes G Dolfing. Unified language modeling frame-

work for word prediction, auto-completion and auto-correction, March 30 2017.

US Patent App. 15/141,645.

[BEG+19] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
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[MMB10] Grégoire Montavon, Klaus-Robert Müller, and Mikio Braun. Layer-wise anal-

ysis of deep networks with Gaussian kernels. Advances in Neural Information

Processing Systems, 23:1678–1686, 2010.

[MMR+17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. Communication-efficient learning of deep networks from



decentralized data. In Artificial Intelligence and Statistics, pages 1273–1282.

PMLR, 2017.

[Mon20] Monsoon. Monsoon solutions inc. home page. https://www.msoon.com/, 2020

(accessed November 12, 2020).

[MPA+16] Ian McGraw, Rohit Prabhavalkar, Raziel Alvarez, Montse Gonzalez Arenas,

Kanishka Rao, David Rybach, Ouais Alsharif, Haşim Sak, Alexander Gruen-
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