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Abstract. Modelling and Simulation (M&S) offer adequate abstrac-
tions to manage the complexity of analysing big data in scientific and
engineering domains. Unfortunately, big data problems are often not eas-
ily amenable to efficient and effective use of High Performance Comput-
ing (HPC) facilities and technologies. Furthermore, M&S communities
typically lack the detailed expertise required to exploit the full potential
of HPC solutions while HPC specialists may not be fully aware of specific
modelling and simulation requirements and applications.

The COST Action IC1406 High-Performance Modelling and Simula-
tion for Big Data Applications has created a strategic framework to fos-
ter interaction between M&S experts from various application domains
on the one hand and HPC experts on the other hand to develop effec-
tive solutions for big data applications. One of the tangible outcomes of
the COST Action is a collection of case studies from various computing
domains. Each case study brought together both HPC and M&S experts,
giving witness of the effective cross-pollination facilitated by the COST
Action.

In this introductory article we argue why joining forces between M&S
and HPC communities is both timely in the big data era and crucial for
success in many application domains. Moreover, we provide an overview
on the state of the art in the various research areas concerned.

1 Introduction

The big data era poses a critically difficult challenge for high-performance com-
puting (HPC): how to efficiently turn massively large and often unstructured or
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semi-structured data first into valuable information and then into meaningful
knowledge. HPC facilities and technologies are effectively required in a rapidly
increasing number of data-intensive domains from life and physical sciences to
socioeconomic systems. Thus, the big data era likewise offers striking opportu-
nities for HPC to widen its scope and to strengthen its societal and economic
impact.

High-performance Computing (HPC) and high throughput computing under-
pin the large scale processing of grand challenge problems with data-intensive
requirements in order to enable complex applications in distinct scientific and
technical fields such as high-energy physics, genomics, systems and synthetic
biology, industrial automation, social and economic data analytics and medical
informatics. This has led to a substantial improvement in the understanding of
diverse domains ranging from the evolution of the physical world to human soci-
eties. Application performance in HPC systems is nowadays largely dominated
by remote and local data movement overhead (network messages, memory and
storage accesses). This poses new challenges to HPC modelling and program-
ming languages, which should enhance data locality where possible and enable
fast data transition where needed.

When investigating the behaviour and complexity of abstractions for large-
scale big data systems, one employs a series of technologies that have their roots
in well-funded large compute cluster environments. With the advent of hard-
ware accelerators (GPU, FPGA), pay-by-use cloud services, and the increased
performance of general-purpose processors, HPC has become an option for many
scientific disciplines.

The COST Action IC1406 High-Performance Modelling and Simulation for
Big Data Applications facilitates cross-pollination between the HPC commu-
nity (both developers and users) and M&S disciplines for which the use of HPC
facilities, technologies and methodologies still is a novel, if any, phenomenon.
Data-intensive domains make the issue of efficiency particularly relevant for
problems such as multi-dimensional and multi-level integration and model state
explosion. Furthermore, these complex systems do not straightforwardly lend
themselves to modular decomposition, a crucial prerequisite for parallelisation,
and, hence, HPC support. They often require a significant amount of compu-
tational resources with data sets scattered across multiple sources and different
geographical locations.

Modelling and Simulation (M&S) are widely considered essential tools in
science and engineering to substantiate the prediction and analysis of complex
systems and natural phenomena. Modelling has traditionally addressed complex-
ity by raising the level of abstraction and aiming at an essential representation
of the domain at hand. This has resulted in a complicated trade-off between
accuracy and efficiency. That is to say, the properties of a system can be studied
by reproducing (i.e., simulating) its behaviour through its abstract representa-
tion. Arguably, the context of the application level should be reconsidered. For
instance, Monte Carlo simulations must be fed with input data, store intermedi-
ate results, and filter and merge output data in an adjusted and reliably robust
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manner. Thus, M&S approaches are particularly affected by the data deluge phe-
nomenon since they need to use large data sets to enhance resolution and scale
and distribute and analyse data in the different phases of the simulation-analysis
pipeline.

Both HPC and M&S are well established research areas each by themselves.
However, a better integration of the two, aimed at applications from various
domains, will bring substantial progress in addressing big data problems.

On the one hand, domain experts need HPC for simulation, modelling, and
data analysis, but are often unaware of performance and parallelism exploita-
tion pitfalls in their designs. On the other hand, designers of HPC development
tools and systems primarily focus on absolute performance measures, by defi-
nition the raison d’être for HPC. However, MIPS, FLOPS, and speedups need
not be the only measures. Domain-specific considerations may put some more or
even almost all emphasis on other factors, such as usability, productivity, eco-
nomic cost and time to solution. By further improving collaboration with domain
experts HPC architects ought to be able to develop programming models and
architectures better tailored to specific problems. Likewise, analysis and valida-
tion tools ought to be improved for a better understanding of HPC systems by
domain experts.

The COST Action IC1406 High-Performance Modelling and Simulation for
Big Data Applications is based on the idea that key aspects of HPC-enabled
M&S must be jointly addressed by considering the needs and issues posed by
the two communities together. When multidimensional, heterogeneous, massive
data sets need to be analysed in a specific big data application domain, the
methods required to suitably process the data are necessarily determined by the
kind of data and analysis to be performed.

Consequently, the features of a programming language, library or execution
machinery supporting the efficient implementation of the analysis should not be
thought of as independent of the specific data and analysis themselves. Analo-
gously, data characteristics must drive the design and implementation of data
storage systems enabling efficient storage, access, and manipulation. Within this
vision, the COST Action addresses the specific challenges of both M&S and HPC
in a unified way.

The participants of the COST Action jointly work towards a unified frame-
work for the systematic advancement of M&S and big data endeavours supported
by leading HPC-enabled models and tools through a coordinated effort of HPC
and M&S experts. The main objective is to create a long-lasting, sustainable,
reference network of research links between the HPC community on the one hand
and the multiple M&S research communities addressing big data problems on
the other hand. Such links enable a novel and persisting collaboration framework
across HPC and M&S communities, covering both academia and industry across
Europe and beyond with a common agenda: turning huge amounts of raw data
into useful knowledge.

The remainder of this paper is organised as follows: We first illustrate the
background of our work and review the current state of the art in Sect. 2.
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Following this introductory part, we have a closer look at the subjects relevant
to the four working groups that make up the COST Action IC1406. We focus on
Enabling Infrastructures and Middleware for Big-Data Modelling and Simulation
in Sect. 3, Parallel Programming Models for Big-Data Modelling and Simulation
in Sect. 4, HPC-enabled Modelling and Simulation for Life Sciences in Sect. 5,
HPC-enabled Modelling and Simulation for Socio-Economical and Physical Sci-
ences in Sect. 6, respectively. Last, but not least, we draw some conclusions in
Sect. 7.

2 Background and State of the Art

High-Performance Computing is currently undergoing a major change with
exascale systems expected for the early 2020s. They will be very different from
today’s HPC systems and pose a number of technological challenges, from energy
consumption to the development of adequate programming models for millions
of computing elements. Several current exascale research programmes, therefore,
span a 10 to 20-year period. Major experiments depend on HPC for the analysis
and interpretation of data and the simulation of models.

Modelling and Simulation have traditionally been used where the complexity
of the problem makes more direct analytical approaches unsuitable or impossi-
ble. This is particularly true for big data problems where the support of HPC
infrastructures and programming models is essential. The design and optimisa-
tion of HPC-enabled big data experiments and large scale HPC systems require
the realistic description and modelling of the data access patterns, the data
flow across the local and wide area networks and the scheduling and workload
presented by hundreds of jobs running concurrently and exchanging very large
amounts of data. Data-intensive (big data) HPC is arguably fundamental to
address grand-challenge M&S problems.

In fact, several M&S approaches are based on discrete-event frameworks due
to their efficiency and scalability. M&S have addressed problems such as schedul-
ing in distributed, heterogeneous environments, economy-driven resource alloca-
tion, big data access in distributed environments and more generic HPC concur-
rent, distributed and cloud architecture. As described in the CERN Big Data
HPC infrastructure, stochastic data traffic, management of virtual machines, and
job allocation in data centers represent grand-challenge HPC-related problems,
which require extensive use of M&S and HPC itself. Attempts to describe and
analyse hardware, middleware and application co-design, an important develop-
ment direction for HPC, have been made, but they currently appear too costly.
The complexity can be reduced by means of coarse-grained models, which need
precise measures of uncertainty and associated errors and statistical inference.
Simulations have been run in this context for systems with one million cores.
Recent trends aim to empower programmers to more easily control the hardware
performance. Examples include the embedding of HPC facilities in standard OS
distributions.

From an application perspective, HPC-enabled M&S has started to play a
crucial role in a number of diverse knowledge domains. Preliminary proposals
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with direct porting of existing techniques in HPC (e.g. in climate modelling)
and further developments are being sought. In computational electromagnetics
modelling problems with up to one billion variables have been addressed with
both memory- and CPU-intensive algorithms, solving major longstanding prob-
lems. More structured approaches based on pattern-based parallel programming
effectively cater for the design and development of parallel pipelines for M&S in
systems biology and next generation sequencing [1,2], providing developers with
portability across a variety of HPC platforms, like clusters of multi-cores [3,4]
as well as cloud infrastructures [5].

However, HPC-enabled M&S has still not reached a fully satisfactory matu-
rity, facing relevant problems in terms of computational efficiency and lack
of generality and expressiveness when addressing data-intensive scenarios. The
development of new complex HPC-enabled M&S applications requires collabo-
rative efforts from researchers with different domain knowledge and expertise.
Since most of these applications belong to domains within the life, social and
physical sciences, their mainstream approaches are rooted in non-computational
abstractions and they are typically not HPC-enabled.

Recent surveys of the use of HPC in life sciences illustrate possible new
scenarios for knowledge extraction and the management of large-scale and het-
erogeneous data collections with numerous applications in medical informat-
ics. Valuable big data diagnostic applications are being developed with the aim
of improving diagnosis by integrating images and large multi-source data sets.
These come at the extraordinary price of HPC-level infrastructure and suffer
from the lack of standard protocols for big data representation and processing.
Once computational results are obtained, large amounts of information need
domain-specific validation. For instance, in bio-medical studies, wet-lab valida-
tion typically involves additional resource-intensive work that has to be geared
towards a statistically significant distilled fragment of the computational results,
suitable to confirm the bio-medical hypotheses and compatible with the available
resources.

Big data is an emerging paradigm whose size and features are beyond the abil-
ity of the current M&S tools [6]. Datasets are heterogeneous, i.e., they are pro-
duced by different sources and are of a large size with high in/out rates. big data
accessibility and the capability to efficiently bring and combine data together
will be extremely valuable. Currently, many HPC-enabled M&S efforts have
been proposed in several big data contexts, as diverse as performance evaluation
and the management of HPC frameworks, research on blood anti-coagulants, the
numerical evaluation of quantum dynamics, computational social network analy-
sis (e.g. the relationship between Internet use and specific emotions, human obe-
sity or happiness) and genomic sequence discovery. Some approaches have been
successful, leading to potential industrial impact and supporting experiments
that generate petabytes of data, like those performed at CERN for instance.

Furthermore, there are a growing number of new implementations of memory-
demanding applications that have not yet been adapted for HPC environments,
mainly because of limited communication between field experts and those with
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suitable skills for the parallel implementation of data-intensive applications.
Therefore, another natural objective of our work is to intelligently transfer the
heterogeneous workflows in M&S to HPC, which will boost those scientific fields
that are essential for both M&S and HPC societies [7]. Benefits will be recipro-
cal. M&S experts are be supported in their investigations by properly-enabled
HPC frameworks, currently sought but missing. HPC architects in turn obtain
access to a wealth of application domains by means of which they will better
understand the specific requirements of HPC in the big data era. Among others,
we aim at the design of improved data-center oriented programming models and
frameworks for HPC-enabled M&S.

3 Enabling Infrastructures and Middleware for Big-Data
Modelling and Simulation

From the inception of the Internet, one has witnessed an explosive growth in the
volume, speed and variety of electronic data created on a daily basis. Raw data
currently originates from numerous sources including mobile devices, sensors,
instruments (e.g., CERN LHC, MR scanners, etc.), computer files, Internet of
Things, governmental/open data archives, system software logs, social networks,
commercial datasets, etc. The challenge is how to collect, integrate and store,
with less hardware and software requirements, tremendous data sets generated
from distributed sources.

The so-called big data problem requires the continuous improvement of
servers, storage, and the whole network infrastructure in order to enable the
efficient analysis and interpretation of data through on-hand data management
applications, e.g. agent-based solutions in Agent Component in Oracle Data
Integrator (ODI). The main challenge in big data modelling and simulation is to
define a complete framework which includes intelligent management and com-
munication, data fusion, mapping algorithms and protocols. The programming
abstractions and data manipulation techniques must, therefore, be designed for
(a) the seamless implementation of application solutions with efficient levels of
virtualisation of computational resources (communications, storage, and servers)
and (b) the effective normalisation and merging of data with dissimilar types into
a consistent format (wide class of data services).

Energy-awareness is an important aspect of big data computing and sim-
ulation. The goal is to reduce the gap between the capacity provided by dis-
tributed computing environments and application requirements, especially dur-
ing low workload periods. Various efforts are undertaken to develop energy
efficient task scheduling and balancing of loads [8–11] and frequency scaling
techniques [12–14].

Infrastructure and Middleware for Big Data Processing. Numerous algorithms,
computing infrastructures and middleware for HPC and big data processing have
been developed during previous decades [15,16]. In general, current middleware
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for parallel computating focuses on providing powerful mechanisms for manag-
ing communication between processors and environments for parallel machines
and computer networks. High Performance Fortran (HPF), OpenMP, OpenACC,
PVM, and MPI were designed to support communications for scalable applica-
tions. The application paradigms were developed to perform calculations on
shared memory machines and clusters of machines with distributed memory.
However, the easy access to information offered by the internet led to a new
idea: extending the connection between computers, so that distributed resources,
including computing power, storage, applications, etc. could be accessed as eas-
ily as information on web pages. The idea was implemented in many forms, but
lately it has grown into three main computing environments: computing clus-
ters, grids and clouds. A survey of software tools for supporting cluster, grid
and cloud computing is provided in [15,17,18]. Examples of commonly known
kernels for cluster computing are MOSIX [19], OpenSSI [20] and Kerrighed [21].
Uniform interfaces to computing resources in grids and toolkits for building grids
(e.g. UNICORE [22] or Globus Toolkit [23]) are described in literature [24,25].
Cloud computing infrastructures consisting of services delivered through com-
mon centers and built on servers are discussed in [18].

An alternative to supercomputers and computing clusters—the (General-
Purpose) Graphics Procession Unit (GPGPU)—is widely used in HPC simula-
tion [26]. Using both CPU and GPU through CUDA or OpenCL many real-world
applications can rather easily be implemented and run significantly faster than
on multi-processor or multi-core systems.

Tools and Platforms for Big Data Processing. Job scheduling, load balancing
and management play a crucial role in HPC and big data simulation [27,28].
TORQUE [29] is a distributed resource manager providing control over batch
jobs and distributed compute nodes. Slurm [30] is an open source, fault-tolerant
and highly scalable cluster management and job scheduling system for large and
small Linux clusters. MapReduce [31] is a framework that simplifies the process-
ing of massive volumes of data through using two subsequent functions, i.e. the
Map function that sorts and splits the input data and the Reduce function that is
responsible for processing the intermediate output data. Resource management
and job scheduling technology like YARN [32] allows multiple data processing
engines such as batch processing, real-time streaming, interactive SQL and data
science to handle data stored in a single platform. The Apache Hadoop software
library [32] supports the distributed, scalable batch processing of large data sets
across clusters of computers using a simple programming model. The power of
the Hadoop platform is based on the Hadoop Distributed File System (HDFS), a
distributed and scalable non-relational database HBase, MapReduce, YARN and
many other open source projects. Some of the best-known include: Spark, Pig,
Hive, JAQL, Sqoop, Oozie, Mahout, etc. Apache Spark [33], a unified engine
for big data processing, provides an alternative to MapReduce that enables
workloads to execute in memory, instead of on disk. Thus Spark avoids the
resource-intensive disk operations that MapReduce requires. It processes data in
RAM utilizing a data model based on the Resilient Distributed Dataset (RDD)
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abstraction. Apache Storm [34] is a scalable, rapid, fault-tolerant platform for
distributed computing that has the advantage of handling real time data process-
ing downloaded from synchronous and asynchronous systems. Apache Flink [35]
can be used to batch and stream processing, event-time processing and stateful
computations, well-suited for discrete-event simulation.

Platforms for Big Data Visualisation and Machine Learning. Numerous tools for
big data analysis, visualisation and machine learning have been made available.
RapidMiner Studio [36], Orange [37] and Weka [38] belong to this group. New
software applications have been developed for browsing, visualizing, interpreting
and analyzing large-scale sequencing data. Some of them have been designed
specifically for visualisation of genome sequence assemblies, including Tablet
[39]. Other tools, such as BamView [40] have been developed specifically to
visualise mapped read alignment data in the context of the reference sequence.
Artemis [41] is a freely available integrated platform for visualisation and anal-
ysis of large-scale experimental data. The survey of platforms and packages for
social network analysis, simulation and visualisation that have wide applications
including biology, finance and sociology is presented in [42].

Frameworks for Big Data Systems Simulation. Another issue is concerned with
large-scale systems simulation. The combination of efficient and reliable simula-
tion software and purpose-built hardware optimized for simulation workloads is
crucial to fully exploit the value of simulation and big data. Synchronous and
asynchronous distributed simulation have been one of the options that could
improve the scalability of a simulator both in term of application size and exe-
cution speed, enabling large scale systems to be simulated in real time [43,44].
ScalaTion [45] provides comprehensive support for discrete-event simulation and
big data analytics. A software framework for federated simulation of WSN and
mobile ad-hoc networks is presented in [46]. The paper [47] reviews several large-
scale military simulations and describes two frameworks for data management
based on layered and service oriented architectures. GPU-based simulation plat-
forms are mainly dedicated to massive data processing, e.g. high-performance
neural network simulators [48,49], simulation of P systems [50], large-scale vol-
ume of data simulation and visualisation [51].

Numerous software platforms have been designed to simulate large-scale dis-
tributed data centers and computer networks. JADE [52] is the heterogeneous
multiprocessor design simulation environment that allows to simulate network-
on-chips, inter-chip networks and intra-rack networks using optical and electrical
interconnects. SimGrid [53] can be used to simulate grids, clouds, HPC or P2P
systems and evaluate heuristics or prototype applications. CloudSim [54] is one
of the most popular open source framework for modeling and simulation of cloud
computing infrastructures and services. Multi2Sim [55] is a software platform for
simulation of new CPU and GPU technologies.
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4 Parallel Programming Models for Big-Data Modelling
and Simulation

A core challenge in modelling and simulation is the need to combine software
expertise and domain expertise. Even starting from well-defined mathematical
models, manual coding is inevitable. When parallel or distributed computing is
required, the coding becomes much harder. This may impair time-to-solution,
performance, and performance portability across different platforms. These prob-
lems have been traditionally addressed by trying to lift software design and
development to a higher level of abstraction.

In the domain-specific languages (DSL) approach abstractions aim to pro-
vide domain experts with programming primitives that match specific concepts
in their domain. Performance and portability issues are ideally moved (with
various degrees of effectiveness) to development tools. Examples include Verilog
and VHDL hardware description languages, MATLAB for matrix programming,
Mathematica and Maxima for symbolic mathematics, etc.

In general-purpose approaches such as model-driven engineering (MDE),
general-purpose programming concepts are abstracted into high-level constructs
enforcing extra-functional features by design, e.g. compositionality, portability,
parallelisability. In this regard, the number and the quality of programming mod-
els enabling the high-level management of parallelism have steadily increased
and, in some cases, these approaches have become mainstream for a range of
HPC, data-intensive and big data workloads: streaming (e.g. Storm [56] and
Spark [57]), structured parallel programming and MapReduce [58] (e.g. Hadoop
[59], Intel TBB [60], OpenMP [61], MPI [62]), SIMD (e.g. OpenACC [63]). This
list can be extended by various academic approaches, including ones proposed
and advocated by members of the COST Action (e.g. FastFlow [64,65]), SkePU
[66], SaC [67], S-Net [68]).

A sensible result achieved by the working group on Parallel Programming
Models for Big-Data Modelling and Simulation has been the assessment of the
state of the art. A selection of the mainstream approaches in this area are pre-
sented in Sect. 4.1, namely Google MapReduce, Apache Spark, Apache Flink,
Apache Storm and Apache Beam. In Sect. 4.2 we describe a systematic mapping
study, aimed to capture and categorise non-mainstream DSLs.

4.1 Languages and Frameworks for Big Data Analysis

Boosted by big data popularity new languages and frameworks for data ana-
lytics are appearing at an increasing pace. Each of them introduces its own
concepts and terminology and advocates a (real or alleged) superiority in terms
of performance or expressiveness against its predecessors. In this hype, for a
user approaching big data analytics (even an educated computer scientist) it is
increasingly difficult to retain a clear picture of the programming model under-
neath these tools and the expressiveness they provide to solve some user-defined
problem.
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To provide some order in the world of big data processing, a toolkit of models
to identify their common features is introduced, starting from data layout.

Data-processing applications are divided into batch vs. stream processing.
Batch programs process one or more finite datasets to produce a resulting finite
output dataset, whereas stream programs process possibly unbounded sequences
of data, called streams, in an incremental manner. Operations over streams may
also have to respect a total data ordering, for instance to represent time ordering.

The comparison of different languages for big data analytics in terms of
the expressiveness of their programming models is a non-trivial exercise. A for-
malised approach requires to map them onto an unifying (and lower-level) com-
putation model, i.e. the Dataflow model [69]. As shown in [70], it is able to
capture the distinctive features of all frameworks at all levels of abstraction,
from the user-level API to the execution model. In the Dataflow model, appli-
cations as a directed graph of actors. In its “modern” macro-data flow version
[71], it naturally models independent (thus parallelizable) kernels starting from
a graph of true data dependencies, where a kernel’s execution is triggered by
data availability.

The Dataflow model is expressive enough to describe batch, micro-batch
and streaming models that are implemented in most tools for big data process-
ing. Also, the Dataflow model helps in maturing the awareness that many big
data analytics tools share almost the same base concepts, differing mostly in
their implementation choices. For a complete description of the Dataflow model
we refer back to [6,70], where the main features of mainstream languages are
presented.

Google MapReduce. Google can be considered the pioneer of big data pro-
cessing, as the publication of the MapReduce framework paper [72] made this
model mainstream. Based on the map and reduce functions, commonly used in
parallel and functional programming [73], MapReduce provides a native key-
value model and built-in sorting facilities. These made MapReduce successful
for several big data analytics scenarios.

A MapReduce program is built on the following user-defined functions:

1. a map function that is independently applied to each item from an input
key-value dataset to produce an intermediate key-value dataset;

2. a reduce function that combines all the intermediate values associated with
each key (together with the key itself) into lists of reduced values (one per
key);

3. a partitioner function that is used while sorting the intermediate dataset
(i.e., before being reduced), so that the order over the key space is respected
within each partition identified by the partitioner.

Parallel Execution. A simple form of data parallelism can be exploited on the
flat-map side, by partitioning the input collection into n chunks and having n
executors process a chunk. In Dataflow terms this corresponds to a graph with n
actors, each processing a token that represents a chunk. Each flat-map executor
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emits R (i.e. the number of intermediate partitions) chunks, each containing the
intermediate key-value pairs mapped to a given partition.

The intermediate chunks are processed by R reduce executors. Each executor:

1. receives n chunks (one from each flat-map executor);
2. merges the chunks into an intermediate partition and partially sorts it based

on keys, as discussed above;
3. performs the reduction on a per-key basis.

Finally, a downstream collector gathers R tokens from the reduce executors and
merges them into the final result.

A key aspect in the depicted parallelisation is the shuffle phase in which data
is distributed between flat-map and reduce operators, according to an all-to-all
communication schema. This poses severe challenges from the implementation
perspective.

Run-time Support. The most widespread implementation (i.e. Hadoop), is based
on a Master-Workers approach, in which the master retains the control over
the global state of the computation and informs the workers about the tasks to
execute.

A cornerstone of Hadoop is its distributed file system (HDFS), which is used
to exchange data among workers, in particular upon shuffling. As a key feature
HDFS exposes the locality for stored data, thus enabling the principle of moving
the computation towards the data and to minimise communication. However,
disk-based communication leads to performance problems when dealing with
iterative computations, such as machine learning algorithms [74].

Apache Spark. Apache Spark [75] was proposed to overcome some limita-
tions in Google’s MapReduce. Instead of a fixed processing schema, Spark allows
datasets to be processed by means of arbitrarily composed primitives, construct-
ing a directed acyclic graph (DAG). Moreover, instead of exclusively relying on
disks for communicating data among the processing units, in-memory caching is
exploited to boost performance, in particular for iterative processing.

Parallel Execution and Runtime Support. From the application DAG, Spark
infers a parallel execution dataflow, in which many parallel instances of actors
are created for each function and independent actors are grouped into stages. Due
to the Spark batch-oriented implementation, each stage that depends on some
previous stages has to wait for their completion before execution commences,
equivalent to the classical Bulk Synchronous Parallelism (BSP) approach. Thus,
a computation proceeds in a series of global supersteps, each consisting of:

1. concurrent computation, in which each actor processes its own partition;
2. communication, where actors exchange data between themselves if necessary

(the shuffle phase);
3. barrier synchronization, where actors wait until all other actors have reached

the same barrier.
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Similar to the MapReduce implementation, Spark’s execution model relies on
the master-Workers model: a cluster manager (e.g. YARN) manages resources
and supervises the execution of the program. It manages application scheduling
to worker nodes, which execute the application logic (the DAG) that has been
serialized and sent by the master.

Apache Flink. Apache Flink [76] is similar to Spark, in particular from the
API standpoint. However, Flink is based on streaming as a primary concept,
rather than a mere linguistic extension on top of batch processing (as Spark).
With the exception of iterative processing, stream parallelism is exploited to
avoid expensive synchronizations among successive phases when executing both
batch and stream programs.

Parallel Execution and Runtime Support. Flink transforms a JobGraph into an
ExecutionGraph, in which the JobVertex contains ExecutionVerteces (actors),
one per parallel sub-task. A key difference compared to the Spark execution
graph is that, apart from iterative processing (that is still executed under BSP),
there is no barrier among actors or verteces. Instead, there is effective pipelining.

Also Flink’s execution model relies on the master-workers model: a deploy-
ment has at least one job manager process that receives Flink jobs and coordi-
nates checkpointing and recovery. The job manager also schedules work across
the task manager processes (i.e. the workers), which usually reside on separate
machines and in turn execute the code.

Apache Storm. Apache Storm [56,77] is a framework that exclusively targets
stream processing. It is perhaps the first widely used large-scale stream process-
ing framework in the open source world. Whereas Spark and Flink are based on
a declarative data processing model, i.e., they provide as building blocks data
collections and operations on those collections, Storm, in contrast, is based on a
“topological” approach in that it provides an API to explicitly build graphs.

Parallel Execution and Runtime Support. At execution level, each actor is repli-
cated to increase the inter-actor parallelism, and each group of replicas corre-
sponds to the Bolt/Spout in the semantics Dataflow. Each of these actors repre-
sents independent data-parallel tasks, on which pipeline parallelism is exploited.
Eventually, tasks are executed by a master-workers engine, as in the previously
discussed frameworks.

Google Cloud Platform and Apache Beam. Google Dataflow SDK [78]
is part of the Google Cloud Platform. Google Dataflow supports a simplified
pipeline development via Java and Python APIs in the Apache Beam SDK,
which provides a set of windowing and session analysis primitives as well as an
ecosystem of source and sink connectors. Apache Beam allows the user to create
pipelines that are executed by one of Beam’s supported distributed process-
ing back-ends, which are called runners. Currently, they include, among others,
Apache Flink, Apache Spark and Google Cloud Dataflow.
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Parallel Execution and Runtime Support. The bounded (or unbounded) nature
of a PCollection also affects how data is processed. Bounded PCollections can be
processed using batch jobs, that might read the entire data set once and perform
processing as a finite job. Unbounded PCollections must be processed using
streaming jobs—as the entire collection will never be available for processing
at any one time—and bounded subcollections can be obtained through logical
finite size windows.

As mentioned, Beam relies on the runner specified by the user. When exe-
cuted, an entity called Beam Pipeline Runner (related to execution back-end)
translates the data processing pipeline into the API compatible with the selected
distributed processing back-end. Hence, it creates an execution graph from the
Pipeline, including all the Transforms and processing functions. That graph is
then executed using the appropriate distributed processing back-end, becoming
an asynchronous job/process on that back-end. Thus, the final parallel execution
graph is generated by the back-end.

The parallel execution data flow is similar to the one in Spark and Flink.
Parallelism is expressed in terms of data parallelism in Transforms (e.g. ParDo
function) and inter-actor parallelism on independent Transforms. In Beam’s
nomenclature this graph is called the Execution Graph. Similar to Flink pipeline
parallelism is exploited among successive actors.

4.2 The Systematic Mapping Study on Parallel Programming
Models for Big-Data Modelling and Simulation

A major challenge undertaken within the working group on Parallel Program-
ming Models for Big-Data Modelling and Simulation was that of trying to under-
stand and classify the state of the art in this area and to better understand the
lines of future development. In order to minimize the bias, given that many
Action participants actively design programming models and tools, the work-
ing group refined and adopted a systematic methodology to study the state of
the art, called systematic mapping study (SMS). The mapping study focused
on the main paradigms and properties of programming languages used in high-
performance computing for gig data processing.

The SMS started from the definition of a workflow based on the methodology
proposed in [79] that is organised in five successive steps:

Research Questions aiming at formulating the research questions the SMS
should answer;

Search of Primary Studies aiming at detecting the largest number of primary
articles related to the proposed research questions;

Selection of Primary Studies aiming at sieving false positive by a human-
driven abstract inspection;

Quality Assessment aiming at validating the fitness of the articles against the
aims of the SMS;

Data Extraction and Synthesis which aims at answering each research ques-
tion for all selected articles.
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Specifically, the SMS focused on domain-specific languages and explicitly
excluded general-purpose languages, such as C, C++, OpenMP, Fortan, Java,
Python, Scala, etc., combined with parallel exploitation libraries, such as MPI.

Quantitatively, in the SMS, the initial literature search resulted in 420 arti-
cles; 152 articles were retained for final review after the evaluation of initial
search results by domain experts. Results of our mapping study indicate, for
instance, that the majority of the used HPC languages in the context of big
data are text-based general-purpose programming languages and target the end-
user community. To evaluate the outcome of the mapping study, we developed
a questionnaire and collected the opinions of domain experts. A comparison of
mapping study outcome with opinions of domain experts reveals that the key fea-
tures of HPC programming languages for big data are portability, performance
and usability. We identified the language learning curve and interoperability as
the key issues that need more attention in future research.

5 HPC-Enabled Modelling and Simulation for Life
Sciences

Life Sciences typically deal with and generate large amounts of data, e.g., the
flux of terabytes about genes and their expression produced by state of the art
sequencing and microarray equipment, or data relating to the dynamics of cell
biochemistry or organ functionality. Some modelling and simulation techniques
require the investigation of large numbers of different (virtual) experiments, e.g.,
those addressing probabilistic, noise and robustness aspects [80–84], or based
on statistical approaches. Curation and mining of large, typically multimedia,
medical datasets for therapeutic and analytics purposes, are computationally
expensive. Recent and future developments, such as personalised medicine need
to integrate a mix of genomics, Systems and Synthetic Biology and medical
information in a systemic description of a single individual. A surge of large-
scale computational needs in these areas spans from the BBMRI (Biobanking and
Biomolecular Resources Research Infrastructure) and the flagship effort Human
Brain Project, which targets simulating the behaviour of a human brain, to
FP7 projects like PD-HUMMODEL and TRANSFORM. In fact, this COST
Action integrates well with the goals of the ESFRI Roadmap, promoted by
the EC. Requirements go from pure computational efficiency, to large data file
management and storage capabilities and vast memory-bound computational
power.

This section focuses on the much-needed integration of HPC architects and
Life Sciences modellers, with the goal of letting them develop and diffuse a
coordinated, mature and productive use of HPC facilities. In order to bridge
these two communities, some big data problems, applications and modelling
techniques in the broad context of live sciences are discussed. We will consider
approaches for modelling healthcare and diseases as well as problems in systems
and synthetic biology. We will survey some themes on genomics and metabolic
networks, then discuss efficient modelling and learning techniques, and finally
consider also the modelling of the management of healthcare.
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Healthcare and Disease Modelling. Understanding disease complexity is the def-
inite scientific challenge of the 21st century medicine [85,86]. Using computa-
tional models is the path to a technological medical revolution, where modelling
will have a truly catalytic effect in biomedical big data by bridging the large
body of knowledge produced by next generation genomic data with the clinical
quantities and the functional observable (for instance through self monitor and
implantable sensor devices). Biomedicine is essentially a big data field, and mod-
elling is superior to the data-mining correlative approach in transforming data
into knowledge.

Taking into account only the DNA sequencing data, its rate of accumula-
tion is much larger than other major generators of big data, such as astronomy,
YouTube and Twitter. Recent estimates show that the total amount of sequenc-
ing data produced is doubling approximately every seven months. The growth
is driven by three main factors:

1. Biomedicine is heavily interdisciplinary and e-Healthcare requires physicians,
bioinformaticians, computer scientists and engineers to team up. Although
they continuously produce results that are underutilised in medical prac-
tice, such interdisciplinarity generates the need for large-scale data integra-
tion. Areas such as systems medicine, clinical informatics, systems biology
and bioinformatics have large overlaps with classical fields of medicine, and
extensively use biological information and computational methods to infer
new knowledge towards understanding disease mechanism and diagnosis.

2. Many acute and chronic diseases originate as network diseases. A patient’s
condition is characterised by multiple, complex and interrelated conditions,
disorders or diseases [87,88]. A state of health can be defined as the capac-
ity of absorbing accidents and showing metabolic flexibility, and is altered
by infections and ageing, that cause comorbidities to emerge. Therefore, a
good-quality stratification of a patient requires lots of information. The bridge
between the characterisation of a disease mechanism and the stratification of a
patient would require a data-driven computational model. Current successful
approaches focus on resource-intensive hybrid modelling approaches including
cellular automata, (stochastic) differential equations and agent-based mod-
els. The more effective the diagnostic and prognostic markers are, the less
information will be needed to correctly stratify a patient. This aspect makes
precision medicine highly computation-resource intensive. In particular, com-
plex disease management is mostly based on electronic health records col-
lection and analysis, which are expensive processes. Analyses are presented
in a rather empirical and sometimes simplistic way, completely missing the
opportunity of uncovering patterns of predictive relationships and meaningful
profiles. Our chances to make the data the drivers of paths to cures for many
complex diseases depends in a good percentage on extracting evidences from
large-scale electronic records comparison and on models of disease trajecto-
ries. The medical approach to comorbidities represents an impressive compu-
tational challenge, mainly because of data synergies leading to the integration
of heterogeneous sources of information, the definition of deep phenotyping
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and markers re-modulation; the establishment of clinical decision support sys-
tems. Computational model development is further complicated by aspects of
geo-differentiation and ethnic balance, protocols for sharing of digital infor-
mation, interoperability between different record types (structured and non-
structured) to optimize the process of decision making in an actionable way.

3. A third important factor is the multi-scale nature of the biomedical infor-
mation. The genome sequence is only the first level of understanding of the
human biology. Bioinformatics data resources should be much more populated
with longitudinal information gathered at intracellular, cell, intercellular and
tissue levels. The longitudinal sampling could happen for important clinical
events, such as hospitalisation or routinely perhaps a few times from uterine
to elderly age. At the bioinformatics level, genome wide information of all
the different levels of biological information will be integrated and this may
include: Genomic sequence variations (haplotypes), levels of gene functioning
for different tissues and conditions (circadian and longitudinal data) (gene
expression), Epigenetic changes for different tissues (methylations and his-
tonic modifications), information on chromatin conformation for different cell
types and conditions (FISH, HI-C, 5C, microscopy), protein and metabolites
abundances for different cell types and conditions, protein-protein interaction
variations (longitudinal data).

For instance by using the Next Generation Sequencing technology approaches
cancer clones, subtypes and metastasis could be appropriately traced. Micro-
biome data (number, type and multi Omics) for different part of the body and
different conditions. Furthermore, gut microbiome could be regularly sampled,
monitoring the diets and nutritional shifts. This could be of great importance for
epigenetic data, which shows alteration with ageing, inflammatory diseases, obe-
sity, cardiovascular and neurodegenerative diseases. Gene expression may vary
in relation to the circadian cycle or ageing. Sampling may focus on determining
the actual level of inflammation that is related to ageing rate (inflammaging).
Large number of high-resolution images of the different parts of the patient’s
body such as MRI, PET, CT scan, including intravital microscopy techniques,
can be used. The images will tend to be progressively enriched with genomics
and proteomics data information. A disease first emerges as a dysfunction at the
nucleus level, then metabolic and signalling, cell level and is then translated at
the tissue level due to a change in the cell response. The tissue level is central to
stem cells organisation in maintaining the mechanical properties of the tissue:
the current thinking is that the dominant effect of reduced stem cell activity and
failing tissue maintenance is due to changes in the niches that support and con-
trol stem cell activity. Therefore, tissue modelling can be thought as the missing
link between basic research and clinical practice and will require a conceptual
framework for an efficient multi-scale analysis between the cell and tissue levels.
The cell level will be represented with agent-based or ODE models that will
be specifically developed to handle millions of single cells. The tissue level will
be represented using image-based finite element modelling (partial differential
equation, PDE).
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An important example is the bone system which is also related to the immune
and endocrine systems. The osteocytes in the bone act as sensitive mechanosen-
sors so they react to microdamages that alter the tension; with their flattened
morphology and long processes, they form a sensory network which allows the
detection of abnormal strain situations such as generated by microcracks. Nor-
mal locomotion is thought to cause microdamage to bone material and, thus,
stimulate osteoclasts and osteoblasts to remove and then replace damaged tissue.
They can be modelled as agents driven by signals and could reflect concentra-
tions and velocities. Osteocytes are connected to one another and to surface
osteoblasts via gap junctions. In general, mechanical forces are experienced by
many osteoprogenitor cells which are present in the bone marrow and in the soft
mesenchymal tissues subjected to mechanical strain. Dependant on the mag-
nitude of mechanical stress osteoprogenitors differentiate or transdifferentiate
into osteoblastlike cells that express characteristic proteins and can form bone
matrix. Under physiological mechanical stimuli osteocytes prevent bone resorp-
tion by changing the RANKL/osteoprotegerin (OPG) ratio. By communicating
these signals to bone lining cells (the second terminally differentiated osteoblast
cell type) or secrete factors that recruit osteoclasts, osteocytes initiate the repair
of damaged bone. The functional behaviour of bone tissues is primarily described
in term of physical quantities such as pressures and forces to reflect deforma-
tion, loading, stress, strain, etc. Such quantities, are usually considered to vary
across space and time, in a continuous fashion, and can be thus represented
using fields, and systems of partial differential equations (PDE). The transition
between a continuous representation and a discrete representation makes the
coupling of the models across the cell-tissue scale particularly difficult. Conven-
tional homogenisation approaches, frequently used as relation models to link
to component models defined at different scales, are computationally resource
demanding [89–92].

Modelling Problems in System and Synthetic Biology. Systems Biology
approaches and methodologies are also very interesting in Synthetic Biology
pipelines: in semi-synthetic minimal cells, for instance, liposomes are synthe-
sized with some metabolic networks entrapped inside [93]. These devices, called
protocells, share some properties in common with real biological cells, and can
perform some biological action [94]. In wet-lab the problem is which metabolic
component to choose, among the several different ones that can perform the same
biological action. A combinatorial experimental approach is not affordable, since
it requires a lot of time, budget and lab resources. A computational approach,
instead, is very useful, as it can score the different hypotheses about the pro-
tocell to synthesize, sorting out the best theoretically performing. Along this
research line, several papers have been published, based on computer simulation
of the metabolic networks entrapped in the protocells [95], to understand the
solute distribution and enrichments processes [96,97] and the energetic balance
of complex biological processes like DNA transcription and RNA translation [98].
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Genomics. In recent years, thanks to faster and cheaper sequencing machines,
a huge amount of whole genomic sequences within the same population has
become available (e.g. [99]). Modern genomes analyses workflows have thus to
face new challenges to perform functional annotations and comparative analy-
sis, as there is no longer just a reference genome, but rather many of them that
can have to be used all together as a control sequence. A collection of genomic
sequences to be analysed jointly, or to be jointly used as a reference, is called
pangenome [100]. The reference genome is a representative example of the whole
genomic sequence of a species, acting as a control sequence against which frag-
ments of a newly sequenced individual are mapped to be located, or against
which another whole genome is compared. A single well annotated reference
genome was - and mostly still is - traditionally used as a control sequence, as
it could provide a good approximation of any individual genome. However, in
loci where polymorphic variations occur (a polymorphism is a genetic variation
of an individual or a population), such mappings and comparisons are likely to
fail: this is where a multiple reference genome—a reference pan-genome—would
be a better control [101].

In the data structure literature, several different compressed representations
have been considered for sets of similar texts [102,103], as well as algorithmic
methods for their investigation [104]. We present here a natural representation
of pan-genomes (whole genomes or their fragments): elastic-degenerate texts. An
elastic-degenerate text (ED-text) is a sequence compactly representing a multi-
ple alignment of several closely-related sequences: substrings that match exactly
are collapsed, while those in positions where the sequences differ (by means of
substitutions, insertions, and deletions of substrings) are called degenerate, and
therein all possible variants observed at that location are listed [105]. Actually,
ED-texts correspond exactly to the Variant Call Format (.vcf), the standard
for files storing genomic variations [106]. As an example, consider the follow-
ing three closely-related sequences, where their similarity is highlighted by their
alignment, and where the symbol ‘−’ represents a deletion:

CAATGTGTGAC
CAGTCAAT-AC
C--T-ACTGAC

These sequences can be compacted into the single ED-text:

T̃ = C ·
⎧
⎨

⎩

AA
AG
ε

⎫
⎬

⎭
· T ·

⎧
⎨

⎩

GTG
CAA
AC

⎫
⎬

⎭
· T ·

{
G
ε

}

· AC (1)

where ε is the empty string. The length n of T̃ is the total number of segments,
and its size N is the total number of letters, that all belong to an alphabet Σ.
Due to biotechnologies limitations, sequencing (that is, giving as input the in
vitro DNA and getting out an in silico text file) can only be done on a genome
fragment of limited size. For this reason, before the sequencing process, a genome
is actually broken into many fragments of such limited size and then, whenever a
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reference is available, the resulting in silico fragments (named reads) are mapped
onto it. This mapping is a critical step and there is an ample literature aiming
at making as efficient as possible. When the reference is an ED-text, the reads
mapping problem translates into the problem of finding all matches of a deter-
ministic pattern P (that is, P ∈ Σ∗) in text T̃ . We call this the EDSM problem.

In [107] the problem has been solved for the simplest case of ED-text, in
which a degenerate segment can only contain single letters. In [108] the problem
has been efficiently solved for the more general case of ED-texts introducing (i)
an algorithmic framework that has been conserved also by more recent papers,
and (ii) adding a very fast bit-vector based version of the same algorithm that
requires the pattern to have size no longer than the machine word. In [109]
the algorithmic framework has been extended to find approximate occurrences
of P , under both the Hamming and the edit distance model. In other words,
occurrences of P are detected allowing up to a given amount of mismatches
(Hamming distance model), or even insertions or deletions (edit distance model).
In [110] the bit-vector algorithm of [108] has been extended to work with a
collection of patterns P1, P2, . . . , Ph rather than a single string P , and in [111]
a step of the algorithm presented in [108] has been improved by a factor

√|P |.
Another natural problem that arises is the comparison of two ED-texts and, in
particular, whether the sets of strings the actually represent has a non empty
intersection. This problem has been efficiently solved in [112] with a linear time
algorithm for the case of non-elastic D-texts (a degenerate segment can only
contain strings of the same size).

Once that a set of DNA fragments of an individual have been aligned, hap-
lotype phasing is an important problem in the analysis of genomics informa-
tion. It consists of determining which one of the possible alleles (alternative
forms of a gene) each fragment comes from. Haplotype information is relevant
to gene regulation, epigenetics, genome-wide association studies, evolutionary
and population studies, and the study of mutations. Haplotyping is currently
addressed as an optimisation problem aiming at solutions that minimise, for
instance, error correction costs, where costs are a measure of the confidence
in the accuracy of the information acquired from DNA sequencing. Solutions
have typically an exponential computational complexity. WHATSHAP [113] is a
framework returning exact solutions to the problem of haplotyping which moves
computational complexity from DNA fragment length to fragment overlap, i.e.,
coverage, and is hence of particular interest when considering sequencing tech-
nology’s current trends that are producing longer fragments. Nonetheless, the
combinatorial nature of the problem makes larger coverages quickly intractable.
An interesting experiment, paradigmatic of a HPC-supported modelling solu-
tion, is pWHATSHAP [1,114], i.e. a freely-available, multicore parallelisation
of WHATSHAP, based on the FastFlow parallel programming framework [65].
This parallel implementation on multi-core architectures allows for a relevant
reduction of the execution time for haplotyping, while the provided results enjoy
the same high accuracy as that provided by WHATSHAP, which increases with
coverage.
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Metabolic Network Robustness Analysis. Many functional modules are linked
together in a Metabolic Network for reproducing metabolic pathways and
describing the entire cellular metabolism of an organism. An enormous interdis-
ciplinary interest has grown for metabolic networks robustness studies in terms
of errors and attacks tolerance. Scale-free networks based approaches suggest
that metabolic networks are tolerant to errors, but very vulnerable to targeted
attacks against highly connected nodes. An integrated approach based on sta-
tistical, topological, and functional analysis allows for obtaining a deep knowl-
edge on overall metabolic network robustness. With more details, several soft-
ware frameworks were developed to model a metabolic network and perform
the Topological Analysis, the Flux Balance Analysis, and the Extreme Path-
ways Analysis over it [115,116]. The simulation trials have demonstrated that
metabolic network robustness is not simply associated to the network local prop-
erties (low-connectivity-degree node or high-connectivity-degree node) but also
to functional network properties. So, ultra-peripheral non-hub nodes can assume
a fundamental role for network survival if they belong to network extreme path-
ways, while hub nodes can have a limited impact on networks if they can be
replaced by alternative nodes and paths [115,116].

The same approach have been applied as a bio-inspired optimisation method
to different application domains. In [117] the use of the previous bio-inspired tech-
niques allows for analysing the structural aspects of a road network, finding its
extreme pathways, and outlining the balanced flow combinations. The approach
optimises traffic flows over a road network, minimises road congestion and max-
imises the number of vehicles reaching their destination target. In [118], the bio-
inspired methodology has been applied to a class of digital ecosystems based on
a scale-free architecture for both maximum information flow and fault/error tol-
erance detection. Highly connected nodes, inter-module connectors and ultra-
peripheral nodes can be identified by evaluating their impact on digital ecosystems
behavior and addressing their strengthen, fault tolerance and protection counter-
measures.

Modelling Methodologies. The computational analysis of complex biological sys-
tems can be hindered by three main factors:

1. modelling the system so that it can be easily understood and analysed by
non-expert users is not always possible;

2. When the system is composed of hundreds or thousands of reactions and
chemical species, the classic CPU-based simulators could not be appropriate
to efficiently derive the behaviour of the system. To overcome these first two
limitations, [119] proposes a novel approach that combines the descriptive
power of Stochastic Symmetric Nets, a graphical mathematical formalism,
with LASSIE, a GPU-powered deterministic simulator that offloads onto the
GPU the calculations required to execute many simulations by following both
fine-grained and coarse-grained parallelisation strategies. The effectiveness
of this approach was showed on a case study aimed at understanding the
role of possible malfunctions in the cross-balancing mechanisms that regulate
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peripheral tolerance of self-reactive T lymphocytes in case of a relapsing-
remitting multiple sclerosis. From our experiments, LASSIE achieves around
97 speed-up with respect to the sequential execution of the same number of
simulations;

3. The determination of model structure and model parameters is difficult. Due
to economical and technical reasons, only part of these details are well char-
acterised while the rest remains unknown. To deal with this aspect, many
parameter estimation and reverse engineering methods were developed. How-
ever, these methods often need an amount of experimental data that not
always is available.

An alternative approach to deal with situations in which insufficient exper-
imental data hamper the application of PE and RE methods was proposed in
[120]. To overcome the lack of information concerning undetermined reactions an
empirical biological knowledge was exploited to overcome model indetermination
solving an optimisation problem (OP) with an objective function that, similarly
to Flux Balance Analysis, is derived from empirical biological knowledge and
does not require large amounts of data. The system behaviour is described in
detail by a system of ordinary differential equations (ODE) while model indeter-
mination is resolved selecting time-varying coefficients that maximize/minimize
the objective function at each ODE integration step. As discussed by the authors,
in this context approximation techniques in which OP is not solved at every
integration step and/or parallelisation strategies are mandatory to speed-up the
solution process.

Learning-Based Modelling Approaches. Some interesting applications in this con-
text are based on the study of integrated biological data and how they are
organised in complex systems. In particular, these approaches focus on multi-
omic spaces and multi-view analysis. They are very complex applications that
require high-throughput analysis based on advanced machine learning (ML) and,
more recently, deep learning (DL). One of the several applications in this field is
described by Bardozzo et al. [121], where high throughput omic analysis (HTO)
is adopted with the aim to the end of describing the antibiotics efficacy with
respect to the bacterial adaptive mechanisms. Moreover, a specific survey on
HTO is introduced by Suravajhala et al. [122]. Nevertheless, a general survey
oriented to high throughput biomedical data analysis with ML and DL is widely
described in the work of Serra et al. [123].

Healthcare Management Modelling. Globally healthcare faces many challenges
that result in increasing healthcare costs [124] and poor outcomes [125] (morbid-
ity or mortality) depending on the setting and demographic. These challenges
have been traced to weak health systems whose symptoms can manifest in: low
productivity, poor financial management, inadequate information for decision
making, insufficient strategic management, issues with managed care and other
systems dynamics [126].

The persistent challenges in the healthcare sector call for urgent review of
strategies. Several industry application of operations management have been
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documented [127]. There has also been diverse application of operations man-
agement techniques in several domains including the health sector. While there
is still room for health use-case modification, adoption of innovations used in
other domains has been slow. A major classification identified resource and facil-
ity management, demand forecasting, inventory and supply chain management,
and cost measurement as application groupings to prioritise [126].

An area of increasing interest is human resource planning that captures
recruitment, rostering, scheduling and management of clinical and non-clinical
staff, their retention, training, payment and incentives as well as performance
appraisal. Challenges do also arise around patient workflow: admission, schedul-
ing, and resource allocation. To model solutions to these process and workflow
challenges, simple statistics, stochastic [128], mathematical [129], artificial intel-
ligence [130], lean [131], agile [132], six-sigma [131] and total quality management
[133] based models have been variously proposed and used. Sometimes, inade-
quate data may warrant simulation to fill in deterministic and non-deterministic
data gaps [134,135]. This obviously comes with the need for adequate computing
and storage capabilities.

The optimum framework for modelling and simulating a particular use-case
depends on the availability, structure and size of data [126]. Other considerations
will be if the system should be automated or not, if they are sophisticated, deter-
ministic or not. The choice of model and/or simulation technique can ultimately
be influenced by available computing power and storage space. How user-friendly
such a system is, will be a major consideration as well. Opportunities for appli-
cation of one or more of these modelling, simulation and prediction techniques
to address some of the lingering healthcare challenges is huge.

6 HPC-Enabled Modelling and Simulation
for Socio-Economical and Physical Sciences

Many types of decisions in society are supported by modelling and simulation.
Some examples are political decisions based on predictive simulations of future
climate changes, evacuation planning based on faster-than-real-time simulation
of tsunamis, and financial market decisions based on mathematical models emu-
lating current market conditions. In all of these situations, large amounts of data
such as global geographical information, measurements of the current physical
or financial state, and historical data are used both in the model building and
model calibration processes.

We can roughly divide the applications within the large and diverse area, that
we here call socio-economical and physical sciences, into two groups. Classical
HPC applications, where we build a large-scale complex model and simulate
this in order to produce data as a basis for decisions, and Big data applications,
where the starting point is a data set, that is processed and analyzed to learn
the behaviour of a system, to find relevant features, and to make predictions or
decisions.
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In classical HPC applications, the need for HPC arises from the fact that we
have a large-scale model or a computationally heavy software implementation,
that needs to make use of large-scale computational resources, and potentially
also large-scale storage resources in order to deliver timely results.

Some particularly challenging problem features are high-dimensionality (e.g.,
in finance or quantum physics) where the computational costs grow exponentially
with the dimension, multi-scale physics (e.g., in climate and tsunami simulations)
where scales that differ in orders of magnitude need to be resolved to capture
the relevant physical processes, and computations under uncertainty, where the
impact of uncertain measurements, parameters and models is quantified through
multiple evaluations or extended models leading to an increased computational
cost (e.g., in safety critical decision problems).

Highly advanced algorithms and implementations for many different appli-
cation areas have been developed over decades. A huge challenge is that these
legacy codes are not optimized for modern computer architectures and cannot
efficiently exploit massively parallel systems [136]. HPC knowledge and innova-
tion is needed to merge the software and hardware state-of-the-art into highly
efficient application simulation tools. An opportunity that is brought by the
increase in available computer power is instead that the limits of what can be
simulated are expanding outwards. The recent increase in research on uncertainty
quantification [137] is one example of how this has changed the computational
research landscape.

Big data processing as opposed to classical HPC simulation is a relatively
young field. The amount of data that is being harvested is following an exponen-
tial trend, while hardware development, often in relation to cloud environments,
and software development with a specific focus on machine learning and AI is
struggling to keep up. The opportunities for using data in new ways are endless,
but as is suggested in [138], data and algorithms together can provide the whats,
while the innovation and imagination of human interpreters is still needed to
answer the whys. Areas where we see a rapidly growing need for HPC solutions
is the internet of things [139], where the expected vast amounts of data provides
new challenges for the extraction of knowledge, as well as in the social media
context [140], where all kinds of real world events or personal preferences provide
footprints that can be tracked and exploited.

In the following paragraphs of this section, we highlight some of the work
and contributions of the participants in this Action within the diverse subfields
in the wider physical and socio-economical application area. Some of the topics
are also represented as individual chapters later in this volume.

Classical HPC Applications. In this sub-field, the interplay of the algorithms
with the parallel implementation is crucial, and we provide two examples, both
with industrial design applications.

Wing design is one of the essential procedures of aircraft manufactures and
it is a compromise between many competing factors and constraints. Efficient
numerical optimization methods are important to speed-up the design proce-
dure, especially for design parameters of O(10–100). In wing shape optimization,
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necessary derivatives can easily be calculated by applying finite-difference meth-
ods. However, finite difference methods are in general significantly more expen-
sive, requiring at least one additional flow solution per parameter. By using the
method of modular analysis and unified derivatives (MAUD), we can unify all
methods for computing total derivatives using a single equation with associated
distributed-memory, sparse data-passing schemes. Moreover, the wing design
requires a set of benchmark cases for the shape optimization to find solutions of
many candidate shapes by applying computational fluid dynamics (CFD) anal-
ysis with turbulence models. High-fidelity CFD simulations must be carried out
in parallel to reduce the total run-time using HPC resources [141].

An application problem that is also discussed later in an individual chapter
is electromagnetic scattering, with applications to, e.g., aircraft antenna design.
These problems have millions or billions of unknown variables, and the code
needs to run on a cluster due to the memory requirements. However, few of the
existing (legacy) implementations are parallelised for multicore-based computa-
tional nodes. We show results from a pilot implementation using a task-parallel
programming model [142], and discuss how to develop this further into a com-
plete distributed implementation.

HPC in Computational Intelligence. As a thriving application platform, HPC
excels in supporting execution and it’s speedup through parallellisation when
running Computational Intelligence (CI) algorithms. The likes of CI algorithms
supported by this action includes development of some of most efficient opti-
mization algorithms for continuous optimization as defined with benchmark
functions competition framework from Congress on Evolutionary Computation
(CEC) 2017 [143,144]. Specifically useful, in [144] a Differential Evolution (DE)
algorithm is enhanced with a new mechanism, the distance based parameter
adaptation in the context of Success-History based DE (SHADE), the winner
strategy of several previous CEC competitions. An important contribution of
an expert system for underwater glider path planning using DE was published
in [145], where the application of SHADE strategy enabled significant advances
in improved path planning over mesoscale ocean current structures. Another CI
technique in learning pipeline is Stability Selection (SS), yet another computa-
tionally demanding technique like DE, and SS was improved through a discrete
optimization algorithm [146]. In [147], a recent whole pipeline survey overview
for black-box discrete optimization benchmarking (BB-DOB) is provided, defin-
ing taxonomy, evaluation, and ranking for BB-DOB algorithms. Also, in the case
of EU project RIVR (Upgrading National Research Structures in Slovenia) sup-
ported by European Regional Development Fund (ERDF), an important side-
effect of cHiPSet COST action was leveraging it’s experts’ inclusiveness to gain
capacity recognition at a national ministry for co-financing HPC equipment1.
In the view of future possibilities for modelling and simulation in CI context,
gain from HPC is clearly seen in improving upon techniques with DE like in

1 https://www.rtvslo.si/znanost-in-tehnologija/v-mariboru-vzpostavljajo-
superracunalniski-center/475543.

https://www.rtvslo.si/znanost-in-tehnologija/v-mariboru-vzpostavljajo-superracunalniski-center/475543
https://www.rtvslo.si/znanost-in-tehnologija/v-mariboru-vzpostavljajo-superracunalniski-center/475543
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energy applications [148], constrained trajectory planning [149], artificial life of
full ecosystems [150] including HPC-enabled evolutionary computer vision in
2D [151,152] and 3D [151], many other well recognized real-world optimization
challenges [153], or even insight to deep inner dynamics of DE over full bench-
marks, requiring large HPC capacities [154].

IoT, Smart Cities, and Big Data Applications. Monitoring the real-world envi-
ronment is a big challenge given the number of variables that can be sensed nowa-
days in IoT environments, as for example GPS-position, temperature, humidity,
presence, people location, ultraviolet radiation, air quality, hazardous gases, pres-
sure, proximity, acceleration. IoT assumes that multiple sensors can be used to
monitor the real-world and this information can be stored and processed, jointly
with information from soft-sensor (RSS, web, etc.) [155], to for example assist
elderly people in the street [156], develop intelligent interfaces [157] or detect
anomalies in industrial environments [158]. In any case, the developed global
system needs to fuse heterogeneous data for obtaining a complete view of actual
situation and inferring future dangerous situations. These two tasks need Cloud
capabilities and HPC.

One of the critical aspects of management within the “smart city” concept
is Intelligent Transport Systems, and in particular road traffic control. Off-line
traffic simulation is perfect for designing road systems and planning traffic light
timings, but does not allow to tackle unexpected or rare situation in real time.
Short-term traffic forecasting [159], especially using data-driven (i.e. learning)
methods, provides a complementary approach. With the availability of smart
sensing technologies, like automatic vehicle counting from standard surveillance
cameras, it is possible to devise decentralised solutions that measure the cur-
rent situation of traffic flow on each road, perform local communication between
nodes, and forecast the conditions for the immediate future using machine learn-
ing algorithms [160]. These may be augmented with evaluations of unexpect-
edness and per-node traffic jam prediction. Concentration of these data at a
decision-making location may also allow travel time estimation, exploitation of
network locality information, as well as comparison with the estimates provided
by a traffic management system, which can be evaluated for effectiveness on the
medium term and possibly tuned accordingly.

Further topics that are discussed in later chapters of this volume look at such
diverse questions as how to use data from mobile cellular networks for applica-
tions such as urban sensing and event detection, and how sentiment analysis can
be applied to forecast the value of cryptocurrencies.

Small Data Applications. The growing big data processing field is well known,
but in parallel, there is also a growing interest in a specific type of small data
applications. With the increasing instability of the financial and political sys-
tems, and of the global climate, there is an increased occurrence of extreme
events. Within the big data sets, there are small data sets, that sample the
extreme events. To understand their behaviour has applications, e.g., in financial
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risk management, in insurance, and in prediction of catastrophic climate events.
In a later chapter, methods for extreme value estimation are surveyed.

7 Summary and Conclusion

HPC and M&S form two previously largely disjoint and disconnected research
communities. The COST Action IC1406 High-Performance Modelling and Simu-
lation for Big Data Applications brings these two communities together to tackle
the challenges of big data applications from diverse application domains. Experts
from both communities jointly study these applications and application scenar-
ios and cooperatively develop solutions that benefit from the cross-pollination
of expertise. Different perspectives on the same topic lead to creative solutions
and ultimately to the common goal of HPC-enabled M&S.

The purpose of this paper is to set the scene for individual applications bring-
ing together HPC and M&S. We have argued why high-performance modelling
matters for big data applications. Following this line of reasoning we looked at
the subject matter from the four angles of the four working groups into which
the COST Action is organised. Throughout the previous two sections we have
presented a myriad of application opportunities and technological challenges for
HPC-enabled modelling and simulation in life, socio-economical and physical
sciences. These are complemented by comprehensive surveys of the current state
of the art with respect to HPC technology and tools, both from the perspective
of programming models as well as from middleware solutions.

Bringing together specialists from all these communities is the central contri-
bution of the COST Action. Having set the scene in this paper, the other papers
of this volume exemplify the achievements of the COST Action. Each addresses
a specific application or application scenario from the life, socio-economical or
physical sciences and explores how the application of state-of-the-art HPC tools
and technologies may lead to superior solutions in the near future.
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