103 research outputs found

    Estimation of the mass absorption cross section of the organic carbon component of aerosols in the Mexico City Metropolitan Area (MCMA)

    Get PDF
    International audienceData taken from the MCMA-2003 and the 2006 MILAGRO field campaigns are used to examine the absorption of solar radiation by the organic component of aerosols. Using irradiance data from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) and an actinic flux spectroradiometer (SR), we derive aerosol single scattering albedo, ?0,?, as a function of wavelength, ?. We find that in the near-UV spectral range (250 to 400 nm) ?0,? is much lower compared to ?0,? at 500 nm indicating enhanced absorption in the near-UV range. Absorption by elemental carbon, dust, or gas cannot account for this enhanced absorption leaving the organic part of the aerosol as the only possible absorber. We use data from a surface deployed Aerodyne Aerosol Mass Spectrometer (AMS) along with the inferred ?0,? to estimate the Mass Absorption Cross section (MAC) for the organic carbon. We find that the MAC is about 10.5 m2/g at 300 nm and falls close to zero at about 500 nm; values that are roughly consistent with other estimates of organic carbon MAC. These MAC values can be considered as "radiatively correct" because when used in radiative transfer calculations the calculated irradiances/actinic fluxes match those measured at the wavelengths considered here. For an illustrative case study described here, we estimate that the light absorption by the "brown" (organic) carbonaceous aerosol can add about 40% to the light absorption of black carbon in Mexico City. This contribution will vary depending on the relative abundance of organic carbon relative to black carbon. Furthermore, our analysis indicates that organic aerosol would slow down photochemistry by selectively scavenging the light reaching the ground at those wavelengths that drive photochemical reactions. Finally, satellite retrievals of trace gases that are used to infer emissions currently assume that the MAC of organic carbon is zero. For trace gases that are retrieved using wavelengths shorter then 420 nm (i.e. SO2, HCHO, halogenoxides, NO2), the assumption of non-zero MAC values will induce an upward correction to the inferred emissions. This will be particularly relevant in polluted urban atmospheres and areas of biomass burning where organic aerosols are particularly abundant

    The relevance of aerosol optical depth to cumulus fraction changes: a five-year climatology at the ACRF SGP site

    Get PDF
    International audienceThe objective of this study is to investigate, by observational means, the magnitude and sign of the actively discussed relationship between cloud fraction N and aerosol optical depth ?a. Collocated and coincident ground-based measurements and Terra/Aqua satellite observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site form the basis of this study. The N??a relationship occurred in a specific 5-year dataset of fair-weather cumulus (FWC) clouds and mostly non-absorbing aerosols. To reduce possible contamination of the aerosols on the cloud properties estimation (and vice versa), we use independent datasets of ?a and N obtained from the Multi-filter Rotating Shadowband Radiometer (MFRSR) measurements and from the ARM Active Remotely Sensed Clouds Locations (ARSCL) value-added product, respectively. Optical depth of the FWC clouds ?cld and effective radius of cloud droplets re are obtained from the MODerate resolution Imaging Spectroradiometer (MODIS) data. We found that relationships between cloud properties (N,?cld, re) and aerosol optical depth are time-dependent (morning versus afternoon). Observed time-dependent changes of cloud properties, associated with aerosol loading, control the variability of surface radiative fluxes. In comparison with pristine clouds, the polluted clouds are more transparent in the afternoon due to smaller cloud fraction, smaller optical depth and larger droplets. As a result, the corresponding correlation between the surface radiative flux and ?a is positive (warming effect of aerosol). Also we found that relationship between cloud fraction and aerosol optical depth is cloud size dependent. The cloud fraction of large clouds (larger than 1 km) is relatively insensitive to the aerosol amount. In contrast, cloud fraction of small clouds (smaller than 1 km) is strongly positively correlated with ?a. This suggests that an ensemble of polluted clouds tends to be composed of smaller clouds than a similar one in a pristine environment. One should be aware of these time- and size-dependent features when qualitatively comparing N??a relationships obtained from the satellite observations, surface measurements, and model simulations

    Conventional clear-sky aerosol retrievals: Do they work for cloudy days?

    Get PDF
    This presentation highlights different approaches to determine the aerosol properties between clouds and covers a broad range of related topics, including the passive aerosol remote sensing from space, in situ observations of aerosol aloft and at surface and numerical modeling of aerosol and cloud properties. Some of these approaches, which are still in research phase, can reduce substantially the impact of cloud-induced contamination on the cloudy-sky aerosol retrievals, while other can reduce uncertainties associated with aerosol hygroscopicity and enhanced relative humidity near cloud edges. The combination of these approaches for addressing outstanding issues of the cloudy-sky aerosol retrievals is also discussed

    Sky cover from MFRSR observations

    Get PDF
    The diffuse all-sky surface irradiances measured at two nearby wavelengths in the visible spectral range and their modeled clear-sky counterparts are the main components of a new method for estimating the fractional sky cover of different cloud types, including cumuli. The performance of this method is illustrated using 1-min resolution data from a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR). The MFRSR data are collected at the US Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site during the summer of 2007 and represent 13 days with cumuli. Good agreement is obtained between estimated values of the fractional sky cover and those provided by a well-established independent method based on broadband observations

    Aerosol single-scattering albedo and asymmetry parameter from MFRSR observations during the ARM Aerosol IOP 2003

    Get PDF
    International audienceMulti-filter Rotating Shadowband Radiometers (MFRSRs) provide routine measurements of the aerosol optical depth (?) at six wavelengths (0.415, 0.5, 0.615, 0.673, 0.870 and 0.94 ?m). The single-scattering albedo (?0) is typically estimated from the MFRSR measurements by assuming the asymmetry parameter (g). In most instances, however, it is not easy to set an appropriate value of g due to its strong temporal and spatial variability. Here, we introduce and validate an updated version of our retrieval technique that allows one to estimate simultaneously ?0 and g for different types of aerosol. We use the aerosol and radiative properties obtained during the Atmospheric Radiation Measurement (ARM) Program's Aerosol Intensive Operational Period (IOP) to validate our retrieval in two ways. First, the MFRSR-retrieved optical properties are compared with those obtained from independent surface, Aerosol Robotic Network (AERONET), and aircraft measurements. The MFRSR-retrieved optical properties are in reasonable agreement with these independent measurements. Second, we perform radiative closure experiments using the MFRSR-retrieved optical properties. The calculated broadband values of the direct and diffuse fluxes are comparable (~5 W/m2) to those obtained from measurements

    Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory

    Get PDF
    Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. http://dx.doi.org/10.1364/AO.55.009839 The version of record, © 2016 Optical Society of America, Alexei Kolgotin, Detlef Müller, Eduard Chemyakin, and Anton Romanov, "Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 1: theory," Appl. Opt. 55(34): 9850-9865, first published September 14, 2016, is available via DOI: 10.1364/AO.55.009839Multiwavelength Raman/high spectral resolution lidars that measure backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm can be used for the retrieval of particle microphysical parameters, such as effective and mean radius, number, surface-area and volume concentrations, and complex refractive index, from inversion algorithms. In this study, we carry out a correlation analysis in order to investigate the degree of dependence that may exist between the optical data taken with lidar and the underlying micro-physical parameters. We also investigate if the correlation properties identified in our study can be used as a priori or a posteriori constraints for our inversion scheme so that the inversion results can be improved. We made the simplifying assumption of error-free optical data in order to find out what correlations exist in the best case situation. Clearly, for practical applications, erroneous data need to be considered too. On the basis of simulations with synthetic optical data, we find the following results, which hold true for arbitrary particle size distributions, i.e., regardless of the modality or the shape of the size distribution function: surface-area concentrations and extinction coefficients are linearly correlated with a correlation coefficient above 0.99. We also find a correlation coefficient above 0.99 for the extinction coefficient versus (1) the ratio of the volume concentration to effective radius and (2) the product of the number concentration times the sum of the squares of the mean radius and standard deviation of the investigated particle size distributions. Besides that, we find that for particles of any mode fraction of the particle size distribution, the complex refractive index is uniquely defined by extinction- and backscatter-related Ångström exponents, lidar ratios at two wavelengths, and an effective radius.Peer reviewe

    The multi-scale aerosol-climate model PNNL-MMF: model description and evaluation

    Get PDF
    Anthropogenic aerosol effects on climate produce one of the largest uncertainties in estimates of radiative forcing of past and future climate change. Much of this uncertainty arises from the multi-scale nature of the interactions between aerosols, clouds and large-scale dynamics, which are difficult to represent in conventional general circulation models (GCMs). In this study, we develop a multi-scale aerosol-climate model that treats aerosols and clouds across different scales, and evaluate the model performance, with a focus on aerosol treatment. This new model is an extension of a multi-scale modeling framework (MMF) model that embeds a cloud-resolving model (CRM) within each grid column of a GCM. In this extension, the effects of clouds on aerosols are treated by using an explicit-cloud parameterized-pollutant (ECPP) approach that links aerosol and chemical processes on the large-scale grid with statistics of cloud properties and processes resolved by the CRM. A two-moment cloud microphysics scheme replaces the simple bulk microphysics scheme in the CRM, and a modal aerosol treatment is included in the GCM. With these extensions, this multi-scale aerosol-climate model allows the explicit simulation of aerosol and chemical processes in both stratiform and convective clouds on a global scale. <br><br> Simulated aerosol budgets in this new model are in the ranges of other model studies. Simulated gas and aerosol concentrations are in reasonable agreement with observations (within a factor of 2 in most cases), although the model underestimates black carbon concentrations at the surface by a factor of 2–4. Simulated aerosol size distributions are in reasonable agreement with observations in the marine boundary layer and in the free troposphere, while the model underestimates the accumulation mode number concentrations near the surface, and overestimates the accumulation mode number concentrations in the middle and upper free troposphere by a factor of about 2. The overestimation of accumulation model number concentrations in the middle and upper free troposphere is consistent with large aerosol mass fraction above 5 km in the MMF model compared with other models. Simulated cloud condensation nuclei (CCN) concentrations are within the observational variations. Simulated aerosol optical depths (AOD) are in reasonable agreement with observations (within a factor of 2), and the spatial distribution of AOD is consistent with observations, while the model underestimates AOD over regions with strong fossil fuel and biomass burning emissions. Overall, this multi-scale aerosol-climate model simulates aerosol fields as well as conventional aerosol models

    Measurements of Black Carbon Specific Absorption in the Mexico City Metropolitan Area during the MCMA 2003 Field Campaign

    No full text
    International audienceDuring the Mexico City Metropolitan Area (MCMA) field campaign of 2003, measurements of the shortwave radiation field, lidar backscatter, and atmospheric concentrations of black carbon (BC) permitted the inference of the BC carbon specific absorption, ??, defined as the absorption cross section per unit mass (with units of m2/g). This diverse set of measurements allowed us to determine ?? in two ways. These methods ? labeled I and II ? are distinguished from one another in the manner that the columnar concentration of BC (with units of mg/m2 is determined. This concentration is found by using either surface measurements of BC concentration and lidar estimates of aerosol mixing heights, or a more rigorous method that relies on the columnar aerosol size distribution. The averaged values of ?? derived from these methods agree to about 20%, although we expect that the values obtained from method I are underestimated. These results, along with those of Schuster et al. (2005), suggest that in the MCMA, ?? is in a range of 8 to 10 m2/g at a wavelength of 550 nm. This range is somewhat lower than the commonly accepted value of 10 m2/g for a wavelength of 550 nm, but is consistent with the calculations of Fuller et al. (1999), who suggest that this value is too high

    An assessment of aerosol‐cloud interactions in marine stratus clouds based on surface remote sensing

    Get PDF
    An assessment of aerosol-cloud interactions (ACI) from ground-based remote sensing under coastal stratiform clouds is presented. The assessment utilizes a long-term, high temporal resolution data set from the Atmospheric Radiation Measurement (ARM) Program deployment at Pt. Reyes, California, United States, in 2005 to provide statistically robust measures of ACI and to characterize the variability of the measures based on variability in environmental conditions and observational approaches. The average ACIN (= dlnNd/dlna, the change in cloud drop number concentration with aerosol concentration) is 0.48, within a physically plausible range of 0–1.0. Values vary between 0.18 and 0.69 with dependence on (1) the assumption of constant cloud liquid water path (LWP), (2) the relative value of cloud LWP, (3) methods for retrieving Nd, (4) aerosol size distribution, (5) updraft velocity, and (6) the scale and resolution of observations. The sensitivity of the local, diurnally averaged radiative forcing to this variability in ACIN values, assuming an aerosol perturbation of 500 c-3 relative to a background concentration of 100 cm-3, ranges betwee-4 and -9 W -2. Further characterization of ACI and its variability is required to reduce uncertainties in global radiative forcing estimates
    corecore