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Abstract

The most common type of brain cancer in adults are gliomas. Under the up-
dated 2016 World Health Organization (WHO) tumor classification in central
nervous system (CNS), identification of molecular subtypes of gliomas is im-
portant. For low grade gliomas (LGGs), prediction of molecular subtypes by
observing magnetic resonance imaging (MRI) scans might be difficult without
taking biopsy. With the development of machine learning (ML) methods such
as deep learning (DL), molecular based classification methods have shown
promising results from MRI scans that may assist clinicians for prognosis and
deciding on a treatment strategy. However, DL requires large amount of train-
ing datasets with tumor class labels and tumor boundary annotations. Manual
annotation of tumor boundary is a time consuming and expensive process.

The thesis is based on the work developed in five papers on gliomas and
their molecular subtypes. We propose novel methods that provide improved
performance. The proposed methods consist of a multi-stream convolutional
autoencoder (CAE)-based classifier, a deep convolutional generative adver-
sarial network (DCGAN) to enlarge the training dataset, a CycleGAN to
handle domain shift, a novel federated learning (FL) scheme to allow local
client-based training with dataset protection, and employing bounding boxes
to MRIs when tumor boundary annotations are not available.

Experimental results showed that DCGAN generated MRIs have enlarged
the original training dataset size and have improved the classification perfor-
mance on test sets. CycleGAN showed good domain adaptation on multiple
source datasets and improved the classification performance. The proposed
FL scheme showed a slightly degraded performance as compare to that of
central learning (CL) approach while protecting dataset privacy. Using tumor
bounding boxes showed to be an alternative approach to tumor boundary an-
notation for tumor classification and segmentation, with a trade-off between
a slight decrease in performance and saving time in manual marking by clini-
cians. The proposed methods may benefit the future research in bringing DL
tools into clinical practice for assisting tumor diagnosis and help the decision
making process.

Keywords: Deep learning, convolutional NN, generative adversarial network,
CycleGAN, convolutional autoencoder, glioma subtype classification, 1p/19q
codeletion, IDH mutation, federated learning, multi-stream U-Net.
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CHAPTER 1

Introduction

1.1 Magnetic Resonance Imaging (MRI)

MRI technology and scanning sequences have evolved recently due to the
advancement of medical technology and testing equipment [1]. It combines
the advantages of anatomy, function and imaging that produce high resolution
images for the inside of the body with a magnetic field and radio waves.
It reveals detail tissue information and is frequently used for pre-operative
diagnosis, intra-operative treatment and post-operative examination of the
body organs [2]. These body organs include mostly non-bony parts or soft
tissues, e.g., brain, spinal cord and nerves, tendons, ligaments and muscles.
MRI scanner is a tube shaped equipment that generates a strong magnetic
field. A closed bore MRI machine uses a ring of magnet that measures the
magnetic strength between 0.5 T (Tesla) to 3 T as shown in Figure 1.1. Since
the human body consists of 60% water, MRI scanner can measure the content
and the behavior of water in different tissues. Water molecules contain hydro-
gen atoms, which have magnetic nature because of the presence of sub-atomic
particles called protons that carry a positive charge. When a patient is placed
inside the machine, the MRI scanner produces a magnetic field that aligns the
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hydrogen atoms inside the body with the magnetic field. A radio frequency
current is then passed through the body from the scanner that interrupts the
alignment of hydrogen atoms, causing the protons in them to produce elec-
tromagnetic signals. When the burst of radio frequency stops, the protons
return to their original alignment and emit radio signals. The realignment
speed in different tissues of the body is different that causes the change in
the emitted signals. These signals are picked up by a receiver in the scanner,
where a sensor detects and measures these signals, which are used further to
develop detailed 3D images.

“]1— :
t ’}f i
Aj \4.

Figure 1.1: Example of an MRI scanner [3].

MRI is a frequently used imaging test for brain and spinal cord to help
brain related disease diagnosis, e.g., exploring the tumor type at the molecular
level. It can show the differences between the white matter and the grey
matter of brain. To describe a MRI scan appearance with respect to the grey
matter as a reference, the terms hyperintense and hypointense are usually
used. Anything brighter than the grey matter in the scan is hyperintense
(brain tumor), while anything darker than the grey matter is hypointense
(bone/skull). Clinicians use different MRI sequences, referred usually as MRI
modalities, to examine the brain anatomy. The signal intensity is determined
by a number of parameters in these modalities, which include: longitudinal
relaxation time (T1), transverse relaxation time (T2), proton density (PD),
the repetition time (TR) and echo time (TE) of radio frequency pulses among
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many.

By changing these pulse sequence parameters, different MR image

contrasts can be generated as shown in Figure 1.2 and each of them is described

below

Figur

[4]:

T1 Tlce T2 FLAIR

e 1.2: Axial slices of MR scans with glioma from four modalities. Left to
right: T1-weighted MRI, T1-weighted contrast enhanced MRI, T2-
weighted MRI and T2-weighted FLAIR MRI.

T1-weighted MRI: This modality is produced by using short TR and
TE times and shows the structures that are made of fat. The cere-
brospinal fluid (CSF) is shown as grey, grey matter as grey, white mat-
ter as light and the bones as dark in the image. It is useful to examine
normal anatomy of brain.

T1-weighted contrast enhanced (T1lce) MRI: It is an enhanced
version of T1-weighted images and is obtained by infusing a non-toxic
paramagnetic contrast enhancement agent called as Gadolinium (Gad).
When this agent is injected during the scan, it changes signal intensities
by shortening T1 relaxation time and thereby increases the signal in-
tensity. Tlce MR images are useful for showing vascular structures and
breakdown in the blood-brain barrier, e.g., tumors etc.

T2-weighted MRI: This modality shows the structure with a high
amount of water. It is produced by using long TR and TE pulses. The
CSF is shown as bright, grey matter as grey, white matter as darker
grey and the bones as black in the image.

T2-weighted fluid attenuated inversion recovery (FLAIR) MRI:
This modality is similar to a T2-weighted scan except that the TR and
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TE times are very long. This causes abnormalities to look bright and
normal CSF fluid to look dark in the image, differentiating it from T2
scan.

Different modalities show different contrast of MRIs as summarized in Table
1.1. An abnormality (e.g., tumor) can form a complicated structure making
it hard to identify and locate its region from a single modality. Therefore,
multiple modalities are usually used to look for rich sources of information.

Table 1.1: The difference of images in different modalities [5]

Brain tissue T1 Tlce T2 FLAIR
CSF Grey Dark Bright Dark
Cortex Grey Grey Light Grey Light Grey
White matter  Light  Dark Grey Dark Grey Dark Grey
Tumor Dark Dark Bright Bright

Fat Bright Bright Light Light
Inflammation  Dark Dark Bright Bright

(infection etc.)

1.2 Gliomas and their Subtypes

Glioma is one of the primary type of brain cancer that originates in the gluey
supportive cells, called glial cells. Glial cells are found around nerve cells
which help them function. As a glioma grows, it puts pressure on that part of
brain or spinal cord tissue and causes symptoms depending on which part of
the brain or spinal cord it grows. The type of glial cells involved in tumor de-
fines the type of a glioma and its genetic features. These genetic features are
important to know to assist in prognosis and treatment management. Some
gliomas grow slowly and are not considered aggressive. Others are considered
aggressive that affect the brain functions and eventually becomes deadly, de-
pending on their growth rate and location in brain. Glioma treatment includes
surgery, radiation therapy, chemotherapy and many more.
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Glioma Grading and Cell Types

Glioma types are defined by the type of glial cells involved, which can be
either astrocytomas, ependymomas or oligodendrogliomas. Diffuse gliomas
have high infiltrate growth to their surrounding tissues. On the other hand,
non-diffuse gliomas have clear boundary and belong to either pilocytic astro-
cytomas or ependymoma group. Considering the aggressiveness of the tumor,
World Health Organization (WHO) has categorized them into four grades (I-
IV) [6].

Grade 1: Grade 1 gliomas belong to the glial cell type pilocytic astrocy-
tomas. They have slow growth rate and are non-invasive with well-defined
boundaries carrying better prognosis. For this reason, they can be removed
by surgery with low chances of recurrence. These gliomas happen usually in
children and young adults also called as low grade gliomas (LGGs).

Grade 2: Grade 2 gliomas emerge from astrocytes (the supportive cells
around the neurons), they are referred to as low grade diffuse astrocytomas.
These gliomas tend to spread in the surrounding of healthy tissues and do not
show clearly defined boundaries. For this reason, it can be challenging to re-
move them completely through surgery and are usually treated with radiation
and chemotherapy, depending on their size and location. They have better
prognosis compared to grade 3 and grade 4 gliomas and are put into low grade
category. However, astrocytomas often progress into high grade gliomas.

When grade 2 gliomas emerge in oligodendrocytes (cells that wrap around
nerve fibers to provide support), they are called as oligodendrogliomas. Their
occurrence is relatively rare with slow growth rate. Since they occur in brain
regions that control major functions of body, they are difficult to be removed.
Instead, radiation and chemotherapy might be suggested. They usually hap-
pen in adults.

Grade 3: Grade 3 gliomas are also called anaplastic gliomas, which means
that tumor cells divide themselves rapidly. Sometimes, they appear as ag-
gressive forms of their respective grade 2, otherwise they originate as grade 3.
They have fast growth rate and spread quickly with more chances of turning
into grade 4. They are more challenging to treat than grade 2 gliomas.
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Grade /: Grade 4 gliomas are highly malignant brain tumors with short-
est survival rate. They are the most aggressive forms of astrocytomas also
called as glioblastomas multiforme (GBM). Primary glioblastomas originate
as grade 4 and develop quickly, while secondary glioblastomas appear as pro-
gressed forms of lower grade gliomas. These are rarely found in children and
most commonly in older adults.

For treatment management and clinical decision making, it is of great im-
portance to know the glioma grade. It helps to predict tumor progression over
time for planing the treatment to prolong survival and improve patient’s qual-
ity of life [7]. Table 1.2 summarizes glioma grades with their corresponding
occurrences and H-year survival rates.

Table 1.2: WHO grading of gliomas [6] and their occurrence rate [7] and 5-year
survival rates [5]

Glioma Glioma Occurrence rate  5-year

Grade  Type in primary survival
brain tumors rate

1 Pilocytic astrocytoma 15.6% curable
5 Diffuse astrocytoma 2-5% 50%
Oligodendroglioma 1.4% 80%
3 Anaplastic astrocytoma 1-2% 30%
Anaplastic oligodendroglioma 1.4% 80%
4 Glioblastoma 14.9% 5%

Molecular Subtypes of Gliomas

Glioma grades can be observed from the brain MRI of a patient. Unlike
glioma grades, some molecular biomarkers are not visible from MRIs [6].
These molecular subtypes are defined after WHQO'’s revision of tumor clas-
sification of Central Nervous System (CNS) in 2016. Among many subtypes,
two of the biomarkers are isocitrate dehydrogenase (IDH) and 1p/19q codele-
tion, which are considered as important biomarkers. They are associated with
better prognosis and are sensitive to oncological treatment [5], [8], [9]. There-
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fore, knowing this information prior to surgery is of great value and provides
good assistance in treatment planning.

Gliomas
LGG HGG/GBM
IDH wildtype IDH mutant GIiobIgstoma Glioblastoma
IDH wildtype IDH mutation
1p/19q 1p/19q
non-codeletion codeletion
Diffuse/Anaplastic Diffuse/Anaplastic Oligodendroglioma/
Astrocytoma Astrocytoma Anaplastic
IDH wildtype IDH mutant Oligodendroglioma

Figure 1.3: Summary of gliomas and their subtypes[10].

Figure 1.3 depicts a detail flowchart on types of gliomas and their molecular
subtypes. LGG subtypes are associated with the mutations in the isocitrate
dehydrogenase (IDH) gene and the abnormal missing sections of chromosomes
1p and 19q called as 1p/19q co-deletion. Glioblastomas or HGGs are classified
into two distinct entities: IDH mutantion GBM and wildtype GBM [11].

Oligodendrogliomas (grade 2 type) are defined by the presence of an IDH
mutation and a 1p/19q codeletion. Another grade 2 type, anaplastic oligo-
dendrogliomas, when progresses over time turn into grade 3, otherwise it orig-
inally evolves as grade 3. On the other hand, diffuse astrocytomas without
1p/19q codeletion are either classified as IDH wildtype or IDH-mutant diffuse
astrocytomas. Anaplastic astrocytomas can have abnormal genetic signatures
including mutations in IDH genes. IDH wildtype diffuse astrocytomas are
clinically like glioblastomas with poor prognosis. However, recent studies
have shown that some low grade IDH wildtype astrocytomas lack both the
molecular glioblastoma signature and genetic alterations suggesting the ex-
istence of low grade IDH wild type astrocytomas [12]. They grow fast and
are prone to early recurrence, while IDH mutant diffuse astrocytomas show an
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in-between behavior between oligodendrogliomas and IDH wildtype diffuse as-
trocytomas. They have slow progression to that of wildtype and their chances
of recurrences are not high. IDH mutation is found in 70-80% of morpholog-
ically defined LGGs [13]. The survival rate for LGG IDH mutated patients
is relatively higher than IDH wild-type. To identify these subtypes, tissue
diagnosis is performed through invasive methods (e.g. biopsy, resection), that
come with inherent risks.

In WHO grade IV glioblastomas (GBM), IDH mutations are also found fre-
quent in secondary GBM (emerged from LGGs) as compared to primary GBM,
where they are seen rare [14]. The frequent occurrence of IDH mutations in
secondary GBM suggests that LGGs with IDH mutation often appear again
to a higher grade. IDH mutation is found in approximately 10% of morpholog-
ically defined GBM. Studies have shown that, the presence of IDH mutations
in GBM can predict a favourable disease outcome with prolonged survival.

1.2.1 Clinical Diagnosis

Clinical diagnosis of brain tumor consists of a series of tests based on patient’s
symptoms [15]. These tests usually consist of following steps [16]:

e A neurological exam is done to test functioning of different parts of brain
and to locate the problematic brain area.

e Imaging tests such as MRI is conducted to get a detailed picture of
the suspected area. It can be MRI of brain, spinal cord, or both that
depends on the type of the tumor and its chances of spreading in the
CNS. A neurological exam will be done to decide which modality of MRI
can be used.

e A sample of the tumor tissue is usually needed to confirm the final di-
agnosis. It is done through a process called biopsy. A certain brain
function might be affected by biopsy. Stereotactic needle biopsy is an-
other alternative to remove a sample tissue [17]. It includes drilling a
small hole in the skull and inserting a thin needle to take out a tissue
sample, where the path of needle is planned through imaging scans.

e After biopsy, doctors could use the tissue samples for a desired treat-
ment strategy. Other genetic tests are further conducted to know the
molecular biomarkers in cells [11].

10
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Glioma grades can be seen by clinicians by observing different modalities of
MRI scans that show the status of different tissue densities in brain. However,
the molecular subtypes can barely be seen with the naked-eyes from MRIs.
Hence, it is important to look for other effective noninvasive ML diagnostic
tools for assisting the diagnosis of brain tumor.

1.2.2 Machine Learning (ML) Assisted Diagnosis

Knowledge of molecular biomarkers assists in better prognosis and timely
treatment [18], [19]. Despite the potential benefits of tumor biomarker testing,
challenges still remain. Medical images contain information beyond visual per-
ception, employing ML methods can help extracting useful information from
these images and can help medical doctors in their diagnostic process. These
methods can make future predictions using pre-existing MRIs along with their
biopsy information. They also offer the possibility of combining the datasets,
enlarging the training dataset by augmentation and over-coming the domain
shift issues for effective learning. These benefits make ML methods more
affordable to manage the surgical and maintenance costs. Such automatic de-
cision making processes work quicker, save the labor and provide the clinicians
with tools to choose. Hence, ML based assisted diagnostic methods show the
potential to improve care system for patients.

1.3 Related Work on Brain MRIs

AT technologies such as machine learning (ML) methods have emerged to be
promising tools for characterizing the gliomas and their subtypes, that can be
roughly divided in two paradigms: classification based on conventional ML
methods, and those based on deep learning (DL) methods. Other than clas-
sification, DL is capable of offering solutions to several other challenges. This
thesis mainly addresses some of the challenges such as: small training dataset
size, class imbalance, domain shift, dataset protection in hospitals, and train-
ing dataset without tumor boundary annotations.

11
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Conventional Machine Learning (ML) Methods

There has been numerous studies on classification methods based on hand-
crafted features. Kang [20] proposed a histogram based analysis for glioma
grading. It performed analysis of diffusion coefficient maps over the whole
tumor area by using diffusion weighted MRIs. Zhou [21] applied a combina-
tion of histogram, shape, texture features and age data to a random forest
algorithm for IDH mutation and 1p/19q codeletion prediction. Han [22] gener-
ated radiomics signature from MRIs and performed analysis to predict 1p/19q
codeletion status. Yu [23] also used radiomics based features for IDH muta-
tion prediction. Van der Voort [24] used support vector machine (SVM) on
78 extracted MR image features together with age and gender information for
1p/19q prediction. Zhang [25] proposed a SVM-based recursive feature elimi-
nation to find the optimal features for IDH mutation detection. These meth-
ods used conventional ML methods with hand-crafted features from MRIs.
Defining these features for subtypes of gliomas could be difficult.

Deep Learning (DL) Methods

Classification: DL methods can offer effective solutions for gliomas and their
subtypes by automatically learning of relevant features from medical images.
Studies have provided different solutions for the classification of gliomas and
their molecular subtypes using automatic feature learning. Several methods
have applied CNN models on MRIs. However, different studies have used
different datasets. Some of them have combined datasets from different own-
ers and the classifers were trained through central learning (CL). Matsui [10]
proposed a residual network-based model that performed 3 class prediction of
molecular subtypes. They applied a residual network-based model on scanned
images (MRI, positron emission tomogrpahy (PET) and CT) and on some nu-
merical characteristics of patients. Liang [26] used 3D DensNets on multiple
modalities of MRIs for IDH mutation prediction. Ge [27] proposed a semi-
supervised learning to make full use of unlabeled training dataset, where CNN
features were incorporated into a graph-based framework to learn the labels
of the unlabeled dataset. A DL based classifier was then trained to classify
glioma types and IDH mutation. Van der Voort [28] proposed a multi-task
CNN that used 3D MRIs to predict IDH mutation status, 1p/19q co-deletion

12
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status, grade of the tumor while also performing segmentation simultaneously
on 1508 patients. Chang [29] trained a residual CNN on four MRI modalities
for IDH prediction. Li [30] performed tumor segmentation using a 6 layer
CNN. A set of ten features were obtained from last fully connected layer,
which were size normalized by Fisher vector coding. It was later followed by
a SVM classifier for IDH mutation prediction. Ge [31] used GAN to generate
missing MRI modalities from the training dataset for the prediction of IDH
genotype. Cluceru [32] used a CNN on diffusion-weighted images for 3-class
prediction (IDHwt, IDHmut-intact and IDHmut-codel).

Data Augmentation: DL networks generalize poorly on the unseen test
set, when the training dataset is not sufficiently large. Data augmentation
alleviates this by enlarging the training dataset. However, conventional ways
of data augmentation offer only a limited plausible alternative. Recently,
GAN based augmentation techniques have been successfully used to produce
images close to real images new to human eyes [33]. Jendele [34] proposed
a CycleGAN that is able to translate images from one class to another and
used this property to augment the training dataset into a bigger and more
balanced training dataset. Qi [35] proposed attention-guided CycleGAN to
create tumors in normal MRIs and return normal MRIs from tumor ones.
Frid-Adhar [36] suggested that training separate DCGAN for each lesion class
led to improved classification performance than training unified AC-GAN for
all classes. Further, Mok [37] used cGAN to augment MRIs from training
dataset for robust segmentation.

Domain Mapping: In medical area, collecting large amount of data from
a single source is difficult due to several reasons, such as limited number of
patient cohorts in hospitals and high cost of image acquisition etc. How-
ever, combining several datasets from different sources to enlarge the size of
the training dataset often leads to poor test performance due to the domain
shift issue. Therefore, most algorithms use a single dataset for their training
that often suffer from the problem of small and unbalance dataset. Different
studies have shown different ways to map the datasets to a common tar-
get /reference domain, where network learning and prediction can take place.
Bashyam [38] proposed a modified CycleGAN to perform domain mapping
and tested on two example problems; age prediction from MRI dataset and
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classification of schizophrenia using 9 datasets. Gao [39] used a modified Cy-
cleGAN to standardize the intensity distribution of MRIs using T2-FLAIR
images from 4 different hospitals for LGG/HGG classification. Guan [40] pro-
posed an attention-guided framework that consisted of an encoder for feature
extraction, an attention model to locate dementia affected brain regions and
a generative network based domain transfer module. Further for enhancing
image quality, Qu [41] proposed to produce 7T T1-weighted images from 3T
images, by fusing information from spatial domain and wavelet domain.

Federated Learning (FL): Combining medical datasets from multiple hos-
pitals poses another challenge related to dataset protection. Recently, a fed-
erated learning (FL) approach was introduced to allow training a central DL
model without violating data privacy regulations. FL approach has encour-
aged the hospitals to contribute in training for a specific task without the
need to share their dataset. Regarding this, only a few studies on medical
images involve classification and majority are proposed on segmentation task.
Li [42] proposed FL based classification model on fMRI dataset, where the
algorithm altered the shared local model weights by a randomization mecha-
nism. Its aim was to tighten the privacy so that patients information could
not be recovered from the model gradients or weights. Huang [43] performed
FL based classification on brain metastasis identification using T1 MRI im-
ages and DeepMedic neural network. Nalawade [44] performed brain tumor
segmentation by proposing an aggregation logic to combine knowledge gained
across multiple institutions. Yi [45] performed FL based brain tumor segmen-
tation, where inception module and dense block were introduced into standard
U-Net to comprise SU-Net. Although FL provides a way to obtain generaliz-
ability of models trained on MRI dataset from different hospitals, its solution
still suffers from domain shift of datasets. Domain shift can happen because
of several reasons, e.g., different scanners/scanner settings. Guo [46] pro-
posed a cross-site modeling method to overcome the domain shift issue during
collaboration. The method provided a supervision to align the latent space
distribution between the source domain to a target domain.

Tumor Segmentation: Other than classification, there exists many studies

on brain tumor segmentation. The first successful model for segmentation is
U-Net [47], since then many variants of U-Net [48], [49] have been reported.
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Wang [50] performed brain-wise normalization and used two patching strate-
gies for training a 3D U-Net. Kim [51] performed segmentation in a two-step
setup, first an initial segmentation map was obtained from 2D U-Nets which
was together used by 3D U-Net to produce the final segmentation map. Shi
[52] used U-Net by adding increased number of channels that enabled ex-
traction of rich diverse features from multi-modality scans. Some other works
used CNN for segmentation. Sun [53] proposed a CNN based computationally
efficient model with reduced number of parameters. Das [54] used 3D CNN
in a cascaded way to first extract whole tumor area followed by the core and
then enhance core tumor areas. Shan [55] suggested a lightweight 3D CNN
with improved depth that used different size of convolution kernels to aggre-
gate features. Ramin [56] proposed a cascaded CNN to speed up the learning.
Most of these segmentation methods used annotated tumors for training deep
networks.

1.4 Thesis Aims and Scopes

The thesis focuses on some DL methods for classification of gliomas and their
biomarker molecular subtypes aimed at assisting medical doctors in their di-
agnostic process. The included papers focus on methods to improve the per-
formance with respect to (i) test accuracy (ii) enlarging the training dataset
size (iii) training on multiple datasets (iv) using training dataset without/with
just a few GT tumor boundary annotations.

The methods and contributions are focused on the following sub-problems:

e CAE based classifier to improve the performance: A multi-
stream convolutional autoencoder (CAE) based classifier is employed
with a 2-round training strategy for effective feature learning and feature
fusion.

e GAN generated data to enlarge the training dataset: DL meth-
ods need large amount of balanced training dataset. A DCGAN is pro-
posed that generates synthetic data distribution as the original data for
multi-modality MRIs, which enlarges the training dataset size.

e Domain mapping among different datasets to avoid domain
shift: Clinical datasets are often small in size. MRIs are acquired with
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different scanners/ scanner settings at different hospitals. Simply com-
bining them for training a DL classifier do not offer improved test per-
formance. A framework is proposed that uses CycleGAN to map clinical
MRIs from different source domains to a target domain without loosing
the molecular-marker information. Further, a multi-stream CAE based
classifier is employed for the classification of 1p/19q codeletion and IDH
mutation.

o Federated learning (FL) for dataset protection: Training datasets
consisting of molecular based glioma subtypes are usually small in size,
as they are obtained from different patient cohorts with different scan-
ners/scanner settings. Furthermore, such datasets often suffer from class
imbalance. If those datasets are combined to train a DL classifier us-
ing central learning (CL) approach, data privacy issues often pose a
constraint. Despite, many studies on FL, few studies can be found on
gliomas and their subtype classification. We propose a novel FL scheme,
where datasets from different hospitals participate in a collaborative
learning without providing their datasets to a central model.

e Using tumor bounding box areas when GT tumor boundaries
are missing: DL based classification often requires GT tumor bound-
aries which are usually manually drawn by medical experts. Manual
drawing of tumor boundaries puts high demand on clinicians. By using
ellipse shaped tumor boundaries, the proposed method explores whether
the classification performance is affected compare to that of using GT
tumor boundary annotations.

e Brain tumor segmentation based on using 2D ellipse box ar-
eas: Supervised DL networks require training datasets with annotated
tumor annotations by medical experts to perform segmentation, which
is a time consuming process. This study is based on the datasets that
have only a small number of tumor boundary annotations. By using fore-
ground (FG) and background (BG) tumor boxes on unannotated MRIs,
this method explores whether segmentation performance is affected as
compare to that of using all GT tumor boundary annotations.

Scopes and Limitations: The studies in this thesis were conducted on
four different datasets containing multiple modality MRIs as summarized in
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Table 1.3. Some of these datasets have missing tumor boundary annotations.
The thesis has addressed this issue and offered alternative solutions when
developing and evaluating the proposed methods.

Table 1.3: Summary of datasets used in our studies.

Name Modality Papers  Brain tumor type
MICCAT’'17 T1/T1lce/T2/FLAIR A, C,E LGG/HGG

TCGA T1/Tlce/T2/FLAIR C, D LGG/HGG, IDH mut /wt

LGG, IDH mut/wt
Us Tlce/FLAIR B,CD 1p/19 codel /non-codel
LGG, IDH mut/wt

France Tlce/FLAIR B 1p/19 codel /non-codel

The included papers A, B, C, D are based on 2 class classification. Due
to small sizes of the datasets, the proposed methods cannot offer complete
solutions to the clinical problems at the moment. Therefore, test should be
conducted when large training datasets become available. The included pa-
pers do not include technical details of data acquisition, pre-processing and
labeling/annotating MRIs.

1.5 Thesis QOutline

The thesis proposes DL methods for gliomas and their subtype classification.
It consists of two parts. Part I includes the introduction part on the re-
search background. The remainder of part I is organized as follows: Chapter
2 reviews several background theories and methods on which the proposed
studies are built. Chapter 3 summarizes the main work and contributions of
the proposed methods. Finally, conclusions and future works are discussed in
Chapter 4. Part II includes the five papers that the thesis is based upon.
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CHAPTER 2

Background Theories and Methods

2.1 Deep Learning (DL) for Classification of Brain
Tumors

Deep learning (DL) is a class of machine learning (ML) methods that may
automatically learn features on raw input data. Success of DL could not have
been possible without the increased computational power of modern GPUs
(Graphical Processing Units) [57] and access to large labeled datasets. DL
methods have been developed and applied successfully in many areas of ap-
plications, that use different learning approaches, such as supervised learning,
unsupervised learning, semi-supervised learning, and reinforcement learning.
Classification is a two-step process: training or learning phase and the test or
evaluation phase. The test accuracy indicates whether a classifier is capable
of classifying the unseen data.

A DL network tries to mimic a human brain through combination of data

inputs, weights and bias where these elements work together to recognize and
classify the objects. The network has a deep architecture that consists of mul-
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tiple layers to learn representations from data in different abstraction levels
[58]. The key aspects of DL is that multiple layers of features are learned
automatically. Unlike conventional ML methods, where features are defined
by human experts before extraction, DL eliminates this requirement. The
network accepts data at the input layer and makes the final prediction at the
output layer. However, DL networks are not always simple in different appli-
cations and there are certain types to address specific problems.

2.1.1 Deep Convolutional Neural Network

Convolutional Neural Network (CNN), in theory, is able to learn any functions
and is known as universal function approximator. The basic layers that build
a CNN architecture consist of 3 types. These are convolutional layers, pooling
or subsampling layers and fully connected (FC) layers as shown in Figure 2.1.
Its architecture is designed to take advantage of the 2D structure of an input,
such as image or a speech signal. This is obtained with weight connections
followed by some form of pooling that produces translation invariant features.
Compared to fully connected networks, CNNs have fewer weight connections
with the same number of hidden units.

Feature Learning Classification
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. 4
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Figure 2.1: Example of a Convolutional Neural Network (CNN) [59]. ReLU: Rec-
tifier linear unit, FC: Fully connected

@

Convolutional layers: The purpose of the convolutional layers is to extract
image characteristics by using automatically learned filters. Each convolu-
tional layer contains several learnable filters. The convolutional layer uses
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these filters to perform convolution operations by scanning the input with
respect to its dimensions resulting in a number of feature maps. The layer
is convolved across the input dimension with a step size called stride. If the
stride size is big, it skips more pixels and the output appears as a smaller fea-
ture map. The reduced size of feature map can cause image borders to vanish.
However, it can be avoided by zero padding around the input feature maps. If
stride is one, a convolutional layer only changes the input volume depth-wise
leaving its size unchanged. The first few convolutional layers extract low level
features, such as edges, lines, corners etc., while the higher layers assemble
these low level features into more complex features. The depth of the network
and the layer sizes decide the learned filters ability to recognize high-level
features. The convolutional property enables translation invariance, that is,
similar patterns in different parts of the image is processed in similar manner.

Pooling layers: The aim of a pooling layer is to introduce non-linearity as
well as to reduce the parameter space. It is applied on feature maps obtained
from convolutional layers. Two common choices are max pooling and average
pooling. Max pooling computes the maximum of a local patch of units, and
average pooling computes the mean of a local patch of units. Computing
the convolution and max pooling function on any local patch of units are
separately depicted in Figure 2.2.

1|1 |0 2|2 : 11a o3

- I
2 |1 |1 0|2 1|10 41110 | ol1 11 _ 23
1/0 |1 (2 |1 ® 1/010 —— |0]2 |1 : 3lol1 |7 3o
1(2 |1 |10 111 0|52 | 212 lo o
1/1 |0 |1 |1 I

Output | 2x2
Feature map Filter feature map | Max pooling

Figure 2.2: Examples on convolution and maxpooling functions [59]. Left: Exam-
ple of a 2D convolution operation with stride =1. Right: Example of
a 2D maxpooling function with stride =2.

Fully connected (FC) layer: The FC layers are stacked on top of the
convolutional layers to flatten the multi-dimensional output of the last convo-
lutional layer into one dimension. These layers end with an output layer that
consists of same number of neurons as the number of classes.
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Activation function: It is an important part of the design of a CNN. All the
nodes in a layer use the same activation function. In a convolutional layer, the
result of the local weighted sum is usually passed through a non-linear opera-
tor. An activation function is differentiable, which is required during network
training when performing backpropagation of the error to update the weights.
Different activation functions are used in different layers of the network. In
the hidden layers, its selection would handle the learning of the network. In
the output layer, its selection would define the type of prediction.

Commonly used activation functions for any hidden layer are:

e ReLU: It is a preferred activation function for hidden layers of a CNN
because it is less susceptible to vanishing gradient. However, it may
cause saturation. It returns 0 for negative values, otherwise, returns the
value x for a given input z as:

ReLU(x) = max(0, ). (2.1)

This activation function has other variants such as leaky ReLU [60] and
parametric ReLU [61].

e Sigmoid: Tt is also called as logistic function. It takes any real value
as the input and gives the output values between 0 and 1. For large
input values, the output is close to 1, while for smaller input values, the
output is closer to 0. Due to this reason, it may cause vanishing gradient
issue during network training. For a given input z, the sigmoid function

is computed as:
1

Sigmoid(z) = At (2.2)

e Tanh: A tangent hyperbolic activation function or Tanh is very similar

to a sigmoid function with the same S-shape. It accepts any real input

value and produces output between -1 and 1. Large input values results

in output close to 1 and small values close to -1. Like sigmoid function,

it may also cause vanishing gradient. For a given input x, the Tanh
function is computed as:

xT —T

e€” —c€

Tanh(x) = e

(2.3)
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Commonly used activation functions for an output layer are:

e Linear: This function is directly proportional to the input, i.e., the
weighted sum of neurons. It is mostly used for regression.

o Sigmoid: Similar to (2.2), this function outputs values between 0 and
1. It is mostly used for two class classification, where the output layer
has one node.

e Softmaz: 'This function accepts real value inputs and computes prob-
abilities of the output units. It is frequently used for multi-class clas-
sification problem, where the output layer has one node per class. If x
is a given input and the m is the number of output nodes, the softmax
function is computed as:

em

ZT:l evs’

Softmax(x) = (2.4)

Cost function: This function is used for computing DL network errors. The
aim is to search through weight parameter spaces that minimize the cost
function and produce the lowest error. A classification problem is defined as
predicting the probability of an input example belonging to a specific class.
If the problem is a binary classification, there would be two classes with high
probability for a positive class and a low probability for a negative class. If it
is a multiple-class classification, then the probability of examples belonging to
each class are predicted. In such cases, a commonly used loss function is the
cross-entropy loss [62]. Let p, denote the probability of the true label and py
the predicted probability for N number of training examples, the cross-entropy
loss is defined as:

N
1
TN Z py;log(py,) + (1 — py,)log(1 — py,)). (2.5)

A dynamically scaled cross entropy loss is called a focal loss function. It is
used when training examples have high class imbalance. The examples from
the major class usually comprise the main loss and dominate the gradients.
Focal loss tries to downweigh the confidence in predicting the easy class during
training and allows the model to focus more on examples from the hard class.
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To balance the importance between the major and minor classes, a balanced
variant of focal loss is defined as:

N
1 A
= N Z a i py, log(py,) + (1 — @) (pg,)"¢ log(di)),  (2.6)

where py, and §; = (1—py,) are the predicted probability, p,, and ¢; = (1—p,,)
are the true probability of training examples as true labels, a € [0,1] is the
weighting factor for major class and (1 — «) for minor class, § is a modulat-
ing factor and ~ is a focusing parameter. When v = 0, (2.6) is same as the
weighted cross-entropy loss. Choosing v > 0 reduces the relative loss for easy
class examples while putting more focus on hard class examples.

For pixel-wise classification or regression where a real-value quantity is to
be predicted, for instance, in autoencoders, a regression loss function also
referred to as the mean square error (MSE). It is calculated as the average
of the squared difference between the the predicted pixel values g; and actual
pixel values y; as:

1 N
=% ; . (2.7)

CNN training: During training, the network searches through weight pa-
rameter spaces that may minimize the difference between the network’s pre-
diction and the GT labels. For such purpose, gradient decent method aka
"batch gradient descent" is usually used. It computes the gradient of the cost
function Vi L(w) w.r.t. to the weight parameters w for the whole training
dataset as:

w=w-—17.VyL(w), (2.8)

where gradients are computed using backpropagation [63] by moving in a back-
ward direction to adjust the weights in each network layer. Since we compute
the gradients for the entire dataset for just one update, batch gradient descent
can be very slow which might not fit in memory. It guarantees to converge
to the global minimum for convex error functions and to local minimum for
non-convex functions. In contrast to batch gradient descent, stochastic gradi-
ent descent (SGD) [64] computes a weight update for each training example
x; and GT label [; given as follows:

24



2.1 Deep Learning (DL) for Classification of Brain Tumors

w=w—17.VagL(wW;z;;l;). (2.9)

It converges relatively faster with a high variance that could cause fluctua-
tions and instability. An intermediate option could be a mini-batch gradient
descent that computes an update for every batch of n training examples, give
as follows:

W=w—1.VeLl(W;Ziitn;liitn)- (2.10)

This reduces the variance of weight updates leading to more stable con-
vergence and enables computing the gradients efficiently. The term SGD is
commonly employed also to mini-batch gradient descent. To improve the con-
vergence, some variants of SGD are used such as, adaptive gradient algorithm
(Adagrad) [65], root mean square propagation (RMSprop) [66] and adaptive
moment estimation (Adam) [67]. Moreover, batch normalization (BN) [68]
also helps to speed up the training. Despite the potential of CNNs, they are
prone to over-fitting when the training dataset size is small. To tackle this
problem, there are certain ways such as using data augmentation to enlarge
the training dataset size, or using different regularization techniques. For the
latter method, some common choices are using L; /L regularization to penal-
ize large weights and adding random dropouts to FC layers.

Several CNN Models

A CNN model has the capacity of exploiting the spatial or temporal correlation
from input datasets. A few successful example models are listed below:

o LeNet [69]: It was the first CNN model and was originally developed
to categorize hand written digits of the MNIST dataset. It consisted of
seven layers with its own trainable parameters that effectively performed
classification. However, it was not effective enough for bigger images and
large number of classes.

o AlexNet [70]: It was a major breakthrough with improved architecture
on ImageNet dataset and was the winner of ILSVR-2012. The architec-
ture was similar to LeNet but with more included filters, that enabled
classifying more object classes. Its architecture consisted of 5 convolu-
tional layers followed by max pooling layers and 3 FC layers to classify
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1000 classes. All the layers used ReLUs as activation function and FC
layers used dropouts to overcome over-fitting. The last layer used the
softmax function.

ZFNet [71]: It was the winner of ILSVRC 2013. ZFNet proposed a fas-
cinating network whose aim was to statistically visualise network per-
formance by analysing neuron activation. It was the outcome of some
improvement on AlexNet where some hyper-parameters were adjusted
like, expanding the size of middle convolutional layers, lowering stride
value and employing the filter size of 77 in the first layer.

GoogleNet [72]: It was the winner of ILSVRC 2014. GoogleNet proposed
an inception module. It was an improved version of the original LeNet
design and consisted of 22 layers (27 with pooling layers) with nine
inception modules stacked on top of each other. The other versions
were later introduced such as inception-V4.

VGGNet [73]: Tt was the winner of ILSVRC 2014. VGGNet consisted of
a deep architecture extending up to 16-19 weight layers. Its main idea
was to know how a network could be made more dense. The network
architecture was simple, with pooling and fully linked layers. VGGNet
replaced the bigger size filters with a stack of 3x3 filters presenting that
the simultaneous placement of small size (3 x 3) filters could provide the
effect of a big size filter. Hence, the parameters were reduced with the
benefit of low computational complexity.

ResNet [74]: It was the winner of ILSVRC-2015, and has been one of
the popular and effective DL networks. It consisted of a residual block
which was designed on the concept of skip-connections and used a lot
of batch-normalization. The new added layers learned something new
from the previous layers without sacrificing speed. The network design
was inspired by VGGNet-19 and had a 34 layer network with added
shortcut and skip connections. The gradient flow reached to the earlier
layers through the shortcut links and overcame the vanishing gradient
issue.

DenseNet [75]: It was proposed to overcome the vanishing gradient issue
in the same way as ResNet. It used cross-layer connection to solve this
problem. It had a thin-layer structure, but as the number of feature
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maps increased, its computation became costly. The network’s informa-
tion flow improved by giving each layer direct access to the gradients
through the loss function.

These CNN models performed well on ImageNet dataset but these meth-
ods need yet to be explored on medical image datasets. Medical datasets are
different because of different image modalities, small dataset size and other
varying details.

2.1.2 Autoencoders

A stacked autoencoder (SAE) is a specific type of network, which is designed
for learning a compressed representation to encode the input such that the
decoder output would become as close as possible to the input [76]. Its main
idea is to learn an informative representation in an unsupervised manner that
can be further used for supervised learning. It consists of an encoder part and
a decoder part. The encoder learns the features of inputs and generates fea-
ture codes. The decoder reconstructs the input from the feature codes. The
encoder and decoder parts are usually DL networks containing non-linear ac-
tivation functions. If the non-linear operations are dropped, it would perform
similar to that of principal component analysis (PCA) [77]. Autoenocder
learns a non-linear manifold instead of just learning a low dimensional hyper-
plane to represent data.

fo(x) 9o(2)

O O O

O O O O Of=w
O O O O O|w

Figure 2.3: The basic structure of an autoencoder.

Let = be the input for the encoder, & be the decoder output and z =
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fo(x) is the output from the encoder and & = g4(z) represent the decoder.
Further, let # and ¢ represent the optimized weights for the encoder and
decoder respectively. The network is trained in an unsupervised manner that
minimizes the mean square error (MSE) between the input and the output
images for N number of images given as:

1 N
L(@,3) = =3 3 l96(fo(a)) — (211)

SAE is trained so that it should be sensitive enough towards reconstructing
the input by minimizing the loss function. At the same time, it should be
insensitive towards the input and not to just memorize it. In the cost func-
tion, a regularization term is usually added to introduce constraints and learn
useful representation from the input. The training is performed using SGD
to perform the reconstruction well and is called as pre-training step. Once
the network is pre-trained, the encoder part acts like a feature descriptor and
a classifier can be added for supervised refined-training. The idea from SAE
is widely used in compressing data [78|, where it reduces storage space and
speeds up the time for computation. It improves performance by discarding
redundant variables [79]. It is also used for visualizing high dimension data
[80] and for reducing noise from input data.

Another AE network is formed by using convolutional layers called as con-
volutional autoencoder (CAE) [81]. This replaces the basic structure of a SAE
by replacing fully connected layers to convolutional layers with pooling layers
to extract feature codes in the encoder part. The layers in the decoder part
is replaced by deconvolutional layers with upsampling layers to reconstruct
the input image from the feature codes as shown in Figure 2.4. Convoltuional
layers in CAE are better to capture spatial information form image datasets
with fewer weights compared to SAE.

Other Autoencoder Models

By adding different regularization terms in the cost function, many variants
of autoencoders have been introduced, for example:

o Sparse AE [82]: This model enforced sparsity regularization on the hid-
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Figure 2.4: Example of a Convolutional Autoencoder (CAE) [59].
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den activation instead of the weights. It was done in two ways: inducing
sparsity by applying L regularization or by using KL-divergence. The
former method added L; norm of hidden activation to the objective
function which activated the highest values nodes while making others
zero called as the sparse penalty term. The latter method measured
the distance between two probability distributions, where one distribu-
tion was computed from the activation of neurons that were assumed as
Bernoulli variables, and the other distribution was empirically computed
from the probabilities of the hidden neurons.

o Denoising AE [83]: This model can be considered as a robust autoen-
coder that was used for error correction. It learned to reconstruct the
original undistorted input from its noise corrupted copy. Hence, it
avoided to copy the input to the output, and learned instead the ac-
tual features of the input.

o Contractive AE [84]: This model resisted input perturbations and en-
forced a robust feature extraction to contract a neighborhood of inputs
into a smaller neighbourhood of outputs. It worked similar to a de-
noising autoenocoder where the decoder resists the noises. On the con-
trary, contractive autoencoder added a regularization term in its objec-
tive function that penalized large derivatives of hidden layer activations
with respect to the input training examples.

o Variational AE [85]: This model improved the representation capabili-
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ties of basic autoencoders. This generative model attempted to encode
inputs through a probabilistic distribution instead of an arbitrary func-
tion. The input examples were encoded (recognition model) into two
parameters to approximate the real posterior distribution over the la-
tent space. It was assumed that the latent space had already a prior
distribution as a normal Gaussian distribution. When a point was ran-
domly sampled from the distribution, the decoder (generative model)
mapped that latent space point to the reconstructed input data.

2.1.3 Central Learning (CL)

It is a learning method in which the datasets from several local clients are
combined into a pool of dataset to train a central model. As shown in Figure
2.5, dataset from each local client is shared centrally. The central model
combines all datasets from all local clients, extracts features and then trains
a DL network on the combined datasets. This results in a single integrated
central model which is evaluated either on the individual test set by each
local client or on the combined test sets. This learning method offers low level
of privacy because sharing data centrally discloses the sensitive information
of the datasets. However, it enables enlarging the dataset size and allows
training a more generalized DL network. The public datasets, obtained from
different hospitals, can be used and shared centrally to train a classifer. In
this thesis, we have assumed a DL network trained on a single MRI dataset
similar to a CL approach, since the training method is similar to that when
it is performed on a combination of datasets.

Dataset 1

Pool of Central Learned
j Datasets Learning Classifier

Dataset N

Figure 2.5: Depiction of a CL. method on centrally shared pool of datasets from N
local datasets.
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2.1.4 Federated Learning (FL)

The European General Data Protection Regulation (GDPR) [86] and the
United States Health Insurance Portability and Accountability (HIPAA) [87]
have put regulatory constraints on sharing personal health information. Such
data protection constraints the medical data sharing and hence training DL
networks become limited on using to local data only. This in-turn limits the
research on finding effective automatic medical diagnostic methods. Recently,
federated learning (FL) is introduced as a collaborative learning approach that
allows training of a central model while protecting the privacy of datasets.
This learning method does not need the local datasets to be shared centrally.
It allows the local DL networks to be trained locally and the network weights
are instead shared with a central model as shown in Figure 2.6. A set of local
DL networks are trained locally on the local datasets and the weights of the
local networks or gradients are sent to the central model for aggregation. The
central model sends back the updated network weights or gradients to each
local networks for further training. One complete round of such a training
is called a communication round, and it continues until the central model

converges.
Datasetl —p [ Local Learner 1 ] Learned Classifier 1
) . Central *
. . Update '

Dataset N =—p [Local Learner N ]

Learned Classifier N

Figure 2.6: Depiction of a FL. method with N locally learned networks on IV private
datasets, where network weights are transferred to the central model
for the update and redistribution.

There are different basic categories of FL such as horizontal FL, vertical
FL, federated transfer learning, cross-silo FL and cross-device FL [88]. In
this thesis we are interested in horizontal FL frameworks, where each local
client has dataset obtained from different group of people with same features
to train a shared DL network.
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Challenges in Federated Learning

FL is seen as an effective way to address data protection issue and has at-

tracted many research interests [89], [90] in different applications [91], [92].

Despite many FL methods have been introduced, challenges remain, some of
which can be listed below [93]:

32

e Data Heterogeneity: Medical datasets are diverse from many aspects.

They consists of different modalities and characteristics and are acquired
from different brands of scanner machines with different settings. Such
inhomogeneous data distribution poses a challenge in FL training. In
practice, simple FL [94] fails to overcome this problem and suffers from
client drift. This problem may cause the central model not to reach to
an optimal solution. For intuition, Figure 2.7 depicts the scenario of
client drift caused by data heterogeneity, where client 1 performs more
local updates than client 2, and the central model update strays more
towards the local minimum of z7, while away from the global minimum
x*.

Convergence Speed: The factors such as data heterogeneity, computation
limitations and partial client participation greatly impact the conver-
gence speed of central model in FL. A large number of communication
rounds is usually required that may induce delay in central model conver-
gence. This could be costly in terms of network resources. Furthermore,
local dataset may have different convergence speed.

Communication Cost: Frequent communication between client models
to/from the central model could be costly. One way to reduce this
cost could be to push optimization burden on the client sides [96]. As
discussed previously, delay in convergence speed could also put burden
on communication cost.

Class Imbalance: Different geographic areas can have different patient
cohorts and disease distribution. For instance, due to ozone hole, the
countries at southern hemisphere can have more skin cancer patients
than the ones on northern hemisphere. This affects the label distri-
bution. Such proportion of classes in the client training datasets have
great impact on FL performance and may lead a central model towards
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Figure 2.7: Depiction of model updates in the parameter space [95]. Top row:
Heterogenoeus setting. Bottm row: Homogeneous setting. Green
square: Global minimum point. Blue triangle: Local minima of
local objectives of client 1 and client 2 respectively.

the wrong direction and hence deteriorate the performance. Therefore,
it is crucial to develop new methods for mitigating the effect of class
imbalance in FL [97].

Some FL Frameworks

FL frameworks can be realized from different design architectures and compu-
tation plans, but their basic operational aim remains the same, i.e., to combine
knowledge learned from different private datasets. Several FL frameworks are
briefly reviewed as follows:

Federated Average (FedAvg) [94]: Tt is a basic FL algorithm developed by
Google and is an effective optimization method in FL setting. The steps
involved in the training process of FedAvg are depicted in Figure 2.8. In the
start, the weights of DL network in the central model and client models are
different from each other. The central model sends its weights to the clients
before training the local DL networks. After initialization, the local clients
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Step 1 Step 2 Step 3 Step 4
Central model Central model Central model Central model
. . . . -
Initialization Update
Client 1 Client2 -+ Clientk Client 1 Client2 -+ Clientk Client 1 Client2 -+ Clientk Client 1 Client2 --- Clientk
Central model choses a DL network to be | Central model transmits the central DL | Client DL networks train the model | Central model aggregates client DL
trained. network to initialize the client DL | locally with their own datasets locally. networks to generate a global model
networks. without accessing any local dataset.

Figure 2.8: Steps in learning process of Fed Avg.

train their DL networks on their own local datasets with stochastic gradient
descent (SGD) for a number of epochs. After the training process in each
client network is completed, each client communicates its updated network
weights to the central model. The central model takes the average of these
weights and update its own network weights. The central model then passes
them back to the client networks for the next communication round. This
algorithm has addressed the problems of client availability, class imbalance
and heterogeneity. In each communication round ¢ = 1,2,--- ,7T the central
model sends its model to k clients from the randomly selected subset of S;.
Each of k clients trains and updates its network weights on its local dataset
as follows:

Wi, = wj, — 1 V(W) (2.12)

where 7 is the learning rate. The local objective function for the kth client
is represented by VFy(wy) = >, g, ‘n—;lAW}; given that n; denotes the data
samples of kth client and n =3, s, "k denotes the total data samples. The
local updated network weights are communicated to the central model, where
the central model weights w. are computed by aggregating the local model
weights wy. The iteration continues until convergence, or communication
round 7' is reached. This algorithm was implemented using a multi-layer per-
ceptron, different CNN architectures and a two layer long-short term memory

(LSTM) network.

FedProx [98]: FedProx has improved FedAvg in many matters. FedProx al-
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lows non-uniform amount of work across client models which in FedAvg is
same across clients without considering their underlying system constraints,
and if any client fails to work within a specified time window, it is dropped
instead [99]. FedProx supports robust convergence on heterogeneous datasets,
while Fed Avg diverges empirically in heterogeneous data settings [94]. To sup-
port non-uniform amount of work across client models, FedProx introduces
an additional proximal term in the local objective as follows:

Wi = wi — 1 VE(wp) + p(wy, — wih), (2.13)
where w1 is the central model weights sent to the clients and u > 0 is a
tunable regularization parameter that controls the step size in FedProx and
requires a careful selection. The proximal term pulls the local client model
backward closer to the central model and helps the training in two ways.
Firstly, it avoids the effort of manual setting of local epochs and restricts the
local updates to remain closer to the initial central model. Secondly, it effi-
ciently incorporates variable amount of work for local clients caused by the
dataset heterogeneity.

FedNova [95]: Another variant of FedAvg is FedNova that improves the sta-
bility and overall accuracy of FL in heterogeneous settings. FedNova was
introduced while considering the following situation: given the same time
constraint when clients have different computational power; or given the same
number of epochs and batch sizes clients have different sizes of datasets. In
such scenarios, the clients with more local updates get biased towards its local
optimum, and this in turn impacts the global optimum. Thus, to ensure that
the central model updates are not biased, FedNova normalizes and scales the
local updates of clients based on the number of local steps. In other words,
it uses momentum to assign correct weights to the local weights of clients as
follows:

¢ 2kes, [T VE(w))
K " n Tk

wh =w : (2.14)
where 73 is an arbitrary scalar value that changes across each round and is
computed as 7, = Eny/B for local epochs E and mini-batch size B for each
local client. The local averaged gradient is multiplied with 7, while comput-
ing the aggregated gradient. This normalized averaging method eliminates
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objective inconsistency and provides fast convergence.

SCAFFOLD [98]: Stochastic controlled averaging for FL (SCAFFOLD) is
introduced to overcome the unstable training and slow convergence in Fed Avg.
SCAFFOLD introduces control variate (variance reduction) to avoid client
drift in the local updates. This control variate shows the difference between
the update direction of the central model and in the gradient direction of each
client during its local model updates. In this way, SCAFFOLD corrects the
direction of local updates by adding drift during training as follows:

w’,; = w’,; — n(VFk(W’,;) —c +c¢), (2.15)

where c is the central model control variate and cj is the kth client model’s
variate that can be updated in two ways. When cy, is set to zero, SCAFFOLD
becomes FedAvg.

FedDyn [96]: To control the client drift, FL with dynamic regularization (Fed-
Dyn) is introduced. It adds a regularization term to control the client drift and
speed up the convergence to reduce the communication cost. Unlike SCAF-
FOLD that applies control variate on the client side, FedDyn partly applies
it on the clients and partly on the central model side. The regularization
term, in FedDyn, dynamically aligns global and local convergence points, and
avoids client drifting from happening. The local model weights are updated
as follows:

wh = W, — n[=VE(wh) - VE(wi ) —a(w! ' —wh)],  (2.16)

t=1 — w!) is a penalty term that is

dynamically modified. The local model weights are then transmitted to the

where « is a regularization term, and (w

central model for computing central model gradients and updating the central
model weights.
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2.2 Generative Adversarial Networks (GANs)
2.2.1 GAN Basics

A GAN is a DL method that learns from original data distribution and gener-
ates synthetic data with similar distribution. The first GAN was introduced
by Goodfellow [33] as shown in Figure 2.9. It consists of two DL networks: a
generator G that accepts an input variable z and generates fake images, and
a discriminator D that distinguishes whether the generated images are fake
or real.

G(z)

Generated Images
Generator
G
Discriminator

x
Real Images

OO~

O

Fake/Real ?

Figure 2.9: Generative Adversarial Network.

Given a prior distribution p,(z) (usually a Gaussian distribution) of in-
put variable z, the generator G(x;6,) learns a mapping from z to a data
generated distribution p, over the target data x, where 6, are the learnable
parameters of G. While the discriminator D(x;6,) learns with parameters 6
to discriminate between G(z) the generated samples coming from generated
distribution p, and the real image samples x from data distribution pgqtq.
During training, both networks learn simultaneously, with G aiming to mini-
mize log(1 — D(G(z))), and D aiming to maximize the loss function. G tries
to generate images G(z) with high probability to look real and obtain the
goal py = Pdata, while D tries to learn distinguishing between py and pgqtq. In
other words, D and G aim to play the two-player minmax game by optimizing
the following function:
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mén max V(G,D) = Expyora(x)108D(X) +E; ~ pyz)log(1—-D(G(2))), (2.17)

where D maximizes the objective function using gradient ascent, and G min-
imizes it using gradient descent. In practice, when D is close to optimal
solution, it provides sufficient feedback to G to change its gradients. How-
ever, a highly precise D, where D(z) = 1 and D(G(z)) = 0 reduces the loss
function to 0, resulting in 0 gradients and hence G gets a little feedback. A
reasonable approach could be to maximize E[log(D(G(z)))] rather than to
minimize log(1 — D(G(z))). In this way, D and G would update iteratively,
such that, when D is optimized for k steps, G is updated for one step on the
mini-batch using stochastic gradient descent.

2.2.2 GAN Variants

There exists different types of GANs, which can vary mainly in 3 aspects as
shown in Figure 2.10: based on architecture, based on the condition and ob-
jective functions of the discriminator and generators. These variants aim at
improving the performance and image generation, a few of them are discussed
below.

DCGAN [100]: Deep convolutional GAN (DCGAN) is introduced by using
convolutional layers resulting in stable training and producing high resolution
images. Firstly, it replaces the pooling layer with fractional-strided convolu-
tions for GG, and strided convolutions for D. Secondly, batch normalization
is used in both G and D after each convoltuional layer, that helps to keep
generated images and real ones centering at zero. This helps to deal with the
training problem that might have caused either by poor initialization or by
vanishng gradients. Finally, ReLLU activation functions are used for hidden lay-
ers in GG, except Tanh activation function for the last layer, while LeakyReLLU
for all G layers. Fully connected layers are used at the input of G and at the
output of D. It has the drawback of suffering from mode collapse where it
might not learn to produce some samples of the dataset. DCGAN has been
used for data augmentation in [36] and for classification in [101], [102].
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Deep Convolutional GAN (DCGAN)
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Figure 2.10: GAN taxonomy. There exists many other types of GANs which are
out of scope of this thesis.

CycleGAN [103]: CycleGAN performs transferring of images from one do-
main to another domain. It employs cycle-consistency loss to guarantee the
relation between input image and the corresponding output image as shown
in Figure 2.11. CycleGAN consists of two generators X and Y and two dis-

G G G
-~ B EE B ET
S~ F F
l F l X ol Y X | Y] oeeconsieney
DX DY cycle-c?ol;zistency N S\ .&_> (_3\ 1

(a) (b) (c)

Figure 2.11: A schematic of cycleGAN taken from [103]. (a) G an F are the
two mappings with their corresponding discrimnators Dy and Dx.
(b) Forward consistency loss is encouraged by F(G(z)) ~ z. (c)
Backward consistency loss is encouraged by G(F(y)) ~ y.

criminators Dx and Dy . Two mapping functions G and F' are computed with
their associated discriminators Dy and Dx. Mapping G is conducted such
that G : X — Y where Dy learns to discriminate between § = G(z),z € X
and y € Y. To cope with the unpaired inputs and outputs in the two domains,
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an additional constrain is required such that the transformations remain cycle
consistent. In other words, if z is transformed to g and is transformed back,
then & ~ x. This is obtained by using the other mapping function F' in the
cycle which maps F' : ¥ — X and Dy is trained to discriminate between
& = F(g) and z. Both the mapping functions are learned through the ad-
versarial losses simultaneously with the additional cycle consistency loss for

F(G(x)) = z and G(F(y)) = y to perform domain-to-domain transformation.

Semi-supervised Generative Adversarial Network (SGAN) [104]: The design
of this GAN is based on the idea of multi-headed discriminator that can use
either softmax function or sigmoid function. In this way, the discriminator D
learns better and impacts the learning of G. The discriminator has a total of
N + 1 outputs corresponding to N data classes with an additional fake class.
SGAN is called semi-supervised because it uses labels for half of the mini-
batch that has been drawn from the data generating distribution. However,
SGAN limits the diversity of generated images. SGAN has been used in [105].

Coupled Generative Adversarial Networks (CoGAN) [106]: This GAN frame-
work generates pairs of corresponding images in two different domains. It
consists of two pairs of GANS, each responsible to generate images in one do-
main. It employs a simple weight-sharing constraint as shown in Figure 2.12
that enables learning of a joint distribution of images from multiple domains
without them to be paired-images. This weight-sharing strategy reduces the

Generators Discriminators
GAN, f1(912)
9.(2)
z ——  weight sharing
- f2(92)
= O

GAN,

Figure 2.12: A schematic of COGAN taken from [106]. It consists of two GANS;
GAN; and GAN; with generators g1 and g2, two discriminators f1
and fo and a common input z. The weights of first few layers of
generators and the last few layers of discriminators are shared which
allows the model to learn the join distribution of images without any
supervision.
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number of parameters. The training is done through back propagation alter-
natively, i.e., first train two discriminators one after the other, and then train
two generators one after the other. The process repeats until convergence.

Conditional GAN (¢GAN) [107]: A traditional GAN generates random images
from the given input dataset irrespective of its class label. Conditional GAN
(cGAN) allows the image generation with adding extra information to control
the generated data images. Both D and G models are conditioned on class
labels encoded as a one-hot vector. Further, they are concatenated with z in G
and x in D on an embedding layer followed by a FC layer with linear function
to scale this layer to the real input size before being presented to the model.
For instance, if the images have class labels, they can be conditioned using
their discrete class labels, but if the condition is any image, cGAN can perform
image-to-image translation [108]-[111]. Although, cGAN requires pairs of
input and output images for training, it is hard to obtain when applying in
domain adaptation. cGAN has successfully been used for data augmentation
[37], [112] and for synthesizing good quality images from text [113]. The loss
function of cGAN is given as follows:

mén max V(G, D) = Expyora(x)logD(x[c)] + Eznp,, log[(1 — D(G(z]c)))].

(2.18)
Information Maximizing GAN (InfoGAN) [114]: 1t is an extended version of
c¢GAN that learns to maximize the mutual information between the condi-
tional variable and the generated data to learn disentangled representation
in an unsupervised manner. The noise vector is decomposed into two parts:
in-compressible noise z and latent code c. A new classifier @) is defined that
learns to estimate ¢ given by Q(c|x), where @ and D share all convolutional
layers except the fully connected ones. The loss function of InfoGAN is the
regularized form of cGAN, give as:

mén max Vi(G,D)=V(G,D) - X (c;G/z,c)), (2.19)
where V (G, D) is objective function for cGAN, the difference is that the dis-

criminator in InfoGAN does not take ¢ as input. InfoGAN is good at disen-
tangling objects and discovering visual concepts from the existing images.
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Wasserstein GAN (WGAN) [115]: In traditional GANs, the model could suf-
fer from instability and mode collapse. WGAN is introduced to reduce the
Jensen-Shannon (JS) divergence with Earth-Mover (EM) distance. EM dis-
tance is differentiable and effectively solves mode collapse. It allows stable
training of the GAN that supports the equilibrium between G and D, and
provides high quality gradients to train G. The WGAN cost function is give
as follows:

mGin 1512% V(G7 D) = IEX"“IDdata(x) [D(X)] - Eszz(z) ]'Og[D(Z)]? (2'20)
where D is the set of 1-Lipschitz function. Enforcing this constraint restricts
the weights to lie within a compact space. This leads to large gradients be-
ing clipped off resulting in unstable training. WGANs have been increasingly
used in computer vision applications for synthesizing good quality images.

Least Square GAN (LSGAN) [116]: The main idea of LSGAN is to replace
sigmoid cross entropy loss with least-square loss function. In original GAN,
the discriminator is considered as a classifier with sigmoid cross entropy loss
function that leads to vanishing gradient problem. When the fake images
are classified as real images, it creates no error. It considers those images on
the correct side of the decision boundary even though, in real, those images
are far from the real ones. LSGAN uses the least square losses, Vi, for the
generator and Vp for the discriminator that enables generation of high quality
images and penalizes the images that are far from the real ones to sustain more
stability. These losses are given as below:

i VD = 2 B, (0 [(D0X) = 0)°] 4 5B 0 [(D(G(2) — B,

min Vs = %EMZ(Z) (D(G(2)) — a)2], (2.21)

where a is the label for real images and b for the generated images.
Video-to-Video Synthesis (vid2vid) [117]: Like image-to-image mapping, this

GAN aims at learning a mapping function from, e.g., a human pose video,
and synthesizes realistic videos of the given example images according to the
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video poses. This GAN uses cGAN with a Markov assumption, where the t-
th frame is generated considering the previous L frames, including the source
images and the generated images. Since the consecutive frames in a video
have redundant information, the next frames can be estimated by warping
the current frame given that the optical flow is known. The adversarial loss
of vid2vid is given as follows:

maxmin Vi = B o1 logD(x] ,sT)] + Egr [log(1 - D(G(s]),sT))], (222)

xT,sT)
where sT are the sequence of source video frames and x? are the sequence of
corresponding real video frames. vid2vid learns a mapping function to convert
sT to a sequence of x. However, this model does not respond well against
unseen objects and scenes and requires re-training for the new input. This
generalization problem has been solved in few shot video-to-video synthesis
[118], which can synthesize videos of unseen inputs.

2.2.3 Applications of GANs

GANs were first used in non-medical images with promising results. This
includes style transfer [119], super resolution [120], [121], sequential data gen-
eration [122], image-to-image translation [103], [108], [123], data augmentation
[124], domain adaptation [125], object detection [126], image registration [127],
[128] etc. These methods were later extended to medical images. We keep
our focus limited on data augmentation and domain mapping as the GAN
applications which are discussed below.

Data Augmentation

It is a technique to increase the training dataset size by adding synthetic
data similar to the input data distribution. DL network performance relies
on the size of training dataset, which is a constraint in medical area, where
the datasets are usually small in size. Some medical datasets have more num-
ber of one class images than the other, i.e., class imabalance images. Data
augmentation is one of the most common ways to increase the number of train-
ing images for improving classification performance and balancing the classes.
Typical ways of augmentation are random rotation, shift, zoom, elastic de-
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formations, scaling and flipping [47], [129], [130]. Augmentation based on DL
methods produces more realistic results, e.g., GAN augmentation may synthe-
size MRIs by changing tumor size, tumor location and contextual details from
the input image distribution. Qi [35] used an attention guided CycleGAN for
MRIs to augment a tumor in normal MRIs and returned normal MRIs from the
ones with tumor. Mok [37] proposed a cGAN to generate generic augmented
images that led to an improved dice score from brain tumor segmentation
network. GANs have also been used for generating synthetic images for many
other medical images. Motamed [131] proposed Inception-augmentation GAN
(IAGAN) on chest X-rays for the detection of pneumonia. The ability of GAN
was improved to learn more details from the training dataset while maintain-
ing the spatial information. Another study [132] on chest X-ray images used
AC-GAN for generating synthetic images to improve the classification perfor-
mance. Frid-Adar [36] trained a separate DCGAN for each class of liver lesion
that led to improved classification performance. Tekchandani [133] generated
augmented images of benign and malignant mediastinal lymph nodes by using

different GAN architectures such as cGAN, DCGAN, WGAN, AC-GAN and
InfoGAN.

Domain Mapping

Many GAN based DL networks have been introduced for mapping the input
image to an output with a different appearance but with the same underlying
structure. This image transformation is more challenging for medical images
than the visual images, because the amount of detailed structure presented in
medical images could be distorted in the process. Medical images could be of
different dimensions and contrasts that offer diversity in diagnostic choices.
At the same time, it is considered a challenge to translate them among dif-
ferent modalities or among various acquisitions within one modality. Various
GANs (cGAN, CycleGAN, StarGAN and inforGAN) have been used to per-
form domain mapping for inter or intra-modality. Among them, CycleGAN
has been most popular because of its capability of dealing with unpaired data
images. Yang [134] used a structure constrained CycleGAN [103] on unpaired
images to transform brain MRIs to CT scans. The structure consistency loss
between the synthetic and real images was defined based on modality inde-
pendent neighborhood descriptor to constrain structural consistency. Instead
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of random selection of training images, a position based selection strategy was
employed. Armaniousa [135] proposed MedGAN to perform PET-CT trans-
formation, correction of MR motion artefact and PET image denoising on
brain images. The generator architecture (CasNet) consisted of a cascaded
U-net to produce sharp transformed image. The discriminator was used as a
trainable feature extractor that penalizes the difference between transformed
image and the desired modality. Nie [136] used a patch-based GAN to trans-
form MRIs to CT images. It used a CNN as a generator and proposed an
auto-context model for image refinement. Lie [86] used a CycleGAN in which
the generator used a dense block-based network to produce CT images from
the brain MRIs. Yang [137] developed a ¢cGAN based framework that ex-
ploited low and high level features for cross-modality (between T1, T2 and
FLAIR) transformation. Most of the above methods performed mapping be-
tween only two domains at a single time. On the contrary, StarGAN [138]
performed a multi domain transformation using a single generator where the
domains had no feature mismatch. The generator took the target domain as
an additional input. Another study that performed mapping among multiple
domains was seen in Radial GAN [139] that overcame feature mismatch.

Despite GANs have shown promising results in many applications, they
have rarely been used to generate synthetic data and perform domain mapping
on the datasets of molecular subtypes of gliomas, where retaining the subtle
molecular information of tumors in MRIs is important. This motivate us
to generate synthetic MRIs containing gliomas that may assist to improve
performance in molecular- based classification.

2.3 Deep Learning (DL) for Tumor Segmentation

Brain tumor segmentation aims at localization of tumor area and its subre-
gions with respect to surrounding tissues. The output of a segmentation is
an image of the same dimension as that of the input image, where each pixel
is assigned a label indicating that the pixel belongs to which subregion of
tumor area. A manual annotation, marked by a medical expert is reffered to
as the ground truth (GT) label/annotation. Figure 2.13 shows an example of
a FLAIR-MRI with GT tumor annotation with its subregions: necrotic and
non-enhancing tumor (red), peritumoral edema (green) and enhancing tumor
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Figure 2.13: Axial slice of FLAIR-MRI with its GT annotation from BraTS’17
dataset. Red: Necrotic and non-enhancing tumor. Green: Peritu-
moral edema. Yellow: Enhancing tumor.

(yellow). Manual segmentation is a time-consuming process and the quality
of annotation is highly dependant on the medical expert’s skill. Further, there
exists high probability of inter-observer variations. Thus, manual segmenta-
tion is not very practically feasible when the dataset size is large.

2.3.1 U-Net

It is a U-shape DL architecture that is developed for the segmentation of
medical images. It consists of an encoder and a decoder [140]. The encoder
part covers down-sampling operations to learn context, where regular convo-
lutional layers with max pooling layers contract the size of the input image as
the depth proceeds. The U-Net architecture is depicted in Figure 2.14. The
encoder part is further proceeded with successive upsampling layers that local-
ize the high resolution features. Since the U-shape of the model is symmetric,
a large number of feature channels are allowed to propagate information to
higher resolution layers assisting to generate a more precise segmentation map.
The network uses input images and their corresponding segmentation maps
for supervised training the network with SGD.
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Figure 2.14: U-Net architecture proposed by Olaf Ronneberger et al. [140]

2.3.2 Other DL Models for Segmentation

There exist several challenges in segmenting medical images compared to the
non-medical ones. The segmentation algorithms are often specific to applica-
tions, image modality and the body organ under study. Typically, medical
scans have both low contrast details and also moderate to high level of noise.
Image ambiguities such as partial volume effects (more prominent in brain
images) and inter and intra-patient variability further increase the challenge.
Many algorithms have been introduced to improve the segmentation perfor-
mance on brain MRIs, a few of them are discussed below.

V-Net[141]: V-Net is proposed to use a volumetric CNN that performs seg-
mentation on 3D MRI prostate volumes. An objective function based on the
Dice overlapping coefficient is optimised during an end-to-end training. The
network architecture consists of a compression path and a decompression path.
The compression path comprises of different stages that operates at different
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resolutions. Each stage consists of one to three convolutional layers and is
formulated such that they learn a residual function which increases the con-
vergence rate. At the output layer, a softmax function is used to predict the
probability of each voxel that belongs to foreground and to background, and
Dice overlap coefficient is optimized between predicted binary segmentation
volumeand the GT binary volume.

VoxResNet[142]: This study proposes a novel voxel wise residual network
(VoxResNet) for the segmentation of the key brain tissues (WM, GM ans
CSF) from 3D MRIs. It extends the 2D residual learning into a 3D variant
with a deeper architecture that consists of 25 layers. Residual learning trains
such a deep network to alleviate the degradation problem such that the per-
formance gain achieved by increasing the network depth is fully leveraged.
During training, multi-modality and multi-level contextual information are
integrated, such that the complementary information of different modalities
assist in improving the segmentation performance. For evaluation metrics,
Dice coefficient, Hausdorft distance and absolute volume difference are used.
To further boost the performance, an auto-context version of VaxResNet is
introduced that uses different levels of contextual information.

2.3.3 Segmentation Evaluation

Image segmentation aims at finding a segmentation map/label £, that is as
similar to the GT label L7 as possible:

L* = arg max S(L, Lar), (2.23)

where S measures the similarity between the two labels. Segmentation al-
gorithms are first trained on a training image dataset with GT labels that
maximizes the similarity in (2.23). After that, the algorithms are tested on
unseen images to predict the tumor areas. Out of many choices, one com-
monly used similarity metric to evaluate the segmentation results is the Dice
coefficient:

2|EHEGT‘

, 2.24
[+ [Zor] (2:24)

Sbice =
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where both £ and Lg7 are label binary maps in binary for one class. For labels
with multi-class, the mean Dice metric over all classes is computed. Another
commonly used metric is the Jaccard index (Intersection over Union), given

as:
|£ M »CGT|

S = — 2.25
JACCARD |£| U |£g7_| ( )
The two metrics are related by Spicg = %. Both metrics take

values from 0 to 1, with values closer to 1 the better. Other similarity metrics
have also been found in literature such as Hausdorff distance and the mean sur-
face distance, that are used when qualitative segmentation shape is important.
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CHAPTER 3

Summary of the Main Contributions

This chapter describes the methods developed in this thesis and are depicted
in Figure 3.1.

Methods for Classification of Glioma and their
Molecular Subtypes
I

MRIs without
/small no. of tumor
boundary annotations

[cL CL |FL [cL |cL

MRIs with tumor
boundary annotation

Training on GAN Training on Training classifier Segmentation
generated EL classfier on MRIs W|th?ut on MRIs with small
(Gli d subtypes) tumor annotations no. of tumor
MRIs + real MRIs Training on domain loma and subtypes (Molecular subtypes) annotations
(LeG/HGG) mapped + GAN
enlarged MRIs LGG/HGG IDH mut/wt (Paper E)
(Paper A) (LGG molecular subtypes) 1p/19q 1DH mut/wt
’—|—\ (Paper C) codel/non-codel
1p/19q IDH mut/wt (Paper D)
codel/non-codel
(Paper B)

Figure 3.1: A summary of the topics developed in the thesis.
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Chapter 3 Summary of the Main Contributions

The proposed methods on the classification of glioma and their subtypes

and the tumor segmentation, as depicted in Figure 3.1, are briefly described

as follows:

52

e Enlarging training dataset: DL networks need large datasets to

provide reliable performance. Brain tumor dataset is often small in size.
Motivated by this, we propose to tackle this problem by enlarging the
dataset. Paper A and B address this issue.

Domain mapping: Datasets from different hospitals suffer from do-
main shift, due to different patient cohorts, scanners and scanner set-
tings. Therefore, combining them likely would not help to increase the
classification performance. Motivated by this issue, a domain mapping
method is proposed. Paper B and C address this issue.

Training on multiple datasets with individual dataset protec-
tion: Sharing hospital datasets puts constraints under data protection
regulations, which limits training dataset size in central learning (CL).
Motivated by this issue, we employ a federated learning (FL) method
where hospitals may hold their own datasets while training local DL net-
works that aggregate to converge a central model. Paper C addresses
this issue.

Training on datasets tackling tumor boundary annotations:
Manually drawn tumor annotation is required for supervised DL. How-
ever, this requires time and medical expertise. To mitigate this problem
we propose: 1) training a classifier on MRIs with ellipse bounding box
tumor areas instead of GT tumor boundary annotations. 2) performing
segmentation where a large number of MRIs use bounding box tumor
areas and a small number of MRIs use GT annotation. Paper D and E
address this issue.



3.1 GAN for Data Augmentation and Multi-Stream CAE for Glioma
Classification

3.1 GAN for Data Augmentation and
Multi-Stream CAE for Glioma Classification

(Summary of Paper A)

Sub-problem addressed: (1) When training dataset is too small, DL net-
works do not provide reliable performance. (2) Improved performance is re-
quired for glioma (LGG/HGG) classification.

Motivations: A DCGAN is employed to generate synthetic MRIs for multi-
ple modalities. Hence, one can use GAN augmented MRIs in addition to the
real MRIs for training. A multi-stream convolutional autoencoder (CAE) is
proposed for feature learning of MRIs and fusion for glioma classification.

Basic idea: The basic idea behind this study is to enlarge the training dataset
by generating synthetic MRIs with the similar distribution. The proposed
classifier learns complementary information from multi-modality MRIs which
are fused followed by classification.

Contributions:

o Employing a deep convolutional GAN (DCGAN) for generating multi-
modality MRIs to enlarge and balance the training dataset.

e Proposing a 3-stream CAE-based classifier for end-to-end glioma feature
learning, feature fusion and classification.

o Employing a 2-round training strategy: pre-training on GAN synthetic
MRIs followed by refined-training on original MRIs.

e Evaluating the performance and comparing with the state-of-the-art
methods.

Proposed method: The pipeline of the proposed framework is shown in
Figure 3.2, where the training 2D MRIs from multiple modalities (T1ce, T2
and FLAIR) are fed into a DCGAN to generate synthetic MRIs for each
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modality. The training of the network is conducted in two rounds: pre-training
and refined-training. Based on the number of MRI modalities available, 3
streams of CAEs are trained in the pre-training round, where each stream
is trained separately for feature learning on individual MRI modality. Each
stream of CAE has an encoder (6 convolutional layers with max pooling layers
in between) and a decoder (5 layers of deconvolutional layers each followed by
an upsampling layer). The encoders at all streams are fused in the fusion layer.
Finally, the network is refined-trained on original MRIs to further improve the

learned features.

CAE-I
Tice
—»| DCGAN —P w1 [
o
T Pre-training phase ™ CAE-II %' - a
MRI umor —— EEE e ass
slices ™| Enhancement| > v z < labels
CAEAII = I
Refined training phase > — ]
FLAIR

Figure 3.2: The block diagram of the proposed scheme for glioma classification.

Evaluation: The proposed method was conducted on MICCAI BraTS’17
dataset for glioma (HGG/LGG: 210/75 patients) classification. The classifi-
cation performance of the proposed method on individual MRI modality and
on the fused multi-stream network are shown in Table 3.1. Observing the 4th
column of Table 3.1, the fusion of feature information shows a boost in test
accuracy compared to the individual MRI-modality.

Table 3.1: Average test performance (over 5 runs) of the proposed scheme on indi-
vidual MRI-modality and multi-modality inputs.

Acc. %(| o |) | Acc. %(| o |) | Acc. %(|o]) | Acc. %(] o ]) on
on Tlce on FLAIR on T2 3-Modality Fusion

86.90(0.61) | 81.75(1.78) | 73.25(1.65) |  92.04(1.03)

To observe the effect of data augmentation on performance improvement,
different sizes of augmented MRIs have been tested as shown in Figure 3.3. In-
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Classification
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Figure 3.3: Effect of DCGAN augmented image size on test accuracy for Tlce-
MRIs.

creasing the number of augmented MRIs have shown noticeable performance
improvement up to 5000 images.

Comparison: A performance comparison is done on test accuracy with a
few existing studies based on the same dataset for LGG/HGG classification
as shown in Table 3.2. The results from the proposed method shows improved
performance.

Table 3.2: Comparison with existing methods for HGG/LGG classification using
BraTS dataset.

Method # of Subjects | Test Accuracy (%)
Ye[143] 274 82.10
Ge[144] 285 88.07
Ge[145] 285 90.87
Proposed Scheme 285 92.04

Conclusion: Enlarging the training dataset by DCGAN augmented MRIs
has shown to improve the performance. The multi-stream CAE-based classi-
fier shows that the fusion of multi-modality MRIs gives complementary infor-
mation to improve the classification performance.
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3.2 Glioma Molecular-Subtype Classification based
on Domain Mapped Data

(Summary of Paper B)

Sub-problem addressed: (1) Lack of efficient methods for combining sev-
eral small MRI datasets into a large training dataset due to domain shift,
while maintaining the molecular subtle information in augmented MRIs. (2)
To identify whether molecular subtype information in LGG MRIs is retained
after employing domain mapping.

Motivations: Identifying molecular subtypes of LGG is important for prog-
nosis and timely treatment. A brain tumor sample is often used obtained
through biopsy. DL methods might help to assist diagnosis by learning from
existing MRIs with available biopsy information. However, such methods need
large training dataset. MRI datasets are often obtained from local hospitals
with different acquisition protocols. This calls for an efficient domain mapping
method that may allow to combine datasets into a common domain, while re-
taining the subtle molecular information in MRIs.

Basic idea: This study is based on the main idea of enlarging the size of the
training dataset from multiple MRI datasets. For this purpose, a framework
is proposed that uses CycleGAN to map clinical MRIs to a target domain
which can retain the molecular subtype information.

Contributions:

e Mapping several small datatsets to a common domain by using Cycle-
GAN, while retaining tumor characteristics on the molecular level.

e Further enlarging and balancing the training dataset in different classes
by using DCGAN.

e Using bounding boxes for MRIs instead of GT tumor boundary annota-
tions.

e Applying a two round training strategy for effective feature learning.
Pre-training a multi-stream CAE on DCGAN augmented data, and
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3.2 Glioma Molecular-Subtype Classification based on Domain Mapped Data

refined-training on MRIs.

Proposed Method: The proposed scheme is shown in Figure 3.4, that con-
sists of three modules: (i) mapping datasets to a common domain by unpaired-
CycleGAN; (ii) augmenting the training dataset by DCGAN to further enlarge
and balance the training dataset in different classes; and (iii) employing a 2
round training strategy on a multi-stream CAE classifier. Two modality MRIs
(T1ce, FLAIR) are fed into the CycleGAN to perform mapping from a source
domain A to produce A mapped MRIs. In our experiments, we only map
one source dataset to a target domain B. The total dataset D is obtained
as D = {AU B}. To further enlarge the size and balance the classes in
the training dataset, Diyain is obtained using DCGAN. The tumor extraction
block fixes tight rectangular bounding boxes around ROIs. A 2-round training
strategy is then performed on a multi-stream CAE classifier [146].

Tumor Region

4 5 Extraction m
Data G [ —
Augmentation | | | Pre-trainingSet Muiti-stream
e ain —
_ (A | Refined-training SetJ>
P )

Classifier
S —
l ) ] |

| ° Dataset A l Learned Coefficients

|
|

>

Mapping by

D Labels of
test

@ MOIECUIar_
=" _ e | Subtype Gliomas

o CycleGAN

Figure 3.4: The block diagram of the proposed scheme. Blue dash box: domain
mapping; Green dash box: feature learning step; Yellow dash box:
testing step

Figure 3.5 shows the concept of an unpaired-CycleGAN for domain map-
ping from a source domain to a target domain.

Evaluation: This method is tested on two datasets (USA and France) for
two cases of molecular subtypes in LGG MRIs. Case-A is used for 1p/19q
codeletion prediction while case-B is used for IDH mutation prediction. Since
USA dataset proved to give better performance for both case studies than the
France dataset, it was chosen as the target domain. Figure 3.6 shows before
and after mapped MRIs from France dataset domain to US dataset domain.
The performance was tested with different number of augmented MRIs and
the one with the best test performance was selected. The network was then
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FLAIR-MRI

Figure 3.5: Illustration of domain mapping from domain A to domain B for
FLAIR-MRIs. G4 and Gp are generators and D4 and Dpg are the
discriminators.

FLAIR Tlce FLAIR Tlce

USA - MRlIs

France - MRIs
mapped to
USA domain

Figure 3.6: Visual inspection of 2D images for FLAIR-MRIs mapped from a source
domain to a target domain.

trained using a 2-round training strategy. The mean test performance for the
classification is shown in Table 3.3.

Comparison: Figure 3.7 shows the comparison of classification performance
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3.2 Glioma Molecular-Subtype Classification based on Domain Mapped Data

Table 3.3: Average test accuracy of 2 datasets (over 5 runs) with domain mapping
for two case studies.

Case study Test Accuracy %(| o |)
Case-A (1p/19q codel/non-codel) 74.81(0.98)
Case-B (IDH mut/wt) 81.19(3.70)

based on using domain mapping and without using it on both case studies. In

Comparison
100

I without domain mapping
o5 | I with domain mapping

90

Test Accuracy (%)

Case-A Case-B

Figure 3.7: Comparison of the test results for classification with/without domain
mapping.

case-A, the test accuracy (74.81%) was improved by 7.78% for 1p/19q codele-
tion prediction. In case study-B, the test accuracy (81.19%) was improved by
8.81% for IDH mutation.

Conclusion: The experimental results have indicated that the proposed do-

main mapping approach is effective while retaining the molecular information
in LGG MRIs.
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3.3 Federated Deep Learning for Gliomas and
Their Molecular-Subtype Classification

(Summary of Paper C)

Sub-problem addressed: (1) Training datasets from individual hospital are
usually small. However, under data protection regulations, sharing datasets
could be difficult. (2) In addition to the above problem, datasets from differ-
ent hospitals have domain mismatches.

Motivation: FL techniques have so far not been studied for classification of
molecular subtypes of gliomas. This study is aimed at training several partic-
ipating hospitals on their private datasets to update a central model without
sharing their datasets centrally.

Basic idea: We extend the existing FedDyn by replacing a new cost function
to mitigate the problem of class imbalance and also employing a multi-stream
architecture in the network. A comparison is made to that of a central learn-
ing (CL) approach to see whether the FL-based classification performs well
and whether it is possible to replace the FL scheme with the CL ones.

Contributions:

e Proposing EtFedDyn classifier that is an extension of FedDyn with focal
loss cost function to mitigate the class imbalance problem with a multi-
stream network architecture for multi-modality MRIs.

o Additionally, applying domain mapping to overcome the domain shift
among multiple datasets.

e Adding a 3D scan-based post-processing based on a majority voting-
based criterion.

e Comparing the performance with that of a CL approach to see whether
CL approaches can be replaced by FL ones.
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Classification

Proposed Method: The proposed scheme is shown in Figure 3.8 that con-
sists of domain mapping, individual hospital local learners and central model
update in training process. In testing process, a 3D-based post-processing
step is added.

2D Slice-Based

Datasetl —»I Deep Learning
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Central Model
Update

2D Slice-Based
Deep Learning

DatasetN —»

Classifier N
Training
Testing
]
I 2D Slice-Based I/ \ :
Testdatal — | e —> —— Prediction 1

Classifier 1 3D Scan-Based

L.
J1 i
: * 1 | Post- processing
]
L

TestdataN ——MM—»
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Learned '_f —:_-’ rediction
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Figure 3.8: The pipeline of the proposed scheme using FL-based ETFedDyn clas-
sifier for prediction of gliomas and their molecular subtype.

The proposed 2D EtFedDyn classifier is an extension of FedDyn [96], but
with a focal loss cost function and multi-stream setting. The focal loss func-
tion tackles class imbalances by emphasizing on the errors caused by hard
class and downeighs the confidence in predicting the easy class during train-
ing. The network consists of 2-streams of CNNs and weighted sum of features
from both streams are computed at feature fusion layer, such that weights
may be learned adaptively based on their modality-specific features. During
training, each local learner trains the network on its own dataset and commu-
nicates the updated weights for the central model update, and this continues
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until convergence. During testing, the predicted 2D MRIs are fed to a post-
processing step for making a 3D scan-based prediction by using a majority
voting-based criterion.

Evaluation: The proposed scheme is tested on two case studies. Case A
study was conducted on US and TCGA dataset for IDH mutation and wild-
type prediction. Case B study was conducted for glioma grades (LGG/HGG)
by partitioning MICCAI'17 datasets into two local clients (MICCAI 1 and
MICCALI 2) according to patient scans. The overall performance from the
proposed scheme on these case studies is shown in Table 3.4.

Table 3.4: Average test performance (over 5 runs) of proposed 3D scan-based FL
scheme on the test sets for two case studies.

Case Dataset 3D Acc. 3D Sen. 3D Spe.
Study 7o(| o) (| o) (] o )

A TCGA 85.46(3.53) 78.18(7.27 89.09(4.63)

(IDH mut/wt) US 75.56(2.72) 78.57(6.38) 65.00(12.25)

) (7.27)
) (6.38)
) 79.99(6.99)  92.38(3.81)
) (5.71)

(

(
B MICCAI 1 | 89.28(2.26

( 82.85(5.71)  93.33(2.34)

(LGG/HGG) | MICCAI 2 | 90.72(1.75

Detailed empirical analysis was conducted to verify the contributions of
individual parts of scheme on both datasets and is summarized below:

e The 3D prediction results are compared with the performance of 2D
EtFedDyn classifier. The effect of adding post-processing has improved
accuracy by (TCGA: 2.11%, US: 2.23%) on case A study and (MICCAI
1: 1.81%, MICCAT 2: 2.39%) on case B study.

e The effect of using different loss functions with EtFedDyn classifier
has been examined. Focal loss function improves accuracy by (TCGA:
1.66%, US: 3.25%) on case A study and (MICCAT 1: 1.19%, MICCAI
2: 1.85%) on case B study.

e Comparison of the performance from the proposed EtFedDyn to that of
FedAvg classifier showed that EtFedDyn has improved the accuracy by
(TCGA: 1.05%, US: 1.55%) on case A study and (MICCAIT 1: 1.23%,
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MICCAT 2: 1.81%) on case B study. It has also improved the conver-
gence speed by nearly 50%.

e The domain mapping effect was evaluated on case A study only, since
the datasets were obtained from different sources. It has improved the
test accuracy by (TCGA: 0.4%, US: 1.85%).

Comparison: The difference between the CL approach and the proposed FL
approach was evaluated and is shown in Table 3.5.

Table 3.5: Performance comparison on 3D scan-based test results of the proposed
FL vs. its corresponding CL scheme on 2 case studies.

Case | Proposed FL. Corresponding CL.  Performance
Study %(| o) %(| o) Difference
A 81.96(2.88) 83.13(2.94) -1.17
B 89.88(1.68) 90.71(1.33) -0.83

Conclusion: From the experimental results on both case studies, one can
observe that there is a slight reduction in performance of the proposed FL
as comparing with the corresponding CL ones on the datasets used. This
indicates that FL can be a promising option to replace the CL classifier.
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3.4 Glioma Subtype Classification without Using
Tumor Boundary Annotations

(Summary of Paper D)

Subproblem addressed: Supervised training of a DL network requires pre-
viously existing biopsy labels and tumor boundary annotations in the datasets.
However, manually marking tumor boundaries by medical experts is a time
consuming process. This study aims at looking for an alternative approach.

Motivation: Inspired by computer vision community’s research on visual
object tracking by using bounding boxes, this study explores the use of ellipse
bounding boxes for tumor areas instead of using GT tumor boundary anno-
tation for training a DL classifier.

Basic idea: This study is aimed at using ellipse bounding boxes for tumor
areas and at exploring whether the classification performance degrades when
tight tumor bounding boxes are used.

Contributions:

e Proposing an alternate paradigm for extracting tumor areas using ellipse
bounding boxes from MRIs without GT tumor boundary annotations.

e Training and testing the classifier on MRIs with ellipse tumor bounding
box areas for two datasets.

e Comparing the classification performance of the network trained on
bounding box tumor areas to that of the one trained with GT anno-
tated MRIs.

Propose Method: The block diagram of the proposed approach is shown
in Figure 3.9, where the blue dotted block is for tumor region extraction that
separates the tumor areas either by using tight ellipse bounding boxes (point
a’) or by using GT tumor annotation (point b’). The shape of the bounding
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boxes is chosen as ellipse considering the shapes of tumors. A multi-stream
2D CNN is first trained on MRIs with bounding box tumor areas obtained at
point a’ in Figure 3.9. The classification performance obtained is then com-
pared with the same network trained on MRIs with GT tumor annotations
obtained at point b’ in Figure 3.9.

Tumor ROI Selection Feature Extraction

Tt TTT T T T o T by
A Multi-Stream CNN

1

Training : Ellipse Bounding
| Box Learned
! Coefficients
1

. ! Annotated GT Predicted
Testing ——»! Multi-Stream CNN Labels of
\ LGG-subtype

Figure 3.9: The pipeline of the method based on proposed strategy. Blue dash
box: Tumor areas separated by ellipse bounding box and tumor
boundary annotations. Orange arrow: Training phase. Blue ar-
row: Testing phase.

Evaluation: This method was tested on two datasets. TCGA dataset con-
sists of LGG/HGG gliomas and US dataset consists of only LGGs. Table

Table 3.6: Comparison of the average test results (over 5 runs) for glioma subtype
using ellipse bounding box tumor areas. Case-A for US dataset (1p/19q
prediction). Case-B for TCGA dataset (IDH genotype).

Case Study Acc. %(|o]) Sen. %(|o|) Spe. %(| o |)
A (1p/19q codel)  69.86(2.46)  74.20(4.39)  64.60(1.92)
B (IDH mut) 79.50(2.12)  72.32(1.67)  86.65(3.28)

3.6 shows the experimental results. One can observe that the classification
performance on US dataset seems more challenging due to non-enhanced hy-
perintensive tumor areas in LGGs.

Comparison: A comparison was performed on training the DL network on
ellipse tumor areas to that of the network trained on GT tumor annotated
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areas. Comparing the performances in Table 3.7, one can see a slight degraded
performance on the test datasets using ellipse bounding boxes by 2.92% in US
dataset and by 3.23% in TCGA dataset.

Table 3.7: Performance difference on average prediction results (over 5 runs) by
using GT tumor areas and ellipse tumor bounding box areas for training.

Case  Ellipse Tumor Area GT Tumor Area  Difference

Study Acc. %(] o ) Acc. %(] o )
A 69.86(2.46) 72.78(1.45) 2,92
B 79.50(2.12) 82.73(1.82) -3.23

Conclusion: Some non-tumor pixels were included in ellipse bounding box
areas. This caused slight degradation in classification performance. The
method can be used as a trade-off in terms of saving annotation time and

accepting a small performance degradation.
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3.5 Brain Tumor Segmentation using 2D Ellipse
Box Tumor Areas

(Summary of Paper E)

Subproblem addressed: Supervised brain tumor segmentation requires GT
tumor boundary annotations. However, obtaining tumor boundary annotation
from medical experts is a time consuming process. This study aims at seeking
an alternative approach of segmentation when a small part of the dataset has
GT tumor annotation, and the remaining large part of the dataset is without
annotation.

Motivation: This study explores the possibility of replacing two bounding
box (foreground (FG) and background (BG)) areas with GT tumor annota-
tion, and uses large amount of a dataset without GT annotations along with
small amount (<20) with annotation to perform segmentation.

Basic idea: This study is aimed at training a multi-stream deep network for
tumor segmentation by using a large amount of ellipse tumor bounding boxes
and a small amount of GT annotated MRIs. To investigate the possibility
whether GT tumor annotations could be replaced by ellipse tumor bounding
box areas without much drop in segmentation performance.

Contributions:

e Studying the feasibility of using 2D FG and BG ellipse box areas on
MRIs for pre-training the segmentation network and refined-training on
a small number of MRIs with annotated tumors (<20 MRI scans).

e Using multi-modality MRIs on a multi-stream U-Net, where features
learned from all modalities are fused for segmentation.

e Comparing the performance using the same network trained entirely on
MRIs with tumor annotations.
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Proposed Method: The block diagram of the proposed method is shown in
Figure 3.10.

Iannm:al:ed
__________ 1 Segmented
Pre-training on Refined-training on | Tumors
Bounding Box a Few Annotated
Areas Tumors | >
N
T — ry
| Learned Coefficients | | {
_______________ o | \ Testing Perform.amce
——————————— Comparison
Training on .
R All Annotated
Iannotated Tumors

Figure 3.10: The block diagram for designed case studies for MR brain tumor
segmentation.

In the blue dashed box, the network for glioma segmentation is trained by
a large percentage of unannotated images using ellipse box areas and a small
number of annotated images. The network performance is then compared
with the same network trained on all annotated tumor images. The FG and
BG tumor areas are used for pre-training the network, where FG is the inte-
rior area of the tumor region and BG is the exterior area of a relatively large
ellipse containing normal brain tissues as shown in Figure 3.11. Segmentation
is performed using a multi-stream U-Net, where 4 modalities of MRIs are used
as the input to the four-stream of U-Net. The features learned at the ends of
each streams are fused at a fusion layer and is further proceeded for predict-
ing segmentation. For pre-training, a large part of the training dataset with
ellipse box areas are used and for refined-training a small part (<20 patient
MRIs) with tumor annotations are used.

Evaluation: The experiments are conducted on MICCAI'17. The confusion
matrix from the test results are reported in Table 3.8(a).
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Figure 3.11: FG and BG tumor areas defined by two ellipse areas.

Table 3.8: Average test results (over 5 runs) on MICCAI dataset. (a) Confusion
Matrix. (b) Performance evaluation.

(a) Confusion Matrix

Predicted\True Tumor(| o |) Non-tumor(| o |)

Tumor 83.88(0.08) 1.54(0.09)
Non-tumor 16.12(0.08) 98.46(0.09)

(b) Performance evaluation

Tumor Acc. %(| o |) Dice Score (| o|) Jaccard Index (] o |)
83.88(0.08) 0.8407(0.0006) 0.7233(0.0028)

Performance is further evaluated on tumor accuracy, dice score and Jac-
card index on tumor areas and included in Table 3.8(b). One can observe

that the average dice score, the Jaccard index values show reasonably good
performance on MICCAL
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Comparison: The performance of the proposed paradigm is compared with
the performance of the same network but trained and tested on all GT anno-
tated MRIs and is reported in Table 3.9. The aim of this comparison is to see
how much the performance degrades and to see if it is feasible to use such a

paradigm.

Table 3.9: Comparison of the test results on test accuracy and dice score.

Method Tumor Acc.(%) Dice Score

Proposed 83.88 0.8407
Conventional 92.66 0.9001
Degradation -8.78 -0.0594

Conclusion: The comparison results have indicated that the proposed method
is rather effective without significant degradation at the cost of tedious task

of manual annotation.
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CHAPTER 4

Conclusion

This thesis proposes several efficient DL networks for glioma grades and their
molecular subtypes, as well as for tumor segmentation. The contribution of
thesis are on developing several methods including; multi-stream CAE for
classification; DCGAN for enlarging the training MRI dataset; CycleGAN for
mapping datasets to a target domain; FL for individual dataset protection in
a collaborative training; using bounding box strategy for MRIs without tumor
boundary annotations. Experimental results on several datasets have shown
that:

o For data augmentation, using DCGAN to enlarge the training dataset
size has enhanced the classification performance.

e For classification, using multi-stream CAE network and fusion of fea-
tures from multi-modality MRIs have improved the performance.

e For domain mapping, CycleGAN has successfully overcome domain shifts
while retaining subtle molecular information. This has provided com-
bining datasets effectively from multiple hospitals for classification.

e The proposed FL scheme has obtained good classification performance.
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Chapter 4 Conclusion

The performance degradation of FL compare to that of CL is small. This
promising result provides the future direction to replace FL approach
with CL.

For classification, using bounding box tumor areas has shown feasibility
with a slight degradation in performance as compare to that of using GT
tumor boundary annotation. This method provides a trade-off between
saving annotation time and slight performance degradation.

For segmentation, training MRIs without tumor annotation using FG
and BG ellipse tumor areas have shown to be effective. The method
provides a trade-off between annotation cost and a slight performance
degradation as compare to that of using all GT tumor boundary anno-
tation.

4.1 Future Work

AT assisted diagnosis on brain tumor and their molecular subtypes is required

for open research area. Our study shows that using datasets with pre-existing

biopsy information, DL performs effectively for brain tumor diagnosis from

MRIs. Current performance still requires more improvement to be clinically

used. To improve the performance, more training dataset is required.

FL provides promising results for dataset protection, where each hospital

participate in training without sharing their datatset with others. Compared

to CL approach, it has shown a small performance degradation. This gives a

good research direction for improving the DL performance that tackles large

training dataset issue with protection of datasets from individual owners.
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