962 research outputs found

    Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism

    Get PDF
    This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1–3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate instrumentation

    Development, Control, and Empirical Evaluation of the Six-Legged Robot SpaceClimber Designed for Extraterrestrial Crater Exploration

    Get PDF
    In the recent past, mobile robots played an important role in the field of extraterrestrial surface exploration. Unfortunately, the currently available space exploration rovers do not provide the necessary mobility to reach scientifically interesting places in rough and steep terrain like boulder fields and craters. Multi-legged robots have proven to be a good solution to provide high mobility in unstructured environments. However, space missions place high demands on the system design, control, and performance which are hard to fulfill with such kinematically complex systems. This thesis focuses on the development, control, and evaluation of a six-legged robot for the purpose of lunar crater exploration considering the requirements arising from the envisaged mission scenario. The performance of the developed system is evaluated and optimized based on empirical data acquired in significant and reproducible experiments performed in a laboratory environment in order to show thecapability of the system to perform such a task and to provide a basis for the comparability with other mobile robotic solutions

    Mars: A reassessment of its interest to biology

    Get PDF
    Of all the planets in the solar system, Mars is certainly the one that has inspired the most speculation concerning extraterrestrial life. Observers had long ago noticed that Mars exhibits changes in its polar caps and alterations in its surface coloration that parallel seasonal changes on Earth. The fascination with Mars and the possibility of life on Mars continued into the spacecraft era and was directly expressed in the Viking Missions. These highly successful missions had the search for life on Mars as one of their principal goals. A review of Viking Missions experiments is presented. Results of these investigations are summarized. While the Viking Missions returned a negative answer to the question of life on Mars, they also showed that many years ago Mars was a very different place and enjoyed conditions that may have been conducive to the origin of life - life that may have long since become extinct. Evidence for the existence of water on Mars in the past is presented. Techniques used to study early life on Earth, which may also be used for similar studies on Mars, are described

    An Overview of Legged Robots

    Get PDF
    The objective of this paper is to present the evolution and the state-of-theart in the area of legged locomotion systems. In a first phase different possibilities for mobile robots are discussed, namely the case of artificial legged locomotion systems, while emphasizing their advantages and limitations. In a second phase an historical overview of the evolution of these systems is presented, bearing in mind several particular cases often considered as milestones on the technological and scientific progress. After this historical timeline, some of the present day systems are examined and their performance is analyzed. In a third phase are pointed out the major areas for research and development that are presently being followed in the construction of legged robots. Finally, some of the problems still unsolved, that remain defying robotics research, are also addressed.N/

    In-situ Optimized Substrate Witness Plates: Ground Truth for Key Processes on the Moon and Other Planets

    Full text link
    Future exploration efforts of the Moon, Mars and other bodies are poised to focus heavily on persistent and sustainable survey and research efforts, especially given the recent interest in a long-term sustainable human presence at the Moon. Key to these efforts is understanding a number of important processes on the lunar surface for both scientific and operational purposes. We discuss the potential value of in-situ artificial substrate witness plates, powerful tools that can supplement familiar remote sensing and sample acquisition techniques and provide a sustainable way of monitoring processes in key locations on planetary surfaces while maintaining a low environmental footprint. These tools, which we call Biscuits, can use customized materials as wide ranging as zircon-based spray coatings to metals potentially usable for surface structures, to target specific processes/questions as part of a small, passive witness plate that can be flexibly placed with respect to location and total time duration. We examine and discuss unique case studies to show how processes such as water presence/transport, presence and contamination of biologically relevant molecules, solar activity related effects, and other processes can be measured using Biscuits. Biscuits can yield key location sensitive, time integrated measurements on these processes to inform scientific understanding of the Moon and enable operational goals in lunar exploration. While we specifically demonstrate this on a simulated traverse and for selected examples, we stress all groups interested in planetary surfaces should consider these adaptable, low footprint and highly informative tools for future exploration.Comment: Accepted to Earth and Space Science, Will be updated upon publicatio

    False Biosignatures on Mars: Anticipating Ambiguity

    Get PDF
    It is often acknowledged that the search for life on Mars might produce false positive results, particularly via the detection of objects, patterns or substances that resemble the products of life in some way but are not biogenic. The success of major current and forthcoming rover missions now calls for significant efforts to mitigate this risk. Here, we review known processes that could have generated false biosignatures on early Mars. These examples are known largely from serendipitous discoveries rather than systematic research and remain poorly understood; they probably represent only a small subset of relevant phenomena. These phenomena tend to be driven by kinetic processes far from thermodynamic equilibrium, often in the presence of liquid water and organic matter, conditions similar to those that can actually give rise to, and support, life. We propose that strategies for assessing candidate biosignatures on Mars could be improved by new knowledge on the physics and chemistry of abiotic self-organization in geological systems. We conclude by calling for new interdisciplinary research to determine how false biosignatures may arise, focusing on geological materials, conditions and spatiotemporal scales relevant to the detection of life on Mars, as well as the early Earth and other planetary bodies

    Toward an Autonomous Lunar Landing Based on Low-Speed Optic Flow Sensors

    No full text
    International audienceFor the last few decades, growing interest has returned to the quite chal-lenging task of the autonomous lunar landing. Soft landing of payloads on the lu-nar surface requires the development of new means of ensuring safe descent with strong final conditions and aerospace-related constraints in terms of mass, cost and computational resources. In this paper, a two-phase approach is presented: first a biomimetic method inspired from the neuronal and sensory system of flying insects is presented as a solution to perform safe lunar landing. In order to design an au-topilot relying only on optic flow (OF) and inertial measurements, an estimation method based on a two-sensor setup is introduced: these sensors allow us to accu-rately estimate the orientation of the velocity vector which is mandatory to control the lander's pitch in a quasi-optimal way with respect to the fuel consumption. Sec-ondly a new low-speed Visual Motion Sensor (VMS) inspired by insects' visual systems performing local angular 1-D speed measurements ranging from 1.5 • /s to 25 • /s and weighing only 2.8 g is presented. It was tested under free-flying outdoor conditions over various fields onboard an 80 kg unmanned helicopter. These pre-liminary results show that the optic flow measured despite the complex disturbances encountered closely matched the ground-truth optic flow
    • …
    corecore