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This work considers the hypothetical viability of microbial nitrate-dependent Fe2+

oxidation (NDFO) for supporting simple life in the context of the early Mars environment.
This draws on knowledge built up over several decades of remote and in situ
observation, as well as recent discoveries that have shaped current understanding
of early Mars. Our current understanding is that certain early martian environments
fulfill several of the key requirements for microbes with NDFO metabolism. First,
abundant Fe2+ has been identified on Mars and provides evidence of an accessible
electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular
oxygen would not have interfered and competed with microbial iron metabolism in
these environments. Second, nitrate, which can be used by some iron oxidizing
microorganisms as an electron acceptor, has also been confirmed in modern aeolian
and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs
of both organic and inorganic carbon are available for biosynthesis, and geochemical
evidence suggests that lacustrine systems during the hydrologically active Noachian
period (4.1–3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-
oxidizing microorganisms. As well as potentially acting as a primary producer in early
martian lakes and fluvial systems, the light-independent nature of NDFO suggests that
such microbes could have persisted in sub-surface aquifers long after the desiccation of
the surface, provided that adequate carbon and nitrates sources were prevalent. Traces
of NDFO microorganisms may be preserved in the rock record by biomineralization
and cellular encrustation in zones of high Fe2+ concentrations. These processes could
produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns,
and enhance preservation of biological organic compounds. Such biosignatures could
be detectable by future missions to Mars with appropriate instrumentation.

Keywords: iron, nitrate, Mars, astrobiology, chemolithotrophy, NDFO, nitrate-dependent ferrous iron oxidation,
anaerobic

INTRODUCTION

Mars, the red planet, has inspired the search for extraterrestrial life since the early days of the
telescope, and continues to do so with perceptions of its habitability—or even inhabitation—
changing with advances in exploration capabilities and knowledge of martian environments from
images and data (Filiberto and Schwenzer, 2017). The present-day surface of Mars is cold, dry,

Frontiers in Microbiology | www.frontiersin.org 1 March 2018 | Volume 9 | Article 513

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.00513
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2018.00513
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.00513&domain=pdf&date_stamp=2018-03-20
https://www.frontiersin.org/articles/10.3389/fmicb.2018.00513/full
http://loop.frontiersin.org/people/386466/overview
http://loop.frontiersin.org/people/408253/overview
http://loop.frontiersin.org/people/449422/overview
http://loop.frontiersin.org/people/246807/overview
http://loop.frontiersin.org/people/349732/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-00513 March 17, 2018 Time: 14:41 # 2

Price et al. NDFO as a Mars Metabolism

and exposed to ionizing and UV radiation, conditions deemed
detrimental to life, but evidence in the geological and
geomorphological record of Mars confirms warmer, wetter,
and potentially more favorable surface conditions during the
Noachian period of early Mars (4.1–3.7 Ga) (Carr and Head,
2010). During this period, evidence for a denser atmosphere
and less oxidizing conditions suggests that more hospitable
surface environments for life may have prevailed (Carr and Head,
2010; Mangold et al., 2012), including: large-scale fluvial systems
(Malin and Edgett, 2003; Irwin et al., 2005; Fassett and Head,
2008; Mangold et al., 2012; Williams et al., 2013), lacustrine
environments (Grotzinger et al., 2014; Rampe et al., 2017a), and
impact-generated hydrothermal systems (Schwenzer and Kring,
2009; Osinski et al., 2013). Evidence for these environments
comes from lake bed sediments, such as those identified at
Gale Crater, which the NASA Mars Science Laboratory rover
(Curiosity) is investigating in detail (e.g., Grotzinger et al.,
2015). Phyllosilicates and other hydrated minerals have also been
observed from orbit (Gendrin et al., 2005; Bibring et al., 2006;
Chevrier et al., 2007) and from the ground (Squyres et al., 2004;
Ehlmann et al., 2011). In light of our developing understanding
of Mars as a dynamic planet with a complex history, this
review appraises the viability of microbial nitrate-dependent iron
oxidation as a candidate metabolism with regard to past and
present martian environments.

MARS – GEOLOGICAL BACKGROUND

For a better understanding of the contrast between the
detrimental conditions on the surface of present-day Mars and
the wetter, more clement past of martian surface environments,
two specific potentially habitable environments are discussed
here: (1) the ancient lake bed investigated by the Curiosity rover
at Gale Crater (Grotzinger et al., 2014, 2015; Palucis et al.,
2016) and (2) the impact-generated hydrothermal environment
discovered in the rim of Endeavour Crater by the MER
Opportunity rover (Squyres et al., 2012; Arvidson et al., 2014; Fox
et al., 2016).

The ancient lake bed at Gale Crater is likely to be one of
many that formed within impact craters on Mars (Cabrol and
Grin, 1999). Conglomerates, cross-bedded sandstones, siltstones,
and mudstones have been identified by the Curiosity rover,
allowing for a detailed understanding of water flow, standing
water conditions, and even temporary periods of desiccation
(Vaniman et al., 2013; Williams et al., 2013; Grotzinger et al.,
2014, 2015; Palucis et al., 2016; Hurowitz et al., 2017). The
mineralogy and geochemistry of Gale Crater sediments suggest
that the conditions in this ancient lake were temperate and pH-
neutral, suitable for the maintenance of life for most of the time
(Grotzinger et al., 2014, 2015), although excursions to, or local
areas of, acidic conditions are evidenced by the discovery of
jarosite (Rampe et al., 2017a,b). Post-depositional diagenetic and
alteration processes, such as the dissolution of primary minerals,
the formation of calcium-sulfate veins, cementation, desiccation,
or even changes to the chemistry of the incoming sediment
load due to external silicic volcanism, will have changed the

environmental conditions multiple times, leading to a complex
association of environmental conditions variable in space and
time (Bridges et al., 2015; Johnson et al., 2016; Schwenzer et al.,
2016; Frydenvang et al., 2017; Nachon et al., 2017; Rampe et al.,
2017a; Yen et al., 2017). Further, Gale Crater sediments are
reported to contain bioessential elements such as hydrogen,
phosphorus, oxygen, and nitrogen, variable iron and sulfur
oxidation states as possible energy sources, and perhaps even
complex organic molecules at concentrations that could have
supported past life (Vaniman et al., 2013; Grotzinger et al., 2014;
Stern et al., 2015; Morris et al., 2016; Sutter et al., 2016).

Orbital observations have shown that many craters bear
evidence of impact-generated hydrothermal activity (Marzo et al.,
2010; Mangold et al., 2012), and ground-based exploration
by the MER rover Opportunity revealed an impact-generated
hydrothermal system at Endeavour Crater (Squyres et al.,
2012; Arvidson et al., 2014; Fox et al., 2016). Characteristic
products of such alteration are clay minerals, with the most
complete succession of minerals ascribed to impact-generated
hydrothermal activity found in the nakhlite meteorites (Changela
and Bridges, 2010; Bridges and Schwenzer, 2012; Hicks et al.,
2014). While these meteorites have an unknown geological
context, and thus the impact-generated nature of the alteration
remains an informed guess, the opportunity to investigate the
succession of minerals with Earth-based instrumentation adds
significant detail to an understanding of the compositional,
reduction–oxidation (redox), and pH evolution of such alteration
processes. For example, the alteration reactions evident in the
nakhlites indicate a change in the redox conditions from Fe2+

precipitates to Fe3+ precipitates in the course of the formation
of the assemblage (Bridges and Schwenzer, 2012; Hicks et al.,
2014). Investigating such details is, to date, beyond the capability
of rovers and landers, but provides essential information for
assessing the habitability of the site during and after the
hydrothermal activity.

Active terrestrial hydrothermal systems observed today are
linked to active tectonic processes or volcanism, which drive
water circulation on present-day Earth; there is no evidence
of a sufficiently large or sufficiently young crater in which
an active impact-generated hydrothermal system could exist.
However, evidence for past hydrothermal systems is observed
in the form of hydrothermal mineral veins around many
terrestrial craters, e.g., Chicxulub, Manicouagan, Sudbury, and
many others (see Pirajno, 2009; Osinski et al., 2013 for
reviews). The difference between impact-generated and volcanic
hydrothermal systems is the addition of species from degassing
magma in the latter system, mainly HCl, H2HSO4, and other
volatiles (Pirajno, 2009; Osinski et al., 2013), though fluids
in both types of systems dissolve the wall rock and deposit
secondary phases as conditions change throughout their lifetime.
In both cases, the hydrothermal systems contain abundant
bioessential elements (carbon, hydrogen, oxygen, nitrogen, and
sulfur) that support diverse microbial communities (Arnold
and Sheppard, 1981; Welhan and Craig, 1983; Charlou and
Donval, 1993; Wheat et al., 1996; Konn et al., 2009). On Mars,
hydrothermal systems caused by large hypervelocity impacts
could provide warm water conditions even in periods of cold
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climate. With estimated life-times of 150–200k years even for
modest craters (100–180 km diameter) the size of Gale, and
with cycles of continuous mineral dissolution and precipitation
maintaining the availability of redox substrates during that time,
impact-generated hydrothermal systems could have provided
localized hospitable zones (Abramov and Kring, 2005; Schwenzer
and Kring, 2009).

These two examples of martian environments (lacustrine
and impact-generated hydrothermal systems) demonstrate the
diversity of potentially habitable environments (as we understand
them today) on ancient Mars. In early surface environments,
where the conditions were less inhospitable than the present-day,
both phototrophic (solar energy-driven) and chemotrophic
(chemical energy-driven) primary producers may have been
viable, possibly producing enough organic carbon for the
subsequent development of heterotrophy and a complex web
of microbial life. As the environment evolved from “warm
and wet” to “cold and dry,” life would have likely become
limited to the sub-surface environment (Nixon et al., 2012),
protected from the adverse surface conditions and, as such, may
have become limited to light-independent chemolithotrophic
(inorganic chemical energy-driven) metabolisms.

Laboratory-based Mars simulation experiments, using analog
regolith or brine, and theoretical modeling have suggested that
chemolithotrophic life could persist in the sub-surface martian
environment across a wide range of pH, salinity, desiccation, and
temperature (Parnell et al., 2004; Amils et al., 2007; Jepsen et al.,
2007; Gronstal et al., 2009; Chastain and Kral, 2010; Smith, 2011;
Popa et al., 2012; Hoehler and Jørgensen, 2013; Montoya et al.,
2013; Summers, 2013; Bauermeister et al., 2014; Oren et al., 2014;
King, 2015; Fox-Powell et al., 2016; Schuerger and Nicholson,
2016).

CHEMOLITHOTROPHY ON MARS

Chemolithotrophic microorganisms harvest energy from redox
reactions using inorganic substrates that are available in the
environment. This metabolic strategy involves the transfer of
electrons donated by the inorganic substrate, through the
electron transport chain for ATP production, to a final acceptor.
Chemolithotrophy is pivotal for biogeochemical cycling on Earth,
such as iron, nitrogen, and sulfur cycling, and for rock weathering
(Madigan et al., 2009).

The iron-rich nature of Mars raises possibilities regarding
the feasibility of iron biogeochemical cycling. Martian crustal
geology is dominated by rocks of basaltic composition, which
contain abundant FeO in quantities roughly twice those observed
in comparable basalts on Earth (McSween et al., 2003, 2009).
Though the planet’s surface is widely colored by iron oxides,
reduced iron, Fe2+, exists as little as a few centimeters beneath
the surface (Vaniman et al., 2013). Indeed, Fe2+-bearing minerals
such as olivine [(Mg, Fe2+)2SiO4] have been detected across
wide areas of the martian surface (Hoefen et al., 2003) and large
amounts of basaltic glass (amorphous Fe2+-containing materials)
are contained within martian crustal rocks (Morris et al., 2006a,b;
McSween et al., 2009). An active hydrological cycle, combined

with prevailing reducing conditions during the Noachian period,
is likely to have facilitated large-scale transport of iron (Figure 1).

On early Earth, iron biogeochemical cycling and the
occurrence of iron redox couples were crucial to the biosphere,
to provide energy sources and because of the role of iron in
many metalloproteins such as cytochromes, nitrogenases, and
hydrogenases (Canfield et al., 2006; Hoppert, 2011; Raiswell and
Canfield, 2012). Iron can act as either an electron acceptor or
donor dependent on its redox state (Miot and Etique, 2016).
Iron oxidizing microorganisms have been shown to utilize Fe2+

directly after its dissolution from minerals such as olivine
(Santelli et al., 2001), and a similar process may have operated
within potentially habitable environments on Mars. Conversely,
microbial iron reduction commonly utilizes electrons donated
from organic substrates, H2 or S0, with oxidized Fe3+ as the final
electron acceptor (Lovley and Phillips, 1988; Lovley et al., 1989).

A hypothetical ‘loop’ of biologically mediated martian iron
cycling (Figure 2) was first proposed by Nealson (1997),
which included both iron reduction and also phototrophic iron
oxidation (Ehrenreich and Widdel, 1994); the plausibility of iron
reduction has been appraised previously (Nixon et al., 2012, 2013;
Nixon, 2014). However, Nealson’s model has limited applications
to present-day Mars because of prohibitive conditions for
phototrophic life in surface environments that prevent closure of
this ‘loop’ for biogeochemical iron cycling.

Although research suggests that phototrophs may be
sufficiently protected inside various micro-habitats within
ice, halite, Fe3+-rich sediments, and impact-shocked
rocks to withstand modern martian UV flux and remain
photosynthetically productive (Cockell and Raven, 2004), the
effect of desiccation, in combination with UV irradiation, would
prevent dispersal and negatively impact viability (Cockell et al.,
2005). Additionally, a lack of liquid water at the surface of
Mars would be detrimental to life (Martín-Torres et al., 2015).
A plausible alternative to a phototrophic iron oxidizer would be
a chemolithotrophic iron oxidizer, which can obtain energy from
redox reactions involving inorganic substances. This would allow
for a light-independent iron cycle, which could have existed at
the surface or in the sub-surface of early Mars and even continue
today in deep sub-surface groundwaters (Michalski et al., 2013).

BIOTIC IRON OXIDATION

Abiotic Fe2+ oxidation occurs as a function of oxidant
concentration, pH, temperature, and Fe2+ concentration
(Ionescu et al., 2015). On Earth, low pH (<4) prevents the abiotic
oxidation of Fe2+ by atmospheric O2, allowing biotic oxidation
(using oxygen as the electron acceptor) to dominate (Morgan
and Lahav, 2007). Evidence from evaporitic palaeoenvironments
on Mars suggests historic low pH (<3.5) conditions existed in
certain regions (Gendrin et al., 2005; Squyres and Knoll, 2005;
Ming et al., 2006), although neutral–alkaline pH-associated
clays are also observed in older terrains (Bibring et al., 2006).
The transition to more arid conditions is thought to have
coincided with a general shift from widespread clay formation to
evaporitic sulfate precipitation at the surface (Bibring et al., 2006;
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FIGURE 1 | Hypothetical transport of iron on early Mars. Reduced iron is released into aqueous environments by dissolution of ferrous minerals. This process could
be accelerated by volcanic or impact-generated hydrothermal activity (McSween et al., 2009). Some dissolved iron may be photo-oxidized by solar UV radiation to
ferric compounds and deposited as sediments (Nie et al., 2017).

FIGURE 2 | Hypothetical martian biogeochemical cycle of iron. Nealson
(1997) suggested combination of phototrophic iron oxidation (Ehrenreich and
Widdel, 1994) and heterotrophic iron reduction (Myers and Nealson, 1988) to
give a hypothetical iron cycle. Carbon cycles are driven by solar and chemical
energy sources. Iron is both the oxidant and the reductant for the cycle.
Chemolithotrophic iron oxidation is proposed as an alternative to phototrophic
iron oxidation, as the post-Noachian Mars surface environment may restrict
opportunities for phototrophy, and any mechanism of iron oxidation in more
recent periods may necessarily be light-independent.

Chevrier et al., 2007), resulting in increasingly acidic brines
that may promote this form of biotic iron oxidation (Tosca
and McLennan, 2006, 2009). However, given that only trace
quantities (1450 ppm) of oxygen exist in the modern martian
atmosphere (Mahaffy et al., 2013), aerobic, acidophilic iron
oxidation is unlikely at the surface today (Bauermeister et al.,
2014).

An alternative to aerobic iron oxidizers is microaerophilic
neutrophilic iron oxidizers (NFeOs), which are able to compete
with abiotic oxidation at near neutral pH. On Earth, this form
of metabolism is largely restricted to oxic–anoxic boundary
zones, where chemical oxidation is much slower (Roden et al.,
2004). Phylogenetic studies have identified NFeOs in a variety
of terrestrial environments including arctic tundra, Icelandic
streams, deep-ocean vents, iron-rich soils, and temperate ground
waters (Emerson and Moyer, 2002; Edwards et al., 2003; Emerson
and Weiss, 2004; Cockell et al., 2011; Hedrich et al., 2011;
Emerson et al., 2015). Many NFeOs are psychrophilic (Edwards
et al., 2003, 2004), which could be linked to the much lower rate of
abiotic iron oxidation at low temperatures (Millero et al., 1987).

On Mars, regions of higher partial pressure of oxygen in
the modern sub-surface, relative to the surface, have been
proposed as tolerable for microaerophiles today (Fisk and
Giovannoni, 1999). King (2015) also argued that aerobic activity
could be supported by the oxygen concentrations recorded by
the Curiosity rover (Mahaffy et al., 2013); however, aerobic
metabolism would be restricted, since oxygen diffusion distances
in sediments are often limited to a few millimeters (Revsbech
et al., 1980; Reimers et al., 1986; Visscher et al., 1991).
Furthermore, there is evidence to suggest that redox stratification,
seen in standing water bodies on Earth (Comeau et al., 2012),
also occurred in martian lakes such as Gale Crater, resulting
in an anoxic bottom layer (Hurowitz et al., 2017). Even
assuming an oxygen-rich early martian atmosphere such as that
suggested by Tuff et al. (2013), deeper waters, sediments, and the
sub-surface would have been largely anoxic. As such, whatever
the martian atmospheric oxygen concentration, potential habitats
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for anaerobically respiring light-independent chemolithotrophs
would have been prevalent on ancient and present-day Mars.

Anaerobic chemotrophic iron oxidation is known to occur
in terrestrial anoxic waters and sediments of approximately
circumneutral pH (Straub et al., 1996; Benz et al., 1998;
Kappler and Straub, 2005; Chakraborty and Picardal, 2013). Data
from Curiosity at Gale Crater have shown that the Sheepbed
mudstone formation at Yellowknife Bay contains abundant clay
minerals, indicating a circumneutral pH environment during
sedimentation (Vaniman et al., 2013; Grotzinger et al., 2014;
Bridges et al., 2015; Schwenzer et al., 2016). The conditions
associated with Gale Crater are not unique and can be
inferred for other sites on Mars. For example, circumneutral
aqueous alteration during both the Noachian and across the
Noachian–Hesperian boundary has been proposed based on
orbital data of Jezero crater (Ehlmann et al., 2008, 2009),
indicating further environments in which anaerobic iron
oxidation may have occurred.

AVAILABILITY OF ELECTRON
ACCEPTORS

In the absence of molecular oxygen, chemolithotrophic iron
oxidizers would be limited by the availability of alternative
electron acceptors, such as perchlorates and nitrates, for
metabolic redox reactions (Straub et al., 1996; Benz et al., 1998;
Kappler and Straub, 2005; Chakraborty and Picardal, 2013).

Studies at multiple locations on Mars have confirmed the
presence of perchlorate (Hecht et al., 2009; Navarro-González
et al., 2010; Glavin et al., 2013; Kounaves et al., 2014). Perchlorate-
reducing bacteria, some able to grow at 0.4 M ClO−4 (Oren et al.,
2014)—concentrations exceeding those found on Mars (Stern
et al., 2017)—have been isolated from terrestrial environments.
Many are able to promote Fe2+ oxidation when perchlorate
or nitrate is provided as an electron acceptor (Bruce et al.,
1999; Chaudhuri et al., 2001; Lack et al., 2002), though energy
conservation leading to growth is yet to be described in the case
of perchlorate reduction coupled to Fe2+ oxidation.

Nitrate is thus a more feasible electron acceptor for
martian iron oxidation, having been observed as the oxidant
in iron-oxidizing metabolisms of growth-phase cultures
(Hafenbradl et al., 1996; Straub et al., 1996; Benz et al., 1998;
Straub and Buchholz-Cleven, 1998). However, until the recent
discovery of nitrates on the surface of Mars (Stern et al., 2015),
nitrate reducers have been largely overlooked with regard to
Mars astrobiology. The following sections discuss the discovery
of nitrates on Mars and the feasibility of nitrate-dependent
iron oxidation as a plausible metabolism for now closing the
biological iron ‘loop’ on Mars (Figure 2).

NITRATES AND NITROGEN CYCLING ON
MARS

The geochemical evidence of nitrates on the surface of Mars
comes from in situ analysis of mudstone at Gale Crater by

Curiosity (Stern et al., 2015) and from analysis of the EETA79001
and Nakhla martian meteorites (Grady et al., 1995; Kounaves
et al., 2014). It has been proposed that these nitrates may have
formed through photochemical processing (Smith et al., 2014)
of the low abundance molecular nitrogen (1.9%) in the martian
atmosphere (Mahaffy et al., 2013), volcanic-induced lightning, or
thermal shock from impacts (Stern et al., 2015), and may have
resulted in large accumulated quantities of nitrates during the
early history of the planet (Manning et al., 2009; Stern et al., 2017)
(Figure 3).

Although it is not believed that nitrate deposition currently
operates on the martian surface (Stern et al., 2015), interest in
the martian nitrogen cycle has been reignited because of recent
spacecraft observations of atmospheric nitrogen in the upper
atmosphere (Stevens et al., 2015). On Earth, the production of
molecular nitrogen is primarily facilitated by microbes through
denitrification (Fowler et al., 2013). Biological denitrification on
Mars could have contributed to an early nitrogen cycle during
the Noachian period, although Mars’ atmosphere (including
its primordial atmosphere) has long been suspected to have
had a low nitrogen abundance relative to Earth (Fox, 1993).
Nevertheless, the presence of nitrates as a plausible electron
acceptor expands the range of microbial metabolisms that could
be considered potentially viable on Mars. Of particular interest
is the coupling of nitrate reduction to iron oxidation, which
could exploit the vast martian reservoir of Fe2+ ions via nitrate-
dependent Fe2+ oxidation (NDFO).

NITRATE-DEPENDENT Fe2+ OXIDATION
(NDFO)

Nitrate-dependent Fe2+ oxidation metabolism was identified on
Earth two decades ago (Straub et al., 1996), yet the detailed
biochemical mechanisms involved are still unresolved (e.g.,
Carlson et al., 2013). Early studies reported Fe2+ oxidation
balanced with nitrate reduction in mixed cultures and isolates
from anaerobic freshwater, brackish water, and marine sediments
(Hafenbradl et al., 1996; Straub et al., 1996; Benz et al., 1998).
There are only a few known isolates capable of this metabolism
(see Table 1), but this is likely to be an under-representation
of the true diversity and prevalence of these organisms (Straub
and Buchholz-Cleven, 1998); NDFO may actually be an innate
capability of all nitrate reducers (Carlson et al., 2013; Etique
et al., 2014). Enzymatic Fe2+ oxidation by NDFO has never
been proven and a detailed proteomic study of the NDFO
species Acidovorax ebreus definitively demonstrated that this
strain lacks any specific Fe2+ oxidoreductase (Carlson et al.,
2013). Alternatively, electrons may transit from Fe2+ to other
periplasmic enzymes (e.g., enzymes from the nitrate reduction
chain) and abiotic side reactions between Fe2+ and reactive
nitrogen species (NO and NO−2 ) produced upon nitrate
reduction could also account for Fe2+ oxidation (Carlson et al.,
2013; Klueglein et al., 2014, 2015).

Nitrate-dependent Fe2+ oxidation microorganisms have to
balance (a) a potential energy gain from coupled iron oxidation
and nitrate reduction and (b) energy consumption to overcome
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FIGURE 3 | A hypothetical incomplete nitrogen cycle on early Mars. Atmospheric nitrogen is fixed to oxidized nitrogen species via abiotic processes such as
volcanic lightning (Stern et al., 2015), thermal shock during impacts (Summers and Khare, 2007), and irradiation from solar and cosmic sources (Smith et al., 2014).

the toxicity of Fe2+ and reactive nitrogen species (Carlson
et al., 2012, 2013). Although Fe2+ oxidation coupled to nitrate
reduction to nitrite provides less energy (-481.15 kJ mol−1 NO−3 )
than both organotrophic denitrification (-556 kJ mol−1 NO−3 )
and organotrophic nitrate ammonification (-623 kJ mol−1 NO−3 )
(Strohm et al., 2007), this reaction is exergonic at circumneutral
pH (-481.15 kJ mol−1 NO−3 ), and may theoretically provide
enough energy to sustain growth under mixotrophic (Muehe
et al., 2009; Weber et al., 2009) or autotrophic conditions (Laufer
et al., 2016). At the same time, ferruginous conditions stimulate
metal efflux pumping and stress response pathways (Carlson
et al., 2013) and may thus impair the energetic budget of
NDFO.

The terrestrial NDFO microbes currently described in the
literature are phylogenetically diverse, including an archaeal
species, as well as representatives of the alph-, beta-, gamma-,
and delta-proteobacteria (Hafenbradl et al., 1996; Kappler et al.,
2005; Kumaraswamy et al., 2006; Weber et al., 2009; Chakraborty
et al., 2011). The isolation of a member of the euryarchaeota
capable of NDFO from a submarine vent system (Hafenbradl
et al., 1996) is suggestive that NDFO may have been a very
early microbial process on Earth, due to the implication of such
environments in the earliest evolution of life (Martin et al., 2008).
Ilbert and Bonnefoy (2013) postulated that the mechanisms of
biological anaerobic iron oxidation have arisen independently
several times on Earth in an example of convergent evolution
(i.e., similar strategies are adopted by genetically distant species).
This widespread phylogeny, evidence from iron palaeochemistry,
physiology, and redox protein cofactors involved in these
pathways, suggests that NDFO may be the most ancient iron
oxidation pathway in terrestrial life (Ilbert and Bonnefoy,
2013). Indeed, NDFO microbes have been implicated, alongside
anoxygenic Fe2+-oxidizing phototrophy, in iron cycling and the

production of early banded iron formations prior to the full
oxygenation of the atmosphere on Earth (Weber et al., 2006a;
Busigny et al., 2013; Ilbert and Bonnefoy, 2013). Thus, NDFO
may be relevant to any putative early biosphere on Mars, where
the conditions are favorable to this metabolism.

FEASIBILITY OF NDFO ON EARLY MARS

The relevance of NDFO as a plausible metabolism for putative
life on Mars had, until recently, been overlooked due to the
lack of evidence of nitrogen species on Mars, although the
theoretical possibility of NDFO was explored using numerical
modeling with hypothetical nitrate sources (Jepsen et al., 2007).
The newly found availability of nitrates helps to close the ‘loop’
of potential chemotrophic iron cycling on Mars (Figure 2), since
it could provide a ready source of electron acceptors for NDFO
organisms (Figure 4); the concentration of nitrates detected at
Gale Crater (Stern et al., 2015) is consistent with predictions of a
5× 1015 mol global nitrate reservoir from past impact processing
(Manning et al., 2009). It should be noted that the highest
nitrate concentrations (1,100 ppm) determined by Curiosity were
present in the sedimentary rocks with the least evidence of
subsequent alteration, suggesting a period of more active nitrate
production during sediment deposition, which was then followed
by leaching of some sediments (Stern et al., 2015).

The modern martian atmosphere is 95.9% CO2 (Mahaffy
et al., 2013), and CO2 is likely to have also formed a major
proportion of the denser early Mars atmosphere (Ramirez et al.,
2014; Jakosky et al., 2017) (Figure 5). Microbes that can utilize
inorganic atmospheric carbon would therefore hold an advantage
in the Mars environment. Although a low energy-yielding
metabolism, a some species (Pseudogulbenkiania sp. strain 2002
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and the hyperthermophilic archaeon Ferroglobus placidus) have
been found to fix carbon autotrophically from CO2 and other
inorganic sources during growth by NDFO (Hafenbradl et al.,
1996; Weber et al., 2006b, 2009), providing an alternative carbon
assimilatory capability relevant for the early and current Mars
environments. Although nitrate reduction can be coupled to
anaerobic oxidation of methane (Raghoebarsing et al., 2006;
Ettwig et al., 2008), the ability of NDFO strains to use C1
organic compounds as carbon sources has not been investigated.
This could prove an important capability when considering the
martian environment, given the as yet unexplained detections
of methane in the modern atmosphere (Formisano et al., 2004;
Webster et al., 2015), and should be investigated further.

Most NDFOs are heterotrophic and require an organic carbon
source (Chaudhuri et al., 2001; Kappler et al., 2005; Muehe et al.,
2009). Organic carbon has been reported on the martian surface
and in martian meteorites (Sephton et al., 2002; Steele et al.,
2012; Ming et al., 2014), which may be endogenous (Steele et al.,
2012) or have been delivered into the martian crust by meteoritic
input (∼2.4 × 105 kg/year; Yen et al., 2006) (Figure 5). Sutter
et al. (2016) calculated that <1% of the total carbon detected in
sedimentary rocks at Gale Crater would have been sufficient to
support 105 cells g−1 sediment if present as biologically available
organics in the earlier lacustrine environment, and hence could
well have sustained heterotrophic NDFOs.

Although today’s martian atmosphere is oxidizing, even
modest levels of volcanism over the last 3.5 billion years are
likely to have produced CO2 at levels that contributed to
periodically reducing conditions (Sholes et al., 2017), favoring
NDFO by limiting abiotic iron oxidation. However, there has
also been a suggestion that certain locations of the ancient
surface environment (>3.5 billion years ago) were, at one point,
oxidizing (Lanza et al., 2016). In practical terms, oxidizing
atmospheric conditions and potential redox stratified water
bodies would not preclude the viability of NDFO, but merely
restrict it to anoxic sediment and water regions, as is the case on
Earth.

Aside from metabolic requirements, life also needs an
environment which falls within other sets of physical parameters
that are conducive to life. In contrast to phototrophic iron
oxidizers, NDFO could have occurred in near-surface ground
waters (Straub et al., 1996), which would have protected the
microorganisms even if the surface radiation environment of
early Mars was as intense as it is today (Dartnell et al., 2007).
In addition, cell encrustation by Fe minerals may have protected
them against UV irradiation (Gauger et al., 2016). In the deep
sub-surface, neutral–alkaline, Fe2+-rich ground waters could
have persisted long after the evaporation of most surface bodies
(Michalski et al., 2013), greatly extending the period across which
NDFO could have been viable, possibly to the present-day.

BIOMINERALIZATION AND
PRESERVATION IN THE ROCK RECORD

Under Fe2+-rich (>5 mM) conditions, a major limiting
factor for the growth of NDFO populations is the progressive
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FIGURE 4 | Overview of potential redox substrate sources for nitrate-dependent iron oxidizing microorganisms in the early Mars environment. Nitrates are produced
from an early atmospheric nitrogen reservoir by fixation from volcanic lightning (Stern et al., 2015), thermal shock during impacts (Summers and Khare, 2007), and
irradiation from solar and cosmic sources (Smith et al., 2014). Reduced iron is released into aqueous environments by mineral dissolution, a process accentuated by
hydrothermal activity (Emerson and Moyer, 2002; McSween et al., 2009). A fuller description of abiotic nitrogen fixation pathways is available in Summers et al.
(2012).

FIGURE 5 | Summary of the proposed processes in carbon cycling on early Mars. Atmospheric carbon dioxide is sequestered by basalts to form carbonate minerals
(Edwards and Ehlmann, 2015). The carbon is then remobilized by hydrothermal fluids and incorporated into simple organic compounds, such as methane, by
serpentinization reactions (Chassefière and Leblanc, 2011). Carbon dioxide is gradually lost to space due to erosion of the atmosphere by solar winds. Meteorites
are also likely to have delivered an inventory of organic carbon to the surface and sub-surface of Mars (Yen et al., 2006).

encrustation of the periplasm and outer membrane by insoluble
Fe3+ compounds (Figure 6), resulting in a decline in individual
metabolic activity and cell death (Miot et al., 2015). Even
the lithoautotrophic Pseudogulbenkiania sp. strain 2002

shows evidence of encrustation after batch culture (Klueglein
et al., 2014) (Figure 6C). Although the mechanisms remain
unexplained, various extracellular Fe3+ mineral precipitates
also form as by-products of NDFO metabolism, either due to
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FIGURE 6 | (A) Transmission electron microscopy (TEM) image of an iron-encrusted cell from an NDFO enrichment culture from the anoxic layer of the ferruginous
Lake Pavin, France (Jennyfer Miot, personal communication). (B) TEM of BoFeN1 cells fully, partially, and non-encrusted with goethite (from Miot et al., 2015).
(C) SEM of encrusted Pseudogulbenkiania sp. 2002 cells (from Klueglein et al., 2014) (scale bar = 500 nm).

the interaction of released Fe3+ ions with dissolved phosphate,
sulfate, and carbonate ions, or by oxidation of extracellular
Fe2+-bearing minerals (Miot et al., 2009). Persistence of a
low proportion of cells that escape encrustation ensures the
viability of NDFO microorganisms at the population scale,
thus accounting for their occurrence in ferruginous habitats on
modern Earth (Miot et al., 2016).

The membrane-associated and extracellular mineral
precipitates associated with NDFO metabolism may also
present plausible biosignatures that may be detectable by future
life detection missions, provided that they would persist over
geological time. In particular, periplasmic encrustation leads to
mineral shells that entrap protein globules and which display a
constant thickness (around 40 nm) (Miot et al., 2011). The nature
of the minerals has been shown to be dependent on both the local
chemical composition and the pH environment. Acidovorax sp.
strain BoFeN1, one of the best studied NDFO species, has been
found to produce either lepidocrocite [γ-FeO(OH)] at pH 7
(Miot et al., 2014b) or a mixture of lepidocrocite and magnetite
(Fe3O4) at pH 7.6 (Miot et al., 2014a). Likewise, changing the
chemical composition of the culture medium at pH 7 results in

the precipitation of either Fe3+ phosphates (Miot et al., 2009),
goethite [α-FeO(OH)] (Kappler et al., 2005; Schädler et al., 2009),
or green rust (mixed Fe2+/Fe3+ hydroxides) (Pantke et al.,
2012).

It is also becoming apparent that encrustation is less likely
in environments with low Fe2+ concentrations (50–250 µM),
i.e., conditions more representative of many terrestrial NDFO
sample sites (Chakraborty et al., 2011). Encrustation may occur
only when solutions become highly concentrated (millimolar)
with Fe2+ ions, as may have occurred in hydrothermal
and stratified lake settings on early Mars (Hurowitz et al.,
2017) or in evaporitic environments during the desiccation
of the martian surface (Tosca and McLennan, 2009). Oxide-
encrusted cells in both of these contexts could have been
deposited and preserved during sedimentation (Figure 4). If
deposited and lithified as macroscopic flocs or bands within
an otherwise generally reducing sedimentary geological context,
these oxidized mineral features may be visible in exposed strata
and would serve as prime initial targets for further astrobiological
investigation. Alternative mineralization processes such as
pyritization (saturation and replacement of biological structures
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with iron sulfide) or silicification (saturation and replacement
of biological structures with silica) could also contribute to
non-specific morphological preservation of microbes in iron and
sulfur-rich, predominantly basaltic, early martian environments.
Microbial silicification has been observed on Earth in situ and
in vivo around hot springs and under simulated conditions as
well as in the fossil record (Toporski et al., 2002; Konhauser
et al., 2004) whereas microbial pyritization is recognized
only in the context of microfossils (Schieber, 2002; Wacey
et al., 2013). Given the ability of microbial communities
to thrive in conditions which encourage geologically rapid
mineralization of biological material, these processes should
not be viewed as prohibitive to microbial life on Noachian
Mars, and are beneficial to the search for any traces of early
life.

Formation of organo-ferric complexes has also been
demonstrated to facilitate the preservation of organic molecules
in soils and sediment over geological timescales on Earth
(Lalonde et al., 2012), raising the possibility that encrustation
of NDFO cells by Fe3+-bearing minerals and subsequent
complexation may be beneficial to the preservation of organic
biosignatures. At the same time, depending on the nature
of encrusting minerals and diagenetic (T, P) conditions, Fe
minerals may promote the thermal maturation of organic
matter and partly erase organic biosignatures (Miot et al.,
2017). It may be possible for the Mars Organics Molecule
Analyzer (MOMA) mass spectrometer and Raman laser
spectrometer (RLS), aboard the ESA ExoMars 2020 rover, to
detect biogenic organic molecules in association with Fe3+ in
iron-rich drill samples and laser targets, respectively (Lopez-
Reyes et al., 2013; Arevalo et al., 2015). However, these
instruments are not specific enough to distinguish evidence of
NDFO microbes from any other potentially biological material
encrusted in Fe minerals (e.g., Kish et al., 2016; Mirvaux et al.,
2016).

Specific evidence of NDFO metabolism in the geological
record on Earth or Mars may, however, come from isotopes.
NDFOs have been shown to produce distinctive 56Fe/54Fe isotope
fractionation patterns, discernible from other processes (Kappler
et al., 2010). These variations may be detectable in the rock
record, for example, in returned samples, using isotope ratio
mass spectrometry (Anand et al., 2006; Czaja et al., 2013). The
preservation of isotopic anomalies in martian sediments could
provide detectable supporting evidence of NDFO on early Mars.

CONCLUSION

Nitrate-dependent Fe2+ oxidation (NDFO) microorganisms
oxidase Fe2+ compounds while also reducing nitrates under
anaerobic, circumneutral conditions. These environments are
proposed to have existed on Mars, providing the electron donors
and acceptors required for NDFO metabolism. This implies
that NDFO is a feasible and logical avenue for investigating
hypothetical early martian life.

The discovery of nitrates establishes NDFO as a viable
mechanism for hypothetical, biological iron oxidation on
present-day Mars. NDFO could help to close a chemotrophic
‘loop’ of biogeochemical iron cycling on Mars, by providing
a potential mechanism for iron oxidation, and allowing
chemotrophic iron cycling to occur in both circumneutral ancient
surface waters and deep sub-surface waters throughout martian
history.

To test the validity of this hypothesis, further research should
seek to determine the feasibility of NDFO metabolism under
Mars simulation conditions and characterize any associated
biomineralization processes. Should the suitability of NDFO to
martian environments be supported by the outcomes of these
experiments, future life detection missions could be optimized
to seek the distinctive mineralized biosignatures of NDFO in the
martian rock record.
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