88 research outputs found

    Proteomics: Challenges, Techniques and Possibilities to Overcome Biological Sample Complexity

    Get PDF
    Proteomics is the large-scale study of the structure and function of proteins in complex biological sample. Such an approach has the potential value to understand the complex nature of the organism. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of proteome. Advances in protein fractionation and labeling techniques have improved protein identification to include the least abundant proteins. In addition, proteomics has been complemented by the analysis of posttranslational modifications and techniques for the quantitative comparison of different proteomes. However, the major limitation of proteomic investigations remains the complexity of biological structures and physiological processes, rendering the path of exploration paved with various difficulties and pitfalls. The quantity of data that is acquired with new techniques places new challenges on data processing and analysis. This article provides a brief overview of currently available proteomic techniques and their applications, followed by detailed description of advantages and technical challenges. Some solutions to circumvent technical difficulties are proposed

    Redefining Androgen Receptor Function: Clinical Implications in Understanding Prostate Cancer Progression and Therapeutic Resistance

    Get PDF
    The current description of the function of the human androgen receptor (AR), as a transcription factor directing androgen responsive gene expression, is limited in scope and thus is unable to account for the varied cellular and physiological transformation observed in the development and progression of prostate cancer (CaP). The chapter will focus on four important aspects of AR and CaP investigations: (1) a description of AR somatic mutations and the perils of AR-directed therapeutics; (2) our characterization of AR protein interactors that have imbued new functional properties for AR linked to prostatic disease; (3) review of the advances made and shortcomings of AR mouse models in describing CaP onset and progression; and (4) speculate as to the mechanisms by which new mutations can originate and initiate disease onset

    Mass Spectrometric Proteomics

    Get PDF
    As suggested by the title of this Special Issue, liquid chromatography-mass spectrometry plays a pivotal role in the field of proteomics. Indeed, the research and review articles  published in the Issue clearly evidence how the data produced by this sophisticated methodology may promote impressive advancements in this area. From among the topics discussed in the Issue, a few point to the development of  new procedures for the  optimization of the experimental conditions that should be applied  for the identification of proteins present in complex mixtures.  Other applications  described in these articles show  the huge potential of  these strategies in the protein profiling of organs and  range from  to the study of post-translational tissue modifications to the investigation of the molecular mechanisms behind human disorders and the identification of potential biomarkers of these diseases

    Metabolomics Data Processing and Data Analysis—Current Best Practices

    Get PDF
    Metabolomics data analysis strategies are central to transforming raw metabolomics data files into meaningful biochemical interpretations that answer biological questions or generate novel hypotheses. This book contains a variety of papers from a Special Issue around the theme “Best Practices in Metabolomics Data Analysis”. Reviews and strategies for the whole metabolomics pipeline are included, whereas key areas such as metabolite annotation and identification, compound and spectral databases and repositories, and statistical analysis are highlighted in various papers. Altogether, this book contains valuable information for researchers just starting in their metabolomics career as well as those that are more experienced and look for additional knowledge and best practice to complement key parts of their metabolomics workflows

    New Perspectives on Reverse Translation: Brief History and Updates

    Get PDF
    Since the 1950s, reverse translation has been an enigmatic part of Crick’s central dogma of molecular biology. It might be described as the possibility to back-translate information from proteins to nucleic acids (or codons). A few studies have attempted to theorize and/or conduct in vitro experiments to test the likelihood of reverse translation, with ideas often involving the creation of peptide recognition sites that bridge the peptide and the codon. However, due to many constraints including an asymmetrical informational transfer, the stability of protein-peptide bonds, the structural non-uniformity of protein R-groups, and the informational loss in post-translational protein modifications, this concept requires follow-up studies. On the other hand, current bioinformatic tools that rely on computational programs and biological databases represent a growing branch of biology. Bioinformatics-based reverse translation can utilize codon usage tables to predict codons from their peptide counterparts. In addition, the development of machine learning tools may allow for the exploration of biological reverse translation in vitro. Thus, while in vivo reverse translation appears to be nearly impossible (due to biological complexity), related biological and bioinformatics studies might be useful to understand better the central dogma’s informational transfer and to develop more complex biological machinery

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Plant Genetics and Molecular Biology

    Get PDF
    This book reviews the latest advances in multiple fields of plant biotechnology and the opportunities that plant genetics, genomics and molecular biology have offered for agriculture improvement. Advanced technologies can dramatically enhance our capacity in understanding the molecular basis of traits and utilizing the available resources for accelerated development of high yielding, nutritious, input-use efficient and climate-smart crop varieties. In this book, readers will discover the significant advances in plant genetics, structural and functional genomics, trait and gene discovery, transcriptomics, proteomics, metabolomics, epigenomics, nanotechnology and analytical & decision support tools in breeding. This book appeals to researchers, academics and other stakeholders of global agriculture

    Plant biosystems design research roadmap 1.0

    Get PDF
    Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches. This represents a shift in plant science research from relatively simple trial-and-error approaches to innovative strategies based on predictive models of biological systems. Plant biosystems design seeks to accelerate plant genetic improvement using genome editing and genetic circuit engineering or create novel plant systems through de novo synthesis of plant genomes. From this perspective, we present a comprehensive roadmap of plant biosystems design covering theories, principles, and technical methods, along with potential applications in basic and applied plant biology research. We highlight current challenges, future opportunities, and research priorities, along with a framework for international collaboration, towards rapid advancement of this emerging interdisciplinary area of research. Finally, we discuss the importance of social responsibility in utilizing plant biosystems design and suggest strategies for improving public perception, trust, and acceptance

    NFDI4Microbiota – national research data infrastructure for microbiota research

    Get PDF
    Microbes – bacteria, archaea, unicellular eukaryotes, and viruses – play an important role in human and environmental health. Growing awareness of this fact has led to a huge increase in microbiological research and applications in a variety of fields. Driven by technological advances that allow high-throughput molecular characterization of microbial species and communities, microbiological research now offers unparalleled opportunities to address current and emerging needs. As well as helping to address global health threats such as antimicrobial resistance and viral pandemics, it also has a key role to play in areas such as agriculture, waste management, water treatment, ecosystems remediation, and the diagnosis, treatment and prevention of various diseases. Reflecting this broad potential, billions of euros have been invested in microbiota research programs worldwide. Though run independently, many of these projects are closely related. However, Germany currently has no infrastructure to connect such projects or even compare their results. Thus, the potential synergy of data and expertise is being squandered. The goal of the NFDI4Microbiota consortium is to serve and connect this broad and heterogeneous research community by elevating the availability and quality of research results through dedicated training, and by facilitating the generation, management, interpretation, sharing, and reuse of microbial data. In doing so, we will also foster interdisciplinary interactions between researchers. NFDI4Microbiota will achieve this by creating a German microbial research network through training and community-building activities, and by creating a cloud-based system that will make the storage, integration and analysis of microbial data, especially omics data, consistent, reproducible, and accessible across all areas of life sciences. In addition to increasing the quality of microbial research in Germany, our training program will support widespread and proper usage of these services. Through this dual emphasis on education and services, NFDI4Microbiota will ensure that microbial research in Germany is synergistic and efficient, and thus excellent. By creating a central resource for German microbial research, NDFDI4Microbiota will establish a connecting hub for all NFDI consortia that work with microbiological data, including GHGA, NFDI4Biodiversity, NFDI4Agri and several others. NFDI4Microbiota will provide non-microbial specialists from these consortia with direct and easy access to the necessary expertise and infrastructure in microbial research in order to facilitate their daily work and enhance their research. The links forged through NFDI4Microbiota will not only increase the synergy between NFDI consortia, but also elevate the overall quality and relevance of microbial research in Germany

    Recent Developments in Cancer Systems Biology

    Get PDF
    This ebook includes original research articles and reviews to update readers on the state of the art systems approach to not only discover novel diagnostic and prognostic biomarkers for several cancer types, but also evaluate methodologies to map out important genomic signatures. In addition, therapeutic targets and drug repurposing have been emphasized for a variety of cancer types. In particular, new and established researchers who desire to learn about cancer systems biology and why it is possibly the leading front to a personalized medicine approach will enjoy reading this book
    corecore