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Preface to ”Metabolomics Data Processing and Data
Analysis—Current Best Practices”

Metabolomics analysis has taken its place as a staple tool in all research areas across

the bioscience and medical scientific fields where chemical matter is involved. While technical

developments on the instruments used for metabolomics analytics allow for deeper than

ever chemical exploration of biological samples, the importance of appropriate data-analytical

approaches to treat, analyze, and interpret the vast metabolomics data is increasingly highlighted.

The data-analytical workflow required for metabolomics study is a multi-step procedure necessitating

different software and algorithm approaches for different steps that include but are not limited

to peak picking, data preprocessing, and metabolite annotation and identification as well as

visualization. In this book, we present a collection of papers focusing on practices and resources

for various aspects of the metabolomics data-analytical workflows, starting from data collection all

the way to the presentation of publication-ready metabolomics results, including both reviews on

the current best practices as well as reports describing novel, innovative approaches for aspects

such as in silico prediction of metabolite structures. Any metabolomics study is a multidisciplinary

effort necessitating expertise across areas of, e.g., analytical chemistry, biochemistry, bioinformatics,

and data-analytics. Therefore, fluent combination of the various steps involved in the workflow

involves various challenges and factors to be taken into consideration. Here, current practices

are reviewed, from samples to biochemical interpretation (Ivanisevic and Want, 2019), advances in

metabolic modeling on a genomic scale (Sen and Orešič, 2019), as well as possibilities for open-source

algorithms for data-analysis (Klåvus et al. 2020). In addition, is the presentation of a web-based

interface that fosters many parts of the metabolomics statistical workflow (Chong et al. 2019).

As described by Ivanisevic and Want, metabolite identification remains as one of the pitfalls of

metabolomics analysis, and it is therefore essential that advanced procedures are developed for

both data acquisition (DIA and DDA) as well as MSMS annotation and metabolite identification.

In this book, novel strategies for the computational prediction of mass fragmentation spectra

(Djoumbou-Feunang et al. 2019), the integration of computational predictions provided by various

algorithms to foster the in silico prediction of metabolite structures (Ernst et al. 2019), handling of DIA

MS/MS spectra (Peris-Dı́az et al. 2019), as well as an in silico framework to optimize the acquisition

of mass fragmentation data (Wandy et al. 2019) are presented. Databases and data repositories are an

inevitable part of an efficient metabolomics analysis workflow. Curated databases of spectral libraries

encompassing both experimental and in silico predicted fragmentation spectra are a prerequisite for

efficient metabolite identification. This book contains a section where databases were reviewed and

gaps in coverage in terms of different metabolite classes were identified (Oberacher et al. 2018; Frainay

et al. 2018). Repositories holding raw metabolomics data enable further utilization of data collections

and enable efficient collaborative attempts as described in Tsugawa et al. 2019. Within metabolomics

data-analysis an essential element is the efficient strategy for feature selection benefitting especially

from the multivariate nature of metabolomics data. Therefore, both advanced methods for the

chemometric processing of the data, as well as visualization of the results with ease of interpretation

of the biological significance are focus areas requiring further development, as described in the final

three papers of this book (Schillemans et al. 2019; Gao et al. 2019; del Castillo et al. 2019). We hope

the book will serve as useful resource for anyone entering the field of metabolomics and, especially,

the data-analytical part of the technology. Likewise, the book presents various novel algorithms and
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combined pipelines that may well be utilized by experienced researchers in the field, as well as be

further developed owing to the open-source nature of all the presented resources.

Justin J.J. van der Hooft, Kati Hanhineva

Editors
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Abstract: Untargeted metabolomics (including lipidomics) is a holistic approach to biomarker
discovery and mechanistic insights into disease onset and progression, and response to intervention.
Each step of the analytical and statistical pipeline is crucial for the generation of high-quality,
robust data. Metabolite identification remains the bottleneck in these studies; therefore, confidence in
the data produced is paramount in order to maximize the biological output. Here, we outline the key
steps of the metabolomics workflow and provide details on important parameters and considerations.
Studies should be designed carefully to ensure appropriate statistical power and adequate controls.
Subsequent sample handling and preparation should avoid the introduction of bias, which can
significantly affect downstream data interpretation. It is not possible to cover the entire metabolome
with a single platform; therefore, the analytical platform should reflect the biological sample under
investigation and the question(s) under consideration. The large, complex datasets produced need to
be pre-processed in order to extract meaningful information. Finally, the most time-consuming steps
are metabolite identification, as well as metabolic pathway and network analysis. Here we discuss
some widely used tools and the pitfalls of each step of the workflow, with the ultimate aim of guiding
the reader towards the most efficient pipeline for their metabolomics studies.

Keywords: untargeted metabolomics; liquid chromatography–mass spectrometry (LC-MS);
metabolism; experimental design; sample preparation; data processing; metabolite identification;
univariate and multivariate statistics; metabolic pathway and network analysis

1. Introduction

It is assumed that metabolite identification remains a major challenge in untargeted mass
spectrometry (MS)-based metabolomics. Is this indeed true? Should there be greater effort to
design experiments in a smarter, more streamlined way, and to know how to reduce noise and
redundancy in untargeted metabolomics datasets? For example, a meta-analysis comparative strategy
can be used, where several pairwise comparisons are performed (with the same control group),
followed by second-order or meta-analysis to prioritize the identification of the shared deregulated
metabolites [1,2]. Here, we provide tips on how to design metabolomics experiments in an optimal
way, considering sample size, confounders, and bias. We discuss important factors in sample
preparation and describe how preparation approaches should be tailored to each biofluid or tissue.
Methods should be simple, reproducible, and inexpensive, while preparation steps should not be
biased for or against specific analytes, in order to maximize metabolome and/or lipidome coverage.
We also summarize different liquid chromatography–mass spectrometry (LC-MS) strategies in order

Metabolites 2019, 9, 308; doi:10.3390/metabo9120308 www.mdpi.com/journal/metabolites1



Metabolites 2019, 9, 308

to acquire high quality MS and MS/MS data (reversed phase (RP) LC and hydrophilic interaction
liquid chromatography (HILIC) coupled to full scan high resolution (HR) MS data-dependent and
data-independent acquisition (DDA and DIA)), while maximizing the metabolome and lipidome
coverage, parameters to pay attention to for data pre-processing, and, specifically, feature annotation.
Also covered are which criteria to use for data filtering (quality control, chemical and informatic noise
removal, etc.), how to apply statistical analysis in the best way, how to facilitate metabolite identification
(using computational approaches) and how to translate the results in a biochemically relevant context
(metabolite set enrichment analysis (MSEA), overrepresentation analysis (ORA), metabolic network
analysis). We emphasize the importance in metabolomics studies of employing quality control (QC)
strategies. QC samples, typically a pool of all study samples, can be used to both condition the analytical
column and to monitor stability throughout the run. Expanding the polar metabolome and lipidome
coverage, removal of noise and redundancy, and consideration of metabolic capacities of a model
organism (i.e., biochemical reactions that can be performed by the specific organism, species, genus,
etc.) are essential for generation of well-founded hypotheses from untargeted assays. We show how
the mass analyzer for untargeted assays should harness high mass accuracy and resolution, and the
ability to perform fragmentation or MS/MS experiments for structural elucidation. Many different
software exist for the extraction of peaks (metabolite features) from the data, the deconvolution of such
data, and the subsequent analysis in both multivariate and univariate ways. There are many statistical
tools available, which aim to streamline and aid interpretation, of which we endeavor to summarize
and evaluate some of the most commonly used. Finally, we highlight the lack of quantitative data
and the need to validate these data-driven hypotheses using targeted quantification, with a focus on
identified biochemical pathways associated with phenotype. These analyses will allow to go towards
more mechanistic insights and, most importantly, allow for cross-laboratory and -study comparisons
for intelligent data re-usage.

2. Results

2.1. Considerations for Experimental Design

Before starting any metabolomics study, it is important to consider the question(s) being
asked. Many metabolomics studies are complex in design and may incorporate several classes,
e.g., control subjects versus those receiving low and high dose of a drug (Figure 1), healthy subjects
versus those with a benign condition and cancer (maybe several stages). It is vital that the study
is designed to maximize useful information, whilst keeping costs and animal usage to a minimum.
Ideally, you are aiming for the smallest number of experiments needed to produce the maximum
amount of data and achieve precision, whilst addressing power and effect size, and accounting for
confounding factors [3]. However, it is challenging to calculate the appropriate sample size for
untargeted metabolomics studies, as metabolite changes are typically unknown and may be numerous.
Further, the high dimensionality of the data and the large degree of correlation between the variables
(metabolite features) adds to the complexity of the issue. Ideally, a pilot study should be conducted in
order to gain an understanding of the expected effects; however, these are rarely performed due to
logistical reasons (sample availability, cost, animal usage, ethics, etc.). Software such as MetaboAnalyst
can aid in these calculations if pilot data are available [4]. Recently, Ebbels, et al. [5] proposed
an approach to circumvent the need for obtaining preliminary data by using a multivariate simulation
approach. Also publicly available is MetSizeR, which uses information from both the metabolomics
experiment and the data analysis technique to simulate pilot data from a statistical model (where two
groups are present). In order to estimate the required sample size, permutation-based techniques are
applied to these simulated data [6]. Also important to consider is the nature of the experiment and
the type of samples being analyzed. For instance, when using cell models, conditions can be tightly
controlled, and thus sample numbers kept to a minimum (e.g., five replicates). Animal studies are
also subject to fairly tight control in terms of age, housing, diet, underlying disease, etc. Therefore,
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for ethical and practical reasons, sample numbers can also be kept low. However, humans prove to be
much more challenging subjects. Except in a small number of situations, factors such as diet, exercise,
and medication cannot be controlled, and so a much larger number of subjects is needed in order to be
able to determine a “normal” range for metabolite levels, account for inter-individual variation, and be
able to detect changes above baseline.

Figure 1. Common experimental designs. (A) Cross-over design involving a large patient cohort.
Two drugs are administered sequentially to each patient, with a crucial washout period between each
drug to enable the effects of each drug to be elucidated. (B) Factorial design, where both the gender of
the subject and effect of the drug are being studied. (C) Common cross-sectional design in metabolomics
studies, comparing controls and two drug dose levels in both genders.

2.1.1. The Importance of Controls

It is extremely important to design an experiment containing the correct controls, in order to be
able to associate observed metabolite changes with the condition being investigated [7,8]. The main
types of controls to consider including are:

(a) Positive controls, where changes are expected. These can be used to check that experimental
methods are working correctly, and could include a group of subjects (human or animal model)
with a known disease, or a specific cell line.

(b) Negative controls, where no change is expected. These can be used to check that unknown
variables are not affecting the experiments, which could result in a false-positive conclusion.

(c) Sham controls. These can be used to check effects induced by the procedure or treatment without
actual use of the procedure (e.g., gastric bypass) or substance (e.g., drug).

(d) Vehicle controls. These can be used to check effects induced by a solution of the experimental
compound, e.g., when a drug is administered in dimethyl sulfoxide (DMSO), the effect of DMSO
on its own should be studied.

(e) Comparative controls. These act as a reference which is commonly accepted or an internal
control/disease control. In cases where there is a drug treatment, it is important to test a sample
of the drug to assess which (if any) signals observed in the metabolic profile arise from the drug,
drug metabolites, or degradation products. Extraction blanks enable artefacts and contaminants
to be assigned (e.g., from plastic tubes), and are particularly useful when extracting tissue samples.

3
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2.1.2. Confounding Factors and Variables

There are several sources of variation in metabolomics studies. Firstly, there is the biological
variation in the samples themselves. Factors which can affect the metabolic profile of individuals
include diet, age, medication, underlying disease, and environmental factors [9]. These are a particular
issue for human subjects, as many are difficult to control, but some will be pertinent to animal
models as well. When considering cell models, fluctuations in metabolite levels over time must be
considered, e.g., as the cells grow and cell density changes (different cell lines grow at different rates).
It is important to measure both intra- and extracellular metabolite levels to ensure that the effects
observed are due to the treatment and not natural fluctuations. Also important to consider is the
time of sampling, as many metabolites are subject to circadian rhythm in human and animal models,
particularly hormones in blood and urine. When considering blood samples, whether the subject is in
a fasting or non-fasting state should be considered, as blood glucose, amino acid, and lipid levels will be
affected dramatically. There is also the variability introduced through sample collection and handling.
a large body of work is available in the literature considering these factors [10,11], which is beyond
the scope of this review. In summary, blood collection tubes can impact the metabolite profile due,
in part, to ion suppression from anticoagulants, e.g., ethylenediaminetetraacetic acid (EDTA) [12,13].
Some serum collection tubes contain polymers such as polyethylene glycol (PEG), which is detrimental
to LC-MS analysis, masking the signals from potentially important metabolites. Another consideration
if collecting serum samples is the time left to clot, as metabolites such as lactate are known to change
as clotting time increases, thus changing the metabolite profile [14]. When collecting urine samples,
the type of preservative used, e.g., sodium azide or boric acid, may impact upon the metabolite
profile [15]. The storage temperature and number of freeze–thaw cycles that the samples undergo are
also important, as metabolites may degrade [16,17]. Lastly, the metabolite extraction approach (e.g.,
liquid extraction versus solid phase extraction; Section 2.2), extraction solvents used, and diluent also
impact the metabolite profile hugely. Although some approaches may be favored over others, it is still
largely subjective and will vary between research groups. The key to reproducible metabolomics data
is to maintain consistency between samples as much as possible and keep the number of sampling
handling steps to a minimum.

2.1.3. Which Experimental Design to Choose?

There are several different experimental design types to consider. Amongst the more common are
completely randomized, crossover, and factorial designs [18–21]. Although commonly used due to their
fairly simple nature, completely randomized designs are limited in the fact that they study the effect of
one primary factor without considering other factors. This approach would not be recommended in
a metabolomics study, due to likely confounding factors (see Section 2.1.2), which may have a large
impact on the metabolite profile. However, in reality, randomized studies are conducted and the
confounders considered at the data analysis steps. a solution to this may be to employ a crossover
design, where there could be sequential application of several treatments to the same individual
(Figure 1). This means that a subject acts as its own control, thus providing smaller within-individual
variation. However, the following factors need to be considered: “carryover effect”, “time-related
effect”, “reversible treatment”, and “wash out period”. Factorial designs investigate the effect of more
than one factor simultaneously, such as gender of the subject and response to a treatment, and so have
the potential to increase information obtained from single study.

2.2. Sample Preparation Approaches

Crucial to obtaining high quality metabolomics data is how the samples are prepared. There are
many excellent papers in the literature concerning sample preparation for metabolomics studies [22–29]
and individual methodologies are beyond the scope of this review. However, it is important to consider
some key factors when designing the sample preparation approaches most appropriate for the biofluid
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or tissue of interest. These include (a) ease of method, i.e., it should be easily reproduced by different
operators within the same laboratory and across laboratories; (b) there should be a minimal number
of steps, so that technical/analytical variability is kept to a minimum; and (c) cost—a less expensive
method will be favorable, so that it can be scaled up to larger sample numbers, such as in the case of
epidemiological studies [30,31]. For untargeted metabolomics, it is desirable to use methods which do
not bias for or against specific classes of analytes, so that as broad metabolite coverage as possible can
be achieved [30,31]. However, it may be practical to prepare sample extracts for polar and non-polar
metabolites separately, such as in the case of tissue samples [31]. In general, urine is a straightforward
biofluid to prepare, as unless collected from subjects with proteinuria (or rodents), it will largely be free
from protein, and so a simple centrifugation and dilution approach can be taken [30]. Be sure to ensure
that the diluent used is compatible with the mode of chromatography to be subsequently employed.
Plasma/serum and tissue samples require protein to be removed, which can be performed through the
addition of cold organic solvent, often methanol, acetonitrile, isopropanol, or a butanol and methanol
solution (BuMe), in a one-step approach [32–35]. Tissue samples require homogenization prior to
protein precipitation, often using a bead beater [31]. For both blood and tissue samples, a biphasic
extraction approach, such as the Bligh-Dyer or a variation (e.g., MTBE:MeOH:H2O), can be used [36].
Alternatively a two-step approach can be utilized, where sequential extraction of polar and non-polar
metabolites is performed [37]. Particular care needs to be taken in the case of preparation of cell
samples, where quenching is a crucial step in order to arrest metabolism [26,28]. It is also important
to be aware of the stability of analytes, as some such as adenosine triphosphate (ATP) will degrade
rapidly [26], and it may not be possible to measure these accurately. It is also important to randomize
the sample preparation order, particularly in the case of large sample numbers, and to ensure that
this preparation order is not the same as the analytical run order (Figure 2), so that systematic bias
is minimized.

Figure 2. Setting up the data acquisition worklist to facilitate metabolite quantification and identification.
Prior to batch run, the instrument should be conditioned (or “passivated”) using the pooled quality
control (QC) of biological samples. During the conditioning, high-quality MS/MS data can be acquired
in a data-dependent acquisition (DDA) mode by taking advantage of iterative injections through the
application of PC-driven exclusion (of ions for which the MS/MS data have already been acquired).
In this way, the amount of acquired high-quality MS/MS data will be maximized. The batch run can start
(and end) with the analysis of diluted QC series that will serve to remove the features whose response is
not linear; however, this removal should be performed carefully by evaluating low abundance features
and those with saturation issues. Finally, samples should be run in a randomized fashion (considering
the most important confounding factors, such as disease, sex, age, etc., depending on the experiment)
with pooled QCs every 4–10 samples (depending on the size of the batch). Extracted blanks can be
analyzed after the sample run and used for the removal of background (chemical and informatic) noise.
Abbreviations: MS/MS data—fragmentation pattern, HRMS—high-resolution mass spectrometry,
DDA—data-dependent acquisition, DIA—data-independent acquisition, AIF—all ion fragmentation
(on Agilent or Thermo systems), MSE—all ion fragmentation on Waters systems-, SWATH—sequential
window acquisition of all theoretical mass spectra or DIA strategy on Sciex systems, SONAR—scanning
quadrupole DIA or DIA strategy on Waters systems.
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2.3. Data Acquisition Strategies to Facilitate Metabolite Quantification and Identification

The choice of technological platform and analytical strategy for sample analysis will be guided by
the objective of the study, the metabolites of interest and the approach—untargeted or targeted—deemed
most appropriate to answer the biological question. While Nuclear Magnetic Resonance (NMR)
spectroscopy is endowed with high reproducibility and accuracy for metabolite measurement,
MS-based technologies have made the most significant imprint in metabolomics following the
introduction of electrospray ionization (ESI), which has considerably enhanced measurement sensitivity
and thus promoted “omics scale” metabolite analysis [38,39]. Direct injection analytical strategies,
such as flow-injection analysis (FIA), that do not apply any analyte separation have already provided
an increased coverage of up to 200–300 metabolites. While this direct ionization strategy can be of
particular interest in studies where high-throughput is essential, for example, in real-time metabolite
profiling [40,41], it suffers from ion suppression, poor reproducibility, matrix effects, etc., allowing for
only a small fraction of the polar metabolome to be putatively annotated based on accurate mass.
As opposed to polar metabolites, a large body of evidence has demonstrated the value of direct
infusion-based shotgun analysis for lipid identification. The latest strategies applied in shotgun
lipidomics take advantage of the selective ionization of different classes of lipids in the ion source
(i.e., intra-source separation under different conditions) and continuous direct injection of the sample,
allowing for multi-dimensional MS analysis (i.e., multiple acquisitions in full scan and MS/MS
scan modes), and thus, the unambiguous identification (including isobaric/isomeric species) and
accurate quantification of lipid species (in two steps) [42,43]. Although the multi-dimensional mass
spectrometry-shotgun lipidomics (MDMS-SL) improves most of the limitations related to classical
shotgun lipidomics, it is relatively low-throughput and still suffers from ion-suppression, thus limiting
the analysis of low abundant lipid species (unless they are derivatized) [43].

Among different hyphenated techniques, such as LC-MS, GC-MS, and CE-MS, that are
complementary in their attempt to resolve chemical diversity, LC-ESI MS allows for the most
comprehensive coverage of the polar metabolome and lipidome [44,45]. It allows for the simultaneous
measurement of several hundred to thousands of metabolites (comprising lipids) from only minimal
amounts of a biological sample in a single analysis. This coverage capacity is a benefit of LC separation
that minimizes ion-suppression and maximizes measurement specificity by the separation of isobars
and isomers and by providing retention time (RT) identifiers [46]. LC represents the best compromise
with limited MS acquisition (scanning) speeds; by improving the specificity, and thus, S/N ratio,
it enhances the quantity and the quality (i.e., purity) of acquired MS/MS data, essential for metabolite
identification (in untargeted assays) and quantification (in targeted analysis) [47].

Due to inherent chemical diversity and the large size of the metabolome, there is no universal
technique that can be used to assess the entire metabolome, i.e., “one size does not fit all”. The choice
of LC-MS analytical strategy, including the LC and MS modes of analysis, will depend on the type
of metabolites to be measured (polar vs. nonpolar) and limitations with respect to time and sample
amount, which will determine how many analysis modes could be combined to expand the metabolome
and/or lipidome coverage [37,48].

2.3.1. LC Techniques

The most commonly used LC techniques in metabolomics include Reversed-Phase Liquid
Chromatography (RPLC), ion pairing RPLC, and HILIC. Stationary phase (hydrophobic or hydrophilic),
mobile phase modifiers (formic acid, acetic acid, ammonium acetate or formate, ammonium fluoride,
etc.), elution gradient (from highly aqueous to highly organic and vice versa), and sample diluent
will vary depending on the chromatographic mode applied. Recognized for its reproducibility and
broad applicability, RPLC is predominantly used in untargeted metabolomic assays. While RPLC
can be used for profiling of mid-polar and non-polar metabolites, including complex lipids, recently,
the major challenge in metabolomics has been the separation of highly hydrophilic central carbon
metabolites [49], specifically to understand the metabolic shifts in cellular metabolism under different
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conditions. To enhance the poor retention of hydrophilic metabolites by RPLC, ion pairing agents
(e.g., alkyl sulfonates or heptafluorobutyric acid in positive mode, and long chain tertiary/quaternary
amines such as tributylamine in negative mode) can be added into the mobile phase, where they
combine with the analyte (i.e., cations or anions) to form an ion pair that can be efficiently retained by
the reversed phase packing [50]. Yet, this strategy is not MS friendly, with the background signal of ion
pairing agent causing system contamination and resulting in notable ion suppression and reduced
sensitivity, thus demanding a dedicated LC-MS system. Alternative strategies, such as multimode C18
columns that contain cation and anion ligands (e.g., HSS T3 Waters, Milford, MA, US, Scherzo SM-C18
Imtakt USA) and, in particular, HILIC, have been developed and have become increasingly robust
and popular for polar compound retention [51,52]. Indeed, stationary phases with derivatized silica,
including diol, amine, and amide, have proven their efficiency and robustness in the separation of polar
molecules through multiple mechanisms, such as partitioning between the mobile phase and enriched
water layer on the stationary phase, hydrogen bonding, dipole–dipole interactions, etc. In addition,
the stationary phases with zwitterionic functional groups (with the polymeric support, e.g., ZIC-HILIC
and ZIC-pHILIC, ZIC stands for zwitterionic stationary phase) offer excellent performance in the
retention of highly polar metabolites (e.g., di- and tri-carboxylic acids, phosphorylated energy currency
metabolites) via ion exchange, and wide pH range stability (from 2 to 10) [51,53]. Besides polar
metabolite separation, HILIC has also been increasingly used for complex lipid separation by class,
according to polar head groups [54,55].

For an untargeted metabolomics experiment, one would ideally maximize data acquisition and
metabolome coverage by combining HILIC and RPLC in both positive and negative ionization
modes. Analysis using HILIC in acidic conditions in positive ionization mode would allow
for the assessment of amino acid and acylcarnitine metabolism [56], while the analysis in basic
conditions in negative ionization mode would provide insight into glycolysis, tricarboxylic acid
cycle (TCA) cycle, purine and pyrimidine metabolism, etc [51]. Analysis using RPLC and
non-polar eluents (often a combination of isopropanol (IPA) and acetonitrile would allow for
comprehensive lipid profiling, including glycerolipids (TAGs—triacylglycerols, DAGs—diacylglycerols,
and MAGs—monoacylglycerols), cholesterol esters (CEs), sphingolipids (sphingomyelins,
ceramides), glycerophospholipids (PCs—phosphatidylcholines, PEs—phosphatidylethanolamines,
PSs—phosphatidylserines, PIs—phosphatidylinositols, PGs—phosphatidylglycerols), and free fatty
acids [57]. These analyses can be performed following two-phase extraction (e.g., MTBE/MeOH/H2O)
or single step extraction using isopropanol or butanol and methanol solution (BuMe). When time and
sample amount are limited, the researcher should decide depending on which metabolite classes are of
the utmost relevance to answer the specific biological question.

2.3.2. Mass Spectrometry Acquisition Modes

Following LC separation, MS detection must be performed in optimized conditions to acquire
maximal high-quality MS and MS/MS data for metabolite quantification and identification (Figure 2).
Optimal MS acquisition conditions are instrumentation-dependent and comprise ion source and
analyzer parameters. For an untargeted experiment, data are usually acquired in full scan mode,
where the instrument is set to scan the complete mass range from 50 to 1200 Da. Despite the fact that
increasing mass-resolving power is beneficial to resolve co-eluting isobaric compounds and we may
say that “the higher the resolution the better, there may never be enough resolution to separate all the metabolites
present in complex biological matrices”, in the small molecule “world”, many compounds have the exact
same accurate mass [58]. From this point of view, resolution becomes less important when compared
to instrument scanning speed and sensitivity, essential for acquisition of maximum high-quality
MS/MS data necessary to translate putative hits into metabolite identities [47,53]. During sample
analysis, HRMS data acquisition can be followed by sequential acquisition of MS/MS data using
data-independent acquisition (DIA; such as all-ion-fragmentation (AIF) in Agilent Q-TOF, MSE in
Waters Q-TOF, or SWATH in Sciex TripleTOF, and BASIC DIA in Orbitrap) with a minimal loss of
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sensitivity (approximately two times), or MS/MS data can be acquired only on pooled QC samples
at the end of the run, in DIA or in data-dependent acquisition mode (DDA with a focus on top
“n” ions, Table 1). In data-independent acquisition (DIA), all fragment ions for all precursors are
acquired simultaneously, while in data-dependent acquisition (DDA) the ions for MS/MS acquisition
are selected in real-time based on threshold intensity [59]. Finally, the filtered metabolite features of
interest (i.e., those that vary significantly between two or more analyzed conditions) can be targeted for
MS/MS data acquisition in selective or targeted MS/MS mode, a posteriori, following data processing,
filtering, and statistical analysis. The pitfall of this strategy is the time lapse (and thus possible sample
alterations) between the first batch of analyses in MS mode only, for relative quantification, and the
targeted run to acquire MS/MS data on ions of interest for their identification.

Table 1. MS/MS data acquisition modes with their advantages and disadvantages.

MS/MS Data
Acquisition Mode

Selection of Precursor Ions Advantage Pitfall

1-4
Selective or targeted

MS/MS

Only selected ions specified on
an inclusion list will be targeted Highest quality MS/MS data a posteriori acquisition, in

a separate batch of analyses

Data-Dependent
Acquisition (DDA)

Ions are selected for MS/MS
acquisition in real-time based on
threshold intensity: Top «n» ions

are «picked» in each scan
Preferred list and exclusion list

High-quality MS/MS data
and established link between
precursor and product ions

High acquisition rates
required. Selection of the

most highly abundant ions
each time, across multiple

scans, resulting in low
MS/MS coverage

Data-Independent
Acquisition (DIA)

All fragment ions for all
precursors are acquired

simultaneously:
All-ion-fragmentation (Q1

transmits the full mass range,
50–1700 Da of precursor ions in
the collision cell: AIF, MSE) or
with sequential mass windows

(Q1 transmits several increments
of 20–50 amu across the mass

range in the collision cell:
SWATH, SONAR, BASIC

DIA—see Figure 2)

Improved coverage for low
abundant precursor ions

High acquisition rates
required. Difficulty of

MS/MS data deconvolution
to re-establish the link

between the precursor and
product ions

Although DDA is still the most popular simultaneous MS/MS acquisition mode used, DIA
is gaining attention following the development of MS/MS data deconvolution algorithms (to link
precursor and product ions) and improved coverage for low abundant precursor ions [60–62]. In general,
the quality and the amount of acquired MS/MS data depend on instrument acquisition speed and
sensitivity (also related to metabolite ionization efficiency). With regards to instrument scanning
speed, in DDA, attention should be paid to the m/z resolution window (wide vs. medium vs. narrow),
the accumulation times, and the number of targeted precursor ions per scan [47]. To avoid the selection
of the most highly abundant ions each time, across multiple scans, a preferred list of ions of interest
can be defined and contaminant ions placed on the exclusion list. Data can also be acquired in
a time-staggered fashion through a set of iterative injections (of pooled QC samples) with PC-driven
exclusion (of ions on which the data has already been acquired in previous runs), which will significantly
enhance the amount of acquired MS/MS data [63,64].

DIA can be applied in an all-ion-fragmentation mode (AIF, MSE) where the first quadrupole
(Q1) transmits the full mass range (m/z 50–1700) of precursor ions in the collision cell, or with
sequential windows (SWATH and SONAR on Q-TOFs or BASIC-DIA on Orbitrap), where the Q1
will transmit several increments (20–50 amu) across the mass range of interest sequentially in the
collision cell (Table 1) [59]. Here, again, the number and the size of mass windows will depend
on the instrument acquisition speed. a major challenge related to DIA is to re-establish the direct
link between the precursors and their fragment ions or to correctly deconvolute the MS/MS spectra.
The wider the isolation window for precursor ion selection, the higher the contamination is of MS/MS
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spectra, making their deconvolution more difficult. Several algorithms have already been successfully
implemented proving their efficiency in MS/MS data deconvolution (MS-DIAL [62], MetDIA [65],
DecoMetDIA [66]), with a major limitation being the comprehensiveness of experimentally acquired
spectral databases (e.g., METLIN [67], NIST, MoNA, MassBank [68], mzCloud, GNPS [69], etc.). Due to
time-consuming standard characterization to expand these experimentally-derived spectral databases,
considerable efforts were put towards the development of computational tools for in silico generation of
mass spectra used for MS/MS data matching and metabolite annotation (e.g., iMet [70], LipidBlast [71],
MetFrag [72], MetDNA [60], CSI:FingerID coupled to Sirius [73]; see section on metabolite identification
below; Figure 3).

Figure 3. Overview of lipidomic data analysis (acquired by DDA) using MS-DIAL, the open-access
software designed for simultaneous metabolite quantification and identification. Displayed are the
MS/MS matched peaks (each lipid class is differently colored) with the example of phosphatidylcholine
annotation using MS/MS matching against LipidBlast.

It should be emphasized here that coupling of ion mobility (IM) analyzers, as an additional
separation technique to conventional LC-MS/MS analysis, can markedly facilitate metabolite
identification, and even resolve stereoisomers [74]. The separation of ions according to their size and
conformation prior to MS/MS data acquisition will also enhance spectral clarity and fragmentation
specificity. Importantly, experimental collision cross-section (CCS) values can be computed (using
drift tube ion mobility MS or DTIMS and traveling wave ion mobility MS or TWIMS) with very
high reproducibility (Relative standard deviation or RSD < 2%) [75]. FAIMS (high-field asymmetric
waveform ion mobility MS) is atmospheric pressure IM technology that can also be used as an orthogonal
separation approach (also known as DMS or differential mobility spectrometry), although it does not
allow for the acquisition of CCS values.

In an untargeted metabolomics experiment, one would ideally acquire as many MS and MS/MS
data as possible, simultaneously, or at least within the same analysis batch. This would allow for
the simultaneous metabolite quantification and identification (via MS/MS matching against spectral
libraries and using computational tools like Sirius [73]) in an automated fashion. To reach optimal
metabolome coverage and annotation, there is room for improvement on the instrumentation side (i.e.,
limited acquisition speeds, and sensitivity related to ionization efficiency and ion transmission), the need
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to enhance the comprehensiveness of spectral libraries (taking into consideration the exposome), and to
improve the computational approaches for annotation of unknown metabolites.

It is worth noting that the fastidious metabolite identification process in untargeted experiments
often yields the identification of “known (un)knowns”, as a consequence of the above-specified remaining
challenges. This bias encouraged the development of high-coverage targeted methods for quantification
of polar metabolites and lipids to bridge the gap between untargeted and targeted approaches.
These methods can be strategically derived from DIA methods, such as SWATH, capable of acquiring
MS/MS data for all detectable metabolites in a biological sample [76]. As a library of Multiple
Reaction Monitoring (MRM) transitions, acquired on different instruments, the METLIN-MRM can be
particularly useful to accelerate the development of broad-scale MRM methods [77].

2.4. Data (Pre)Processing: from Peak Detection to Profile Alignment

2.4.1. Software for Data Pre-processing

The amount of raw data generated from an untargeted metabolomics study using mass
spectrometry is often huge, with large file sizes (possibly up to 1–2 GB per sample) depending on the
instrumentation used. Therefore, there is a need for large computational power or use of computational
clusters or clouds for data processing. The data pre-processing pipeline consists of several important
steps in order to extract the maximum useful information from the data, whilst eliminating redundancy.
The many different software available for performing these data pre-processing steps range from MS
vendor software to freely available scripts and software. Some examples of freeware are XCMS [78,79],
MZmine2 [80], and MSDial [62] There is also the XCMS online platform [81,82], where you can upload
your data and the processing will be performed for you, employing parameters set within the software.

2.4.2. Important Steps in Data Pre-Processing

The first, crucial step is peak detection (or extraction). At this stage, the files are uploaded (read)
into the software, and using a selected algorithm, the software will search for any peaks in the samples.
a peak (or metabolite feature) may be defined as a distinct ion species with a unique m/z ratio and
retention time (RT). It is important to note that one metabolite can be represented by multiple peaks
or distinct ion species, namely, isotopes, adducts, in-source fragments, or multiple charged species.
This peak detection is normally split into two steps: (1) Separation of mass traces and (2) filtering or
detection of chromatographic features. The parameter settings at this stage will be important, such as
signal to noise ratio (S/N) and width of the chromatographic peak, in order to enable the detection of
peaks with very low S/N ratios while simultaneously filtering out random noise. These parameters,
as well as maximal m/z deviation, can be calculated by looking at the raw data files of QC samples
across the analytical run or similar (e.g., selected study samples across the run) and specified in the
pre-processing parameters. Peak width range should be calculated using the narrowest and widest
peaks in the chromatograms, again determined visually from QC samples or similar. Extracted ion
chromatograms can be constructed to aid determination of these parameters. Similarly, S/N and m/z
deviation should be calculated across the elution profile using high and low intensity peaks to ensure
an accurate calculation. Typically m/z deviation is ~5 ppm for Orbitrap data and ~25 ppm for Q-ToF
data. Once these peaks have been extracted, they need to be grouped, or matched, across all the
samples in the dataset. This is to enable peak areas (or, in some cases, peak heights) to be compared
across the samples in a semi-quantitative fashion. Untargeted metabolomics experiments can be large,
particularly in the case of epidemiological studies where thousands of samples may be analyzed in
a single run or across batches. Usually, retention time alignment is needed, as there may be peak
shifting across the analytical run (due to changes in pH or temperature, column aging or build-up on
the column). However, this is less frequent since the advent of U(H)PLC, and the authors have found
that in the case of small datasets, retention time correction may no longer be required. Nonetheless,
it is important to assess each dataset individually, and as most software performs this retention time
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alignment, it is generally advisable to do so. The output at this stage will be a peak table containing
m/z, RT, and abundance for each metabolite feature (peak) in every sample [83–85]. Depending on
the software employed, grouping of isotopes/adducts, etc., may have been performed—if it has not,
then software such as CAMERA, AStream, RAMClust, and the recently developed METLIN In-source
fragment Annotation (MISA) [86,87] exist within the R environment to assist with this grouping and,
therefore, data reduction [88–90]. Further, peak annotation may have been performed in some instances
through linking with databases, such as with XCMSOnline. This peak table can then be further
analyzed, either within the same software or using dedicated software such as SIMCA (Umetrics).
Freeware available includes Metaboanalyst [91], a multipurpose software which can also provide
pathway analysis tools.

2.4.3. Dealing with Artefacts

The output from the data pre-processing software can be very large and complex, depending on
the peak picking parameters, as described in the previous section. As instrument sensitivity increases,
so does the likelihood of picking up noise and artefacts in the data. Artefacts can include solvent clusters,
contaminants (from the column, vials, or solvents), and other spurious signals. These inflate the data
and so need to be removed; thus, there are several approaches to tackling this challenge. a widely
used approach in the metabolomics community since 2006 is the employment of QC samples [92].
These generally take the form of a pooled samples comprised of aliquots of all study samples, but may
be a subset of samples if the size of the study is large [93]. Occasionally, a “surrogate” QC sample
could be used, such as the NIST reference plasma material [94].

2.4.4. The Importance of Quality Control

QC samples play a crucial role in untargeted metabolomics studies, in terms of monitoring
system stability and data quality (summarized in Table 2). The QC sample will be injected at
the start of the analytical batch in order to condition the column and assess instrument stability;
the number of injections required may be sample- and column-dependent, but is often in the region
of 10 injections [95,96]. Then, the same QC sample can be injected every 4–10 samples, making up
to ~10% of the sample injections. This within-run QC can be used to assess stability within the run,
e.g., retention time and signal intensity drifts. Importantly, a QC dilution series can be employed;
this takes the form of serial dilutions from the QC sample [93]. The purpose of this dilution series is to
identify and remove peaks (metabolite features) that do not respond to dilution in a linear manner (as
determined by calculating coefficient of determination (r2 or R2) values), as they are likely to be noise,
or at least non-biological in origin. Additionally, the coefficient of variation (CV) can be calculated for
every metabolite feature in the within-run QC samples. Features with a CV above a certain threshold,
e.g., > 30%) can be removed from the dataset, as they are unlikely to be reliable biomarkers [30].
In some cases, metabolite features which appear in below a certain proportion of the QC samples
(e.g., in < 75% of samples) could also be removed from the data. Lastly, the analysis of blank samples,
such as blank mobile phases and also extraction blanks (where the sample preparation procedure has
been followed but in the absence of biological sample), can provide valuable insight into the origin of
many of the metabolite features reported. Those that appear in the blank samples are again likely to be
non-biological in origin and so can be removed from further processing steps [93]. These data filtering
and reduction steps can dramatically reduce the size of the dataset and streamline the subsequent data
analysis procedure.
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Table 2. Criteria for feature filtering using QC and blank samples in order to reduce data complexity
and remove redundancy.

Parameter Criteria Outcome Notes

1-4
Coefficient of variation

(CV)

Choose threshold of
variation, e.g., of metabolite

peak area in repeated
injections of QC sample

Remove metabolite
features, e.g., with CV >

30% in QC samples *

CV cut-off values may be
dependent on sample type,

chromatography, or instrument
parameters

Presence in study
samples

Metabolite feature/peak
must be present in a certain

proportion of the study
samples (and/or QCs)

Remove metabolite
features present in only

a low proportion of
study samples

Certain peaks may only be present
in one class of samples—adjust

threshold accordingly

Presence in blank
samples

Metabolite feature/peak
must not be present in study
samples/at very low levels

Remove metabolite
features present in blank

samples

Some metabolite features may be
present in blank samples due to

carryover—ensure multiple
blanks have been run to address

this

Response to dilution
Metabolite feature/peak

must respond to dilution
series with r2 > 0.8**

Remove metabolite
features with r2 < 0.8 **

Some metabolite features may be
saturated at higher concentrations

and so do not behave
linearly—check raw data

* Some groups recommend a lower cut-off, e.g., 20% [97]; ** this removal should be performed carefully by evaluating
the features whose response may not be linear due to their low abundance.

2.5. Univariate and Multivariate Statistical Data Analysis

Untargeted metabolomics studies generate a wealth of data, from which meaningful biological
interpretations are desired. Statistical analysis of the data is another hugely important step in the
metabolomics pipeline; therefore, there are many important parameters which must be considered.
The most typical workflow is to perform multivariate analysis followed by univariate analysis in order
to elucidate and validate potentially discriminatory metabolites [98,99].

2.5.1. Multivariate Approaches

Multivariate analysis encompasses methods to reduce the complexity of data, such as that
generated from a metabolomics study, where the number of variables (in this case, metabolite features)
is greater than the number of samples. Multivariate analysis can be performed using vendor software,
programming platforms such as R and Metaboanalyst, or commercial software such as MATLAB®

(MathWorks) or SIMCA (Umetrics).

2.5.2. Principal Components Analysis

The first step is generally an unsupervised approach, such as principal components analysis
(PCA), which can be used to visualize data structure, class differences, and outliers (Figure 4). PCA can
be considered as to be finding maximal variation between the groups of interest. Importantly with
unsupervised approaches, no class information is given, and so an unbiased view of class separation
can be obtained. When visualizing a PCA scores plot, the first principal component (PC1) explains the
largest variation in the data, followed by PC2, PC3, etc. Multiple classes can be viewed on the scores
plot, in two or three dimensions, and so group separation can be observed, e.g., over time. The loadings
plot provides an indication of which metabolite features are responsible for any observed separation,
e.g., between classes, and can be mapped onto the scores plot if desired, in what is known as a bi-plot.
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Figure 4. Simplified overview of PCA and OPLS-DA showing (A) good separation on PCA and
OPLS-DA scores plots. High R2 and Q2 values indicate good model robustness and predictive
capability. Permutation test indicates a valid model. (B) No separation on the PCA scores plot of PC1
vs. PC2, but separation is still achieved using OPLS-DA. In this instance, the model could be overfitted
and unreliable. It is advisable to check for separation in other components, e.g, PC2 vs. PC3, as well
as to assess R2 and Q2 and perform permutation tests. CV-ANOVA can also be used to assess model
validity (not shown).

2.5.3. Supervised Approaches

Once separation has been assessed, supervised analyses can be performed, such as partial least
squares discriminant analysis (PLS-DA) and its orthogonal counterpart, OPLS-DA. These approaches
incorporate class information and so find a way to achieve the maximal separation between the
classes of interest. In the scores plots, the x-axis shows the variation between the groups, while the
y-axis shows variation within the groups. These methods can suffer from the risk of over-fitting
the data—they can produce class separation even with random data—and must be interpreted with
caution (Figure 4) [100]. This can have detrimental downstream impacts on biomarker discovery and
validation as results may not be reliable or reproducible. R2 and Q2 values can be used to assess the
model robustness and predictive power; these values will be low—particularly the Q2—in an overfitted
model. a low Q2 indicates that new data would not be predicted accurately in the model. Further,
machine learning-based model validation approaches, such as CV-ANOVA (based on ANOVA of
the cross-validated residuals), can assess model validity [101]. Permutation tests can also be used to
assess the significance of a classification. The class assignment is permuted repeatedly, with a model
between the data and the permuted class-assignment built for each permutation. These models are
then compared with the original multivariate model [102]. Variable Importance for the Projection
(VIP) scores can be used to identify the metabolite features contributing most to any class separation;
VIP scores > 1 are suggested to be important, whilst those < 1 are suggested to be unimportant for
the model. The range of VIP scores will vary with each dataset and, in some studies, there may be
hundreds of metabolite features with a VIP score around 1, meaning that the cut-off applied is much
higher. OPLS-DA S plots can also be used to identify discriminatory metabolite features warranting
further investigation.

2.5.4. Univariate Methods

Even though multivariate analysis tools can be useful for exploring metabolomics data and guiding
researchers towards potential discriminatory biomarkers, there are several pitfalls to these approaches.

13



Metabolites 2019, 9, 308

As discussed above, supervised models suffer from the risk of overfitting. Datasets containing a large
amount of sparse data (in terms of the number of input variables) or missing data (which can occur
with some pre-processing tools) may compromise model performance [103]. To this end, features
which have been proposed as discriminatory from multivariate analyses can be further validated using
appropriate univariate statistics [81]. However, univariate tools are also not without their challenges,
and it is easy to inadvertently apply the wrong statistical test to a dataset. It is important to assess
the data at the start to ensure the correct test is being performed, e.g., whether to use a parametric or
non-parametric test. a rule of thumb is that if the data are normally distributed, then a parametric
test, such as a t-test, can be used. Normality can be tested using, e.g., the Shapiro–Wilk test, which is
good when the sample size is < 50. Note that it is not possible to assess normality of the distribution if
the sample size is small, and some tests do not cope well with small sample sizes. Parametric tests
are considered to be more powerful than non-parametric tests, with less risk of a false negative (i.e.,
non-significant) result than with a non-parametric test. However, when dealing with populations that
are non-normally distributed, with unequal variances and/or unequal small sample sizes—all possible
in untargeted metabolomics—often a non-parametric test can perform better [81]. an additional
complication is that univariate tests applied separately to numerous variables will overlook correlations
within metabolite features, which may be important in elucidating related metabolites and interpreting
biological pathways.

2.5.5. Multiple Comparison Testing

In untargeted metabolomics studies, it is likely that the number of metabolite features (variables)
is greater than the number of samples analyzed [104,105]. If univariate tests were performed on
each of these variables, the false discovery rate (the chance of significance being found) is high.
These are known as Type I errors (false positives) and must be addressed if valid metabolite markers
and meaningful biological conclusions are to be found. To combat this issue, multiple comparison
testing can be performed. Commonly used approaches for false discovery rate correction (FDR) are
the Bonferroni correction (a conservative method) or the less conservative Benjamini–Hochberg or
Benjamini–Yukatelli corrections. These will adjust the p-value cut-off, meaning that fewer variables
will reach significance and, therefore, there will be fewer false positive results. Using a combination of
multivariate and univariate testing, a potential biomarker should have a VIP > 1 and a p-value < 0.05
(or the corrected value after FDR—false discovery rate correction) [106].

2.6. Metabolite Identification: From Spectral Database Matching to Computational Approaches for Unknown
Metabolite Annotation

Following feature filtering using QC-based estimates (see Table 2) and statistical criteria to
extract the metabolite features of interest, the next challenge constitutes assigning the identity to these
features and placing them in a biochemically relevant context for data interpretation. As specified
in Section 3, LC-MS is not only the most versatile and comprehensive methodology with respect
to metabolome and lipidome coverage, but also provides important information for metabolite
structure elucidation, including RT, accurate mass, isotope distribution, and MS/MS fragmentation
pattern, in addition to IMS (and/or CCS value). Despite this, the majority of metabolite features in
untargeted metabolomic datasets (approximately 80%, so-called “dark matter”) remain un-annotated
or misidentified [75,107,108], hiding many unknown metabolites, but also high levels of chemical
and informatic noise (artefacts of peak detection algorithms) and redundancy (due to defects in
feature annotation and grouping algorithms). We distinguish two main bottlenecks, one associated
with known metabolite misidentification and another one related to unknown or novel metabolite
identification (see Table 3).
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Table 3. Major problems and solutions associated with metabolite identification in metabolomic
datasets. The references for different tools are cited in the main text.

Bottleneck Cause Solutions

1-3

Known metabolite (mis)identification

Isomers or metabolites with
identical mass (and molecular

formula) but different structures

• Chromatographic resolution (i.e.,
separation by RT, chiral columns
for stereoisomers)

• Ion mobility MS (IMS and/or
cross-collision section—CCS values)

• MS/MS fragmentation pattern matching
against experimentally acquired or in
silico generated MS/MS databases (i.e.,
METLIN, mzCloud, NIST, MassBank,
LipidBlast, LipidMaps, GNPS)

Isobars or compounds of similar
molecular weight produce

interferences

• MS resolution (HRMS using TOF or
Orbitrap mass analyzer)

• Chromatographic resolution (i.e.,
separation by RT)

• MS/MS fragmentation pattern matching as
specified above

• Ion mobility MS (IMS and/or
cross-collision section—CCS values)

In-source fragments—due to
production of ions (by loss of H2O,
CO2, H3PO4) that have the same

mass and/or structure as the
molecular ions of other

metabolites

• Chromatographic resolution (i.e.,
separation by RT)

• MS source with reduced
in-source fragmentation

Unknown metabolite identification

“Known unknowns”—metabolites
listed in molecular structure

databases but without recorded
reference MS/MS spectra in

spectral libraries

• In silico fragmentation tools and derived
databases (e.g., CSI:FingerID coupled to
Sirius, MetFrag, iMet, MS2LDA,
MS-FINDER, etc.) and similarity matching
(of experimentally acquired and in silico
generated MS/MS) and network analysis
(e.g., GNPS)

• RT prediction models (limited to specific
columns and LC conditions)

• CCS prediction models and databases
(e.g., MetCCS, LipidCCS)

• Multiple-stage tandem MS (MSn)

“Unknown unknowns”—new
metabolites not listed in any

database

• Metabolite isolation and NMR analysis for
structural elucidation

• LC-MS/MS analysis (RT, accurate mass,
MS/MS) combined with above indicated
tools for “known unknowns”

• Multiple-stage tandem MS (MSn)

Metabolite identification starts, in general, by database searching using accurate mass (m/z)
measurements (up to 4 decimal places) and prediction of elemental composition (i.e., molecular
formula). Accurate mass searches yield many putative hits, including potentially false matches due to
the presence of isomers, interferences between the metabolites of similar molecular weight (i.e., isobars),
and mis-annotation of in-source fragments and even certain adducts (see Table 3) [26]. In most cases,
the MS/MS fragmentation pattern, defined by the product ion masses and their relative abundances,
will provide sufficiently specific data to confirm the metabolite identity with a high level of confidence.
The exceptions are structural and/or stereoisomers (i.e., L- and D-serine, for example, or complex lipids
differing only in positions of unsaturations), which can be distinguished only with the additional
chromatographic resolution (RT, chiral columns) and/or IMS (and CCS values) data.

15



Metabolites 2019, 9, 308

MS/MS spectra acquired from samples will be matched against spectral databases containing
experimentally acquired spectra on pure standards (e.g., METLIN [67,109], NIST, mzCloud) or any
annotated structures (community databases such as MassBank [68], including European MassBank,
MassBank of North America, and GNPS based on crowd sourcing [69]). The content of these databases
has been extensively reviewed in several recent publications [75,110]. MS/MS spectra matching is
usually followed by the similarity score calculations for matches (e.g., METLIN online database) and
ranking of candidates based on the similarity to the reference spectra [47,111]. While five different
levels of reporting confidence in metabolite identification have been established by the Metabolomics
Standards Initiative [75], absolute identity can only be made when an authentic commercially available
standard has been compared to the analyte of interest and found to match all applicable measurements
(accurate m/z, MS/MS, RT, etc.). When standards are not available, the unknown metabolite of interest
needs to be isolated from the biological matrix (e.g., plant, fungi, sponge extract) using LC, and the
combined LC-HRMS and NMR analysis will allow for structural elucidation. The novel metabolite
identity needs to be confirmed by custom synthesis of standard and its analysis under the same
analytical conditions.

To facilitate and automatize metabolite identification, significant efforts were made to further
expand the experimentally-derived spectral libraries by MS/MS data acquisition (on different
instruments, collision energies, and ionization modes) and sharing. However, compared to the size and
diversity of endogenous and exogenous metabolome, this conventional method of metabolite annotation
by matching the experimentally acquired MS/MS spectra to standard spectral databases remains limited
by the size of databases and the lack of commercially available standards for many cellular metabolites.
To address this problem, recently, the computational metabolomics community has grown to develop
and improve computational approaches for known and unknown metabolite identification (Table 3).
These computational metabolomic approaches employ two main strategies: (1) In silico prediction
of fragmentation MS/MS spectra from chemical structures of known compounds, and (2) in silico
prediction of molecular substructures (i.e., molecular fingerprints or feature vectors that encode the
structure of a molecule) and general chemical properties of the unknowns from experimentally acquired
MS/MS spectra [112]. With the in silico fragmentation methods, the experimentally acquired spectra of
an unknown metabolite (for which reference spectra are not available) can be matched against in silico
theoretically predicted spectra simulated on known candidate structures retrieved from databases
(Human Metabolome Database (HMDB), PubChem, KEGG, etc.) [113]. In silico fragmentation from
chemical structures of known compounds can be computed by rule- (e.g., MS-FINDER, LipidBlast),
combinatorial- (e.g., MetFrag), and machine learning-based methods (e.g., CFM-ID) [75]. Rule-based
generation of specific fragmentation patterns and heuristic modeling of ion abundances is efficient for
classes that have consistent and predicative fragmentation patterns, such as lipids (e.g., LipidBlast).

The in silico prediction of molecular substructures are machine learning-based methods that
can translate the MS/MS spectra to metabolite structure information. To learn the mapping of
an MS/MS spectrum to a molecule structure, these methods need to be trained on spectral databases of
known metabolites. In general, machine learning methods can be divided in two groups, supervised
learning for substructure prediction (e.g., CSI:FingerID) and unsupervised learning for substructure
annotation and grouping of metabolites based on shared, biochemically relevant substructures (e.g.,
MS2LDA) [112,114–116]. The main objective of supervised methods, such as CSI:FingerID integrated
in Sirius tool, is to determine, using a database of molecular structures, the structure that best fits
the experimental data. In Sirius 4, the assessment of molecular structures from MS/MS data can be
performed automatically for the entire LC-MS dataset (rather than per spectrum) and MS data-driven
annotations can be obtained for all detected features [73]. These machine learning approaches were
essential for the recent progress in metabolite identification and will pave the future of metabolite
structural identification.

Data sharing will also be key to advance these computational approaches. There are two main
repositories that can be used for metabolomics data sharing, the Metabolomics Workbench (US, [117])
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and MetaboLights (EU, [118]). There is space for the improvement of data upload, which demands
fastidious data preparation due to considerable requirements on sample and method related metadata.

2.7. Metabolite Features and/or Metabolites to Pathways and Metabolic Networks

2.7.1. Metabolic Networking for Metabolite Identification

While pathway and network analysis are mainly used to facilitate metabolite data visualization
and interpretation, the biochemical knowledge about chemical reactions (i.e., metabolite conversions
via enzymes) and metabolic pathways integrated within a metabolic network (to sustain cellular
function) can also be used to facilitate metabolite identification. As an alternative to the above-described
tools relying only on the spectral data and information related to molecular (chemical) structure,
several approaches, such as Mummichog [119], PIUMet [120], and MetDNA [120], based on the
“features to pathways” principle, have been developed to facilitate and speed up metabolite identification
using reference metabolic network models. This biochemically relevant information can guide with
respect to the metabolites that the organism of interest is able to produce and thus increase the
confidence of metabolite annotations (see Table 3) [121]. Both Mummichog and PIUMet rely on the
assumptions that locally enriched metabolite matches within the metabolic network are true, while
false matches will distribute randomly. Both tools will infer metabolically active pathways without
requiring metabolite identification. Finally, metabolite identities will be predicted and chemical
information on annotated isotopes and adducts will be used to evaluate the prediction confidence level.
Metabolite annotation and Dysregulated Network Analysis, or MetDNA, uses the metabolic network
knowledge for the annotation of known metabolites (from highly conserved primary metabolism)
detected in untargeted experiments. Annotation starts from the set of identified “seed” metabolites by
predicting their reaction-paired neighbor metabolites on the assumption of their structural similarities.
Through the reiterated application of this recursive algorithm, the number of annotated metabolites will
be progressively propagated and significantly enhanced (to up to 2000 metabolites from one untargeted
experiment) [60]. Using a similar principle, the GNPS or Global Natural Products Social Molecular
Networking will construct the molecular similarity network based on the similarity of MS/MS spectra
(two metabolites share similar MS/MS data due to their structural similarity) with the aim to annotate
the unknown natural products using already annotated metabolites (by the community) within the
same sub-network. While these networking approaches are fast and valuable for the reduction of
metabolomic datasets, however, annotation remains ambiguous and should be validated through more
specific targeted MS/MS analysis.

2.7.2. Metabolic Networking to Visualize and Interpret Metabolite Changes

In general, changes at the metabolite level cannot be looked at independently outside of the
context (of their interactions with other metabolites, proteins, and genes), and meaningful changes
can be missed by relying only on the arbitrary significance threshold (or p-value). It is thus of the
utmost importance to interpret identified alterations at the metabolite level within the metabolic
networks, especially when it comes to the discovery and understanding of subtle (fold change < 2) but
coordinated and physiologically relevant changes, often the case in biomedical and human population
studies. Metabolic networks, derived from genome-scale metabolic network models (GSMNM) are the
most accurate ways to describe and represent metabolism, as compared to discrete pathways [122].
Multiple metabolic pathways share metabolites, and the synthesis of one metabolite can require
the integrated cooperation of more than one pathway. The reconstructed GSMNM from annotated
gene–protein reaction (GPR) associations can define the metabolic capacity of a model organism(s),
in any specified condition. While the primary metabolic pathways are highly conserved across
model organisms, they can be differentially regulated, in an organism-specific manner, as a function
of genetic effects (i.e., mutations in different genotypes) and environmental exposures. Efforts are
needed for systematic characterization of the model organism metabolomes (across different conditions,
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using quantitative information), and to develop compartmentalized models for different organs and
host–microbiome metabolic interactions [123–126].

To interpret data from metabolomics experiments and gather biologically meaningful information,
one would ideally perform two types of analysis: (1) Mapping and visualization of metabolite changes
in the graphical representation of cell metabolism, i.e., metabolic network; and (2) statistical analysis
to determine the overrepresented pathways, known as metabolite set enrichment analysis (MSEA).
Most of the open access tools designed for pathway and network analysis provide both of these
functionalities, visualization to assess if metabolites are involved in the same pathways and how
they are connected within a metabolic network and enrichment analysis to highlight the pathways
associated with the examined phenotype. The open access software that provide these functionalities in
the interactive fashion are listed in Table 4. For the computational community, the recently assembled
MetaRbolomics toolbox provides an extensive resume of R packages that can be used for data processing,
metabolite annotation, and biochemical network and pathway analysis [127].

Table 4. List of selected open access web servers for interactive pathway visualization, metabolite
mapping, and visualization in the context of pathways and metabolic networks, and metabolite set
enrichment and overrepresentation analysis (MSEA, ORA).

Tool Functionalities

1-2 MeTexplore web server [128]

• Metabolite mapping on metabolic pathways and networks
• Visualizing networks
• Mining and editing networks based on data and network

structure (identify sub-networks connecting
identified metabolites)

• Pathway enrichment analysis
• Mapping polyomics data
• Computing fluxes

Pathvisio [129]

• Metabolite mapping on the pathways
• Pathway editing, drawing, and analysis
• Overrepresentation analysis

iPath—Interactive Pathways Explorer [130]
• Metabolite mapping on the pathways
• Pathway editing and analysis

MetaboAnalyst* web server [91]

• Metabolite ID conversion
• Enrichment analysis (ORA, MSEA)
• Pathway topology analysis
• Joint pathway analysis (genes and metabolites)
• MS peaks to pathways

PathBank [131]

• Interactive database for visualizing metabolic pathways in
different model organisms

• Metabolite (as well as gene, protein, drug) search and mapping
• Detailed description and references are provided for each

pathway from energy metabolism, associated with metabolic
diseases, drug-action pathways, drug metabolism pathways,
signaling pathways

LION/web [132]

• Web platform for lipid ontology enrichment analysis
• Lipid classification by chemical data (LIPIDMAPS), biophysical

data, lipid functions and organelle associations

XCMS online* [133]

• Activity network analysis i.e., “MS peaks to metabolic network”
(integrated Mummichog tool)

• Integrated pathway analysis (using genome and proteome data,
in addition to metabolome data)

* Features relevant to pathway and network analysis have been listed here, MetaboAnalyst and XCMS online servers
provide plenty of other functionalities related to data processing and analysis.
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In order to map the identified metabolite changes in the biochemically relevant context, one
first needs to convert the metabolite identities into the relevant metabolite identifiers (e.g., KEGG,
HMDB, Recon, etc.) that can be used for mapping to metabolic networks derived from genome-scale
models (as a product of genome sequencing, annotation, and, finally, metabolic model reconstruction).
The conversion to different metabolite identifiers can be executed in batches using a chemical translation
service, provided by UC Davis [134] or MetaboAnalyst [91]. Users should consider that a portion of
identifiers may be missing and/or incorrectly matched (approximately 10%), thus manual curation
may be necessary prior to the upload to pathway or network analysis tools for further analysis and
visualization. Metabolite mapping would ideally be based on InChIs or InChIKeys, requiring that
these identifiers are specified in both databases and networks [126]. There is an important challenge
here regarding lipids, due to the ambiguous identification given by sum composition (i.e., PC 34:2)
that can correspond to many similar lipid species having different fatty acid composition (16:1/18:1,
16:0/18:2, etc.) [132].

Visualization of metabolite changes in the context of metabolic networks brings together chemical
reactions (of which metabolites are the products or substrates), and the genes coding for the enzymes
making these reactions possible. MetExplore is among the most comprehensive tools that allows
for the construction of tailored networks and collaborative curation and annotation of metabolic
models, in addition to the interactive network visualization, from the entire network down to
detailed sub-networks (build from selected network elements—a pathway or a set of genes) [128,135].
In addition to visual inspection, flux consistency is checked for the metabolic model, i.e., network,
validation. MetExplore integrates a large panel of metabolic models (called “biosources” in MetExplore)
depending on the model organism, and each metabolic network can be exported as an SBML or
Excel file. Mapping of metabolites can be achieved using their network identifiers (KEGG, Recon,
etc.) and, further on, smart filters can be applied to select the reactions involved in a combination
of pathways (e.g., enriched pathways) of interest to be visualized—through the MetExploreViz web
module (Figure 5). The MSEA is integrated and performed using hypergeometric tests (corrected with
Bonferroni or Benjamini–Hochberg methods). Specific metabolites and pathways can be highlighted,
edited, and exported, and the shortest paths between the metabolites of interest can be automatically
extracted to reduce visual complexity, thus allowing for data mining.

Figure 5. Metabolite mapping on the metabolic networks—an overview of MetExplore network Viz
functionalities. The projected network has been created from the list of chemical reactions (in the cart
on the right side of the figure)—derived from the list of identified metabolites whose levels varied
significantly (as a result of brain cell profiling). The extent of each pathway has been encircled and
colored for visualization. Alanine, aspartate and glutamate metabolism, and arginine biosynthesis
have been highlighted as enriched (using integrated ORA).
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As mentioned above, in addition to metabolic (sub)network visualization, metabolite set
enrichment analysis (MSEA) as a metabolomic counterpart of the gene set enrichment analysis (GSEA)
and/or over-representation analysis (ORA) are used to investigate the metabolic pathways whose
activity differs among analyzed conditions (e.g., CTRL vs. disease). MSEA takes into consideration
the quantitative measure associated with each metabolite (i.e., abundance or concentration, and fold
change) [121]. MSEA firstly assigns metabolites to pre-defined groups of functionally related metabolites
(or metabolite sets) based on references databases (e.g., KEGG, HMDB; Table 5). The metabolite sets
can be defined as biochemical or signaling pathways (i.e., metabolites involved in the same biological
process), pathways associated with a metabolic disease (i.e., metabolites that vary significantly under
the same pathological conditions, suggested by HMDB, [136,137]), pathways active in specific organs,
tissues, or organelles (i.e., metabolites present in the same location, suggested by HMDB, [137]),
etc. MSEA then applies Globaltest [138] to detect the subtle but consistent and coordinated changes
(i.e., differences) among the group of metabolites (i.e., pathway) between two conditions, and thus
identifies the affected (or deregulated) biochemical pathway associated with the analyzed outcome or
phenotype [91,121]. The obtained p-value gives the probability that none of the matched compounds
in the group of metabolites is associated with the phenotype. a closely related approach to MSEA,
an over-representation analysis (ORA), is used to evaluate the probability that the particular set
of metabolites (e.g., biochemical pathway) is represented, within a defined list of metabolites of
interest, more than expected by random chance. For ORA, a user can provide only a list of metabolite
identifiers, corresponding to metabolites that vary significantly between two analyzed conditions.
Several probability tests, such as Fisher’s exact test, binomial probability, or hypergeometric distribution
test, can be applied, followed by the correction for multiple testing. Here, the reference metabolome
should comprise the metabolite sets that can be detected in the analytical conditions used, thus reflecting
the analytical method coverage. If the entire library of metabolite sets is used for ORA by default,
the observed enrichment may be a consequence of applied analytical platform bias instead of being
biologically relevant. ORA and/or MSEA are integrated in many different pathway and/or metabolic
network analysis software, such as MetaboAnalyst, MetExplore, Pathvisio, etc. Finally, MetaboAnalyst
allows also for the combined MSEA and pathway topology analysis that will display pathway impact
values based on centrality measure—local quantitative measure of the position of a node (or a «key»
position) relative to the other nodes in the network.

Although the tools for metabolic network analysis are being steadily improved by the
computational community, there are still a number of challenges, related to metabolome coverage bias
of the experiment (i.e., analytical limitations), scarcity of well-annotated metabolomics data (number of
unknowns or non-annotated metabolite(s) (features) remains high), and, finally, the lack of knowledge
about network regulation. It is also important to consider that the metabolome cannot be computed
directly from the genome, and that many metabolites still need to be integrated into our current
metabolic networks, thus making use of the wealth of data generated in metabolomic experiments.
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Table 5. List of open access knowledge databases (used in the above listed web servers). Some databases
have been extended into pathway browsers for interactive metabolite mapping. Although some
databases are gene-centric, all of them are searchable for metabolites and represent a great source of
biochemical knowledge for metabolite data interpretation.

Database Functionalities

1-2
KEGG database and pathway browser [139]

• Metabolite mapping on metabolic pathways (with
annotation of the direction of changes)

Reactome database and pathway browser
[140,141]

• Visualization of known biological processes and
pathways from intermediary metabolism, signaling,
transcriptional regulation, apoptosis, disease

• Metabolite mapping and pathway and network
visualization and analysis

• Pathway enrichment analysis

Cyc databases (EcoCyc, HumanCyc, MetaCyc,
BioCyc) [142]

• Curated database of experimentally elucidated
metabolic pathways from many different
model organisms

• Metabolite, protein, reaction, and pathway search
• Comparison of specific pathway and metabolic

networks of different organisms

Recon database [143,144] Virtual metabolic
human

• Largest database of human and gut
microbiome metabolism

• Searchable by metabolic reaction, metabolites and genes,
by microorganism species, by disease, and by diet

• Organelle maps

WikiPathways database [145]
• Pathway database maintained by scientific community
• Pathway browsing and editing

2.8. From Untargeted to Targeted Assays

Global or untargeted metabolomics provides the opportunity for biomarker discovery and
hypothesis generation. Potentially, it can enable the elucidation of the involvement of previously
unknown or unsuspected pathways in disease states or in response to therapy. Inherently,
this untargeted approach does not bias for or against specific analyte classes and provides a wide view
of the metabolome. Sample preparation and analytical methods are somewhat generic and are usually
optimized for sample type. However, with this approach comes the bottleneck of metabolite feature
annotation and metabolite identification, as described in this review. Therefore, high-coverage targeted
assays are becoming more prominent in the field of metabolomics. With targeted assays, tandem or
triple quadrupole mass spectrometers are employed, with lower mass resolution than the Orbitrap
or Q-ToF mass spectrometers used for untargeted analyses. However, these have the advantages of
lower cost, higher sensitivity, linearity, and specificity. By employing isotopically labelled standards
of the analytes of interest, which are spiked into each study sample, absolute quantification can be
achieved. Furthermore, as the analytes being measured are known upfront, and the chromatographic
and mass spectrometric methods are optimized at the start, run times can be much shorter than for
untargeted analyses. There are guidelines which can be followed for ensuring accuracy and precision
of the assay, such as those laid out by the FDA [146]. Software exist for the analysis of targeted data,
either vendor provided or freeware such as Skyline [147]. It is likely that as this field of research
advances, more targeted assays will be incorporated into the metabolomics workflow.
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3. Conclusions

Untargeted metabolomics is a powerful approach to understanding changes due to disease,
drug treatment, or environmental factors in a multitude of human, animal, and cell models. However,
as metabolism is complex, so are the data produced in these studies. It is therefore crucial to be
vigilant at every stage of the experiment. If the study has not been designed correctly, it will be
hard to elucidate biologically relevant information, as confounding factors may overwhelm any
biological changes. To maximize the metabolome coverage, it is necessary to acquire data in several
chromatographic and ionization modes, ideally HILIC for polar metabolites and RPLC for complex
lipids (using non-polar solvents for elution). MS/MS data—of high quality and volume—can be
acquired in DDA mode using iterative injections with PC-driven exclusion and/or in DIA mode with
sequential mass windows (e.g., SWATH, SONAR). Furthermore, it is of the utmost importance to
pre-process the data correctly, as there will inherently be redundancy in the data. As metabolite
identification remains the bottleneck in metabolomics studies, so stringent approaches are needed
to ensure that models have been validated and only the strongest candidates are pursued through
the identification pipeline. The comprehensiveness of experimentally generated and in silico-derived
spectral databases has grown significantly, and their integration into the data processing workflow,
together with the improvement of computational approaches (for in silico prediction of MS/MS data),
are paving the way towards automated MS/MS data matching to facilitate metabolite annotation.
Finally, the advancements in metabolic network analysis tools are enabling more mechanistic insights,
beyond the biomarker discovery. Here, metabolite data provide crucial complementary information on
“what has indeed happened”, as the phenotype readout at the molecular level, thus representing the
“missing piece” of puzzle towards multi-scale omics data integration for more accurate interpretation
of biological processes.
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Abstract: Global metabolomics based on high-resolution liquid chromatography mass spectrometry
(LC-MS) has been increasingly employed in recent large-scale multi-omics studies. Processing and
interpretation of these complex metabolomics datasets have become a key challenge in current
computational metabolomics. Here, we introduce MetaboAnalystR 2.0 for comprehensive LC-MS
data processing, statistical analysis, and functional interpretation. Compared to the previous version,
this new release seamlessly integrates XCMS and CAMERA to support raw spectral processing and
peak annotation, and also features high-performance implementations of mummichog and GSEA
approaches for predictions of pathway activities. The application and utility of the MetaboAnalystR
2.0 workflow were demonstrated using a synthetic benchmark dataset and a clinical dataset.
In summary, MetaboAnalystR 2.0 offers a unified and flexible workflow that enables end-to-end
analysis of LC-MS metabolomics data within the open-source R environment.

Keywords: global metabolomics; LC-MS; spectra processing; pathway analysis; enrichment analysis

1. Introduction

Metabolomics is the comprehensive study of all small molecule metabolites (<1500 Da) detected
within a biological system. An individual’s metabolic profile represents the functional product of
interactions among genetics, lifestyle, environment, diet, and native microbiota, which closely reflects
his or her health status [1,2]. The metabolome thus serves as the link between genotype and phenotype,
and metabolomics will play a critical role in the development and implementation of precision
medicine [3,4].

There are two general approaches in conducting metabolomics. Targeted metabolomics aim to study
a predefined set of metabolites, requiring familiarity with the system [3]. Untargeted metabolomics,
also known as global metabolomics, aim to measure the global set of metabolites within a sample without
a prior knowledge of the system. A typical metabolomics analysis workflow involves three main steps:
raw data processing, statistical analysis, and functional interpretation (Figure 1). Global metabolomics
requires more sensitive analytics platforms to achieve comprehensive measurement. High-resolution
liquid chromatography-mass spectrometry (LC-MS) systems is currently the main workhorse for global
metabolomics. The platform often generates thousands of signals, including true biological signals from
metabolites, their adducts, fragments, and isotopes, as well as noise signals from contaminants and
artifacts [5]. Computational tools able to significantly reduce noise in MS spectra are crucial for more
meaningful downstream analyses [6].

There are several powerful computational workflows including commercial tools such as Mass
Profiler (Agilent Technologies) and Compound Discoverer (Thermo Scientific), cloud-based software
such as XCMS Online [7] and Workflow4Metabolomics [8], desktop software such as MZmine2 [9],
MS-DIAL [10], and Open-MS [11], and finally R packages such as MAIT [12] and metaX [13]. Most of
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these software focus on addressing one of the two main tasks: spectral processing or statistical analysis.
Consequently, users must often learn several tools to meet their data analysis needs. Due to compatibility
issues, users often have to write scripts to convert outputs from one tool in order to use another tool.

Figure 1. A typical metabolomics data analysis workflow including raw data processing, statistical
analysis and functional interpretation.

Tools for functional interpretation of global metabolomics data is in general lacking or poorly
addressed [14,15]. A prerequisite for metabolomics data interpretation is metabolite identification,
thereby permitting the contextualization of annotated peaks in metabolic pathways and their
integration with other omics data. However, even with high mass accuracy afforded by the current
high-resolution MS platforms, it is often impossible to uniquely identify a given peak based on its
mass alone [16]. Researchers usually need to manually search compound databases and then perform
further experimental validations such as tandem MS. Novel bioinformatics tools are urgently needed
to enable researchers to gain biological insights with a minimum amount of manual efforts. To get
around this bottleneck, a key concept is to shift the unit of analysis from individual compounds
to individual pathways or a group of functionally related compounds (i.e., metabolite sets [17]).
The general assumption is that the collective behavior of a group is more robust against a certain
degree of random errors of individuals. The mummichog algorithm is the first implementation of this
concept to infer pathway activities from a ranked MS peaks [18]. The original algorithm implements an
over-representation analysis (ORA) method to evaluate pathway-level enrichment based on significant
peaks. An alternative approach is the Gene Set Enrichment Analysis (GSEA) method, which is widely
used to test enriched functions from ranked gene lists [19]. Unlike ORA, GSEA considers the overall
ranks of features without using a significance cutoff. It can detect subtle and consistent changes which
could be missed from using ORA methods. Despite its widespread applications in gene expression
profiling, it has not yet been applied to global metabolomics.

MetaboAnalyst is one of the most widely used tools for statistical and functional analysis of
metabolomics data [20–23]. It was initially designed for targeted metabolomics, and subsequent
releases gradually introduced many statistical methods applicable to both targeted and untargeted
metabolomics. Due to its web-based implementation, there is very limited support for raw spectra
processing and peak annotation. The most recent update (version 4.0) was released with a companion
R package, MetaboAnalystR (v1.0), to help tackle issues associated with workflow customization,
reproducibility, and handling large datasets [24].
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Here, we present MetaboAnalystR (v2.0) to address the two important gaps left in its previous
version: (1) raw spectral processing - we have implemented comprehensive support for raw LC-MS
spectral data processing including peak picking, peak alignment, and peak annotations; and (2)
functional interpretation directly from m/z peaks - in addition to an efficient implementation of the
mummichog algorithm [18], we have added a new method to support pathway activity prediction
based on the well-established GSEA algorithm [19]. We showcase the performance of these new
functions through two case studies.

2. Results

MetaboAnalystR 2.0 consists of a series of flexible R functions that can take a variety of
user-supplied data and parameters to perform end-to-end metabolomics data analysis. The source code
is freely available at the GitHub repository (https://github.com/xia-lab/MetaboAnalystR). Detailed
instructions, tutorials, troubleshooting tips, example datasets, and analyses discussed in this paper are
also available in this repository.

To demonstrate the utility of MetaboAnalystR 2.0 workflow, we present the results from two case
studies: (i) a synthetic benchmark dataset to evaluate the raw MS spectra processing functions, with a
focus on its peak detection and quantification performance; and (ii) a clinical pediatric inflammatory
bowel disease (IBD) dataset to showcase the overall workflow, with a focus on its capacity to provide
biological insights. All R scripts to perform the entire metabolomics data analysis pipeline are available
from the MetaboAnalystR GitHub repository under the section “Case Studies”. The accompanying
vignette (“The MetaboAnalystR 2.0 Workflow”) provides a step-by-step tutorial to demonstrate how
to use MetaboAnalystR 2.0 to perform an end-to-end metabolomics data analysis on a subset of 12 of
the 48 clinical IBD samples. This tutorial was created on a Dell XPS 9570 laptop running Ubuntu 16.04
with 16 GB of memory. The total running time of the tutorial was 14 min, averaging ~1.25 min per
sample, using 6 cores in parallel and 10.5 GB of memory.

2.1. Benchmark Case Study

We first demonstrate the accuracy of the raw data preprocessing module using a benchmark
dataset comprised of a mixture of 1100 known compounds ranging in size from 100 to 1300 Da [25].
The original study used a targeted analysis to obtain their benchmark feature list, which we used as the
ground truth to evaluate our workflow. As shown in Table 1, the original study detected 35,215 peaks
using XCMS Online, with 820 classified as true features. Using the same data preprocessing parameters
as published, MetaboAnalystR 2.0 detected 21,013 peaks from the benchmark data. Among them,
732 matched the true features based on m/z and retention time (10 ppm and 0.3 min RT tolerance).
Next, we compared the number of accurately quantified true features using MetaboAnalystR 2.0 to
those from the original manuscript using XCMS Online (Table 1). Features were accurately quantified
if their fold changes had a <20% relative error as compared to the benchmark data. MetaboAnalystR
2.0 accurately quantified 632 features and identified 45 truly discriminating features.

Table 1. Comparison of peak identification and quantification accuracies using the benchmark dataset
between MetaboAnalystR 2.0 and the original manuscript using XCMS Online.

Methods
Features
Detected

True Features

Total Accurately Quantified Discriminating

Li et al. 2018
[25]

Targeted - 836 836 -

Untargeted
(XCMS Online) 35215 820 731 45

MetaboAnalystR
2.0 Untargeted 21013 732 632 45
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2.2. IBD Case Study

The 48 fecal samples were obtained from 24 pediatric Crohn’s Disease (CD) patients and
24 pediatric healthy controls (Table S1). Our workflow detected 8187 features which were further
reduced to 6930 features after filtering out isotopes and features missing in >50% of samples.
After exclusion of low-variance features, a total of 4113 features were analyzed using the standard
MetaboAnalystR functions.

Mann–Whitney U test and fold change analysis detected 59 features that were significantly
different between CD and healthy controls. Differences between CD and healthy controls were
evaluated using PCA, PLS-DA, and OPLS-DA. The PCA showed an overlapping of clusters along the
first two components, with CD exhibiting a wider data distribution (Figure S1). This indicates an overall
similarity of the metabolic profiles between CD and healthy controls but larger heterogeneity within
CD patients. The PLS-DA score plot showed a clear separation between the two groups (Figure S2).
Ten-fold cross validation of two PLS-DA components gave an R2 of 0.912 and Q2 of 0.424 (Figure S3).
The OPLS-DA score plot shows a clear separation between CD and healthy controls (Figure 2) with an
R2Y of 0.979 and Q2 of 0.522, respectively. To further evaluate the model, we performed permutation
tests (n = 1000). The empirical p values were 0.026 for R2Y and <0.001 for Q2. Altogether, a clear
distinction between the metabolome of CD and healthy controls was observed.

Figure 2. The OPLS-DA score plot based on the stool metabolome of 24 pediatric Crohn’s disease
patients and 24 healthy children

To gain potential biological insights from the global metabolomics data, we applied both
mummichog and GSEA algorithms and integrated their results (Figure 3). Mummichog suggested
that differentially abundant features between CD and healthy patients were associated with
perturbations in bile acid biosynthesis and fatty acid activation, as well as vitamin E, fatty acid,
and vitamin D3 metabolism. The GSEA algorithm also identified alterations in bile acid biosynthesis.
Moreover, it identified differences in androgen and estrogen biosynthesis and metabolism, squalene
and cholesterol biosynthesis, biopterin metabolism, and butyrate metabolism. More details of the top
5 enriched pathways from both methods are given in Table 2.
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Figure 3. The scatter plot integrating GSEA (x-axis) and mummichog (y-axis) pathway analysis results.
The size and color of the circles correspond to their transformed combined p-values. The blue and pink
areas highlight significant pathways based on either GSEA (pink) or mummichog (blue).

Table 2. The top five enriched metabolic pathways identified using the mummichog algorithm
(PerformMummichog) and GSEA (PerformGSEA) in MetaboAnalystR 2.0.

Mummichog GSEA

Pathway
Name

Compound
Hits *

p-Value Pathway Name
Compound

Hits
p-Value

Bile acid
biosynthesis 29/52 0.00282 Bile acid biosynthesis 52 0.001761

Vitamin E
metabolism 20/33 0.00356

Androgen and
estrogen biosynthesis

and metabolism
10 0.01465

Fatty acid
metabolism 9/11 0.00268

Squalene and
cholesterol

biosynthesis
7 0.02214

Vitamin D3
metabolism 8/10 0.00616 Biopterin

metabolism 14 0.07806

Fatty acid
activation 10/15 0.01620 Butyrate metabolism 11 0.08318

* The mummichog compound hits represent the number of significant compounds divided by the total number of
compound hits per pathway.

Interestingly, the GSEA algorithm identified Butyrate metabolism as a significantly enriched
pathway, whereas the mummichog algorithm did not. Further inspection (Figure S4) indicated that
the mummichog algorithm only utilized the three significant m/z features to calculate the enrichment
score; while GSEA utilized all 20 compound hits (corresponding to 38 m/z features). Of these features,
145.04962 m/z was putatively annotated as (S)-2-Aceto-2-hydroxybutanoate (a deprotonated ion),
as was 205.07102 m/z (a formic acid adduct). Furthermore, 124.03917 m/z corresponded to 2-Butynoate.
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This demonstrates the ability of GSEA to pick up on subtle changes, such as perturbations in Butyrate
metabolism, and the utility of using both algorithms to gain biological insights.

We further examined the 17 features that overlap between the putatively annotated features in the
pathway analysis and the important features found in univariate statistical analysis. Notably, 431.3164 m/z
was putatively annotated as a deprotonated ion of 3-β, 7-α-dihydroxy-5-cholestenoate based on its
correspondence to the exact mass of C17336 from the KEGG database [26]. This compound is found in the
primary bile acid pathway. Additionally, the same mass also corresponds to a deprotonated ion of 23S,
25, 26-trihydroxyvitamin D3 (CE2202). Exact identification of this feature requires further experiments,
which is beyond the scope of this manuscript. In addition to this compound, five additional compounds
out of the 17 have been previously found as stool metabolites in the context of IBD [27]. Representative
EICs, boxplots, and corresponding information, such as m/z, retention time, and p-values, are highlighted
in the Supplemental Materials (Figure S5).

3. Discussion

In this paper, we have described the new functions introduced in MetaboAnalystR 2.0 to support
global metabolomics data analysis, covering raw LC-MS spectra processing to generation of biological
insights. These functions were showcased through two case studies.

For the benchmark dataset, despite applying the same parameters used by Li et al. [25], we were
unable to reproduce the identification and quantification performance obtained by the original authors
using XCMS Online. Their setup detected >14,000 (68%) more features compared to those obtained
using our pipeline. We tried several options, including the suggested parameters for a HPLC or UPLC
coupled with a Q Exactive HF mass spectrometer. We posit this incongruity arose because the authors
did not specify the exact peak width used, which is a critical parameter for peak picking. Additionally,
the data conversion step from .RAW to mzML used in our workflow may have resulted in a slight
difference in the input data when compared to the data conversion used in XCMS Online. It is also
important to note that our workflow integrated the latest version of XCMS (version 3.4.4), which has
introduced many new functionalities and updates in existing functions. Overall, our preprocessing
workflow performed well, executing peak picking, annotation, and filtering on the eight benchmark
samples in less than twenty minutes.

For the IBD case study, we observed a clear separation in the metabolomic profiles between
pediatric CD patients and healthy controls using either PLS-DA or OPLS-DA. Furthermore, our analysis
highlighted several metabolic pathways associated with CD, without performing accurate metabolite
identification. For instance, alterations in bile acid biosynthesis and short-chain fatty acids metabolism
are well known among IBD patients [28,29]. Combining the results of pathway analysis and statistical
analysis also putatively identified some promising metabolic features that could be used to as potential
biomarkers. In addition to bile acids, vitamin D has been shown to play an immunomodulatory
role in IBD pathogenesis [30]. Taken together, this use case demonstrates the ease of which
MetaboAnalystR 2.0 can be utilized to gain mechanistic insights and generate hypotheses for future
experimental validation.

MetaboAnalystR 2.0 has addressed the needs for high throughput raw spectra processing and
inferring pathway dysregulation directly from high-resolution MS1 data. A future direction of
our workflow includes the integration of MS2 data to support targeted annotations for important
peaks assigned to pathways of interest. The function will be developed in coordination with the
MetaboAnalyst web server to provide online visual analytics support for molecular networking [31].

4. Conclusions

The previous version (v1.0) of MetaboAnalystR features comprehensive normalization and
statistical methods inherited from the MetaboAnalyst web server. The version 2.0 not only integrates
XCMS and CAMERA to support raw MS spectral processing and peak annotation, but also implements
mummichog and GSEA methods for prediction of pathway activities. The performance of this
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workflow was evaluated on a published benchmark dataset as well as a recent clinical study on IBD.
The MetaboAnalystR package is maintained in conjunction with the cloud-based MetaboAnalyst web
application and is under continuous development based on the community feedback. Our next focus
is on integration with MS2 data as well as development of a Galaxy-based platform for raw data
processing [32].

5. Materials and Methods

5.1. Spectral Processing

Three main wrapper functions have been implemented for metabolomics data processing based
on XCMS (version 3.4.4) and CAMERA (version 1.38.1) [33–35] including: (i) the ImportRawMSData
function for reading in raw data files, (ii) the PerformPeakProfiling function for peak picking and
alignment, and (iii) the PerformPeakAnnotation function for annotating isotopes and adducts in
processed m/z data. These functions are described below in further detail.

The ImportRawMSData function reads in raw MS data files and saves it as an OnDiskMSnExp
object. To avoid potential memory issues on a user’s desktop/laptop, the function will limit the
number of cores used to half of the available number of cores. The function outputs two plots: the
Total Ion Chromatogram (TIC), which provides an overview of the entire spectra, and the Base Peak
Chromatogram (BPC), which is a cleaner profile of the spectra based on the most abundant signals.
These plots are useful to inform the setting of parameters downstream. For users who wish to view a
peak of interest, an Extracted Ion Chromatogram (EIC) can be generated using the PlotEIC function.

The PerformPeakProfiling function is a wrapper of several XCMS R functions that performs peak
detection, alignment, and grouping in a single step. The resulting peaks are outputted as a XCMSnExp
object. The function also generates two diagnostic plots including a retention time adjustment map,
and a PCA plot showing the overall sample clustering prior to data cleaning and statistical analysis.
Users can specify several parameters such as the mass accuracy, peak width, and retention time range
using the SetPeakParam function to optimize the peak picking function. A detailed table of suggested
parameters for common LC-MS platforms is provided in Table S2.

The PerformPeakAnnotation function annotates isotope and adduct peaks using the CAMERA
package [35]. CAMERA matches m/z features to potential isotopes and adducts based on mass using
a dynamic rule set. It does not utilize any spectral databases to perform annotation. It outputs the
result as a CSV file (“annotated_peaklist.csv”) and saves the annotated peaks as an xsAnnotate object.
Finally, the peak list is formatted to the correct structure for MetaboAnalystR and filtered based upon
user’s specifications using the FormatPeakList function. This function permits the filtering of adducts
(i.e., removal of all adducts except for [M + H]+/[M − H]−) and filtering of isotopes (i.e., removal of all
isotopes except for monoisotopic peaks). The goal of filtering peaks is to remove degenerative signals
and to reduce the file size.

5.2. Prediction of Pathway Activities

Several metabolic databases are supported at the moment including KEGG [26], BioCyc [36], etc.
The main mummichog algorithm is available in the PerformMummichog function. Users need to specify
a pre-defined cutoff based on either t-statistics or fold changes. The PerformGSEA function contains the
GSEA implementation based on the high-performance fgsea R package [37].

5.3. Benchmark Case Studies

The benchmark data created by Li et al. 2018 [25] is comprised of two standard mixtures (A and B)
consisting of 1100 known compounds, with four replicates per mixture. The link to this raw dataset is
available in Table S3. For this manuscript, we selected the dataset that was generated from a Q Exactive
HF mass spectrometry (Thermo Fisher Scientific) in positive ion mode, coupled with a Dionex UltiMate
3000 HPLC equipped with a ZORBAX Eclipse Plus C18 column (Agilent Technologies). Parameters for
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our workflow were selected based on the default values provided for HPLC-Q Exactive Orbitrap data
on XCMS Online (mass error: 5 ppm and peak width: 10-60 s).

The second dataset consists of pediatric IBD stool samples obtained from the Integrative Human
Microbiome Project Consortium (iHMP) [38]. The original study included samples longitudinally
collected from IBD patients and non-IBD controls over 50 weeks. The link to this raw dataset is
provided in Table S3. For our evaluation purpose, we collected samples that met the following criteria
for the diseased group: (i) age between 6 and 19, and (ii) diagnosed with Crohn’s disease. Samples
obtained at the earliest clinical visit of each patient who met criteria (i) and (ii) were included in our
study. For the healthy control, samples of non-IBD individuals between age 6 and 19 collected during
their first and second clinical visits were included. The dataset was generated from a Q-Exactive
Plus Orbitrap mass spectrometer (Thermo Fisher Scientific) in negative ion mode, coupled with a
Nexera X2-U-HPLC system (Shimadzu Scientific Instruments) equipped with an ACQUITY BEH C18
column (Waters).

All raw data in .RAW format were converted into .mzML format using ProteoWizard 3.0
MSConvert [39] with parameters summarized in the supplemental Materials (Table S4). Following
the spectral processing described earlier, data cleaning and statistical analysis were performed on
the clinical data using various functions within MetaboAnalystR. Firstly, missing value imputation
was performed by replacing them with half of the minimum value found for each feature. Features
containing more than 50% missing values across all samples were excluded. Features with nearly
constant values across samples were also filtered out based on the inter quantile range (IQR),
which removed approximately 25% of total features. Subsequently, value of each feature was
normalized with the median value of all features per sample to account for variable water content of
stool samples. Finally, generalized log-transformation and auto-scaling were applied to data prior to
multivariate statistical analysis. For univariate analysis, non-parametric methods (i.e., Mann–Whitney
U test and fold change calculation) were applied to untransformed data to avoid false positives due to
data manipulation [40]. A minimum fold change >2 and <0.5, and a false discovery rate (FDR) adjusted
p-value of 0.05 were used as cut-off values. To infer pathway activities, we applied both mummichog
and GSEA to predict pathway activities. The human BiGG and Edinburgh Model (hsa_mfn) library
was selected as the pathway database, with the p-value cutoff set to 0.05 and the instrumentation
accuracy set to 5 ppm.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/3/57/s1,
Table S1: Characteristics of pediatric IBD patients and healthy controls included in this study; Table S2: Suggested
peak picking parameters for commonly used LC-MS platforms; Table S3: Raw datasets used in the Case Studies;
Table S4: Parameters used to convert .RAW files to mzML format on ProteoWizard MSConvert; Figure S1: PCA
plot of pediatric IBD stool metabolome. Data including 4113 features were median-normalized, log-transformed,
and auto-scaled; Figure S2: PLS-DA plot of pediatric IBD stool metabolome. Data including 4113 features were
median-normalized, log-transformed, and auto-scaled; Figure S3: Ten-fold cross validation of PLS-DA model
(Figure S3) generated from the pediatric IBD stool metabolome data; Figure S4: Boxplots of m/z features used for
functional interpretation; Figure S5: Representative EICs and boxplots of compounds differentially excreted in
stool samples of healthy children and pediatric CD patients based on pathway analysis and Mann–Whitney U test
(FDR adjusted p-value < 0.05).
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Abstract: There is growing interest in the metabolic interplay between the gut microbiome and
host metabolism. Taxonomic and functional profiling of the gut microbiome by next-generation
sequencing (NGS) has unveiled substantial richness and diversity. However, the mechanisms
underlying interactions between diet, gut microbiome and host metabolism are still poorly
understood. Genome-scale metabolic modeling (GSMM) is an emerging approach that has been
increasingly applied to infer diet–microbiome, microbe–microbe and host–microbe interactions under
physiological conditions. GSMM can, for example, be applied to estimate the metabolic capabilities of
microbes in the gut. Here, we discuss how meta-omics datasets such as shotgun metagenomics, can be
processed and integrated to develop large-scale, condition-specific, personalized microbiota models
in healthy and disease states. Furthermore, we summarize various tools and resources available
for metagenomic data processing and GSMM, highlighting the experimental approaches needed to
validate the model predictions.

Keywords: gut microbiome; meta-omics; metagenomics; metabolomics; metabolic
reconstructions; genome-scale metabolic modeling; constraint-based modeling; flux balance;
host–microbiome; metabolism

1. Introduction

The human gut microbiome consists of trillions of microorganisms such as bacteria, archaea, and
unicellular eukaryotes [1,2]. Most gut microbes are facultative obligate anaerobes spanning between
five different phyla (Bacteriodetes, Firmicutes, Proteobacteria, Verrumicrobia, and Actinobacteria),
with over 1000 species already identified [3]. Several collaborative studies and large consortia such as
MetaHIT [4,5], the Human Microbiome Project (HMP) [6,7], and American Gut [8] have taxonomically
and functionally profiled the gut microbiome in healthy and various disease states. The composition
of the gut microbiota is relatively simple at birth, it undergoes a series of changes in composition,
metabolic functions and eventually matures between 3–5 years of age [9]. For any one individual, the
composition of the gut microbiome tends to be stable over time. Interestingly, there is a difference
in the composition of the gut microbiome within a human population [10–12]. Several genetic and
environmental factors such as diet, lifestyle, geography, mode of delivery, infection, infant feeding
modality (e.g. formula versus breastfed) and medication attribute to these differences, and thereby,
shape the gut microbiota during the early stages of life [2,9,13].

The gut microbiome acts as an auxiliary metabolic organ. Several complex carbohydrates,
not digested by the host intestinal enzymes, are passed to the microbial community, which are
then metabolized in the large intestine [14,15]. The gut microbiota is involved in metabolism of
short-chain fatty acid (SCFAs), branched chain fatty acids (BCFAs), branched chain amino acids
(BCAAs), biogenic amines, vitamins, bile acids (BAs), and xenobiotics, as well as the production
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of gases (e.g., CO2, CH4) [16–18]. Gut microbes also affect the host immune system, such as by
regulating immune homeostasis versus autoimmunity [19]. Studies in germ-free mice suggest that
gut microbiota can induce toll-like receptor (TLR) expression, antigen presenting cells (APCs), and
differentiated CD4+ T cells [20]. It also maintains the stability of the immune system by providing
resistance against pathogens.

Our understanding of the gut microbiome and its role in health and disease has considerably
improved with the advent of high-throughput meta-omics technologies. The wealth of data generated
by the gut microbiome research, however, begs the development of novel computational tools and
mathematical models. Such tools have already enabled researchers to begin exploring complexities of
the gut microbiome (Table 1). Several approaches, such as 16S rRNA amplicon sequencing and
whole genome shotgun metagenomics sequencing (WGS) have already been used for profiling
gut microbes [21]. However, such genome-centric approaches are themselves unable to provide
mechanistic insights at the level of individual species, their interactions with other gut flora, and their
impact on host metabolism [14,22,23].

Genome-scale metabolic modeling (GSMM), a constraint-based mathematical modeling approach
has been increasingly used to study gut ecosystems, attempting to elucidate the microbial metabolic
interactions with each other and their host [15,24–26]. Recently, genome-scale models (GEMs) of
catalogued human gut microbes [4,27], based on their metabolic functions, were developed. GEMs
can integrate multiple type of biological information within a computational framework [28–31].
The complex interplay of genes, enzymes, and metabolites provides a scaffold for the integration of
multi-omics datasets such as transcriptomics, proteomics, metagenomics, metabolomics and fluxomics
(Figure 1). A GEM framework allows researchers to decipher, postulate and test hypotheses linking
genotype to phenotype [28–30]. Overall, it provides a comprehensive systems biology platform for
modeling and analyzing biological systems.

Figure 1. Overview of meta-omics profiling, annotation and genome-scale metabolic reconstructions.
(A) Fecal, plasma and/or serum samples are taken from healthy and diseased subjects and meta-omics
data is generated from these. (B) Taxonomic and functional profiling of gut microbes. (C)
Reconstruction of microbial GEMs. Contextualization and personalization of GEMs with meta-omics
datasets. (D) Summary of host-microbial interactions in the human gut. GEM simulations to study and
understand the intricate relationship among diet, host and microbiota under healthy and disease states.
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Herein, we review the role of GSMM in understanding microbial metabolism in the human
gut, with a focus on how GEMs have been used to infer diet–microbiome, microbe–microbe and
host–microbiome interactions under physiological conditions. We discuss metagenomics profiling,
and how meta-omics datasets can be used for building condition-specific personalized community
models of gut microbiota. We further summarize the available tools for metagenomic profiling and
GSMM. Finally, we highlight and emphasize the experimental techniques and data required to validate
the GEM-based predictions.

2. Colonization and Shaping of the Gut Ecosystem

Early colonization of the gut microbiota in infants is vital for shaping of the intestinal ecosystem at
a later age [2,32]. These processes are driven by multiple factors such as mode of delivery, gestational
age, maternal diet, environment and host genetics. Additionally, geography, life style, age, certain
diseases and drug usage can all affect the gut microbial composition and function [2,33].

The distribution of microbes along the gastrointestinal (GI) tract is non-random, in that, certain
species of microbes are co-localizing. Lactobacillacea, Veilonellaceae and Helicobacterceae co-occur
in stomach, Bacillaceae and Streptococcaceae in the small intestine, and Bacteroidaceae, Clostridium,
Lactobacillaceae and Bifidobacterium in the colon [34]. Dysbiosis in the intestinal ecosystem has been both
directly and indirectly linked to autoimmune diseases (e.g., type 1 diabetes (T1D), rheumatoid arthritis
(RA)) [35,36], colon cancer [37], type 2 diabetes (T2D) and obesity [5,25], cardiovascular disorders [38],
non-alcoholic fatty liver disease (NAFLD) [39,40] as well as inflammatory bowel disease (IDB) [41].

3. Gut Microbiome Profiling and Functional Annotation

Metagenomics shotgun sequencing [42] and 16S rRNA amplicon sequencing [43] have been
used for profiling gut microbiota from fecal (stool) samples. An appropriately annotated shotgun
metagenomics dataset can be used for accurately mapping and predicting microbiota-affected
metabolic pathways. These approaches also have proven potential for novel gene discovery [44]
and identification of essential functions. Annotation of metagenomics datasets is primarily carried
out in two ways: (a) by assembling nucleotide sequences from NGS reads of appropriate length and
subsequently predicting the protein coding sequences (called CDS) [45], and (b) by mapping the reads
to genome or non-redundant marker gene sets of the relevant organisms guided by the taxonomic
profiling [46]. These genes can be clustered, catalogued and aligned against reference database(s) of
annotated gene/protein families (e.g., KEGG Orthology [47]), and/or they can be linked to metabolic
pathways (e.g., MetaCyc [48]).

Various computational tools and pipelines have been developed for these sorts of purposes.
MOCAT2, for example, provides automated annotation of non-redundant reference catalogues from
18 databases covering various functional categories [45]. HMP Unified Metabolic Analysis Network
(HUMAnN2) is a pipeline for profiling the relative abundances of microbes and the activity of their
metabolic pathways from metagenomics data [46,49]. MEtaGenome ANalyzer (MEGAN) is an interactive
and comprehensive microbiome analysis toolbox, that allows researchers to explore and analyze large-scale
metagenomics datasets both from taxonomic and functional perspectives [50]. Metagenomics Rast
(MG-RAST), is a RAST (Rapid Annotation using Subsystem Technology) server for automated annotation
of metagenomics datasets [51]. Integrated Microbial Genomes & Microbiomes (IMG/M) is another
server-based system that supports the annotation and analysis of microbiome datasets [52]. There is a
plethora of tools for sequence assembly, gene prediction and phylogenetic classification which underpin
many of these processes, and these tools are extensively reviewed elsewhere [53].

Functional annotation of metagenomics datasets poses several challenges in itself [53,54].
Although metagenomics data categorizes microbial functions at the community level, it fails to suggest
a mechanistic explanation for how these functions arise. To understand the intricate relationship
between microbial components, such as genes, proteins and metabolites, and their influence on
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host metabolism via different biochemical pathways, microbe-specific metabolic models need to be
developed at the genome scale.

4. A Constraint-Based Strategy and Tools for Genome-Scale Metabolic Modeling of
Gut Microbiota

A rapid increase in use of shotgun metagenomics, the availability of model organisms, and the
number of meta-omics datasets in public repositories, gives an opportunity to develop metabolic
reconstructions of human gut microbes. These reconstructions can be converted into quantitative
mathematical models that can be used to study metabolism at the genome scale [28,55–58]. Current
tools and resources for gut microbiome modeling are listed in Table 1.

Table 1. Tools and resources for genome-scale metabolic modeling.

Toolboxes Short Description Source or Reference

Modeling Tools

COBRA
(Microbiome Modeling Toolbox)

A MATLAB suite for constraint-based modeling (CBM), includes tools
and methods for pairwise and community modeling of microbiota.

COBRA can be used for GEM reconstruction and analysis.
[59–61]

RAVEN
(CASINO)

A MATLAB suite for CBM, includes tools for modeling diet-microbiota
interactions. It can be used for GEM reconstruction and analysis. [62]

Kbase A web-based tool for systems biology and metabolic modeling. It can
be used for automatic GEM reconstruction and analysis. [63]

BacArena An R-package for individual-based and CBM of microbes in a
gut community. [64]

COMETS A software platform for stoichiometric modeling of individual
microbial species using dynamic flux balance analysis (FBA). [65]

MCM A tool for CBM of microbial community model, based on
conventional FBA. [66]

DyMMM A tool for CBM that integrates multiple microbial species into a
dynamic community model. [67]

OptCom A modeling framework to perform FBA of microbial communities. [68]

SteadyCom A toolbox that can be used to predict the changes in microbial species
abundance in response to the dietary changes. [69]

MetExplore An open access web-server for integrative analysis of metabolomic
datasets and genome-scale metabolic networks. [70]

MMinte An integrated pipeline for modeling the pairwise interactions within a
microbial network. [71]

jQMM library
An open-source, Python-based framework for modeling internal

metabolic fluxes. The toolbox can be used for FBA and 13C Metabolic
Flux Analysis (MFA).

[72]

Model repositories and databases

BiGG database An open access database for gold standard GEMs. [73]

Virtual Metabolic Human (VMH) An open access database for human and gut microbial
metabolism (GEMs). [74]

ModelSEED A web-based resource for metabolic modeling. [75]

Human Metabolic Atlas (HMA) An open access web-based resource for human metabolism. [76]

Metabolic Pathways and Enzyme databases

MetaCyc/HumanCyc A curated database of experimentally validated metabolic pathways.
HumanCyc is a database of curated human metabolic pathways. [48]

KEGG A resource comprised of databases including large-scale molecular
datasets and detailed pathway information. [77,78]

BRENDA An information retrieval system focusing on enzymes and their ligands. [79]

REACTOME An open access database of biological pathways. [80]

UniProt. An open access database of curated protein information. [81]

In a GEM, uptake or secretion of certain metabolites over time (denoted as their ‘flux’),
enzymes/transcript abundances and ON/OFF gene expression can be constrained using information
from datasets generated by quantitative fluxomic, metabolomic, transcriptomic and proteomic
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experiments. By applying these constraints, GEMs can be contextualized to a particular state or
condition. These condition-specific/contextualized models can provide information about the activity
of metabolic pathways, metabolite flux, cellular growth, and provide estimates of the overall metabolic
capacities of these gut microbes. GSMM use FBA [28], a constraint-based approach (CBA), to predict
organisms’ phenotypes [28]. A tutorial on linear programming and FBA is available in [28].

GSMM has been applied to study gut microbial metabolism and its interactions with the host.
Recently, AGORA (Assembly of Gut Organisms through Reconstruction and Analysis) was published,
which carried out semi-automatic metabolic reconstruction of 773 human gut bacteria (205 genera,
605 species) [26]. The authors modeled metabolic interactions among microbial species based on their
metabolic potential and availability of nutrients. This approach has identified and defined growth
medium for Bacteroides caccae ATCC 34185. Moreover, these metabolic reconstructions have been
used to infer metabolic diversity of microbial communities. The AGORA framework can be coupled
with, for example Recon 2, a generic reconstruction of human metabolism, which in turn can be
used to study host–microbiome interactions. AGORA reconstructions are publicly available via the
Virtual Metabolic Human (VMH) [74] database (https://vmh.life/). In addition, BiGG Models [73]
(http://bigg.ucsd.edu/) and the Human Metabolic Atlas [76] (http://metabolicatlas.org/) are other
open access knowledge bases for metabolic reconstructions.

Kbase [63] (https://kbase.us/) and ModelSEED [75] (http://modelseed.org/) are the web-based
servers for automatic reconstruction of microbial GEMs by integrating genome sequences and/or
metagenomics datasets. The COnstraint-Based Reconstruction and Analysis (COBRA) [59–61]
and RAVEN (Reconstruction, Analysis, and Visualization of Metabolic Networks) [62] toolboxes
are stand-alone MATLAB software suites with collections of basic and advanced functions
for genome-scale reconstructions and modeling. The Microbiome Modeling Toolbox [82]
extends the functionality of the COBRA toolbox to use metagenomic data for modeling
microbe–microbe/host–microbe metabolic interactions and modeling personalized microbial
communities. Draft GEMs generated by these platforms are then curated for the occurrence of
genes, metabolites, reactions and their associations based on evidence from the literature and expert
knowledge of metabolism. Quality control checks, which are performed to eliminate false positives,
also enhance the predictability of GEMs [55].

5. Reconstruction of Condition-Specific Personalized Gut Microbiota Models

In a metabolic model, numerous genes and metabolites are associated by way of metabolic
pathways deemed to be thermodynamically feasible. These models are formalized and applied over
the entire microbiota community model [82]. Various efforts have already been made to integrate
metagenomic data with a genome-scale framework [26,83]. However, approaches to integrate other
kinds of meta-omics data are still in the early phases of development.

Shotgun metagenomics and 16S rRNA data have guided the selection of representative
microbes (species or strains) in a community [24]. Integration of meta-omics datasets such as
metatranscriptomics, metaproteomics together with fecal metabolomics with the microbiota metabolic
modeling framework can constrain the model, improving the accuracy of its representation of the
biological system. Moreover, meta-omics data can be applied to develop condition-specific microbiota
models (Figure 1) such as metabolic reconstruction of gut microbiota in lean vs. obese subjects.
Likewise, a microbiota model can be personalized for an individual subject by combining the
metagenomics information with other phenomics datasets. Metagenomics, metatranscriptomics
and metaproteomics data can provide an estimate for enzymatic and pathway activities in the gut [49],
which approximate the metabolic activity in the gut of an individual under specified conditions.

Context-based, personalized microbiota models have already been used to study various
conditions [28,55,56,61,84]. An array of analysis can be performed with these models. Flux
Variability Analysis (FVA) [28,85] can estimate the maximal and minimal possible flux differences
(flux span) for a specific metabolic exchange reaction of a specific microbial strain, pair of strains,
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or community as a whole. It determines the potential of a reaction to carry out flux under the
applied constraints/conditions. FVA can thus be used to compute strain-specific exchange fluxes for
a particular metabolite that can be compared with the net metabolite exchanges in the community.
Moreover, it can evaluate the role of individual microbe for metabolite production. On the other hand,
shadow price (SP) of a metabolite determines whether it is limiting for an optimal objective function
(growth or biomass production) [28,61]. A negative SP suggests that flux through the objective function
would increase with the increase in the concentration of the metabolite. As an example, SP analysis
has already identified several microbial strains that decrease ursodeoxycholate (UDCA) biosynthesis
by limiting its precursors [83].

Food metabolomics datasets detailing dietary constituents have been used to constrain the
nutrient uptake rates of microbiota models [58]. Diet acts as a ‘spooning media’ for the microbiome.
Several diets such as a typical Western diet, high fiber diet [26], average European diet [26], breast
milk [58], and Ready-to-Use Therapeutic Foods (RUTFs) [24], have been designed. The diet designer
tool included as part of the aforementioned [74] can be used to calculate range of dietary fluxes, given
the metabolite concentrations. On the other hand, fecal, serum and plasma metabolomics data can be
used to confirm the identity of microbial metabolites produced by the models [24,25].

6. Modeling the Effect of Diet on Gut Microbiome

Diet is the direct regulator of microbial metabolism in the gut ecosystem; dietary patterns
have profound effect on gut colonization and the shaping of the gut microbiome during the early
stages of life [9]. Western diets are associated with a Bacteroides enterotype whereas plant-based
polysaccharides are associated with a Prevotella enterotype [86]. Mostly, three primary macronutrients
such carbohydrates, proteins, and fats are known to affect the gut microbial composition [18].

GSMM has already begun to be used to help improve mechanistic understanding of gut
microbial metabolism and its dietary interactions [24–26]. Computational tools such as COMET [65],
BacArena [64], dOptCom [68], MatNet [87], DyMMM [67], MCM [66], and CASINO [25] were
designed to study diet–microbiome interactions. CASINO was able to predict the interactions along
the diet-microbiota-host axis in 45 obese and overweight individuals [25]. Furthermore, this study
estimated the metabolic capabilities of microbes in the lumen of obese and overweight individuals.
The model predicted a significant change in the amino acids and SCFAs levels in response to dietary
intervention. The model predictions were further validated by fecal and blood metabolomics data.
In another study, GSMM was used to predict and elucidate the underlying interactions between
Bacteroides thetaiotamicron, Eubacterium rectale and Methanobrevibacter smithii, when subjected to different
gut ecosystems [15,22]. Recently, GEM-based predictions were used to evaluate the effect of RUTFs
on gut microbiome of healthy and malnourished children from Bangladesh and Malawi [24]. This
methodology can be further extended to study the effect of health supplements, prebiotics and
probiotics on the human gut microbiota.

7. Multispecies Modeling and Interactions in the Gut Community

Microbial species or strains with high abundances in samples are often selected for pairwise
or community modeling [24,26]. Two or more microbial GEMs are joined together along their
extracellular compartments to build a community model [82]. The community model is linked
to a “common compartment” mimicking the human gut, through which exchange of metabolites takes
place. A community biomass, i.e., the sum of biomasses estimated for each microbe, and coupling
constraints are added [82].

Pairwise analysis of microbes in the community has determined their metabolic relationships
when introduced to different types of diets [24,26,83]. However, in vitro screening of microbial pairs
can be laborious and expensive. When subjected to Western and high fiber diets under aerobic
and anaerobic conditions, pairwise modeling has predicted six different interactions between gut
microbes such as competition, parasitism, amensalism, neutralism, commensalism and mutualism [26].
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Furthermore, pairwise models developed from personalized gut microbiomes have been interrogated
for single, cooperative, and community-wide bile acid production potential [83]. This strategy has
identified several microbe pairs producing secondary BAs. For instance, Bacteroides spp. and R. gnavus
can cooperatively produce UDCA [83]. In another study, the rate of butyrate production increased by
pairs of microbes as compared to a single species, when studied in the gut communities of healthy
Bangladeshi and Malawian children [24].

Alternatively, correlation-based co-occurrence topological networks looking at abundant
metagenomic species can be developed [88,89]. Such a network can predict positive or negative
associations between the microbes. Microbe–microbe co-occurrence pairs of interest can be selected
and evaluated by in vitro co-culture experiments [90]. Interestingly, co-occurring species compete
strongly for metabolic resources, which are required for cellular growth and maintenance. In this
context, the network analysis can be extended to incorporate different metrics such as competition and
complementarity indices, which can be used to further characterize/quantify the degree of metabolic
interactions between the selected pairs of microbes.

8. Metabolic Modeling of Host–Microbiome Interactions

Gut microbiota can harvest nutrients and energy from the diet. During these processes, small
molecules (metabolites) are produced. Some of these metabolites can be beneficial for host and
microbial symbionts [16,18,84]. One such metabolite is butyrate, a bacterial fermentation product
that fuels the colonic epithelium [22]. In fact, butyrate is the primary energy source for colonocytes.
In mammals, the production of cresols from tyrosine have been linked to various species of Clostridium,
Bifidobacterium, and Bacteroides, and altered 4-cresol levels in human urine have been associated
with weight loss in IBD [17]. The primary conjugated BAs produced by liver are deconjugated and
biotransformed by gut microbes, affecting host signaling and metabolism [83]. Also, BAs can activate
the innate immune genes which in turns alters the gut microbial composition. It also inhibits the
growth of pathogens in the gut.

GEMs have been expanded to study metabolism in humans. Human generic metabolic
reconstructions such as Recon 1 [91] and the Edinburgh Human Metabolic Network (EHMN) [92] were
developed with a vision to integrate and analyze biological datasets. Similarly, Recon 2 [56,93] and
Recon 3D [94], and Human Metabolic Reaction (HMR) [95,96], were designed, that comprehensively
captured human metabolism. A metabolic reconstruction of human small intestinal epithelial cells
(sIECs) was assembled and manually curated [97]. sIECs were used to study the physiological
functionality of the small intestine and their overall role in human metabolism. These models
incorporate transporters present in the human gut [94,97,98], while some of them are putatively
identified. Furthermore, several functional cell or tissue-specific GEMs have been generated for the
liver [96], brain [99], adipocytes [95] and myocytes [100], using semi-automated approaches [101]. In
addition, a gender-specific, whole-body metabolism (WBM) reconstruction was developed to capture
and characterize the metabolism of 20 human organs [102]. A WBM framework can be constrained with
dietary, physiological parameters and omics datasets. Such a framework was used to link organ-level
metabolic processes in 149 subjects induced by their gut microbiota.

The Microbiome Modeling Toolbox [82], deployed under the COBRA suite, includes several
functions for modeling complex metabolic interactions between the host and gut microbiota. It can
integrate microbe (AGORA [26], BiGG [73]) and host (Recon [56,91,94]) metabolic reconstructions.
Similarly, a common compartment mimicking the human gut is added, which enables pooling and
exchange of metabolites between the microbes, lumen and the host cells.

In a different context, the microbiome-induced immune response is currently well established.
An imbalance in gut microbial composition has been linked to inflammatory and autoimmune
diseases [103–106]. Various immune cells including CD4+ effector T cells (particularly Th1, Th2,
Th17 and iTreg), CD8+ T cells (cytotoxic) and macrophages undergo metabolic reprogramming during
proliferation and differentiation processes [107]. The macrophage (RAW 264.7 cell line) model was

47



Metabolites 2019, 9, 22

developed to study immunoactivation and immunosuppression [108]. Metabolic reconstructions
of immune cells are currently unavailable. By developing GEMs for host immune cells [57],
might guide us to study, the microbiome-mediated immunometabolic responses under various
health/disease conditions.

9. Model Predictions and Experimental Validation

To establish the biological relevance of metabolic models, the congruence between model
predictions and experimental data is of utmost importance. GEM-based predictions can be validated
by existing data, knowledge and bibliographical evidence. For instance, metabolites secreted by
gut microbiota can be compared with the concentrations of metabolites found in fecal and blood
samples [24,25]. Furthermore, blood metabolomics data can be used for validation of metabolites
predicted as being transported across the human gut. Meta-omics datasets [109] can be used to estimate
the abundances of gut enzymes and microbial pathways for an individual species or strain [49].
The pathway abundances can be compared with the enrichment and usage (flux) of GEM-predicted
pathway(s). GSMM can be applied to quantify dietary nutrient uptake of gut microbes and their
metabolic interactions with the host. To understand the regulation of host metabolism by gut microbes,
germ-free (GF) and conventionally raised (CONV-R) mice are usually used [110]. These mice can
be raised on different diets and then euthanized, with samples analyzed by meta-omics analyses.
The generated datasets can be used for contextualization and validation of GEMs. Furthermore, the
theoretical growth rate of a microbe can be validated by culturing species in a specific media [25,26].
In addition, the predicted metabolic interactions between microbes, regulation of co-occurrence
network, and dietary cross-feeding can be validated by mono- and co-culture experiments [90].

10. Concluding Remarks and Future Perspectives

Integration of meta-omics datasets and genome-wide metabolic reconstructions provide a
framework for interrogating and suggesting mechanistic workings of diet-microbe-host metabolic
interaction. However, such integrative methods are still evolving and require extensive and robust
experimental validation.

Profiling and culturing gut microbes at the strain level, under controlled conditions, remains
challenging. Recently, an integrated approach involving targeted phenotypic culturing, WGS,
phylogenetic analysis and computational modeling has succeeded in culturing a substantial portion
of bacteria previously declared to be ‘unculturable’ under laboratory conditions. This approach
identified 137 bacterial species, including novel species isolated from pure cultures [111]. Furthermore,
the culturomics techniques are currently used for filling the gap by isolating the unknown or novel
members of the gut community [111,112].

In studies of gut microbial communities, there is increasing interest in mechanistic approaches,
in contrast to solely genome-centric approaches. Correspondingly, GSMM is widely used as a
preferred computational method for studying gut microbial metabolism and its interaction with
the host. Additionally, GEMs can be contextualized and personalized using longitudinal meta-omics
datasets, providing a snapshot of metabolic processes over time. Personalized microbiota models
may help to reduce the costs of clinical studies, predict markers and contribute to the development
of potential treatments at either the individual patient level, or for a defined patient group [83,113].
Many efforts are ongoing, aiming to couple pharmacokinetic and constraint-based models to study
drug-microbe-diet interactions [114]. However, a limitation of GSMM approach is that GEMs are
stoichiometric models, and cannot, in their current form at least, incorporate metabolite concentrations
or enzyme kinetics (Vmax, Km, Kcat) [115,116]. Albeit more limited in scope, kinetic modeling [116]
may help improve understanding of the dynamics of metabolic pathways in the human gut.

As indicated in this review, GSMM and CBA have provided computational tools and frameworks
to study metabolism of gut microbiota. These tools guided researchers to study and identify the
metabolic functions of individual microbes in the gut community. It also helped to infer their spatial
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dynamics, environmental interactions and metabolic resource allocations under a certain condition.
We believe that, a combination of several computational and experimental approaches, may reveal the
complex and diverse structure of the human gut microbiome and its underlying interactions with the
host metabolic machinery. It might bridge the gaps in gut microbiome research and thereby, enhance
our knowledge of human gut microbiota under health/disease conditions.
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BCAAs Branched Chain Amino Acids
BAs Bile Acids
TLR Toll-Like Receptor
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GEMs Genome-Scale Models
T1D Type 1 Diabetes
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T2D Type 2 Diabetes
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IDB Bowel Disease
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KEGG Kyoto Encyclopedia of Genes and Genomes
HUMAnN2 HMP Unified Metabolic Analysis Network
MEGAN MEtaGenome ANalyzer
MG-RAST Metagenomics Rast
RAST Rapid Annotation using Subsystem Technology
IMG/M Integrated Microbial Genomes and Microbiomes
FBA Flux Balance Analysis
CBA Constraint-Based Approach
AGORA Assembly of Gut Organisms through Reconstruction and Analysis
VMH Virtual Metabolic Human
COBRA COnstraint-Based Reconstruction and Analysis
RAVEN Reconstruction, Analysis, and Visualization of Metabolic Networks
FVA Flux Variability Analysis
SP Shadow Price
UDCA Ursodeoxycholate
RUTFs Ready-to-Use Therapeutic Foods
EHMN Edinburgh Human Metabolic Network
HMR Human Metabolic Reaction
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WBM Whole-Body Metabolism
GF Germ-Free
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Abstract: Metabolomics analysis generates vast arrays of data, necessitating comprehensive workflows
involving expertise in analytics, biochemistry and bioinformatics in order to provide coherent and
high-quality data that enable discovery of robust and biologically significant metabolic findings.
In this protocol article, we introduce notame, an analytical workflow for non-targeted metabolic
profiling approaches, utilizing liquid chromatography–mass spectrometry analysis. We provide an
overview of lab protocols and statistical methods that we commonly practice for the analysis of
nutritional metabolomics data. The paper is divided into three main sections: the first and second
sections introducing the background and the study designs available for metabolomics research and
the third section describing in detail the steps of the main methods and protocols used to produce,
preprocess and statistically analyze metabolomics data and, finally, to identify and interpret the
compounds that have emerged as interesting.

Keywords: metabolomics; LC–MS; mass spectrometry; metabolic profiling; computational statistical;
unsupervised learning; supervised learning; pathway analysis

1. Introduction

The rapid technical development of instrumentation for biomolecule analysis has led to a wide
application of metabolomics in biological and biomedical research. Due to its very high sensitivity
and the ability to concomitantly assess thousands of molecular features, liquid chromatography
coupled with mass spectrometry (LC–MS) is making its way as the key analytical tool in the field
of discovery-driven metabolic profiling [1–3]. The LC–MS platform generates large amounts of
signals—biological signals from metabolites, their adducts, fragments, isotopes and instrument noise,
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thereby necessitating adequate computational tools to process, analyze and interpret the data [4,5].
Although the data processing solutions for complex metabolomics data are accumulating with
increasing speed, they continue to be the bottleneck within the analysis, especially the metabolite
identification process [6–8]. Starting from the acquisition of data to the identification of metabolites,
the metabolic profiling workflow involves numerous steps that require expertise in analytical chemistry,
biochemistry, bioinformatics and data analysis—click-and-go online tools may therefore not provide
adequate reliability. To guarantee high quality output from metabolomics experiments, cooperation of
scientists with various backgrounds and expertise is needed.

First, the production of high-quality metabolomics data requires high quality samples originating
from studies with meaningful research questions, adequate sample preparation and know-how in
operating MS instruments in order to get out the maximum performance of the sensitive measurements.
The acquired data needs to undergo several preprocessing steps, starting from data collection (peak
picking), where it is imperative to understand the detection threshold and signal-to-noise ratios of
the measurement. This is then followed by a multi-step processing phase involving imputation,
normalization, data reduction and clean-up, which determines the quality of the data that is used
in downstream data-analysis, metabolite identification and biological interpretation of the results.
All of these steps need to follow necessary quality assurance and quality control procedures for
reliable outcome of the metabolomics analysis [9,10]. Finally, the compounds that have emerged as
interesting in the given study setup need to be identified using a combination of automated metabolite
identification algorithms and exploration of the raw LC–MS/MS spectral data.

Although the currently proposed non-targeted metabolic profiling workflow is applicable on
basically any metabolomics study, it has been developed and utilized mainly on food and nutritional
approaches. Therefore, examples provided here on the presentation of results are from studies within
that field. In fact, food and nutrition sciences encompass a versatile array of research fields, which
have adopted metabolomics as one of the most important analytical tools during the past decade [9].
For example, metabolic profiling allows a comprehensive analysis of the chemical composition of
food and estimating the impact of industrial processing and modifications by gut microbiota [11,12].
Likewise, when assessing the actual health outcomes of certain diets or specific foods, metabolic
profiling enables pointing out the areas of metabolism that are reflecting the dietary differences;
especially when data are correlated with other, traditional clinical variables, they may raise novel
hypotheses on the molecular-level linkage between diet and health [13–15].

Here, we present analytical workflows suitable for any non-targeted metabolic profiling study in
a systematic manner (Figure 1), with a major focus on data-analysis challenges. We also present a new
R package: notame (version 0.0.1, https://github.com/antonvsdata/notame), where we have bundled
many of the data-analysis tools used in our lab so that they are easy to adopt for other scientists
working in the field of metabolic profiling. This includes the pre-processing steps and visualizations
in Section 3.2.2, Section 3.2.3, Section 3.2.4, Section 3.2.5, statistical tests and multivariate models in
Section 3.3, as well as the visualizations in Section 3.4. The package documentation contains extensive
instructions for using the package, along with a template script for preprocessing and analyzing data
from a single-batch LC–MS experiment as well as a small example dataset.
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Figure 1. A general overview of notame workflow containing four important stages; 1. Experimental
designs and sample collection, 2. sample preparation, 3. data acquisition, 4. data analysis and
biomarker identification analysis.

2. Experimental Design

The non-targeted metabolic profiling analytical workflow presented here includes steps from
sample preparation and LC–MS analysis all the way to metabolite identification (Figure 1). It is
noteworthy to mention, however, that the study design and careful planning for the sampling are
very important part of the study governing the quality of the results and therefore require special
attention [9]. Herein, we focus on metabolomics analysis performed in one batch (where the number
of samples typically reaches 200–300 samples). However, the procedures are in general applicable for
larger, multi-batch experiments, although extra procedures for quality control are in order [10,16].

2.1. Materials

Sample preparation materials:

a. 96-well plate (Thermo Scientific, Rochester, NY, USA, Cat.No. 260252),
b. Filter plate (Agilent, Santa Clara, CA, USA, Cat.No. A5969002)
c. 96-Well cap mats (Thermo Scientific, Roskilde, Denmark, Cat.No. 276002)
d. Syringe filters (PALL Corporation, Ann Arbor, MI, USA, Cat.No. 4552T)
e. Syringe Norm-Ject® tuberculin 1 mL (Henke Sass Wolf, Tuttlingen, Germany, Cat.No 4010-200V0)
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f. Wide orifice pipette tips (Thermo Scientific, Vantaa, Finland, Cat.No. 9405050)
g. Homogenizer microtubes (OMNI International, Kennesaw, GA, USA, Cat.No 19-620

LC–MS materials:

h. Reversed-phase chromatography (RP) column: Zorbax Eclipse XDB-C18, particle size 1.8 μm,
2.1 × 100 mm (Agilent Technologies, Santa Clara, CA, USA, Cat.No. 981758-902).

i. Hydrophilic interaction chromatography (HILIC) column: Acquity UPLC BEH Amide 1.7 μm,
2.1 × 100 mm (Waters Corporation, Milford, MA, USA, Cat.No. 186004801).

Reagents:

a. Acetonitrile, ACN (HiPerSolv CHROMANORM, VWR Chemicals, Fontenay-sous-Bois, France,
Cat.No. 83640.320)

b. Methanol, MeOH (CHROMASOLV™ LC–MS Ultra, Riedel-de Haën™, Honeywell, Seelze,
Germany, Cat.No. 14262-2L)

c. Formic acid (Optima LC/MS, Fisher Chemical, Geel, Belgium, Cat.No. A117-50)
d. Ammonium formate (CHROMASOLV™ LC–MS Ultra, Honeywell Fluka, Seelze, Germany,

Cat.No. 14266-25G)
e. Ultra-pure water (Class 1, ELGA PURELAB Ultra Analytical, Lane End, UK)

2.2. Equipment

The current workflow is demonstrated with one suitable LC–MS instrumentation and software
combination but can likewise employ any other high-accuracy LC–MS setup.

Sample preparation and LC–MS instruments:

a. Centrifuges: For 96-well plates: Heraus Megafuge 40R (ThermoFisher Scientific, Osterode,
Germany), for microcentrifuge tubes: Centrifuge 5804R (Eppendorf, Hamburg, Germany)

b. Vortex: Vortex Genie 2 (Scientific Industries, Bohemia, NY, USA)
c. Homogenizer: Bead Ruptor 24 Elite with OMNI BR CRYO unit (OMNI International, Kennesaw,

GA, USA)
d. Shaker: Multi Reax (Heidolph, Schwabach, Germany)
e. 1290 Infinity Binary UPLC system (Agilent Technologies, Waldbronn, Karlsruhe, Germany)
f. 6540 UHD accurate-mass quadrupole-time-of-flight mass spectrometer (qTOF-MS) with Jetstream

ESI source (Agilent Technologies, Santa Clara, CA, USA)

Software:

g. Agilent MassHunter Acquisition B.07.00 (Agilent Technologies),
h. MS-DIAL version 3.70 [17],
i. MS-FINDER version 3.24 [18],
j. R version 3.5.0 [19]
k. Multiple Experiment Viewer (MeV) version 4.9.0 (http://mev.tm4.org/).

3. Analytical Procedure and Results

3.1. LC–MS Analysis

3.1.1. Sample Preparation

Sample preparation for the non-targeted metabolite profiling work aimed to extract in a single
attempt as wide range of metabolites as possible with, in general, minimal sample workup. Therefore,
straightforward, simple extraction protocols were preferred. Protocol 1 was designed for extracting
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plasma/serum samples at a ratio of 1:5 with ACN and Protocol 2 for extracting homogenized tissue
samples at a ratio of 1:6 with 80% methanol.

Protocol 1: Plasma/Serum Samples

1. Thaw plasma/serum samples in ice water and keep them on wet ice during all the waiting periods.
2. Place the 96-well plate on wet ice for sample preparation and set the filter plate on it.
3. Add 400 μL of cold ACN to the filter plate well.
4. Vortex a plasma/serum sample 10 s at the maximum speed.
5. Add 100 μL of plasma/serum sample to the same well as ACN.
6. To prepare the pooled quality control (QC) samples, collect 10 μL aliquots of each sample and

add them to the same clean microcentrifuge tube and finally, mix properly.
7. Mix ACN and sample by pipetting four times. Use wide orifice Finn Pipette tips to avoid

tip clogging.
8. Repeat steps 1–5 for all samples. Lastly, use the same procedure for the QC sample. For the

extraction blank, perform step 3 (cold ACN without sample) and use the same procedure thereon.
9. Filter the precipitated samples by centrifuging the plate for 5 min at 700× g at 4 ◦C.
10. Remove the filter plate and seal the 96-well plate tightly with the 96-well cap mat to avoid

sample evaporation.
11. Analyze the samples immediately or store the plate at +4 ◦C for a maximum of 1 day or at −20 ◦C

until analysis.

Protocol 2: Tissue Samples

12. Weigh a maximum of 300 mg frozen tissue into 2-mL OMNI microtube with beads. Keep the
samples on dry ice.

13. Add ice cold 80% methanol in a ratio of 500 μL solvent per 100 mg tissue and keep the tubes on
wet ice. Include an extraction blank with solvent only.

14. Optional step: In the case of metabolite-dense sample material (e.g., plants), it might be necessary
to use a more diluted solvent/sample ratio to avoid analytical problems, such as saturation of the
detector or overloading of the column.

15. Homogenize samples with a Bead Ruptor 24 Elite homogenizer. For soft tissues, perform one
homogenization cycle at the speed 6 m/s at +/− 2 ◦C for 30 s.

16. Optional step: In case a homogenizer instrument is not available, manual tissue disruption can
be performed using mortar and pestle with liquid nitrogen.

17. Extract the homogenized samples in a shaker for 5 min at RT.
18. Centrifuge samples for 10 min at 20,000× g at +4 ◦C.
19. Collect the supernatants on a 96-well filter plate and centrifuge for 5 min at 700× g at 4 ◦C.
20. Optional step: Filter the samples using solvent resistant syringes and PTFE filters into the

HPLC vials.
21. Take aliquots (5–25μL) of filtered samples and combine into one vial to be used as QC sample in

the analysis.
22. Analyze the samples immediately or store the plate at +4 ◦C maximum of 1 day or −20 ◦C

until analysis.

3.1.2. LC–MS Measurement

The most commonly applied analytical technique in non-targeted metabolic profiling is mass
spectrometry, often combined with liquid or gas chromatographic separation at the front end. In order to
cover a wide range of polarities among the analyzable metabolites, different chromatographic methods
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may be utilized, e.g., reversed-phase chromatography (RP) and hydrophilic interaction chromatography
(HILIC). MS data can then be acquired in both positive (+) and negative (−) electrospray ionization
(ESI) polarities.

23. Use the following conditions for RP chromatography: Column oven temperature 50 ◦C, flow rate
0.4 mL/min, gradient elution with water (eluent A) and methanol (eluent B) both containing 0.1%
(v/v) of formic acid. Gradient profile for RP separations: 0–10 min: 2→ 100% B; 10–14.5 min:
100% B; 14.5–14.51 min: 100→ 2% B; 14.51–16.5 min: 2% B. Needle wash with 50% ACN. Set the
injection volume at 2 μL and sample tray at 10 ◦C.

24. Use the following conditions for HILIC: Column oven temperature 45 ◦C, flow rate 0.6 mL/min,
gradient elution with 50% v/v ACN in water (eluent A) and 90% v/v ACN in water (eluent B),
both containing 20 mM ammonium formate (pH 3). The gradient profile for HILIC separations:
0–2.5 min: 100% B, 2.5–10 min: 100% B→ 0% B; 10–10.01 min: 0% B→ 100% B; 10.01–12.5 min:
100% B. Needle wash with 50% ACN. Set the injection volume at 2 μL and sample tray at 10 ◦C.

25. To operate at high mass accuracy (<2 ppm), calibrate the MS daily and use the continuous mass axis
calibration by monitoring two reference ions from an infusion solution throughout the analytical
runs. Examples of reference ions in ESI+mode: m/z 121.050873 and m/z 922.009798, and reference
ions in ESI−mode m/z 112.985587 and m/z 966.000725. These reference ions are coming from the
compounds in the infusion solution. m/z 121 is purine, m/z 112 is trifluoroacetic acid and m/z 922
and 966 are HP-0921 (Hexakis (1H,1H,3H-tetrafluoropropoxy) phosphazine) [20,21]

26. Use the following conditions for Jetstream ESI source: drying gas temperature 325 ◦C and flow
10 L/min, sheath gas temperature 350 ◦C with a flow of 11 L/min, nebulizer pressure 45 psi,
capillary voltage 3500 V, nozzle voltage 1000 V, fragmentor voltage 100 V and skimmer 45 V.
Use nitrogen as the instrument gas.

27. For data acquisition, use a 2 GHz extended dynamic range mode in both ESI + and ESI - ionization
modes from m/z 50 to 1600 (may be adjusted according to sample matrix). Collect the data in the
centroid mode at an acquisition rate of 1.67 spectra/s (i.e., 600 ms/spectrum) with an abundance
threshold of 150. For automatic data dependent MS/MS analyses, set the precursor isolation width
to 1.3 Da. From every precursor scan cycle, 4 most abundant ions are selected for fragmentation.
These ions are excluded after two product ion spectra and released again for fragmentation after a
0.25 min hold. Product ion scan time is based on precursor ion intensity, ending at 25,000 counts
or after 300 ms. Use collision-induced dissociation voltage 10, 20 and 40 V in subsequent runs.

28. Generate the worklist containing analytical samples. Inject quality control samples after every
12 samples and before and after the sample sequence. To monitor contamination during sample
preparation and liquid chromatography, inject extraction blanks in the beginning (before the
QC samples) and end of the analysis. The injection order of samples should be randomized.
If the study contains samples from multiple matrices, such as samples from different organs, it is
recommended that all the samples of a matrix be injected consecutively, for example first inject
all heart samples, followed by all liver samples. If there are multiple samples from the same
individual, it is recommended that the samples of an individual are run consecutively. We use
an in-house developed software called Wranglr (github.com/antonvsdata/wranglr) to automate
the generation of sample worklists by automatically randomizing the sample order and adding
QC and MS/MS samples. Wranglr is an open-source web application developed with the Shiny
package for R [22].

29. Inject 2 blanks and then 15–20 QC samples at the beginning of each run for column conditioning.
Inject a QC sample after every 12 samples during the analysis. At the end of each run, include 4
QC samples: 1 for MS analysis, 3 for MS/MS analysis from 3 different collision energies and finally,
2 blanks. If the run contains samples from different tissues or species (i.e., different expected
metabolite profiles), it is recommended to run the MS/MS analysis additionally from one sample
per different sample type to increase the coverage of available MS/MS data.
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3.2. Data Collection and Preprocessing

The data collection (peak picking) and subsequent preprocessing of the raw data are critical steps
in non-targeted metabolomics data-analysis since they determine the quality of the data for all the
remaining steps (Figure 2). Various peak picking algorithms exist, utilized by vendor-specific and
open-source software as well as freely available online services. Widely used examples of open-source
software include XCMS (and XCMS Online), MZmine and MS-DIAL. In this workflow, MS-DIAL
(http://prime.psc.riken.jp/Metabolomics_Software/MS-DIAL/) [17] is used for the peak picking; it has
user-friendly interphase and contains advanced tools for signal filtering, metabolite annotation,
chromatogram curation and visualization. After collection of the raw data, pre-processing is required
to monitor the quality of the data, make any required transformations/corrections to the data, as well
as reduce/merge the number of features originating from the same metabolite.

Figure 2. Workflow of the statistical analysis after the peak-picking step. The choices depend on the
type of data, the research question and the study design. The tools used for specific steps are listed on
the right side of the respective steps. Italicized names are names of external R packages, names ending
with () are major functions from the notame package. For more details, see the package documentation.

3.2.1. Peak Picking and Alignment

30. Before the peak picking, convert the raw instrumental data (i.e., *.d) to ABF format using Reifycs
Abf Converter (https://www.reifycs.com/AbfConverter). Follow the vendor-specific instructions
on the website.

31. For the peak picking in MS-DIAL (version 3.70), choose the following parameters:
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a. m/z tolerance according to the instrument mass accuracy; however, it is advisable to set a
bit higher tolerance to avoid screening out peaks close to the threshold, e.g., for QTOF we
have used tolerance of 0.01 Da or 10 ppm.

b. minimum peak height 2000 signal counts for QTOF (or at least 5 times the typical noise
level of the instrument; 3000 signal counts for highly concentrated plant samples).

c. mass slice width 0.1 Da (suitable for QTOF and other instruments with high mass accuracy).
d. linear weighted moving average as the smoothing method (smoothing level 3 scans and

minimum peak width 5 scans, according to developer recommendations).
e. in positive mode, select [M +H]+, [M +NH4]+, [M +Na]+, [M + K]+, [M + CH3OH +H]+

and [M − NH3 + H]+ as the most typical adducts and in-source fragments; in negative
mode, select [M −H]−, [M −H2O −H]−, [M + Cl]−, [M +HCOOH – H]− and [2M −H]− as
the adducts and in-source fragments. Depending on previous knowledge, more adducts
may be determined.

32. For the peak alignment, set the retention time tolerance according to method accuracy (for the
present method we have used 0.05 min and MS1 tolerance at 0.015 Da. Set the detection filter
(detected in at least one sample group) at 50%. Unselect the “detected in all QCs” option and
select gap filling by compulsion.

33. Once the peak picking is finished, export the alignment result as peak areas into a raw data matrix
as a tab-separated text file. Transform the data matrix into a datasheet in a spreadsheet software,
such as Excel. Insert additional columns to each datasheet specifying the chromatography and the
ionization mode before combining the datasheets into a single file. Remove columns containing
peak areas from auto-MS/MS data files.

3.2.2. Drift Correction and Flagging Low-Quality Features

LC–MS-based metabolomics suffers from systematic intensity drift during an LC–MS run.
This means that the signal intensity of a molecular feature either decreases or increases systematically
throughout the experiment. Removing this drift increases the quality of LC–MS data and allows
estimating the true biological effects more accurately. Unfortunately, some molecular features show too
much variation in the QC intensities even after drift correction. We use here different quality metrics
defined by Broadhurst et al. [10] for measuring the quality of a molecular feature before and after drift
correction. Low-quality features are flagged and not included in downstream data analysis. Note that
we do not recommend removing low-quality features completely, as they are sometimes needed in the
metabolite identification phase when searching for specific ions or fragments of known molecules.

34. Make sure that missing values are correctly represented. A peak picking software might use a
numerical value (such as 0, 1 or -999) to represent missing values, while other software such as R
have specific ways of representing missing values. For more information on handling missing
values, see Section 3.2.4.

35. Molecular features with too low detection rate in the QC samples should be flagged.
We recommend a threshold is 70%, meaning that a molecular feature needs to be detected
in at least 70% of the QC samples.

36. Log-transform the features prior to drift correction. Log-transformed data normally conform
better with the assumptions of the regression model used to model the drift. We use the natural
logarithm. Replace zeroes with a value slightly above one (e.g., 1.1) to make sure that all
log-transformed values are > 0.

37. The drift correction should then be performed by repeating steps 38–40 for each molecular feature.
These procedures are included in notame (function correct_drift()).

38. Model the drift function (fdrift) by fitting a smoothed cubic spline [23] to the QC samples, where
the abundance of the molecular feature is predicted by the injection order Figure 3a. Smoothed
cubic spline regression has one hyperparameter: a smoothing parameter, which controls the
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overall curvature of the drift function. The smoothing prevents the spline from overfitting the
drift function in the presence of a few deviating QC samples (see Figure 4). A suitable value
for the smoothing parameter is chosen by leave-one-out cross validation. For the R function
smooth.spline, [24] we recommend the smoothing parameter to be between 0.5 and 1.5.

Figure 3. A molecular feature before (a) and after (b) drift correction by smoothed cubic spline regression.
The horizontal lines represent 2 standard deviations from the mean of quality control (QC) samples
and biological samples, respectively. The systematic effect of the drift is reduced upon correction.

39. Correct the abundance of each sample using the following formula (for a sample with injection
order i):

xcorrected(i) = xoriginal(i) + mean
(
xQC
)
− fdri f t(i) (1)

40. Reverse the log transformation by applying the corresponding exponential function.
41. The drift correction procedure is visualized (Figures 3 and 4) by drawing a scatter plot of the

abundances against the injection order before and after drift correction. A line representing the
drift function should be added to the scatter plot before correction. To reduce the amount of
manual inspection, we usually only inspect potential candidate molecular features selected from
downstream statistical tests.

42. Optional step: Compute the quality metrics after drift correction and keep only the drift-corrected
values for the molecular features where the change in quality metrics indicate that the data quality
has been improved. For the other molecular features, retain the original values.

43. Flag or remove low-quality features. As recommended by Broadhurst et al. [10], only the
molecular features with RSD < 0.2 and D-ratio < 0.4 should be retained. In notame, this can be
done with the function flag_quality().
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Figure 4. A molecular feature in the presence of an outlying quality control (QC) sample (circled) before
(a) and after (b) drift correction by smoothed cubic spline regression. The horizontal lines represent 2
standard deviations from the mean of QC samples and biological samples, respectively. Due to the
smoothing, the correction method is robust against the deviating QC sample and adjusts seemingly
adequately for the global drift trend.

3.2.3. Quality Control

The raw data obtained from the peak picking software requires careful examination to estimate the
need for additional preprocessing such as drift correction (see 3.2.2.). In the now proposed workflow,
the data quality is monitored at each step of the preprocessing with a set of visualizations. Example
figures are based on RP positive data from a dietary intervention study [25], before and after drift
correction and removal of low-quality features. All the visualizations described in this section are
available in notame (see the visualizations vignette for details).

44. Draw the visualizations in steps 46-52 before drift and after drift correction.
45. Flag low-quality features to monitor data quality and the effect of preprocessing.
46. Apply a linear model to each feature, where the feature levels are predicted by injection order.

Fit the model separately for QC samples, biological samples and all samples. Then visualize
the effect of drift correction to individual features by drawing histograms of the p-values for the
regression coefficient of injection order (Figure 5). We represent the expected uniform distribution
by a horizontal line. Ideally, the p-values should roughly follow the expected uniform distribution,
which would mean that there is no systematic dependency between feature abundances and
injection order [26]. Unfortunately, this is rarely the case, but the closer the distribution is to
uniform, the better. It is recommended to apply this procedure separately on QC samples and
biological samples, which allows observing the drift patterns in both parts of the dataset.

66



Metabolites 2020, 10, 135

Figure 5. The six histograms illustrate p-values from linear regression models between each feature and
injection order. The dashed red lines represent the uniform distribution. The a.1 and a.2 histograms
show the p-values from before (a.1) and after drift correction (a.2) in all the samples. The b.1 and b.2
histograms focus only in the biological samples before (b.1) and after (b.2) drift correction. Finally,
the c.1 and c.2 histograms show only the p-values from the quality control (QC) samples before and
after drift correction. In this case, we have a strong drift in the LC–MS data because the p-values of the
QCs (c.1) tend to gather close to zero. After the drift correction, (c.2), p-values for the QCs are increased.

47. Draw boxplots (Figure 6) where each individual boxplot represents the distribution of all feature
levels in a sample: in the first boxplot order the samples by study group (a.1, a.2) (and possibly
time point). This can reveal systematic changes in the global feature levels across samples.
In the second type (b.1, b.2) order the samples by injection order, highlighting the QC samples.
This allows us to observe any systematic drift across the feature levels in the samples.

48. Before subsequent visualizations, mean center the features and divide by standard deviation.
49. Visualize the distribution of the Euclidean distances between samples using a density plot.

The plot should feature two distributions, the distribution of distances between QC samples and
the distances between biological samples. Ideally, the distribution of QC sample distances should
be narrow and well separated from the distribution of study samples (Figure 7).

67



Metabolites 2020, 10, 135

Figure 6. Boxplots of feature intensities per sample. The boxplots (a.1), where the samples are ordered
by study group (a.1) and (b.1), where the samples are ordered by injection order and quality control
(QC) samples are colored distinctly (b.1), show a clear systematic decrease in signal intensity during
the injection sequence. After the drift correction, the drift pattern is no longer observable (in boxplots
a.2 and b.2).

 

Figure 7. The density plot (a) shows a clear overlap between the distribution of quality control (QC)
samples and the biological samples, which indicates poor data quality. After drift correction and quality
control (b), the distributions are no longer overlapping.
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Principal component analysis (PCA) [27–29] or t-distributed stochastic neighbor embedding
(t-SNE) [30] can be used for observing patterns in the data by drawing scatter plots of the samples
in a low-dimensional space (Figures 8 and 9). PCA is a linear method, while t-SNE can also reveal
non-linear patterns. Unlike t-SNE, PCA offers information on loadings, i.e., on how the principal
components are constructed from original features. For these reasons, we consider PCA and t-SNE as
complementary methods. For conciseness we only show t-SNE figures here.

Figure 8. Investigating drift correction patterns using the t-SNE method. The quality control (QC)
samples are shifting systematically before drift correction (the line trend of the purple crosses symbol)
(a), whereas after the drift correction (b), the line trend of the QCs is gone and the QCs are now
group nicely.

Figure 9. The drift pattern in the injection order (the color trend) using the t-distributed stochastic
neighbor embedding (t-SNE) method is visible before drift correction (a), whereas after drift correction
(b), the samples are more randomly scattered.
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50. Draw scatterplots of the data points using PCA and t-SNE. Samples can be highlighted by coloring
the points in the scatter plot with a study factor (e.g., treatment groups or time points) to observe
trends in the data. Ideally, QC samples should cluster together (Figure 8). We also draw separate
plots where the samples are colored by injection order to observe drift patterns (Figure 9). If the
data quality is high, there should be no visible patterns according to injection order (Figure 9b).

51. Optional step: If there is a large number of samples and the points in the t-SNE plots tend to
overlap, draw a hexbin version of t-SNE scatter plots colored by injection order (Figure 10),
where the plot area is divided into hexagons and each hexagon is colored by the mean of the
injection orders of the points inside that hexagon. As before, in an ideal case, there should be no
visible drift patterns.

Figure 10. The hexbin plots show similar patterns as the scatterplots in Figure 9: The drift pattern
in the injection order (the color trend) using the t-distributed stochastic neighbor embedding (t-SNE)
method is visible before drift correction (a), whereas after drift correction (b), the samples are more
randomly scattered. The color of each hexagon corresponds to the mean injection order of the data
points in that hexagon.

52. Apply hierarchical clustering [31,32] to the samples and visualize the result in a dendrogram
(Figure 11a,b). The QC samples should cluster together early. We also draw a heatmap
(Figure 11c,d) representing pairwise distances between samples, where samples on the x and y
axes are ordered by hierarchical clustering. The QC samples should have smaller inter-sample
distances than other samples. Several techniques can be used for clustering. However, we have
consistently achieved good results with hierarchical clustering using Euclidean distances and
Ward’s criterion for linking clusters [32].
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Figure 11. The hierarchical clustering algorithm clusters quality control (QC) samples together even
before drift correction (a) whereas, after performing drift correction (b), the QC samples cluster more
clearly together. In the heatmap after the drift correction (d) a QC “block” pattern (purple color code),
is more clearly visible than in the heatmap before drift correction (c).

3.2.4. Imputation, Transformation, Normalization and Scaling

Missing data occur in metabolomics datasets for various reasons and managing this missingness
is highly challenging [33]. Imputation is the procedure of replacing missing data with reasonable
values using a priori knowledge or information available from the existing data. In this workflow,
we perform random forest (RF)-based imputation using the missForest package [33,34], although
several other procedures are available [35,36]. Data distributions can affect statistical analysis, especially
for variance-based models [37]. Consequently, transformation and normalization can be used to adjust
for data heteroscedasticity and skewed distributions among the molecular features. Depending on the
type of multivariate analysis chosen we will proceed with different normalization and transformation
approaches [38], however in the case of the feature-wise univariate analysis (Section 3.3.1) only
imputation is performed. All the preprocessing methods mentioned here are provided in notame (see
the preprocessing vignette for details).

53. Impute missing values using random forest imputation. QC samples should be removed prior to
imputation to ensure that the imputation is based on patterns in the biological data.

54. Transform the data using either natural logarithmic (nlog) or the generalized logarithmic (glog)
function when the data are heavily skewed [38].

55. Normalize the data by probabilistic quotient normalization (PQN) [38,39].
56. Perform mean centering and scaling by standard deviation (autoscaling), before multivariate

analysis; this is necessary with GLM-based methods as well as PCA and PLS-DA. However, this is
not required for scale invariant techniques such as RF [40].
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3.2.5. Clustering Molecular Features Originating from Same Metabolite

Now used peak picking software can detect isotopes, most common adducts and some in-source
fragments and combine those features into one entry in the data matrix. However, in LC–MS
analysis, unpredictable adduct behavior and neutral loss formation occurs frequently, resulting
in the same metabolite being redundantly represented in the data matrix, causing problems not
only for the identification of the compounds but also potentially in the data-analysis step due to
multiple collinearities.

We present here a method for clustering and combining these features. This approach was
developed bespoke to our workflow [41]. Partially similar methods to tackle this problem have been
published also elsewhere [42–44]. Features originating from the same compound are assumed to be
strongly correlated and have a small difference in their retention time. Thus, the algorithm initially
identifies pairs of correlated features within a specified retention time window. The user specifies
both the correlation threshold and the size of the retention time window. For illustration, a correlation
coefficient threshold of 0.9 and a retention time window of ±1 s are used. Spearman’s correlation
coefficient is used, as the relationship between features originating from the same compound is
assumed linear. However, this assumption may not hold true if some measured features are close to
lower or upper limit of quantification (LLOQ and ULOQ) of the instrument.

Next, an undirected graph of all the connections between the features is generated, where each
node represents a feature and each edge represents the corresponding correlation coefficient under the
retention time constraint (Figure 12a). The algorithm recursively identifies clusters presumed to reflect
the same analyte. In brief, this is achieved using a connectivity criterion, i.e., that the features within a
cluster should have strong correlation to a sufficient number of the other features within the cluster.
A detailed explanation of the algorithm is beyond the scope of this paper and has been included in the
Supplementary Materials (Section 1: Clustering features originating from the same compound) for
more advanced (bio) computational scientists.

Figure 12. (a) An example graph, where every node is a molecular feature and every edge represents a
high correlation coefficient and a small retention time difference between the features. (b) The graph
after the clustering procedure. Each color corresponds to a distinct cluster of features.
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After clustering, the feature with the largest median peak area per cluster is retained. All the
features that are clustered together are recorded for future reference. Figure 12b shows the state of the
graph from Figure 12a after clustering, with each final cluster colored differently.

57. Cluster the molecular features from each analytical mode separately using the algorithm described
above. Represent each cluster with the feature with the highest median abundance. Use these
features for multivariate analysis and the clustering information for metabolite identification.
The algorithm is provided in notame through the cluster_features() function.

3.3. Data Analysis

Once the raw data are checked for quality and analytical drift and the features originating
from same metabolites merged to reduce the data matrix, the next phase is to utilize data analytical
methods to discover the metabolites of biological importance within the taken study set-up. Preferably,
a combination of feature-wise and multivariate analyses can be applied (Figure 2). Notame provides
an interface for all the statistical tools mentioned in this section (see the statistics vignette for details).

58. Combine the features from the different analytical modes to a single data matrix. In notame,
this is achieved with the function merge_metabosets, which simply concatenates the data matrices
and feature information tables row-wise (each row corresponds to a feature) and preserves the
sample information unchanged. Note that combining analytical modes inevitably results in
increased redundancy in the data matrix, as many compounds are detected in multiple analytical
modes. However, combining the analytical modes is necessary so that all available information is
available for multivariate analysis methods.

3.3.1. Feature-Wise (Univariate) Analysis

In feature-wise analysis, two types of testing may be used depending on the data: parametric and
non-parametric test [45]. The choice of the test statistical depends on the data and the biological questions
of the study. Most typically parametric tests are used, but if the features do not satisfy the assumptions
of parametric tests, they may be replaced with non-parametric alternatives. Non-parametric methods
perform better when dealing with non-normal populations, unequal variances and unequal small
sample sizes.

59. For study designs with two groups and no covariates, such as case versus control studies, use a
simple Welch’s t-test, i.e., the extension of Student’s t-test to manage unequal variances between
groups. For a non-parametric alternative, consider a Mann-Whitney U test.

60. For studies with multiple groups, first apply Welch’s one-way analysis of variance (ANOVA),
which can manage unequal variances between groups, to select interesting features based
on overall p-value. To investigate differences between groups, conduct post-hoc pairwise
Welch’s t-tests.

61. For studies with two categorical study factors, apply two-way ANOVA, which allows examining
the main effect of each factor and their interaction. If one or both factors have multiple levels,
select interesting features based on overall p-values and conduct post-hoc pairwise t-tests as
above (bullet 59). For a non-parametric alternative, consider Friedman test.

62. For studies with repeated measurements, use a linear mixed effects model with the time point,
group and their interaction factors as fixed effects and the subjects as a random effect. If there are
no more than two groups or time points, use t-tests on the regression coefficients to assess the
significance of the effects. In the case of multiple groups and/or time points, use type III F-tests
for ANOVA-like tables, e.g., with the help of the R packages lme4 and lmerTest that provide all
the necessary tests [46,47].
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63. To test the strength of association between molecular features or between molecular features and
other variables, use Pearson correlation or Spearman correlation as a non-parametric alternative.
This can also be done post-hoc, after identification of key metabolites [14].

64. After performing feature-wise tests, p-values should be adjusted for multiple testing.
We recommend using the Benjamini–Hochberg false discovery rate (FDR) approach. Note that
FDR-adjusted p-values are frequently referred to as q-values. [45,48,49].

3.3.2. Multivariate Analysis

There are several powerful multivariate tools for analysis of metabolomics data. Dimensionality
reduction methods like PCA or t-SNE enable us to explore the data to identify outliers and patterns
among samples. Unsupervised clustering methods, such as hierarchical clustering are useful for
validating findings from dimensionality reduction methods, as they allow us to observe clustering
patterns in high-dimensional space.

Supervised learning techniques, such as partial least squares (PLS) and random forest (RF)
are useful for identifying the most interesting molecular features [50,51]. Both the PLS and RF
algorithms can be used for both regression and classification purposes. In the case of classification,
the PLS model is normally referred to as partial least squares discriminant analysis (PLS-DA).
Contrary to the unsupervised methods, supervised methods rely on known outcome or response (e.g.,
class membership) of each sample and can be used for predictive and descriptive modeling as well as
for discriminative variable selection. RF is highly flexible with 3 main advantages over PLS: RF does
not assume Gaussian distribution of the variables; RF does not assume linear relationships between
response and (latent) predictor variables; Finally, RF is scale invariant, which circumvents issues with
scaling and transformations of metabolomics data. On the other hand, it should be noted that PLS can
produce stronger models if model assumptions are met. Both PLS and RF offer statistics for evaluating
the importance of individual features, such as the variable importance in projection (VIP) values in
PLS and Gini index or mean increased error in RF.

65. Apply multivariate algorithms for prediction and variable selection. We employ the MUVR
package in R which includes both RF and PLS [50]. For each analysis, three different models
are obtained: the minimal-optimal (‘min’), ‘mid’ and all-relevant (‘max’) models (Figure 13).
The ‘max’ model corresponds to maximum information content once the non-informative features
have been removed and includes the highest numbers of relevant molecular features, thought
it may include some redundant features or highly correlated features. This model is normally
selected when e.g., pathway analysis will be applied afterwards. The ‘min’ model corresponds
to the minimal-optimal set of molecular features where the strongest biomarker candidates are
likely to be found. The ‘mid’ model corresponds to a compromise (geometric mean) between the
‘min’ and ‘max’ options, representing and with some redundancy between molecular features.
In the end, the selection of the model depends on the research interest and study question, such as
pathway analysis (‘max’), best prediction (‘mid’) or biomarker discovery (‘min’).

66. Optional Step: Follow this step if the MUVR package is not available (for example if other
software than R is used). Evaluate performance of the multivariate model. Use cross-validation for
PLS and out-of-bag error estimate for RF (for more information see [51])If the model performance
is satisfactory, record variable importance metric (VIP value for PLS and rise in error rate for RF)
for each feature.
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Figure 13. Modelling error measured as the number of miss-classification during internal
cross-validation in MUVR. The overall modelling error (black curve) initially decreases when removing
noisy variables until the ‘max’ model. Further removal of variables until the ‘min’ model removes
redundant features while keeping modeling error almost constant. The ‘mid’ model represents a
compromise between the ‘min’ and ‘max’ models and a theoretical optimum model. Light and dark
grey lines represent higher level of detail in the validation procedure and we refer to Shi et al. [50]
for details.

3.3.3. Ranking and Filtering for Variable Selection

After the completion of both feature-wise and multivariate analysis, results are combined via a
ranking method in order to determine the most robust and presumably biologically relevant metabolic
features to undergo identification.

67. The first step is to sort the molecular features according to their ranks that received though the
variable selection process, with the lowest rank or the most important rank (depending on the
software) being the 1st rank and the biggest rank or the least important rank being the nth rank
(n here is equal to the total number of molecular features available from the variable selection
method). In the MUVR package, the output from the ‘min’, ’mid’ or’ max’ models provides the
ranks for each of the molecular features already sorted by the smallest rank. The smallest rank
represents that this particular molecular feature is the most important one.

68. Similarly, for each univariate model, the molecular features are sorted based on their q. The 1st
rank is given for the feature with the lowest q-values from the FDR correction and the nth rank
for the largest one.

69. Then, the rank from the RF model e.g., ‘mid’ model for each molecular feature is added together
with the rank from the same molecular feature for the feature-wise model creating a new column
with the Final Ranks.

70. The choice of the total number of the molecular features that are selected in the end for further
analysis e.g., identification or pathway analysis is dependent strictly on the user.
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71. Optional Step: In case the MUVR package is not used for variable selection, the procedure of
ranking the molecular features stays the same for any type variable selection is chosen.

3.4. Visualization of Results

After feature-wise and multivariate analysis, we recommend visualization of patterns of the
dataset, both on a feature level and a global level as well as visualization of the p-values and effect size
measures, to offer a broad view of the results. All the visualizations in this section are provided in
notame unless stated otherwise (see the visualizations vignette for details).

3.4.1. Feature-Wise Graphs

While t-SNE figures (Figures 8 and 9) provide a solid overview of the overall patterns in the data,
visualizing effects of study factors on a molecular feature level is useful when interpreting the results.
The visualization type used depends on study design.

72. If the study has multiple study groups, the differences between groups can be illustrated by
beeswarm boxplots separately for each group (Figure 14).

Figure 14. Beeswarm boxplots for a molecular feature subdivided into study group.

73. If the study contains samples from multiple time points, the effect of time can be visualized with
a line plot using one line per subject together with a thicker line representing the mean at every
time point (Figure 15).

If the study contains both multiple groups and multiple time points, consider the
following visualizations:

For repeated measures data, plot least square means from the repeated measures model for each
study group. You should also add whiskers around the points representing 95% confidence intervals,
standard deviation or other measure of variability (Figure 16).
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Figure 15. The change in the abundance of a molecular feature as a function of time in each subject.
The thick red line represents the sample mean.

Figure 16. The change in the abundance of a molecular feature as a function of time in each study
group. The whiskers depict 95% confidence intervals.

77



Metabolites 2020, 10, 135

74. Draw a line plot similar to the one in step 73, but color the subject lines according to group and
draw separate mean lines for each group (Figure 17a). If the figure gets too cluttered, consider
plotting each group separately in small multiples, with a common y-axis (Figure 17b).

Figure 17. The change in abundance of a molecular feature between two time points in each subject,
colored by group (a). Data with time series from multiple groups is easier to read when divided to
small multiples (b). The bold lines represent group means. Note that the bold mean lines do not
necessarily reflect an overall trend present in each subject.
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3.4.2. Comprehensive Visualization of Results

Here, we present ways of visualizing results from both feature-wise and multivariate analysis.
For illustration, we use a simple case from the RP positive mode of an intervention study, where the
samples were taken from two time points, before and after an intervention. For feature-wise analysis,
we used a linear model with individual molecular feature as the dependent variable and the time
point as the independent variable. We also calculated fold change between the two time points for a
scale-free measure of effect size. For multivariate analysis we fit a PLS-DA model predicting the time
point from the features.

75. Visualize the patterns in the final dataset using unsupervised dimensionality reduction techniques
such as PCA [28] (Figure 18) and t-SNE. If the PCA score plot reveals interesting patterns, use a
PCA loadings plot to reveal which features contribute the most to the visualized components.

Figure 18. Principal component analysis (PCA) plot of samples from an intervention study, before
and after the intervention. The time points are somewhat separated, but no clear clusters or outliers
are visible.

76. If PLS(-DA) is used, visualize the samples in a PLS score plot (see Figure 19).
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Figure 19. Score plot of the first two components of a partial least squares-discriminant analysis (PLS-DA)
model trained to predict the time point of samples from an intervention study. The background color
indicates the prediction of the model: samples in the blue area are classified to time point “beginning”
and samples in the red area to time point “end”. Note that the time points are clearly more separated
than in the corresponding principal component analysis (PCA) plot (Figure 18). This is to be expected,
as PLS-DA finds components that specifically separate the two time points.

77. To visualize overall changes with respect to time in studies with multiple time points, use PCA
and t-SNE figures with arrows depicting change in each individual. The arrows should start at
the first time point and end at the last time point for each individual. We recommend plotting
each study group separately, as the plot can get crowded since the arrows occupy significantly
more space than points (Figure 20).

Figure 20. Changes in each subject between two time points visualized as arrows between points in
a principal component analysis (PCA) plot. Samples in different groups are separated into subplots.
While no group shows a systematic direction of change, we can observe that the subjects in group A
show greater overall change that subjects in the other groups.
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78. Visualize the distribution of p-values from feature-wise analysis in a histogram. Use a line
to depict the expected uniform distribution (under null hypothesis). If the distribution of the
p-values deviates from the line as in Figure 21, it can be argued that we are observing a real effect.

Figure 21. The distribution of p-values from linear models testing the difference in feature abundance
between two time points. Since the distribution clearly deviates from the uniform distribution depicted
by the red line, it can be argued that there is a true difference between the two time points.

79. Visualize the results of feature-wise tests in a volcano plot. Volcano plots are scatter plots with
p-values on the y axis and effect size (such as fold change) on the x-axis. Add a horizontal line
representing the significance threshold for FDR-adjusted q-values. To co-visualize multivariate
results, the features can be colored by their relevance score in the multivariate prediction
(Figure 22).
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Figure 22. A volcano plot of p-values (negative log10 scale) from linear models testing the difference of
feature abundances between two time points against fold changes between samples taken before and
after a dietary intervention (log2 scale). The features are colored by variable importance in projection
(VIP)-value from a partial least squares-discriminant analysis (PLS-DA) model trained to separate the
two time points. We can observe that the features with the smallest p-values tend to have fold changes
below 1, indicating that they are less abundant at the end of the intervention. Other metrics of effect
size, like Cohen’s d values, can also be used in volcano plots.

Manhattan plots are commonly used in genome-wide association studies (GWAS) to visualize
the location of the most significant single nucleotide polymorphisms on the genome. Manhattan
plots can be applied in metabolomics by using mass-to-charge ratio or retention time on the x-axis.
In addition, in cases where direction of effect can be determined, we can multiply the y-axis by the sign
of the effect to create so-called directed Manhattan plots. The Manhattan analogy is not lost since the
downward points represent the reflection of the skyline on the Hudson River. Note that Manhattan
plots should always be drawn separately for each column and ionization mode, as the metabolite
classes corresponding to certain m/z and retention time values depend on the column and ionization
mode used.

80. Use a Manhattan plot to connect the results of statistics to biochemical properties of the molecular
features. The Manhattan plot should have either retention time or mass-to-charge ratio as the
x-axis and –log10(p-value) on the y-axis. For a directed Manhattan plot, multiply –log10(p-value)
by the sign of the effect. The points in the Manhattan plot can be colored by the respective VIP
value from PLS-DA or another similar metric. Similar to volcano plots, add a horizontal line to
represent the significance threshold for FDR-adjusted q-values. Figure 23a,b show Manhattan
plots with mass-to-charge ratio and retention time on the x-axis, respectively.
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Figure 23. (a) A directed Manhattan plot of p-values from linear models testing the difference of feature
abundances between two time points with mass-to-charge ratio of the features as x-axis. The points
are colored by variable importance in projection (VIP)-value from a partial least squares-discriminant
analysis (PLS-DA) model trained to separate the two time points. The most interesting groups of
molecular features seem to have m/z ratios around 350 and around 800. Both groups are predominantly
lower in the end of the intervention. (b) A similar directed Manhattan plot, only with retention time
of the features as y-axis. The most interesting groups of molecular features seem to have retention
times around 9–10 min and around 11 min. The first group is predominantly lower in the end of the
intervention, while the features in the second group have mixed associations.
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81. To combine the information of both Manhattan plots, consider a scatter plot with m/z and
retention time on the x- and y-axis, with the size of the point reflecting p-value and potentially
colored by variable importance from multivariate modelling (e.g., VIP; Figure 24) or by effect
size (e.g., fold change; not shown). While size is not an accurate metric in visualizations,
this visualization combines mass and retention time so that the most interesting metabolite classes
can be identified. As with Manhattan plots, these plots should be drawn separately for each
column and ionization mode.

Figure 24. Scatter plot of molecular features in m/z vs retention time space, with the size of the points
reflecting p-values from linear models testing the difference in feature abundances between two time
points. The points are colored by variable importance in projection (VIP)-value from a partial least
squares-discriminant analysis (PLS-DA) model trained to separate the two time points. To avoid too
many overlapping points, only points with VIP value > 1 are drawn. We can observe that the most
interesting group of features has retention times around 9–10 min and m/z ratios around 350.

We utilize Multiple Experiment Viewer (http://mev.tm4.org/) for k-means clustering and
hierarchical clustering analyses, which group metabolites into separate clusters or into a hierarchy
tree, respectively. Multiple Experiment Viewer is a useful option for post-hoc analysis as it requires no
programming expertise. Readers familiar with programming can use other tools for similar results.

The heat maps produced from the analyses can be used to assess the impact of the intervention
and the number and proportion of metabolites behaving in a certain manner (Figure 25). We also use
the notame R package to produce heat maps of the identified metabolites and their associations with
e.g., clinical markers, in which case additional information may be added to each cell, such as the
statistical significance with circles, where a larger circle represents a lower p-value.
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Figure 25. Heat map of all the 12,579 molecular features detected in reversed phase negative mode
from cereal samples with some of the annotated compounds highlighted. k-Means clustering was
applied to the dataset, dividing it into distinct clusters (n = 13) based on the relative abundance of the
features across samples.

82. For the clustering in Multiple Experiment Viewer, first normalize the rows (signal abundances)
and select appropriate color scale limits for the normalized abundances (0 to 10% of features can
be off limits). For hierarchical clustering, choose whether to cluster only the features or samples
as well. Use Pearson correlation and average linkage clustering. For k-means clustering, choose
cluster genes, use Pearson correlation, calculate k-means and choose a low number of clusters
(e.g., 4) for the initial run. Repeat the procedure by increasing the number of clusters until no
more clusters with a unique pattern emerge and choose the highest number of clusters based on
this visual optimization.

3.5. Identification of Metabolites

The identification and annotation of metabolites is a critical step in any metabolomics study
to attribute biological meaning to the data analytical results and to enable further hypotheses to be
developed for subsequent studies. In recent years, the development of new software and online tools
as well as the emergence and expansion of publicly available spectral databases of metabolites have
greatly facilitated the identification process [52,53]. Nevertheless, metabolite identification remains
perhaps the most time-consuming task where manual curation is necessary and where not all detected
molecular features can be identified, leaving knowledge gaps for the interpretation of the results.
Alongside with the challenges related to the instrumental differences and matching the obtained
MS/MS data to databases, a key bottleneck restricting the level and number of identifications is the lack
of reference data for the vast number of metabolites produced by living organisms, estimated up to
one million for the plant kingdom [54] and more than 40,000 for humans [55]. Likewise, matching the
obtained MS/MS data to existing databases is not straightforward due to differences in experimental
conditions used for collecting the reference data. Other limitations may be related to poor quality or
lack of mass spectra from metabolites with low abundance in the sample.

85



Metabolites 2020, 10, 135

We utilize MS-DIAL [18] in the initial semi-automated step of metabolite identification, where
the experimental characteristics (exact m/z, retention time where applicable and MS/MS spectra in
CID voltages 10, 20 and 40 V) are compared with those in databases available in NIST MSP format.
These databases include MassBank [53], MoNA [56] and others available from the RIKEN Center for
Sustainable Resource Science website (http://prime.psc.riken.jp/Metabolomics_Software/) combined in
single files for the positive and negative ionization mode. Additionally, we have included our in-house
spectral library in the MSP files. The semi-automated identification process annotates metabolites
with similarity score 80% or above, after which the annotations are manually curated by assessing the
similarity of the MS/MS spectra and the alternative annotations proposed by the software.

After the curation of the metabolites annotated by MS-DIAL, the remaining unknown metabolites
undergo additional searches in databases that are primarily available online, including METLIN [52]
for small metabolites and LIPID MAPS [57] for unknown metabolites with RP retention time in the lipid
region (> 9 min). Additional attempts to characterize the unknowns are made utilizing MS-FINDER [18],
which 1) calculates and scores the possible molecular formulas based on the exact mass and isotopic
pattern, 2) searches for compounds corresponding to the likely molecular formulas from non-spectral
chemical libraries and 3) compares the experimental MS/MS spectrum of the unknowns with in
silico-generated MS/MS spectra of the candidate structures.

3.5.1. Comparison with Pure Standard Compounds (MSI Level 1)

83. For the identification of metabolites (identification level 1 according to the Metabolomics Standards
Initiative) [58], compare the molecular features against an in-house library (i.e., a reference standard
analyzed previously with the same platform in the same chromatographic conditions). Apply the
following criteria:

a. matching m/z (within 10 ppm or according to instrument mass accuracy);
b. similar retention time (ΔRT < 0.2–0.5 min), taking into consideration any possible

near-eluting isomers.
c. MS/MS spectra (main fragments matching within 0.02 Da in one or more CID voltage)

3.5.2. MS/MS Fragmentation and Database Comparison (MSI levels 2–3)

84. For the putative annotation of metabolites (ID level 2), compare the mol features against publicly
available spectral databases, including a database file (compiled in MSP format for using within
MS-DIAL) and online databases. The annotation has acceptable reliability if the main fragments
(excluding the molecular ion) match between the experimental and reference MS/MS spectra in
only one proposed metabolite. In case several alternatives exist with similar MS/MS, the common
denominator of all the alternatives (e.g., a compound class, ID level 3) is given as the annotation
instead. Apply the following criteria:

a. matching m/z (within 10 ppm or according to instrument mass accuracy)
b. MS/MS spectra (main fragments matching within 0.02 Da)

85. For the putative characterization of compound class (ID level 3), use the following approaches to
obtain characteristic information of the metabolite:

a. Compare the experimental MS/MS with in-silico generated spectra in MS-FINDER;
b. Use the calculated molecular formula, retention time and diagnostic MS/MS fragments to

determine the compound class.

3.5.3. Pathway Analysis

Once molecular features are annotated as metabolites, pathway analysis may be conducted to
better understand the biological relevance of the metabolites, as well as their involvement in metabolic
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pathways, e.g., related to intervention effects of disease etiology [1,3]. We consider identification of
metabolites until level 2 (putative annotation) to be essential prior to pathway analysis. Of the several
pathway analysis tools that are freely available, we use predominantly MetaboAnalyst and Cytoscape.
For both tools, conversion of metabolite name to HMDB or KEGG ID that are generally recognizable
by the pathway analysis software is essential, since one molecule can have multiple names according
to the preference of each research group.

86. Option 1: In MetaboAnalyst [59] (https://www.metaboanalyst.ca/) use Enrichment or Pathway
Analysis which enables enrichment and visualization of metabolic pathways in which the
metabolites could potentially be involved. For more detailed information about metabolic
regulation, the Network Explorer enables inclusion of fold change data, along with gene
expression data.

87. Option 2: Cytoscape [60] (https://cytoscape.org/) is a powerful stand-alone tool that is used by
biomedical researchers to visualize and dynamically analyze gene/protein/metabolite interaction
networks. The strength of Cytoscape is even more apparent when linked to databases, e.g.,
MetScape [61], which allows for visualizing and interpreting metabolomic data in the context of
human metabolic networks.

A step-by-step instruction to use the software is listed in the Supplementary Materials (Section
2: Tutorial on Pathway Analyses Tools). It is worth to mention that pathway analysis may not
be helpful for lipids, due to i) the limitation of the non-targeted LC–MS metabolomics platform to
differentiate the position of the double bonds within the lipid molecule, which impairs the translation
of lipid identity to KEGG or HMDB ID and; ii) that most pathway analysis tools would group certain
lipid classes that vary greatly based on their fatty acid composition to one node, which may not be
biologically meaningful. As an example, phosphatidylcholines with different acyl composition, will be
grouped into one node of phosphatidylcholine regardless of the acyl composition, which may not
accurately represent acyl transfer in vivo. This gap hence emphasizes the need of pathway analysis
tool specialized for lipid molecules.

3.6. Biological Interpretation of the Results

The analytical procedure described above is aimed to identify metabolites and metabolic pathways
that are affected in the chosen study design e.g., differences in circulating metabolites after dietary or
other interventions or processing-induced alterations to the phytochemical composition of a certain
food. While the described workflow is efficient in elucidating such metabolites, the ultimate value lies
in the demonstration of biological significance. The findings need to be related to the scientific context
and interpreted in the light of existing biological knowledge. Optimally, findings can be validated e.g.,
in subsequent studies, where the most interesting/important metabolite species may be chosen for
additional analysis, often encompassing development of targeted, quantitative analytical approaches
and analyzed in different study populations. An example of such approach is the recent discovery of
various trimethylated compounds related to whole grain consumption [62] and the establishment of a
quantitative method within another cohort [63].

4. Conclusions

Non-targeted metabolic profiling analysis employing liquid chromatography and mass
spectrometry analysis has proven its usefulness in various fields of natural and medical sciences during
the last couple of decades and has greatly improved our capabilities to explore and understand the
chemical space in biological samples. Notame workflow encompasses all the essential steps in metabolic
profiling studies, from generation of samples to the interpretation of the results and is aimed to serve
as a general guideline for setting up and executing metabolomics studies, as well as support users with
an in-housed developed R package (notame, version 0.0.1 https://github.com/antonvsdata/notame).
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Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/4/135/s1,
Section 1: Clustering features originating from the same compound, Section 2: Tutorial on Pathway Analyses Tools.
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Abstract: Metabolite identification for untargeted metabolomics is often hampered by the lack of
experimentally collected reference spectra from tandem mass spectrometry (MS/MS). To circumvent
this problem, Competitive Fragmentation Modeling-ID (CFM-ID) was developed to accurately predict
electrospray ionization-MS/MS (ESI-MS/MS) spectra from chemical structures and to aid in compound
identification via MS/MS spectral matching. While earlier versions of CFM-ID performed very well,
CFM-ID’s performance for predicting the MS/MS spectra of certain classes of compounds, including
many lipids, was quite poor. Furthermore, CFM-ID’s compound identification capabilities were
limited because it did not use experimentally available MS/MS spectra nor did it exploit metadata in its
spectral matching algorithm. Here, we describe significant improvements to CFM-ID’s performance
and speed. These include (1) the implementation of a rule-based fragmentation approach for lipid
MS/MS spectral prediction, which greatly improves the speed and accuracy of CFM-ID; (2) the
inclusion of experimental MS/MS spectra and other metadata to enhance CFM-ID’s compound
identification abilities; (3) the development of new scoring functions that improves CFM-ID’s accuracy
by 21.1%; and (4) the implementation of a chemical classification algorithm that correctly classifies
unknown chemicals (based on their MS/MS spectra) in >80% of the cases. This improved version
called CFM-ID 3.0 is freely available as a web server. Its source code is also accessible online.

Keywords: mass spectrometry; liquid chromatography; MS spectral prediction; metabolite identification;
structure-based chemical classification; rule-based fragmentation; combinatorial fragmentation

1. Introduction

Liquid chromatography (LC) coupled to mass spectrometry (MS) or tandem mass spectrometry
(MS/MS) has become one of the leading techniques for compound identification in organic chemistry,
natural product chemistry, and metabolomics [1,2]. In the field of metabolomics, LC-MS/MS is
widely used to identify and quantify individual chemicals in complex biological or environmental
mixtures. For untargeted MS-based metabolomics, high performance or ultrahigh performance liquid
chromatography (HPLC or UHPLC) is first performed to separate compounds in the sample and then
electrospray ionization (ESI) mass spectrometry (MS and MS/MS) is used to collect the mass spectra of
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each chromatographic peak. In order to identify individual compounds, the resulting MS/MS spectra,
along with the chromatographic retention time and parent ion masses of the compound of interest, are
then (ideally) compared to the MS/MS spectra and retention time of authentic standards to confirm the
compound’s identity.

Because of the limited availability of many authentic chemical standards in most metabolomics
labs, putative metabolite identification is more commonly performed [3]. Putative identification (MSI
level 2) is achieved by comparing the MS/MS spectra to experimentally collected reference spectra
found in various MS/MS spectral databases. Key to the success of this putative identification process is
the availability of a large, comprehensive database containing experimentally collected MS/MS spectra
of pure compounds that covers a large portion of “chemical space”. Unfortunately, publicly available
databases of experimental MS/MS spectra currently cover a total of only ~20,000 unique compounds [4].
Consequently, as reported in many large-scale metabolomic studies [5,6], the percentage of MS spectral
features that can be confidently assigned to known compounds is often less than 2%. As a result, the
compound identification step continues to be the central bottleneck in almost all untargeted MS-based
metabolomic studies.

Given the cost of synthesizing or acquiring the 100,000’s of chemicals needed to create the
required experimental MS/MS spectral libraries, a growing number of scientists are turning to in
silico metabolomic methods to facilitate compound identification. Over the last decade, a number
of computational MS approaches have been developed for this purpose. Some of the more popular
software tools use MS/MS fragmentation trees and spectral fingerprints (e.g., CSI:FingerID [7]) of an
observed ESI-MS/MS spectrum to rank the likelihood that a given chemical structure could produce
such a spectrum. Other tools arrange substructures of a candidate molecule into a format that best
explains the fragmentation pattern observed in a given experimental MSn spectral tree (MAGMA [8]).
Still others, such as MetFrag [9] use in silico fragmentation of candidate molecules, based on a given
mass spectrum and mass of a precursor molecule to identify its structure. Competitive Fragmentation
Modeling-ID (CFM-ID) [10–12] use in silico fragmentation techniques to predict ESI-MS/MS (for LC-MS)
or EI-MS (for GC-MS) spectra for a given structure. By matching the observed MS/MS spectrum
to a library of predicted MS/MS spectra, it is possible to identify or rank which compound is being
observed. It is widely believed that increasing the number (and accuracy) of in silico-predicted spectra
should increase the likelihood of successfully identifying compounds from newly acquired MS/MS
spectra [13].

The two main in silico MS fragmentation techniques are rule-based approaches and combinatorial
approaches. Rule-based “fragmenters” use hand-made rules based on experimentally observed
fragmentation patterns that are specific to one or more structural features or chemical classes. These
rules are typically extracted from analyzing the scientific literature or, preferably, learned from in-house
experimental data. Mass Frontier™ (ThermoFisher, CA; HighChem, Bratislava, Slovakia) is an example
of a software tool that uses hand-made fragmentation rules. Once the rules are implemented, this
approach can be very fast, consistent, and accurate. However, a major disadvantage to this approach is
that the design of fragmentation rules requires considerable expert curation. Furthermore, these rules
cannot be applied to novel classes of molecules. For these reasons, much more emphasis has recently
been put toward the implementation of computational combinatorial fragmentation approaches.
Combinatorial fragmentation approaches iteratively cleave chemical bonds within a molecule in a
combinatorial fashion, and use (or learn) penalty scores that favor the cleavage events that are most
likely to occur at each step. Examples of tools that implement combinatorial fragmentation include
CFM-ID [10–12], MetFrag [9], and FiD [14].

CFM-ID is a publicly available software tool and web server that can be used for MS/MS
spectral prediction, MS/MS spectrum peak assignment, as well as MS-based compound identification.
It implements a technique known as Competitive Fragmentation Modeling (CFM). CFM is a probabilistic
generative modeling method that uses a customized cost function to take into account the structural
composition of a molecule to predict its electrospray ESI-MS/MS spectrum. The original version of
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CFM-ID was used to generate a reference MS/MS spectral library of over 51,000 known compounds from
the HMDB [15] and KEGG [16] databases at 3 different collision energies (10, 20, and 40 eV). This spectral
library was used by CFM-ID (version 1.0 and version 2.0) to suggest candidate molecules that match
input experimental MS/MS spectra. In 2015, the original version of CFM-ID was shown to outperform
FingerID and an earlier version of MetFrag in various identification tasks from ESI-MS/MS spectra [11].
However, subsequent tests and studies that further assessed the performance of CFM-ID have shown
that a number of improvements could be made to the program and its spectral database [11,12].

For instance, one well-known limitation of CFM-ID is its very slow and relatively poor performance
for predicting MS/MS spectra of lipids and other large “segmented” or modular metabolites. This is
primarily due to the length of the fatty acids or attached head-group segments, leading to a combinatorial
explosion of the possible fragments at each step of the in silico fragmentation process. As demonstrated
by Kind et al. [17], who developed LipidBlast, and Tsugawa et al. [18], who studied sphingolipid
fragmentation, the use of structure-based fragmentation rules appears to be much better at handling
lipids and other large segmented or modular molecules (such as carbohydrates) than combinatorial
fragmentation. However, it is important to note that LipidBlast also has some limitations. For instance,
it does not provide a well-defined set of fragmentation rules or algorithms that can be incorporated
into other computational MS spectral prediction tools. Furthermore, while LipidBlast does provide
m/z values and heuristically modeled static relative abundances for fragment ions, the annotation of
fragment ion peaks is limited to formulas and does not include actual structures. Moreover, LipidBlast
predict consensus mass spectra, and does not distinguish between different collision energies. These are
the kinds of output that are typically found with most in silico fragmenters, and these shortcomings
have been addressed in this update to CFM-ID.

In addition to the incorporation of compound-specific fragmentation rules, it has also been
shown that significant improvements in MS-based compound identification can be achieved by
including metadata or other forms of external data in the spectral matching and scoring functions [9].
In particular, the inclusion of citation frequency (the number of times a given compound is mentioned
in the literature), along with the incorporation of experimentally collected MS/MS spectra in the
reference spectral database can often improve compound identification performance by a factor of 2 or
more [19]. When taking into account the chemical similarity or the distribution of structural features or
chemical classes (via ClassyFire [20]) among candidates, it is often possible to improve the performance
even further [7]. Based on these and other developments in the field of in silico metabolomics and
in silico mass spectrometry, we have implemented a number of modifications to CFM-ID. These
modifications have helped in a number of important ways, including (1) achieving faster and more
accurate prediction of MS/MS-spectra for 21 classes of lipids, (2) enabling the expansion of CFM-ID’s
reference spectral library to include both experimental and predicted MS/MS spectra, (3) enhancing
CFM-ID’s ability to incorporate metadata and chemical similarity, (4) improving CFM-ID’s compound
identification rates, and (5) enhancing CFM-ID’s ability to predict the structural class of compounds
for query spectra that could not be matched in CFM-ID’s spectral database. The improved version of
CFM-ID is called CFM-ID 3.0. It is freely available as a web server at http://cfmid3.wishartlab.com. Its
source code is accessible at https://sourceforge.net/p/cfm-id/wiki/Home (combinatorial fragmentation
tool) and https://bitbucket.org/wishartlab/msrb-fragmenter/ (rule-based fragmentation tool).

2. Results

2.1. Encoding Lipid Fragmentation Rules

Our manual analysis of experimentally acquired lipid MS/MS spectra provided a basis for the
generation of 344 unique fragmentation rules covering 21 lipid classes and 7 adducts, for a total of 50
combinations of lipid classes and adduct types. Each rule describes a chemical reaction that fragments
the precursor molecule to generate a specific fragment. The structure and mass-to-charge ratio of the
fragment can be easily computed based on the encoded pattern. For each lipid class, an ESI-MS/MS
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spectrum can be simulated by CFM-ID 3.0 at collision energies of 10, 20, and 40 eV. In general, almost
all ESI-MS/MS spectra of lipids show similar fragmentation patterns with characteristic losses of the
polar head group, and the acyl or alkyl chains, with relatively little fragmentation within the acyl or
alkyl chains. For example, in choline-containing glycerophospholipids, the most commonly observed
fragments include phosphocholine (C5H14NO4P+ ion; neutral mass = 184.0733 Da) and the cyclic
1,2-cyclic phosphate diester (C2H6O4P+ ion; neutral mass = 125.0003 Da). Figure 1 illustrates consensus
fragmentation patterns for phosphatidylcholines from their [M+H]+ precursor ions. The number of
rules for each lipid class and the number of covered adduct types per lipid class are shown in Table 1.
These fragmentation rules are also available at https://bitbucket.org/wishartlab/msrb-fragmenter/.

Figure 1. Fragmentation patterns of phosphatidylcholines obtained from their [M+H]+ precursor ions.
Among all resulting fragments, only the precursor ion is observed at each of the three energy levels.
The ion fragment C5H14NO4P+ (red arrow) corresponding to phosphocholine is observed at 20 and
40 eV, and the remaining fragments were observed only at 40 eV.

Table 1. Number of fragmentation rules and adduct types covered for each chemical category.

Lipid Class Number of Covered Rules Number of Covered Adduct Types

1-Monoacylglycerols 8 [M+Li]+; [M+NH4]+

2-Monoacylglycerols 11 [M+H]+; [M+NH4]+; [M+Na]+

1,2-Diacylglycerols 10 [M+NH4]+; [M+Na]+

Triacylglycerols 19 [M+Na]+; [M+NH4]+; [M+Li]+

Phosphatidic acids 22 [M+H]+; [M+Na]+; [M−H]−

Phosphatidylcholines 41 [M+H]+; [M+Na]+; [M+Li]+; [M+Cl]−

Phosphatidylethanolamines 24 [M+H]+; [M+Na]+; [M−H]−

Lysophosphatidylcholines 29 [M+H]+; [M+Na]+; [M+Li]+; [M+Cl]−

Lysophosphatidic acids 12 [M+H]+; [M−H]−

Phosphatidylserines 28 [M+H]+; [M+Li]+; [M+Na]+; [M−H]−

Ceramides 17 [M+H]+; [M+Li]+; [M−H]−

Sphingomyelins 13 [M+H]+; [M+Li]+; [M+Na]+

Cardiolipins 13 [M−2H](2H)−

Phosphatidylglycerols 11 [M−H]−

Lysophosphatidylglycerols 7 [M−H]−

Plasmanyl-PC
(1-alkyl,2-acylglycero-3-phosphocholines) 17 [M+H]+; [M+Cl]−

Plasmenyl-PC
(1-(1Z-alkenyl)-glycero-3-phosphocholines) 17 [M+H]+; [M+Cl]−

1-Alkanylglycerophosphocholines
(Monoalkylglycerophosphocholines) 15 [M+H]+; [M+Cl]−; [M+Na]+

1-Alkenylglycerophosphocholines
(1-(1Z-alkenyl)-glycero-3-phosphocholines) 13 [M+H]+; [M+Cl]−

Phosphatidylinositols 9 [M−H]−

Lysophosphatidylinositols 8 [M−H]−

Total 344 50
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2.2. The New CFM-ID 3.0 Spectral Library

The original CFM-ID 2.0 spectral library contained 102,153 unique computationally generated
ESI-MS/MS spectra (from 51,635 compounds). Because of improvements in the spectral prediction
performance, additions of new compounds, and the decision to add experimental spectra, the new
CFM-ID 3.0 spectral library has been expanded by a factor of 2.6 over the original CFM-ID 2.0
spectral library (as of February 2019). In particular, the new library now contains a total of 167,547
computationally generated ESI-MS/MS spectra (generated via CFM-ID 3.0) from 108,972 compounds
in the HMDB [15]; 22,914 computationally generated ESI-MS/MS spectra from 11,685 compounds
in KEGG [16]; and 83,049 experimentally collected ESI-MS/MS spectra from 21,904 compounds.
The compounds in CFM-ID 3.0’s experimental MS/MS spectral library are structurally and functionally
diverse, and originate from various databases/libraries including HMDB (human metabolites) [15],
DrugBank (drugs and drug metabolite) [21], KEGG (metabolites and drugs) [16], PhytoHub (dietary
phytochemicals and their metabolites) [22], GNPS (natural products) [23], and MoNA [24]. In addition,
568 spectra from the CASMI 2014 [25] and CASMI 2016 [19] challenges were imported into the
database. Moreover, 3953 spectra that were experimentally acquired at the Metabolomics Innovation
Center (TMIC, Edmonton, AB, Canada) were also added. Each of the 229,084 compounds in the new
spectral library was assigned a citation score (described below) that is used as metadata in compound
identification tasks. Each compound in the spectral library has two or more citations. A summary of
the library’s statistics is displayed in Table 2.

Table 2. Statistics for the Competitive Fragmentation Modeling-ID (CFM-ID) 3.0 spectral database.

Feature Value

Total number of unique compounds 229,084

Total number of unique ESI-MS/MS spectra 397,679

Total number of experimental ESI-MS/MS spectra 87,570

Total number of predicted ESI-MS/MS spectra 310,109

Number of compounds with ≥1 experimental ESI-MS/MS spectra 13,537

Number of compounds with ≥1 predicted ESI-MS/MS spectra 108,972

Number of compounds with ≥2 citations 229,084

Average number of citations per compound 272

Number of compounds with chemical classification assignments 229,084

Average number of chemical category assignments/compound 25

In our effort to improve the identification rates, a full chemical classification was computed for
all 229,084 unique compounds using the computational chemical classifier called ClassyFire [20]. An
average of ~25 chemical categories were assigned per compound. The chemical classification was
used to adjust CFM-ID’s original scoring system, to take into account the chemical composition and
chemical similarity among candidate molecules. This compound classification process also served as
a basis to predict the chemical class of any new compound corresponding to the query spectrum in
identification tasks.

2.3. Performance Testing

2.3.1. Lipid ESI-MS/MS Spectral Prediction

Two tests were performed to assess CFM-ID 3.0’s lipid spectral prediction performance. One was
for speed while the other was for accuracy. In terms of speed, CFM-ID 3.0 averaged 0.395 ± 0.03 s of
computation time to predict each of the 120 lipid ESI-MS/MS spectra in the test set, while CFM-ID 2.0
averaged 68.58 ± 0.21 s for the same task. This represents a speed-up of 173.6X. Clearly, the rule-based
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approach for lipid analysis used in CFM-ID 3.0 is significantly faster than the combinatorial approach
used in CFM-ID 2.0. For most other kinds of molecules, the average processing time for CFM-ID (3.0
and 2.0) is about 23.75 ± 0.2 s. Clearly, the computational slow-down for lipid spectral calculation (due
to the many potential fragmentation combinations) is quite significant, which largely motivated us to
develop a faster rule-based approach.

In terms of spectral prediction performance, the average spectral similarity score (measured using
the dot product) between the experimental lipid ESI-MS/MS spectra (collected on a QTOF at multiple
collision energies) and the CFM-ID 3.0-predicted ESI-MS/MS spectra was 0.85 ± 0.2. On the other
hand, the average spectral similarity score between the CFM-ID 2.0-predicted ESI-MS/MS spectra
and the experimental ESI-MS/MS spectra was 0.09 ± 0.1. This suggests that the accuracy of CFM-ID
3.0 for lipid spectral prediction is 11X better than that of CFM-ID 2.0, which is highly significant. It
is worth mentioning that CFM-ID predicts ESI-MS/MS spectra at three different collision energies
while other programs, such as LipidBlast, generate a consensus MS/MS spectrum that essentially
merges the MS/MS spectra over all collision energies. Therefore, during our comparative analysis, only
one LipidBlast-generated consensus ESI-MS/MS spectrum was used for each unique compound and
compared against the experimental spectrum, independent of the energy level. The average spectral
similarity score between the LipidBlast-predicted ESI-MS/MS spectra and the experimental ESI-MS/MS
spectra was 0.34 ± 0.4. Figure 2 shows head-to-tail plots comparing the experimental ESI-MS/MS
spectrum of dipalmitoyl phosphatidylcholine (PC(16:0/16:0)) collected at a 40 eV collision energy with
the corresponding in silico spectra predicted with CFM-ID 2.0 [11] (Figure 2a), CFM-ID 3.0 (Figure 2b),
and LipidBlast [17] (Figure 2c), respectively. The experimental spectrum was measured in positive ion
mode ([M+H]+), with a collision energy of 40 eV.

(a) 

Figure 2. Cont.
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(b) 

(c) 

Figure 2. Head-to-tail plot of experimental and predicted electrospray ionization-tandem mass
spectroscopy (ESI-MS/MS) spectra of PC(16:0/16:0). (a) Head-to-tail plot showing an experimental
ESI-MS/MS spectrum of dipalmitoyl phosphatidylcholine (PC(16:0/16:0)) measured at 40 eV, and
the matching ESI-MS/MS spectrum predicted by CFM-ID 2.0. The computed spectral similarity
score is 0.07. (b) Head-to-tail plot showing an experimental of ESI-MS/MS spectrum of dipalmitoyl
phosphatidylcholine measured in positive ion mode ([M+H]+) at 40 eV, and the matching ESI-MS/MS
spectrum predicted by CFM-ID 3.0. The computed spectral similarity score is 0.88. (c) Head-to-tail plot
showing an experimental of ESI-MS/MS spectrum of dipalmitoyl phosphatidylcholine measured in
positive ion mode ([M+H]+) at 40 eV, and the matching ESI-MS/MS spectrum predicted by LipidBlast.
The computed spectral similarity score is 0.13.
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As seen in Figure 2, the spectral similarity between the CFM-ID 2.0-generated spectrum and the
experimental ESI-MS/MS spectrum was 0.07, with CFM-ID 2.0 being able to predict only two fragments
that were observed in the experimental spectrum (namely, the C5H12N+ and C5H14NO4P+ ion
fragments). For this particular example, CFM-ID 2.0 predicted 31 fragments (Figure 2a) while CFM-ID
3.0 predicted 10 fragments (Figure 2b), 7 of which were observed in the experimental ESI-MS/MS
spectrum. It is worth noting that the remaining three fragments result from fragmentations that
were observed in experimentally measured ESI-MS/MS spectra of phosphatidylcholines obtained for
[M+H]+ adducts at 40 eV. For this example, the spectral similarity score was 0.88 when comparing the
experimental ESI-MS/MS spectrum with the CFM-ID 3.0-predicted spectrum. Surprisingly, the dot
product score was only 0.13 when compared with the LipidBlast-predicted ESI-MS/MS spectrum to the
experimental ESI-MS/MS spectrum. Figure 3 shows comparisons between experimental and predicted
ESI-MS/MS spectra for 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (PS(16:0/18:1(9Z))) in the
negative ([M−H]−) ion mode at a collision energy of 40 eV. The measured spectral similarity scores
between the experimental and the in silico-generated spectra are 0.10, 0.92, and 0.91 with CFM-ID 2.0
(Figure 3a), CFM-ID 3.0 (Figure 3b), and LipidBlast (Figure 3c), respectively.

(a) 

Figure 3. Cont.
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(b) 

(c) 

Figure 3. Head-to-tail plot of experimental and predicted ESI-MS/MS spectra of (PS(16:0/18:1(9Z))).
(a) Head-to-tail plot showing an experimental of ESI-MS/MS spectrum of 1-palmitoyl-2-oleoyl-
sn-glycero-3-phospho-L-serine (PS(16:0/18:1(9Z))) measured at 40 eV, and the matching ESI-MS/MS
spectrum predicted by CFM-ID 2.0. The computed spectral similarity score is 0.10. (b) Head-to-tail plot
showing an experimental ESI-MS/MS spectrum of 1-palmitoyl-2-oleoyl-sn- glycero-3-phospho-L-serine
(PS(16:0/18:1(9Z))) measured at 40 eV, and the matching ESI-MS/MS spectrum predicted by CFM-ID 3.0.
The computed similarity score is 0.92. (c) Head-to-tail plot showing an experimental ESI-MS/MS spectrum
of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (PS(16:0/18:1(9Z))) measured at 40 eV, and the
matching ESI-MS/MS spectrum predicted by LipidBlast. The computed similarity score is 0.91.
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As highlighted in Table 3, CFM-ID 3.0 significantly outperforms CFM-ID 2.0 in terms of lipid
spectral prediction performance (average score of 0.85 versus 0.09) and CFM-ID 3.0 generally outperforms
LipidBlast (average score of 0.85 versus 0.34). Another important advantage of CFM-ID 3.0 over LipidBlast
is the fact that it generates spectral predictions for multiple collision energies (10, 20, and 40 eV) whereas
LipidBlast only provides a single spectrum at an undefined collision energy. Furthermore, all spectral
predictions generated by CFM-ID 3.0 include information about not only the m/z values and their relative
intensities but also the structure of the predicted fragments (expressed as InChI and SMILES strings) for
every predicted peak. LipidBlast only provides the m/z values and intensities.

Table 3. Computed spectral similarity scores between experimental and predicted ESI-MS/MS spectra
at three energy levels (10, 20, and 40 eV). The results show higher similarities, and thus an improvement
when using a rule-based approach (CFM-ID 3.0) over a combinatorial one (CFM-ID 2.0) for the prediction
of lipid ESI-MS/MS spectra. The spectral similarities of the LipidBlast-generated consensus spectra
further illustrate this trend. When available, the same LipidBlast-generated consensus spectrum was
used for comparisons at each energy level. N/A corresponds to cases where (1) the adduct type was not
covered by CFM-ID 2.0 at all, or (2) the adduct type was not covered by LipidBlast for the chemical
class to which the test compound belongs.

Compound Adduct
Energy

(eV)
CFM-ID 3.0

(Score)
CFM-ID 2.0

(Score)
LipidBlast

(Score)

PA(16:0/18:1(9Z)) [M−H]− 10 1.00 0.36 0.00

PS(16:0/18:1(9Z)) [M−H]− 10 1.00 0.31 0.00

CL(18:0/18:0/18:0/18:0) [M−2H](2H) 10 0.98 N/A 0.00

DG(18:0/20:4/0:0) [M+Na]+ 10 0.92 0.00 N/A

PA(16:0/18:1(9Z)) [M−H]− 20 0.55 0.02 0.00

PS(16:0/18:1(9Z)) [M−H]− 20 0.98 0.03 0.00

CL(18:0/18:0/18:0/18:0) [M−2H](2H) 20 0.97 N/A 0.12

DG(18:0/20:4/0:0) [M+Na]+ 20 0.93 0.00 N/A

PA(16:0/18:1(9Z)) [M−H]− 40 0.96 0.03 0.90

PS(16:0/18:1(9Z)) [M−H]− 40 0.92 0.10 0.91

CL(18:0/18:0/18:0/18:0) [M−2H](2H) 40 0.91 N/A 0.89

DG(18:0/20:4/0:0) [M+Na]+ 40 0.18 0.00 N/A

PC(16:0/16:0) [M+H]+ 40 0.88 0.07 0.13

TG(18:1/18:1/18:2) [M+NH4]+ 40 0.78 0.01 0.84

2.3.2. Compound Identification Using the New Scoring Functions

A set of 1,000 compounds was used to train a new and improved scoring function for ESI-MS/MS-based
compound identification (see Section 4.5). This function was developed in order to optimize CFM-ID
3.0’s compound identification performance using spectral matching scores, compound classification
information from high-scoring hits, and compound metadata (citations). The models were obtained using
5X cross-validation, and tested on different sets. Table 4 compares the performance of CFM-ID 3.0 versus
CFM-ID 2.0 (2016 and 2019) and MS-FINDER [26] for compound identification based on 208 ESI-MS/MS
spectra from 185 unique compounds. The test involving CFM-ID 2.0 for 2016 and 2019 used the same
algorithm and scoring functions. However, the 2019 version mentioned here uses the expanded spectral
library, compared to the in silico spectral library of 2016. The test spectra correspond to those provided for
the CASMI 2016 contest (category 3). To establish a baseline and ensure the spectral similarity matching
method worked, we first queried the 208 experimental spectra against the full spectral database (with
those same 208 spectra included). In this case, both CFM-ID 2.0-2019 and CFM-ID 3.0 correctly identified
all 208 query compounds with perfect spectral similarity scores. The 208 experimental spectra were then
removed from the CFM-ID 3.0’s spectral library and the queries were run again. As illustrated in Table 4,
CFM-ID 3.0 was able to correctly identify the query compound in 149 out of 208 challenges, compared
to only 123 by CFM-ID 2.0-2019 or 120 by CFM-ID 2.0-2016. This represents an improvement of 21.1%
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over CFM-ID 2.0. The query compound was generally ranked higher (average rank = 1.8) by CFM-ID
3.0 compared to CFM-ID 2.0-2019 (average rank = 2.4). CFM-ID 3.0 also achieved a better medal score
(848) compared to CFM-ID 2.0-2019 (718). A medal score is calculated as the sum of weighted top 1
ranks with 5 points (gold medal), top 2 ranks with 3 points (silver), and top 3 ranks (bronze) with 1 [19].
CFM-ID 2.0-2016 and MS-FINDER [26] were also evaluated in the CASMI 2016 contest (category 3). As the
original winner of the CASMI 2016 contest, MS-FINDER correctly identified the query compound in 146
cases [19]. However, as shown in Table 4, MS-FINDER scored 20% fewer top 3 hits compared to CFM-ID
3.0. Moreover, MS-FINDER achieved a lower medal score (766 versus 848), and had a much lower average
“hit” rank (6.4 versus 1.8) compared to CFM-ID 3.0. It is also worth noting that CFM-ID 2.0-2016 scored the
lowest in terms of top 1 hits, had the lowest average “hit” rank (13.6), and the lowest medal score (just 600).

Table 4. Comparison of CFM-ID 3.0, CFM-ID 2.0, and MS-FINDER scoring functions upon identification
of 185 compounds from 208 ESI-MS/MS spectra. Reported are the total number of challenges in which
the corresponding implementation of the scoring function ranked the query compound in the top 1, top
3, and top 10. The average and median ranks for the query compound are also reported. A chemical
classification is assessed as correct if the predicted category matches a category originally assigned
by ClassyFire. N/A, not applicable; * performance when applied over the expanded spectral library
database including the 208 experimental ESI-MS/MS from the CASMI 2016 contest (category 3).

Version # Top 1 # Top 3 # Top 10
Average

Rank
Median

Rank
# Correct

Classifications

CFM-ID 3.0 149 194 204 1.8 1 168

CFM-ID 2.0-2019 123 171 201 2.4 1 N/A

CFM-ID 2.0-2016 120 160 182 13.64 1 N/A

MS-FINDER 146 162 174 6.4 1 N/A

CFM-ID 3.0 * 208 208 208 1 1 N/A

CFM-ID 2.0-2019 * 208 208 208 1 1 N/A

2.3.3. Compound Chemical Classification

For this assessment, the 208 challenge MS/MS spectra (corresponding to 185 distinct compounds)
from the 2016 CASMI competition were used as queries. CFM-ID 3.0 was used to predict the chemical class
of the query compound with the predicted class being the direct parent (according to ClassyFire [20]) of
the highest-ranked compound. The direct parent is the parental or broader chemical class in the ClassyFire
hierarchy to which a compound belongs. It typically corresponds to the largest identifiable chemical
skeleton or most dominant feature of the classified compound [20]. In case of a tie, the predicted class
was identified as the most frequently occurring chemical class among the direct and alternative parents
of all compounds with the highest score. Alternative parents are categories in the ClassyFire ontology
that describe the classified compound and do not display a parent–child relationship to each other or
to the direct parent [20]. When using ESI-MS/MS spectra as input, CFM-ID 3.0 correctly predicted the
chemical class in 168 out of 208 challenges. Interestingly, in 19 out of the 168 challenges, the corresponding
query compound could not be correctly identified. These results suggest that CFM-ID 3.0 was still able to
capture key structural features that characterize the fragmentations observed in the corresponding input
MS/MS spectra. These findings also demonstrate the importance of using a diverse set of compounds and
MS/MS spectra to assist with compound identification or classification. In particular, they highlight the
need for large compound/spectral databases for proper compound identification.

3. Discussion

3.1. ESI-MS/MS Lipid Spectra Prediction

The much better performance for lipid spectra prediction via rule-based fragmentation approaches
(CFM-ID 3.0) relative to combinatorial fragmentation approaches (CFM-ID 2.0) is likely due to two
factors. First, lipids are modular molecules and so the MS fragmentation patterns seen under
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most collision energies are easily understood and relatively simple to describe. On the other hand,
combinatorial fragmenters have no knowledge of molecular structure and so they cannot recognize
modular structures. Instead, they view lipids as molecules with dozens of breakable bonds, all of
which could potentially be fragmented. This leads to a substantial over-prediction of MS peaks.
The second reason why combinatorial fragmenters do not perform well on lipids is that they have
generally not been “trained” on lipid spectra. For example, CFM-ID 2.0 was only trained on ~1000
experimental MS/MS spectra, none of which included lipid MS/MS spectra. Similarly, MetFrag [9],
another combinatorial fragmenter, was also not originally programmed to handle lipid MS/MS spectra
(although a later version was [27]). By expanding CFM-ID’s training set and including lipid spectra as
well as other modular compound classes in that training set, CFM-ID could potentially improve its
performance to match even the rule-based fragmenter.

Overall, our results show that CFM-ID 3.0 was able to reproduce most lipid fragments with
accurate m/z ratios and reasonably accurate relative intensities. Characteristic fragment ion losses
(e.g., loss of polar head, or side chains) were also well reproduced. CFM-ID 3.0’s spectral predictions
also include many ion fragments that are independent of the acyl or alkyl chain(s) of the molecular
ion, including the cyclic 1,2-cyclic phosphate diester (neutral m/z = 125.0003) fragment, which is
often observed in ESI-MS/MS spectra of various choline glycerophospholipids. Interestingly, most of
these kinds of fragments are not reported in LipidBlast-generated spectra. On average, the spectral
similarity score between experimental ESI-MS/MS spectra and LipidBlast-generated spectra was
0.34 ± 0.4. One of the reasons for the lower similarity scores for LipidBlast has to do with the fact that
it generates only one consensus spectrum per compound, which tends to more closely match with
experimental ESI-MS/MS spectra collected at 40 eV. As a result, the average spectral similarities for
LipidBlast-generated spectra to experimental spectra obtained at 10 and 20 eV are very low.

As expected, some discrepancies were observed when comparing predicted MS/MS spectra with
the corresponding experimental MS/MS spectra. First, the relative peak intensities were generally
found to be higher in the predicted MS/MS spectra than the experimental spectra. Second, the peak
lists are often not identical. MS/MS spectral peak intensities are very difficult to predict and vary
considerably depending on the instrument, the instrument parameters, and experimental design. For
instance, phosphatidylcholines, when analyzed by Q-TOF instruments, tend to lose the molecular ion
even at medium collision energies. On the other hand, when phosphatidylcholines were analyzed on
ion-trap MS instruments, the molecular ion was still highly abundant at medium collision energies, and
was significantly fragmented only at high energies [28–30]. In addition to instrument differences, the
type of solvent being used can affect the extent to which a compound is fragmented. However, rather
than focusing on these subtleties, we chose to focus on selecting (and annotating) the most abundant
or most characteristic fragments, which were generally reproducible on different instruments, and
reported in multiple studies.

While CFM-ID 2.0 predicts fragmentation probabilities and numeric peak intensities for all
query compounds, CFM-ID 3.0 does not predict numeric peak intensities for lipid spectra (however,
it still predicts numeric peak intensities for all other classes of molecules). Instead, CFM-ID 3.0
predicts categorical peak intensities for lipid spectra (low, medium, high, and maximum abundance).
This simple categorization partly explains why, in many cases, the relative peak intensity is higher
in predicted lipid spectra compared to experimental spectra. We believe that a larger lipid MS
spectral training set (at least 10+ spectra per chemical class and adduct type) would help to improve
the prediction of numeric intensities and simulate their variation between collision energies more
accurately. Another limitation of CFM-ID 3.0’s rule-based approach for lipid prediction is that the
current fragmentation rules do not take the information about the stereochemistry and the position of
double/triple bonds into consideration. Therefore, the existing rules do not allow one to distinguish
between stereoisomers or regiomers. This is a common problem for rule-based “fragmenters”, since
the incorporation of such distinctions would require the acquisition of a much more diverse and larger
set of high-resolution MSn spectra.
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CFM-ID 3.0 returns the structure (in InChI or SMILES strings) for all predicted fragments. This
helps to provide a rationale for nearly all observed peaks. Additionally, this linkage simplifies the lipid
ESI-MS/MS spectral annotation process. Because CFM-ID 3.0 provides MS/MS spectra at three energy
levels (10, 20, and 40 eV), it means that the predicted MS/MS spectra can be matched more closely
to real experimental conditions and real experimental MS/MS spectra. Many other spectral libraries
(LipidBlast, NIST) only provide consensus MS/MS spectra for lipids, which makes it difficult to relate
experimental data to the predictions.

3.2. Compound Identification and Chemical Class Prediction

The incorporation of citation counts in MS-based compound identification protocols has
been consistently shown to improve identification rates in recent studies on spectral/compound
identification [19,31]. However, an obvious limitation of this approach is that it reduces the probability
of identifying novel or rare compounds that have never been cited. Citation counts can also bias
the ranking scheme to select one very similar structure (and therefore a very similar MS spectrum)
over another purely on the basis of one having slightly more citations than another. To help balance
the influence of citation counts, we incorporated chemical classification into our new scoring system.
In this way, the scientific relevance or approximate abundance (in terms of citations) as well as the
structural features among candidates could be taken into consideration. Using this approach, a new
scoring function was developed for compound identification in CFM-ID 3.0. This new function helped
to improve MS-based compound identification quite significantly (see Table 4). When applied to 208
identification challenges on a CFM-ID spectral library containing the 208 ESI-MS/MS spectra, both
CFM-ID 2.0 and CFM-ID 3.0 were able to identify all 208 compounds based on spectral similarity.
However, as pointed out earlier, it can be expected that most spectral libraries, including CFM-ID 3.0’s,
will not include (the same) experimental spectra corresponding to a compound of interest. Thus, the
use of metadata (i.e., citations) in addition to spectral similarity can help improve identification rates.
In particular, when applied to 208 identification challenges, CFM-ID 3.0’s ESI-MS/MS scoring function
achieved an improvement in overall ranking and identification rate (21.1%) over CFM-ID 2.0’s original
scoring function. We believe the use of diverse training sets of compounds, representing widely varying
structures and structural classes was critical to achieving this improved performance. Our work in this
area also confirmed the notion that more work needs to go into expanding spectral databases with
experimental data and that this will ultimately improve spectral/compound identification performance.

CFM-ID 3.0 was also assessed with regard to its performance in chemical class prediction. While
it may not be possible to identify the exact compound via MS/MS spectral matching, the ability to
use MS/MS spectra to narrow down the correct chemical class or chemical family for a given query
spectrum or compound can be very valuable for many applications in metabolomics or natural product
de-replication. In assessing the performance of CFM-ID’s chemical class prediction, the same scoring
system introduced here was used to rank the individual candidates. However, in order to perform
a formal chemical class identification, the query compound was predicted to belong to the “direct
parent” class of the highest-ranked candidate. In cases of a tie, the predicted chemical class was
predicted to be the most frequently occurring among all the direct and alternative parents among
all the compounds with the highest score. Upon testing the new ESI-MS/MS scoring function on
208 challenges, the correct class was predicted in 80.8% of the challenges (compared to 71.6% for
correct compound identification). This result indicates that even when a compound was not identified
correctly, the correct class prediction could still be made (in 19 cases). This suggests that CFM-ID
3.0 is still able to identify structural features that characterize the MS/MS fragmentation patterns of
certain classes of compounds. These results also demonstrate the importance of using a diverse set of
compounds and spectra, as well as the need of having a sufficiently large database to enable compound
(or compound class) identification via spectral matching. Structurally similar compounds tend to
produce similar spectra. Therefore, even if the compound (and its corresponding MS/MS spectrum) is
not in the database (or is poorly ranked), a large number of compounds/spectra from related compound
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classes could still help to identify the correct compound class. We believe that this helped CFM-ID 3.0
achieve its relatively good performance in the class prediction task.

The inclusion of additional data (citation frequency and chemical class information) in the CFM-ID
scoring functions clearly improved compound identification performance. We also believe these
improvements were partially aided by the much-improved quality of lipid MS/MS spectra predicted
by CFM-ID 3.0. While we made substantive improvements to the quality of CFM-ID’s lipid spectra
prediction, more work still needs to be done in CFM-ID to better predict the MS/MS fragmentation of
other classes of compounds (such as alkaloids, polyphenols, terpenes, and steroids) and to increase
the quality of other predicted MS/MS spectra. The addition of many more experimental ESI-MS/MS
spectra, measured with various MS instruments, and under different conditions, is also expected to
help capture spectral patterns that are not yet accurately predicted by CFM-ID’s algorithm, and thus,
improve its overall compound identification performance.

4. Materials and Methods

To improve CFM-ID’s overall performance for MS/MS analysis, we pursued several algorithmic
and database enhancements such as (1) encoding and validating rules for ESI-induced fragmentation
of 21 classes of lipids; (2) implementing an automated chemical classification schema (via ClassyFire)
for both CFM-ID’s database and its query compounds; (3) redesigning, expanding, and improving
CFM-ID’s MS/MS spectral library (by including experimental MS/MS spectra and adding many
thousands of predicted ESI-MS/MS spectra, as well as metadata); (4) collecting citation information
from various sources for all of the compounds in CFM-ID’s MS/MS spectral library; and (5) modifying
CFM-ID’s scoring function to incorporate the above changes and improve its overall performance.

The encoding of the lipid rule-based fragmentation approaches was added to improve the speed
and accuracy of CFM-ID’s lipid ESI-MS/MS predictions, as well as to cover a larger pool of experimental
conditions as reflected by different adduct types. The use of ClassyFire’s chemical classification
method [20] was implemented to automate the rule-based/combinatorial-based decisions for CFM-ID
and to improve CFM-ID’s ability to identify or re-rank potential MS/MS spectral matches based on
structural similarity. The redesign and expansion of the CFM-ID’s spectral database was performed to
accelerate search speeds, reduce the memory requirements, and to grow the spectral database size (of
both predicted and known MS/MS spectra) by a factor of 2.6 so as to improve the likelihood of user
query spectral matches. The inclusion of citation data was intended to enhance the scoring accuracy of
potential MS/MS spectral matches, while the modification of CFM-ID’s scoring function was intended
to improve its overall performance. Details regarding how all of these changes were implemented are
described below.

4.1. Encoding Lipid Fragmentation Rules

Our analysis of numerous databases and the literature indicated that there are 21 major classes of
lipids for which MS/MS spectra are best predicted using hand-made fragmentation rules. The encoding
of these hand-made lipid fragmentation rules involved several steps: (1) experimentally measuring
or compiling (via literature) characteristic MS/MS fragment ions observed at each of three collision
energy levels (10, 20, and 40 eV) for each lipid class, (2) determining the relative abundance of each
fragment ion at each energy level, (3) accurately determining the chemical structure and m/z values of
each of the fragment ions, (4) including more MS/MS experimental conditions (and adduct ions) by
expanding the list of adduct types covered by previous versions of CFM-ID, and (5) implementing
these rules using standardized cheminformatics languages (SMARTS [32] and SMIRKS [33]) in order
to rapidly and accurately predict and annotate ESI-MS/MS spectra for lipids.

4.1.1. Acquisition of Reference Lipid MS/MS Spectra

The generation of the lipid fragmentation rules required the acquisition of experimental ESI-MS/MS
spectra for a number of lipids and lipid classes. The acquired spectra were collected at several collision
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energies, for various adduct types (e.g., [M+H]+, [M−H]−), and, if possible, from various MS
instruments. This was used to help capture fluctuations or biases that can be introduced by the
different parameters. A total of 533 experimental MS/MS spectra were collected for 16 standard lipids
(purchased from Avanti Polar Lipids Alabaster, AL) from 15 lipid classes at various collision energies
(10 to 60 eV), in both positive and negative mode using an AB Sciex QTrap 4000 MS instrument. For
each lipid standard, an enhanced MS (EMS) scan was first collected to identify precursor ions with
high abundance in either ionization mode. Enhanced product ion (EPI) scans were then collected
for each precursor ion to generate the MS/MS spectra with different collision energy levels ranging
from 10 to 60 eV, with the supervision of a mass spectrometry expert. For more information about the
collection of spectra for the 16 standard lipids, see Supplementary Material. In addition to the MS/MS
spectra collected in our laboratory, published lipid MS/MS spectral data were compiled from the
LIPID MAPS [28] and the MoNA [24] databases. For the LIPID MAPS spectra, only annotated spectral
images were available. Therefore, MS/MS peak lists were generated by annotating the peaks using a
semi-automated approach. This approach consisted of computing the relative abundance of each peak,
and manually mapping it to the m/z list provided in the LIPID MAPS spectrum. In addition to the
experimental spectra, the LipidBlast and FAHFA 26 libraries, as well as MassBank [34], mzCloud [35],
and the sphingolipid library of Tsugawa et al. [18] served as references that provided additional
information for lipid classes not covered by our experiments. In total, 844 lipid MS/MS spectra from 21
lipid classes were collected and analyzed.

4.1.2. Annotation of Reference Lipid MS/MS Spectra

With the lipid MS/MS spectra in hand, we proceeded to manually annotate each spectrum.
This consisted of assigning each fragment ion peak to a specific structure and a specific reaction or
fragmentation event (e.g., the loss of a water molecule from a [M+H]+ precursor ion, the loss of a side
chain, or the presence of a specific fragment). The annotation of spectra was limited to the in-house
generated MS/MS spectra and the LIPID MAPS set, as both were measured with the same model of
instrument (AB Sciex QTrap 4000). The annotation process was largely guided by the information
provided in LIPID MAPS, LipidBlast, and other scientific reports [17,28,29,36]. In a number of cases,
the same compound had MS/MS spectra in at least two of the data sets (including the LipidBlast
database), and the corresponding spectra were available for the same adducts or ions. In these cases,
we annotated the spectra by direct comparison of the peak lists. Among the 21 lipid classes, 11 were
not covered by our in-house experimental data. For this reason, the MS/MS spectra of these missing
lipid classes were extracted from the LIPID MAPS (experimental) and/or LipidBlast (in silico) library.
Since the experimental and theoretical spectra acquired from other sources (LipidBlast, LIPID MAPS)
did not always cover all three collision energy levels (10, 20, and 40 eV), the generation of consensus
fragmentation patterns was done by comparing standards to corresponding experimental spectra
obtained under the same conditions (adduct type and collision energy). Moreover, when applicable,
experimental MS/MS spectra collected from other sources (e.g., MoNA) and obtained under similar
experimental conditions were compared to one another, as well as to theoretical spectra. In particular,
theoretical spectra from LipidBlast helped in the spectral annotation. The fragmentation and spectral
annotation rules were further validated by mining the scientific literature and acquiring/confirming
additional spectral data from published papers. Once the energy-specific fragmentation patterns were
generated, the relative abundance of each peak was assigned to one of the four intensity levels: low
(1–15%), medium (15–60%), high (60–90%), or maximum (90–100%) abundance level. The assigned
intensity was based on observed relative abundances from our experimental spectra. The maximum
level of abundance was assigned to the base peak, typically when no fragmentation was observed
(usually at a low collision energy). Additional feedback from local MS experts combined with an
extensive review of the lipid MS/MS literature helped to complete the spectral annotation process. This
effort led to the near-complete annotation of all observed fragment ions, their precise m/z values, and
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the corresponding fragmentation reactions for a total of 610 peaks from 21 lipid classes at each of 3
collision energies (10, 20, and 40 eV).

4.1.3. Implementation of Lipid Fragmentation Rules

The annotated fragment ions along with their structures and reactions provided the basis for
the creation of fragmentation rules. All of the fragmentation rules were implemented in the Java
programming language through a new “lipid fragmenter module” in CFM-ID. The structural backbone
of each lipid or lipid fragment class was represented using the Daylight SMARTS language [32]. This is
a module implemented in ClassyFire (version 2.1), a software tool for automating structure-based
hierarchical annotation of chemicals [20]. To accelerate the lipid classification process, a sub-ontology
from the ChemOnt [20] ontology was used. For each lipid or lipid fragment class, one set of
fragmentation patterns is encoded for each of the applicable adducts as chemical reactions. The
chemical reactions are represented using the Daylight SMIRKS language [33]. Moreover, SMARTS
strings are used to select the appropriate fragments [32]. Additionally, a number of transformation
rules were encoded to standardize the structures of all the query compounds. The standardization
of the fragmentation reactions using well-developed cheminformatics languages ensures that the
structural representations are consistent for all query compounds, structural classes, and chemical
reactions. Without adhering to these standards many chemicals classes could be misidentified or
invalid fragments could be returned.

The new CFM-ID lipid fragmenter program has been fully integrated into the existing spectral
prediction workflow of the previous version of CFM-ID [12]. In CFM-ID 3.0, the lipid MS/MS prediction
tasks require a lipid structure (submitted as a SMILES string or SDF file) and an adduct or an ion
as input. Upon submission, the compound is classified based on its structure via ClassyFire. If the
compound is identified by ClassyFire as a lipid molecule belonging to any of the covered classes and if
the fragmentation patterns applicable to the selected adduct exist in the lipid fragmentation library,
then the compound is fragmented accordingly. The fragmentation operation is executed using the
AMBIT library [37]. After the in silico fragmentation step is completed, the relative abundance of each
peak is assigned (using the fragmentation rules described above), and three ESI-MS/MS spectra are
generated (at 10, 20, and 40 eV). Relative intensities are assigned using a set of pre-calculated intensities
based on the chemical class, the adduct type, and the collision energy. The fragmentation patterns,
as well as the relative intensities of the resulting peaks, are the same for all compounds from the
same chemical class, under the same experimental conditions (i.e., adduct type and collision energy).
If no set of fragmentation patterns is applicable to the compound and/or the selected adduct, and
the compound is not a glycero-, phospho- or sphingolipid, then the ESI-MS/MS spectra are predicted
using the original CFM-ID algorithm as implemented in CFM-ID 2.0. However, if the compound is
a glycero-, phospho- or sphingolipid, the computation is stopped, and an error message is returned.
This is done to ensure that CFM-ID does not use the combinatorial fragmentation algorithm, which, as
mentioned, does not perform well for such compounds. The resulting ESI-MS/MS spectra are then
returned with each peak annotated by its m/z value, its relative abundance, and the chemical structure
of the corresponding fragment encoded in a standard SMILES format. Additionally, any available
experimental MS spectra in the CFM-ID spectral database matching the query compound are also
displayed in the results alongside the predicted spectra.

4.2. Integration of Chemical Classification

Similar structures tend to undergo similar MS fragmentation events under the same conditions.
For this reason, a number of in silico MS fragmentation algorithms now take the chemical structure of
query molecules into consideration for improved MS-spectra prediction and compound identification
tasks. For the prediction of EI-MS/MS spectra, CFM’s scoring function partly relies on a list that describes
the presence or absence of 107 functional groups and 86 fragment descriptors. These groups and
fragment descriptors are provided by ClassyFire [20] and RDKit [38], respectively. Other computational
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tools such as CSI:FingerID [7] rely on models that can predict the presence of functional groups and
fragments based on a given compound or a given MS-spectrum. For this reason, it might be
expected that for compound identification tasks, the highest-ranked candidates would likely share a
significant number of functional groups or possibly share a maximum common substructure. This
information would be particularly helpful in cases where it is very difficult to discriminate between
the highest-ranked candidates. More specifically, the presence of one or more common structural
backbones (e.g., diterpene, ceramide, phosphatidylglycerol, etc.) could significantly impact the ranking,
when very structurally similar candidates are prioritized among those that have a high spectral
similarity to the query compound.

Therefore, a chemical classification was assigned to each compound in CFM-ID 3.0’s database.
The chemical classification was computed by ClassyFire and retrieved using the ClassyFire API [20].
As will be described later in this section, the chemical class assigned to candidate molecules was taken
into account along with other metadata to improve the original CFM scoring method (dot product or
Jaccard score). In addition to the adjustment of the scoring function, chemical classification was also
used to predict the chemical class(es) to which the query compound belonged. Formally, the predicted
chemical class corresponds to the direct parent of the highest-ranked candidate. In case of a tie, the
predicted chemical category is the most frequently occurring direct or alternative parent among all
candidates that has the highest score.

4.3. Collection of Compound Citations

Several studies have demonstrated that the integration of metadata can significantly improve
compound identification rates with spectral library searches [7,9,19]. In particular, the frequency
with which a compound is mentioned in the literature could serve as a proxy for the likelihood
that the compound is sufficiently abundant for detection via MS/MS methods. Therefore, every
compound in the CFM-ID spectral library was assigned a citation score. An initial set of citation
counts was obtained using DataWrangler. DataWrangler is an in-house tool that automatically mines
PubChem [39], HMDB [15], ChemSpider [40], and ChEBI [41], and returns a unique list of scientific
reference citations for a given compound. A second set containing PubMed citation counts (without
PubMed IDs) was obtained by mining the EPA’s CompTox dashboard [42]. This set was computed and
generously provided to us by the CompTox dashboard’s development team. The two sets were merged
by comparing each compound’s InChI keys. More specifically, when a compound had a citation count
in only one set, the corresponding citation count was assigned to that compound. For compounds that
had citation counts both from DataWrangler and CompTox, the largest count was assigned, as it was
expected that both counts could include many of the same citations. A total of 140,379 compounds
were assigned a citation count of 1 or more. For the remaining compounds, DataWrangler assigned a
custom citation count of 1, if and only if, they were found in at least one of the following databases:
HMDB [15], DrugBank [21], T3DB [43], ContaminantDB [44], FooDB [45], ECMDB [46], YMDB [47],
and PhytoHub [22].

4.4. Redesigning and Expanding of CFM-ID’s Spectral Library

The original reference spectral library in CFM-ID 2.0 contained unique computationally generated
ESI-MS/MS spectra for ~51,000 compounds from the HMDB and KEGG databases. These in silico
ESI-MS/MS spectra were computed in positive ([M+H]+) and negative ([M−H]−) ionization modes, one
for each of three collision energies (10, 20, and 40 eV). In order to significantly improve identification
rates, the new CFM-ID library was updated as described below.

4.4.1. Collection of Experimental MS/MS Spectra from External Sources

While the accuracy of computationally predicted MS spectra is often quite good, the accuracy
of experimentally collected MS spectra is obviously much better. Therefore, the inclusion of
experimentally determined ESI-MS/MS spectra would be expected to improve the match scores

109



Metabolites 2019, 9, 72

for query spectra/compounds that have previously been analyzed by ESI-MS/MS. Experimentally
determined ESI-MS/MS spectra were downloaded from the MassBank of North America’s (MoNA)
online repository [24]. As of February 2019, MoNA contained 89,861 experimental LC-MS/MS spectra for
12,799 compounds. The spectra and compounds in MoNA originate from several databases, including
the HMDB database [15], MassBank [18], the GNPS database [23], and the ReSpect database [48], among
others. Only experimental spectra were collected from MoNA. An additional 915 ESI-MS/MS spectra
were manually regenerated for 523 compounds from information contained in the NIST 14 database.

Since CFM-ID uses models trained on MS/MS spectral data sets that use specific collision energy
and mass accuracy criteria, the HMDB, MoNA, and NIST spectra were further filtered to match these
criteria. Specifically, experimental MS spectra were required to have a known ionization type, a known
compound neutral mass, and to have been analyzed with high-resolution MS instruments (e.g., Q-TOF
instruments) in the case of LC-MS spectra. After filtering, there were 72,678 usable experimental
MS/MS spectra remaining from the MoNA dataset. These experimental MS/MS spectra were converted
into the peak list format required for CFM-ID and uploaded into CFM-ID’s online spectral library. In
addition, the complete library of experimental MS/MS spectra from the HMDB was obtained from our
in-house repository, and filtered. Upon filtering, this library contained 1152 unique ESI-MS/MS spectra
for 239 unique compounds.

4.4.2. Compilation of Predicted ESI-MS/MS Spectra

The original CFM-ID 2.0 database contained 102,153 unique computationally generated ESI-MS/MS
spectra (from 51,635 compounds). Among the 102,153 ESI-MS/MS spectra, 36,746 were previously
computed for 18,373 unique compounds belonging to the 21 lipid classes covered by the rule-based
fragmenter, and transferred to the CFM-ID 3.0 database. The remaining 65,407 mass spectra computed
by CFM-ID 2.0 were also moved to the CFM-ID 3.0 database. In total, ~36,900 spectra were generated for
18,438 lipids. To this database, another ~207,956 ESI-MS/MS spectra were computed for another ~80,000
lipids and 7288 other metabolites obtained from new versions of HMDB, DrugBank, and PhytoHub.
These compounds were added to the CFM-ID 3.0 database. These predicted ESI-MS/MS spectra were
generated for both positive and negative ion mode as well as at three different collision energies (10,
20, and 40 eV). In total, the CFM-ID 3.0 database now contains 310,109 computationally generated
ESI-MS/MS spectra (from 155,544 compounds). If the experimental ESI-MS/MS spectra are added to
this total, the CFM-ID 3.0 spectral database now contains a grand total of 393,158 ESI-MS/MS spectra.

4.5. Modifying CFM-ID’s Scoring Function and Ranking Schema

The results of the Critical Assessment of Small Molecular Identification (CASMI) 2016 contest
showed that the integration of additional data (i.e., citation frequency of compounds and structure
similarity) into the original scoring function for CFM-ID improved compound identification rates [19].
This trend was also observed for several other tools during the contest and in separate studies [9,19].
To create a combined score, the original dot product spectral similarity score computed by CFM-ID was
combined with a citation score and a chemical classification score. The citation score is based on the
number of citations that a given compound has in the scientific literature. More highly cited compounds
are typically those that are more commonly detected, studied, or used. Therefore, the citation score
serves as a proxy of the general abundance or concentration of a compound and is intended to favor
more abundant compounds over extremely rare or compounds at very low biological concentrations.

The chemical classification score is based on the number of chemical categories to which a
compound is assigned (by ClassyFire), relative to the total pool of chemical classes assigned to all
candidate molecules. The chemical classification score was added to help re-rank or cluster structurally
similar molecules (and MS spectra) closer together. Each of the three scores was normalized by dividing
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its computed score by the maximum score across the candidate list. The general formula for the total
candidate score is:

STOTAL(C) = aCFMORIG ∗ SCFMORIG(C) + aCLASS ∗ SCLASS(C) + aREF ∗ SREF(C)

where STOTAL(C), SCFM_ORIG(C), SCLASS(C), and SREF(C) are the total score, the normalized spectral
matching CFM-ID score, the normalized ClassyFire score, and the normalized reference score for
candidate C, respectively. Each of the three scores are weighted by the coefficients aCFM_ORIG, aCLASS ,
and aREF, respectively, where:

aCFM_ORIG, aCLASS, aREF ≥ 0

and
aCFM_ORIG + aCLASS + aREF = 1

This scoring function was then iteratively optimized on a training data set to maximize its
metabolite identification potential. In particular, the optimal set of coefficients was determined through
a grid search using a manually selected set of 1000 spectral/compound identification tasks (for 1000
unique compounds ranging from drugs to lipids). Each of the selected molecules had one or more
experimental spectra at one of three level energies (10, 20, and 40 eV), in addition to the predicted
ESI-MS/MS spectra. The data set was divided into five equally sized subsets. Several models (with a
unique combination of coefficients) were trained on 800 compounds (4/5 of the data set) and tested on
the remaining 200 (1/5 of the data set). This process was repeated four more times, using a different test
set of 200 compounds for each iteration. Experimental spectra were used as input for each identification
test, and upon testing, only the best model was selected. A consensus model was built based on the
five selected models, and further tested using a smaller test set. The final coefficient values for the
ESI-MS/MS scoring function were aCFM_ORIG = 0.6, aCLASS = 0.1, and aREF = 0.3.

This function was further refined to improve its performance and to deal with certain extreme
or rare situations. In particular, we observed certain cases in which the spectral similarity between a
query and a database match is so close that applying the citation and chemical classification scores
causes such strong matches to be unfairly penalized. In order to prevent this, we implemented a 95%
similarity threshold, above which only the original spectral similarity score is applied, and the citation
and classification information is disregarded. Moreover, our training showed that the enormous
discrepancy between citation counts (from 2 to >30,000) could negatively impact the identification rate.
For instance, a compound that would be correctly identified using spectral similarity (with or without
metadata) could be easily ranked much lower, in favor of a similar compound with a significantly
high citation score. Thus, the citation count was adjusted to have a ceiling corresponding to 156 (2 ×
average citation count) for every compound that has over 156 citations.

4.6. Performance Testing

Three types of performance tests were conducted. The first assessed the performance of the
lipid ESI-MS/MS spectral prediction method, the second assessed the performance of the new scoring
function in exact compound identification, and the third assessed CFM-ID’s performance in identifying
a compound’s correct chemical class. To test the lipid ESI-MS/MS spectral prediction method, a
benchmark analysis was performed on 20 randomly chosen lipids from each of the 21 known lipid
classes for which fragmentation rules were derived. The computation was performed on a 2.7 GHz
Intel Core i5 running macOS with 16 GB (1867 MHz DDR3) of memory. A total of 120 ESI-MS/MS
spectral predictions were generated for both CFM-ID 2.0 and CFM-ID 3.0 at 3 different energies and 2
different ionization modes with various adduct types. The average execution time was determined for
each spectral prediction. In addition to the execution time comparison, an additional performance
comparison was conducted to assess the quality of the predicted MS/MS spectra. For this task, a set of
5 experimental ESI-MS/MS spectra measured in positive ion mode, and 9 experimental ESI-MS/MS
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spectra measured in negative ion mode were selected. The selected spectra were measured under
conditions that can be simulated by CFM-ID 3.0’s lipid fragmentation rules (same energy levels, same
adducts). For each experimental MS/MS spectrum, CFM-ID 2.0 and CFM-ID 3.0 were used to predict
a corresponding MS/MS spectrum under the same conditions. The performance was assessed by
measuring the average pairwise spectral similarity between experimental and predicted spectra using
a standard dot product score as implemented in the OrgMassSpecR package [49]. Moreover, they were
also compared to LipidBlast, as the selected lipids and corresponding predicted spectra were also
contained in the LipidBlast library.

The ESI-MS/MS scoring function was tested on a set of 208 experimental ESI-MS/MS spectra (for
185 unique compounds) generated on a Q Exactive Plus Orbitrap (Thermo Scientific), and used for the
CASMI 2016 contest (Category 3) [19]. These spectra were used as input for compound identification.
One-hundred and twelve of the 185 compounds were included in the database and had at least one
experimental ESI-MS/MS spectrum in addition to the pre-computed ones. For each of the remaining
compounds, ESI-MS/MS spectra were predicted using CFM-ID and stored in the spectral library.
To assess the performance, we used CFM-ID 2.0 and CFM-ID 3.0 scoring functions, separately, to
attempt to identify the query compounds. The evaluation was performed in two steps. The first
consisted of identifying compounds by searching them in the CFM-ID spectral library that included
the 208 experimental ESI-MS/MS spectra from the CASMI. In a second step, the search was performed
after excluding the 208 experimentally acquired spectra in the searchable portion of the database. The
required mapping between OrbiTrap collision energies and Q-TOF collision energies (which are used
by CFM-ID) is described in the Supplementary Material.

For the third assessment, CFM-ID 3.0 was evaluated on its performance in chemical class
prediction/identification. This particular task assessment was included because in many situations
involving MS-based metabolomics or MS-based natural product identification, it may not be possible to
identify the exact compound via MS/MS spectral matching. Therefore, the ability to use MS/MS spectra
to reduce the candidate list and to predict the correct chemical class or correct chemical family for a
given query spectrum or compound can be very valuable. In assessing the performance of CFM-ID’s
chemical class prediction, the query compound was predicted to belong to the “direct parent” class
of the highest-ranked candidate. In cases of a tie, the chemical class was predicted to be the most
frequently occurring among all the direct and alternative parents among all the compounds with the
highest score.

5. Conclusions

We have shown that it is possible to substantially improve CFM-ID’s performance in both spectral
prediction and compound identification tasks. This was achieved through a number of ways including (1)
integrating a rule-based fragmentation approach that currently applies 344 manually curated rules to
predict the ESI-MS/MS spectra for 21 classes of common, biologically important lipids, (2) modifying the
structure of CFM-ID’s spectral database, and increasing its size by a factor of 2.6, (3) designing new scoring
functions that take into account both compound citation frequency and chemical classification features of
candidate molecules, and (4) implementing a chemical classification algorithm based on spectral similarity.

In particular, the implementation of a rule-based approach for fragment ion prediction was
shown to improve the speed by a factor of 200X and the accuracy of the lipid ESI-MS/MS spectra
prediction by a factor of 10X. The success of using rule-based fragmentation patterns encoded in
standard chemical representations (SMILES, SMARTS, and SMIRKS) suggests that this concept could
be successfully applied to other classes of modular molecules such as carnitines, polyphenols, terpenes,
and carbohydrates. The construction and expansion of CFM-ID’s spectral library has also helped
CFM-ID’s overall performance. The most recent spectral library has been expanded by a factor of 2.6
over the previously released spectral library. This expansion process is still ongoing, and we plan to
include ~500,000 more compounds including drugs, lipids, environmental pollutants, phytochemicals,
food compounds, as well as their predicted metabolites generated by BioTransformer [50]. The new
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scoring function, which already showed an improvement over CFM-ID 2.0’s scoring function, could
potentially be further improved by using machine learning techniques and training over a much larger
set of MS/MS spectra. Moreover, the acquisition and incorporation of other metadata, such as retention
time or collisional cross section information, could help further increase the compound identification
rates, as demonstrated in several recent studies [9,19].

The fields of in silico metabolomics and in silico mass spectrometry are rapidly evolving. Thanks
to the many excellent ideas emerging in many labs around the world and the willingness of many
researchers to share their code and their databases, it is likely that these fields will continue to grow
and continue to inspire others to make MS spectral analysis, MS spectral prediction, and MS-based
compound identification better, faster, and even more informative.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/4/72/s1.
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Abstract: Technological advancements have permitted the development of innovative multiplexing
strategies for data independent acquisition (DIA) mass spectrometry (MS). Software solutions
and extensive compound libraries facilitate the efficient analysis of MS1 data, regardless of the
analytical platform. However, the development of comparable tools for DIA data analysis has
significantly lagged. This research introduces an update to the former MetaboList R package and a
workflow for full-scan MS1 and MS/MS DIA processing of metabolomic data from multiplexed liquid
chromatography high-resolution mass spectrometry (LC-HRMS) experiments. When compared to
the former version, new functions have been added to address isolated MS1 and MS/MS workflows,
processing of MS/MS data from stepped collision energies, performance scoring of metabolite
annotations, and batch job analysis were incorporated into the update. The flexibility and efficiency of
this strategy were assessed through the study of the metabolite profiles of human urine, leukemia cell
culture, and medium samples analyzed by either liquid chromatography quadrupole time-of-flight
(q-TOF) or quadrupole orbital (q-Orbitrap) instruments. This open-source alternative was designed
to promote global metabolomic strategies based on recursive retrospective research of multiplexed
DIA analysis.

Keywords: liquid chromatography high-resolution mass spectrometry; data-independent acquisition;
all ion fragmentation; targeted analysis; untargeted analysis; metabolomics; R programming; full-scan
MS/MS processing; R-MetaboList 2

1. Introduction

Liquid chromatography high-resolution mass spectrometry (LC-HRMS) technology makes it
feasible to simultaneously apply qualitative and quantitative approaches to the metabolite profiling of
biological samples [1–6]. During the last decade, technological advances in electronics and hardware
design have expanded multiplexing capacities, sensitivity and specificity of detectors, and facilitated
the development of innovative scan options to address the needs of global metabolomics research [7].
Thus, traditional data-dependent acquisition (DDA), which requires the predetermined selection of
precursors for MS/MS research, has been complemented by untargeted data-independent acquisition
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(DIA) approaches, such as all ion fragmentation (AIF) analysis [8–10]. This precursor-free strategy
was initially introduced by Thermo Scientific in early Exactive benchtop Orbitraps for small-molecule
applications in order to ameliorate the constraints of targeted analysis performed on triple-quadrupole
(QQQ) detectors [9]. This operation mode was later adapted for modern hybrid quadrupole-Orbitrap
(Thermo Q Exactive and Fusion Tribrid) and time-of-flight (q-TOF) detectors under different synonyms,
such as all ion MS/MS, MSALL, and MSE, depending on the manufacturer [11]. The flexibility of
full-scan MS/MS analysis for targeted/untargeted-quantitative/qualitative research combined with
high-throughput capacity of modern LC-HRMS detectors created a gap between hardware capabilities
and licensed programs for in-depth automated processing of data from DIA analysis. While MS1

processing solutions are widely available and easily implementable [12–14], alternatives that address
bulky AIF data processing are mainly limited to recently released open-source programs. This is the
case for MS-DIAL, which was initially proposed for lipidomic research using a triple-TOF device [15],
and later MetDIA, a solution with stated superior features for small molecule analysis while using
the same detector [16]. Recently, the suitability of MS-DIAL for small molecule research assessed by
quadrupole-Orbitrap AIF analysis has been shown [17]. However, the ability of these programs to
reliably extract data from bulky DIA-MS files has not been demonstrated for small molecule research
(m/z < 400).

Recently, the R-package MetaboList was proposed as an accurate, flexible, and highly customizable
alternative for full-scan MS/MS data processing [10]. The authors demonstrated the suitability of
this approach for the study of metabolites with m/z < 250 while considering a mass tolerance of
5 ppm for both MS1 and MS/MS analyses collected by a quadrupole-Orbitrap detector. Interestingly,
this study demonstrated how data analysis with R-MetaboList could be easily enhanced by continuous
customization from users. From this, the suitability of R-MetaboList for small molecule research
utilizing multiplexed full-scan MS-MS/MS experiments being performed on different LC-HRMS
systems deserves further investigation.

This research aims to demonstrate the flexibility and improved efficiency of an upgraded version
of the previously released open-source R package MetaboList for metabolite research supported by
LC full-scan MS1 and DIA-MS/MS analyses. A highly diluted human urine sample was analyzed
in positive ionization mode by an LC-qTOF device that merged full-scan experiments at different
collision-induced dissociation (CID) energies of 0, 5, 10, and 20 eV. Similarly, myeloid leukemia cells
and medium extracts were studied by full-scan analyses on an LC q-Orbitrap system operating in
fast polarity switching mode at 0% and 30% higher-energy collisional dissociation (HCD) energies.
Automated processing of full-scan MS and MS/MS data for both HRMS instruments was carried out by
R-Metabolist 2. Here, we demonstrate the utility of this data processing solution for the retrospective
interrogation of DIA approaches to facilitate new insights for addressing global metabolomics of
biological samples.

2. Results and Discussion

The R-MetaboList 2 package was developed in the R environment and it can be freely downloaded
from the CRAN repository (https://CRAN.R-project.org/package=MetaboList) for automated targeted
data extraction and the annotation of full-scan MS1 and/or MS/MS DIA spectra generated by LC-HRMS
analysis. Figure 1 illustrates the workflow pipeline that was followed in this research and indicates
the functions that are included in the R-MetaboList 2 package. In comparison with the previous
version [10], the updated R-MetaboList 2 incorporates the following new features:

(1) Processing workflow for full-scan MS1 analysis (Figure 1A) independent of full-scan MS/MS
analysis. The previous version did not include the processing of full-scan MS1 data outside the
scope of the associated MS/MS data.

(2) Simultaneous processing of full-scan MS/MS data generated under different instrumental
conditions (Figure 1B).
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(3) Incorporation of scoring functions to evaluate metabolite annotation of both full-scan MS1 and
MS/MS approaches (Figure 1B).

(4) Improved graphical representation of the results.
(5) Incorporation of a batch job function for compilation of full-scan MSn reports from multiple

samples for high-throughput applications.

  

Figure 1. Overview of the R-MetaboList 2 workflow pipeline. (A) Initially, the raw data from an LC-MS
full-scan experiment is converted to an .mzXML file format using MSConvert or other software. The file
converted is processed by the FullMS.R function which performs a peak picking with the embedded
enviPick algorithm to generate a peak list. A metabolite library consisting of neutral masses with
optional retention time annotations is used by the FullMS.R function to provide a list of annotations
that are grouped by metabolite assignment by the PeakGroupMS1.R function. Finally, the function
ScoresMS1.R evaluates the isotope peak intensity ratio (IPIR), peak-to-peak Pearson correlation (PPC),
and peak-to-peak shape (PPS) scores for each given metabolite. Finally, visualization of the extracted
ion chromatogram (EIC) for the annotated metabolite is produced by the plot_EIC.R function. (B) Raw
data from LC-MS/MS full-scan experiment is converted to an .mzXML file format which is further
separated by collision energy (CE.R). MS1 at CE 0 and one MS2 per CE are processed by the AIF.R
function, which performs a targeted extraction and putative annotation when an MS/MS library is
provided. Peak grouping across CE values is performed with the PeakGroup.R function followed by
scoring with the ScoresDIA.R function to evaluate the annotation confidence.

2.1. Metabolite Profiling of Samples from Full-Scan MS1 Analysis

Metabolites annotation was initially addressed by R-MetaboList 2 through the processing of
full-scan MS1 data from q-TOF and q-Orbitrap systems. Next, preliminary lists of tentative assignments
that were generated by theoretical monoisotopic mass matching within a 5 ppm window were
subsequently refined by full-scan MS/MS analysis. Peak picking of the underivatized urinary sample
(q-TOF analysis) and targeted metabolite extraction by the FullMS.R function while considering the
in-house neutral library utilized in this research (detailed in materials and methods section) yielded a
total of 68 tentative metabolite assignments (Table S1). The tentative list of metabolites was grouped
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according to metabolite assignment and was exported in .csv file format (PeakGroupMS1.R function).
Figure S1A,B illustrate the output style of the plot_EIC.R function (from FullMS.R function analysis) of
[M+H]+ and [M+NH4]+ glutamine adducts in urine (qTOF), both annotated with less than 1 ppm mass
deviation and a peak asymmetry factor of 1.5. The function (plot_EIC.R) produces a quality control
plot that shows the m/z deviation for each scan forming the annotated peak (Figure S1C). Moreover, we
designed a function named ScoresMS1.R, which incorporates the isotope peak intensity ratio (IPIR),
peak-to-peak Pearson correlation (PPC), and peak-to-peak shape (PPS) scores (Detailed information in
Section 3.3). Evaluation of the [M+H]+ and [M+NH4]+ glutamine adducts by the ScoresMS1.R function
yielded a null PPC coefficient score revealing the absence of co-elution between both adducts. Similarly,
urinary phenylacetylglutamine was detected in positive mode ([M+H]+) and the isotopic profile was
resolved for the first isotopologue with a mass error lower than 5 ppm for both cases. The R package
includes an IPIR score to increase the confidence of metabolite annotations. For metabolites with an
absence of S or Br in the molecular formula, the IPIR should be greater than one. The extracted ion
chromatogram (EIC) was plotted by the plot_EIC.R function and was evaluated by the ScoresMS1.R
function which yielded a PPC score, IPIR, and asymmetry peak ratio of 0.99, 8.2, and 0.84, respectively
(Figure 2A).

Figure 2. Graphical output generated by the ScoresMS1.R function. (A) Coelution extracted ion
chromatograms (EIC) (extracted ion chromatogram) profile for phenylacetylglutamine detected in
positive ionization mode with [M+H]+ and [M+H]+ +1 isotope for urine sample analyzed by LC-qTOF.
(B) Coelution EIC profile for betaine detected in positive ionization mode with [M+H]+ and [M+H]+

+1 isotope putative identified in cell sample analyzed by LC-q-Exactive Orbitrap.

Similarly, peak picking followed by the targeted feature extraction of cell and medium samples
(q-Orbitrap analysis) led to 181 and 123 putative assignments, respectively (ESI, Tables S2 and S3
.csv). As an example of tentative assignments from cell and medium extracts using the q-Orbitrap
instrument, betaine was found as [M+H]+ and its naturally occurring [M+H]+ +1 isotopologues in the
cell sample with a mass accuracy below 1.5 ppm for both cases and peak asymmetry of 2.4 and 2.2,
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respectively (Figure 2B). Evaluation of both peaks by the ScoresMS1.R function resulted in a PPC score,
IPIR, and asymmetry peak ratio of 0.99, 17, and 0.94, respectively. Overall, the workflow implemented
for LC-MS full-scan analysis in the R-Metabolist 2 package generates a preliminary list of metabolites
that can be confirmed by MS/MS analysis and/or retention time matching.

2.2. Metabolites Annotation by Full-Scan MS/MS Approach

Preliminary metabolite assignments that were achieved by the FullMS.R function in the urine
sample analyzed by LC-qTOF were assessed by the AIF.R and Filter_AIF.R functions while using
full-scan MS/MS data processing and loading the in-house MS/MS library detailed in Table S4A (positive
ionization mode). Tentative MS/MS assignments were subsequently grouped by the PeakGroup.R
function according to the appropriated CID assayed. Tables S5–S7 detail the tentative assignments
achieved by peak grouping (alignment) of precursors and respective MS/MS fragments listed in Table S4
(positive ionization) at CID 5, 10, and 20 eV, respectively. Tentative assignments varied according
to the CID assayed, although in all cases the mass error remained below 10 ppm and the retention
time window for alignment was less than 0.1 min. Thus, 16, 20, and 23 metabolites were tentatively
identified aligning the molecular mass with one (1 parent-fragment pair) of the respective fragment
ions for CID 5, 10, and 20 eV, respectively. When considering alignment of molecular masses with
their respective all fragment ions as a requisite for tentative assignments, there were annotated 11, 14,
and 16 metabolites for CID 5, 10, and 20 eV, respectively. Election of the number of fragments that are
required for tentative assignment was controlled by Filter_AIF.R functions embedded in R-MetaboList
2 and it can be customized by the user.

Data acquisition speed has a preponderant role in the sensitivity that is achieved by q-TOF
analyzers, since higher scan rates decrease the accumulation time of ions. This is critical for low
abundance species since high velocities can compromise detection. In contrast, scanning activity
that is too slow permits the detection of minor compounds, but compromises the definition of the
chromatographic response of all compounds (major and minor) by reducing the number of scans across
each peak. An insufficient number of scans across any given peak results in increasing peak asymmetry,
thus hindering quantitative analysis, as stated in a former version of R-MetaboList [10]. Moreover,
there are numerous instrumental parameters that affect signal intensity, and thus optimization is
required to increase the performance of MS detectors [18]. In this study, we focused on the suitability
of the MS device for obtaining high-quality qualitative data without sacrificing quantitative analysis.
An intermediate acquisition time of 250 ms was selected as a good compromise for multiplexed
analyses (four scan events) of highly diluted samples.

Moreover, it should be highlighted that the simultaneous calculation of signal intensities
(Tables S5–S7) achieved at different collision energies (CE) greatly facilitates the election of appropriate
breakdown energy according to the desired fragment being analyzed [19]. For example, the experimental
glutamine peak group was formed by MS1 at 147.0764 m/z and two MS/MS fragments at 130.0499
and 84.0445 m/z (Table S8). At CE 5 and 10 eV both 130.0499 and 84.0445 m/z ([M+H]+) fragments
were detected while at 20 eV only 84.0445 m/z fragment was found, revealing CE 5 and 10 eV as more
suitable conditions for glutamine. Similarly, phenylacetylglutamine analyzed at CE 20 eV resulted in
the absence of the 147.0763 m/z ion, whereas at CE 5 and 10 eV fragments at 84.0444, 130.0499, 136.0756,
and 147.0763 m/z were observed (Table S8). On the other hand, for phenylalanine the optimum CID
was found at CE 20 eV, in which both fragment ions, 103.0543 and 120.0808 m/z, appeared (Table S8).
Overall, these results demonstrate minimal mass deviations and clearly indicate different optimal
CID energies for maximized response of considered AIF fragments, depending on the molecule being
studied (Table S5–S7).

Targeted metabolite extraction of full-scan MS/MS for cell extract analyzed by q-Orbitrap yielded
a total of 53 and 51 tentative assignments (Table S9) when the alignment of molecular masses with one
or all of their respective fragments (detailed in Table S4) was considered as an assignment constraint,
respectively. Similarly, 29 and 26 metabolites were annotated in the medium sample (Table S10) when
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the alignment of molecular masses with one or all of their respective fragments, as listed in Table S4,
is used as an assignment constraint.

The limited number of tentative assignments that were found in this study arose from the use of an
early stage in-house AIF library listing 68 compounds and the analysis of highly diluted samples (mainly
in the case of the urinary extract). More annotations can be achieved through the analysis of less diluted
samples and/or the curation and use of a more extensive MS/MS AIF library that can be continuously
expanded by users. In any case, these results demonstrate the flexibility of R-MetaboList 2 for processing
multiplexed data generated by different LC-HRMS systems. The high-throughput capacity of such
analytical platforms generates massive amounts of raw data that require the appropriate, customizable
processing workflow to maximize the flexibility and reliability of biological data analysis. The manual
handling of full-scan MS1 and MS/MS experiments is tedious and time-consuming. To ameliorate
this problem, this research implemented a script (AIF_Batch.R, Supplementary Materials) that enables
batch job processing of reports following parameter optimization.

2.3. Selectivity for Metabolite Annotation by LC-DIA-MS: Quality Control and Scores Test

Once a full-scan MS1-MS/MS peak group is generated, further evaluation by statistical analyses
can increase the confidence of the metabolite assignments. R-MetaboList 2 includes score tests based
on the PPC score and PPS ratio for both quality control and product/precursor ion intensity ratios
featured by the ScoresDIA.R function [20]. From our experience, a PPS value between 0.3 and 3
reflects acceptable similarity in chromatographic peak shape, however this parameter is defined by
the discretion of the user. It should be noted that the PPC score is based on correlation coefficients
and it can be overestimated when the EIC peaks are defined by an insufficient number of scans. It is
recommended that 0.7 be set as the PPC cutoff for precursor-product scoring. To control potential
overfitting, the function returns an intensity coelution plot of the scans shared by precursor/fragment
peaks, as well as the correlation coefficient calculated by Pearson and p-value achieved by the fitting.
The intensity co-elution plot also enables the inspection of the number of scans forming the peaks from
precursor/fragment pairs.

Evaluating the feature previously annotated in urine as glutamine, scores were generated with
the ScoresDIA.R function. The PPC was higher than 0.8 in all cases (Table 1). The fragment 84.0444 m/z
that was obtained at CE 5 eV resulted in a PPS of 0.2 and a product/precursor ion intensity ratio of 0.2
and, thus, its annotation was not scored positively. However, this fragment was positively scored at
CE 10 eV and 20 eV, in which the PPS was 0.67 for both and the product/precursor ion ratios were 0.74
and 0.99, respectively. Regarding the fragment 130.0499 m/z, at both CE 5 and 10 eV, all of the scores
were satisfactory. Thus, we can conclude that glutamine analyzed at CE 10 eV produced fragment ion
that can be most confidently annotated (Figure 3).

For phenylacetylglutamine, at CE 5 eV only 84.0444 and 130.0499 m/z fragments were found that
coeluted with the respective precursor. However, the PPC score for the first fragment was too low
and it was discarded as a positive annotation (Table 1). At CE 10 eV, a whole set of product ions were
observed but with different PPC scores in comparison with their counterparts that were observed at CE
20 eV (Table 1). Product ion 136.0756 m/z [M+H]+ at CE 10 eV scored lower than the aforementioned
recommended cutoff of 0.7, making the product-precursor association unreliable. As observed, CE 20 eV
yielded the best results. Figure 4 shows the co-elution plot for the phenylacetylglutamine precursor
and the product ions at 20 eV.
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Table 1. Statistical evaluation of peak groups for glutamine, phenylacetylglutamine, and phenylalanine
performed by ScoresDIA.R function. Analysis performed on an LC-qTOF instrument. The recommended
cut-off for PPC is ≥ 0.7. Good chromatographic similarity is indicated by PPS scores between 0.3 and 3.
Abbreviations used: CE, Collision Energy; PPC, peak-to-peak Pearson correlation; PPS, peak-to-peak
shape ratio.

Experimental Fragment
[M+H]+(m/z)

CE
(eV)

PPC PPS a Product/Precursor Ion Ratio

Glutamine

84.0444 5 0.93 0.22 0.23

130.0499 5 0.97 1.00 0.72

84.0444 10 0.87 0.67 0.74

130.0499 10 0.87 0.67 0.74

84.0444 20 0.87 0.67 0.99

Phenylacetylglutamine

84.0444 5 0.39 0.80 0.04

130.0499 5 0.76 0.60 0.20

84.0444 10 0.72 0.40 0.07

130.0499 10 0.91 0.80 0.54

136.0756 10 0.67 0.40 0.06

147.0762 10 0.80 0.40 0.06

84.0444 20 0.89 0.40 0.13

130.0499 20 0.95 0.40 0.54

136.0757 20 0.89 0.40 0.06

147.0762 20 0.97 0.40 0.04

Phenylalanine

120.0809 5 0.60 3.00 0.77

120.0809 10 0.87 1.50 1.39

103.0543 20 0.76 2.00 0.43

120.0809 20 0.93 1.50 1.05
a Experimental intact mass of the precursor ion detailed in Table S4A (MS1 level).

Regarding phenylalanine, the precursor ion at 166.0862 m/z was grouped with the AIF ion at
120.0809 m/z at the three CE voltages assayed and the scores were evaluated. The fragment ion that
was obtained at CE 5 eV did not score above the cutoff threshold for PPC and scored in the upper limit
for PPS, in contrast to CE 10 and 20 eV, which showed scores within the recommended values (Table 1).
Moreover, the fragment ion 103.0543 m/z was also detected at CE 20 eV.

To illustrate the results that were achieved by the q-Orbitrap approach, glutathione found in
cell sample was statistically evaluated by the ScoresDIA.R function after its annotation with the
AIF.R function. As observed in Table S9, all of the product ions were detected and coeluted with
the [M+H]+ precursor ion 308.0903 m/z. In all cases, the PPC and PPS scores were within the
cut-off thresholds (Table 2). Another scoring example was performed for methionine, which showed
positive scoring except for the 133.0315 m/z fragment, which exhibited a PPS lower than 0.2 (Table 2).
As previously commented, an insufficient number of scans across metabolite peaks can result in
overestimated PPC scores, but also the opposite effect for PPS and, from this, the visualization of
co-eluted precursor/fragments peaks is highly recommended. Extracted ion chromatograms (Figure S2)
of the precursor (blue line) and the fragment 133.0315 m/z (red line) demonstrate co-elution and, thus,
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the low PPS scored is due to the low intensity of the fragment and number of scans per peak. Tyrosine
is an example in which in all cases scores were within the recommended thresholds, indicating optimal
parameters for the detection, fragmentation, and annotation of this metabolite (Table 2).

Figure 3. Peak visualization and statistical evaluation of glutamine characterized by LC-qTOF data
independent acquisition (DIA)-MS/MS with the ScoresDIA.R function. Coelution profile for the EIC
(extracted ion chromatogram) generated is plotted and followed by analysis of the peak-to-peak Pearson
correlation (PPC) and peak-to-peak shape (PPS) ratio for the product/precursor ions. (A) Coelution
profile for the precursor 147.0764 m/z and fragments 130.0499 m/z and 84.0444 m/z annotated as glutamine
[M+H]+ obtained at 10 eV. (B) Peak-to-peak Pearson correlation analysis for 84.0444 m/z fragment with
precursor ion. (C) Peak-to-peak Pearson correlation analysis for 130.0499 m/z fragment with precursor
ion. (D). Smoothed coelution plot for PPC and PPS analysis.
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Figure 4. Extracted ion chromatograms (EIC) of phenylacetylglutamine precursor and fragment ions
detected by LC-DIA-MS/MS at CE 20 eV generated with the ScoresDIA.R function. Figure shows
coelution plots for each of the precursor-product pair ions from top to bottom: 84.0444 m/z, 130.0499 m/z,
136.0756 m/z, and 147.0763 m/z.

125



Metabolites 2019, 9, 187

Table 2. Statistical evaluation of glutathione, methionine, and tyrosine peak groups performed by
ScoresDIA.R function. Extracted from data acquired on an LC-Q-Exactive Hybrid Quadrupole-Orbitrap
device. Recommended values for PPC are ≥ 0.7. Good chromatographic similarity is indicated by 0.3
≥ PPS ≥ 3. Abbreviations used: CE, Collision Energy; PPC, peak-to-peak Pearson correlation; PPS,
peak-to-peak shape ratio.

Experimental Fragment [M+H]+

(m/z)
CE

(eV)
PPC PPS a Product/Precursor Ion Ratio

Glutathione

76.0214 30 0.99 0.79 0.44

116.0163 30 0.99 0.30 0.08

144.0112 30 0.99 0.35 0.08

162.0217 30 0.99 0.40 0.17

179.0482 30 0.99 0.25 0.04

233.0585 30 0.99 0.20 0.02

130.0497 30 0.99 0.60 0.08

84.0443 30 0.99 0.60 0.15

Methionine

133.0315 30 0.98 0.17 0.02

104.0526 30 0.96 0.49 0.03

61.0107 30 0.99 1.25 0.30

56.0497 30 0.99 0.49 0.22

Tyrosine

147.0438 30 0.99 0.50 0.015

136.0754 30 0.99 0.49 0.16

123.0439 30 0.99 0.99 0.40

119.0490 30 0.99 1.25 0.22

95.0490 30 0.99 0.99 0.19

91.0541 30 0.99 0.99 0.40
a Experimental intact mass of the precursor ion detailed in Table S4A (MS1 level).

3. Materials and Methods

3.1. Chemicals and Sample Preparation

LC-MS grade methanol (MeOH), formic acid (FA), and acetonitrile (ACN) were from Fisher
Scientific (Pittsburgh, PA, USA). Water was of ultrapure grade (EMD Millipore Co., Billerica, MA, USA).
Two different batches of deuterated internal standards were prepared to be spiked as internal standards
(IS) in samples that were separately studied by the approaches considered. Stable isotope-labeled
D5-glutamic acid and D5-phenylalanine constituted the q-TOF IS mix. The q-Orbitrap IS mix contained
D2-Fumaric acid, D3-DL-Glutamic acid, D3-Malic acid, D4-Citric acid, D4-succinic acid, D2-Cysteine,
D5-Glutamine, D3-Serine, D3-Aspartic acid, and D5-L-Tryptophan. Labelled standards were purchased
from Cambridge Isotope (Cambridge Isotope Laboratories Inc., Tewksbury, MA, USA). Deuterated
standards were in the 98–99% and 97–99% chemical and isotopologue purity ranges, respectively.
Internal standards were dissolved in 0.2% FA, diluted to a final concentration of 2 ppm, and the aliquots
were kept at −80 ◦C until analysis. Commercial negative/positive calibration and reference (lock
masses) solutions specific for the q-TOF device were purchased from Agilent (Agilent Technologies,
Santa Clara, CA, USA). Positive and negative calibration solutions for the q-Orbitrap detector were
from Thermo Scientific (Thermo Sci., San Jose, CA, USA).
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The underivatized 24-hour urine sample assayed was from a healthy human volunteer. It was
centrifuged at 22,000 g at 4 ◦C for 15 min. An aliquot of the supernatant was diluted 1:1000 with
ultrapure water, spiked with the q-TOF IS mix (final IS concentration in sample was 0.2 ppm), and
filtered through a 0.2 μm nylon membrane. Aliquots of 150 μL were transferred to LC-MS vials and
stored at −80 ◦C until analysis.

The cell and medium samples were prepared from acute myeloid leukemia cells (MOLM-13)
cultured in RPMI-1640 medium supplemented with 10% characterized fetal bovine serum (FBS) and
2 mM L-glutamine (GE Healthcare Biosciences, Pittsburgh, PA, USA). Cells were incubated under
standard conditions at 37 ◦C with 5% CO2 and maintained at a concentration range of 200,000 to
2 × 106 cells/mL. Medium and cells were collected following a 24-hour incubation period. Suspension
cells and medium were aspirated and centrifuged. Supernatant (conditioned medium) was snap
frozen in liquid nitrogen. Prior to LC-MS analysis, medium was thawed, ultrafiltered (Nanosep
centrifugal devices with Omega membrane, Pall Corporation, Port Washington, New York, USA),
diluted 1:500 with ultrapure water, and then spiked with the q-Orbitrap IS mix (final IS concentration
in sample was 0.2 ppm). Cells were washed twice with phosphate buffered solution (GE Healthcare
Biosciences), harvested by centrifugation, and snap frozen in liquid nitrogen. Metabolite extraction
was performed by modified Bligh-Dyer, as previously reported [10]. In brief, cell pellets were extracted
with 1:1 water:methanol and equal parts chloroform. Following mixing and centrifugation, the polar
fraction was transferred to Eppendorf tubes and then dried at 4 ◦C (Vacuum Concentrator, LabConco
Corporation, Kansas City, MO, USA). Metabolites were resuspended in ultrapure water containing
the q-Orbitrap IS mix (final IS concentration in sample was 0.2 ppm) and ultrafiltered before being
transferred into LC-MS vials.

3.2. LC-MS/MS Analysis

Chromatographic separation of the underivatized urine sample was carried out on an Agilent
1290 Infinity II (Agilent Technologies, Santa Clara, CA, USA) HPLC system that was equipped with a
quaternary pump, vacuum degasser, and an autosampler with a temperature controller coupled to
an Agilent 6550 q-TOF mass analyzer equipped with an electrospray ionization (ESI) source with Jet
Stream Technology. Metabolite separation was achieved on a 150 mm × 2.1 mm, 4 μm particle size
Synergi-Hydro C18 column (Phenomenex Inc., Torrance, CA, USA) under the following separation
conditions: solvent A, water/FA (99.8:0.2 v:v); solvent B, ACN; separation gradient, initially 1% B,
held for 2 min., and then linear 1–80% B in 8 min, washing with 98% B for 2 min., and column
equilibration with 1% B for 7 min.; total run time, 19 min.; flow rate, 0.25 mL/min; injection volume,
5 μL. Autosampler and column temperatures were set at 6 ◦C and 23 ◦C, respectively. Column flow
was directed into the mass analyzer in the time range of 0.7–12 min., diverting the rest of the run time
to waste. The samples were analyzed in positive ionization conditions operating in high-resolution
full-scan MS mode with the settings: gas temperature, 130 ◦C; drying gas, 14 L/min.; nebulizer,
30 psig; sheath gas, 10 L/min.; isolation width, narrow (1.3 m/z); nozzle voltage, 500 V; fragmentor,
380 V; octapole 1 RF, 400V; capillary voltage, 3500 V; lock masses, 121.0509 m/z and 922.0098 m/z; data
acquisition, centroid mode. Injections merged four full-MS analyses with CID collision energies of 0, 5,
10, and 20 eV with an acquisition rate of four spectra/s and 250 ms/spectrum as accumulation time.
Polarity switching was not considered in this research because the mass deviations achieved by the MS
device used were above 100 ppm regarding molecules at m/z < 250. Before analysis, the MS device was
tuned and calibrated in the low mass range and high-resolution mode (4 GHz) to maximize the mass
accuracy of detection (considered mass tolerance was 10 ppm at all times). Additionally, the peak area
ratio of D5-glutamic/D5-phenylalanine in the sample analyzed were compared to that observed in an
aqueous model solution of IS at 0.2 ppm to confirm the absence of significant matrix effects.

The analysis of cell and media extracts was performed on a Thermo Accela HPLC system equipped
with a quaternary pump, vacuum degasser, and an open autosampler with a temperature controller
(Thermo Scientific, San José, CA, USA). Chromatographic separation of metabolites was achieved by
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the same reverse phase column described above with the following separation conditions: solvent A,
water/FA (99.8:0.2); solvent B, MeOH; separation gradient, initially 5% B, held for two minutes and then
linear 30–80% B in eight minutes, washing with 98% B for 10 min and column equilibration with 5% B
for 10 min; flow rate, 0.25 mL/min.; injection volume, 5 μL; total run time, 30 min.; autosampler and
column temperatures were set at 6 ◦C and 22 ◦C, respectively. Column flow was directed into the mass
analyzer in the time range of 1–15 min. and diverted to waste outside this period. Mass spectrometry
analysis was carried out on a Thermo Q Exactive Hybrid Quadrupole-Orbitrap benchtop detector that
was equipped with an electrospray (ESI) source simultaneously operating in fast positive/negative
polarity switching mode (Thermo Scientific, Bremen, Germany). Multiplexed full-scan MS1 (full-MS)
and MS/MS (AIF) experiments had the following settings: microscans, 1; AGC target, 1e6; maximum
injection time, 100 ms; mass resolution, 35,000 FWHM at m/z 200 for full-MS analysis whereas AIF scan
conditions were microscans, 1; AGC target, 3e6; maximum injection time, 1000 ms; mass resolution,
70,000 FWHM at m/z 200; HCD energy, 30. In both cases, the instrument was set to spray voltage,
4.0 kV; capillary temperature, 300 ◦C; sheath gas, 55 (arbitrary units); auxiliary gas, 30 (arbitrary units);
m/z range, 50–750; data acquisition, centroid mode. The accuracy of Orbitrap analysis was ensured
by calibrating the detector while using the commercial calibration solutions that were provided by
the manufacturer, followed by a customized adjustment for small molecular masses. Masses at m/z
87.00877 (Pyruvic acid); 117.01624 (D2-Fumaric acid); 149.06471 (D3-Glutamic acid); 265.14790 (Sodium
dodecyl sulfate); and, 514.288441 (Sodium taurocholate) were used for the negative ionization mode,
whereas masses at m/z 74.09643 (n-Butylamine), 138.06619 (Caffeine fragment), 195.08765 (Caffeine),
and 524.26496 (Met-Arg-Phe-Ala tetrapeptide, MRFA) were used to adjust the mass accuracy of the
positive ionization mode. Maximal mass tolerance was 5 ppm at all times. The LC-MS platform
of analysis was controlled by a PC operating the Xcalibur v. 2.2 SP1.48 software package (Thermo
Scientific, San Jose, CA, USA). Again, the ratios among spiked IS in samples and in an aqueous model
solution at same concentration confirmed the absence of matrix effects.

3.3. Automated Data Processing by R-MetaboList 2

Agilent and Thermo experimental data files (extension .d and .raw, respectively) were converted
into .mzXML files by the MSconvert option embedded in the freely available Proteowizard application
(http://proteowizard.sourceforge.net/). Full-scan MS1 and MS/MS data were separated according to
CID (0, 5, 10, and 20 eV for q-TOF) and HCD (0 and 30% for q-Orbitrap), and simultaneously assayed
while using the CE.isolation.R function included in R-MetaboList 2. Peak picking of MS1 and MS/MS
data was performed in the background by the enviPick algorithm embedded in the software in a
stepped process [21] (Figure 1).

A preliminary full-MS (intact molecule) analysis of samples was carried out by R-MetaboList 2
loading an in-house neutral mass library (.csv format) of 320 underivatized metabolites (m/z < 650)
commonly found in biological samples. The targeted peak picking extraction of MS1 data was
performed by the FullMS.R function using 5 ppm and 0.005 Da as mass tolerance and m/z interval
window as constraints, respectively, for general peak grouping and library interrogation. Ion polarity
(neutral/negative/positive) and retention time are optional constraints that can be selected by users
according to the customized library employed. The output generates a results list that includes the
type of isotope or adduct annotated and the score that is reached by the peak shape based on the
asymmetry factor (f) defined, as follows:

f = (tRf − tRmax)/(tRmax − tRi), (1)

where tRmax represents the retention time for the scan with the highest intensity at a given EIC and tR,
tRf represents the retention time for the final scan, and tRi represents the retention time for the initial
scan that together define the limits of the EIC. Therefore, f values that are closer to 1 indicate better
peak symmetry. Where calculation of such factor was not feasible for chromatographic peaks below
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three scans across peak, and/or maximum signal intensity appeared as first or last scan (zero value
in Tables).

Matched peaks were smoothed (cubic or smoothing spline) and evaluated regarding to their
isotope peak intensity ratio (IPIR), peak-to-peak Pearson correlation (PPC), and peak-to-peak shape
(PPS) ratios. The IPIR score was calculated according to the rule indicating that, in the absence of S or
Br in the molecular formula, the ratio between monoisotopic and/or next isotopologues considered
must be greater than one. Thus, IPIR was calculated, as follows:

IPIR =
Ik

Ik+1
(2)

where Ik and Ik+1 are the intensity of the monoisotopic peaks or the former and latter isotopologues.
The PPC score, based on Pearson correlation, was calculated with the following equation [22,23]:

PPC =

∑n
i=1(IPi − ĨP)

(
IFi − ĨF

)
√∑n

i=1 (IPi − ĨP)
2
√∑n

i=1 (IFi − ĨF)
2

(3)

where P and F are peaks “A” and “B”, IPi and IFi represents the intensity of a particular scan from a
smoothed peak, ĨP and ĨF refer to the intensity sum for all scans forming the peak. The recommended
cut-off value is PPC ≥ 0.7.

Lastly, peak-to-peak shape (PPS) was defined as the ratio between the asymmetry factors from
features within the same peak group (i.e. ions from the same metabolite), as follows [22,23]:

PPS =
fk1

fk2
(4)

where f k1 and f k2 are the asymmetry factors calculated with Equation (1) for a peak k1 and peak k2.
Asymmetry factor ratios for features within the same peak group can be used as an indication of
similarity due to the mandatory chromatographic elution behavior. Values of PPS below 0.3 and above
3 might reflect low similarity, in which case the metabolite with this considered precursor-product
association should be discarded. IPIR, PPC, and PPS scores are implemented in the ScoresMS1.R function
and graphical inspection of tentative assignments can be performed with the plot_EIC.R function.

Exploratory MS1 analysis was refined by R-MetaboList 2 through full-scan MS/MS data processing
loading an upgraded AIF library (.csv format) that was previously released to study melanoma tissue
and leukemia cell extracts while using a q-Orbitrap device [10]. In our case, MS/MS information
of some underivatized metabolites commonly found in human urinary samples not considered in
the aforementioned original library were additionally included (Table S4A for positive and S4B for
negative ionization modes, respectively) following similar guidelines previously stated [10]. From
these new urinary metabolites, accurate masses from fragments above 20% of relative abundance in
the 0 to 30 eV CID range that is detailed in the mzCloud database populated the updated library used.
Moreover, metabolites largely found in urine, cell, and medium samples with AIF fragments below m/z
< 50 (i.e. urea and lactic acid) or assignments supported by only one ubiquitous ion (i.e. fragment at
m/z 72.0444 from alanine) were discarded. Protocols to elaborate high-quality mass spectral libraries
are described in the literature and can be readily used as an input for the MetaboList software [24].
AIF data analysis used 5 ppm and 0.08 min. as m/z and retention time tolerances as the main constraints,
respectively, for proper peak alignment of precursors and their respective MS/MS fragments listed in
Table S4A,B. Targeted data extraction was performed with a precursor-fragment ion mass-to-mass
matching and having at least one fragment or all fragment ion (N) included in the MS/MS library
matched as a minimum co-elution requirement. From assignments, the aligned EICs from MS1 and
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MS/MS were grouped and subsequently evaluated by the ScoresDIA.R function while using PPC, PPS,
and product/precursor ion intensity ratio, with the last being defined as:

F/PIon ratio =
Imax,F

Imax,P
(5)

where Imax,F and Imax,P are the maximum EIC intensities corresponding to the fragment and precursor
ion, respectively.

4. Conclusions

This study demonstrates the efficiency of R-MetaboList 2 for the simultaneous processing of
multiplexed full-scan MS1 and MS/MS data from small molecule analysis. The complete flexibility of the
methodology proposed facilitates the clear visualization and exhaustive quality assessment of findings
from LC-HRMS data that were acquired by both q-TOF and q-Orbitrap devices analyzing underivatized
human urine and myeloid leukemia cell and medium samples, respectively. Continuous upgradability
of this strategy by users allows for the adaptation of a previously released in-house full-scan MS/MS
q-Orbitrap library for R-MetaboList 2 analysis of data from both instrumental approaches considered.
The flexibility of this approach permits the improvement of functions that were implemented in the
previous R-MetaboList version as well as the incorporation of the new functions outlined above.
Thus, detailed and accurate metabolite (mostly with m/z <250) profiling of samples was achieved,
despite the complexity of merged full-scan analyses evaluated. Moreover, R-MetaboList 2 can facilitate
quantitative studies and the election of the optimal collision energy for specific MS/MS fragments
through the concurrent analysis of multiple fragmentation experiments. The proposed methodology
represents a customizable and complementary alternative to the existing approaches to the automated
processing of untargeted/targeted data dependent/independent MS/MS analyses, thus promoting global
metabolomic strategies that are supported by recursive retrospective interrogation of multiplexed
DIA data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/9/187/s1,
Figure S1. Output generated by the plot_EIC.R function for glutamine as detected by LC-qTOF. (A) Coelution profile
for glutamine [M+H]+ and [M+NH4]+ adducts with a graphical abstract of the scores evaluated. Peak-to-peak
Pearson correlation (PPC) was null whereas peak shape and mass accuracy acceptable for both peaks. (B) Extracted
ion chromatogram (EIC) for the glutamine adducts found with dots indicating the scans forming the EIC and blue
line the peak smoothed. (C) Quality control (QC) for the mass accuracy for each scan forming the EIC. Figure
S2. Co-elution for extracted ion chromatograms for methionine precursor (blue line) and fragment at 133.0315
m/z (red line). The EICs show that these ions co-elute, indicating a low PPS (peak-to-peak shape ratio) due to
the low intensity of the fragment ion and number of scans per peak. Table S1. Tentative assignments based on
full-MS analysis in urine sample by LC-qTOF approach. Rt, retention time. Table S2. Tentative assignments
based on full-MS analysis in cell sample by LC-Q-Exactive approach. Table S3. Tentative assignments based
on full-MS analysis in medium sample by LC-Q-Exactive approach. Rt, retention time. Table S4. (A) In-house
MS/MS library in positive ionization mode. (B) In-house MS/MS library in negative ionization mode. Table S5.
Metabolites annotated by full-scan MS/MS of the urinary sample assayed with LC-qTOF device at CIDs of 5 eV. Rt,
retention time. Table S6. Metabolites annotated by full-scan MS/MS of the urinary sample assayed with LC-qTOF
device at CIDs of 10 eV. Rt, retention time. Table S7. Metabolites annotated by full-scan MS/MS of the urinary
sample assayed with LC-qTOF device at CIDs of 20 eV. Rt, retention time. Table S8. Peak grouping for glutamine,
phenylacetylglutamine and phenylalanine analyzed in urine by LC-qTOF at the three CE assayed. Rt, retention
time; CE, collision energy. Table S9. Metabolites annotated by full-scan MS/MS analysis of the leukemia cell extract
analyzed by q-Orbitrap. Rt, retention time. Table S10. Metabolites annotated by full-scan MS/MS analysis of the
leukemia cell medium extract analyzed by q-Orbitrap. Three data sets converted to mzXML format for LC-qTOF
and q-Exactive analysis of human urinary, leukemia cell and cell medium samples. Two R-scripts to reproduce
results obtained in this research (AIF_Batch.R; Script_MetabolitesJournal.R).
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Abstract: Metabolomics has started to embrace computational approaches for chemical interpretation
of large data sets. Yet, metabolite annotation remains a key challenge. Recently, molecular networking
and MS2LDA emerged as molecular mining tools that find molecular families and substructures
in mass spectrometry fragmentation data. Moreover, in silico annotation tools obtain and rank
candidate molecules for fragmentation spectra. Ideally, all structural information obtained and
inferred from these computational tools could be combined to increase the resulting chemical insight
one can obtain from a data set. However, integration is currently hampered as each tool has its
own output format and efficient matching of data across these tools is lacking. Here, we introduce
MolNetEnhancer, a workflow that combines the outputs from molecular networking, MS2LDA,
in silico annotation tools (such as Network Annotation Propagation or DEREPLICATOR), and the
automated chemical classification through ClassyFire to provide a more comprehensive chemical
overview of metabolomics data whilst at the same time illuminating structural details for each
fragmentation spectrum. We present examples from four plant and bacterial case studies and show
how MolNetEnhancer enables the chemical annotation, visualization, and discovery of the subtle
substructural diversity within molecular families. We conclude that MolNetEnhancer is a useful tool
that greatly assists the metabolomics researcher in deciphering the metabolome through combination
of multiple independent in silico pipelines.

Keywords: chemical classification; in silico workflows; metabolite annotation; metabolite
identification; metabolome mining; molecular families; networking; substructures

1. Introduction

Metabolomics has matured into a research field generating increasing amounts of metabolome
profiles of complex metabolite mixtures aiming to provide biochemical insights. Mass spectrometry
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has become the workhorse of metabolomics and typical untargeted experiments currently result in
qualitative and semiquantitative information on several thousands of molecular ions across tens to
hundreds of samples. Technical advances in the last decade have allowed researchers to fragment
increasing amounts of mass peaks that result in mass fragmentation spectra (MS/MS or MS2). Metabolite
annotation and identification tools have benefited from these advances as now more MS2 spectra per
sample can be queried in reference libraries in order to find candidate structures or submitted to in
silico tools that propose a putative structure [1–9].

Despite these tremendous advances, a key challenge remaining for metabolomics researchers
is to biochemically interpret large-scale untargeted metabolomics studies due to the complexity of
the metabolomes represented by mass fragmentation spectra to which actual chemical structures
need to be assigned, and for which reference spectra are not available. In biological samples, many
metabolites share molecular substructures and form structurally related molecular families (MFs) of
various chemical classes, which has inspired metabolome mining tools exploiting these biochemical
relationships. Based on the assumption that structurally similar molecules (analogs) generate similar
mass spectrometry fragmentation spectra, one can group analogs by comparing their fragmentation
spectra resulting in the construction of molecular families. To do this on a larger scale, computational
tools have been developed such as molecular networking (MN) [7]. However, to actually annotate
structural information additional sources are usually needed such as library matches, candidate
structures from libraries or chemical class annotations.

Indeed, since the molecular networking approach was proposed in 2012 [10], numerous
complementary metabolome mining workflows as well as annotation and classification tools have
been introduced including SIRIUS [3], CSI:FingerID [4], MetFusion [11], MetFamily [12], and many
others of which some also use molecular networks as basis [1,2,7,8,13–24] and their combined use for
natural product discovery was very recently reviewed [25]. Where tandem mass spectral molecular
networking efficiently can group molecular features in molecular families [10], MS2LDA can discover
substructures, not only based on common fragment peaks but also common neutral losses, which can
aid in further annotation of subfamilies and shared modifications [14]. These metabolome mining
tools typically take MS/MS spectra as input, such as the open formats Mascott Generic Format (MGF),
the mzML, or mzXML format, and generate tables where a fragmented mass feature is linked to
other fragmented mass features or substructure patterns. Reference fragmentation spectra in public
repositories are still very few. Thus, on average only 2–5% percent of MS2 spectra acquired in a typical
LC–MS/MS experiment can be matched to known molecules [26]. Complementary to library matching,
in silico tools such as Network Annotation Propagation (NAP) [8], DEREPLICATOR [1], VarQuest [2],
or SIRIUS+CSI:FingerID [4] predict fragmentation spectra in silico from known structures and allow for
effective searching in chemical databases for candidate structures. These metabolome annotation tools
also take MS/MS spectra as input and typically use precursor masses to find candidate structures in
compound databases followed by a ranking of those structures based on the similarity of the predicted
and experimental MS/MS data. The output is typically a table with candidate structures found for
each mass feature and associated score. These tools typically differ in the compound databases they
use to query for candidate structures, or the processing of mass spectrometry data. For example,
SIRIUS+CSI:FingerID first builds annotated fragmentation trees before searching molecular structures
in large compound databases. DEREPLICATOR and VarQuest are annotation tools that match structures
from a large database of Peptidic Natural Products to MS/MS spectra, whereby DEREPLICATOR looks
for exact matches and VarQuest also allows for one modified amino acid. It is important to realize that
each tool has its own set of parameters that will affect the number of annotated features.

The outputted structural information for each mass feature can be mapped on a molecular network,
for example, to show for which mass features library matches or in silico predicted structural matches
are available. The recently introduced Network Annotation Propagation (NAP) also exploits the
network topology to rerank candidate structure lists based on neighboring matches within molecular
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families [8]. Furthermore, when using multiple annotation tools, the structural information they
provide may support each other increasing confidence in the annotation.

To assess whether molecular families are of particular interest for your research question, knowing
their chemical class may provide sufficient information. The recently proposed ClassyFire tool [16]
takes molecular descriptors as SMILES or InchiKeys as input and outputs hierarchical chemical
ontology terms. Thus, the candidate structures outputted for each mass feature by the metabolome
annotation tools mentioned above can now be automatically chemically classified. When that is done
at larger scale for an entire molecular family, one can combine those chemical class terms and assess
whether particular terms are enriched.

Taken together, all these recent developments enable the discovery of relations between millions
of spectra and the listing of candidate structures from various spectral libraries or alternatively from
compound libraries using in silico approaches.

Whilst each of those tools produce useful structural information, their combined application has
been hampered by the use of different file formats, platforms, and the challenge to match molecular
features across the outputs of these tools. We postulate that whilst each tool provides complementary
insights, their combined use allows an increased level of biochemical interpretation, i.e., the sum
becomes greater than the individual parts. Furthermore, it would be practically advantageous to
combine all these results in one place. We have previously described the integration of Mass2Motifs
and chemical classifications with molecular networks to assess the chemical diversity within a subset
of species of the plant genus Euphorbia [27] and the plant family Rhamnaceae [28]. However, in those
studies, integration was achieved using custom in-house scripts in R, hampering adoption by the
community. Moreover, the results of the peptide annotation tools DEREPLICATOR and VarQuest were
not included in those custom scripts.

Here, we introduce MolNetEnhancer a software package available in Python and R that unites the
output of many of the above-mentioned metabolome mining and annotation tools (GNPS molecular
networking, MS2LDA substructure discovery, and in silico annotation tools) independent of what
dataset it processes, thus making the algorithm accessible in an easy-to-use format to the community
(Figure 1). MolNetEnhancer discovers molecular families (MFs), subfamilies, and subtle structural
differences between family members. The workflow enhances the currently available molecular
networking methods based on either MS-Cluster [29] (classical) or MZmine2 [30] (also called
“feature-based molecular networking”) and results in annotated molecular networks that can be
explored in Cytoscape [31]. We applied MolNetEnhancer to publicly available mass spectrometry
fragmentation data ranging from marine-sediment and nematode-related bacteria, to Euphorbia and
Rhamnaceae plants. Illustrated by four case studies, we demonstrate how our integrative workflow
discovers dozens of MFs in large-scale metabolomics studies of these plant and bacterial extracts.
Moreover, discovered MFs can be divided into subfamilies using the mapped MS2LDA results.
Structural annotation of Mass2Motifs is facilitated by having chemical and structural annotations at
hand, for example by recognizing substructures in peptidic molecules. We conclude that our workflow
provides chemical refinement of metabolomics results beyond spectral matches through large-scale
MF and substructure discovery and annotation by integrating outputs of various tools in one place
allowing for enhanced visualization. This also guides the metabolomics researcher in prioritizing MFs
to explore and in structurally annotating molecules.
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Figure 1. Schematic overview of the MolNetEnhancer workflow. Starting with mass spectrometry
data in the mzML format obtained from complex metabolic mixtures the user creates (1) mass
spectral molecular networks in GNPS, (2) performs in silico structure annotation (e.g., through NAP,
DEREPLICATOR or SIRIUS+CSI:FingerID), and (3) performs unsupervised substructure discovery
through MS2LDA. Steps 1–3 are performed prior to the MolNetEnhancer workflow within the respective
platforms. MolNetEnhancer is then used in (4) to map information layers obtained from all three
platforms independently on top of each other resulting in network-wide chemical class information
and more detailed substructure information within molecular families (as exemplified for the organic
acid conjugates in the enlarged part of the triterpenoid molecular family on the right).
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2. Materials and Methods

MolNetEnhancer is a software package available in Python and R that unites the output of several
metabolome mining and annotation tools, including mass spectral molecular networking through
GNPS, unsupervised substructure discovery through MS2LDA and in silico structure annotation,
for example through NAP, DEREPLICATOR, or SIRIUS+CSI:FingerID (Figure 1). Before using the
MolNetEnhancer workflow, the user will run each metabolome mining tool separately:

1. Perform mass spectral molecular networking analysis through the Global Natural Products Social
Molecular Networking platform (https://gnps.ucsd.edu).

2. Perform in silico chemical structural annotation using for example Network Annotation
Propagation (NAP) and DEREPLICATOR through the GNPS platform. Alternatively, other
in silico tools for putative chemical structural annotation (e.g., SIRIUS+CSI:FingerID) [3,4] can
also be used.

3. Perform unsupervised substructure discovery using MS2LDA (http://ms2lda.org).

For documentation of steps 1–3 the user is referred to the original publications and guidelines
for each tool [1,2,7,8,14]. Section 8 contains links to tutorials of the analysis tools used in this study.
Functions implemented in the MolNetEnhancer workflow can then be used to combine the outputs
created in step 1–3 such that

a Substructure information retrieved through MS2LDA is integrated with mass spectral
molecular networks.

b Most abundant chemical classes per molecular family are retrieved based on GNPS structural
library hits and in silico chemical structural annotation and integrated within the mass spectral
molecular networks.

MolNetEnhancer is freely available on GitHub at https://github.com/madeleineernst/
pyMolNetEnhancer and https://github.com/madeleineernst/RMolNetEnhancer. Interactive Jupyter
example notebooks and a step by step tutorial guide the user to build enhanced mass spectral molecular
networks, which are outputted in the graphml format for visualization in Cytoscape.

Currently, two distinct methods from raw data to MNs exist. One method takes all MS2 spectra
found in the input files and uses MS-Cluster to prepare a set of representative “consensus” MS2
spectra for molecular networking, and the other method uses MZmine2 for data preprocessing,
which performs molecular feature detection at the MS1 level and associates each MS1 feature with its
respective MS2 spectra to send off to GNPS Molecular Networking. The here proposed MolNetEnhancer
workflow can enrich both these molecular networking methods with Mass2Motif presence and chemical
class annotations.

Substructural information retrieved through MS2LDA is integrated in two ways within the mass
spectral molecular networks. Shared substructures or motifs between two molecular features are
visualized as multiple edges connecting the nodes. Furthermore, motifs found within a molecular
feature can be visualized as pie charts, where the relative abundance of each motif represents the
overlap score, a score measuring how much of the motif is present in the spectrum [32]. Furthermore,
for each molecular family, the x most shared motifs are shown, where x is defined by the user. An
example of such a molecular family with motifs mapped is shown in Figure 6 in the results section.

To retrieve the most abundant chemical classes per molecular family, all chemical structures
obtained through GNPS library matching, and in silico chemical structural annotation are submitted
to automated chemical classification and taxonomy structure using ClassyFire [16]. This retrieves
chemical classes for each of the putative structures submitted organized in five hierarchical levels of
a chemical taxonomy (kingdom, superclass, class, subclass, and direct parent). For each level of the
chemical ontology, a score is calculated, which represents the most abundant chemical class found
for the structural matches within the molecular family. It is important to note that a high score does
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not represent a higher confidence in the true identity of the chemical structures found within the
molecular family, but indicates more consistency as more structural matches obtained for this molecular
family fall within the same chemical class. Figure 2 exemplifies how the score is calculated. Given a
molecular family consisting of six molecular features (nodes), the percentage of nodes classified as
cinnamaldehydes, coumarins and derivatives, flavonoids and macrolactames at the chemical class
level respectively is calculated. Each molecular feature can have multiple structural matches with
multiple (e.g., node 2) or identical (e.g., node 3) chemical classes. A majority of the structural matches
obtained in the network shown in Figure 2 were classified as flavonoids (2.25 out of six nodes), thus
the molecular family is classified as flavonoids with a chemical classification score at the class level of
0.375 (2.25/6). For single nodes (molecular features which show no spectral similarity with any other
molecular features found in the dataset) the chemical classes are retrieved analogously, however, it
should be noted that single nodes often result in a very high score, as only one structural match is
retrieved, corresponding to a score of 1 (1 node out of 1).

Figure 2. Schematic overview of how the chemical classification score is calculated and visualized
within a molecular family. (a) Schematic overview of hypothetical structural annotations within a
molecular family consisting of 6 nodes. Out of the 6 nodes, chemical structural information could be
retrieved for 4, where each node can consist of structural annotations to multiple different (e.g., node 2)
or identical (e.g., node 3) chemical classes. The total number of nodes per chemical class retrieved is
calculated and the most abundant chemical class is assigned to the molecular family, resulting in (b).
Schematic overview of the molecular family shown in (a), classified as ‘flavonoids’ at the chemical class
level by MolNetEnhancer, with a score of 0.375, translating to the majority of the putative structural
annotations within this molecular family (2.25) belong to the flavonoid structural class.
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3. Results

3.1. MolNetEnhancer Workflow

MolNetEnhancer requires inputs from independent metabolome mining tools including mass
spectral molecular networking through GNPS, unsupervised substructure discovery through MS2LDA
and in silico structure annotation, for example through NAP, DEREPLICATOR or SIRIUS+CSI:FingerID
(Figure 1). Provided with these inputs, MolNetEnhancer consists of two independent steps. During
the first step, molecular substructures detectable by co-occurring fragment ions or neutral losses, so
called Mass2Motifs, are mapped onto a Molecular Network. Each node in the network represents a
molecular feature, whereas Mass2Motifs represent substructural features. Most fragmented mass peaks
(precursor ions) represent molecular ions, although fragmented mass peaks may also represent adducts
of one and the same molecule, in source fragments or doubly-charged peaks [33]. For simplicity, we
will refer to any fragmented mass peak as molecular feature throughout the manuscript. Mass2Motifs
contained within each molecular feature can be visualized as pie charts on the nodes. Alternatively,
Mass2Motifs shared across multiple molecular features can be visualized as multiple lines (edges)
connecting the nodes. In a second step, most abundant chemical classes per molecular family based on
candidate structures from in silico annotation tools as well as GNPS library matches can be mapped
through chemical classification using ClassyFire [16]. A chemical classification score is calculated
representing what percentage of nodes within a molecular family are attributed to a given chemical
class (see Section 2 and Figure 2 therein). In Sections 3.2–3.5 we show how MolNetEnhancer can
accelerate and enrich chemical information retrieval in 4 case studies, comprising two plant and two
bacterial publicly accessible datasets. The MolNetEnhancer workflow results in one graphml network
file that contains all the structural information obtained from the individual tools. Such a file can
be easily imported into network visualization tools such as Cytoscape [31], an environment where
additional metadata on the molecular features can be added. In addition, all structural information is
also available as tab delimited text files.

3.2. Case Study 1: Annotation of Euphorbia Specialized Metabolites Using MolNetEnhancer

With more than 2000 species worldwide, the plant genus Euphorbia is among the most species-rich
and diverse flowering plants on earth [34,35]. Besides exhibiting an extreme diversity in its growth forms
and habitat types, the genus has also attracted interest within natural products drug discovery [36,37].
Euphorbia species are chemically highly diverse, particularly within macro- and polycyclic diterpenoids,
biosynthetically derived from a head-to-tail cyclization of the tetraprenyl pyrophosphate precursor,
which have been found to exhibit a range of biological activities with pharmaceutical interest, such
as antitumor, antimicrobial or immunomodulatory activity [36]. Ingenol mebutate for example,
a diterpenoid originally isolated from Euphorbia peplus L. is marketed for the topical treatment of actinic
keratosis, a precancerous skin condition [38], however production through plant extraction or chemical
synthesis is inefficient and expensive [39,40].

A key interest is therefore to find species within the genus producing higher quantities of ingenol
mebutate or other close diterpenoid analogs exhibiting biological activities with pharmaceutical
interest. We have previously assessed chemical diversity within a representative subset of species of
the plant genus Euphorbia [27]. A major challenge is the rapid identification of known and unknown
Euphorbia diterpenoid structures. Using MolNetEnhancer, we were able to significantly accelerate
manual annotation of diterpenoids and retrieve chemical structural information, even for molecular
families with no structural matches in the GNPS spectral libraries.

An example of how MolNetEnhancer increases chemical structural information throughout two
molecular families is highlighted in Figure 3. Using GNPS spectral library matching, chemical structural
information for only one molecular feature was obtained, and manual propagation of the annotation
throughout molecular family (i) was limited given that the annotated ion exhibited one neighbor only.
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No structural information could be retrieved for family (ii), where no chemical structural information
was retrieved through GNPS library matching (Figure 3a).

Figure 3. MolNetEnhancer increases chemical structural information obtained for Euphorbia specialized
metabolites. (a) Mass spectral molecular network showing two molecular families of Euphorbia
specialized metabolites. Using GNPS library matching only one molecular feature could be putatively
annotated. Manual annotation propagation is limited for family (i) and impossiblefor family (ii).
(b) Using MolNetEnhancer, substructural Mass2Motifs can be visualized within the network; both
molecular family (i) and (ii) contain Mass2Motifs related to a Euphorbia diterpene spectral fingerprint
(DSF) and molecular family (ii) contains Mass2Motifs related to a nicotinoyl side chain. Mass2Motifs are
mapped on the nodes as pie charts with an area proportional to their overlap score, a score measuring
how much of the Mass2Motif is present in the spectrum, whereas dotted lines connecting the nodes
represent features with a MS2 spectral similarity of a cosine score over 0.6 (c) Most chemical structures
retrieved for molecular family (i) and (ii) are diterpenoids of the jatrophane, tigliane or ingenane
type, which both can result in a DSF with m/z 313, 295, or 285. Substructures with mass fragments
characteristic of these Euphorbia DSFs were also found within the Mass2Motifs. Node colors represent
most abundant chemical classes, colored lines connecting the nodes represent shared Mass2Motifs, and
dotted lines connecting the nodes represent features with a MS2 spectral similarity of a cosine score
over 0.6 (d) Euphorbia diterpenoid skeletons of the jatrophane, deoxy tigliane, or ingenane ester type are
found within all Euphorbia subgeneric clades, whereas nicotinoyl sidechain modifications are unique to
subgenus Esula. Node colors represent summed peak area per Euphorbia subgeneric clade, colored lines
connecting the nodes represent shared Mass2Motifs, and dotted lines connecting the nodes represent
features with a MS2 spectral similarity of a cosine score over 0.6.

Using MolNetEnhancer however, we were able to highlight substructural Mass2Motifs within
both molecular families (Figure 3b). Substructural Mass2Motifs, putatively annotated as a Euphorbia
diterpenoid backbone skeleton with mass peaks at m/z 313, 295, and 285 were found both in molecular
families (i) and (ii) (Figure 3b). Manual annotation of these Mass2Motifs was possible by comparing
mass fragments of the library spectrum to mass fragments contained in the Mass2Motifs. A mirror plot
comparing the GNPS reference spectrum to the unknown spectrum found in our samples is shown
in Supplementary Figure S1. The exact Euphorbia backbone skeleton type could not be identified

140



Metabolites 2019, 9, 144

unambiguously, as many Euphorbia diterpenoid skeletons are isomeric and their respective MS2 spectra
are identical or very similar. A Euphorbia backbone skeleton with masses at m/z 313, 295, 285 can
either result from a jatrophane, deoxy tigliane, or ingenane ester like skeleton [41,42]. Furthermore, we
were able to see that molecular family (ii) contains substructural Mass2Motifs related to a nicotinoyl
side chain. Manual annotation of these Mass2Motifs was possible by comparing chemical structures
retrieved through NAP in silico structure annotation with mass fragments found in the Mass2Motifs.
Motifs 432 and 180 were both found to contain mass peaks at m/z 106 and 124, possibly resulting from
a nicotinoyl side chain and a hydroxylation (Figure 3b). Chemical structures retrieved through in silico
annotation or library matching can aid the manual annotation of Mass2Motifs and vice versa annotated
Mass2Motifs can aid the propagation of chemical structural information throughout the network.
Additionally, chemical structural hypotheses can be reinforced by taking into consideration both
substructural information as well as chemical class information obtained through in silico annotation
and library matching. Most chemical structures retrieved for molecular family (i) and (ii) were
diterpenoids of the jatrophane, tigliane or ingenane type and substructures related to these Euphorbia
diterpenoid backbone skeletons were also found within the Mass2Motifs (Figure 3c).

In conclusion, using MolNetEnhancer we were able to significantly increase chemical structural
annotations obtained from retrieving chemical structural information of one molecular feature through
GNPS library matching (Figure 3a), to retrieving chemical structural information at an annotation
level 3 (putatively characterized compound classes) according to the Metabolomics Standard Initiative’s
reporting standards [43] of two molecular families comprising 73 molecular features (Figure 3b–d).
Finally, this information allowed us to conclude that within the investigated subset of molecular
families Euphorbia diterpenoid skeletons of the jatrophane, deoxy tigliane, or ingenane ester type are
found within all Euphorbia subgeneric clades, whereas nicotinoyl sidechain modifications are unique to
subgenus Esula (Figure 3d).

3.3. Case Study 2: Annotation of Rhamnaceae Specialized Metabolites

Another case where we demonstrate the efficiency of MolNetEnhancer for enhancing the chemical
annotation of metabolomics data is our previous study on the plant family Rhamnaceae [28].
Rhamnaceae is a cosmopolitan family including about 900 species, and Rhamnaceae species are
known for their exceptional morphological and genetic diversity, which are thought to be caused by
the wide geographic distribution and different habitats [44]. We applied an MS2-based untargeted
metabolomics approach to get insights on the metabolomic diversity of this highly-diversified family,
and MolNetEnhancer was used as a key to provide fundamental annotations for MS2 spectra.

As shown in Figure 4a, MolNetEnhancer provided the putative chemical classification of molecular
families within the Rhamnaceae molecular network. After combining this chemical class annotations
with taxonomic information of each molecular feature, the normalized distribution pattern of different
classes of metabolites were analyzed. This revealed that the taxonomic clade Rhamnoid exhibits more
diversified flavonoids, carbohydrates, and anthraquinones, while the Ziziphoid clade produces various
triterpenoids and triterpenoid glycosides [28].

MolNetEnhancer allowed us to visualize and discover the subtle substructural diversity within the
molecular families. In the molecular family of triterpenoid esters, for example, substructural differences
of phenolic moieties such as protocatchuate, vanillate, and coumarate were easily recognized by
analyzing the distribution of Mass2Motifs 28, 117, 120, and 191 (Figure 4b). Two flavonoid aglycone
substructures, kaempferol and quercetin, were also distinguished by analyzing the distribution of
Mass2Motifs 86, 130, and 149 in the molecular family of flavone 3-O-glycosides (Figure 4c). Mass2Motif
130 contained mass peaks at m/z 284, 255, and 227, while Mass2Motifs 86 and 149 covered mass peaks
at m/z 300, 271, and 255. These fragment ions are well-known as characteristic fragments of kaempferol
3-O-glycosides and quercetin 3-O-glycosides [45–47], so these Mass2Motifs could be easily annotated.
This case study shows how MolNetEnhancer facilitates the interpretation process and our knowledge
on MS2 fragmentation, previously mainly applied manually by experts.
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Figure 4. MolNetEnhancer increases chemical structural information obtained for Rhamnaceae
specialized metabolites. (a) Structural annotation for molecular families was suggested based on
consensus-based classification of NAP in silico structure annotation. (b) Subtle chemical differences
of phenolic acid moieties can be visualized within the molecular family of triterpenoid esters based
on Mass2Motifs. (c) Molecular family annotated as flavonoid glycosides reveals two subfamilies by
Mass2Motif mapping: the pink Mass2Motif is related to the kaempferol core structure, whereas the
orange and brown Mass2Motifs are related to the quercetin core structure—two related yet distinct
flavonoid structures.

3.4. Case Study 3: Large Chemical Diversity Uncovered by Annotating Specialized Metabolites in Marine
Sediment Streptomyces and Salinispora Bacterial Extracts

The MolNetEnhancer workflow was also applied to bacterial data sets to gain more detailed
insights into their chemical richness. Crüsemann and coworkers created a molecular network of
extracts of the marine sediment bacteria Salinispora and Streptomyces that formed the basis for this
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case study [48]. Figure 5 displays the molecular network colored by the most prevalent chemical class
annotations. Whilst we can observe that the bacteria also produce a structurally diverse arsenal of
molecules, its composition is clearly different from that of the Rhamnaceae plants in Figure 4a. The
most prevalent chemical class annotations are “Carboxylic acid and derivatives” and “Prenol lipids”
with the first containing peptide-related molecules and the latter containing terpenoid molecules. Both
these classes of molecules are known to be produced by Salinispora and Streptomyces bacteria. The
chemical classification scores (see Section 2) for the ClassyFire class and kingdom terms are presented
in Supplementary materials Figure S2. These scores aid in assessing chemical novelty and also provide
information on the consistency of the chemical class annotations of the structural candidates.

Figure 5. Marine sediment Salinispora/Streptomyces molecular network colored by 15 selected chemical
class terms as indicated in the legend. In total, 50 different class terms were annotated in the network
using MolNetEnhancer, indicating that the metabolic output of the Salinispora/Streptomyces strains is
chemically very diverse. We can observe that the larger molecular families are mostly annotated with
prenol lipids (blue) and carboxylic acids and derivatives (red). Furthermore, for a couple of MFs no
chemical class annotations were obtained as no candidate structures were retrieved through any of the
annotation tools.

From the 5930 network nodes, we discovered 300 Mass2Motifs using MS2LDA. From those,
we could annotate 40 with structural information at various levels of structural details gained
from spectral matching with the GNPS libraries or from the in silico annotation tools NAP,
DEREPLICATOR, and VarQuest. For example, we could annotate an amino sugar-related Mass2Motif
with fragment ions related to two known N,N-dimethyl amino sugars present in known specialized
molecules from the bacteria studied [48]: dimethylamino-β-d-xylo-hexopyranoside (rosamicin) and
N,N-dimethyl-pyrrolosamine (lomaiviticin) which have overlapping fragment ions and are therefore
characterized by the same Mass2Motif. With a frequency of more than 70 throughout the entire
molecular network (using probability and overlap score thresholds of 0.1 and 0.3, respectively, for the
molecular feature—Mass2Motif connections), the amino sugar Mass2Motif can be used as a handle to
identify known and potential novel natural products throughout network. Indeed, the Mass2Motif
was found in all members of the Rosamicin MF (Figure 6a) and the Lomaiviticin MF (Supplementary
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materials Figure S3a). Moreover, the same amino sugar-related Mass2Motif was also found in all
members of two yet unknown MFs (Figure 6b, Supplementary materials Figure S3b). In addition, the
Mass2Motif was also found in a number of singletons not connected to any MF, often in combination with
Mass2Motif 66 as well like we see for the rosamicin-related MF. Mass2Motif 66 represents the presence of
an m/z 116 fragment which is likely also generated by the dimethylated amino sugar; in fact it may point
to the dimethylamino-β-D-xylo-hexopyranoside moiety or something very similar as this fragment is
absent in spectra from the lomaiviticin MF which contains the different dimethylated amino sugar
N,N-dimethyl-pyrrolosamine. In most singletons, no other Mass2Motifs were discovered that could
provide clues on the complete structures of these molecules; however, given the presence of the amino
sugar moiety they are likely natural products and not core metabolites or contaminants—something
that we could not confidently state without using the MolNetEnhancer workflow.

 
Figure 6. Molecular families from marine sediment bacteria with color coded Mass2Motif substructure
information mapped on them, with (a) rosamicin-related molecular family found through GNPS
library hits where all members contain an amino sugar-related motif as colored in blue in its depicted
structure—substructures or motifs found within each molecular feature are mapped on the nodes as
pie charts, where the relative abundance of each motif represents the overlap score, a score measuring
how much of the motif is present in the spectrum. Furthermore, motifs shared between two nodes
are visualized as colored continuous lines (edges) connecting the nodes whereas dashed lines (edges)
represent a cosine score of over 0.6, (b) Yet unknown molecular family that shares an amino sugar-related
motif connecting this MF to (a) by sharing a substructure, (c) tryptophan-related molecular family
sharing the Tryptophan Mass2Motif, and (d) actinomycin-related molecular family—found through
GNPS library hits and further validated with help of DEREPLICATOR results—sharing an Actinomycin
related motif across most of its members. The actinomycin D (Daptomycin) structure is depicted
with the Mass2Motif substructure highlighted in color: the peptide lactone ring present twice in the
molecule. In all MFs, nodes are colored based on Mass2Motif overlap scores and the edges show if
cosine score-connected nodes share similar Mass2Motifs. It can be seen that in all families multiple
motifs are shared across some of its members.

144



Metabolites 2019, 9, 144

Another MF displayed in Figure 6c did not return any GNPS library hits; however, all its members
shared Mass2Motif 154. Due to its indicative fragment ions, we could annotate this Mass2Motif as
tryptophan-related, indicating that all these molecules contain a tryptophan core structure. Based
on their shared Mass2Motif, the masses of the molecular features, and their fragmentation patterns,
with the help of MolNetEnhancer we could now tentatively annotate this MF as tryptophan-related
containing molecules such as small peptides or N-acyltryptophans. Figure 6d shows the peptidic MF
of actinomycin-related molecules. The annotation of this MF was guided by DEREPLICATOR and
VarQuest annotations as well as the Mass2Motif that 10 of its members shared. We could annotate
this Mass2Motif as the peptide lactone ring (depsipeptide moiety) present twice in actinomycins
using reference data from literature [49]. The unique combination of four actinomycin-related mass
fragments was only present in the 10 MF members, thereby reinforcing the DEREPLICATOR and
VarQuest annotations.

Furthermore, mapping the Mass2Motifs on the molecular network means that we can more
easily track neutral loss-based motifs such as the loss of an acetyloxy group that was only found in
Streptomyces MFs. Moreover, inspection of the MFs without annotated chemical classes revealed that
they contained some Mass2Motifs with relatively low frequency throughout the data set—something
that could point to a unique substructure or scaffold possibly from a unique biosynthesis enzymatic
function. For example, Mass2Motif 35 has a frequency of 43 and was present in all four members of
the MF in Supplementary materials Figure S3c. It is a mass-fragment-based Mass2Motif and with
masses of 142, 100, and 58 Da it could be related to a polyamine-like structural feature. Finally, the MF
in Supplementary materials Figure S3d shares the two still unknown loss-based Mass2Motifs 250 and
261 that have frequencies of 26 and 50, respectively. These are examples of Mass2Motifs representing
potential novel chemistry that can now be easily tracked in the molecular network.

3.5. Case Study 4: Annotating Peptidic Motifs in Peptide-Rich Xenorhabdus/Photorhabdus Extracts

Xenorhabdus and Photorhabdus are Gammaproteobacteria that live in symbiotic association with
soil-dwelling nematodes of the genus Steinernema [50,51]. Eventually as a consequence thereof, they
spend a large amount of their resources to the production of specialized metabolites, in particular
nonribosomal peptides and polyketides. Tobias and coworkers recently published metabolomics
data of 25 Xenorhabdus and five Photorhabdus strains to explore metabolic diversity amongst these
strains [50]. Here, we applied MolNetEnhancer on this publicly available molecular networking data
to further probe the chemical diversity previously found. The 6228 network nodes were analyzed with
MS2LDA to discover 300 Mass2Motifs. Furthermore, we also submitted the Xenorhabdus/Photorhabdus
molecular networking data to NAP, DEREPLICATOR, and VarQuest to run the MF chemical class
annotation pipeline. By far the majority of the 46 annotated motifs were peptide, amino acid, or likely
to be peptidic-related which fits with the ClassyFire predicted peptide-related MFs present in the
Xenorhabdus/Photorhabdus extracts with “Carboxylic acids and derivatives” and “Peptidomimetics” as
most frequently occurring annotations (see Figure 7, with corresponding chemical classification scores
in Supplementary materials Figure S4). We could also annotate an indole-related Mass2Motif which
can be part of peptides/amino acids. An exception is the ethylphenyl-related Mass2Motif that was
found in 478 molecules (out of 6228 nodes, corresponding to 7.7%) of the Xenorhabdus/Photorhabdus
extracts. This can be explained by the reported production of phenylethylamides, dialkylresorcinoles,
and cyclohexadions derivatives by the studied strains [52].

Annotations included Mass2Motifs that form peptidic substructures related to well-known
Xenorhabdus peptidic families such as the commonly found bioactive rhabdopeptides and the related
xenortides [52,53]. We could annotate two rhabdopeptide-related motifs with frequencies of 231 and 186
(3.7% and 3.0% of nodes, respectively). Compared to the structurally less diverse xentrivalpeptides [54]
which the Mass2Motif had a frequency of 28, corresponding to 0.45% of the nodes, we can conclude
that rhabdopeptide-related molecules are widespread in the Xenorhabdus/Photorhabdus extracts. The
PAX peptides constitute another well-known Xenorhabdus/Photorhabdus lysine-rich peptide class [55].
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The corresponding MF consisted of 13 members; indeed, they shared a Mass2Motif related to
lysine (lys) and lys–lys fragments. Similarly, a leucine-leucine Mass2Motif was found in molecules
annotated as xenobovid. This motif occurred in 110/6228 (1.8%) nodes pointing to several peptidic
families that contain this amino acid motif—in contrast to the lys–lys amino acid motif that is very
wide-spread in Xenorhabdus/Photorhabdus molecules, being present in 1500 (24%) nodes. In total, using
the MolNetEnhancer workflow we could annotate 32 peptidic motifs of which we could link 11 to
peptides known to be produced by Xenorhabdus/Photorhabdus strains whilst the other 21 Mass2Motifs
represent substructures not yet elucidated. The peptidic nature of these Mass2Motifs was assessed by
recognition of typical fragment ion patterns as seen for known peptides as well as doubly charged
precursor ions that are often a sign of peptides in these extracts.

Figure 7. Nematode symbionts Photorhabdus/Xenorhabdus network colored by 10 selected chemical class
terms as indicated in the legend. In total, 49 different class terms were annotated in the network using
MolNetEnhancer. We can observe that the larger molecular families as well as many smaller molecular
families are mostly annotated with peptidomimetics (purple) and carboxylic acids and derivatives
(red). This is consistent with earlier findings that these nematode symbionts produce a wide array of
peptidic products.

With the help of the integrative display of DEREPLICATOR and VarQuest annotation results, we
could also annotate two xenoamicin-related peptidic MFs (Figure 8a,b). Xenoamicins are known to
be produced by Xenorhabdus and eight variants have been described in detail with variants A and B
present in peptidic databases [56]. Xenoamicin is a cyclic peptide consisting of a peptidic ring and
peptidic tail (see Figure 8d). Interestingly, in one of the annotated MFs, not one but two Mass2Motifs
were shared between most of its members (see Figure 8a). With help of DEREPLICATOR-predicted
annotations of the fragment ions, we could annotate the Mass2Motif shared by almost the entire MF
as being related to the xenoamicin A peptidic ring, whereas the other more abundant Mass2Motif
was related to the xenoamicin peptidic tail (Figure 8c, and Supplementary materials Figure S5a,b).
These Mass2Motifs are quite specific as we observed that 9 and 6 mass fragments, respectively, were
consistently present in more than 75% of the molecular features to which the ring and tail Mass2Motifs
were linked. A third Mass2Motif could be putatively annotated as xenoamicin B peptidic ring-related
as its masses are +14 Da as compared to the ring A motif and xenoamicin B differs from A with an
isobutyl replacing an isopropyl group. Based on the Mass2Motif presence/absence analysis in the
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larger MF of 32 members, we observe that 4 have links (overlap score > 0.3) to both ring A and tail
motifs, 10 just have the ring A motif, three have only links to the peptidic tail motif, two share both
ring A and putative ring B together with the tail Mass2Motif, and two share the putative ring B with
the tail Mass2Motif (Figure 8a). Thus, this indicates how MolNetEnhancer increases the resolution in
molecular networks by highlighting structural differences in between MF members.

Figure 8. Xenoamicin-related molecular families annotated by MolNetEnhancer with (a) MF of 32 nodes
of which 23 were annotated with at least one xenoamicin modified structure (xenoamicin A or B) by
either VarQuest or DEREPLICATOR with VarQuest using 0.005 Da fragment binning assigning most
xenoamicin structures (FDRs mostly < 2.5). This MF also contains nodes sharing all Mass2Motifs related
to xenoamicin structures with two ring and tail-related Mass2Motifs. Mass2Motif 265 contains mass
fragments related to xenoamicin A, whereas masses in Mass2Motif 51 are shifted with 14 Da pointing
towards xenoamicin B. The MF consists of singly charged molecular features. (b) Related MF of which
20 out of 22 nodes were annotated with xenoamicin modified structures (FDRs mostly < 2.5). This
MF only shares the Mass2Motif annotated as xenoamicin tail-related and consists of doubly-charged
precursor ions. (c) Xenoamicin A spectrum in the ms2lda.org environment with (top) ring-related
Mass2Motif highlighted and (bottom) tail-related Mass2Motif highlighted with the corresponding
blue and red colors as in (a) and (b). (d) VarQuest annotation of xenoamicin modified peptide where
a ring proline indicated in brown is likely methylated. All light blue peaks in the mass spectrum
were annotated by VarQuest. The red part in the xenoamicin structure corresponds to the selected
fragment of m/z 537.348, which includes the tail part, whereas the light blue amino acid is annotated
to be modified with a mass shift of 14.013 Da that likely corresponds to a methylation. Indeed, the
Mass2Motif related to the xenoamicin tail is found in this fragmentation spectrum, whereas the ring
Mass2Motif is absent.
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We could also find additional MFs and singletons in which the xenoamicin ring or tail Mass2Motif
was present, pointing to related peptidic molecules not linked through the modified cosine score.
Further inspection with help of VarQuest annotations strengthened these annotations as VarQuest
annotated modified amino acids in both rings (Figure 8, Supplementary materials Figure S5e,f) and the
tail region (Supplementary materials Figure S5c,d) of xenoamicin many of which, to our knowledge,
have not been reported yet, such as the one highlighted in Figure 8d where the ring-proline is likely
methylated (the ring A motif is not linked to this molecular feature). In fact, xenoamicin A was
annotated as variant from xenoamicin B (Supplementary materials Figure S5f) where the modified
amino acid (demethylation) corresponds to previous literature findings [56], further increasing our
trust in these in silico approaches. The smaller MF of 22 nodes consisted of doubly-charged precursor
ions where no ring-related Mass2Motifs were assigned. Some members like xenoamicin A appeared in
both MFs as singly and doubly charged precursor ions; the differences in motif distributions between
the two MFs indicates that the initial charge has an impact on the fragmentation pathways and thus
the acquired spectra given that we know the ring A is part of xenoamicin A.

Altogether, this example highlights how the MolNetEnhancer approach facilitates fragmentation
based metabolomics analysis workflows by increasing the “structural resolution”, the discovery of
more xenoamicin variants than previously described, and highlighting previously unseen connections
between MFs and molecules. Furthermore, the integrative approach enabled straightforward annotation
of Mass2Motifs found in the xenoamicin MF by using the VarQuest fragment ion annotations as guide
for Mass2Motif feature annotation. Both Mass2Motif and VarQuest results strengthened each other
since when predicted amino acid changes occurred in the peptidic ring, the corresponding ring-related
Mass2Motif was absent, and vice versa—made possible by combining the outputs of several in silico
tools together.

4. Discussion

Although significant advances have been made in molecular mining workflows, chemical
annotation as well as classification tools [1–4,7,8,10,14–16], chemical structural annotation remains
the major and most challenging bottleneck in mass spectrometry-based metabolomics as most of
our biological interpretations rely on annotated structures [8,26,57]. MolNetEnhancer is a workflow
that combines chemical structural information retrieved from different in silico tools, thus increasing
structural information retrieved and enhancing biological interpretation. Here, we have chosen a
representative number of in silico tools covering mining, annotation, and chemical annotation to
provide the user with different chemical insights. Although we used DEREPLICATOR and NAP to
exemplify in silico annotation tools here, MolNetEnhancer is platform independent, meaning that
chemical structures retrieved from any in silico annotation platform could be used given the molecular
feature identities correspond across all molecular mining and annotation tools.

Particularly in natural products research, the rapid annotation of known (i.e., dereplication) as
well as unknown specialized metabolites from complex metabolic mixtures hinders interpretation
in an ecological, agricultural or pharmaceutical context. Many specialized metabolites from natural
sources are used as pharmaceuticals [58], in agriculture [59], or nutrition [60]; however, their discovery
is inherently slow due to the above-mentioned limitations. To highlight how MolNetEnhancer can
accelerate chemical structural annotation in complex metabolic mixtures from natural sources, we
exemplified its use on four plant and bacterial datasets.

In the plant genus Euphorbia, we were able to retrieve chemical structural information of previously
described pharmaceutically highly valuable diterpenoid skeletons corresponding to an annotation level
3 according to the Metabolomics Standard Initiative’s reporting standards [43]. The use of different tools
combined in one data format with MolNetEnhancer allowed both for the retrieval of complementary
information as well as the reinforcement of putative annotations, in cases where two independent
tools pointed to the same chemical structural conclusion. Used separately, none of the tools were
able to retrieve as much chemical structural information as when combined in MolNetEnhancer.
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Likewise, MolNetEnhancer allowed for the annotation of triterpenoids chemistries with several
distinct phenolic acid modifications (e.g., vanillate, protocatechuate) in the plant family Rhamnaceae.
In Salinispora and Streptomyces bacterial extracts, MolNetEnhancer aided the annotation of a previously
unreported tryptophan-based MF, and a xenoamycin-related MF in the Gammaproteobacteria of the
genus Xenorhabdus and Photorhabdus could be studied in more detail than in previous studies.

It is of utmost importance to note that results retrieved from MolNetEnhancer summarize results
retrieved from third-party software and manual inspection and validation of all structural hypotheses
remain essential. However, MolNetEnhancer significantly aids the manual inspection and validation
process conducted by the expert, by making substructural as well as chemical class information readily
available and visible within one data resource. As exemplified in the case studies, MolNetEnhancer
can for example help in prioritizing molecular families within a molecular network, which consists of
many hundreds to thousands of molecular features, be it by highlighting different chemical classes
of interest or molecular families, for which only very few structural hypotheses could be retrieved,
potentially highlighting novel chemistry.

Limitations introduced through data acquisition on different mass spectrometric instrument types
do also apply to MolNetEnhancer. Acquiring data on different instruments can cause different MS2
fragmentation patterns, thus in some cases leading to different structural hypotheses through library
matching or in silico structure prediction [61]. Also, the presence of low quality and/or chimeric MS2
spectra is a challenge for mass spectrometry annotation tools as the one described here, and methods
that are capable of filtering-out these spectra before proceeding with in silico annotation tools will
improve our confidence in in silico spectral annotation [62].

These limitations highlight the importance of good practices during data acquisition and processing
to minimize the time spent analyzing mass spectrometry artefacts and improving the confidence in
any downstream annotations. Here, the use of feature-based molecular networking could also help to
focus the analysis on those molecular features that are very likely molecular ions [63]—and it has the
added benefit that MS1 differential abundance information from LC–MS peak picking is available on
the molecular features as well.

Apart from limitations caused by experimental conditions, analysis bias can be introduced for
structural predictions based on chemical structures available in public databases, which are still limited
especially for particular compound classes. This is particularly true for the chemical class annotations
provided through ClassyFire, which rely on collecting correct or structurally closely related candidate
structures from compound databases. The chemical annotation score was implemented to guide the
researcher in assessing how consistent the chemical annotations are and for how many molecular
features at least one candidate structure is found. The peptidic annotations by DEREPLICATOR and
VarQuest come with scores, p-values, and false discovery rates to assess confidence in the annotations.
Using MolNetEnhancer, it is now also possible to explore the consistency in peptidic annotations
within MFs, along with their associated Mass2Motifs, which also assist in improving confidence in the
annotations, as we have shown for the xenoamicin MFs in the nematode symbiont bacteria where the
majority of the MFs were annotated with xenoamicin variants.

One limitation of the use of MS2LDA on the bacterial datasets is that most noncyclic peptidic
molecular families do not share any motifs as typically analogues differ by modifications such
as methylation or hydroxylation causing a shift in m/z in most of their mass fragment peaks.
Incorporation of amino acid-related mass differences as features for MS2LDA could be a route
to also discover Mass2Motifs for noncyclic peptides. As it is, cyclic peptides do often contain one or
more Mass2Motifs and peptides containing positively charged amino acids such as lysine and leucine
have this structural information represented by Mass2Motifs. Furthermore, many Mass2Motifs are
currently still unannotated, which hampers fast structural analysis. To partially solve this bottleneck,
MotifDB (www.ms2lda.org/motifdb) was recently introduced [64] and the here annotated Mass2Motif
sets from the four case studies are made available through MotifDB for matching against Mass2Motifs
found in other MS2LDA experiments. Furthermore, this will allow to use a combination of “supervised”
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(annotated) Mass2Motifs and “unsupervised” (free) Mass2Motifs in future MS2LDA experiments on
data of related samples thereby accelerating structural annotation since part of the motifs already
discovered do not need to be reannotated.

Despite the limitations discussed above, MolNetEnhancer assists in metabolite annotations
by its combined analysis of chemical class annotations, structural annotations, and Mass2Motif
annotations. If these annotations support each other, as for example for the actinomycin MF in the
marine sediment bacteria, there is more confidence that these in silico annotations will indeed be
correct. It is noteworthy that the modularity of MolNetEnhancer allows for complementary sources
of structural information to be added on in future. We showed that MolNetEnhancer is a practical
tool to annotate the chemical space of complex metabolic mixtures using a panel of complementary in
silico annotation tools for mass spectrometry based metabolomics experiments. Although we have
highlighted the use of MolNetEnhancer using two plant and bacterial datasets, MolNetEnhancer is
sample type-independent and may be used for any mass spectrometry-based metabolomics experiment,
where chemical structural annotation and interpretation is of interest. Future work will focus on
making the complete MolNetEnhancer workflow available within the GNPS platform in order to
further increase its user friendliness. Currently, the chemical classification workflow is available to run
within the GNPS framework directly outputting an annotated network (see URL in code availability
Section 7). Furthermore, the integration of other existing and future metabolome mining and annotation
tools in the output of MolNetEnhancer is also planned to extend on the initial set of in silico tools that
it currently can combine.

5. Conclusions

MolNetEnhancer is a powerful tool to accelerate chemical structural annotation within complex
metabolic mixtures through the combined use of mass spectral molecular networking, substructure
discovery, in silico annotation as well as chemical classifications provided by ClassyFire. The
MolNetEnhancer workflow is presented both as an open source Python module and R package,
allowing easy access and usability by the community as well as the possibility for customization and
further development by integration into future collaborative modular tools and by integration of other
existing or future metabolome mining and annotation tools. Whilst its use was showcased using
natural product examples, we expect that MolNetEnhancer will also enhance biological and chemical
interpretations in other scientific fields such as clinical and environmental metabolomics.

6. Data Availability

Publicly available mass spectrometry fragmentation data sets from four studies were used for this
study. Details on how samples and data were collected can be found in the original studies [27,28,48,50].
Here, we list links to the different analyses that were done on each of the studies. Through these links,
all used settings and parameters can be retrieved.

Data from case studies 1 & 2 illustrating MolNetEnhancer applied to feature-based molecular
networking are publicly accessible through the links listed below.

Case study 1: Euphorbia study—combined analysis of 43 Euphorbia plant extracts

• MASSIVE: MSV000081082 https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=
c9f09d31a24c475e87a0a11f6e8889e7

• GNPS Molecular Networking job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
26326c233918419f8dc80e8af984cdae

• GNPS NAP jobs: https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=
2cfddd3b8b1e469181a13e7d3a867a6f and https://proteomics2.ucsd.edu/ProteoSAFe/status.
jsp?task=184a80db74334668ae1d0c0f852cb77c

• MS2LDA experiment: http://ms2lda.org/basicviz/summary/390
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Case study 2: Rhamnaceae study—combined analysis of 71 Rhamnaceae plant extracts

• MASSIVE: MSV000081805 https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=
36f154d1c3844d31b9732fbaa72e9284

• GNPS Molecular Networking job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
e9e02c0ba3db473a9b1ddd36da72859b

• GNPS NAP job: https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=
6b515b235e0e4c76ba539524c8b4c6d8

• MS2LDA experiment: http://ms2lda.org/basicviz/summary/566

GNPS example study used in Jupyter notebook to show MolNetEnhancer based on feature-based
molecular networking—subset of American Gut Project:

• MASSIVE: MSV000082678 https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=
de2d18fd91804785bce8c225cc94a44

• GNPS Molecular Networking job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
b817262cb6114e7295fee4f73b22a3ad

• GNPS NAP job: https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=
c4bb6b8be9e14bdebe87c6ef3abe11f6

• MS2LDA experiment: http://ms2lda.org/basicviz/summary/907

Data from case studies 3 & 4 illustrating MolNetEnhancer applied to classical molecular networking
are publicly accessible through the links listed below.

Case study 3: Marine-sediment bacteria study—combined analysis of 120 Salinospora and
26 Streptomyces bacterial strain extracts

• MASSIVE: MSV000078836, MSV000078839 https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?
task=9277186021274990a5e646874a435c0d https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=
a507232a787243a5afd69a6c6fa1e508

• GNPS Molecular Networking job: http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
c36f90ba29fe44c18e96db802de0c6b9

• GNPS NAP job: https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=
60925078e0c148cbaba3593569e983d6

• GNPS DEREPLICATOR 0.005 job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
0ad6535e34d449788f297e712f43068a

• GNPS DEREPLICATOR 0.05 job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
e494a63be6d34747a4b8cdfb838ef96e

• GNPS VARQUEST 0.005 job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
f1f00c1c20ba4f61ad471d340066df76

• GNPS VARQUEST 0.05 job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
f5ffcc8f63ab4e6f96a97caabc11048b

• MS2LDA annotation experiment: http://ms2lda.org/basicviz/summary/551
• MS2LDA MolNetEnhancer workflow experiment: http://ms2lda.org/basicviz/summary/912

Case study 4: Nematode symbionts study—combined analysis of 25 Xenorhabdus and 5 Photorhabdus
bacterial strain extracts

• MASSIVE: MSV000081063 https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=
dcc30b777c344d668a5626d01f26c9a0

• GNPS Molecular Networking job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
aaff4721951b4d92b54ecbd2fe4b9b4f
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• GNPS NAP job: http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
677f076eb04b4518958ca8cd56b4c753

• GNPS DEREPLICATOR 0.005 job: http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
338b422483d1432e82afd1bf848f1292

• GNPS DEREPLICATOR 0.05 job: http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
83bca3c45665470891d41ead275dcae7

• GNPS VARQUEST 0.005 job: http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
20cfb9af4a244feea102aa9c9da2651c

• GNPS VARQUEST 0.05 job: http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
a4ffda169823476a9b1e81616aeccbda

• MS2LDA annotation experiment: http://ms2lda.org/basicviz/summary/570
• MS2LDA MolNetEnhancer workflow experiment: http://ms2lda.org/basicviz/summary/917

GNPS example study used in Jupyter notebook to show MolNetEnhancer based on classical
molecular networking—drug metabolism in set of sputum samples:

• MASSIVE: MSV000081098 https://gnps.ucsd.edu/ProteoSAFe/result.jsp?task=
7c4b25d21a6348df9a6942d3071a4b1f&view=advanced_view

• GNPS Molecular Networking job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
b76dd5a123e54a7eb42765499f9163a5

• GNPS NAP job: https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=
cb63770fe307410492468f62f9edb8f3

• VarQuest job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
4d971b8162644e869a68faa35f01b915

• DEREPLICATOR job: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
c62d3283752f4f98b1720d0a6d1ee65b

• MS2LDA experiment: http://ms2lda.org/basicviz/summary/909

7. Code Availability

The MolNetEnhancer package in R including Jupyter notebooks with an exemplary analysis
workflow for mapping Mass2Motifs and chemical class annotations onto classical and feature-based
molecular networks is publicly accessible at https://github.com/madeleineernst/RMolNetEnhancer
and the MolNetEnhancer package in Python including Jupyter notebooks with an exemplary analysis
workflow for mapping Mass2Motifs and chemical class annotations onto classical and feature-based
molecular networks is publicly accessible at https://github.com/madeleineernst/pyMolNetEnhancer. A
beta version of the MolNetEnhancer workflow is also available from within GNPS: https://gnps.ucsd.
edu/ProteoSAFe/index.jsp?params=%7B%22workflow%22:%22MOLNETENHANCER%22%7D. This
currently outputs the chemical class annotated molecular network by user provided task ids to the
individual jobs run within GNPS.

8. Tutorials

Tutorials to get familiar with individual tools from which the output is combined with
MolNetEnhancer can be found here.

GNPS molecular networking:
https://ccms-ucsd.github.io/GNPSDocumentation/networking
DEREPLICATOR/VarQuest:
https://ccms-ucsd.github.io/GNPSDocumentation/dereplicator
Network annotation propagation:
https://ccms-ucsd.github.io/GNPSDocumentation/nap
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ClassyFire:
http://classyfire.wishartlab.com
MS2LDA:
https://ccms-ucsd.github.io/GNPSDocumentation/ms2lda/
http://ms2lda.org/user_guide
MolNetEnhancer workflow tutorials in both R and Python can be found here:
https://github.com/madeleineernst/pyMolNetEnhancer
https://github.com/madeleineernst/RMolNetEnhancer

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/7/144/s1,
Figure S1: Mirror plot comparing molecular feature with m/z 614.30 and RT 373.17 (black) to GNPS reference
spectrum of a jatrophane diterpenoid (green), Figure S2: (a) Marine sediment Salinispora/Streptomyces molecular
network colored by chemical classification scores for annotated chemical class terms and (b) same molecular
network colored by chemical classification scores for annotated chemical kingdom terms. Light gray means no
database matches were found. The higher the class score, the more consistent the chemical annotations are. The
kingdom scores represent the database coverage of nodes across a molecular family with scores closer to zero
representing families with fewer nodes that have at least one database hit. Whilst most MFs do have database
matches for all or most nodes, the consistency in chemical class annotations is—apart from some exceptions—less
(indicated by the more orange/pink colors in the left panel). This indicates that for many MF family members the
right molecular structures might not yet be present in the structural databases used, Figure S3: Molecular families
from marine sediment bacteria with color coded Mass2Motif substructure information mapped on them, with (a)
lomaiviticin-related molecular family where all members contain an amino sugar related motif, (b) yet unknown
molecular family that shares an amino sugar related motif, (c) yet unknown molecular family sharing an unknown
fragment-based motif occurring 0.7% in the marine sediment data set, and (d) yet unknown molecular family
sharing unknown loss-based motifs occurring 0.4% (Mass2Motif 250) and 0.8% (Mass2Motif 261) in the marine
sediment data. In all MFs, nodes are colored based on motif overlap scores and the edges present similar colors to
show if cosine score-connected nodes share similar Mass2Motifs. It can be seen that in most families multiple
motifs are shared across some of its members, Figure S4: (a) Nematode symbionts Photorhabdus/Xenorhabdus
network colored by chemical classification scores for annotated chemical class terms, and (b) same molecular
network colored by chemical classification scores for annotated chemical kingdom terms. Light gray means
no database matches were found. The higher the class score, the more consistent the chemical annotations are.
The kingdom scores represent the database coverage of nodes across a molecular family with scores closer to
zero representing families with fewer nodes that have at least a database hit. We observe database coverages
of close to 1 for most molecular families; however, some molecular families have a lower coverage with a few
nodes that return candidate structures. Furthermore, we observe that the chemical class annotation is not always
consistent indicating that manual inspection and validation of those hits remains essential, Figure S5: Xenoamicin
Mass2Motif mass feature frequency plots for (a) Mass2Motif related to xenoamicin peptidic ring and (b) xenoamicin
peptidic tail. It can be observed that many mass fragments are present in at least 75% of the associated molecular
features (9 and 6 for ring and tail Mass2Motif, respectively) with a few mass fragments present in nearly all
associated molecular features. (c,d) Examples of annotated xenoamicin A modified structures in which only the
ring Mass2Motif was found. Indeed, we observe that VarQuest annotates a modified amino acid (addition and
loss of) in the tail region of xenoamicin A indicated in orange. (e,f) Examples of annotated xenoamicin B modified
structures in which only the ring Mass2Motif was found. Indeed, we observe that VarQuest annotates a modified
amino acid (double water addition, loss of methyl) in the ring region of xenoamicin B indicated in orange. The
structures of xenoamicin A and B differ in one methyl group on the amino acid highlighted in orange in (f) where
B has an isobutyl group and A an isopropyl group. In fact, the structure of xenoamicin A is correctly annotated by
VarQuest to this fragmented doubly charged ion.
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Abstract: Liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) is widely
used in identifying small molecules in untargeted metabolomics. Various strategies exist to acquire
MS/MS fragmentation spectra; however, the development of new acquisition strategies is hampered
by the lack of simulators that let researchers prototype, compare, and optimize strategies before
validations on real machines. We introduce Virtual Metabolomics Mass Spectrometer (ViMMS),
a metabolomics LC-MS/MS simulator framework that allows for scan-level control of the MS2
acquisition process in silico. ViMMS can generate new LC-MS/MS data based on empirical data
or virtually re-run a previous LC-MS/MS analysis using pre-existing data to allow the testing of
different fragmentation strategies. To demonstrate its utility, we show how ViMMS can be used to
optimize N for Top-N data-dependent acquisition (DDA) acquisition, giving results comparable
to modifying N on the mass spectrometer. We expect that ViMMS will save method development
time by allowing for offline evaluation of novel fragmentation strategies and optimization of the
fragmentation strategy for a particular experiment.

Keywords: liquid chromatography–mass spectrometry (LC/MS); fragmentation (MS/MS);
data-dependent acquisition (DDA); simulator; in silico

1. Introduction

Liquid chromatography (LC) tandem mass spectrometry (MS/MS) is commonly used to identify
small molecules in untargeted metabolomics. In this setup, chemicals elute through the liquid
chromatographic column at different retention times (RTs) before entering the mass spectrometer
and potentially undergoing fragmentation. Fragmentation produces distinct patterns of fragment
peaks at different mass-to-charge ratios (m/zs) that can be used to annotate chemical structures [1,2].
The choice of fragmentation strategy, which determines how precursor ions are selected for further
fragmentation in tandem mass spectrometry, is an important factor affecting the coverage and quality
of MS/MS spectra available for subsequent analysis. Many strategies exist to perform fragmentation,
including data-independent acquisition (DIA) and data-dependent acquisition (DDA), and new and
improved fragmentation strategies are constantly being introduced [3,4]. However, evaluating and
comparing different strategies is challenging since the chemicals present in the samples in untargeted
metabolomics studies are generally unknown, making it hard to judge whether a certain strategy leads
to optimal MS/MS coverage. Currently, this is usually done by trying different fragmentation settings
on the instrument followed by manual inspection for the samples of interest.
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An appealing alternative way to evaluate fragmentation strategies is using a simulator, which can
replicate the underlying LC-MS/MS processes and allow researchers to prototype and compare
strategies before validation on the actual MS instrument. Although some mass spectrometry simulators
exist they are typically focused on proteomics and do not include simulation of the MS2 acquisition
strategy within a chromatographic run [5–10]. Additionally, existing simulators do not allow for
real-time control of scan events (such as programmatically determining which m/z ranges to scan at
a particular retention time), a crucial function for developing novel fragmentation strategies that can
be controlled through libraries available with modern mass spectrometers, e.g., using the Instrument
Application Programming Interface (API) available for Thermo Tribrid instruments [11] that has begun
to generate interest within the mass spectrometry community (e.g., [12]).

In this work, we introduce Virtual Metabolomics Mass Spectrometer (ViMMS) a modular
LC-MS/MS simulator for metabolomics that allows for real-time scan-level control of the MS2
acquisition process in silico. ViMMS works by creating a set of chemical objects, each with its
own chromatogram, RT and intensity, fragmentation spectra and propensity to generate particular
adducts. These can be created from a list of known metabolites (for example from the Human
Metabolome Database, HMDB [13]) or from chromatographic peaks extracted in experimental .mzML
files. A selection of controllers that implement different fragmentation strategies are available, including
standard Top-N strategies but also MS1-only simulation as they also form a part of LC-MS/MS
experiments. Using the appropriate controllers, users can benchmark and test different strategies
and obtain simulated results in mzML format (the entire simulator state can also be saved for
inspection later).

The idea of ViMMS is to offer the functionality of simulating MS1 and MS2 generation processes,
but also to be modular enough that additional features are easily integrated in the framework.
The development of a simulator such as ViMMS makes it possible to optimize MS/MS acquisition in
silico without having to use valuable instrument time. Please note that our proposed tool is not
a new acquisition strategy itself, but rather a framework that makes the development, testing,
and benchmarking of such acquisition strategies easier. All code and examples are available at
https://github.com/sdrogers/vimms and demonstrate how our simulator framework can be used in
an interactive setting via Jupyter Notebooks. We demonstrate the utility of ViMMS with two examples:
first we perform an experiment to vary N (the number of precursor peaks selected for fragmentation
in standard Top-N DDA fragmentation strategy) in silico as well as the dynamic exclusion window
(DEW) that is used to exclude ions from fragmentation for a certain time and evaluate how changing
those parameter settings affects fragmentation coverage and the quality of MS1 peak picking. We then
validate these results by comparing the ViMMS output against experimental data when both N and
dynamic exclusion window parameters are varied. Secondly, we use the simulator to reproduce key
results from a novel fragmentation strategy, data-set-dependent acquisition (DsDA) [4], demonstrating
how ViMMS can be used to compare fragmentation strategies before implementation in an actual
MS instrument.

2. Materials and Methods

2.1. LC-MS/MS Materials and Methods

2.1.1. Samples

Beer and urine samples (labelled multi-beer and multi-urine) from a previously published study [14]
are used in our experiments. Here we briefly summarize the sample preparation and analytical platform
for the multi-beer and multi-urine in [14]. 19 different beers were collected from bottles over a period of
5 months and frozen immediately after sampling. 22 urine samples were obtained from a clinical trial of
an anonymized cohort of elderly hypertensive patients who were administered several drugs, including
antihypertensives. 5 μL of beer/urine was extracted in 200 μL of chloroform/methanol/water (1:3:1) at
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4 ◦C, vortexed for 5 min at 4 ◦C and centrifuged for 3 min (13,000 g) at 4 ◦C. The resulting supernatant
was stored at −80 ◦C until analysis, and a pooled aliquot of the 22 selected urine samples and 19 beer
samples were prepared prior to LC-MS/MS runs.

On top of the existing multi-beer and multi-urine samples, we also introduce newly generated beer
data in this study. One beer extract (labelled BeerQCB) was selected for repeated and reproducible
sampling across this experiment. An English premium bitter (Black Sheep Ale, 4.4 %) was purchased
from a local supermarket. Beer metabolites were extracted by addition of chloroform and methanol
to the ratio of 1:1:3 (v/v/v), as previously described, except for the total volume being scaled up to
100 mL. The solution was thoroughly mixed using a vortex mixer, before protein and other precipitates
removed by centrifuging at 14,000 rpm at 4 ◦C for 10 min. The supernatant was removed, and aliquots
stored at −80 ◦C until needed.

2.1.2. Liquid Chromatography

All samples underwent liquid chromatography separation under the following experimental
conditions: a Thermo Scientific UltiMate 3000 RSLC liquid chromatography system was used for
HILIC separation with a SeQuant ZIC-pHILIC column using a gradient elution with (A) 20 mM
ammonium carbonate and (B) acetontrile. 10 μL of each sample was injected onto the column with
initial conditions of 80% (B). A linear gradient from 80% to 20% (B) over 15 min, a wash of 5% (B)
for 2 min, before re-equilibration at 80% (B) for 7 min (QE) or 9 min (Fusion). A constant flow rate of
300 μL/min was used. The column oven was maintained at a constant temperature of 25 ◦C (QE) or
40 ◦C (Fusion). Blank runs, quality control samples and three standard mixes were prepared according
to the standard procedures at Glasgow Polyomics [14,15].

2.1.3. Mass Spectrometer Acquisition

The multi-beer and multi-urine datasets were acquired using a Q-Exactive orbitrap mass
spectrometer for LC-MS/MS. All full-scan spectra were acquired in positive ion mode only, with a fixed
resolution of 70,000, with mass range 70–1050 m/z. Ions were isolated with 1.0 m/z width and
fragmented with stepped HCD collision energy of 25.2, 60, 94.8% for both positive and negative ion
modes. Fragmentation spectrum were acquired with the orbitrap mass analyzer with resolution of
17,500. Top 10 ions with an intensity threshold ≥1.3E5 were selected for fragmentation and then
added to a dynamic exclusion window for 15 s. For more mass spectrometer acquisition details,
we refer to [14].

The new validation dataset (BeerQCB) to simulate fragmentation performance in Section 3.4
was generated using an orbitrap fusion tribrid-series mass spectrometer. All full-scan spectra were
acquired in positive ion mode only, with a fixed resolution of 120,000, with mass range 70–1000 m/z.
To investigate the instrument performance with differing Top-N and dynamic exclusion windows,
filters such as intensity threshold and monoisotopic peak determination were not used. This allowed
for a consistent number tandem MS scans to be acquired under varying Top-N parameters and dynamic
exclusion window (DEW), for N = (1, 2, 3, 4, 5, 10, 15, 20, 35, 50) and DEW = (15, 30, 60, 120). Ions were
isolated with 0.7 m/z width and fragmented with fixed HCD collision energy of 25%. Fragmentation
spectrum were acquired with the orbitrap mass analyzer with resolution of 7500.

2.1.4. Data Transformation

Raw files from acquisition were converted into mzML format using MSconvert (Proteowizard).
In the evaluation of the Top-N controller in Sections 3.2 and 3.3, two of the multi-beer samples (labelled
multi-beer-1 and multi-beer-2) and two of the multi-urine samples (labelled multi-urine-1 and multi-urine-2)
are used. In Section 3.5 to evaluate DsDA, all multi-beer and multi-urine samples are used. Section 3.4
uses only the BeerQCB samples.
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2.2. Computational Methods

2.2.1. Overall Framework

The overall schematic for ViMMS can be found in Figure 1. ViMMS works by first creating chemical
objects which represent the possible metabolites in a sample (Section 2.2.2). These objects contain
information which defines how each chemical appears when scanned by the virtual mass spectrometer
(yellow box in Figure 1). To get the information to fill the chemical objects, we create a database
of spectral features from experimental data from which we can sample (Section 2.2.3). Regions of
interest (ROIs) representing groups of mass traces that could potentially form chromatographic peaks
are also extracted from experimental files and assigned to chemicals (Section 2.2.4). Unlike other
simulators, e.g., [5–9], chemical objects can also be associated with fragment spectra that could
themselves be extracted from spectral databases or generated using in silico fragment prediction
methods (Section 2.2.5). In silico scan simulation in ViMMS (yellow box in Figure 1) proceeds as
follows. A virtual mass spectrometer takes the list of chemical objects as input and generates MS1
and MS2 scans at appropriate RTs (Section 2.2.6). Scan parameters are determined by a controller that
implements a particular fragmentation strategy. (Section 2.3). The proposed framework is designed to
be completely modular such that a variety of situations and different fragmentation strategies can be
tested. Finally, using the psims library [16] simulated results can be written as mzML files for further
analysis in other tools. The entire state of the simulator over time can also be saved for inspections
using the built-in pickle function in Python.
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Figure 1. An overall schematic of ViMMS. (A) Synthetic Sample Workflow: Chemical objects in
ViMMS can be created by sampling for compound formulae, mz, RT, and intensity values from the
spectral feature database. (B) Existing Sample Workflow: alternatively, chemical objects can be created
by extracting regions of interest from a single mzML file and converting them to chemical objects.
(C) Yellow box: chemical objects are processed in the virtual mass spectrometer during in silico scan
simulations. A controller performs parameter updates on the mass spectrometer depending on the
fragmentation strategy implemented in the controller. Simulated results can be written as mzML files.

2.2.2. Chemical Objects

Chemical objects in ViMMS can be created in two ways—by sampling chemical formulae
from a relevant database and then associating them with chromatographic peaks, or by re-running
an existing analysis. In the first method, formulae are first sampled from a metabolite database such as
HMDB [13] (Synthetic Sample Workflow in Figure 1). Each chemical is given a starting RT (the first
RT at which they will appear when scanned) and a maximum intensity value by sampling from the
spectral feature database in Section 2.2.3. Based on the spectral information they contain, the chemical
objects are able to generate MS1 peaks for the relevant adducts and isotopes, with the intensity of

162



Metabolites 2019, 9, 219

the chemical object split between the various adduct and isotope combinations and the m/z values
being calculated based on the chemical’s assigned formula. Distributions over adduct intensities can
be specified by the user. Finally, an ROI with a similar maximum intensity to the chemical is chosen
(Section 2.2.4), and fragment peaks assigned (Section 2.2.5). It is also possible to generate multiple
related samples of chemicals, whether biological or technical replicates. To do this we introduce
independent Gaussian noise to the maximum intensity values and allow chemicals to be excluded
from samples with a certain dropout probability.

When real data is available and the user wishes to re-run the same data under different
fragmentation strategies, chemicals can also be extracted from an existing mzML file (Existing
Sample Workflow in Figure 1). Here ROIs in the file are extracted and converted to chemical objects
(we make the simplifying assumption that each ROI corresponds to a single unknown chemical).
Unknown chemicals created in this manner will generate a single trace in the output (as opposed to
multiple traces where multiple adducts and isotopes are generated.

2.2.3. Spectral Feature Database

To generate data, we create a database of spectral features extracted from actual experimental data.
This database is used to sample the features associated with a chemical including the m/z, RT, and
maximum intensity values of observed MS1 and MS2 peaks, as well the number of fragment peaks
found for typical scans. During simulation, the database is also used by the controller to sample for
the duration of each scan (Section 2.2.6). To construct this database, users provide their data in mzML
format. pymzML [17] is then used to load the input mzML files, extract the necessary features and
construct the database which is stored as Python pickled format. In the case of Synthetic Sample
Workflow in Figure 1, the database also stores information on the small molecules extracted from an
external metabolite database such as HMDB.

2.2.4. ROI Extraction and Normalization

ROIs are extracted using our Python [18] re-implementation of the ROI extraction procedure of
XCMS’s CentWave algorithm [19] originally available in the R programming language [20], although
ROIs could have easily been extracted with alternative software such as MZmine [21]. First, spectra
in an mzML file are loaded using pymzML. Then the ROI extraction algorithm loops over all scans,
extracting the raw traces (recorded in centroid mode) from observed spectra. This results in a list
of peak features of (m/z, RT, intensity) values. Features are first filtered to remove any that have
an intensity below some user-defined threshold. The current m/z value is matched to find existing
ROIs that it could fall into within a mass tolerance window, defined as the window above and below
the mean m/z of the ROI. If no match exists, then this feature forms its own ROI and gets added to
the list of existing ROIs. ROIs that are not added to are closed and put aside. ROIs that contain fewer
data points than a user-defined threshold parameter are discarded. Finally, ROIs are normalized so
their m/z values are centered around 0, RT values start at 0, and intensity values are scaled to have
a maximum of 1, such that they can be assigned to chemicals.

2.2.5. MS2 Scan Generation

The MS2 scan generation process in ViMMS is modular and allows for different methods
to be selected for generating and associating MS2 fragments to chemical objects. In our current
implementation, two baseline methods are provided. The first is to assign m/z and intensity values to
fragment peaks by randomly sampling from the spectral feature database in Section 2.2.3. This works
for experiments where we can make the simplifying assumptions that fragment peaks are completely
independent across scans. To reflect a more realistic scenario where groups of fragment peaks may
co-occur in multiple fragmentation spectra [22], we provide a second method of assigning MS2 peaks
in a fragmentation scan by following a truncated Chinese Restaurant Process (CRP) [23]. This allows
for a fragment peak to have a greater likelihood to be selected again if it has been selected before in
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previous scans. The truncated CRP process follows the standard process of a CRP, but prevents the
same MS2 peak being assigned to the same fragmentation spectra more than once. The modular nature
of ViMMS means that it would be straightforward to incorporate MS2 prediction methods such as
CFM-ID [24,25] or NEIMS [26].

2.2.6. Scan Time

For accurate simulation of duty cycles, we sample scan durations of MS1 and MS2 scans from
the spectral feature database in Section 2.2.3. Based on the MS level of the previous scan, as well
as that of the scan about to be undertaken, the time for the scan about to take place is drawn from
the times of those scans in the database which represent the relevant scan transition. The only time
that this is not the case is when the DsDA controller is used (Section 2.3.3) as we have a fixed timing
schedule. Scan times sampled in this manner will almost always not correspond to values observed in
the original files from which the ROIs were extracted. This causes some difficulty with determining the
intensity and m/z values of the chemicals that would be observed at this time, as they will not have
previously been observed. To overcome this, we use a simple interpolation scheme (the trapezium
rule) between the two nearest scans, which gives us estimates of the intensity and m/z values that
would be expected for any chemical object at the previously unobserved RT.

2.3. Controllers

ViMMS is designed to be flexible, and to achieve this aim, we separate the simulation of mass
spectrometer (generating spectra from chemicals) and the fragmentation strategy (determining which
precursors to fragment) in the framework. Generating spectra from chemicals is implemented inside
a virtual mass spectrometer, while different fragmentation strategies are implemented as controllers.
To simulate a scan, the virtual MS iterates through chemical objects that each generate MS1 or MS2
peaks depending on the current RT and the MS level requested by the controlled. The virtual MS is
also responsible for broadcasting events, such as when a new scan is generated or when acquisition is
started or has been finished. Controllers can subscribe to these events and act upon them, for example
by directing the virtual MS to perform different scans according to the current fragmentation strategy
(yellow box in Figure 1). It is relatively straightforward to implement various controllers that perform
different fragmentation strategies. Each controller is designed such that it is separate from the virtual
mass spectrometer, allowing controllers to interact with either the virtual MS or with an actual MS
instrument through an application programming interface as a future work.

2.3.1. MS1 Controller

The MS1 controller is designed to replicate the process of generating MS1 full scans by a mass
spectrometer. Given a start and end RT range, the MS1 controller steps through time and generates
scans from chemicals. A scan therefore consists of m/z and intensity pairs for those chemicals that are
currently eluting. The timings of the scans are determined based on experimental data by sampling
from the spectral feature database, as described in Section 2.2.6. Scan results can be exported as an
mzML file and viewed in standard programs such as TOPPView [27].

2.3.2. Top-N DDA Controller

The Top-N controller performs standard DDA acquisition. In each duty cycle, the controller first
performs an MS1 scan to establish the most intense precursor ions, followed by up to N fragmentation
scans depending on the number of precursor ions selected for further fragmentation. To generate
fragmentation scans, the Top-N precursor ions (in descending order of intensities) in the initial MS1
scan are isolated and fragmented. A dynamic exclusion window (DEW) is used to prevent precursor
ions that have recently been analyzed from being fragmented again. In the controller, we also provide
a threshold on the minimum MS1 intensity for a precursor ion to be selected for fragmentation.

164



Metabolites 2019, 9, 219

2.3.3. DsDA Controller

The DsDA [4] controller attempts to optimize fragmentation strategy over several similar samples.
DsDA keeps track of which precursor ions have been fragmented in previous samples, and prioritizes
those that have high MS1 intensity and have either not been fragmented, or have been fragmented
producing low quality MS/MS spectra.

Implementing the full DsDA analysis pipeline in ViMMS requires the following process. First the
DsDA controller, written in Python, calls the Top-N controller to perform an initial DDA analysis
(for the first sample) using a fixed timing schedule. Once the initial DDA analysis is complete,
the resulting mzML file is analyzed using the original DsDA scan prioritization algorithm written in R
(available from https://github.com/cbroeckl/DsDA). This involves picking peaks and comparing
the picked peaks to what has previously been fragmented. This information is used to determine
at what m/z and RT locations new fragmentation scans should be performed. The prioritization
algorithm attempts to get the highest quality MS/MS spectra for as many different precursor ions
as possible. To avoid missing novel precursor ions that may not have appeared before, DsDA also
includes an option called ‘MaxDepth’ which increases the probability of sampling rare features that
the prioritization algorithm was originally designed to devalue. The resulting schedule is used for the
analysis of the next sample using the Python-based DsDA controller, a process that is automatically
repeated until all the samples have been analyzed.

3. Results

3.1. MS1 Simulations

To demonstrate the ability of ViMMS to simulate MS1 scans generated by chemicals from
a metabolite database, we create a sample consisting of 6500 chemicals from HMDB and use the
19 full-scan experimental beer data from the multi-beer dataset to generate the spectral feature database
(Synthetic Sample Workflow in Figure 1). The MS1 controller (Section 2.3.1) in ViMMS is used to
perform a full-scan MS1 simulation. Simulation results are exported as an .mzML file and loaded into
Jupyter Notebook for further analysis (all example notebooks can be found in our code repository).

Figure 2 shows examples of snapshots of full-scan chromatograms in TOPPView [27] for the actual
experimental multi-beer-1 sample (Figure 2A) and a simulated sample created in ViMMS (Figure 2B).
The resulting spectra show similar characteristics to each other in terms of the shapes of the peaks and
how they are observed in a full-scan samples. Individually the peaks appear at the different locations
and with different profiles as a result of the simulation process, with the aim here not to directly copy
the real beer sample, but create a sample with similar overall properties. A further demonstration of
the similarity of the samples can be seen in boxplots of the XCMS picked peaks characteristics (RT, m/z,
log intensity) shown in Figure 1 of the supplementary materials. A user could also produce similar
results with alternative peak picking algorithms such as MZmine.

3.2. Top-N Simulations

We now show an example of using the Top-N controller, available from ViMMS (described
in Section 2.3.2). This controller accepts as input a list of chemicals objects and performs MS2
fragmentation simulation by isolating precursor (MS1) ions and producing scans containing product
(MS2) peaks. To check that our Top-N simulation processes reflect reality, we conduct an experiment
where existing chromatographic peaks from the multi-beer-1 fragmentation file are loaded into the
simulator (Existing Sample Workflow in Figure 1). Top-10 DDA fragmentation is performed using
the Top-N controller and the resulting output compared to the original input file. The aim here is to
assess how much our simulated file differs from the actual fragmentation file given the same input
ROIs and similar fragmentation parameters (N=10, DEW=15 s). A visual snapshot of resulting spectra
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in TOPPView can be found in Figure 2 of the supplementary materials and a comparison of when and
where the fragmentation events occurred can be seen in Figure S3 of the Supplementary Materials.

(a) Real (b) Simulated

Figure 2. Real and simulated example outputs. (a) A region from the beer-multibeers-1 LC/MS data.
(b) A region from an LC/MS datafile generated by randomly generating peaks (mz, RT, intensity,
chromatographic shape) from a database of peaks extracted from all multi-beer data.

Figure 3a shows the number of MS1 and MS2 scans completed over time for the true and simulated
scenarios. The total number of scans is very similar in both cases, as can also be seen in Table S1 in the
Supplementary Materials. Figure 3b shows that the situations in which the simulator and actual data
do not match typically involve low intensity precursors. Investigating the differences between the
simulation and the real data in detail, we observe what seems to be unpredictable behavior from the
mass spectrometer. For example, in some cases it fragments 9 instead of 10 ions (even when other ions
are present above the minimum intensity that should not be excluded due to a previous fragmentation
event), and on some occasions it fragments ions despite them being below the minimum intensity
threshold. These differences might be due to our handling of the data in centroid mode (and the real
MS controller operating in profile mode), and there will also be a small difference due to our randomly
sampled scan times. Overall, however, we are confident that the behavior of the simulator is close
enough to reality and that our Top-N controller captures the most important fragmentation events and
can be used for further experiments in subsequent sections.

(a) Cumulative number of scans (b) Intensities of matched precursors

Figure 3. Figures showing (a) the cumulative number of MS1 and MS2 scans over time for real
and simulated data, and (b) matched precursors from the actual multi-beer-1 data to the simulated
data. Most precursors that could be matched (blue) have higher intensities than those that cannot be
matched (red).
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3.3. Varying N in Top-N Simulations

Choosing N in DDA is a critical part of method development. Increasing N ought to give better
MS/MS coverage as more ions are fragmented. However, increasing N too far will result in many ions
being fragmented below their minimum intensity threshold (even if they were above the minimum
during the initial MS1 scan). In addition, larger N reduces the frequency of MS1 scans, which will have
a detrimental effect on MS1 peak picking. ViMMS allows us to objectively investigate this trade-off,
providing a strong evidence base for method development.

Consider a typical scenario where within an experimental batch, only Top-N DDA is performed
and no full-scan data are available (an alternative scenario where both full-scan and Top-N data are
acquired is also considered in Section S3 of the Supplementary Material). In this case, it is standard
to use only peaks picked from the MS1 scans (which we call MS1 features) in the DDA fragmentation
files for further analysis. As already mentioned, increasing N could result in greater fragmentation
coverage since more precursor ions are fragmented but also potentially fewer MS1 features from
the fragmentation file due to fewer MS1 data points available for peak picking. Evaluating the best
Top-N parameter that results in an optimal trade-off between fragmentation coverage and peak
picking performance can be challenging on real data, but it is possible in a simulated environment
such as ViMMS.

To perform this simulated experiment, first an existing full-scan file is loaded into ViMMS.
The Top-N DDA controller (Section 2.3.2) can be run with a variety of different Ns and the results
evaluated. Based on these results we can choose the best N for future experiments on similar samples
for that mass spectrometer. Given actual experimental full-scan MS1 files, the effect of varying N
to simulated fragmentation coverage and peak picking quality can be evaluated with respect to
the ground truth MS1 features found in both the full-scan and fragmentation files. For evaluation,
the following definition of positive and negative instances (illustrated in Figure 4) is proposed:

FN

TN

FPFN TP
FN TN

Definitions:

“Positive” objects are MS1 
features that are picked 
and fragmented

If an MS1 feature is picked 
and not fragmented, or 
fragmented and not 
picked, it is a negative.

Full-scan data

Fragmented

DDA data

Figure 4. Definitions of True Positives (TP), False Positives (FP), True Negatives (TN) and False
Negatives (FN) for performance evaluation of Top-N DDA fragmentation strategy. The blue circle in
the Venn diagram refers to all MS1 features that are fragmented above the minimum MS1 intensity
threshold, the green circle refers to all MS1 features found by XCMS’ CentWave from the full-scan file,
while the red circle refers to all MS1 features found by CentWave from the fragmentation file.

True Positives (TP): MS1 features from ground truth (found in both fragmentation and full-scan files)
that are fragmented above the minimum intensity threshold.

False Positives (FP): MS1 features not from ground truth (found in fragmentation file but not in
full-scan file) that are fragmented above the minimum intensity threshold.

False Negatives (FN): MS1 features not from ground truth (not found in fragmentation file but found
in full-scan file) that are not fragmented or fragmented below the minimum intensity threshold.

True Negatives (TN): MS1 features not from ground truth (found in fragmentation file but not found
in full-scan file) that are not fragmented or fragmented below the minimum intensity threshold.
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It is worth noting that this evaluation strategy uses picked peaks as a ground truth. Peak picking
is a process known to not be entirely accurate, although we believe that this represents a meaningful
evaluation metric given the widespread use of peaking picking in metabolic analyses.

In our experiment, four existing Top-10 DDA files from the multi-beer and multi-urine samples
are loaded into ViMMS using the Existing Sample Workflow in Figure 1. For each sample
(labelled multi-beer-1, multi-beer-2, multi-urine-1 and multi-urine-2 respectively), DDA fragmentation
is simulated using the Top-N controller in ViMMS. The parameter N for Top-N is varied in the
range N = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, . . . , 100) in the simulator, while other parameters
are fixed following Section 3.2. In this experiment we also fix the dynamic exclusion window
(DEW) to 15 s and the minimum MS1 intensity to fragment to 1.75 × 105 based on the actual
parameters that were used to generate the data. Our results are evaluated in terms of precision,
recall, numbers of peaks picked and F1 score (Precision = TP/(TP + FP), Recall = TP/(TP + FN),
F1 = (2 ∗ Precision ∗ Recall)/(Precision + Recall)). To obtain the ground truth for evaluation,
we performed peak picking using XCMS’ CentWave on both the full-scan and simulated fragmentation
files using the parameters in [14].

Using the simulator, we observe that increasing N produces an initial increase followed by
a decrease in precision (Figure 5a), suggesting that with greater N, more peaks in the ground truth
are being fragmented but this benefit is rapidly cancelled out by a fast increase in the number of false
positives. Similarly, recall increases with N initially but decreases (Figure 5b), suggesting that with
greater N, more precursor ions from ground truth MS1 features are fragmented—up to the point
when all possible precursor ions above the minimum intensity threshold of 1.75 × 105 are selected.
We can explain this trade-off between precision and recall due to the fact that as fragmentation
coverage increases (with greater N), fewer ground truth peaks are detected from the fragmentation
files (Figure 5c). The quality of MS1 chromatographic peak shapes in the fragmentation file becomes
poorer since more duty cycle time is spent performing MS2 than MS1 scans, reducing the number of
good-quality MS1 features that can be found by XCMS from the fragmentation files. Assessing the F1

score (Figure 5d), which is the harmonic average of precision and recall and is representative of overall
fragmentation performance, we see that the best F1 score can be found at N = 10. This is the same as
the actual value of N used to generate the data (N = 10) obtained by expert judgement. The results
here demonstrate how a simulated environment such as ViMMS can be used to quantify the trade-off
between fragmentation coverage and peak picking performance.

(a) Precision (b) Recall

Figure 5. Cont.
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(c) Number of peaks picked (d) F1 score

Figure 5. Figures showing (a) precision, (b) recall, (c) the number of peaks picked, and (d) F1 score
for peak picking performance as N changes in Top-N DDA experiments in ViMMS based on the
classification specifications given in Figure 4.

3.4. Varying Multiple Parameters in Top-N Simulations

To validate the use of ViMMS for Top-N method development, we now show how ViMMS
compares to data generated at a wide range of N and DEW times. In the previous Section 3.3 DEW is
fixed to 15 s for all values of N; however our hypothesis is that the best fragmentation performance can
be obtained by optimizing both parameters simultaneously. Here we evaluate the ability of ViMMS to
suggest the parameter combinations that provide the best fragmentation performance and compare
the results to actual experimental data.

To validate simulated results, we generated a large real dataset in which the same sample, BeerQCB
(introduced in Section 2.1) was fragmented using all combinations of N = (1, 2, 3, 4, 5, 10, 15, 20, 35, 50)
and DEW = (15, 30, 60, 120). The minimum MS1 intensity threshold to fragment was completely
disabled for this experiment to allow a consistent number of MS scans to be acquired under the
different scenarios (see Section 2.1.3). To generate simulated data in ViMMS, we extracted ROIs from
a full-scan MS1 analysis of the BeerQCB sample using the Existing Sample Workflow in Figure 1.
These ROIs were used as input to the Top-N controller using the same ranges of parameters for N and
DEW as the real data. For evaluation, peak picking using XCMS was performed on the full-scan and
fragmentation mzML files, and fragmentation performance was computed on both real and simulated
data following Section 3.3.

Inspecting parameter combinations in the heatmaps of Figure 6 we see a high level of agreement
between the performance obtained from the simulated data, and that obtained from the real
measurements. Optimal performance is observed in both cases for N = 20 and DEW = 30s although
regions of high performance for both real and simulated results can be found at N = (10, 15, 20)
and DEW = (15, 30, 60). Ranges of N that are either too large or too small demonstrate decreased
performance in Figure 6a,b. Please note that the difference in optimum value in this experiment when
compared with the previous one is explainable due to the use of a different MS platform (Q-Exactive
orbitrap versus Fusion Tribid orbitrap).

Overall our findings demonstrate that ViMMS can be used to optimize Top-N acquisition methods
in silico before actually running the experiment on a real MS instrument—something of great benefit
to the community. Additional results are given in Section 4 of the supplementary materials.
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(a) Actual data (b) Simulated data

Figure 6. Fragmentation performance in terms of F1 score for (a) an actual BeerQCB sample,
(b) simulated results from ViMMS.

3.5. DsDA Simulations

Finally, we show how ViMMS can be used to benchmark fragmentation strategies that work on
multiple samples, such as DsDA [4] (Section 2.3.3). To benchmark DsDA using ViMMS, we generate
synthetic data where samples are almost identical using the Synthetic Sample Workflow in Figure 1.
To do this, 6500 chemical objects are generated by sampling formulae from HMDB (the multi-beer
data is used to construct the spectral feature database). 20 samples are created from these chemical
objects by adding independent Gaussian noise (with standard deviation set to 10,000) to the maximum
intensities of the chemicals in the original sample. These 20 samples will have peaks in the same RT
and m/z locations but with a slight variation in how intense they are. We compare the results from
DsDA, DsDA MaxDepth and Top-4 DDA fragmentation strategies (N = 4 was chosen as that is the
default option for DsDA). Following the original DsDA study, performance is evaluated in terms
of how many of the aligned peaks found by XCMS are successfully fragmented above a minimum
intensity of 1.75 × 105. Our experiment shows that DsDA and DsDA MaxDepth clearly outperform
Top-4 DDA strategy in terms of how many chemicals they successfully fragment (Figure 7a). This is
consistent with the results from the original DsDA study.

(a) Simulated samples (b) Multi-beer samples (c) Multi-urine samples

Figure 7. Top 4, DsDA and DsDA MaxDepth performance for in terms of the number of chemicals
fragmented for (a) the simulated samples, (b) the multi-beer samples and (c) the multi-urine samples.
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As a further investigation, we also compare the methods on the multi-beer and multi-urine data
using the Existing Samples Workflow in Figure 1. ROIs are extracted from the full-scan mzML files of
the two datasets and converted into chemical objects allowing us to virtually re-run the data under the
DsDA fragmentation strategy using real chromatographic peaks. The result in Figure 7b,c shows that
unlike previous results on synthetic data, here Top-4 DDA fragmentation strategy clearly gives the
best performance in fragmenting the most peaks picked by XCMS, and no difference can be observed
between DsDA and DsDA MaxDepth. Since DsDA prioritizes precursor peaks to fragment in a run
based on previously seen runs, we explain the results here by the fact that the beer and urine samples
are not similar enough for the DsDA strategy to be effective.

To confirm this, we return to our synthetic data and investigate the performance of the different
methods as increasing numbers of chemicals are randomly removed from each sample. We consider
scenarios where we randomly remove 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50% of chemicals
from each samples, meaning that on average samples will become less similar. In these samples, a given
chemical object will appear in any two samples with a probability of 1, 0.90, 0.81, 0.72, 0.64, 0.56, 0.49,
0.42, 0.36, 0.30 and 0.25, respectively. In all cases, we generate 5 samples to run through the DsDA
analysis. Figure 8 shows the number of chemicals fragmented above a minimum intensity of 1.75E5 after
all five samples are processed by both the DsDA and Top-4 DDA fragmentation strategies in the different
scenarios. The results show that DsDA performs well when the samples are similar, but as the samples
becomes less similar the performance drops and DsDA is comfortably outperformed by the Top-4 DDA
fragmentation strategy. Hence, as samples become more different, a Top-4 strategy should be preferred,
but where samples are very similar (e.g., technical replicates), DsDA is likely to be more efficient.

Such experiments would be very challenging to do in reality. This example demonstrates
how ViMMS can provide insight into the scenario in which a certain fragmentation strategy
will be successful.

Figure 8. DsDA and Top 4 DDA performance in terms of the number of chemicals fragmented over
multiple simulated datasets with varying dropout. In each scenario a percentage of chemicals are
dropped from the sample (0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%), meaning that on
average samples will become less similar. In these samples, a given chemical object will appear in any
two samples with a probability of 1, 0.90, 0.81, 0.72, 0.64, 0.56, 0.49, 0.42, 0.36, 0.30 and 0.25, respectively.

4. Discussion and Conclusions

In this paper, we introduce ViMMS, the first simulator specifically targeted at mass spectrometry
fragmentation-based metabolomics that is modular, easily extensible, and can be used for the
development, testing, and benchmarking of different fragmentation strategies. Processing MS2 data
(particularly identifying spectra) is generally considered to be more challenging in metabolomics
than in proteomics [28]. An in silico simulator such as ViMMS, which can be used to generate
realistic-looking full-scan and fragmentation spectra based on either existing data or by sampling from
a database of known metabolites, can be used to alleviate this problem. In this work, our experiments
show how our proposed simulator can be used to help optimize acquisition methods in silico through
two examples: Top-N DDA fragmentation, and DsDA. It is also important to note that our simulator
could be used to create datasets on which novel data processing methods could be benchmarked.
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The results from our experiments show that the spectral data generated from ViMMS have a strong
resemblance to data produced from MS instruments. Our experiments with the Top-N and DsDA
controllers in Sections 3.2–3.5 demonstrate that despite some minor differences in output, the proposed
simulator framework can be useful in investigating, understanding and comparing the characteristics
of different fragmentation strategies. Furthermore, we provide insights in when best to use Top-N and
DsDA fragmentation methods; something that is not that easily and cheaply done using experimental
data.

When developing acquisition methods, selecting the N that provides the highest fragmentation
performance and number of detected peaks can be challenging, particularly in the typical scenario
where the full-scan data is assumed to be absent and peak picking quality from fragmentation files is
therefore important for subsequent analysis. We demonstrated how ViMMS can be used to suggest N
for use for similar future samples on the MS instrument. Our results show how ViMMS can be used to
explore parameter combinations for a particular fragmentation strategies in silico for existing data,
virtually re-run existing data under an alternative strategy and benchmark existing fragmentation
strategies (like DsDA) with minimal modifications under the proposed framework. This is a capability
not available from other simulators [5–10]. On top of fragmentation data, ViMMS can also be used
to benchmark and perform comparative evaluation of different LC-MS data processing algorithm,
such as peak picking and retention time alignment [29] in a more controlled manner. In each of these
cases, ViMMS also has the potential to help develop new methods by allowing them to be evaluated in
a scenario where the ground truth is known, and little machine time needed.

The modular nature of ViMMS means that as future work, we can extend it with different and
improved noise models and test noise reduction approaches, additional improvement to MS1/MS2
spectral data generations through incorporating fragmentation spectra prediction methods such as
CFM-ID [24,25] or NEIMS [26], as well as retention time predictions from chemical structures [15].
Expanding the capabilities in ViMMS by us or others (all code is open source) in the future will further
enhance its utility. The target users of ViMMS are currently algorithmic and LC-MS/MS method
developers. ViMMS is available as a Python package that can be accessed from Python scripts and
interactive environments such as Jupyter Notebook from where users can point to their own spectral
files or compound lists to start using ViMMS on their own data. However, for end-users who are
not comfortable with scripting, we aim to build an easy-to-use graphical user interface on top of
ViMMS. Finally, we plan to use the proposed framework to develop and evaluate novel model-based
fragmentation strategies that produces the highest coverage of MS1 and MS2 fragmentation in real time.

Supplementary Materials: A variety of additional text, tables and figures are available online at http://www.
mdpi.com/2218-1989/9/10/219/s1.
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Abstract: Tandem mass spectral databases are indispensable for fast and reliable compound
identification in nontargeted analysis with liquid chromatography–high resolution tandem mass
spectrometry (LC-HRMS/MS), which is applied to a wide range of scientific fields. While many
articles now review and compare spectral libraries, in this manuscript we investigate two high-quality
and specialized collections from our respective institutes, recorded on different instruments
(quadrupole time-of-flight or QqTOF vs. Orbitrap). The optimal range of collision energies for
spectral comparison was evaluated using 233 overlapping compounds between the two libraries,
revealing that spectra in the range of CE 20–50 eV on the QqTOF and 30–60 nominal collision energy
units on the Orbitrap provided optimal matching results for these libraries. Applications to complex
samples from the respective institutes revealed that the libraries, combined with a simple data mining
approach to retrieve all spectra with precursor and fragment information, could confirm many
validated target identifications and yield several new Level 2a (spectral match) identifications. While
the results presented are not surprising in many ways, this article adds new results to the debate on
the comparability of Orbitrap and QqTOF data and the application of spectral libraries to yield rapid
and high-confidence tentative identifications in complex human and environmental samples.

Keywords: nontarget analysis; liquid chromatography mass spectrometry; compound identification;
tandem mass spectral library; forensics; wastewater

1. Introduction

Tandem mass spectral databases are indispensable for fast and reliable compound identification
in nontargeted analysis with liquid chromatography–high resolution tandem mass spectrometry
(LC-HRMS/MS) [1–7]. These databases have been applied in diverse fields, including forensics,
environmental analysis, food analysis, and metabolomics. They are usually applied for target and
suspect analysis [8–11], and enable fast and automated annotation of components [12,13]. Database
searching can yield identifications at a high confidence level. According to the scheme introduced by
Schymanski et al. [14], a Level 2a identification (probable structure via spectral match) can immediately
be reached with sufficient match to a library spectrum. Even Level 1 (structure confirmed by a reference
compound) can be achieved when the library spectrum and associated retention time (or index) match
with data acquired on the same analytical set-up as in the sample. This identification scheme was
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designed specifically for HRMS/MS data and is applied in the current manuscript. However, in the
context of this article, these levels do not differ markedly from the Metabolomics Standard Initiative
levels (MSI) 1 (Identified compounds) and 2 (Putatively identified compounds based upon spectral
similarity with spectral libraries) [15].

Tandem mass spectral databases consist of two integral parts: (1) the collection of tandem
mass spectral data accompanied by chemical information on the corresponding compounds, and
(2) a database management system with diverse search functions. Tandem mass spectra are usually
produced by collision-induced dissociation (CID) or higher-energy collision dissociation (HCD).
The instruments most commonly applied for the acquisition of reference spectra are quadrupole
time-of-flight (QqTOF) and iontrap/quadrupole-Orbitrap. Before storage, spectra are usually curated
and cleaned employing multiple steps, which can include some or all of noise and artefact removal,
peak annotation and recalibration, testing and benchmarking, as well as expert reviewing [16–21].

A challenge limiting tandem spectral database development has been the variability in observed
fragmentation reactions caused by limited standardization and harmonization of experimental
conditions. To cope with these reproducibility issues, state-of-the-art libraries contain multiple
spectra per compound [17,22–24]. This is usually accomplished by comprehensive coverage of
compound-specific breakdown curves via stepwise increase of applied collision energies. Combining
these libraries with appropriate tailor-made search algorithms [25–27] enables reliable and robust
identification. Such databases are characterized by false positive rates and false negative rates below
5% [3].

Tandem mass spectral libraries are constantly growing. The total number of compounds covered
by tandem mass spectral databases is already in the range of several tens of thousands [1,2]. However,
the overlap between libraries is still relatively limited [1]. While the results of extensive testing and
benchmarking experiments will provide guidance for database selection [20], as has recently been
investigated for genome-wide metabolic networks [28], such data is not available for the majority of
established databases in an environmental context. A further complication is the fact that databases
were established on either single or multiple instruments (i.e., QqTOF and various Orbitrap hybrid
instruments). There are a range of scientific opinions on whether Orbitrap databases with HCD (and
sometimes CID) spectra and QqTOF databases with CID spectra offer complementary identification
possibilities. Initial findings suggest that HCD MS/MS spectra yield acceptable matches in CID
mass spectral databases [29]. However, a thorough evaluation of the complementarity of these two
important types of tandem mass spectral databases has not been accomplished yet.

Here, we use two specialized collections to investigate the complementarity of QqTOF and
Orbitrap libraries, where the Orbitrap library contains both HCD and ion trap CID spectra. First,
we investigate the comparability of the spectra in the two libraries, one created on a QqTOF in
a forensic-toxicological context, the other a subset of Orbitrap spectra from MassBank compiled
in an environmental context. We then use both libraries for mining nontarget Orbitrap and
QqTOF data. While more extensive collections are available, we have limited this investigation
deliberately to these specialized collections, as both the libraries and nontarget data were generated
under relatively consistent conditions at the respective institutes of the coauthors, allowing greater
intuitive interpretation of the results beyond other, more extensive collections where this institutional
background knowledge is missing.

2. Results and Discussion

2.1. Testing and Benchmarking of the Tandem Mass Spectral Libraries

In the first evaluation approach, the performance of the two well-established tandem mass spectral
libraries was evaluated. The first collection was the “Wiley Registry of Tandem Mass Spectral Data”,
hereafter termed WRTMD, developed on QqTOF instruments. The second library was the Eawag
collection part of MassBank, developed on Orbitrap instruments (for more details see the “Materials
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and Methods” section). Overall, 14,693 QqTOF spectra representing 1349 compound species (i.e.,
including some compounds with multiple entries due to different precursor ions such as abundant
isotopes, adducts, and in-source fragments) and 7415 Orbitrap spectra representing 744 compounds
were available. For the QqTOF spectra, fragmentation was accomplished by CID at various collision
energies. Out of the entire set of Orbitrap spectra, 321 spectra were acquired with CID at 35 NCE
(nominal collision energy units), and 7094 spectra with HCD at various collision energies.

The WRTMD collection of 14,693 CID QqTOF spectra of 1349 compounds has been investigated
in multiple studies and the reliability of the search expressed as sensitivity and specificity has been
demonstrated [3,16,20,24,25,27,29]. Although the database was tested with spectra acquired on all
common types of tandem mass spectral instrumentation, the observed error rate was typically below
5%. This proven track record renders the WRTMD highly suitable for benchmarking experiments.

The Eawag collection of 7415 Orbitrap spectra (321 CID, 7094 HCD), representing 744 compounds,
has a proven record of success in application work [8–10,30,31]. As described above, the library spectra
are filtered and recalibrated [18]. This level of data curation also renders the Eawag collection suitable
for quality tests. The influence of recalibration and cleanup of library spectra on database searching is
shown in Table 2 of Stravs et al. [18].

Investigating the overlap of the two libraries tested revealed 233 compounds present in both
collections. These 233 compounds represented 17.3% of the WRTMD (2840 QqTOF spectra) and 31.3%
of the Eawag collection (2405 Orbitrap spectra).

As described in the “Materials and Methods” section, the ‘MSforID Search’ was used for spectral
matching to obtain amp- and ramp-values. The thresholds (see “Materials and Methods”) are deduced
from quality tests and represent a compromise between sensitivity and specificity [20,25].

Firstly, the compatibility of the Eawag collection with the spectral matching via ‘MSforID Search’
was evaluated. The true positive rate obtained by matching each individual spectrum of the Eawag
collection to the entire library was determined. Sensitivity (= true positive rate) was found to be
99.5%. The same test with the WRTMD yielded a sensitivity value of 99.7%. Secondly, each library
was used as test set to characterize the reliability of a match to the other collection. For statistical
evaluation, libraries were divided into positive and negative controls. By querying the WRTMD with
the Orbitrap spectra, sensitivity was 88.0% (2405 test spectra) and specificity (= true negative rate)
was 97.7% (5010 test spectra). Querying the QqTOF spectra against the Eawag collection gave a true
positive rate of 91.5% (2840 test spectra) and a true negative rate of 98.0% (11,853 test spectra). The
observed specificities correlated well to values observed with other test sets [3]. However, the observed
sensitivities fell short of expectations. Based on previous results [29], matching Orbitrap spectra to
WRTMD was expected to yield a true positive rate closer to 100%.

As a result, the impact of the collision energy on the true positive rate was investigated to
determine whether this could cause the reduced sensitivity (see Figure 1). For the majority of
compounds, the collision energy ranges 20–50 eV on the QqTOF and 30–60 nominal collision energy
units (NCE) on the Orbitrap seem to enable the acquisition of comparable reference and sample
spectra. In these cases, substantial overlap between compound-specific spectra acquired on QqTOF
and Orbitrap was observed. For the spectra acquired under these conditions, sensitivity values were
95.1–98.4%. For the QqTOF spectra acquired at very low collision energies (5 and 10 eV), sensitivity
values fell below 81%. Similarly, for the Orbitrap spectra acquired at collision energies above 90,
sensitivity values decreased to 21–61%. The ‘MSforID Search’ considers the similarity of the sample
spectrum to the entire series of compound-specific reference spectra, such that the outcome is not a
one-to-one match with a single reference spectrum. Thus, these results of this performance evaluation
study indicate that to use these two libraries in a complementary manner in nontargeted LC-MS/MS
identification, optimal sensitivity will be achieved for matching to both libraries if the nontarget data
is acquired with collision energies in the range of 20–50 eV on a QqTOF or 30–60 NCE on an Orbitrap
instrument, which was the case for the application cases presented below.
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Figure 1. Evaluation of the reliability of a match in the WRTMD and the Eawag library illustrated by
plots of sensitivity vs. collision energy applied during spectra acquisition.

2.2. Compound Annotation Workflow for Application Samples

As discussed above, tandem mass spectral libraries are valuable for mining nontargeted
LC-MS/MS data and can rapidly yield either Level 2a (library match) or Level 1 (in-house reference
standard match) identifications.

Workflows for mining nontargeted LC-MS/MS data usually involve diverse steps of feature
detection, feature annotation, and compound identification. A feature detected by nontargeted
LC-MS/MS is characterized by the m/z and retention time and, where available, the isotopic
pattern of the precursor ion, any additional adduct species, and the corresponding fragmentation
pattern. Particularly in environmental analysis and metabolomics, peak picking and extracted ion
chromatograms (XICs) often play a key role in data processing. However, the data mining approach
used for the plasma and wastewater sample here is different. All features containing information
on the m/z of the precursor ion and the fragmentation pattern are matched directly to the tandem
mass spectral library. This approach is suitable for complex data when searching using tandem mass
spectral databases with high sensitivity. It also avoids the loss of matching compounds that may not
have been detected by peak picking algorithms.

2.3. Application Work

2.3.1. Application 1: Systematic Toxicological Analysis of Human Plasma Samples

Forensic toxicology is an important field of application for nontargeted LC-MS/MS [3,5].
Although the WRTMD has a proven record of success in forensic toxicological analysis [3], this library
does not cover the full range of compounds principally observable in human samples and should
therefore be complemented by other databases. To evaluate the impact of applying multiple libraries
for compound annotation, 10 human plasma samples were submitted to systematic toxicological
analysis involving nontargeted LC-MS/MS with data-dependant acquisition (DDA) on a QqTOF
instrument. Tandem mass spectra were acquired at 35 eV with a collision energy spread of 10 eV. This
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CE is well within the working range defined above. The obtained data sets were then matched to the
WRTMD and Eawag collections. False positive matches were sorted out by expert reviewing, which
involved visual inspection of the spectral match.

In the 10 samples analyzed, a total number of 132 compounds were identified (Figure 2a,
Supplementary Table S1). The number of identifications obtained for the individual samples ranged
from 41 to 68. In each sample, a considerable number of endogenous compounds were detected.
These biomolecules observed included amino acids, biogenic amines, steroids, nucleosides, and
vitamins, which are only covered by WRTMD. Several nutritional compounds were observed, including
caffeine, nicotine, and piperine, as well as their corresponding metabolites. A third group of observed
compounds represented industrial chemicals. While some of these were also detected in the blank and
thus may represent impurities and contaminants introduced after sample collection, there were nine
compounds that were only observed in patient samples. These included the vulcanization accelerators
2-mercaptobenzothiazole and dibenzothiazyldisulfide, the corrosion inhibitor 2-hydroxybenzothiazole,
the cosmetic ingredients ethylparabene, propylparabene, and octocrylene, the plasticiser benzyl butyl
phthalate, as well as phenylurea and neocuproine. Detection of these industrial chemicals suggests that
nontargeted LC-MS/MS techniques will be an important approach to detect unexpected compounds in
human biomonitoring [32]. The fourth group of compounds detected were pharmaceutical compounds
and corresponding metabolites. In total, 58 different species were detected. In accordance with previous
findings [33], a high number of psychoactive drugs were observed, and these included 12 compounds
belonging to the group of benzodiazepines and 8 to the group of opioids. Thirteen antidepressants
and six antipsychotics were also identified. The last group of observed compounds represented illegal
drugs and corresponding metabolites. Their detection provided evidence for cannabis consumption
by four patients, cocaine consumption by six patients, and heroin consumption by one patient. There
were three patient samples without any illegal drug detected. Further information about the identified
compounds, including chemical identifiers, is given in the Supplementary Materials (Tables S1 and S4).

An important aspect of this study was the evaluation of the number of compounds identified
with the two libraries employed in the context of forensic toxicological analysis (Figure 2b). Out
of the 570 identifications obtained, 384 (67.4%) were only obtained with the WRTMD, 22 (3.9%)
only with the Eawag collection, and 164 (28.8%) with both libraries tested. Obviously for forensic
samples, searching the Eawag collection enables verification of a considerable number of matches
to the WRTMD, but it only provided a limited number of unique matches. This observation is quite
reasonable taking into account that the Eawag library was initially built for environmental applications.
The 164 identifications obtained with both libraries corresponded to 39 reference compounds. All
other identifications involved compounds that were only included in one of the two libraries applied
(85 compounds of the WRTMD and 9 compounds of the Eawag collection).
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Figure 2. Application of the two tandem mass spectral libraries to systematic toxicological analysis
of 10 authentic plasma samples. Nontargeted LC-MS/MS data was acquired on a QqTOF instrument
using DDA. (a) Overview on the number of compounds identified in different compound classes via
the combined use of the two libraries tested, and (b) the Venn diagram illustrating the number of
identified compounds obtained with the two libraries tested.

180



Metabolites 2019, 9, 3

2.3.2. Application 2: Comprehensive Compound Identification in Wastewater Influent Samples
Collected in a Local Wastewater Treatment Plant (WWTP)

Environmental analysis is another important field of application for nontargeted LC-MS/MS
workflows [8–11,30,31]. Particularly in water analysis, the Eawag collection has a proven record of
success. Recently, it has been demonstrated that the WRTMD is applicable for that purpose as well [34].
To evaluate the coverage of the two libraries, samples collected at the WWTP Rossau from 1–10 April
2016, were submitted for nontargeted LC-MS/MS analysis with DDA on a QqTOF instrument. Tandem
mass spectra were acquired at 35 eV with a collision energy spread of 10 eV. This CE was well within
the working range defined above. The obtained data sets were matched to the WRTMD and Eawag
collections. False positive matches were sorted out by expert reviewing.

In the 10 influent samples, 149 different compounds were identified (Figure 3a, Supplementary
Table S2). Pharmaceutical compounds and their metabolites represented the largest group of
compounds detected (N = 96). Diverse antipsychotics, anticonvulsants, antidepressants, hypnotics and
sedatives, hypoglycaemic agents, anti-inflammatory agents, cardiovascular agents, analgesics, and
antibiotics were present. Clearly, wastewater analysis yields a comprehensive overview on medical
prescription and consumption practices. Other important classes of compounds observed included
biomolecules (N = 21) and industrial chemicals (N = 16). The groups of nutritional compounds (N = 8)
and illegal drugs (N = 8) provide some insights into lifestyle of the community monitored. It provides
evidence for the consumption of caffeine and tobacco, as well as of cocaine, amphetamine, MDMA,
and heroine.

Figure 3. Application of the two tandem mass spectral libraries to the analysis of wastewater samples
collected at the WWTP in Innsbruck. Ten influent samples were analyzed. The nontargeted LC-MS/MS
data was acquired on a QqTOF instrument using DDA. (a) Overview on the number of compounds
identified in different compound classes, as well as (b) a Venn diagram characterizing the number of
identified compounds obtained with the two libraries tested are provided.
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A total of 990 identifications were obtained (Figure 3b) with the two libraries. The WRTMD
produced 806 identifications, and the Eawag collection 612 identifications. Of these, 378 identifications
(38.2%) were solely obtained by the WRTMD, 184 identifications (18.6%) solely by the Eawag
collection, and 428 identifications (43.2%) by both libraries tested. This clearly proves that the two
libraries complement each other in wastewater analysis. Thus, for more comprehensive compound
identification (at Level 2a), the combined use of the two libraries is recommended.

False negative rates were determined using the 449 identifications corresponding to compounds
that were available in both libraries tested. The WRTMD produced 8 (1.8%), and the Eawag collection
13 false negative identifications (2.9%). In the majority of cases, the false negatives matched the
corresponding reference compounds but were sorted out during data evaluation based on match
probability values below the defined thresholds or during the final expert reviewing. Thus, when
using stringent thresholds, the combined use of two or more libraries is recommended. The lower false
negative rate for the WRTMD is most likely due to the fact that the acquisition data better matched the
original library data.

2.3.3. Application 3: Retrospective Compound Identification in LC-MS/MS Data Acquired from Swiss
Wastewater Effluent Samples

The third set of experimental data was selected to evaluate the compatibility of data mining
workflow presented here with Orbitrap data. The test sets were obtained from analysing nine Swiss
wastewater effluent samples by nontargeted LC-MS/MS with DDA [30]. Tandem mass spectra were
acquired at CID 35 and HCD 60. These CE values were within the working range defined above.

In the nine samples analyzed, 82 different compounds were identified (Supplementary Table S3).
These included 54 pharmaceutical compounds, 24 industrial compounds, 3 nutritional compounds,
and 1 illegal drug. Identifications per sample ranged from 45 to 58, leading to a total number of
458 identifications (Figure 4). Only 7.0% of the identifications were obtained with the WRTMD, 27.5%
with the Eawag collection, and 65.5% with both collections. As each institution generally develops
their reference standard collection (and thus libraries) for the local conditions and studies of interest, it
is not surprising that the Eawag library results in more % identifications for the Swiss data set, and the
WRTMD for the Austrian data sets.

Figure 4. Application of the two tandem mass spectral libraries to the analysis of wastewater samples
collected at the effluent of nine Swiss WWTP. The target and nontargeted LC-MS/MS data was acquired
on an Orbitrap instrument using DDA. The column chart visualises the number of identifications
obtained with the WRTMD and/or the Eawag library for each sample analyzed.
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With the 492 identifications corresponding to compounds that were available in both libraries
tested, false negative rates were determined. The WRTMD produced 20 (4.1%) and the Eawag
collection 14 false negative identifications (2.8%). As above, in the majority of cases, negatively
identified compounds matched to the corresponding reference compounds but were sorted out during
data evaluation based on match probability values below the defined thresholds or during the final
expert reviewing. The lower false negative rate for the Eawag collection in this case supports the
conclusion above that fewer false negatives can be expected when the sample acquisition matches the
library acquisition. Nonetheless, it is clear that libraries acquired on different instruments can provide
valuable additional information in many cases.

As part of the initial study for this data set, a comprehensive quantitative target analysis was
performed [30]. This analysis detected 73 compounds in positive mode. With the retrospective data
analysis performed here, 58 of these targets were detected and identified. The identification of the
remaining 15 targeted compounds was not reproduced. For six of these false negatives, the tandem
mass spectral library search did not produce any evidence for their occurrence in the tested data
sets (i.e., no fragmentation information was available). For the remaining eight compounds, at least
one match was obtained, but in all cases, the spectral similarity was insufficient for a positive match
(Figure 5). The observed discrepancies between the results obtained by target analysis and the suspect
screening approach applied here can be explained by the different working principles of the two
identification workflows. The suspect screening workflow relies on tandem mass spectral information
for identification, such that compounds without fragments will not be detected—six compounds in
this case, which were identified with retention time and exact mass and a correspondingly lower
“identification point (IP) score” (2 IP vs 4.5 IP for targets with reported matching fragments) in the
original study [30]. This means that some low-abundance but well-known compounds will be missed
with a spectral library search approach.

The most interesting cases are those that failed due to low spectral similarity values (see Figure 5).
This is perhaps not surprising when querying spectra recorded in complex samples, as impurities are
likely to occur even in MS/MS fragment information obtained using DDA [12]. This indicates some
potential to apply a partial cleanup such as that performed in RMassBank prior to querying spectral
libraries. A simple subformula or mass defect filter based on the precursor mass will potentially
eliminate several interfering peaks that may correspond with different (coeluting) precursors that are
still within the DDA window. Furthermore, this problem could be exacerbated with the increasing
popularity of data-independent acquisition data (without precursor isolation and thus potentially more
spectral interferences), increasing the need for deconvolution [12] and alternative data-processing
approaches (e.g., [35]).

Another interesting result is that the retrospective data analysis performed in this study produced
67 additional tentative identifications corresponding to 24 compounds that were in WRTMD only and
thus not obtained in the original investigation (with either target, suspect, or nontarget approaches) [30].
Two of these compounds (O-desmethyltramadol and tri(butoxyethyl)phosphate) were found to be
among the thirty most abundant species observed in positive ion mode LC-MS/MS analysis.

Very recently, the Swiss wastewater data sets used here were included in a proof-of-concept
study that demonstrated the potential of a global emerging contaminant early warning network
to rapidly assess the spatial and temporal distribution of contaminants of emerging concern in
environmental samples through performing retrospective data analysis [36]. The data sets were
screened for 156 compounds included in the NORMAN Early Warning System (NormaNEWS) suspect
list (http://comptox.epa.gov/dashboard/chemical_lists/normanews). With the data acquired in
positive ion mode, 40 compounds were tentatively identified with the NormaNEWS method. For 31
of these compounds, reference spectra were available in the WRTMD and/or the Eawag collection
and thus amenable to identification with the tandem mass spectral library search approach applied
here. However, out of these 31 compounds detected in the wastewater samples, only 16 were
successfully matched to the libraries with the approach used here. In the remaining cases, either
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no (N = 12) or only low-quality tandem mass spectra (N = 3) were available in the data sets (Figure 5),
rendering confident compound identification (Level 2a or better) nearly impossible. This reinforces the
need for high-quality spectral searching to provide additional evidence to increase the confidence of
identification in nontarget screening efforts beyond the levels achieved with exact mass and retention
time matches and, where available, selected fragment masses. As discussed above and as shown in
Figure 5, the issue of interferences in the spectra extracted from complex samples played a role in the
poor-quality spectra in many cases and a future investigation could look into whether spectral cleanup
steps may improve these results.

 
Figure 5. Examples of tandem mass spectra obtained from analysing wastewater samples with Orbitrap
that showed insufficient spectral similarity to reference spectra of (a) tramadol (interfering peaks),
(b) ibuprofen (noisy sample spectrum), (c) N-desmethylvenlafaxine (noise and/or interfering peaks),
and (d) losartan (noisy spectrum and interfering peaks) stored in the Eawag collection. Black dots
indicate precursor mass that triggered the MS/MS spectra (hollow dot).

3. Materials and Methods

3.1. Tandem Mass Spectral Libraries

Two libraries were tested: the WRTMD (Wiley, Hoboken, NJ, USA) [37] and the Eawag collection
in MassBank [18,23].

Tandem mass spectral data stored in the WRTMD were acquired on QqTOF instruments
(Qstar XL or TripleTOF 5600+, Sciex, Framingham, MA, USA). For each reference compound, 10 or
more product-ion spectra were acquired at different collision energy levels (resolution >10,000) to
comprehensively cover compound-specific breakdown curves. Low-abundance and unspecific signals
were removed from reference spectra by filtering [16,17]. For this study, a library version containing
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1349 entries with 14,693 spectra was used. A more detailed description of the mass spectral library is
provided on www.msforid.com.

The Eawag library used for this study contained 7415 MS/MS spectra corresponding to
744 compounds. Reference spectra of 321 compounds were acquired on a LTQ-Orbitrap XL (Thermo
Fisher Scientific, Waltham, MA, USA). For each of these compounds, HCD product-ion spectra were
acquired at six different collision energy levels (HCD 15, 30, 45, 60, 75, 90) and a CID spectrum at
one collision energy level (CID 35) to comprehensively cover compound-specific breakdown curves.
The MS/MS spectra for each collision energy were recorded at two resolutions (7500 and 15,000).
Reference spectra for a further 423 compounds were acquired on a QExactive Orbitrap (Thermo Fisher
Scientific). For each of these reference compounds, HCD product-ion spectra were acquired at six
different collision energy levels (HCD 15, 30, 45, 60, 75, 90). For a subset of 216 compounds, the
collision energy range was extended to include HCD product-ion spectra at the collision energy levels
120, 150, and 180. MS/MS spectra were recorded at a resolution of 35,000. In all cases, the R package
RMassBank was used to perform recalibration and cleanup of all spectra [18]. RMassBank can be
downloaded from BioConductor, at http://bioconductor.org/packages/RMassBank/. The curated
spectra (records published prior to 2018) are available at https://github.com/MassBank/MassBank-
data/tree/master/Eawag. Listings of the chemicals available in MassBank.EU and WRTMD used
in this investigation (beyond those detected and presented in the Supplementary Information) are
given on the NORMAN Suspect Exchange (https://www.norman-network.com/?q=node/236) and
CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/chemical_lists).

3.2. Tandem Mass Spectral Library Search

The library search was accomplished using the ‘MSforID Search’ [17,25]. The search algorithm
determines the similarity between a sample spectrum and library spectra. The estimation of similarity
starts with the identification of fragment ions that are present in both of the spectra being compared.
These ions are called “matching fragments”. The spectral information retrieved is used to calculate
the “reference spectrum specific match probability” (mp). As the mass spectral libraries contain
multiple spectra per reference compound, multiple mp values per reference compound are obtained.
To combine all these compound-specific mp values to one value that specifies the similarity between
the unknown and the specific reference compound, the compound-specific mp values are averaged
and normalized to yield the compound-specific “average match probability” (amp) and “relative
average match probability” (ramp), respectively. These values range between 0 and 100. High
compound-specific amp and ramp values indicate high similarity between the unknown and the
reference compound. The substance with the highest amp and ramp value is considered to be the best
match to the unknown compound.

Automated MSforID search was performed with a program written in Pascal using Delphi 6 for
Windows (Borland Software Corporation, Scotts Valley, CA, USA; now Embarcadero Technologies, Inc.,
San Francisco, CA, USA) using the following search parameters: mass-to-charge ratio (m/z) tolerance
of ±0.01, intensity cut-off factor of 0.01. The following criteria were used to classify obtained search
results as tentatively correct positive results: precursor ion mass tolerance of ±0.01, amp > 1.0–10.0
and ramp > 30–50. The thresholds were determined using quality tests and represent a compromise
between sensitivity and specificity [17,25]. The correctness of tentative identifications was checked by
expert reviewing, which included visual inspection and comparison of tandem mass spectral data.

3.3. Performance Evaluation

The performance of the two libraries (WRTMD, Eawag) was evaluated using two approaches.
In the first approach, the libraries were searched against each other. Either library was used as

reference or sample set. The spectra of compounds covered in both libraries served as positive controls.
All other spectra represented negative controls. The positive controls were further grouped according
to the collision energy settings used to acquire the individual spectra. For each test set, the number of
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positive identifications and the number of negative identifications were counted and used to calculate
the statistical parameters sensitivity (= true positive rate) and specificity (= true negative rate).

The second evaluation approach involved the analysis of forensic casework and environmental
samples. Here, the focus was on evaluating the number and type of identifications obtained with
the two libraries. The first set of samples analyzed represented 10 plasma samples collected as
evidence in forensic casework at the Institute of Legal Medicine of the Medical University Innsbruck.
The second set consisted of wastewater samples collected on 10 consecutive days (1–10 April 2016)
at the WWTP Rossau (Innsbrucker Kommunalbetriebe AG, Innsbruck, Austria). The wastewater
samples represented 24-h average samples of the influent [34]. The two sample sets were submitted to
nontargeted LC-MS/MS on a QqTOF instrument (TripleTOF 5600+, Sciex, Framingham, MA, USA).
Details of the analytical workflows employed are provided in the Electronic Supplementary File 1. The
third set of samples consisted of nine Swiss WWTP effluent samples that had been analyzed by target
and nontargeted LC-MS/MS on an Orbitrap instrument (LTQ Orbitrap XL, Thermo Fisher Scientific,
Waltham, MA, USA). Details of the analytical workflow have been published previously [30]. Raw data
files for the Swiss study are available at ftp://massive.ucsd.edu/MSV000079601. The remaining files
cannot be uploaded for legal reasons, but can be made available to interested researchers upon request.

Data mining involved the extraction of the tandem mass spectra and a subsequent database
search. Raw data files were converted to Mascot Generic Format (.mgf) files with the MSConvert from
ProteoWizard [38]. The MS/MS spectra part of the .mgf files were extracted with a program written in
ActivePerl 5.6.1 (Active State Corporation, Vancouver, Canada) to yield all MS/MS spectra as plain
text (ASCII) files containing peak list information. These spectra were then submitted to the tandem
mass spectral library search as described above.

4. Conclusions

This article demonstrates the applicability of tandem mass spectral library searching to complex
environmental and toxicological samples and reveals a wide range of comparability between collision
energies of different tandem mass spectral instruments over a diverse range of compounds. For
complementary use of the two libraries tested, the collision energy ranges 20–50 eV on the QqTOF and
30–60 NCE on the Orbitrap represented suitable working ranges. The results of the applications are in
many ways unsurprising, that is, that searching in two libraries instead of one reveals more hits and
that entries without fragmentation or with poor fragmentation information are not found. However,
this article documents additional investigations to add to the debate on the comparability between
QqTOF and Orbitrap instruments. This comparability is of utmost importance to achieve the desired
goal of developing a unified and universally applicable tandem mass spectral database. Library
development is laborious, time-consuming, and expensive, and this enormous effort is a serious
hurdle for individual and isolated labs interested in contributing to accomplishing this mammoth task.
Compatibility of libraries will enable the building of strong and dynamic consortia within scientific
communities that will significantly increase the number of available reference spectra by sharing the
connected workload. Further conclusions from this work are that the data mining approach used
here could possibly be improved in the future through the application of some basic spectral cleanup
to remove clear matrix interferences as well as the consideration of additional information such as
isotope patterns/adduct and retention behavior.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/1/3/s1.
Supplementary File 1: Experimental settings for nontargeted LC-MSMS analysis with QqTOF; Supplementary
File 2: Excel spreadsheet containing the following tables: Supplementary Table S1: Overview of compounds
identified by systematic toxicological analysis of ten authentic plasma samples; Supplementary Table S2: Overview
of compounds identified by nontargeted LC-MS/MS in ten wastewater samples collected at the influent of the
WWTP in Innsbruck; Supplementary Table S3: Overview of compounds identified by target and nontargeted
LC-MS/MS in nine wastewater samples collected at the effluent of Swiss WWTPs; Supplementary Table S4:
Additional chemical information for all compounds mentioned in Table S1 to S3.
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Abstract: The use of mass spectrometry-based metabolomics to study human, plant and microbial
biochemistry and their interactions with the environment largely depends on the ability to
annotate metabolite structures by matching mass spectral features of the measured metabolites
to curated spectra of reference standards. While reference databases for metabolomics now provide
information for hundreds of thousands of compounds, barely 5% of these known small molecules
have experimental data from pure standards. Remarkably, it is still unknown how well existing
mass spectral libraries cover the biochemical landscape of prokaryotic and eukaryotic organisms.
To address this issue, we have investigated the coverage of 38 genome-scale metabolic networks by
public and commercial mass spectral databases, and found that on average only 40% of nodes
in metabolic networks could be mapped by mass spectral information from standards. Next,
we deciphered computationally which parts of the human metabolic network are poorly covered by
mass spectral libraries, revealing gaps in the eicosanoids, vitamins and bile acid metabolism. Finally,
our network topology analysis based on the betweenness centrality of metabolites revealed the top
20 most important metabolites that, if added to MS databases, may facilitate human metabolome
characterization in the future.

Keywords: metabolic networks; mass spectral libraries; metabolite annotation; metabolomics
data mapping
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1. Introduction

Metabolomics, or the comprehensive characterization and quantification of metabolites,
complements upstream biochemical information obtained from genes, transcripts, and proteins,
widening current genomic reconstructions of metabolism and improving our understanding of
biological and environmental processes [1]. Metabolomics is thus finding applications that span almost
the full width of natural sciences, ranging from human [2,3], plant [4] and microbial biochemistry [5–7]
to organism-environment interactions [8,9]. Despite the high research interest, identifying and
characterizing the structure of metabolites has become a major obstacle for converting raw mass
spectrometry (MS) data into biological knowledge. In this regard, open and commercial MS-based
databases play an important role in identifying and characterizing the structure of metabolites
by matching mass spectral features of the measured metabolites to curated spectra of reference
standards [10]. Despite attempts to increase and improve the content of mass spectral databases
in recent years, these are still far from containing experimental data of the known compounds.
For instance, the widely used METLIN database [11] and the Human Metabolome Database (HMDB
version 4.0) [12] now provide links and information for >900,000 and >110,000 compounds, respectively.
However, barely 5% of these known small molecules have experimental spectral data from pure
standards [13]. Equally important, the biochemical roles and metabolic activity of such small
percentage of known and chemically well characterized metabolites is still lacking. Many compounds
in mass spectral databases are exogenous drugs or chemical structures that are mainly laboratory
based. Hence, it is important to elucidate how many and which compounds in mass spectral databases
are involved in metabolic transformations encoded by the genome of prokaryotic and eukaryotic
cells. Answering this question is central to investigate and improve the biochemical landscape of
metabolomics databases, and assess their usability for reconstructing comprehensive mechanistic
scenarios in cell metabolism.

Here, we use genome-based reconstructions of metabolism, also called genome-scale metabolic
networks [14,15], to investigate their coverage by existing mass spectral libraries. Genome-scale
metabolic networks are manually curated models that best describe our understanding of the metabolic
processes occurring in an organism, acting as an indispensable tool to gain biological insight from
metabolomic data. Genome-scale metabolic networks enable in-depth mechanistic interpretation
through metabolic flux simulation and network analysis.

By analysing the coverage of metabolic networks, we have computationally deciphered which
parts of the human metabolic network are poorly covered by mass spectral libraries and have identified
metabolite gaps that, if added to MS databases, may enhance human metabolome characterization in
the future, and consequently, provide a better understanding of cell metabolism.

2. Material and Methods

2.1. Chemical Library

Only compounds with measured mass spectra were used. In silico predicted MS/MS spectra
available in certain public databases [12] were not considered in our study. A merged list of InChIKeys
was initially created from public and commercial datasets published by Vinaixa et al. 2016 [13].
This list was further updated with new entries and resources [16,17] yielding: 9419 InChIKeys of
compounds from the METLIN database [18] provided by Agilent Technologies; 399 InChIKeys from
ReSpect [19]; 1171 InChIKeys from the Wiley MS for ID database provided by Herbert Oberacher;
3401 InChIKeys from the GNPS [20]; 11,009 InChIKeys from MassBank [21]; 3480 InChIKeys from
mzCloud provided by Robert Mistrik (21 June 2016); 1034 InChIKeys from the HMDB [12] (downloaded
on 21 June 2016); and 242,463 InChIKeys from NIST 14 provided by Stephen Stein and Dmitrii
Tchekhovskoi. These InChIKey lists (which often contained duplicated entries) were merged for
a total of 261,330 non-redundant InChIKey, containing 253,927 non-redundant InChIKey first-block.
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The InChIKey mapping was performed using the first block of the string, thus not taking into account
charge or stereochemistry.

2.2. Human Metabolic Network and Graph Construction

Recon2 [22] was used to map our chemical library of 253,927 non-redundant first block
InChIKeys [23]. The original Recon 2 network provided 968 InChIKeys, which was supplemented with
additional InChIKeys from other compound identifiers in Recon2, using a combination of web services
from PubChem [24], HMDB [25] and ChEBI [26] and home-made parsers (Supplementary File 1).
We removed generic compounds (e.g., substrates denoting a set of possible compounds, often by using
R-groups, such as an alcohol or sugar) with no proper structure or InChI, and peptides or other macro
molecules that are too big to have their structure represented by a single string. We also discarded
compounds without any external database reference, as the lack thereof prevents the retrieval of
molecular descriptors through the aforementioned web services. Redundancy caused by compounds
present in several compartments was avoided by merging all compartments into one single cell-scale
model. We created a metabolite network (Compound graph, see Figure 1) where two metabolites
are connected if there is at least one reaction producing one and consuming the other, with at least
one carbon atom shared between the two metabolites. This allows not taking into account spurious
connections involving side compounds like water. Inorganic carbonated compounds, such as CO2,
were manually removed to complete this task. Some small sub-networks were disconnected from the
rest of the network due to missing InChIs or incomplete annotations in Recon2 (network is provided
in GML (Graph Modelling Language) format in Supplementary file 2).

Figure 1. Graph reconstruction process. (a) Hexokinase reaction as described in the Recon2 database.
Colored circles provide information on shared substructures between substrates and products.
(b) Compound graph: each substrate is connected to each product of the reaction. Edges are weighted
by the number of carbon atoms shared between each substrate to each product. (c) Final graph:
transitions that do not involve the preservation of at least one carbon atom between the source and the
target were removed.

2.3. Network Topology Analysis

After the creation of the undirected compound graph, we identified parts of the network that were
less covered by mass spectral libraries. For this, we used the Label Propagation Algorithm (LPA) [27],
which aims at finding communities within a network. The nodes in the network initially carry a
label that denotes the two communities they belong to: the “well covered” (mapped metabolites
in the chemical library) or the “poorly covered” (unmapped metabolites in the chemical library).
The algorithm then diffuses the labels throughout the network by changing membership in both
communities based on the labels that the neighbouring nodes (i.e., metabolites) possess. This process
is applied to a network where the direction of metabolic reactions is not considered. In a biochemical
context, this means that if a mapped metabolite is mostly surrounded by unmapped metabolites,
the LPA will switch this metabolite from a ‘well covered’ to a ‘poorly covered’ community. The reasons
for it being that measuring such metabolite will likely provide little biochemical information.
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In contrast, if one unmapped metabolite is mostly surrounded by mapped metabolites, the LPA will
switch it from a ‘poorly covered’ to a ‘well covered’ community, so that the absence of this metabolite
from mass spectral databases may be counterbalanced by the identification of its neighbouring
metabolites. Consequently, densely connected groups of nodes reach a common community label
quickly. Such steps were conducted iteratively until all label assignments were stable. We ran the
analysis 1000 times and aggregated the results to obtain a final assignment taking into account different
ties resolutions scenario (R code is provided in Supplementary File 3).

To identify key missing nodes (i.e., metabolites) in mass spectral libraries, we used a network
topology measure called centrality. Centrality is a very well-studied field in network science which
aims at identifying important actors in a network. Among the numerous centrality indices, we chose
the betweenness as the criterion for metabolite prioritisation. The betweenness centrality quantifies
the number of times a node acts as a bridge along the shortest path between two other nodes in the
network [28]. The betweenness, therefore, provides a solution to identify metabolites with the greatest
potential for bridging the gap between other metabolites, leading to a more cohesive view of the
metabolism through metabolomics data.

2.4. Publication Mapping

Beside topological measure, we also characterised metabolites through their prominency in
scientific literature. We used the PubChem REST API [29] to obtain PubChem identifiers (CID) from
our InChIKey list. We then used the API to retrieve PubMed article identifiers (PMID) referenced
from an entry accessed through its CID. We compared the number of associated articles between
mapped and non-mapped metabolites using Wilcoxon rank sum test with continuity correction and
a significance level of α = 0.001. We evaluated the association for a metabolite of having at least one
associated article and being mapped using Fisher’s Exact Test, with a significance level of α = 0.001.

3. Results

3.1. Coverage of Genome-Scale Metabolic Networks by Mass Spectral Libraries

We mapped the chemical library containing 253,927 non-redundant first block InChIKeys onto
38 different genome-scale metabolic networks, including relevant organisms such as Escherichia coli,
Arabidopsis thaliana, Saccharomyces cerevisiae (yeast), Mus musculus (mouse) or Homo sapiens (human).
Figure 2 shows the coverage of all the metabolic networks investigated (see Supplementary Files 4
and 5).

Two significant findings can be drawn from a closer analysis of Figure 2. First, the coverage
of mapped metabolites in genome-scale metabolic models by mass spectral libraries is relatively
low, and coverage varies from 20–60% depending on the species. In the case of model organisms,
with extensively characterized genomes and annotated metabolic networks, such as Mus musculus,
Escherichia coli and Arabidopsis thaliana, only 52–60% of their metabolomes could be potentially
characterized by confronting MS data with all existing mass spectral information from pure standards
(which are not currently accessible from a single resource). For human (Homo sapiens), this number
drops to 42.2% and 30.5% in the case of the KEGG and Recon2 metabolic models, respectively. Second,
the annotation level, i.e., specification of chemical identifiers, in genome-scale metabolic models is still
very limited. Models such as Homo sapiens (Recon2 and HumanCyc) and different plants (PlantCyc)
contain a large number of compounds with no compound identifier other than its name, resulting in
fewer compounds than expected with associated InChIKey (an unambiguous identifier of chemical
substances): 48.7% for Recon2, 48.6% for PlantCyc, and 35.7% for HumanCyc. On average, 63.2%
of compounds in our metabolic models have InChIKey, which constitutes an obstacle for reliably
mapping experimental metabolomics data onto metabolic models.
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Figure 2. Coverage of prokaryotic and eukaryotic metabolic networks by mass spectral libraries.
The genome-scale metabolic models are listed according to an increasing percentage of metabolites
covered by mass spectral libraries. The percentage from 60.4 down to 23.6 is displayed to the left of
each bar. “Found in mass spectral databases” refers to metabolites that can be mapped in at least one
mass spectral database. “Not found in mass spectral databases” refers to compounds with an InChI
from metabolic models that could not be matched with any compound in any mass spectral databases.
“Ambiguous denomination” refers to compounds with undefined structures or insufficient information
to retrieve the unambiguous InChIKey identifier; these compounds were not mapped.

Additional to the above analysis, we have also assessed the coverage of individual mass spectral
databases in metabolic models (see Supplementary Files 6 and 7). Figure 3 shows, for each spectral
library, the percentage of compounds that could be mapped in each network. Overall, databases
with the largest number of compounds (by InChIKey), such as NIST and MassBank, showed the best
coverage, however these databases also include many exogenous compounds or chemical structures
that could not be matched in the genome-scale metabolic models. GNPS covers the smallest percentage
of metabolic networks since, at the date of the analysis, the database was mainly focused on secondary
metabolites that are not well covered and annotated by genome-scale metabolic networks. The small
coverage of MS for ID was also explained by its specificity towards forensic and toxicology related
small molecules.
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Figure 3. Coverage of prokaryotic and eukaryotic metabolic networks by individual mass spectral
databases. HMDB and NIST include MS2 and electron ionization (EI)-MS spectral information.
Box plots show the distribution of the percentages of coverage in 38 different genome-scale
metabolic networks.

3.2. Deciphering Poorly Covered Parts of the Human Metabolic Network

As a priority, coverage of the human metabolic network by existing MS databases was investigated.
Figure 4 shows the graph built based on Recon 2.03 human genome-scale metabolic network
(see methods section), where the mapped and unmapped metabolites are represented as blue and white
nodes, respectively. The number of nodes in the graph has been reduced by eliminating compounds
without InChIs, compounds without carbons, and duplicated compounds in different cellular
compartments. Inorganic compounds such as CO2 were manually removed. Out of 1597 resulting
nodes in the metabolic network, 890 metabolites (55.7%) were mapped (see Supplementary File 8).

Next, we analysed which parts of the human network are poorly covered by experimental data
present in MS databases. To do so, we used the LPA for community detection [27] (see Methods for
details) and neighbourhood coverage analysis. The results reveal that 61% of connected metabolites in
our network have at least half of their neighbours mapped in MS databases, and 80% have at least one
mapped neighbour (Figure 5), which indicates that, despite the low coverage of genome-scale metabolic
networks by MS databases, they can still broadly cover the human network without leaving large areas
with uncovered metabolites. However, some poorly covered regions were evident in the network.
About 293 compounds, of which 216 are not covered, have 90–100% of their neighbours not covered by
MS databases either. This may be linked to the existence of metabolic gaps that represents around 18%
of the overall network (considering only compounds annotated with InChIKeys). These poorly covered
parts of the network identified by LPA are composed of small-size components (Figure 6), supporting
the idea that most parts of the known human metabolism are covered in a broad sense. Some metabolic
pathways nevertheless appear especially poorly covered, including eicosanoids, vitamins, heme and
bile acid metabolism.
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Figure 4. Coverage of the human metabolic network. Blue nodes: Covered by MS databases. White
nodes: not covered by MS databases. Isolated nodes have been removed for easy viewing of the
metabolic network.

Figure 5. Relative coverage of metabolites’ neighborhood. Metabolites are categorized according to the
coverage of their neighborhood, from fully covered to 90–100% uncovered. The Y-axis represents the
number of metabolites in each category, with mapped metabolites displayed in grey, and non-mapped
metabolites displayed in white.
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Figure 6. The ‘dark side’ of Human metabolism. The least covered subgraph of Recon 2.03 obtained
from LPA using mapping status as the initial state. White circles: Non-mapped metabolites. Blue
circles: mapped metabolites. Edges: Substrate-product relationships. Metabolites with ambiguous
identifier have been removed. Colored Hulls: Pathways overrepresented in the poorly mapped area
of the human metabolic network Recon 2.03. Right-tailed Fisher exact test with Benjamini-Hochberg
correction, α = 0.05.

We also explored the topological characteristics of poorly covered parts in the human metabolic
network. The most relevant aspect is a lower average clustering coefficient (i.e., nodes often have
their neighbours poorly connected, as an indicator of low local density) in the poorly covered areas
relative to metabolites from the well-covered areas (Figure 7A). The few links shared between the two
parts (Figure 7B) also suggest that the poorly covered areas are virtually disconnected from the rest
of the network. Overall, our results indicate that poorly covered areas tend to be located in sparsely
connected spaces of the metabolic network. The sparsity of metabolic reactions in the poorly covered
areas could describe few and very specific linear pathways, or it may also reveal missing metabolic
reactions due to a lack of biochemical knowledge or sporadic activities in scientific investigation
in those regions. We have attempted to tackle this issue by analysing the number of publications
associated with each metabolite. We have linked metabolites in the networks to publications by
retrieving the cross-referenced PubMed articles in their PubChem entry. The non-mapped metabolites
(and the sparse regions in the network analysis) tend to have fewer publications than the mapped
compounds (Figure 8a). The distribution of publications is heavily skewed, and as a result, we were
not able to retrieve any article using PubMed CID query for 588 metabolites, while 53 metabolites
exceeded 10,000 articles. The metabolites without associated publications are significantly enriched
in non-mapped areas (Figure 8b). Note that 7% of the metabolites were excluded from our query
in PubMed because no entry was found for them in PubChem. These missing compounds are also
significantly enriched in poorly covered areas of the human network. Overall, this analysis suggests
that metabolites not covered by spectral databases are less prominent in the scientific literature.
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Figure 7. Topological analysis of the least covered areas. (a) Clustering coefficient distribution in well
covered and poorly covered parts of human metabolism. Only the main component of the whole
human metabolic network is considered. (b) Well-covered area vs. poorly-covered area in the human
metabolic network. Blue nodes: mapped; white nodes: unmapped. Left: Well-covered group; right:
poorly covered group. The poorly covered group appears quite small and sparsely connected compared
to the well-covered one. Also, there are few connections (i.e., biochemical transformation with some
carbon backbone conservation) between the two groups.

Figure 8. Relationship between the coverage status of Recon2 metabolites and the scientific literature.
(a) Violin plots showing the distribution of the number of articles associated with mapped and
non-mapped metabolites in Recon2. Y axis shows the number of articles (logarithmic scale) obtained
from PubMed references in PubChem entries. Only metabolites with at least one associated article are
considered. (b) Mosaic plot showing the proportion of Recon2 metabolites with PubMed references.
Only metabolites with PubChem CID annotation were considered. The area of the tiles is proportional
to the number of metabolites within each category. The color and shade of the tiles correspond to
the sign and magnitude of the Pearson residuals. The Pearson residuals represent the contribution
of the tile to the chi-squared statistics, assessing whether the two variables are independent or not.
Red tiles indicate the proportion of under-represented metabolites, namely, metabolites with a smaller
number of PubMed references than expected if the two variables (i.e., an entry in spectral libraries and a
PubMed article in PubChem) were independent, while blue tiles indicate over-represented metabolites,
namely, metabolites with a greater number of PubMed references than expected.

3.3. Filling Gaps in Poorly Covered Areas of Human Metabolism

Recently, Aguilar-Mogas et al., systematically demonstrated that neighbouring metabolites in a
metabolic network share structural similarities and have similar MS/MS spectra [30]. On this basis,
our network topology analysis provides an opportunity to identify the most important reference mass
spectra to acquire in order to cover the largest number of structurally similar unmapped metabolites in
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the human metabolic network. Both machine learning algorithms for mass spectra prediction [31,32]
and the biochemical interpretation of metabolomics results would benefit from filling these gaps.

In order to identify the most important metabolites currently missing in the MS databases,
we performed a centrality analysis. Table 1 shows the top 20 metabolites with the highest betweenness
centrality (see the Methods section) from the poorly mapped areas of human metabolism. These high
betweenness metabolites are key chemical structures [33], hence adding their mass spectra to reference
libraries, as training data for machine learning algorithms and other identification approaches,
will greatly improve prediction of the mass spectra of their unmapped neighbour metabolites. In turn,
these metabolites are more likely biochemically affected by the propagation of metabolic perturbations
due to their crossroad status, and therefore a must-have in metabolism monitoring.

Table 1. Top 20 metabolites with the highest overall betweenness centrality from the poorly mapped
area of human network. PubChem CIDs were obtained using the Chemical Translation Service
(http://cts.fiehnlab.ucdavis.edu/) with the name as presented in the first column.

Name (from Network) PubChem CID InChIKey

(25R)-3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-26-oyl-CoA(4-) 15942889 MNYDLIUNNOCPHG-FJWDCHQMSA-N

12-oxo-c-LTB3 122164853 ZFHPYBQKHVEFHO-LECUDPRGSA-N

3alpha,7alpha,12alpha-Trihydroxy-5beta-cholestanoate 440460 CNWPIIOQKZNXBB-SQZFNYHNSA-N

3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-26-al 193321 XJZGNVBLVFOSKJ-XZULNKEGSA-N

12-oxo-leukotriene B4 5280876 SJVWVCVZWMJXOK-NOJHDUNKSA-N

20-CoA-20-oxo-leukotriene B4 53481505 WLWKYZHFLKRKEU-WCOJVGLOSA-J

5beta-cholestane-3alpha,7alpha,12alpha,26-tetrol 439479 USFJGINJGUIFSY-XZULNKEGSA-N

(4R,5S)-4,5,6-trihydroxy-2,3-dioxohexanoate 440390 GJQWCDSAOUMKSE-STHAYSLISA-N

20-carboxy-leukotriene-B4 5280877 SXWGPVJGNOLNHT-VFLUTPEKSA-N

5beta-cholestane-3alpha,7alpha,12alpha-triol 160520 RIVQQZVHIVNQFH-XJZYBRFWSA-N

3-oxo-tetracosa-12,15,18,21-all-cis-tetraenoyl-CoA 131769900 HPMVBGKWFWCZAY-JDTXFHFDSA-N

6-pyruvoyl-5,6,7,8-tetrahydropterin 128973 WBJZXBUVECZHCE-UHFFFAOYSA-N

Hydroxymethylbilane 788 WDFJYRZCZIUBPR-UHFFFAOYSA-N

5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol 160520 RIVQQZVHIVNQFH-XJZYBRFWSA-N

3(S)-hydroxy-tetracosa-12,15,18,21-all-cis-tetraenoyl-CoA 53477712 NTIXPPFPXLYJCT-OWOWEXKPSA-N

Uroporphyrinogen III 1179 HUHWZXWWOFSFKF-UHFFFAOYSA-N

12-oxo-20-hydroxy-leukotriene B4 53481459 CZWPUWRHQBAXJS-PABROBRYSA-N

3-oxo-all-cis-6,9,12,15,18-tetracosapentaenoyl-CoA 131769894 UQPANOGFYCZRAV-UWOIJHEUSA-N

all-cis-10,13,16,19-docosatetraenoyl-CoA 71627222 BEEQBBPNTYBGDP-BUSXXEPMSA-J

kinetensin 53481569 PANUJGMSOSQAAY-HAGIGRARSA-N

4. Discussion

Here we have combined cheminformatics and network analysis methods to investigate the
coverage of public and commercial mass spectral databases in the metabolism of prokaryotic and
eukaryotic organisms, particularly taking a closer look at human metabolism. For this, we have used
genome-scale metabolic reconstructions, which are considered the most comprehensive and annotated
models of metabolism in multiple organisms. Genome-scale metabolic networks contain information
both on metabolites and their reactions with corresponding genes and proteins. However, most
genome-scale metabolic networks are reconstructed from genomic sequences and literature, and rarely
incorporate new and rapidly evolving metabolomic data. This has resulted in some of the constraints
and mismatches encountered in our study.

Our computational approach has revealed that many metabolites are missing from mass spectral
libraries. For example, 44% of compounds with an InChIKey in Recon2 could not be matched in any
mass spectral database. Our results, therefore, provide an essential resource to improve the biochemical
landscape of mass spectral databases, and highlights the pressing need for standards to prioritise on to
fill these gaps. However, the apparent “low metabolic content” of mass spectral libraries may also be a
consequence of insufficient annotation of genome-scale metabolic models. These models (available
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in SBML format) were initially built for constraint-based computational studies (e.g., Flux Balance
Analysis), where the chemical structure of small molecules is not necessarily required for computation.
Therefore, most of these models contain a substantial number of metabolites with only short and
ambiguous names but no other standard identifiers, which represent a serious obstacle for mapping
metabolomics data onto genome-scale metabolic models. Metabolites without proper identifiers can
result from the lack of cross-references during their annotation by the scientific community, making
computational tools unable to reach the information needed to make correspondences between mass
spectral libraries and metabolic networks. One common and useful identifier in this regard is the
InChI, which is directly built from the chemical structure of compounds and the hash of the structure,
the InChIKey, enabling both the computational analysis performed here, as well as much broader
searching of other resources. Unfortunately, we have noticed that most metabolic models often refer to
classes of compounds (instead of single chemical species with accurate structures) in order to represent
the enzymatic promiscuity of substrates or to describe generic biochemical reactions. Consequently,
when the metabolic networks are generated, nodes without chemical structures cannot be mapped on
to the mass spectral libraries. Automated approaches to enumerate potentially matching structures
to generic representations are required to capture these substances in future studies [34]. Metabolic
models may also include some macromolecules that cannot be encoded into all resources due to
its string length, although these are likely to be out of the mass range of mass spectrometry in a
typical metabolomics experiment. Finally, metabolic models also often contain some entries that do not
describe metabolites and therefore cannot be labelled with an InChIKey. For example, most prokaryotic
models contain an entry named “biomass”, which provide a convenient way of defining an objective
function for constraint-based modelling. The common lack of proper System Biology Ontology (SBO)
term annotations and the rare usage of SBML packages allowing different entry types prevent the
specific selection of metabolites in models.

The difficulty of mapping metabolomics data onto metabolic networks can also stem from the
different scale between models and measures: different stereoisomers may be encoded in the network
but are often indistinguishable in a MS experiment (see Figure 1 in Schymanski & Williams 2017 [34]).
Furthermore, when no distinction is made between stereoisomers, or between the acid and base
form of a compound, one of them can be arbitrarily chosen for setting the name and the annotations
of the entry in the model. This could lead to false negatives in the coverage results. To overcome
this issue, we used the first InChIKey block, which reduces the structures from the libraries and the
networks to a “stereochemistry neutral” or a simplified version of the “MS-ready” form. This can lead
to mismatches resulting from tautomers and other substances where different InChIKey first blocks
can occur (e.g., monosaccharide compounds in networks, which can be labelled with both the cyclic
(PubChem CID:5793) or the linear form (PubChem CID:10954115)). There is thus a strong need to
coordinate cheminformaticians with the field of systems biology in order to improve the annotation of
metabolic models and develop InChIs and InChIKeys for less defined structures. This would greatly
facilitate data exchange and the integration of metabolomics data in the context of metabolic networks.

Eventually, comparing coverages between organisms can be misleading due to differences in size,
quality, and completeness of metabolic models. Plant models, for instance, contain the largest number
of metabolites among eukaryote organisms, yet they seem to have the poorest coverage by spectral
data. While our work focused on human metabolism, the same workflow could be implemented
by experts in plant metabolism to reveal metabolite gaps. On the other hand, incomplete and small
metabolic models with a relatively good coverage may hide a ‘streetlight effect’, since these models are
mainly annotated with well-known reactions and compounds, which are more likely to be present in
mass spectral libraries. Since spectral databases and metabolic models are so dynamic, we present the
data “as calculated” to describe the first use of LPA to detect dense blind spots in the coverage of a
metabolic network.

Also significant is the striking number of compounds in the spectral databases that did not
match with any of our 38 genome-scale networks, namely 251.763 compounds, that is, ~99% in the
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merged database. Possible causes may include a very large number of exogenous compounds and
secondary metabolites in spectral databases, synthetic compounds not found in nature, the annotation
in other organisms that were not included in our list of genome-scale networks, and non-enzymatically
produced compounds.

Finally, it should be emphasized the continuous growth of mass spectral databases with the
addition of new spectra. Since performing this analysis, the latest NIST2017 has been released with
spectra from 15,243 compounds, while mzCloud has grown to contain spectra from 7249 compounds
(just to name two examples). The methods proposed in this article are sufficiently generic to be
applied to updated datasets and/or in-house spectral libraries. It will also be possible to apply this
approach to updated versions of metabolic networks. As a matter of fact, a new version of the human
metabolic network Recon has been released concurrently to our work [35]. Our preliminary analysis
indicates that Recon3D has considerably more annotated compounds with associated InChI than
Recon2, however, the coverage of mapped metabolites remains roughly the same. We think, however,
that further analyses and improvements of metabolic networks should be considered on the basis
of Recon3D.
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Abstract: Mass spectrometry raw data repositories, including Metabolomics Workbench and
MetaboLights, have contributed to increased transparency in metabolomics studies and the
discovery of novel insights in biology by reanalysis with updated computational metabolomics
tools. Herein, we reanalyzed the previously published lipidomics data from nine algal species,
resulting in the annotation of 1437 lipids achieving a 40% increase in annotation compared
to the previous results. Specifically, diacylglyceryl-carboxyhydroxy-methylcholine (DGCC) in
Pavlova lutheri and Pleurochrysis carterae, glucuronosyldiacylglycerol (GlcADG) in Euglena gracilis,
and P. carterae, phosphatidylmethanol (PMeOH) in E. gracilis, and several oxidized phospholipids
(oxidized phosphatidylcholine, OxPC; phosphatidylethanolamine, OxPE; phosphatidylglycerol,
OxPG; phosphatidylinositol, OxPI) in Chlorella variabilis were newly characterized with the enriched
lipid spectral databases. Moreover, we integrated the data from untargeted and targeted analyses from
data independent tandem mass spectrometry (DIA-MS/MS) acquisition, specifically the sequential
window acquisition of all theoretical fragment-ion MS/MS (SWATH-MS/MS) spectra, to increase the
lipidomic annotation coverage. After the creation of a global library of precursor and diagnostic ions
of lipids by the MS-DIAL untargeted analysis, the co-eluted DIA-MS/MS spectra were resolved in
MRMPROBS targeted analysis by tracing the specific product ions involved in acyl chain compositions.
Our results indicated that the metabolite quantifications based on DIA-MS/MS chromatograms were
somewhat inferior to the MS1-centric quantifications, while the annotation coverage outperformed
those of the untargeted analysis of the data dependent and DIA-MS/MS data. Consequently, integrated
analyses of untargeted and targeted approaches are necessary to extract the maximum amount of
metabolome information, and our results showcase the value of data repositories for the discovery of
novel insights in lipid biology.
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1. Introduction

Many studies using mass spectrometry (MS)-based untargeted metabolomics have provided
novel insights in biology, and the importance of metabolomics data repositories has been
recognized [1]. In addition to the international data repositories, including Metabolomics Workbench [2],
MetaboLights [3], and GNPS MassIVE [4], institute-oriented repositories such as RIKEN DropMet
(http://prime.psc.riken.jp/) are available for sharing raw MS data. MS repositories aim to (A) increase
the transparency and reproducibility of MS-centric metabolomics studies, (B) provide a benchmark for
testing new analytical and computational methodologies, (C) share the results of metabolome analyses
for providing opportunities for data-driven hypothesis generation, and (D) reanalyze published
data with continuous identification efforts to obtain novel insights and discover novel metabolites.
Nevertheless, few studies have demonstrated the value of MS repositories except for the first purpose.
Case studies showing remarkable results toward the other three purposes would facilitate data sharing
by researchers and academic journals [5].

We published nine algal lipidomics datasets in 2015 which are available on the RIKEN
DropMet. According to previous reports, 1023 lipids were annotated by integrating the results
of data-dependent MS/MS acquisition (DDA-MS/MS) and data-independent MS/MS acquisition
(DIA-MS/MS) with an in-silico MS/MS spectral library of lipids to assign the algal phylogenetic tree
based on lipid properties [6]. Although comprehensive lipid analysis has been achieved by these
previous methodologies, the coverage of algal lipids can be improved by two major methodological
updates. First, the count of annotated lipids can be increased by updating the in-silico spectral
library with continuous data curation efforts, where 1,051,894 spectra of 525,947 molecules from
90 lipid classes are currently registered in MS-DIAL (version 3.68), while 122,844 spectra of 61,422
molecules from 24 lipid classes were registered in the first version of MS-DIAL (version 1.82) [6–8].
Herein, the characterization of 10 newly incorporated lipid classes including lysophosphatidylserine
(LPS), lysophosphatidylglycerol (LPG), phosphatidylmethanol (PMeOH), glucuronosyldiacylglycerol
(GlcADG), diacylglyceryl-carboxyhydroxy-methylcholine (DGCC), and its lyso-type form (LDGCC),
as well as oxidized fatty acids containing phosphatidylcholine (OxPC), phosphatidylethanolamine
(OxPE) phosphatidylglycerol (OxPG), and phosphatidylinositol (OxPI) are highlighted for algal lipid
profiling. Second, the peak capacity in LC-MS/MS data could be increased by the integrated analyses
of MS-DIAL-based untargeted [6,9] and MRMPROBS-based targeted analyses [10,11] for DIA-MS/MS
data. In DIA-MS/MS data, MS-DIAL uses the MS1 chromatogram trace for metabolite quantification
and the deconvoluted MS/MS spectrum for metabolite annotation. Therefore, the program does not
completely resolve co-eluted metabolites, as only a singlet MS1 chromatogram peak from mixed
metabolite ions can be obtained [12]. On the other hand, MRMPROBS can use either the MS1 or MS/MS
chromatogram for metabolite quantification and metabolite diagnostics is performed by the integrated
score of the peak groups from the user-defined precursor-product transitions library [10]. Notably,
co-eluted metabolites in the MS1 chromatogram trace can be resolved using the MS/MS chromatograms
which differ based on the unique product ions from the lipid structure, resulting in increased peak
capacity, i.e., increased deconvolution efficiency, in the LC-MS/MS dataset.

Herein, we showcase novel lipid discoveries using algal lipidomics data as a benchmark.
We discovered novel lipid classes which have never been reported in the algal species using updated
in-silico MS/MS libraries. Moreover, we demonstrate increased annotated lipid coverage by integrating
the pipelines of the MS-DIAL and MRMPROBS programs. Although the integrated pipeline can be
executed using other state-of-the-art program combinations, such as XCMS [13] and MZmine 2 [14],
for untargeted analysis and MetDIA for targeted analysis [15], the selected programs support the direct
link from untargeted to targeted analyses with a user-friendly graphical user interface (GUI) where manual
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peak-picking required for targeted approaches is acceptable. This study highlights the importance of mass
spectrometry data repositories to deepen our understanding of lipids in algal species.

2. Materials and Methods

2.1. Overview of Data Analysis Workflow

Since the MetaboLights database and repository was launched in 2012 by the European
Bioinformatics Institute (EMBL-EBI) as the first repository for metabolomics data, data submission
has continuously increased (~2.5 TB data was available in June 2019), and accessibility and awareness
have been enhanced through the efforts of MetabolomeXchange (http://www.metabolomexchange.org)
and OmicsDI [16]. RIKEN DropMet (http://prime.psc.riken.jp/menta.cgi/prime/drop_index) has also been
launched in 2009 to share MS-based metabolomics data from RIKEN, in which ~300 GB of data from 29
studies are currently available; a part of this repository, i.e., the algae lipidomics data, was used in this study.

On the other hand, data processing tools like MS-DIAL [6,9], XCMS [13], and MZmine 2 [14] have
continuously been updated with database curations like Metlin [17] in XCMS. Since the LipidBlast
library was released in 2013 as the first public in-silico library for lipids [18], the fork libraries for
quadrupole/time-of-flight mass spectrometry (QTOF-MS) with collision-induced dissociation (CID)
and orbital ion trap MS with higher-energy collisional dissociation (HCD) data have been developed in
MS-DIAL [6,7] owing to the continuous effort. The annotation described in this study can be executed
in the MS-DIAL version 3.66 or higher. All programs, i.e., MS-DIAL, MRMPROBS, and the related
spectral libraries are available on the RIKEN PRIMe website (http://prime.psc.riken.jp/).

2.2. Mass Spectrometry Data

The DDA and DIA lipidomics data obtained in positive and negative ion modes of nine algal
species were downloaded from the RIKEN DropMet website (http://prime.psc.riken.jp/menta.cgi/
prime/drop_index; ID, DM0022). Briefly, the extraction of algal lipids was performed using a biphasic
solvent system of cold methanol, methyl tert-butyl ether (MTBE), and water followed by lipid separation
via reversed-phase liquid chromatography. Both DDA and DIA data were acquired using a QTOF
mass spectrometer (TripleTOF 5600+, SCIEX). For DIA (SWATH-MS/MS), a 21 Da isolation window
was used for selecting precursor ions shifting over an m/z 100–1250 mass range. Further details are
provided in the previous study [6].

2.3. Software Programs

MS-DIAL version 3.06 and MRMPROBS version 2.44 were used herein. All programs including
the latest version are freely available on the RIKEN PRIMe website (http://prime.psc.riken.jp/).

The same parameters in MS-DIAL were used for DDA and DIA data analyses: retention time
begin, 0 min; retention time end, 100 min; mass range begin, 0 Da; mass range end, 5000 Da; accurate
mass tolerance (MS1), 0.01 Da; MS2 tolerance, 0.025 Da; maximum charge number, 2; smoothing
method, linear weighted moving average; smoothing level, 3; minimum peak width, 5 scan; minimum
peak height, 1000; mass slice width, 0.1 Da; sigma window value, 0.5; MS2Dec amplitude cut-off,
0; exclude after precursor, true; keep isotope until, 0.5 Da; keep original precursor isotopes, false;
exclude after precursor, true; retention time tolerance for identification, 4 min; MS1 for identification,
0.01 Da; accurate mass tolerance (MS2) for identification, 0.05 Da; identification score cut-off, 70%;
using retention time for scoring, true; relative abundance cut off, 0; top candidate report, true; retention
time tolerance for alignment, 0.05 min; MS1 tolerance for alignment, 0.015 Da; peak count filter, 0;
remove feature based on peak height fold-change, true; sample max/blank average, 5; keep identified
and annotated metabolites, true; keep removable features and assign the tag for checking, true; replace
true zero values with 1/10 of the minimum peak height over all samples, false. Lipid annotation was
performed automatically using the in-silico MS/MS spectral library described below, and the result
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was manually curated with the confirmation of the characteristic product ions and neutral losses to
reduce false-positive annotations.

The parameters in MRMPROBS were set as follows: MS1 tolerance, 0.01 Da; MS2 tolerance,
0.025 Da; smoothing method, linear weighted moving average; smoothing level, 1; minimum peak
width, 5 scan; minimum peak height, 200; retention time tolerance for identification, 0.1 min; amplitude
tolerance for identification, 15%; minimum posterior, 70%; the abundance ratios in reference library
were automatically generated by MS-DIAL. The results of metabolite annotation and peak picking
were manually curated using the graphical user interface of MRMPROBS.

2.4. In-Silico MS/MS Spectral Libraries

The diagnostic ions used to characterize lipid classes were determined using authentic standards,
experimental MS/MS spectra of biological samples, or MS/MS spectral information reported in the
literature. The MS/MS spectra of PMeOH, LPS, and LPG were confirmed using the standard compounds
PMeOH 16:0–16:0, LPG 18:1, and LPS 18:1 (Avanti Polar Lipids, Inc., Alabaster, AL, USA). The DGCC
and LDGCC spectra were examined in the DDA-MS/MS data of Pavlova lutheri because these lipids were
previously discovered in P. lutheri [19] and the corresponding literature’s MS/MS spectrum was utilized
to create an in-silico MS/MS library [20]; the MS/MS spectra that have electronically been described in a
peer-review journal but not recorded in publicly and commercially available spectral databases such as
MassBank and NIST are referred to as the literature’s MS/MS. The in-silico MS/MS spectral libraries for
oxidized phospholipids were developed considering our previously published data [21]. The library
creation for GlcADG was based on the literature’s MS/MS spectrum [22]. Information regarding ion
abundances in the MS/MS spectral libraries was based on our LC-MS/MS experimental conditions
and the detailed analytical conditions were described in a previous study [7]. Briefly, the MS data
were acquired in information-dependent mode (IDA), i.e., DDA, using SCIEX TripleTOF 5600+ or 6600
systems. The mass range, collision energy, and collision energy spread were set to m/z 70–1250, 45 V,
and 15 V, respectively.

3. Results and Discussion

3.1. Novel Lipid Characterizations in Algae with Enriched In-Silico Spectral Libraries

The global lipid profiling of nine algal lipids was achieved in 2015 and 15 lipid classes
were characterized [6]. These classes include free fatty acid (FFA), di- and triacylglycerols (DAG
and TAG), seven phospholipid classes (phosphatidylcholine, PC; phosphatidylethanolamine, PE;
phosphatidylglycerol, PG; phosphatidylinositol, PI; phosphatidylserine, PS; lysophosphatidylcholine,
LPC; and lysophosphatidylethanolamine, LPE), mono- and digalactosyldiacylglycerol (MGDG and DGDG),
sulfoquinovosyldiacylglycerol (SQDG), diacylglyceryltrimethylhomoserine (DGTS), and its lyso-type form
(LDGTS). Of these, the most common lipid classes in the photosynthetic membranes of plants, cyanobacteria,
and algae, which include PG, SQDG, MGDG, and DGDG, have been characterized in all algal species.
In contrast, N,N,N-trimethylammonium cation-containing lipids, i.e., PC and DGTS, were characterized as
species-specific lipid classes. For example, Chlamydomonas reinhardtii only contains DGTS, while Chlorella
species only contain PC as their characteristic positively charged membrane lipids. Since the specificity of
lipid metabolism is highly influenced by genetics, evolution, and the environment of living organisms,
increasing lipidomics coverage is an emerging requirement in biology.

Herein, 17 lipid classes were newly characterized in algal species using enriched MS/MS spectral
libraries and include LPS, LPG, oxidized phospholipids (OxPC, OxPE, OxPG, OxPI), seven ceramide
classes (Cer-NS, Cer-NDS, Cer-AP, Cer-NP, Cer-AS, Cer-ADS, and HexCer-AP), PMeOH, GlcADG,
DGCC, and LDGCC (Table 1). The diagnostic ions are summarized in Table 2, and the annotation
strategy and nomenclature of the ceramides are reported elsewhere [7]. The phytoceramide species,
Cer-AP and Cer-NP, were characterized in all algal species, while several lipid classes were determined
to be algal species-specific (Figure 1).
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Figure 1. Lipid characterization using enriched in-silico MS/MS spectral libraries. The in-silico
MS/MS characterizations for phosphatidylmethanol (PMeOH), glucuronosyldiacylglycerol (GlcADG),
oxidized fatty acids containing phosphatidylcholine (OxPC) and phosphatidylethanolamine (OxPE),
diacylglyceryl-carboxyhydroxy-methylcholine (DGCC), and its lyso-type form (LDGCC) are showcased.
The upper- and bottom spectra show the experimental and in-silico MS/MS spectra, respectively.
The string character indicates the abbreviation of fatty acids, and the ester link of the fatty acids is also
described by string characters. NL refers to neutral loss. The algal species where the classified lipids
are observed is also highlighted.

For example, DGCC and LDGCC lipids were only characterized in Pavlova lutheri and Pleurochrysis
carterae. DGCC is well-known as a major betaine lipid of non-plastid membranes in P. lutheri [19],
while this lipid class has never been reported in P. carterae. Thus, further investigation in P. carterae
is required to define its exact stereochemistry. The MS-based lipidomics platform does not resolve
the stereochemistry of acyl chains and sometimes lipid classes cannot uniquely be assigned, although
a large variety of lipid molecules can be covered by tracing the lipid class-specific product ions and
neutral losses. For example, DGTS and diacylglyceryl hydroxymethyl-N,N,N-trimethyl-β-alanine
(DGTA), the major lipid class in P. lutheri, are characterized by the same diagnostic ions (m/z 144.102
and m/z 236.149) [23] under our experimental conditions, so the annotation must be determined by
considering the genetic background in mass spectrometry-based metabolite annotations [9]. GlcADG,
also known as diacylglyceryl glucuronide (DGGA), was observed in Euglena gracilis, P. lutheri, and
P. carterae. GlcADG is known to be accumulated in response to phosphorus starvation in Arabidopsis
thaliana and Oryza sativa [24], and this lipid class is commonly observed in several algal species.
A previous study has also reported its existence in P. lutheri. Furthermore, the rare phospholipid
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PMeOH class was characterized in E. gracilis, although it could also be detected as an artifact of
extraction [25]. Finally, several oxidized fatty acid-containing phospholipids, including OxPC, OxPE,
OxPG, and OxPI, were characterized in Chlorella variabilis. Although further investigation of these
discovered lipids is required to determine whether the lipid class is endogenously biosynthesized in
a specific algal species [26], our results indicated that the reanalysis of the published data with the
updated annotation workflow could provide new insights and hypotheses not previously reported.

3.2. Strategy to Link Untargeted- and Targeted Analyses for Increasing Lipid Coverage

We further demonstrated the increased lipid profiling coverage by integrating untargeted and
targeted analysis approaches (Figure 2). Although MS-DIAL involves a deconvolution algorithm,
MS2Dec, to process the DIA-MS/MS data, MS2Dec requires at least two data point peak-top differences of
co-eluted peaks for chromatogram deconvolution [6,12]. Moreover, MS-DIAL uses MS1 chromatogram
traces for metabolite quantification, while the MS/MS chromatogram can effectively be used to annotate
and quantify the target metabolite in DIA-MS/MS data [15]. Therefore, the MRMPROBS program
was used, in which the user-friendly GUI was available for data curation in addition to its favorable
algorithm aspects [10,11], to compensate for the shortcomings of the MS-DIAL program. First, both
DDA- and DIA-MS/MS data were analyzed using MS-DIAL. Second, all spectrometrically ‘matched’
candidates to an MS/MS spectrum were obtained and the function was newly developed. In this
study, we utilized the DDA-MS/MS spectral data to examine the co-eluted metabolite profile because
of the better spectrum quality than that of the DIA-MS/MS spectra. Third, the reference format file,
which contains (1) metabolite name (2) retention time, (3) precursor ion m/z, and product ion m/z list,
and (4) ion abundance ratios, was generated to cover all matched candidates. Finally, the DIA-MS/MS
data were analyzed by MRMPROBS using the reference library where the peak left and right edges of
the metabolite peak in each MS/MS chromatogram trace were manually refined.

 

Figure 2. Integrated strategy of untargeted and targeted analyses to increase the coverage of annotated
lipids. First, the data dependent (DDA) and independent (DIA) acquisition data are analyzed using
the untargeted analysis pipeline where peak-picking, MS/MS assignment, and peak alignment are
performed. Second, all potential lipid candidates that exceeded the cut-off of mass spectral similarity
are obtained. Third, a reference library containing the target metabolite name, retention time, precursor
ion m/z, product ion m/z list, and ion abundance ratios is automatically generated. In our study, the ratio
“100” indicates that the trace is used to quantify the metabolite, and the diagnostic ion for characterizing
the metabolite is described by “Q”. Finally, the MS/MS chromatograms are analyzed by the targeted
analysis pipeline where the chromatogram traces are evaluated with the reference libraries combined
with manual curations.
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Importantly, smoothing level 1 was used in the MRMPROBS program and it was set to 3 in the
MS-DIAL program. The higher smoothing level allows for the determination of peak left and right
edges in the automated data analysis pipeline owing to the reduced noise level. Therefore, the higher
smoothing value was used in the untargeted analysis. Conversely, the co-eluted peaks are often merged
as a single peak. Because all chromatogram peaks could manually be checked and modified in the
GUI, the lower smoothing value was used in the targeted analysis software.

3.3. Showcase of Newly Resolved Lipid Profiles by MS/MS-Centric Data Analysis

We showcased the methodology by profiling three co-eluted lipid molecules, DGDG 16:2–18:1,
DGDG 16:1–18:2, and DGDG 16:0–18:3, with the same precursor m/z and similar retention times
(Figure 3a). In the analysis of E. gracilis, only DGDG 16:2–18:1 was annotated correctly in MS-DIAL
based on the spectral match score, while the MS/MS spectrum was partially interpreted as DGDG
16:1–18:2 and 16:0–18:3. Using the principles of MS-DIAL, the spectra of co-eluted metabolites are
annotated using the representative metabolite with the highest spectral matching score, although it could
be manually modified. Therefore, MS-DIAL generated the MRMPROBS reference format for the three
lipid candidates, and the lipids were quantified using the MRMPORBS program. As a result, DGDG
16:0–18:3 was determined to be the major component of the co-eluted lipids in Chlamydomonas reinhardtii,
Auxenochlorella protothecoides, C. sorokiniana, C. variabilis, and Dunaliella salina, DGDG 16:2–18:1 the major
component in E. gracilis, and DGDG 16:1–18:2 in Nannochloropsis oculate and P. carterae (Figure 3b), where
the lipid differences clearly reflected the differences in the phylum. Importantly, these differences could
not be resolved using MS-DIAL untargeted analysis (Figure 3c) because the program uses MS1-centric
peak quantification, i.e., the red traces in the chromatograms shown in Figure 3b. This indicated that
the DIA-MS/MS data enabled the increased coverage of metabolic profiling, as described elsewhere [27],
and the two program suites MS-DIAL and MRMPROBS provided a solution to fully utilize the
information-rich MS/MS spectral data for comprehensive metabolome analyses.

3.4. Comparison of Untargeted- and Targeted Analysis Results

We characterized 1437 molecules in nine algal species, and the total count of annotated lipids
was 40% higher than that (1023) of the lipids annotated using the previously developed methodology
(Figure 4a, Table 1, Supplementary Data 1, 2, and 3). Moreover, we examined correlations among
the quantification methods, including MS1-centric peak height in DDA and DIA-MS/MS data,
and MS/MS-centric peak height and area in the DIA-MS/MS data. As expected, the correlation between
peak height and area in DIA-MS/MS data were high (Figure 4b, right-bottom), but the correlation
between peak heights in DDA and DIA-MS/MS data could be affected by the mass spectrometry
settings [6] where the total scan cycle times were different in DDA (650 ms) and DIA-MS/MS (730 ms)
data acquisition (Figure 4b, top-left). These differences were also caused by different LC-MS analysis
days, where the MS sensitivities differed for each lipid class. Surprisingly, our results indicated that
the correlations between MS1 and MS/MS chromatograms were highly dependent on the lipid classes.
This indicates that the sensitivity of the product ions is different for each lipid class, and the correlation
value is high when abundances are compared within each lipid class. The dynamic range using MS/MS
chromatograms was narrower than that of the MS1 chromatograms, and the saturation behavior
was observed in the correlation plots, especially for TAG lipids, between MS1- and MS/MS-centric
quantifications. In fact, the SWATH-MS/MS channels of the TripleTOF 5600+ instrument have a
lower linear dynamic range compared to MS1. These results suggest that MS1-centric metabolite
quantification is slightly superior to that of the MS/MS-centric quantification, while the annotation
coverage in MS/MS-centric analyses outperformed the untargeted analysis pipeline.
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Figure 3. Showcase of the MS/MS-centric lipid quantifications. (a) The co-eluted MS/MS spectra of
digalactosyldiacylglycerol (DGDG) 16:2–18:1, DGDG 16:1–18:2, and DGDG 16:0–18:3. (b) The red and
blue traces in the chromatograms for each algal species show the extracted ion chromatograms of the
precursor and product ions of m/z 397.135 used for the lipid class diagnostics, respectively. The bold
green, black, and purple traces show the extracted ion MS/MS chromatograms of the m/z 251.201, m/z
253.217, and m/z 255.232 ions for fatty acids 16:2, 16:1, and 16:0, respectively. (c) The three molecules
are quantified by the traces of unique product ion chromatograms in the targeted analysis pipeline,
while two are not resolved in the MS1 chromatogram traces.
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Figure 4. Summary of lipid annotations and comparison of MS1- and MS/MS-centric peak
quantifications. (a) Counts of the annotated lipids in untargeted (MS-DIAL) and targeted (MRMPROBS)
analyses. (b) The correlations of ion abundances where the MS1-centric peak heights in the DDA
and DIA data and MS/MS-centric peak height and area are examined. (c) The statistics of acyl
chains in all lipid classes except for triacylglycerol (TAG) for each algal species. The x- and y-axis
shows the fatty acid information and frequency, respectively. The TAG lipids are not used for the
counts because many combinations are observed in a single MS/MS spectrum, which may include
false-positive identifications.

Finally, a detailed investigation of fatty acid properties revealed the uniqueness of the acyl chains
in each algal species (Figure 4c). Importantly, we used the fatty acid counts included in the lipid
classes instead of the ion abundances because lipid ionization efficiency is highly dependent on the
lipid class and retention time. In Plantae, 16:0, 16:1, 16:2, 16:3, 18:0, 18:1, 18:2, and 18:3 are known
to be major acyl chains [28], while 16:4 and 18:4 are highly distributed in Chlorophyceae including
C. reinhardtii and D. salina compared to Trebouxiophyceae including Chlorella species. Moreover,
the acyl chain of 18:0 is not often observed in glycerolipids and glycerophospholipids in nine algal
species. In Chromista and Protozoa, polyunsaturated fatty acids (PUFAs) are enriched in addition to
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the common 16 and 18 carbon length series. These results show that various PUFAs, such as 20:4, 20:5,
22:5, and 22:6, were observed in E. gracilis while 20:5 and 22:6 were enriched in P. lutheri, and 20:4 and
20:5 in the lipids of N. oculate. These observations were achieved using the MS/MS chromatogram
traces for lipid quantification, and the approach is effective for investigating lipid profiles in living
organisms to deepen our understanding of lipid metabolism and its connection with gene expression
and enzyme activities.

In general, untargeted analysis searches are conducted for as many metabolites as possible to
generate hypotheses in biology, though the rate of false-positive annotations becomes higher than that
in targeted analysis; therefore, data analysts should devote much time and effort in curating annotation
results. On the other hand, the targeted analysis focuses on a limited number of metabolites with
less false-positive rate, though curation is still needed to modify the peak-picking results. Although
the automated pipelines with the estimation of false discovery rate (FDR) in annotations have also
been developed in metabolomics [29–31] for large-scale datasets like cohort studies, data analysts
should recognize the pitfall in annotations that may be mentioned as false-positive metabolites in the
metabolome and lipidome data sheet for statistical analyses. Therefore, the integrated analysis by
untargeted and targeted techniques is important to reduce misleading results in biological studies.
In fact, the metabolites of interest obtained from the integrated results must be validated using authentic
standard compounds and further biological experiments to compensate for the lack of current MS
instruments and informatic techniques providing limited stereochemical and isomer information.

4. Conclusions

Consequently, the reanalysis of published data was demonstrated where 17 lipid classes were
newly characterized in nine algal species in addition to the 15 lipid classes annotated previously.
In effect, the coverage of lipid classes was doubled by updating the computational mass spectrometry
techniques and mass spectral libraries, and our reanalysis indicates the value of MS data repositories
where the raw data could be utilized as a benchmark for new software programs and data-driven
hypothesis generation. The lipidomics workflow is also executable with hydrophilic interaction
chromatography (HILIC) [32] or supercritical fluid chromatography (SFC) [33], in which the molecules
can be separated based on the specific chemical properties of each lipid class, enabling efficient
exclusion of false-positive annotations from incorrect lipid classes. Ion mobility MS provides another
diagnostic criterion, viz. collision cross-section (CCS), to increase the confidence in lipid annotation [34].
Although we only showcased the increase in lipid profiling coverage, this strategy could also be applied
to more diverse metabolites with experimentally acquired spectral libraries. There are three types of
spectral databases: (1) completely open-access, i.e., all records are browsable and downloadable (e.g.,
MassBank [35], PlaSMA [9], Fiehnlib [36], and GNPS [4]), (2) limited access, i.e., browsable but not
downloadable (e.g., Metlin [17] and mzCloud (https://www.mzcloud.org/)), and (3) licensed databases
such as NIST and Wiley, and the integrated databases cover the MS/MS spectra of approximately
12,000 unique metabolites [9,26]. Importantly, all these databases have increasingly been updated
by the continuous effort of mass spectrometrists; therefore, success similar to that obtained herein is
achievable by reanalyzing public data using the upgraded databases.

In conclusion, the science of metabolomics and lipidomics now enters a new era owing
to state-of-the-art analytical techniques and informatics platforms where metabolic profiling is
semi-automatically executable [37]. Therefore, MS data repositories will become increasingly important
to reach a ‘standard’ in genomics and transcriptomics data sciences. Our computational workflow
could be used as a pipeline for metabolomics and lipidomics data processing and the understanding of
metabolism is deepened by advances in computational metabolomics.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/6/119/s1.
Supplementary Data 1. MS-DIAL original output for DIA-MS/MS data. The peak height is exported.
The representative SMILES and InChIKey codes are also exported although the stereochemistry is not determined
spectrometrically; Supplementary Data 2. MS-DIAL original output for DDA-MS/MS data. The peak height is
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exported. The representative SMILES and InChIKey codes are also exported although the stereochemistry is not
determined spectrometrically; Supplementary Data 3. MRMPROBS output for DIA-MS/MS data. The peak height-
and area values are exported.
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Abstract: Metabolomics has emerged as a promising technique to understand relationships between
environmental factors and health status. Through comprehensive profiling of small molecules in
biological samples, metabolomics generates high-dimensional data objectively, reflecting exposures,
endogenous responses, and health effects, thereby providing further insights into exposure-disease
associations. However, the multivariate nature of metabolomics data contributes to high complexity
in analysis and interpretation. Efficient visualization techniques of multivariate data that allow
direct interpretation of combined exposures, metabolome, and disease risk, are currently lacking.
We have therefore developed the ‘triplot’ tool, a novel algorithm that simultaneously integrates and
displays metabolites through latent variable modeling (e.g., principal component analysis, partial
least squares regression, or factor analysis), their correlations with exposures, and their associations
with disease risk estimates or intermediate risk factors. This paper illustrates the framework of
the ‘triplot’ using two synthetic datasets that explore associations between dietary intake, plasma
metabolome, and incident type 2 diabetes or BMI, an intermediate risk factor for lifestyle-related
diseases. Our results demonstrate advantages of triplot over conventional visualization methods in
facilitating interpretation in multivariate risk modeling with high-dimensional data. Algorithms,
synthetic data, and tutorials are open source and available in the R package ‘triplot’.

Keywords: triplot; metabolomics; multivariate risk modeling; environmental factors; disease risk

1. Introduction

Environmental factors, such as diet, smoking, and pollutants, are associated with risk of developing
non-communicable diseases (NCDs), including obesity, type 2 diabetes (T2D), and cardiovascular
disease [1], which together constitute the leading cause of morbidity, mortality, and high healthcare
costs worldwide. The role of lifestyle factors in development and progression of NCDs has often been
studied in prospective cohorts or case-controlled studies, where associations of specific exposures with
health outcomes or intermediate risk markers of NCDs (e.g., blood pressure, lipid profiles, and body
weight) are assessed. Several challenges exist in the research on exposure–health relationships,
including the measurement of environmental factors and the lack of understanding of underlying
molecular mechanisms that are affected by the exposures [2].
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Metabolomics is the comprehensive assessment of metabolites in biological samples, which
enables investigation of physiological and biological states at the molecular phenotype level, reflecting
both exogenous and endogenous exposures. Thus, metabolomics could potentially advance the
understanding of associations between exposures and health status [3–5]. For example, using
metabolomics to identify metabolite biomarkers objectively reflecting dietary exposures could provide
a complement to self-reported dietary assessments that are known to suffer from large systematic and
random measurement errors [6]. Metabolomics can also be used to link exposures to outcomes [7,8] by
detecting endogenous changes in response to exposures [3]. However, in addition to these advantages,
application of metabolomics in epidemiologic research makes interpretation and visualization of the
results more complex due to the high dimensionality of the data.

Both multivariate analysis (e.g., reduced rank/component-based techniques) and univariate
analysis are routinely used in metabolomics studies to extract meaningful information from complex
datasets and thus provide biological knowledge of the research question under investigation [9].
Univariate analyses allow both for simultaneous investigation of multiple study factors, time series
data, as well as adjustment for potential covariates or confounders. In general, univariate methods
also provide more straightforward interpretation of results compared to multivariate analyses, which
on the other hand make use of all variables simultaneously and are well-equipped to deal with high
collinearity, which is often a challenge in epidemiological studies [10]. However, they offer limited
options to investigate several study factors simultaneously, i.e., analyze data from time series or adjust
for potential covariates or confounders.

Results from metabolomics studies aiming to investigate exposure–disease relationships are often
using a combination of figures to illustrate the findings. Observation scores and metabolite loadings
from latent variable (LV) modeling (e.g., principal component analysis (PCA), factor analysis (FA),
or partial least squares (PLS)) can be shown, e.g., in a biplot (Figure 1a), to identify outliers, to visualize
separation of individuals into subgroups, and to examine how individual metabolites contribute to
the LVs. Correlations between individual metabolites or LV scores and exposures are then frequently
visualized using heatmaps (Figure 1b). Finally, individual metabolites or LV scores can be used as
independent variables to model disease outcome or intermediate risk markers. Associated risk can
then be visualized as odds ratios (ORs) or beta coefficients from logistic or linear regressions in a forest
plot (Figure 1c). However, the lack of effective tools for direct interpretation of the relationship between
exposures, metabolome, and outcome measure by visualization of combined data makes interpretation
and communication of findings difficult.

We therefore developed the novel ‘triplot’ tool to facilitate visualization and interpretation of
multivariate risk modeling, which enables a global, combined overview of information representing the
metabolome (or other types of multivariate data), exposures, or environmental factors of interest and
associated health outcomes (i.e., disease outcomes or intermediate risk factors) (Figure 1d). We present
the workflow of the triplot package and demonstrate its applicability using two synthetic datasets
that were simulated from a case-controlled study nested within the Swedish prospective Västerbotten
Intervention Programme cohort [11] and from a cross-sectional study of Carbohydrate Alternatives
and Metabolic Phenotypes in Chinese young adults [12].
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(a) (b) 

 
 

(c) (d) 

Figure 1. Using metabolomics data to investigate the relationship between exposures and disease
risk. In a standard approach, latent variable (LV) modeling (a) is used to achieve a reduced rank
approximation of the metabolomics data. Correlation heatmaps (b) and forest plots (c) are then used
to associate observation scores with exposures and risks, respectively. For more direct interpretation,
LV modeling, and their associations with exposures and risks can be visualized jointly in a triplot (d).
HFI: Healthy Food Index; BSDS: Baltic Sea Diet Score; PC: Principal Component; OR: Odds Ratio;
CI: Confidence Interval. lysoPC: Lysophosphatidylcholine; lysoPE: Lysophosphoethanolamine; EPA:
Eicosapentaenoic acid; DHA: Docosahexaenoic acid; RP: reverse phase chromatography positive mode
ionization; RN: reverse phase chromatography negative mode ionization.

2. Materials and Methods

2.1. Synthetic Data

‘HealthyNordicDiet’: This synthetic dataset was simulated from data used in a case-controlled study
nested within the Swedish prospective Västerbotten Intervention Programme (VIP) cohort [8]. The
entire study protocol was approved by the Regional Ethics Committee in Uppsala, Sweden (registration
number 2014/011). The original study material was used to investigate how the plasma metabolome
and the risk of developing T2D were related to compliance to a Healthy Nordic Diet [8]. Detailed
information on study design and metabolomics data acquisition is provided elsewhere [7,8]. In brief,
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the original dataset included 421 participants from VIP at baseline (median time of 7 years before T2D
diagnosis). Each case was individually matched to one nondiabetic participant on age, gender, sampling
date, and sample storage time. Untargeted liquid chromatography quadrupole time-of-flight mass
spectrometry (LC-qTOF-MS) metabolomics was performed on plasma samples using reverse phase and
hydrophilic interaction chromatography in both positive and negative electrospray ionization modes.
In total, 31 plasma metabolites related to a priori-defined healthy Nordic dietary indices, i.e., the Baltic
Sea Diet Score (BSDS) and Healthy Nordic Food Index (HNFI), were selected using a random forest
algorithm incorporated into a repeated double cross-validation framework with unbiased variable
selection [8,13]. Subsequently, associations were investigated between the 31 dietary index-related
metabolites, dietary intakes, and T2D risk [8].

The simulated data contains three data frames: Baseline characteristics of participants (BaselineData,
11 variables), identified metabolites associated with healthy Nordic diet (MetaboliteData, 31 variables),
and food items associated with Healthy Nordic Diet (FoodData, 17 variables). The data frames are
row-wise matched by observation and consist of 1000 synthetic observations that correspond to
500 case-controlled pairs matched by gender and age.

CAMP: This synthetic dataset was simulated from real data used in a cross-sectional study of
carbohydrate alternatives and metabolic phenotypes [12]. The study was approved by the ethical
committee of Xi’an Jiaotong University Health Science Center, and all participants provided written
informed consent. The original data were obtained from fasting plasma samples from 86 men and
women that were between 18–35 years of age. Samples were analyzed by untargeted LC-qTOF-MS
metabolomics using reverse phase chromatography in both positive and negative electrospray ionization
modes. Associations were investigated between an optimal selection of plasma metabolites predictive
of BMI and dietary intakes as well as several clinical measurements.

The simulated data contains three data frames: Clinical measurements (ClinData, 11 variables),
plasma metabolites predictive of BMI (MetaboliteData, 20 variables), and dietary intake as measured by
food frequency questionnaires (FoodData, 11 variables). The data frames are row-wise matched by
observation and consist of 300 synthetic observations.

2.2. Algorithm Description

The ‘triplot’ is a novel tool that simultaneously integrates three levels of information, effectively
providing interpretable visualization of multivariate associations between exposures, metabolome,
and disease risk by superimposing LVs from multivariate modeling of, e.g., metabolomics data with
correlations of exposures (or other correlations) and associations with disease risk or intermediate risk
markers (Figure 2). An overview of the functions and workflow of the triplot package is presented in
Table 1.

In the first layer of the triplot, LV modeling is performed on a high-dimensional dataset, generated
from, e.g., metabolomics, proteomics or other omics, to reduce the data dimensionality, and to aggregate
correlated variables into LVs. The choice of LV modeling method depends on the preference of the
user, the data, and the analytical question. The triplot algorithm accepts input from any LV modeling
that conforms to reporting observation scores and variable loadings. Frequently used LV algorithms
include unsupervised PCA and FA as well as supervised PLS analyses. PCA and FA are used to
describe the total variability among the observed (metabolomics) variables using a lower number of
LVs called principal components or factors, respectively. PLS is conceptually similar but identifies
components that are instead optimized for covariation between the observed (independent) variables
and an outcome (dependent) variable [14,15].

There are several methods to determine the number of LVs to retain in unsupervised LV modeling,
i.e., PCA and FA [16]. Among them, a scree plot, which shows how much variation each factor or
principal component captures from the data, and very simple structure analysis are commonly used [17].
For supervised modeling like PLS, the number of LVs should be optimized by cross validation. Out
of several cross-validation approaches, repeated double cross validation has shown advantages in
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estimation of the optimum number of PLS components and estimations of prediction errors over
several other commonly used validation approaches, such as k-fold and leave-n-out [13,18,19].

 
Figure 2. Link between exposures, metabolome, and disease risk as presented in the triplot. The first
step consists of latent variable modeling of metabolomics data providing scores and loadings. The
second step superimposes correlations between component scores and exposures (or covariates). The
third step superimposes risk of outcome associated with the component scores.

A second layer presents correlations between LV observation scores and single or multiple
exposures, such as self-reported dietary intakes. Correlation coefficients can be obtained by any
correlation methodology that is suitable for the data structure, such as the Pearson method for
linear correlations, the Spearman method for non-linear (rank) correlations, or polychoric/polyserial
correlation methods for ordinal variables [20]. In order to adjust the correlation results for confounders,
users can also apply partial correlations [21].

Associations between the LV observation scores and disease risk or intermediate risk factors are
added in a third layer. Users can define risk associations suitable for different study designs, such as
ORs of disease risk calculated using (conditional) logistic regression in case-controlled studies, hazard
ratios of disease risk calculated using cox regression in prospective cohorts, or beta coefficients of
intermediate risk markers calculated using linear regression in cross-sectional studies.
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Associated correlations and risk estimates are added to the LV modeling in a modular, easy-to-use
workflow, and a summarized overview in the form of a heatmap can then be generated to assist in
selecting LVs to investigate using the triplot function.

Table 1. Overview of the workflow and main functions in the ‘triplot’ R package.

Function Description

First layer: Latent variable (LV) modeling
Custom a Perform LV modeling of high-dimensional (metabolomics) data.

makeTPO() a Initiate a triplot object (TPO) from LV model
Second layer: Correlations

makeCorr()
or custom b

Perform correlation analysis between LV observation scores and
exposures or covariates.

addCorr() Add correlation results to the TPO.
Third layer: Associated risk

crudeCLR(),
crudeLR(),
or custom c

Calculate risk associations (i.e., odds ratio or hazard ratio) in
(conditional) logistic regression or association with intermediate risk

markers (i.e., beta coefficient) in linear regression.
addRisk() Add risk associations to the TPO.

Visualizations

checkTPO() Generate a heatmap visualizing correlations and risk associations to
identify relevant LVs for the triplot visualization.

triplot() Create a triplot containing LV analysis results, correlations, and risk
associations.

a Actual LV modeling is purposely omitted from the triplot package to give the user the choice of LV method,
such as PCA, FA, or PLS. The makeTPO() function will accept any input that conforms to scores and loadings. b

makeCorr() constitutes a convenience function for standard correlation analysis (Pearson, Spearman, Kendall). Partial
correlation requires custom scripts and is covered in the tutorial. c crudeLR() and crudeCLR() constitute convenience
functions for (conditional) logistic regression. Adjusting associations for covariates requires custom scripts and is
covered in the tutorial.

2.3. Software and Implementation

The triplot algorithm is publicly available in an open source R implementation
(https://gitlab.com/CarlBrunius/triplot). The repository provides the ‘triplot’ R package, installation
instructions, synthetic data, and a tutorial that covers the case studies described in this manuscript in a
high level of detail, as well as several additional case studies.

3. Results and Discussion

We applied various analyses on the two simulated datasets available from the package to
demonstrate the wide applicability of the triplot. Disease risk (discrete outcome) is modeled using the
‘HealthyNordicDiet’ dataset and intermediate risk markers (continuous outcomes) are modeled using
the ‘CAMP’ dataset.

3.1. HealthyNordicDiet

The original study was set up to explore plasma metabolites that could objectively reflect healthy
Nordic dietary patterns in a matched case-controlled study and to assess associations between
such patterns and later development of T2D [8]. The processing pipeline for the generation and
visualization of the original data is described in Supplementary Materials Figure S1. A global overview
of intercorrelations between plasma metabolites related to the healthy Nordic diet, dietary intake
variables, as well as T2D risk is shown in Figure 3 (Tutorial—Example 1). PC1 constituted a metabolite
profile, which directly reflected the healthy Nordic dietary indices and individual food components of
the indices and was not associated with T2D risk after adjustment for lifestyle-related factors. PC2
instead, while it was negatively correlated with the healthy Nordic dietary indices, it was predominantly
correlated with foods not part of the indices, e.g., margarine, sausages, and poultry, and also more
strongly associated with risk of developing T2D, even after adjustment for BMI and lifestyle-related
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factors (smoking status, education, physical activity, and total energy intake). Results from different
risk modeling approaches can easily be incorporated into the triplot framework, e.g., using normal
logistic regression, which achieved similar OR estimates as conditional logistic regression (Figure 3,
Tutorial—Example 2).

Figure 3. A PCA-based triplot visualizing the inter-correlation between plasma metabolites related to
healthy Nordic diet and dietary intake variables as well as association with type 2 diabetes (T2D) risk.
Odds ratios of T2D were calculated using conditional logistic regression with or without adjusting for
BMI and lifestyle-related confounders (smoking status, education, physical activity, and total energy
intake) (OR_A and OR, respectively). Risk associations were calculated similarly using unconditional
logistic regression (OR_AU and OR_U, respectively). Correlations between PCA components and
dietary intakes were calculated using partial Pearson method, adjusted for case-controlled status,
gender, age, BMI, and lifestyle-related confounders (smoking status, education, and physical activity).
Only metabolite feature loadings > 0.25 and dietary intake variables significantly correlated with the
PCA components are shown.

Importantly, all information incorporated in the triplot visualization could have been obtained
using conventional tools, such as separate PCA biplots, heatmaps, and forest plots for risk estimates
(Figure 1). However, such an approach presents results scattered across different tables and/or figures,
which impedes the direct interpretation of the results. The triplot algorithm instead provides an
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integrated overview of metabolites as well as associated exposures and risk estimates, which intuitively
and clearly presents relevant biological information: The results obtained from synthetic data, i.e., that
the metabolite profile related to healthy Nordic diet is not associated with T2D whereas that of more
unhealthy dietary choices is, effectively mirror those that were obtained from authentic data [8].

3.2. CAMP

Obesity has been associated with increased morbidity and mortality from NCDs, and high BMI
has also been associated with the intake of unhealthy food, i.e., fast food and red/processed meat [22,23].
The cross-sectional study of Carbohydrate Alternatives and Metabolic Phenotypes in Chinese young
adults was therefore designed to assess relationships between diet, metabolic profiles, and risk
factors of metabolic diseases, using both traditional epidemiological approaches and metabolomics
techniques [12].

Intercorrelations between BMI-related plasma metabolites, dietary intakes, and metabolic traits
are shown in Figure 4 (Tutorial—Example 3). The PCA-based triplot shows that the metabolite profile
predicting BMI was strongly associated with liver enzyme activity, i.e., gamma-glutamyltransferase
(GGT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) (Figure 4), and also with
several other health-related metabolic traits, including fasting glucose, triglycerides, total cholesterol,
as well as high- (HDL) and low-density lipoprotein (LDL) cholesterol (data not shown), in line with
previous studies [24–27]. PC1 reflected metabolites that were positively associated with BMI and
also correlated with a high intake of meat and refined grains and negatively with seafood intake,
in agreement with observational studies [28–30]. We also found that a high intake of fruits correlated
with BMI-related metabolites and other metabolic traits (Figure 4). Fruit consumption is widely
considered an important part of a healthy diet, which may provide a host of beneficial nutrients, i.e.,
vitamins and minerals, dietary fiber, and polyphenols, and aid in the reduction of energy intake and
body weight. However, conflicting results exist regarding associations between fruit intake and risk
factors of NCDs, including BMI [31,32], as supported by the present investigation. Moreover, PC2
contained high negative loadings of, e.g., phosphatidylcholines containing the marine polyunsaturated
fatty acid (C22:6), which in turn correlated positively with seafood intake. From the direct associations
of PC2 with liver enzyme activity we then may speculate that the results support the benefits of seafood
intake, rich in omega-3 polyunsaturated fatty acids, on human health [33–36].

Of note, the triplot can also be easily constructed based on components derived from supervised
modeling of multivariate data (Tutorial—Example 4). To illustrate the wide applicability of the
triplot, we performed PLS modeling on the BMI-related metabolites and assessed associations between
PLS-derived metabolite components with dietary intakes and metabolic traits, which resulted in
similar results as the PCA analysis (Supplementary Materials, Figure S2). The overall direction of
the associations obtained using synthetic data was comparable to the results that were obtained from
authentic data, although the association between PC1 and high intake of meat was not significant in
either synthetic or authentic data (Supplementary Materials, Figure S3).
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Figure 4. A PCA-based triplot visualizing the inter-correlations between plasma metabolites predicting
BMI, dietary intake variables, and metabolic traits, after adjusting for age and gender. Correlations
between PCA components and dietary intakes estimated from food frequency questionnaires
were calculated using the partial Spearman method. Associations of PCA components with
metabolic traits were assessed using linear regression. Only metabolite feature loadings > 0.25,
significant correlations, as well as correlations with animal derived foods and metabolic traits with
strongest associations are shown. ALT: alanine aminotransferase; AST, aspartate aminotransferase;
GGT: gamma-glutamyltransferase.

4. Conclusions

In this work, we have proposed a novel tool, the ‘triplot’, which can be effectively used to visualize
and interpret multivariate risk modeling with high-dimensional data. The framework for integration
of metabolomics data, analyzed using either unsupervised or supervised LV modeling, with dietary
intakes and disease risk or intermediate risk factors was illustrated using two synthetic datasets
representing different study designs. Moreover, our results demonstrate how the triplot could provide
advantages over conventional methods in terms of visualization and interpretation of modeling results
and thus has the potential to assist in extracting biological meaning from complex data.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/7/133/s1,
Figure S1: Overall workflow for generation of the data in the original HealthyNordicDiet study. Figure S2:
A PLS-based triplot visualizing the intercorrelations between plasma metabolites predicting BMI, dietary intake
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variables, and metabolic traits, adjusting for age and gender in synthetic ‘CAMP’ data. Figure S3: A PCA-based
triplot visualizing the intercorrelations between plasma metabolites predicting BMI, dietary intake variables,
and metabolic traits, adjusting for age and gender in authentic ‘CAMP’ data.
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Abstract: Metabolomic studies with a time-series design are widely used for discovery and validation
of biomarkers. In such studies, changes of metabolic profiles over time under different conditions
(e.g., control and intervention) are compared, and metabolites responding differently between the
conditions are identified as putative biomarkers. To incorporate time-series information into the
variable (biomarker) selection in partial least squares regression (PLS) models, we created PLS models
with different combinations of bilinear/trilinear X and group/time response dummy Y. In total, five
PLS models were evaluated on two real datasets, and also on simulated datasets with varying
characteristics (number of subjects, number of variables, inter-individual variability, intra-individual
variability and number of time points). Variables showing specific temporal patterns observed visually
and determined statistically were labelled as discriminating variables. Bootstrapped-VIP scores were
calculated for variable selection and the variable selection performance of five PLS models were
assessed based on their capacity to correctly select the discriminating variables. The results showed
that the bilinear PLS model with group × time response as dummy Y provided the highest recall
(true positive rate) of 83–95% with high precision, independent of most characteristics of the datasets.
Trilinear PLS models tend to select a small number of variables with high precision but relatively high
false negative rate (lower power). They are also less affected by the noise compared to bilinear PLS
models. In datasets with high inter-individual variability, bilinear PLS models tend to provide higher
recall while trilinear models tend to provide higher precision. Overall, we recommend bilinear PLS
with group x time response Y for variable selection applications in metabolomics intervention time
series studies.

Keywords: time series; PLS; NPLS; variable selection; bootstrapped-VIP

1. Introduction

Metabolomics is a widely applied technology for capturing the perturbations of metabolites in
biological systems and for discovery of dietary and health biomarkers. Liquid chromatography–
mass spectrometry (LC-MS), nuclear magnetic resonance spectroscopy (NMR), and gas
chromatography–mass spectrometry (GC-MS) are most commonly employed in metabolomics studies
providing information-rich, high throughput data [1]. Such data contains information on hundreds
or even thousands of metabolites, resulting in challenges for both data pre-processing and statistical
analysis [2].

Biomarker discovery in metabolomic studies consists of several stages: collection of biological
samples under different conditions; application of analytical techniques for characterising the
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“unknown” metabolome; extraction of information from raw analytical data; statistical analysis
to select putative biomarkers with the capacity to discriminate the samples from different conditions;
and further studies to validate the performance of selected biomarkers [3]. Selection of variables
(putative biomarkers) plays an important role in the process as it determines the scale and outcome of
later validation studies [4]. It is crucial to keep the number of selected variables at a reasonable level
without compromising the number of true positives.

Time-series design has been adopted in many metabolomic studies for both biomarker discovery
and validation stages. It is advantageous because it allows discovery of biomarkers responding to
an intervention and provides time response information of biomarkers, which is of importance to
select the best time window for sampling [5]. Figure 1 shows eight different types of temporal profiles
typically seen in response to intervention in acute metabolomic studies (<24 h). Metabolites responding
differently between the groups in such studies may vary in their temporal response profiles as seen in
(a)–(f). Other metabolites (g)–(h) show no difference in response between control and intervention,
or vary randomly over time, which is often the case for the majority of metabolites.

 
Figure 1. Typical temporal profiles of metabolites observed in metabolomics data from our onion
study with a time-series design. (a)–(h) are temporal profiles of eight metabolites in control (grey) and
intervention (purple) group. More details are explained in Text S1.

A time-series design yields more information but also leads to more complex data. Not only are
the variables correlated but also temporal autocorrelation exists between time points. The classical
supervised multivariate approach adopted in many metabolomic studies is PLSDA followed by variable
(biomarker) selection [6]. PLSDA is a classification method based on classical PLS regression where the
response variable, y, is categorical and represents which treatment group each sample belongs to [7].
Normally the model is built on the data acquired from a single time point, from combined time points
or on pooled samples. However, in this case, only treatment group information is used while all the
time response information is ignored.

Some attempts have been made to take time-series information into account during PLS modelling.
One approach is to use time of sampling or maturity of the process as the response variable, y, [8]
which has been applied in a small number of metabolomic studies [9,10]. The problem with this
method is that it works well only when there is a linear relation between variables and time, which
is often not the case (see Figure 1). Another approach is piecewise Orthogonal Projections to Latent
Structures (OPLS), which uses a set of sub-models to describe the changes between successive time
points [11]. This does not assume any linear trend between data and time, which makes it suitable
for the analysis of non-linear response over time. However, the time-series information is distributed
in a range of sub-models which hinders interpretation. A variety of non-PLS methods could also be
adopted for modelling metabolomics time-series data but there are some limitations. Autoregressive
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moving average with exogenous inputs models (ARMAX) or space-state models can be used to
describe the temporal profiles, but typically requires more time points (>10) [12]. Smoothness or its
combination with dimension reduction method have also been developed and applied for time-series
data [13]. However, all the methods above mainly focus on predicting response to a treatment
over time instead of selecting important variables which discriminate between different treatments.
More investigation of time-series models using PLS for metabolomics analyses is therefore needed,
especially with respect to variable selection, in order to provide better guidance on optimal data
analysis of such datasets. Conventionally, metabolomic time series data are constructed into a two-way
structure (Sample ×Metabolite) in PLS modelling where the time response information is overlooked.
To incorporate such information into the data structure, time can be considered as the third mode.
In this study, five different bi- and tri-linear PLS models were used to identify important variables
contributing to the difference between groups in intervention response metabolomics studies with
a time-series design. The variable selection performance of the five models were evaluated on both
simulated and real datasets to provide insight into the most appropriate modelling approach for
intervention response time series experiments.

2. Materials and Methods

2.1. PLS and NPLS

PLS is a latent variable based multivariate linear regression between predictor variables (X)
and dependent variables (Y), which aims at maximizing the covariance between the X and response
Y [14]. N-PLS is an extension of PLS to multiway data [15] where X is an array with more than
two dimensions (also referred to as ways or modes). Compared to PLS, N-PLS provides simpler
models with relatively few parameters and avoids the interference between information from different
modes [16]. Metabolomic data with a time-series design can be structured as a two-way table of
dimensions I × J, where I = S× T (S = number of subjects; T = number of time points), J = number of
metabolites. During the analysis, such data is divided into subsets according to time points for further
analysis separately or analysed as a whole. In either case, the time-series information is not used by the
model and correlation between samples collected at different time points from the same subject is lost.
To make use of this autocorrelation between samples, we transformed the metabolomics time-series
data into a three-way array with a size of S× J × T and analysed it using N-PLS. In the current paper,
both two-way PLS and N-PLS models are used to analyse metabolomic time-series data and they are
referred to as bi-PLS (bilinear-PLS) and tri-PLS (trilinear-PLS) models, respectively.

2.2. PLS-DA and Dummy Y

In standard PLSDA, class labels indicating the group membership of each sample are used as
dependant Y (dummy Y), e.g., y for the intervention group sample is 1 and for the control group sample
is 0 or −1. However, samples obtained from different time points can be very different within the same
class causing large variation within classes and consequently lead to poor predictions. Dividing the
data and building separate models for each time point can reduce this problem but in this case, there
are fewer observations for each comparison, and most importantly, the time response information is not
modelled. To include such variation into the dependent Y and provide more guidance on the separation
of samples, we created a new ‘time response’ dummy Y to reflect how the metabolites respond to the
intervention with time. Specifically, for the target metabolites (Figure 1a–f), their excretion experiences
an increase and a decrease within a certain time frame i.e., their intensities are higher or lower in
the middle of the time-series than that at the beginning or at the end of the time-series. Therefore,
we assign the samples acquired from the middle of the time-series capturing the high intensities of
the target metabolites to a ‘response class’ and samples acquired from the first and last time point to
a ‘no-response class’. Samples from these two classes are labelled with 10 and 1 respectively, which
would be subsequently used as dummy Y in further PLSDA modelling. In our experiments, the model
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performance improved with increasing magnitude of the ‘time response class’ until it reached around
10. Therefore, 10 was used as the label for ‘response class’ in this paper. The value of the time response
should be a user-defined value and it can be adjusted by testing with a range of values to find out the
optimal one achieving the best predictive performance (Q2 or area under the ROC curve) of the model.

2.3. Comparison of Variable Selection by Five PLS Models

In order to take advantage of the time-series data structure and to make use of both group and time
response information, we combined different PLS models (bi-PLS or tri-PLS) with different dummy Ys
(group or time response labels) as shown in Figure 2. Models 1–3 are bi-PLS models built on a two-way
matrix X of size ST × J. Model 4–5 are tri-PLS models built on a three-way array X of size S × J × T.
For models 1–4, group labels, time response labels or their products are used as a one-way dummy Y.
Model 5 uses a two-way dummy Y with group label as the first mode and time response label as the
second mode. We note that model 1 only addresses group differences, while model 2 only addresses
time response changes. Since we are interested in both group and time responses, we included these
two basic models against which to compare the more complex models 3–5. The five PLS models were
applied on the same datasets and their performances were compared.

No Method Data (X or X) Dummy Y (example for two subjects) a 

1 

Bi-PLS 

 

 

Mode 1: Sample (ST) 

Mode 2: Metabolite (J) 

 

Group 

2  

Time response 

3  

Group × Time response 

4 

Tri-PLS 

Mode 1: Subject (S) 

Mode 2: Metabolite (J) 

Mode 3: Time (T) 

Group 

5 Mode 1: Group  

Mode 3: Time response 

Figure 2. Structure of five PLS models for comparison. a The dummy Y in this figure is an example for
data obtained from eight samples collected from two subjects at four time points (0, 2, 4, 24 h after
intervention). Dummy Y in purple and grey colour corresponds to samples collected from Subject 1
(from intervention group) and Subject 2 (from the control group), respectively.

The focus of this paper is on the ability of the models to highlight variables important to the
time-treatment response. In PLS regression, variable selection is used to improve model performance
to provide better predictions [17]. It identifies variables with large influence on the model, which could
be used to interpret the model and to be investigated as potential biomarkers in further studies. In the
current paper, VIP scores were calculated to identify the relevant variables and a bootstrap procedure
was adopted to estimate VIP uncertainty.
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2.4. Datasets

2.4.1. Simulated Datasets

In order to assess the variable selection performance of the five PLS models, a data simulation
procedure is proposed to simulate the time-series metabolomic dataset. For a simulated dataset,
we generated J variables and for each variable j, the observations for a subject s in group g are generated
according to the following equation:

xsg = μg ◦ (bs + ws + εs)

where ◦ denotes the entry-wise product and μg = c + atαe−βt. μg is the vector containing the values
of the mean curve for the group g, of dimension 1× T and t is the time. c, a, α, β are generated from
uniform distributions, the intervals of which are adjusted to create different temporal profiles, as shown
in Figure 1a–h for both intervention and control groups (see Figure S1). The 1 × T vector bs controls
inter-individual variability, which follows a normal distribution with zero mean and covariance matrix
σ2

b1T, where 1 denotes a matrix with all entries equal to 1, with σ2
b being the inter-individual variance.

The intra-individual variability denoted by the 1xT vector ws is taken to be multivariate normally
distributed with zero mean and covariance Dw. Dw is a first-order autoregression covariance matrix
of dimension T × T with entries being Dw(i, j) = σ2

wρ
|i− j|, where σ2

w is the intra-individual variance
and ρ is the autocorrelation coefficient between two consecutive time points. The noise εs is normally
distributed with zero mean and covariance matrix σ2

ε1T, of dimension T × T.
Sixteen datasets with different numbers of subjects, numbers of variables, inter-individual

variability, intra-individual variability and number of time points were generated with the above
simulation method. In each of the sixteen datasets, eighty discriminating variables were simulated.
Table S1 provides an overview of the characteristics of all the datasets.

In the simulated dataset, the variables with the temporal profiles, (a)–(f) in Figure 1, were
considered as discriminating variables, which are the target of variable selection while avoiding
selection of variables with profiles (g)–(h) in Figure 1.

2.4.2. Onion Intervention Data

This data is taken from a randomized controlled trial with a crossover design, where participants
were assigned to either an onion consuming group or a control group. Untargeted UPLC-qTOF-MS was
applied to measure the metabolites in urine samples at four time points (0, 2, 4, 24 h after intervention)
for six subjects per group [18]. The resulting raw data consists of 48 samples.

2.4.3. Coffee Intervention Data

This data is generated from a randomized controlled trial with a crossover design, where urine
samples were collected at 0, 0.5, 1, and 2 h after intervention with coffee or control drink (water) from
11 subjects per group. A total of 88 samples were analysed with untargeted UPLC-qTOF-MS [18].

Both onion and coffee raw data were converted to NetCDF files using DataBridge (Waters,
Manchester, UK) and analysed with MZmine 2.19 for data peak detection, alignment and
quantification [19]. The preprocessed data were imported into MATLAB and feature reduction
was applied to remove unreliable variables due to compounds with extreme retention times, variables
not detected in more than 70% of the samples in each subgroup and variables with a coefficient of
variation (CV) in pooled quality control samples higher than 0.7 [20]. The resulting onion and coffee
data sets had dimensions (samples x variables) of 48 × 3209 and 88 × 2321, respectively.

For onion and coffee intervention data, true discriminating variables are not known a priori.
However, to enable evaluation of the variable selection performance on this real data, ‘truly’
discriminating variables were determined by two methods. First, visual inspection was applied
to identify variables exhibiting profiles similar to (a)–(f) in Figure 1. Second, a t-test was applied at each
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timepoint and the variable flagged if at least one time point was significant with a nominal p < 0.05.
Variables were considered discriminating if both methods indicated a difference, and were the object of
variable selection procedures.

2.5. Workflow

The assessment of the variable selection of the five PLS models was performed on the simulated
datasets as well as real datasets. The workflow is outlined in Figure 3 and explained in the
following sections.

 
Figure 3. Workflow for the evaluation of variable selection performance of five PLS models on simulated
datasets (top) and real datasets (bottom). For the simulated datasets, a single cross validation was
applied on one of them to determine the optimal number of latent variables, which was then applied to
all the similar simulated datasets for building the PLS models and variable selection. For real datasets,
the optimal number of latent variables was obtained based on a single cross validation on the whole
dataset and the PLS models were built on the whole dataset for variable selection.

2.5.1. Pre-Processing of Data

Centring and scaling are commonly applied prior to the regression modelling and have a critical
influence on the performance of the model. Centring is performed to shift the mean of the data to
zero and scaling is used to adjust the relative influence of variables with different variability. Centring
across the first mode (samples or subjects) is a widely accepted step for both two-way and three-way
data while scaling is more complicated. Scaling within one mode may disturb other modes [21,22].
In the current study, centring across the first mode was applied for both two-way and three-way
data. For the two-way data, the values for each variable (column) were scaled to unit variance. On
the three-way data, single-slab scaling within the metabolite mode was applied, as recommended
by Gurden et al. [23]. (A slab is a single layer of the three-way array, here corresponding to a single
variable). In single-slab scaling, each variable in the jth slab is scaled to unit root-mean-square of the
slab (RMSj):

RMSj =

√∑S
s=1
∑T

t=1 x2
sjt

ST

x∗sjt =
xsjt

RMSj
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where xsjt is the intensity of metabolite j in the sample acquired from subject s at time point t, x∗sjt is the
single-slab scaled data.

2.5.2. Model Optimization and Evaluation

For both simulated and real data, a single cross validation scheme was implemented, and the
optimal number of latent variables was decided as the smallest number at which the decrease in root
mean squared error in cross validation (RMSECV) between consecutive models was less than 2%. Due
to the similarity of the repeated simulations using the same parameters, for the same type of PLS model,
the number of latent variables was determined on one dataset and adopted for all the other repeats.

A two-stage procedure was used to evaluate the performance of different models on simulated
datasets. Each simulated dataset was divided into training and test sets. First, variable selection
performance was evaluated on the training set. Next, the model’s predictive ability was evaluated on
the test set.

(1). Evaluation of Variable Selection Performance with Training Sets

Balanced bootstrapping was performed to resample B bootstrap datasets [24,25]. Various values
of B were tested and B = 200 was chosen as the smallest value providing consistent results (data not
shown). PLS models with an optimal number of latent variables were built on each bootstrap subset and
the Variable Importance in Projection (VIP) was calculated for each variable [26,27]. For each variable,
the mean (VIP*) and standard deviation (σVIP) of the B VIP values were obtained. The variable was
selected if the lower-bound of the one standard deviation error bar was above 1 (i.e., VIP∗ − σVIP > 1).

To evaluate the variable selection performance of the five models, “Variable Selection ROC curves”
were created. Since the discriminating variables are known, the model selecting the higher number
of discriminating variables and lower number of non-discriminating variables is considered to have
better variable selection performance. After the selected variables were obtained for each model,
the number of variables considered as true positives, false positives, true negatives and false negatives
were calculated according to Table 1. The comparison between convention ROC curve and Variable
Selection ROC curve are shown in Figure S2.

Table 1. Variable selection confusion matrix.

True Condition
Total Variables Discriminating Variables Non-Discriminating Variables

Predicted
Condition

Selected variables True positive (TP) False positive (FP)
Unselected variables False negative (FN) True negative (TN)

The area under the variable selection ROC curve (AUVSC) was calculated to provide an evaluation
of the overall variable selection performance of each model. The following scores were calculated:

Recall = TP/(TP + FN)
Precision = TP/(TP + FP)
F1-score = (β2+1)× Precision × Recall/β2× (Precision + Recall)

Recall reflects the model’s capacity to select all the discriminating variables. Precision expresses
the ability of the model to avoid the selection of non-discriminating variables. The F1-score is an
overall assessment of the model’s performance on recall and precision, assessing the effectiveness of
the model to identify all the discriminating variables without selecting too many non-discriminating
variables. β is set to 1 to emphasize the importance of both recall and precision for a reasonable
selection of variables.
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(2). Evaluation of predictive ability with test sets

The models with the optimal number of latent variables determined on the training sets were
applied (using all variables) to the corresponding test sets. Predictive variance explained Q2, and area
under the conventional ROC curve (AUC, using all variables) were calculated to evaluate the predictive
ability of the model.

For real datasets, stage (1) evaluation of variable selection performance was performed on the
whole dataset. Stage (2) evaluation was not applied because the numbers of subjects are too small
in the real datasets to obtain an independent test set. Instead, a permutation test was performed to
evaluate the validity of the model.

2.6. Evaluation of the Influence of Characteristics of the Dataset on the Model Performance

Characteristics of metabolome vary, e.g., between different human studies, from humans to
animals, and from studies on diets or drugs thereby leading to different characteristics of the datasets
potentially influencing the performance of the statistical methods. To evaluate such influences and
to provide guidelines for the use of different models, all five PLS models were applied on all sixteen
simulated datasets as shown in Table S1. The results from different datasets were compared to assess
the influence of characteristics on the model performance. The datasets used to compare the evaluation
of different characteristics are shown in Table S2.

All the calculations were performed in MATLAB Version R2015b (8.6.0.267246) (The Mathworks,
Inc, Natick, MA, USA) using scripts modified from N-way toolbox [28] and multiway VIP package [27].
The code for building the five PLS models and performing variable selection is available at
https://github.com/qian-gao/PLSvar_sel. Simulated dataset 3 and anonymised onion intervention data
are provided as examples for testing.

3. Results

3.1. Assessment of Variable Selection Performance on Simulated Data

3.1.1. Overall Evaluation

The overall evaluation of the variable selection, prediction and classification performance of the
five PLS models was performed on Dataset 3 (10 subjects, 3000 variables, 4 time points) and the results
are shown in Table 2 and Figure 4. Dataset 3 was chosen for the overall evaluation because it has the
characteristics that are most similar to those of the real dataset. As expected, bi-PLS models resulted in
a higher number of latent variables than tri-PLS models indicating higher model complexity. Model 3
showed the best variable selection performance in that it provides the highest number of true positives
with a relatively small number of selected variables, consequently leading to the highest precision.
Model 1, 4 and 5 selected similar numbers of true positives while model 1 selected a higher number
of false positives showing low precision. Model 2 showed the best prediction with highest Q2 but,
as expected, provided a poor classification of the samples according to group. Unsurprisingly, only a
few true positive variables were selected together with a large number of false positives resulting in
the poorest precision. The number of latent variables did not have a strong influence on performance.
Restricting all models to two latent variables (see Table S3), showed that the performance was not
markedly different from that of those presented in Table 2.
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Table 2. Performance of five PLS models evaluated on simulated datasets with the optimal number of
latent variables.

Model Data (X or X) Dummy Y # LVa Predictive Ability
Variable Selection
Performance

Q2 AUC # Varselb # TPc

1
Mode 1: Sample
Mode 2: Metabolite

Group 3 0.57 (0.02) 0.93 (0.06) 249.3 (11.2) 53.6 (4)

2 Time response 5 1 (0) 0.58 (0.08) 591.1 (16) 12.8 (3.9)

3 Group × Time
response 5 0.83 (0.01) 0.75 (0) 194.5 (9.1) 77.3 (1.6)

4 Mode 1: Subject
Mode 2: Metabolite
Mode 3: Time

Group 1 0.6 (0.01) 1 (0) 165.9 (11.4) 53 (4.1)

5 Mode 1: Group
Mode 3: Time 1 0.6 (0.02) 0.75 (0) 166.7 (13.5) 53.9 (4.3)

a # LV, number of latent variables; b # Varsel, number of selected variables; c # TP, number of true positives. Values
reported are mean and standard deviation across 100 repeats.

Figure 4. Evaluation of the variable selection performance of five PLS models on 100 simulated datasets.
The variable selection performance consists of four criteria—area under the ROC curve (AUVSC), recall,
precision, F1- score, which were calculated based on the variable selection confusion matrix.

Although the variable selection performances of the five models vary, the majority of discriminating
variables were selected by at least two models, and variables selected by model 3 included approximate
all the variables selected by other models (Figure 5). Beyond that, model 3 selected about eight unique
true positives which were selected by none of the other models. The discriminating variables also had
higher ranks in model 3 than the other models indicating its efficiency in variable selection (Figure 6).
Model 4 and 5 resulted in low overall level of VIP scores and relatively larger variation, which caused
a higher number of false negatives.
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Discriminating Variables 

Model 1 

Model 2 

Model 3 

Model 4 

Model 5 

Figure 5. Comparison among discriminating variables selected by five PLS models in simulated
Dataset 3. The coloured and white strips represent true positives (selected discriminating variables)
and false negatives (unselected discriminating variables), respectively. The discriminating variables
were arranged in order so that the variables selected by all five models were on the left side and the
variables selected only by one model were on the right side.

Model 1 

Model 2 

Model 3 

Model 4 

Model 5 

Figure 6. Rank of VIP scores for the discriminating variables in five PLS models on simulated Dataset
3. Bootstrapped VIP scores for all the variables were ranked according to their mean VIP scores in
descending order. Bars show the mean +/- one standard deviation. Red and black represent the
variables which are discriminating or non-discriminating, respectively. The horizontal blue dash line
corresponds to VIP = 1.

3.1.2. Influence of Characteristics of the Dataset on the Performance of the Five PLS Models

The influence of number of subjects, number of variables, inter-individual variability,
intra-individual variability and number of time points was assessed with the simulated datasets
and the results are shown in Figure 7, Table 3, Table 4, Figure S3 and Figure S4.

As expected, variable selection performance (recall and precision) of all models was improved
with increasing number of subjects (Figure 7). Notably, model 3 was only slightly affected by the
number of subjects as it maintained its good recall and precision throughout all datasets, suggesting
good robustness to this parameter.
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Figure 7. Influence of number of subjects (6–12) on the variable selection performance of five PLS
models on simulated datasets. Recall and precision were calculated based on the variable selection
confusion matrix.

Table 3. Influence of the number of variables on variable selection performance of the five models on
simulated data.

Model.

Number of Variables (No. Discriminating Variables Kept at 80 in All Cases).

1000 3000 5000 7000

# Varsela # TPb # Varsel # TP # Varsel # TP # Varsel # TP

1 105 (5.2) 51.7 (3.1) 249.3 (11.2) 53.6 (4) 396.3 (12.2) 53.9 (4) 540.4 (20.3) 53.3 (4.4)
2 189.8 (6.9) 15.1 (3.9) 591.1 (16) 12.8 (3.9) 983.1 (19.8) 15.8 (3.7) 1379.1 (22.1) 13.7 (2.1)
3 95.7 (4.6) 74.3 (1.8) 194.5 (9.1) 77.3 (1.6) 304.7 (14.8) 77.1 (2.2) 409.3 (18.2) 77.5 (1.4)
4 86.2 (7.1) 58 (3.6) 165.9 (11.4) 53 (4.1) 243.8 (18.8) 50.2 (4.1) 325.8 (21.7) 49.6 (2.9)
5 89 (5.2) 58.4 (3.8) 166.7 (13.5) 53.9 (4.3) 247.4 (14.8) 51.7 (2.8) 325.2 (15.6) 51.3 (3.3)

a # Varsel, number of selected variables; b # TP, number of true positives. Values reported are mean and standard
deviation across 100 repeats.

Table 4. Influence of inter-individual variability on variable selection performance of five models on
simulated data.

Model

Inter-Individual Variability

0.1 0.3 0.5 0.7

# Varsela # TPb # Varsel # TP # Varsel # TP # Varsel # TP

1 153.5 (8.2) 75.1 (1.9) 249.3 (11.2) 53.6 (4) 301 (11.5) 39.2 (3.8) 323 (11.1) 34.2 (3.3)
2 681.5 (17.6) 2.7 (1.4) 591.1 (16) 12.8 (3.9) 513.5 (15.3) 19.4 (3) 493 (18.3) 19.2 (3.6)
3 143.5 (4.5) 79.9 (0.3) 194.5 (9.1) 77.3 (1.6) 216.5 (14.4) 72.2 (2.5) 243.1 (13.3) 68.3 (3.5)
4 173.9 (12.1) 78.7 (1.2) 165.9 (11.4) 53 (4.1) 155.2 (11.6) 35.9 (4.3) 165.9 (15.8) 27 (2.5)
5 177.5 (12.5) 79.2 (0.9) 166.7 (13.5) 53.9 (4.3) 158.8 (12.7) 35.4 (3.4) 170.1 (13.4) 28.1 (5)

a # Varsel, number of selected variables; b # TP: number of true positives. Values reported are mean and standard
deviation across 100 repeats.

Not surprisingly, the increased number of noisy variables in the data led to a higher number of
selected variables and most of the extra selected variables are false positives (Table 3). The number of
true positives in model 1–3 was not affected by the noisy variables while Model 4 and 5 selected fewer
true positives but also fewer false positives under the influence of noise.

Variable selection performances of the five models were strongly affected by inter-individual
variability in that all the models except model 2 selected fewer true positives with larger inter-individual
variability (Table 4). When the inter-individual variability increased, bi-PLS models tended to maintain
their recall by sacrificing the precision; tri-PLS models tended to maintain the precision by keeping a
stable number of selected variables. Overall, model 3 was less affected by inter-individual variability
than other models showing a good trade-off between recall and precision.

Intra-individual variability had little influence on the variable selection performance of five PLS
models (Figure S3). As expected, a higher number of time points led to better recall of all the five
models and model 1 benefited most from the extra temporal information (Figure S4).
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3.2. Assessment of Variable Selection Performance on Real Data

The five PLS models were applied on the onion intervention data to discover variables
discriminating the control and intervention groups and the results are shown in Figures 8 and 9. Similar
to the simulated dataset, Model 3 provided the best recall and precision resulting in around 28 more
true positives than the second best, model 1. Again, most of the discriminating variables had high
ranks in model 3. Model 4 and model 5 were not capable of selecting many true positives in this more
challenging real dataset, perhaps due to their tendency to maintain precision by keeping a low number
of selected variables when dealing with data having large inter-individual variability. The low overall
level of VIP scores and relatively large variation could also be the reason why so few variables were
selected in Model 5. Interestingly, when variables were selected according to loading weights (instead
of VIP), the performance of model 4 and 5 was improved, and was similar to the performance of model
1, but still not better than Model 3 (see Figure S6). A permutation test was performed which showed
that Model 3 was significant at p < 0.001 (Figure S9).

 
Figure 8. Evaluation of the variable selection performance of five PLS models on onion study data.
Recall, precision and F1-score were calculated based on the variable selection confusion matrix. # LV,
number of latent variables; # Varsel, number of selected variables; # TP, number of true positives.
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Model 1 

Model 2 

Model 3 

Model 4 

Model 5 

Figure 9. Rank of VIP scores for the discriminating variables in five PLS models on onion study
dataset. Bootstrapped VIP scores for all the variables were ranked according to their mean VIP scores in
descending order. Red and black represent the variables which are discriminating or non-discriminating,
respectively. The horizontal blue dash line corresponds to VIP = 1.

3.2.1. Coffee Intervention Study

In coffee intervention study, urine samples were collected at 0, 0.5, 1, and 2 h after intervention.
Due to the short sample collection period, the temporal profiles of metabolites were incomplete as
shown in Figure S7. In this case, the time response class was labelled as 1 for the samples collected at 0 h
and 10 for the samples collected at 0.5, 1, and 2 h after intervention. The performances of the five PLS
models on coffee intervention data were similar to that for simulated data and the results were shown
in Figures 10 and 11. Model 3 gave the highest number of true positives with a reasonable number
of selected variables. It also provided the most comprehensive list of selected variables; its selection
of true positives included almost all the true positives found in all the other models (see Figure S8).
The permutation test (Figure S9) indicated Model 3 was significant at p < 0.001 confirming that it
was not overfitted and therefore its good variable selection performance was valid. Tri-PLS models
were very conservative in that they selected fewer variables but gave very high precision. In fact,
the discriminating variables had better ranks in tri-PLS models than in Model 1, so that if we lower the
threshold for bootstrapped-VIP scores, model 4 and 5 would outperform model 1.
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Figure 10. Evaluation of the variable selection performance of five PLS models on coffee study data.
Recall, precision and F1-score were calculated based on the variable selection confusion matrix. # LV,
number of latent variables; # Varsel, number of selected variables; # TP, number of true positives.

Model 1 

Model 2 

Model 3 

Model 4 

Model 5 

Figure 11. Rank of VIP scores for the discriminating variables in five PLS models on coffee study
dataset. Bootstrapped VIP scores for all the variables were ranked according to their mean VIP scores in
descending order. Red and black represent the variables which are discriminating or non-discriminating,
respectively. The horizontal blue dash line corresponds to VIP = 1.

4. Discussion

In this paper, five PLS modelling approaches for metabolomic time series data were evaluated
with simulated and real data with the objective of identifying variables showing discriminatory
temporal patterns. The variable selection performance of the models was compared on simulated
datasets based on their capacity to select discriminating variables while avoiding non-discriminating
variables. The influence on model performance of five factors (number of subjects, number of variables,
inter-individual variability, intra-individual variability and number of time points) was assessed to
provide additional information on the application of suitable models for different scenarios of data.

Several issues have been considered regarding the development of these models. Bootstrapped-VIP
scores were calculated to evaluate the importance of variables in the current paper. This approach was
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shown in previous studies [4,29,30] to be sensitive and precise in selecting relevant variables. However,
we are aware that it might not always be the optimal approach for all models or datasets. For example,
in the analysis of the onion intervention study, the loading weight for the first component was a more
powerful selection tool for N-PLS models. This might be due to the fact that loading weight for the
first component directly reflects the covariance between X and Y. Additional components that are
found in the residuals after removal of previous components from X might be influenced by irrelevant
information in X [31]. Therefore, the inclusion of the information from extra components does not
necessarily result in better variable selection performance of the model. This may also explain why no
strong difference in variable selection performance was observed between the models with different
number of latent variables.

Another issue is the applicability of the proposed model to data with incomplete temporal profiles,
where metabolite levels may not return to pre-intervention levels. For example, the coffee intervention
study collected data at 0 h and 0.5, 1, and 2 h after intervention which means the whole excretion profile
of the metabolites might not be recorded since the sampling period was too short (Figure S7). Our
results from the coffee study indicate that incomplete temporal profiles can still provide information
for the identification of discriminating variables as long as the ‘response class’ and ‘non-response class’
(i.e., responding and nonresponding time points) are accurately assigned.

The resulting models were assessed on both simulated and real data and our results were
consistent in showing that 1) The bi-PLS model with combined time response and group information
as Y (model 3) had the best variable selection performance and the most comprehensive list of true
positives for all datasets tested. 2) The tri-PLS models tested both tend to maintain high precision
by sacrificing recall, however they show robust performance on data with a high number of noise
variables. 3) In datasets with high inter-individual variability, bi-PLS models tend to provide higher
recall while tri-PLS models tend to provide higher precision. As expected, the bi-PLS model with time
response as Y (model 2) performed most poorly under all conditions confirming that time response
alone is not enough to discriminate samples from different classes.

Discovery, identification and validation of biomarkers in metabolomic studies is difficult and
time-consuming. The goal is often to provide a list of discriminating variables with as many true
positives and as few false positives as possible. Based on this goal and our comparison between the
five models, Model 3 provided both good recall and precision and therefore represents a good choice
for suitable datasets with time response profiles in two treatment groups. When the time dependant
response is not recorded, model 1 and 4 may be adopted as the best general approach and they can be
selected in different situation depending on the purpose of the study. For instance, Model 1 would be a
good choice for exploring the data and collecting as many relevant variables as possible since it tends
to keep high recall at any costs. For studies aiming at finding biomarkers with potential to classify new
samples, model 4 has the potential to select the most suitable metabolites because of its good precision.

Time-series designs are widely used in life science research and the purpose is to observe the
response of a biological system to a certain challenge over a defined time period. Although this work
is demonstrated with LC-MS metabolomic data, it is applicable also to other types of multivariate
time-series data, such as RNA-seq experiments aiming to detect the gene expression differences
between experimental groups. Several methods have been proposed previously to deal with this type
of time-series data. Bar-Joseph et al. [32] describes gene expression over time as a continuous curve and
identifies genes showing significant temporal expression differences based on the difference between
the curves. To accurately fit the curve representing the temporal profile, this method usually requires
relatively long time series and homogeneous data which is not often available due to limitations of
the study design or high inter-individual variability. Compared to this method, in our study Model 3
successfully dealt with short time series data and maintained high recall and precision even in the
presence of high inter-individual variability. Regression-based methods have also been developed
where gene expression is described as a function of time and regression coefficients of each gene
from different experimental groups are compared using ANOVA [33]. Compared to this method,
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our Model 3 and 5 retain the multivariate structure and thus take correlations between variables into
account. ANOVA-simultaneous component analysis (ASCA) is another popular method that can be
applied to time-series data [34]. The data is separated into the variations that contributed by different
experimental design factors such as time, dose of intervention, and their interactions using ANOVA
equation. Simultaneous component analysis is then applied to different variations to approximate the
scores and loadings in each sub-model. ASCA is efficient in separating design factors and exploring
the data correspondingly. However, it is not able to select variables with specific response profiles
(e.g., (a)–(f)) as our models do but only indicate if there is an overall difference. Moreover, these five
models have low computational cost.

In summary, both simulated and real data demonstrate that bilinear PLS model with group × time
response as dummy Y is a powerful method for variable selection in time-series experiments.
It maintains good performance in the presence of noise and high inter-individual variability. In general,
bi-PLS models tend to provide higher recall while tri-PLS models tend to provide higher precision.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/5/92/s1.
Figure S1: Temporal profiles of metabolites in simulated data with a time-series design. Figure S2: Convention
ROC curve and Variable Selection ROC curve (VSROC) for a. model 1 and b. model 3 in simulated Dataset 3.
Figure S3: Influence of intra-individual variability (0.1–0.4) on the variable selection performance of five PLS models
on simulated datasets. Figure S4: Influence of number of time points (3–6) on the variable selection performance
of five PLS models on simulated datasets. Figure S5: Comparison among discriminating variables selected by five
PLS models in onion study data. Figure S6: Comparison between the variable selection performances based on
loading weight (green) and VIP (blue) of five PLS models on onion study data. Figure S7: Temporal profiles of
metabolites observed in our coffee data with a time-series design. Figure S8: Comparison among discriminating
variables selected by five PLS models in coffee study data. Figure S9: Area under the ROC curve (AUC) calculated
on permuted Y data for model 3 (histogram, 1000 permutations) and original data (red dot) generated on samples
obtained from onion (left) and coffee (right) studies. Table S1: Characteristics of sixteen simulated datasets.
Table S2: Datasets used to compare for the evaluation of different factors. Table S3: Performance of five PLS
models evaluated on simulated dataset with same number of latent variables. Table S4: Parameters used for
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Abstract: Many MALDI-MS imaging experiments make a case versus control studies of different
tissue regions in order to highlight significant compounds affected by the variables of study. This
is a challenge because the tissue samples to be compared come from different biological entities,
and therefore they exhibit high variability. Moreover, the statistical tests available cannot properly
compare ion concentrations in two regions of interest (ROIs) within or between images. The high
correlation between the ion concentrations due to the existence of different morphological regions
in the tissue means that the common statistical tests used in metabolomics experiments cannot be
applied. Another difficulty with the reliability of statistical tests is the elevated number of undetected
MS ions in a high percentage of pixels. In this study, we report a procedure for discovering the most
important ions in the comparison of a pair of ROIs within or between tissue sections. These ROIs
were identified by an unsupervised segmentation process, using the popular k-means algorithm.
Our ion filtering algorithm aims to find the up or down-regulated ions between two ROIs by using
a combination of three parameters: (a) the percentage of pixels in which a particular ion is not
detected, (b) the Mann–Whitney U ion concentration test, and (c) the ion concentration fold-change.
The undetected MS signals (null peaks) are discarded from the histogram before the calculation of
(b) and (c) parameters. With this methodology, we found the important ions between the different
segments of a mouse brain tissue sagittal section and determined some lipid compounds (mainly
triacylglycerols and phosphatidylcholines) in the liver of mice exposed to thirdhand smoke.

Keywords: mass spectrometry imaging; metabolomics imaging; biostatistics; ion selection algorithms

1. Introduction

Mass Spectrometry Imaging (MSI) is a label-free analytical technique that can locate chemical
compounds (metabolites, peptides, lipids, or proteins) directly in a biological sample and give their
concentration for every pixel. The most common analytical strategy is MALDI due to its soft ionization,
fast analysis, high throughput, versatility, and selectivity [1]. Other techniques, like desorption
electrospray ionization (DESI), are becoming more popular because of the simplicity of their sample
preparation [2]. MSI is currently used in the fields of drug discovery and toxicology [3,4]. In
most experiments, researchers use a targeted strategy, which consists of visualizing and (sometimes)
quantifying the concentration of a particular compound, or a reduced set of compounds throughout
the tissue. Many MSI software packages have been released [5]. However, none of them provides an
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automated workflow for untargeted MSI applications since the end-user has to approach each MSI
experiment data analysis in its unique manner.

Besides annotating and identifying the MS ions, one of the main challenges in untargeted MSI
analysis is to determine the statistically differentiating ions in different regions of interest (ROIs) of
the same tissue section or in different tissues of case versus control experiments. These key ions
could be associated with biomarker candidates of disease or treatment efficacy. Previous studies have
successfully used segmentation processes to find these key ions between clusters [6,7]. Most of these
studies identify the key ions associated with a certain region by analysing the ions that most influence
the segmenting process. In [8], the authors applied a Non-negative Matrix Factorization multivariate
analysis to select a reduced group of lipid MS signals associated with the metabolite profile of each
component. The t-test associated with segmentation with Spatial Shrunken Centroids can find the
enriched and absent MS peaks for a particular region in a segmented image [9,10]. A technique
based on deep unsupervised neural networks and parametric t-SNE was used to detect metabolic
hidden sub-regions [11]. The same algorithm, linked to a significance analysis of microarrays (SAM),
detected the protein subpopulations that can differentiate between t-SNE segments in a dataset of breast
cancer samples; interestingly, they used the selected ions for a kNN second segmentation step [12].
Gorzolka et al. [13] studied the space-time profiling of the barley germination process by carrying out
an unsupervised joint segmentation of a high number of images and found the ion-associated profile
for every segment. The Algorithm for MSI Analysis by Semi-supervised Segmentation (AMASS) was
used to segment leech embryo samples [14] and there is a complete analysis of the ions associated to
every region according to its weighting factors. In all these references, no statistical significance test
was conducted on the key ions found.

Another common strategy in MSI data analysis is to manually define the ROIs to be compared,
guided by an annotated histology image [15–18]. In general, the ions are selected by means of statistical
hypothesis testing and the fold change (FC) calculation of the ion concentrations between ROIs. These
parameters are usually represented as volcano plots. By way of example, Hong et al. [19] studied
the global changes of phospholipids in brain samples from a mouse model of Alzheimer disease by
performing ANOVA tests of ion concentrations in ROI. A common problem that MSI has in calculating
statistical significance is that the p-values are generally extremely low [16]. This is because there are a
large number of pixels within each ROI, which gives this parameter a low discrimination power.

Additionally, the statistical hypothesis testing (such as the t-test) fails when is applied to compare
the concentration of an ion between ROIs. The existence of morphological areas in the images is the
responsible of a high pixel autocorrelation. This violates the assumption of observation independence
necessary for statistical hypothesis testing. In order to find statistically significant ions between ROIs,
Conditional Autoregressive (CAR) models, which take into account the auto-correlated nature of ion
distribution concentration in MS image ROIs, are calculated to correct the p-values [20]. Nevertheless,
the difficulty of calculating the autocorrelation models and the complexity of the computational
approach hampers the inclusion of this strategy in a MSI workflow.

Another common situation in MS imaging is the elevated intensity differences of the ions’
concentration between pixels, due to the existence of several morphologic regions with different
metabolic profiles [21] and the ion shielding phenomena which takes place in MSI. It is also common
to find a high proportion of pixels where a certain ion is not detected, for a given signal to noise ratio.
This influences to a large extend the calculation of the p-values and the FC.

In this study, we describe the development of an ion filtering algorithm that is used in a
workflow for the untargeted analysis of metabolomic MALDI-MS images. The workflow consists of a
segmentation step, followed by the ion filtering procedure, independent of the segmentation process,
that detects the up/down regulated ions between image segments. Our algorithm calculates and
combines three parameters: (a) the Mann–Whitney U statistical test of the ion concentration between
segments [22]; (b) the FC in the ion concentration between segments; and (c) a new parameter that
accounts for the proportion of pixels with undetected ions between segments. In addition, the data
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from which parameters (a) and (b) are derived is obtained by previously filtering out the undetected
MS signals (null values). With this methodology, we can find the key ions between any segment pair in
MSI datasets, from single or multiple tissue sections. We successfully applied this workflow to the
analysis of mouse brain tissue sample and to study fatty liver disease in mice liver tissue samples.

2. Results

The rMSIKeyIon package, written in R, is able to find the key ions in a pair of ROIs within or
between images. The ions are selected according to the similarity parameters calculated in Appendix A
and ordered following the contrast parameter, described in Appendix B. In Figure 1, there is a description
of the data processing workflow, showing the main steps implemented in the rMSIKeyIon package.
The spectra preprocessing and image segmentation has to be performed before and independently to
the rMSIKeyIon execution. The resulting list of selected ions is related to the key metabolites exhibiting
biological difference between tissue regions and reducing the candidates to identify.

Figure 1. Workflow of the data processing, indicating the steps performed by the rMSIKeyIon package.

In the next section, we will describe the results of the package in the analysis of a sagittal brain
mouse sample, which has been segmented by k-means algorithm (Section 2.1). In particular, we will
illustrate the up or down regulated ions resulting of the comparison of two clusters and the up/down
regulated ions when comparing one cluster with the rest.

In the Section 2.2, we will apply the package in the identification of the fat areas in control liver
samples and liver samples exposed to thirdhand smoke (THS).

2.1. Results of the Brain Mouse Sample

Figure 2 shows the number of up and down-regulated ions associated with the comparison of
one particular cluster with each of the others (columns 1 to 6) in the segmented image of the brain
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slice tissue of C57BL/6 mouse using the k-means algorithm (n = 7 clusters). Cluster 7, identified as
non-tissue section areas, has not participated in the comparisons. In column “All” appear the ions that
are up-regulated (or down-regulated) in a cluster as a result of the comparison between this cluster
and the rest of clusters, called “absolutely up-regulated ions” (or “absolutely down-regulated ions”).
The m/z values resulting from comparisons can be available at the GitHub repository of the package
(https://github.com/LlucSF/rMSIKeyIon).

Figure 2. Number of up or down-regulated ions associated with the comparison of one particular
cluster with each of the others (columns 1 to 6) and the ions that are up-regulated (or down-regulated)
in a cluster as a result of the comparison between this cluster and the rest of clusters, called “absolutely
up-regulated ions” (or “absolutely down-regulated ions”). The image is composed by 6898 pixels and
the number of detected ions is 277. The percentile value used for the selection of the ions is 1% for the
null concentration parameter (Z) and 10% for the Mann–Whitney U (V) test and for the concentration
fold change (FC). The intensity threshold for the ions is 2.5 × 10−4 over the normalized spectra matrix.
The small lack of symmetry observed in the table is a consequence of the lack of symmetry in the
distributions considered. In (a), the up-down regulated ions are calculated following the classical
procedure, while in (b) the ions are calculated according the procedure described in section methods,
that considers that the null values are not taken into account.

For each cluster comparison, an associated figure gives information about the resulting up or
down-regulated ions, and the number of null and non-null parameters defined in the section Ion
analysis and filtering (see below). The ions on the list are ordered in terms of the value of the “contrast
parameter”, calculated with Equation (A4) in Appendix B.

Figure 2a shows the results obtained by the classical procedure, where null values do not have a
special treatment. Figure 2b corresponds to the case in which the null values are treated separately.
Although both cases make use of the same processing parameters, the results are very different.
Figure 2b shows a higher abundance of up-down regulated ions versus Figure 2a. In addition, the ions
find in Figure 2b are of higher relevance, as can be seen in Figure S1. Figure S1 shows the two ions
with the highest contrast value from the volcano plot when comparing clusters 2 and 6. Figure S1a
corresponds to the classic test, and Figure S1b corresponds to the separation of the null values.

A slightly asymmetry is displayed in the tables present in Figure 2. Each parameter has its
own set of discriminant values. They are obtained from the evaluation of each parameter on all the
pairs of clusters without repetition. The distribution generated by the set of all these values may
not be symmetric. By applying the same percentile on both tails of the distribution, non-symmetric
discriminant values may arise.
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2.1.1. Comparison of C2 & C6

By way of example, the comparison of clusters C2 and C6 showed 63 up-regulated ions in C2
versus C6 and 16 down-regulated ions in C2 versus C6.

As an example, Figure S2 shows the volcano plot of the ions resulting from the comparison of C2
and C6. The ions at the top right and top left are selected by the ion filtering algorithm (see the caption
to Figure S2 for more details).

Figure S3a shows the histogram of the concentration of the up-regulated ion with the highest
contrast parameter (m/z 198.076) in C6, and Figure S3b shows the histogram of the up-regulated ion
(m/z 848.636) in C2 also with the highest contrast parameter.

Figure 3a shows the segmented brain image (n = 7), and Figure 3b,c shows the concentration
intensity plot of the ions mentioned above. In these intensity maps, the contrast intensity between
both ions and clusters is clear, and the intensity of m/z 848.636 is much higher in C2 than in C6 and
vice-versa for m/z 198.076.

Figure 3. (a) Mouse brain segmentation using k-means (n = 7 clusters), (b) intensity map of ion m/z
848.636 (the up-regulated ion in C2 versus C6 with the highest contrasting parameter extracted from
the null concentration parameter) and (c) intensity map of ion m/z 198.076, the down-regulated ion
with the highest contrast parameter after comparing C2 and C6, extracted from the volcano plot. The
highlighted areas in (b,c) represent C2 (white contour) and C6 (red contour). (d) Mean spectrum (red),
spectra from C2 pixels (green), and spectra from C6 pixels (pink) near m/z 848.636 and m/z 198.076. The
spectra show the up-regulated and down-regulated behaviour of the ions. See also the optical image of
the same brain tissue section stained with a Hematoxilyn in Figure S4.

2.1.2. Absolutely Up and Down-Regulated Ions in Brain

According to the results in Figure 2b, there are 11 absolutely up-regulated ions in C2, and 34
absolutely down-regulated ions in C3. Figure 4 shows the concentration intensity plot of the two
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up-regulated ions (m/z 835.656 and m/z 806.633) in C2, and Figure 5 shows two down-regulated ions
(m/z 868.459 and m/z 853.471) in C3 with the highest contrast parameter. There is an evident similarity
between the images of the two up-regulated ions for one hand and two down-regulated ones for the
other one. A comparison of the images in Figure 4 with the distribution of C2 in the brain are clearly
similar. And the same is true of a comparison of the images in Figure 5 with the distribution of C3 in
the brain.

 

Figure 4. Concentration images of the two absolutely up-regulated ions in C2. (a) m/z 835.656;
(b) m/z 806.633.

 

Figure 5. Concentration images of two absolutely down-regulated ions in C3. (a) m/z 868.458;
(b) m/z 853.471.

2.2. Results of the Liver Samples

The methodology used in this article has been applied to the study of non-alcoholic fatty liver
disease in mice exposed to thirdhand tobacco smoke (TBS) [23]. We have taken a total of six images
from the liver samples (three from a control mouse and three from a THS-exposed mouse). The
images has been segmented using the k-means algorithm (n = 6 clusters). The results of rMSIKeyIon
algorithm showed that cluster 2 (C2) has an elevated number of ions in the lipid mass range that
are absolutely up-regulated, and we hypothesized that this cluster represents the lipid droplet areas
characteristic of the fatty livers (see Figure 6) and the full segmented image (see Figure S5). The THS
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exposed mouse has the largest area, while the control animals have the smallest, in accordance with
Martins-Green et al. [23]. In addition, the Figure S6 is an optical image of a selected area of a tissue
section of a control and a THS exposed mouse stained with an Oil Red O protocol. It can also be
observed the higher density of lipid droplets in the THS exposed sample.

Figure 6. Representation of cluster 2 of the six liver samples: (a) the three analytical replicates of a
control mouse and (b) the three replicates of a thirdhand smoke (THS)-exposed mouse.

Table S1 shows the compounds in C2 putatively identified after a manual curation process. As can
be observed, most of them are putatively identified as triglycerides or phosphatidylcholine. In Figure
S6, there is the intensity map of the triacylglycerol (50:30), which is highly similar to the geometry
of C2.

3. Discussion

Here, we developed a new methodology for the untargeted analysis of MS images that can be
used coupled with any segmentation process and an ion filtering algorithm based on the combination
of three parameters: (a) The ratio of ions with a null concentration between the regions, (b) the U
Mann–Whitney U Test, calculated by segregating the non-detected ions from the distribution, and
(c) the FC between the medians of the distribution (the non-detected ions were also segregated from
the distribution). This methodology has proved to be efficient at finding the up/down-expressed
ions in an intra-image analysis or in the comparative analysis of groups of images. The presented
workflow is different to previously released software tools due to two main reasons: (a) it is flexible
and independent to the segmentation process, so the ion selection process can be applied to any
clustering algorithm or manually drawn ROIs. (b) Our methodology provides a completely automated
ion filtering approach enabling the fast detection of a morphological region characteristic ions.

The results on the sagittal mouse brain sample show that an unsupervised clustering process
followed by the rMSIKeyIon algorithm is able to select the (possible) up/down-regulated ions between
any pair of clusters, in a holistic approach, and between one cluster and the rest. The concentration
maps of the selected ions, ordered by the contrast parameter, depicts faithfully the morphology of the
brain. These ions are probably biologically relevant and could be interesting to identify.
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Using the described methodology, we have been able to detect the regions containing the lipid
droplets in the liver samples from mouse exposed to THS. The putative identification of the key
up-regulated ions in the cluster 2, mainly triglycerides and phosphatidylcholines, confirm that THS
exposure conducts to the apparition of fatty liver disease in mice [23].

Untargeted metabolomics data analysis workflows are associated to standard analytical platforms
(LC-MS, GC-MS, and NMR) [24]. These analyses compare the concentrations of chemical compounds
in a CASE and a CONTROL group in order to discover features that they express differently and which
could be used as biomarkers or in biological pathway analysis. In general, the number of samples (n) of
each experimental group are similar, the distribution is normal (for large n values), and the principle of
independent measures is assumed. However, in spatial metabolomics, the number of samples in every
group (i.e., the number of pixels in an ROI) is not determined a priori, as in metabolomics studies.

Untargeted image analysis has two main applications:
(a) The comparison of two regions inside the same tissue section (intra-image analysis) to find the

relevant ions. This could be used to discover cancer biomarkers by comparing the ion profile of the
tumorous area with a non-tumorous area from the same sample. In general, the areas to be compared
are determined by a histopathologist annotating a consecutive tissue section. The size of the ROIs in
which we will compare the ions is determined manually.

(b) For several reasons, the analysis of morphologically equivalent regions in different tissues in a
case-control experiment is much more complicated. First of all, the tissue samples to be compared
between groups are equivalent but not similar because of the biological differences between the animals
and the intrinsic difficulty of achieving identical tissue sections. Consequently, it is not straightforward
to delimit the areas to be compared. The ROIs to be compared can be determined by histological
annotation (supervised process), or automatically by means of a segmentation process (unsupervised
process). In both cases, there are not established rules, and the following steps in the statistical analysis
of the ions between ROIs can be highly affected by this fact.

In both cases, it is very common to find skewed ion distributions and a high percentage of null
values, a high degree of autocorrelation between pixels, and a very high number of observations
(pixels). This leads to extremely low p-values when classical parametric or non-parametric statistical
tests are used [25], so these tests are not appropriate for this kind of analysis. For all the above reasons,
the untargeted analysis of images remains a challenge. However, the results shown by rMSIKeyIon R
package have been revealed to be very useful to find the most differential ions between ROIs. The
biological relevance of these ions has been validated in a fatty liver study with animal models.

4. Materials and Methods

4.1. Materials

Indium tin oxide (ITO)-coated glass slides were obtained from Bruker Daltonics (Bremen, Germany).
The gold target used for sputtering coating was obtained from Kurt J. Lesker Company (Hastings,
England) with a purity grade higher than 99.995%. HPLC grade xylene was supplied by Sigma–Aldrich
(Steinheim, Germany), and ethanol (96% purity) was supplied by Scharlau (Sentmenat, Spain).

4.2. Methods

4.2.1. Sample Preparation

Mice models were developed at the Department of Molecular, Cell, and Systems Biology at
the University of California Riverside [23]. Animal experimental protocols were approved by the
University of California, Riverside, Institutional Animal Care and Use Committee (IACUC). The animal
use protocol is A3400-01. The suitability of the workflow presented here to determine significant ions
between ROIs from the same tissue was tested in a brain sample from a 6-month-old C57BL/6 mouse
feed with a standard chow diet (percent calories: 58% carbohydrates, 28.5% protein, and 13.5% fat). To
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test the suitability of the method in different tissue sections in a case versus control experiment, we
used liver samples from mice exposed to THS—the residual particles and gases from tobacco smoke
that remain in dust and surfaces—from weaning (three weeks of age) to 24 weeks, without exposure to
secondhand smoke (SHS) at any time during the study, and compared them with liver samples of mice
that had not been exposed to THS (control group) [26]. Brain and liver samples were snap frozen at
−80 ◦C after collection and stored and shipped at this temperature until analysis.

For MSI acquisition, the tissues were sectioned at −20 ◦C in slices 10 μm thick using a Leica
CM-1950 cryostat (Leica Biosystems, Nussloch, Germany) located at the Centre for Omics Sciences
(COS) of the Rovira i Virgili University and mounted on ITO slides by directly placing the glass slide
onto the section at ambient temperature. To remove residual humidity, samples were dried in a
desiccator under vacuum for 15 min after tissue mounting.

4.2.2. Deposition of Au Nanolayers for LDI-MS Imaging

Gold nanolayers were deposited on the 10 μm tissue sections using an ATC Orion 8-HV sputtering
system (AJA International, N. Scituate, MA, USA) [27]. Briefly, an argon atmosphere with a pressure of
30 mTor was used to create the plasma in the gun. The working distance of the plate was set to 35 mm.
Sputtering conditions for MS were ambient temperature, and RF mode at 60 W for 50 s. The argon ion
current was adjusted to 20 mL min −1.

4.2.3. LDI-MS Acquisition

One image of a sagittal brain tissue section and six liver tissue sections (three slices from a control
animal and three sections from a THS-exposed animal) were acquired using a MALDI TOF/TOF
UltrafleXtreme instrument with SmartBeam II Nd:YAG/355 nm laser from Bruker Daltonics, also at
the COS facilities. Raster sizes of 80 and 20 μm were used for the brain and liver tissue sections,
respectively. The TOF spectrometer operated in reflectron positive mode with the digitizer set at a
sample rate of 1.25 GHz in a mass range between 70 and 1200 Da. The spectrometer was calibrated
prior to tissue image acquisitions using [Au]+ cluster MS peaks as internal mass references [27].

4.2.4. MSI Data Processing and Image Segmentation

The MSI data acquired with Bruker’s FlexImaging 3.0 software was exported to XMASS data
format using instrument manufacturer software packages (FlexImaging and Compass export). The raw
data was loaded using the in-house rMSI package [28]. This package provides a data storage format
based on segmented matrices and optimized for processing large MSI datasets in R language. Next,
we applied our complete MSI pre-processing workflow consisting of spectral smoothing, alignment,
mass recalibration, peak detection and peak binning [29] with the default parameters: Savitzky–Golay
kernel size of 7, peak detection threshold SNR of 5, and peak binning tolerance of 6 scans with 5%
filter. At this point, we obtained a peak matrix object of each MSI dataset: the brain tissue sagittal
section and the liver tissue sections. These peak matrix objects are highly reduced, robust, and accurate
representations of all the MSI data and can be used to perform complex statistical analyses on the huge
amount of data generated in the MSI experiment. ROIs were generated by means of a k-means process.
Finally, we applied the rMSIKeyIon workflow using the peak matrices as the input data.

4.2.5. Ion Analysis and Filtering

The procedure used for identifying statistically different ions compared the concentration
distributions of the ions in all possible pairs of ROIs in which the tissue (or tissues) had been segmented.

In general, the total number of pixels in each ROI is different and the probability density function
of the ion concentrations is not normal. We used the Mann–Whitney U test [22] because it can test the
null hypothesis (both sets of samples come from the same distribution) of two non-normal distributions
that have a different number of observations.
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In addition, in non-normal distributions of different sample sizes, there is usually a singular
element: In some ROIs, there is a considerable possibility that the distribution of some ions will have
small concentration values. Figure S8 represents the percentage of non-detected ions in the segmented
brain image, using the k-means algorithm with n = 7 clusters. It can be observed that for some clusters
(i.e., cluster 7) the percentage is very high.

For purposes of illustration, Figure S9 shows a simulated histograms of an ion in two different
clusters with samples taken from normal distributions, with different average values, to which
significant amounts of null values have been added. In total, there are 200 samples for both cases. Both
distributions appear to be very different and the Mann–Whitney U test yields a very high p-value
(0.38). The idea we have worked on here is to segregate the values obtained from non-detected ions
(null values) from the rest of the distribution so that they can be treated separately. Thus, we obtain a
very small p-value (of the order of 1 × 10−43). On the other hand, the percent of null values in each
ROI also provides valuable information. For these reasons, we decided to segregate the null values
from the ion matrix and use them to calculate a parameter (null concentration parameter), as will be
explained below.

The calculation of the null concentration parameter, as well as the non-null parameters
(Mann–Whitney U distribution and FC), are described in Appendix A.

Once the ions were selected using the two procedures described above, they were ordered in
terms of the contrast generated by every ion between one ROI and the set of other ROIs. The procedure
is described in Appendix B.

The ion filtering algorithm described in this section has been implemented in the R package named
rMSIKeyIons, accessible at (https://github.com/LlucSF/rMSIKeyIon). The software’s source code was
written in C++ and requires the GNU Scientific Library (GSL) (https://www.gnu.org/software/gsl).
Later, it was ported to R using the Rcpp R package. As input, the function requires an rMSIproc peak
matrix, a previously calculated segmentation and the percentiles for each parameter, and as output,
the function returns a list containing the ions for each comparison between all pair of clusters and the
data related with those ions.

4.2.6. Metabolite Identification

The obtained list of up regulated lipids for mice liver samples in cluster 2 was matched with the
HMDB 4.0 [30] database within a tolerance of 20 ppm and the possible ion adducts: H, Na, K, and
NH4. Results were filtered using the biological information of molecules provided by the HMDB, thus
metabolites with no biological origin or not likely to be found in liver were discarded.

5. Conclusions

In this study, we developed the ion filtering R package rMSIKeyIon. It is open source, publicly
available, and based on the combination of three parameters: the non-detected ion concentration ratio,
the Mann–Whitney U ion concentration test, and the FC in the ion concentration. The null values were
discarded before computing the last two parameters.

We demonstrated that our tool is very effective at discovering up or down-regulated ions
between clusters using an unsupervised k-means procedure. The ions selected are the candidates
that, subsequently, have to be identified. This package is a valuable tool for the untargeted analysis of
MALDI images and is an important advance in this area because, at present, there are no tools available.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/8/162/s1. The
brain dataset, the used clustering and a R script containing instructions about the installation and the testing of the
package accompanied with a document containing illustrative figures. Also the results of the method are included.
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Appendix A Calculation of the Similarity Parameters between ROIs

In order to determine the ions that are expressed differently in two given ROIs, we calculate
three parameters:

(a) The null concentration parameter (Z parameter)
The Zijk parameter is calculated according to Equation (A1):

Zijk =

Nzij
Nj

Nzik
Nk

∀i ∈ I;∀ j, k ∈ Sp, (A1)

where Zijk is the parameter that accounts for the null values (i.e., the non-detected values) of the i ion
when comparing the j and k ROIs; Nzij and Nzik are the number of pixels with null values of the i ion
in j and k ROIs, respectively; Nj and Nk are the total number of ROI pixels in j and k, respectively; I is
the set of ions and Sp is the set of ROIs.

The equation calculates the ratio between the null values of a particular ion in the two ROIs. A
value of Zijk > Zhigh (Zhigh being a positive value greater than 1) means that the i ion is more expressed
in k ROI than in j ROI, while Zijk < Zlow (Zlow being a positive value much lower than 1) means that the
i ion is less expressed in k ROI than in j ROI.

The importance of this parameter is assessed in Figure S7. For clusters 1 to 7, we plotted, the
percentage of pixels that have null concentration for every ion.

The Zhigh and Zlow values are calculated by following these steps:

(1) The Z values of all ions, for all cluster-pairs, are calculated according to Equation (A1).
(2) An ordered rank list of all the Z values is created.
(3) Zlow is determined considering that this value is a certain percentile PZ of the rank list of Z values.
(4) Zhigh is determined considering that this value is a certain percentile 100 − PZ of the rank list of

Z values.

(b) Non-null concentration parameters (V parameters)
Provided that the distribution of the ions concentration is non-normal, we considered

the U Mann–Whitney U test and the concentration FC between two ROIs, as a non-null
concentration parameters.

Generally speaking, if Nj and Nk are high, the random variable U can be regarded as normally
distributed [22]. The Uijk parameter is then normalized following Equation (A2):

Vijk =
Uijk −mu

σu
, (A2)

where mu and σu are the average and standard deviation of zero Uijk and Vijk is a random variable with
a normalized Gaussian distribution. If V has values close to 1 the similarity between the distributions
is high, while values close to zero indicate disparate distributions. The value obtained for V indicates
the similarity between the distributions of two ROIs for an ion.
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Another parameter often used to compare sets of magnitudes is the FC, defined as the ion median
concentration quotient between two ROIs Equation (A3):

FCijk =
Mij

Mik
, (A3)

where Mij is the distribution median of the i ion in j ROI and Mik is the same for k ROI. For every i ion,
the FCijk parameter is calculated between the j and k ROIs. For a pair of ROIs, a Volcano plot [31] can
be drawn from the V and FC parameters.

In this representation, the position occupied by the ions is important: the ions located in the top
corners generate very different distributions in the two ROIs. The ions at the top left are under-expressed
(Vijk < Vhigh ∧ Fcijk < Fclow) and the ions at the top right are over-expressed (Vijk< Vhigh ∧ Fcijk >Fchigh).

The values Vhigh, Fchigh and Fclow are calculated following the same steps as for Zhigh and Zlow,
but with a difference in the percentile value. The ions located in the areas of interest must satisfy the
probability of being within a range associated with two random variables; that is to say:

P
(
Vijk ≤ Vhigh, Fcijk ≤ Fclow

)
for under-expressed ions and P

(
Vijk ≤ Vhigh, Fcijk ≥ Fchigh

)
for

over-expressed ions. Assuming that these are independent random variables, we obtain
P
(
Vijk ≤ Vhigh

)
= P
(
Fcijk ≤ Fclow

)
= P
(
Fcijk ≥ Fchigh

)
=
√

Pz/100. That is, the percentile that has
to be used to determine the cutoff values in the volcano plot should be PV = 10· √PZ

Appendix B Determination of the Discriminating Figure Values and Generation of the
Discriminant Ions Lists

The contrast parameter Cij∨Sp of the i ion between the j ROI and all the ROIs (set Sp is calculated
according to Equation (A4)):

Cij∨Sp =

1
Nj

∑Nj

p=1 mj
ip

1
N
∑NSp

k=0

∑Nk
p=1 mk

ip

, (A4)

where N is the total number of pixels in Sp, Nj and Nk are the number of pixels in the j and k ROIs

respectively. NSp is the total number of ROIs in set Sp, mj
ip and mk

ip are the magnitude of the i ion in
pixel p of the j and k ROI, respectively. The list is ordered according to the Cij∨Sp , assuming that high
values mean high contrast and vice-versa.
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