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Preface

The elimination of hunger and malnutrition from society is a key challenge of all

agricultural stakeholders around the world. Feeding the global population has never

been so challenging, especially in the context of diminishing land and water

resources, an ever-increasing global population, and climate change. The only

solution may be to develop climate-smart plant varieties that are produced with

appropriate agricultural management practices. Today, agriculture is facing an

acute shortage of advanced germplasms to replace inferior varieties in farmers’
fields. A “game-changer” strategy for the development of improved germplasms

and cultivation practices needs to be implemented quickly and precisely to tackle

both current and future adverse environmental conditions.

Fast-evolving technologies can serve as a potential growth engine in agriculture

because many of these technologies have revolutionized other industries in the

recent past. The tremendous advancements in biotechnology methods, cost-effec-

tive sequencing technology, refinement of genomic tools, standardization of mod-

ern genomics-assisted breeding methods, and digitalization of the entire breeding

process and value chain hold great promise for taking global agriculture to the next

level through the development of improved climate-smart seeds. These technolo-

gies can dramatically increase our capacity for understanding the molecular basis of

traits and utilizing the available resources for accelerated development of stable,

high-yield, nutritious, efficient, and climate-smart crop varieties. These improved

crop varieties and agricultural practices will help us to address global food security

issues in an equitable and sustainable manner.

For these reasons, this book aims to explore and discuss future plans in the

key areas of plant genetics and molecular biology. It contains 12 chapters written

by 42 authors from Australia, Austria, India, Turkey, the United Kingdom,

and the United States (see List of Contributors). The editors are grateful to all of

the authors for contributing high-quality chapters with information from their areas

of expertise. The editors also would like to thank the reviewers (see List of

Reviewers) for their help in providing constructive suggestions and corrections,

which helped the authors to improve the quality of the chapters. The editors are also
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grateful to Dr. David Bergvinson (Director General, ICRISAT) and Dr. Peter

Carberry (Deputy Director General–Research, ICRISAT) for their encouragement

and support. The editors thank the series editors (T. Scheper, S. Belkin, T. Bley, J.

Bohlmann, M.B. Gu, W.-S. Hu, B. Mattiasson, J. Nielsen, H. Seitz, R. Ulber, A.-P.

Zeng, J.-J. Zhong and W. Zhou) of the Springer publication Advances in Biochem-
ical Engineering/Biotechnology (http://www.springer.com/series/10) for giving us

this opportunity to compile such a wealth of information on plant genetics and

molecular biology for the research and academic community. The assistance

received from Springer—in particular, Judith Hinterberg, Elizabeth Hawkins,

Arun Manoj, and Alamelu Damodharan—has been a great help in completing

this book. The cooperation and encouragement of the publisher are gratefully

acknowledged.

We also appreciate the cooperation and moral support from our family members,

especially when the precious time we should have spent with them was taken up by

editorial work. R.K.V. acknowledges the help and support of his wife Monika, son

Prakhar, and daughter Preksha, who allowed their time to be taken away to fulfill R.

K.V.’s editorial responsibilities in addition to research and other administrative

duties at ICRISAT. Similarly, M.K.P. is grateful to his wife Seema for her help and

moral support during the evenings and weekends of editorial responsibilities in

addition to research duties at ICRISAT, with special thanks to his brave daughter,

the late Tanisha, who was alive for only a short period of time (3 months) after birth.

A.C. thanks her husband Sudhakar and daughter Shruti for their cooperation and

understanding during the fulfillment of her editorial commitments.

We hope that our efforts in compiling the information herein on the different

aspects of plant genetics and molecular biology will help researchers to develop a

better understanding of the subject and frame future research strategies. In addition,

we hope that this book will also benefit students, academicians, and policymakers in

updating their knowledge on recent advances in plant genetics and molecular

biology research.

Hyderabad, India Rajeev K. Varshney

Manish K. Pandey

Annapurna Chitikineni

vi Preface

http://www.springer.com/series/10


Contents

Plant Genetics and Molecular Biology: An Introduction . . . . . . . . . . . . 1

Rajeev K. Varshney, Manish K. Pandey, and Annapurna Chitikineni

Advances in Sequencing and Resequencing in Crop Plants . . . . . . . . . . 11

Pradeep R. Marri, Liang Ye, Yi Jia, Ke Jiang, and Steven D. Rounsley

Revolution in Genotyping Platforms for Crop Improvement . . . . . . . . . 37

Armin Scheben, Jacqueline Batley, and David Edwards

Trait Mapping Approaches Through Linkage Mapping in Plants . . . . . 53

Pawan L. Kulwal

Trait Mapping Approaches Through Association Analysis in Plants . . . 83

M. Saba Rahim, Himanshu Sharma, Afsana Parveen, and Joy K. Roy

Genetic Mapping Populations for Conducting High-Resolution Trait

Mapping in Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

James Cockram and Ian Mackay

TILLING: The Next Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Bradley J. Till, Sneha Datta, and Joanna Jankowicz-Cieslak

Advances in Transcriptomics of Plants . . . . . . . . . . . . . . . . . . . . . . . . . 161

Naghmeh Nejat, Abirami Ramalingam, and Nitin Mantri

Metabolomics in Plant Stress Physiology . . . . . . . . . . . . . . . . . . . . . . . . 187

Arindam Ghatak, Palak Chaturvedi, and Wolfram Weckwerth

Epigenetics and Epigenomics of Plants . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Chandra Bhan Yadav, Garima Pandey, Mehanathan Muthamilarasan,

and Manoj Prasad

Nanotechnology in Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Ismail Ocsoy, Didar Tasdemir, Sumeyye Mazicioglu, and Weihong Tan

vii



Current Status and Future Prospects of Next-Generation Data

Management and Analytical Decision Support Tools for Enhancing

Genetic Gains in Crops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Abhishek Rathore, Vikas K. Singh, Sarita K. Pandey, Chukka Srinivasa Rao,

Vivek Thakur, Manish K. Pandey, V. Anil Kumar, and Roma Rani Das

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

viii Contents



List of Contributors

V. AnilKumar International Crops Research Institute for the Semi-Arid Tropics

(ICRISAT), Hyderabad, India

Jacqueline Bately University of Western Australia, Crawley, WA, Australia

Palak Chaturvedi University of Vienna, Vienna, Austria

Annapurna Chitikineni International Crops Research Institute for the Semi-Arid

Tropics (ICRISAT), Hyderabad, India

James Cockram National Institute of Agricultural Botany (NIAB), Cambridge,

UK

Roma Rani Das International Crops Research Institute for the Semi-Arid Tropics

(ICRISAT), Hyderabad, India

Sneha Datta International Atomic Energy Agency (IAEA), Vienna, Austria

David Edwards University of Western Australia, Crawley, WA, Australia

Arindam Ghatak University of Vienna, Vienna, Austria

Joanna Jankowicz-Cieslak International Atomic Energy Agency (IAEA),

Vienna, Austria

Yi Jia Dow Agrosciences, Indianapolis, IN, USA

Ke Jiang Dow Agrosciences, Indianapolis, IN, USA

Pawan L. Kulwal Mahatma Phule Agricultural University, Rahuri, India

Ian Mackay National Institute of Agricultural Botany (NIAB), Cambridge, UK

Pradeep R. Marri Dow Agrosciences, Indianapolis, IN, USA

Sumeyye Mazicioglu Erciyes University, Kayseri, Turkey

Mehanathan Muthamilarasan National Institute of Plant Genome Research

(NIPGR), New Delhi, India

ix



Naghmeh Nejat RMIT University, Melbourne, VIC, Australia

Ismail Ocsoy Erciyes University, Kayseri, Turkey

Garima Pandey National Institute of Plant Genome Research (NIPGR),

New Delhi, India

Manish K. Pandey International Crops Research Institute for the Semi-Arid

Tropics (ICRISAT), Hyderabad, India

Sarita K. Pandey International Crops Research Institute for the Semi-Arid

Tropics (ICRISAT), Hyderabad, India

Afsana Parveen National Agri-Food Biotechnology Institute (NABI), Mohali,

India

Manoj Prasad National Institute of Plant Genome Research (NIPGR), New Delhi,

India

M. Saba Rahim National Agri-Food Biotechnology Institute (NABI), Mohali,

India

Chukka Srinivasa Rao International Crops Research Institute for the Semi-Arid

Tropics (ICRISAT), Hyderabad, India

Abhishek Rathore International Crops Research Institute for the Semi-Arid

Tropics (ICRISAT), Hyderabad, India

Steve D. Rounsley Genus plc, De Forest, WI, USA

Joy K. Roy National Agri-Food Biotechnology Institute (NABI), Mohali, India

Armin Scheben University of Western Australia, Crawley, WA, Australia

Himanshu Sharma National Agri-Food Biotechnology Institute (NABI), Mohali,

India

Vikas K. Singh International Crops Research Institute for the Semi-Arid Tropics

(ICRISAT), Hyderabad, India

Weihong Tan University of Florida, Gainesville, FL, USA

Didar Tasdemir Erciyes University, Kayseri, Turkey

Vivek Thakur International Crops Research Institute for the Semi-Arid Tropics

(ICRISAT), Hyderabad, India

Bradley J. Till International Atomic Energy Agency, Vienna, Austria

Rajeev K. Varshney International Crops Research Institute for the Semi-Arid

Tropics (ICRISAT), Hyderabad, India

Wolfram Weckwerth University of Vienna, Vienna, Austria

x List of Contributors



Chandra Bhan Yadav National Institute of Plant Genome Research (NIPGR),

New Delhi, India

Liang Ye Dow Agrosciences, Indianapolis, IN, USA

List of Contributors xi



List of Reviewers

Harsha Gowda Institute of Bioinformatics (IoB), Bangalore, India

Himabindu Kudapa International Crops research Institute for the Semi-Arid

Tropics (ICRISAT), Hyderabad, India

Chikelu Mba Food and Agriculture Organization (FAO), Rome, Italy

Reyazul Rouf Mir Sher-e-Kashmir University of Agricultural Sciences &

Technology of Kashmir (SKUAST-K), Sopore, India

Manish K. Pandey International Crops research Institute for the Semi-Arid

Tropics (ICRISAT), Hyderabad, India

Lekha Pazhamala International Crops research Institute for the Semi-Arid

Tropics (ICRISAT), Hyderabad, India

Samir Sawant CSIR-National Botanical Research Institute (NBRI), Lucknow,

India

Vikas Singh International Rice Research Institute (IRRI) -South Asia Hub,

Hyderabad, India

Mahendar Thudi International Crops research Institute for the Semi-Arid Tropics

(ICRISAT), Hyderabad, India

xiii



Adv Biochem Eng Biotechnol (2018) 164: 1–10
DOI: 10.1007/10_2017_45
© Springer International Publishing AG 2018
Published online: 16 February 2018

Plant Genetics and Molecular Biology: An
Introduction

Rajeev K. Varshney, Manish K. Pandey, and Annapurna Chitikineni

Abstract The rapidly evolving technologies can serve as a potential growth engine
in agriculture as many of these technologies have revolutionized several industries in
the recent past. The tremendous advancements in biotechnology methods, cost-
effective sequencing technology, refinement of genomic tools, and standardization
of modern genomics-assisted breeding methods hold great promise in taking the
global agriculture to the next level through development of improved climate-smart
seeds. These technologies can dramatically increase our capacity to understand the
molecular basis of traits and utilize the available resources for accelerated develop-
ment of stable high-yielding, nutritious, input-use efficient, and climate-smart crop
varieties. This book aimed to document the monumental advances witnessed during
the last decade in multiple fields of plant biotechnology such as genetics, structural
and functional genomics, trait and gene discovery, transcriptomics, proteomics,
metabolomics, epigenomics, nanotechnology, and analytical tools. This book will
serve to update the scientific community, academicians, and other stakeholders in
global agriculture on the rapid progress in various areas of agricultural biotechnol-
ogy. This chapter provides a summary of the book, “Plant Genetics and Molecular
Biology.”
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1 Introduction

Making society hunger-free and malnutrition-free is the main goal for the stake-
holders in world agriculture. Feeding the global population has never been so
challenging, especially in the context of diminishing land and water resources
together with an ever-increasing global population and climate changes. One of
the possible solutions is to develop climate-smart varieties of plants complimented
with appropriate agricultural management practices. Today world agriculture is
facing an acute shortage in developing improved germplasm to replace the old
varieties existing in farmers’ fields. The global agriculture needs a “game-changer”
strategy to be implemented with high priority in order to develop improved
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germplasm and cultivation practices rapidly and with high precision to tackle the
current and future adverse environmental conditions. Improved crop varieties
together with improved agricultural practices will be able to address the global
food security issue in an equitable and sustainable manner.

A recent survey on hunger and malnutrition has identified 52 of 119 countries as
having a serious, alarming, or extremely alarming situation. Even today, 13% of the
global population is undernourished and 27.8% of children under 5 years of age are
stunted (http://www.globalhungerindex.org/pdf/en/2017.pdf). Despite the availabil-
ity of sufficient food production, these problems still exist as a large number of
people do not have access to nutritious food. The quality and nutrition of food
products define the physical and mental health of the global population, not the
quantity. In this context, agricultural research on developing nutrition-rich crops
should be given equal importance to the major objective of increasing productivity.
The genetic gains achieved over the decades in several crop species have been able
to feed starving populations and have saved the lives of millions of people. Food and
nutritional security in the coming years can only be made possible by achieving
rapid and higher genetic gains in food crops with enhanced quality, nutrition, and
adaptation to adverse climatic conditions. This goal can be achieved by integrating
available biotechnological interventions with ongoing efforts. Not only agriculture
but also biotechnology has been a great support in boosting several sectors such as
the pharmaceutical, medical, and food processing sectors. In fact, the biotechnology
interventions have already produced game-changing contributions in agriculture and
the future contributions from biotechnology for society depend on strong policy,
commitment, and the investment made in biotechnology research in coming years.

The rapid advances in biotechnological processes, approaches, and technologies
have revolutionized agricultural research by developing a better understanding of
plant genomes, gene discovery, genomic variations, and manipulation of desired
traits in plant species. Additionally, these approaches also help researchers in
developing a better understanding beyond genomes such as plant-pathogen and
plant-environment interactions. The advanced technology support has helped to
track the entire journey from genomes to phenotype using different “omics”
approaches such as genomics (DNA/genome/genes), epigenomics (epigenetic
modifications on the genetic material), transcriptomics (transcripts/RNA),
proteiomics (proteins), metabolomics (metabolites), interactomics (protein interac-
tions), and phenomics (phenotype) (Fig. 1). The other important intervention is
nanobiotechnoloy (a combination of nanotechnology and biology), which provides
very sophisticated technical approach/devices for tracking, understanding, and solv-
ing biological problems. This book aimed to document current updates and advances
in these frontier areas of biotechnology research. This chapter provides an overview
of the different chapters included in the book.

Plant Genetics and Molecular Biology: An Introduction 3
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2 High-Throughput Genotyping Platforms

The tremendous advances in sequencing technologies have made it possible to
sequence complete genomes of plant species for better understanding of the genome
architecture evolution including whole genome duplications, dynamics of transpos-
able elements, and several other components of the genome that define and control
genome function leading to a particular phenotype [1]. Chapter 2 on “Advances in
Sequencing and Resequencing in Crop Plants,” authored by SD Rounsley and other
colleagues from Dow Agrosciences, USA and Genus plc, UK, provides updates on
advancements in different sequencing technologies over the last two decades and
their impact on plant genomics research. Cost-effective sequencing technologies
have facilitated sequencing of a large number of plant genomes, which have
impacted greatly on developing better understanding of plant genomes and their
evolution [1, 2]. These advances have further helped in faster gene discovery,
characterization, and deployment in plant improvement [3]. In addition to this, this
chapter discusses the current challenges and future opportunities in further
exploiting genomics information for plant improvement.

The reference genome of any plant species provides the foundation for genomics
research, but mere sequencing of only one genome is not enough for harnessing the
wealth of genetic diversity available within and across plant species. Therefore,
sooner or later genome sequences will eventually be available for all the germplasm
and exist in different genebanks for capturing the sequence variations followed by
their manipulations using appropriate genetic improvement approaches such as

Fig. 1 Plant genetics and molecular biology for trait dissection and crop improvement

4 R. K. Varshney et al.



molecular breeding, genetic engineering (transgenics), genome editing, and any
other such technology developed in future. Sequence variations in different genomes
of the same species have been exploited as genetic markers for conducting different
genetics and breeding studies.

Chapter 3 on “Revolution in Genotyping Platforms for Crop Improvement,”
authored by David Edwards and his colleagues from the University of Western
Australia (UWA), Australia, describes how different types of genetic variations can
be used in genetics research and breeding applications through different genotyping
platforms. Similar to sequencing, genotyping platforms have also gone through a
rapid evolution and played an important role in advancing crop genetics and
breeding. These genotyping platforms have been deployed in a range of genetic
and breeding applications in most of the plant species. This chapter not only provides
details on the evolution of different genotyping platforms over the decades, but also
compares different genotyping platforms and predicts the future of genotyping in
plants. This chapter clearly advocates the sequencing of entire genetic and breeding
populations in future crop improvement programs for more precise and efficient
plant selection in field.

3 Trait Dissection and Gene Discovery

The availability of genetic diversity is crucial for further improving the existing
cultivars, which can sustain higher productivity under ever-challenging environ-
ments by acting as a buffer for adaptation and fighting climate change [4]. The
development of improved cultivars using the diverse germplasm has helped farmers
to replace these cultivars with older released or local varieties. The faster replace-
ment of improved cultivars in the farmer’s field will help in achieving higher
productivity under changing environments. Genomics-assisted breeding (GAB)
holds great promise for accelerated development of improved cultivars; however,
information on genes and diagnostic markers is required for deployment in any plant
species. There are three major approaches of trait mapping, namely linkage mapping,
linkage disequilibrium mapping/genome-wide association study (GWAS), and joint-
linkage association mapping (JLAM).

Linkage mapping uses bi-parental genetic populations for traits with high vari-
ability between the parental genotypes. Chapter 4 on “Trait Mapping Approaches
through Linkage Mapping in Plants,” authored by Pawan Kulwal from Mahatma
Phule Agricultural University (MPAU), India, discusses different types of
bi-parental populations and software for genetic mapping and quantitative trait
locus (QTL) analysis in several plant species. Detailed information on key factors
affecting the precision and accuracy of QTL discovery is presented. This mapping
approach has been the most successful as diagnostic markers could be developed and
deployed in breeding in several crop plants and many of these improved cultivars are
grown in farmers’ fields.

Plant Genetics and Molecular Biology: An Introduction 5



In contrast to linkage mapping, the second trait mapping approach, genome-wide
association study/linkage disequilibrium mapping, uses the diverse set of germplasm
(natural population) and, therefore, no time is spent on development of genetic
populations. The other advantage is that the association mapping panel can be
used for mapping for several traits, while linkage mapping is possible for a couple
of traits in a single bi-parental population. Furthermore, in many of the plant species,
the development of bi-parental populations is not feasible or possible.

Chapter 5 on “Trait Mapping Approaches through Association Analysis in
Plants,” authored by Joy Roy and his colleagues from the National Agri-Food
Biotechnology Institute (NABI), India, provides greater insights different technical
and applied aspects of GWAS analysis, advantages, and disadvantages of different
software, and key factors affecting the precision and accuracy of results. This
mapping approach has been deployed in many plant species.

The above two trait-mapping approaches have certain limitations and, therefore,
the joint linkage association mapping approach came into existence; this approach
can harness the advantages of both trait-mapping approaches. In this context, the
shift now has moved from bi-parental to multi-parental populations, which allow
high recombination leading to greater resolution for trait dissection. James Cockram
and Ian Mackay from the National Institute of Agricultural Botany (NIAB), UK, in
chapter 6 on “Genetic Mapping Populations for Conducting High Resolution Trait
Mapping in Plants” summarize in-depth information on development and deploy-
ment of multi-parent populations such as multi-parent advanced generation inter-
cross (MAGIC) and nested association mapping (NAM). This chapter also provides
examples that showed better results in trait mapping in larger population size than in
smaller ones.

All three above trait-mapping methods for trait mapping are forward genetics
approaches, while Targeting Induced Local Lesions IN Genomes (TILLING) is a
reverse genetics approach [5]. The TILLING approach involves creation of genetic
variation through mutagenesis and then identification of genomic variation causing a
change in phenotype. Chapter 7 on “TILLING: The Next Generation,” authored by
Bradley Till and his colleagues from International Atomic Energy Agency (IAEA),
Austria, describes the entire process of developing and deploying TILLING popu-
lation for trait dissection and gene discovery. The chapter also discusses how
integration of NGS technologies with TILLING have greatly accelerated the process
of gene discovery. These populations also serve as a very good source for breeding
and functional genomics studies.

4 Beyond Genomics

Genome sequencing greatly helped in understanding of genome organization and
gene(s) structure that determines the basic features of each species. Nevertheless,
just having genes in its genome does not provide certainty about the expected
phenotype, which depends hugely upon other aspects of gene regulation. The

6 R. K. Varshney et al.



journey of a gene to a particular phenotype is very complicated, depending on as and
when the DNA passes through different levels of regulation following the central
dogma. It is, therefore, very essential to see beyond genomics for better clarity on
gene function, networks, and interactions. In this context, the other “omics”
approaches such as transcriptomics, proteomics, metabolomics, and interactomics
play important roles in gene function and phenotype development. The phenotype is
also affected by non-genomic elements, which bring epigenetic modifications to the
genetic material, called as epigenomics. The epigenomic compounds modify the
function of DNA without changing the sequence, thereby deviating from following
the instruction of the genome. The interesting part is that these epigenetic features
are being passed down over generations.

Transcriptomics plays an important role in gene discovery and functional char-
acterization of the gene and its network. Chapter 8, authored by Nitin Mantri and his
colleagues from RMIT University, Australia, on “Advances in Transcriptomics of
Plants” discusses in detail discovery of transcriptional regulatory elements and
deciphering mechanisms underlying transcriptional regulation. This chapter also
covers related important aspects of gene regulation such as RNA splicing,
microRNAs, small interfering RNAs (siRNAs), and long non-coding RNAs in
plant development and response to biotic and abiotic stresses.

Metabolomics is very complex to understand due to development and interaction
of the large number of metabolites produced during attaining metabolic homeostasis
and biological balance in response to multiple cellular and extra-cellular factors.
Wolfram Weckwerth and his colleagues from the University of Vienna, Austria, in
chapter 9 on “Metabolomics in Plant Stress Physiology,” describe the importance of
the study of metabolomics for functional genomics and system biology research
leading to functional annotation of genes and better understanding of cellular
responses for different biotic and abiotic stresses in plants. This chapter also pro-
vides details on different modern techniques that play a key role in developing more
precise and high throughput data for comprehensive analysis. In addition to the
above, this chapter also describes the complete processes involved in metabolomics
study and lists the limitations faced by this scientific stream.

The epigenetic marks modifying the function of the gene can pass on over
generations, making epigenomics an important component in better understanding
the phenotype development. In other words, mere genome sequence is not respon-
sible for phenotype development, and the epigenetic modifications play a key role by
altering the chromatin structure and forcing deviation from the instructions
contained in the genome. Detailed information on the types of epigenetic changes
and their impact on phenotype development in plants is provided in chapter 10, enti-
tled “Epigenetics and Epigenomics of Plants,” authored by Manoj Prasad and his
colleagues from the National Institute of Plant Genome Research (NIPGR), India.
This chapter also discusses the key role of NGS technologies and improved analyt-
ical software in better understanding the role of epigenomics in plant development
and defense. Further information is also provided on different types of studies
conducted in plants for identifying epigenetic factors and their potential role in
plant improvement.

Plant Genetics and Molecular Biology: An Introduction 7



Nanotechnology has emerged recently as a very useful approach for plants and
has already demonstrated its potential in the development of several nanomaterials in
the pharmaceutical industry and in improving human health. Plants are the best
source for developing such nanomaterials due to their large-scale availability and
ease of production. Chapter 11 on “Nanotechnology in Plants,” authored by Ismail
Ocsoy and Weihong Tan and their colleagues from Erciyes University, Turkey and
University of Florida, USA, explains the importance of nanotechnology in plants by
citing several successful examples in medicine and industrial applications. The
chapter mentions several advantages of plant extract over other biomolecules such
as protein, enzyme, peptide, and DNA followed by their use in food, medicine,
nanomaterial synthesis, and biosensing. This chapter also provides information on
different extract preparation techniques, their use in the synthesis of nanoparticles,
and demonstration of their antimicrobial properties against pathogenic and plant-
based bacteria.

5 Data Management and Analytical Decision Supporting
Tools

Large-scale data are generated at each step of the plant experiment related to
understanding of the genome, gene discovery, functional characterization of gene,
marker discovery, and deployment of diagnostic markers in the breeding program in
addition to phenotyping data. All these data sets require efficient and effective
database management systems, and analytical and decision support tools for storing
and retrieving useful information that impacts the genetic improvement efforts.
Chapter 12 on “Current Status and Future Prospects of Next-generation Data
Management and Analytical Decision Support Tools for Enhancing Genetic Gains
in Crops,” authored by Abhishek Rathore and his colleagues from ICRISAT, India,
provides details on data management and analysis and decision support tools
(DMAST) for plant improvement. The chapter also provides examples of how
DMAST has simplified and empowered researchers in data storage, data retrieval,
data analytics, data visualization, and sharing.

6 Summary

Ensuring food and nutritional security for an ever-increasing global population
under the changing global climate is a top priority for policy makers across the
globe. The existing conventional research efforts and traditional technologies will
not be able to provide adequately nutritious food for the global population, neces-
sitating the incorporation of modern science into the current genetic improvement
programs. Biotechnology has great potential in bridging the supply-demand gap in
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food through developing improved agricultural technologies. All the scientific
streams are witnessing a rapid pace of development due to integration of new
technologies such as robotics, automation, etc. Theses advancements have improved
our understanding of genome architecture and its complexity: gene structure, func-
tion, and interactions, and improved methodologies for modification of the genome/
gene to achieve a desired phenotype. The plant-pathogen and plant-environment
interactions complicate the expression of scripts in the plant genome. This book
covers these important research areas pertaining to plant biotechnology, which are
key for achieving higher genetic gains. This wealth of information will be a great
value for students, researchers, academicians, and policymakers.
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Abstract DNA sequencing technologies have changed the face of biological
research over the last 20 years. From reference genomes to population level
resequencing studies, these technologies have made significant contributions to
our understanding of plant biology and evolution. As the technologies have
increased in power, the breadth and complexity of the questions that can be asked
has increased. Along with this, the challenges of managing unprecedented quantities
of sequence data are mounting. This chapter describes a few aspects of the journey so
far and looks forward to what may lie ahead.
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MTP Minimum Tiling Path
NAM Nested Association Mapping
NGS Next-Generation Sequencing
OLC Overlap Layout Consensus
ONT Oxford Nanopore
PacBio Pacific Biosciences
PAV Presence-Absence Variation
PCAP Parallel Contig Assembly Program
PCR Polymerase Chain Reaction
PHRAP Phil’s Revised Assembly Program
PHRED Phil’s Read Editor
SBL Sequencing by Ligation
SBS Sequencing by Synthesis
SMRT Single Molecule Real Time
SNA Single Nucleotide Addition
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SOLiD Sequencing by Oligonucleotide Ligation and Detection
Tb Tera-basepairs
TIGR The Institute for Genomic Research
UCSC University of California at Santa Cruz
VCF Variant Call Format
VEP Variant Effect Predictor
WGS Whole Genome Shotgun
ZMV Zero Mode Waveguide

1 Introduction

When History of Science books are written in the future, there seems to be a more-
than-reasonable chance that DNA sequencing and the birth of genomics will feature
prominently. It is hard to think of a technology that has had a more dramatic effect on
the study of biology than DNA sequencing. For those active in research today, with
all the data and technology available, it is also hard to remember how little we knew
about genomes before the mid 1990s. And despite the huge gulf in technology and
knowledge between then and now, the field may still be in its infancy – in the first
stages of a journey with a double helix as its guide. This chapter describes a few
aspects of the journey so far and looks forward to what may lie ahead.
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2 Current Technologies, Standards, and Strategies

2.1 Sequencing Technologies

2.1.1 Sanger Sequencing

In 1977, Frederick Sanger published a DNA sequencing technique that became the
base technology for the field of genomics [1]. Sanger sequencing relies on the chain
terminating properties of dideoxynucleotide triphosphates (ddNTPs), which were
added to a mix of the four standard deoxynucleotides (dNTPs). When a comple-
mentary strand of sequence is synthesized using these reagents (the sequencing
reaction), the result is a mixture of DNA fragments each terminated at different
lengths. These fragments must then be separated by size (via electrophoresis),
detected, and then recorded. Initially, slab polyacrylamide gels, radioactivity, and
typing in sequence were integral to the standard (very manual) technique. Auto-
mated DNA sequencers were later developed, which automated the detection and
capture of the resulting DNA sequence. Improvements such as fluorescently-labeled
terminating nucleotides and capillary electrophoresis were incorporated into the ABI
line of DNA sequencers. Hundreds of these instruments were sold to large genome
centers working on genome projects in the 1990s and early 2000s – including
bacteria, yeast, Arabidopsis, mouse, and human genomes [2].

2.1.2 Next-Generation Sequencing (NGS) Technologies

Over the last decade, sequencing technologies have evolved rapidly and led to a
significant increase in throughput and reduction in cost, thereby enabling large-scale
sequencing of genomes. They have done so by removing a limitation of Sanger
sequencing of having to separate DNA fragments by size. In Sanger sequencing, the
sequencing reaction occurs outside of the instrument, and the instrument simply
separates and detects fragments. For most NGS technologies, the sequencing reac-
tion is occurring on the instrument, and each base addition onto a growing DNA
molecule is detected and recorded. The first generation of NGS technologies have
relied largely on two approaches for sequencing, sequencing by ligation (SBL) and
sequencing by synthesis (SBS) [3]. Both approaches rely on spatially constrained,
clonal amplification of DNA and facilitate massive parallelization of sequencing
reactions, each with its own clonal DNA template, resulting in the sequencing of
millions of sequences in parallel.

SBL involves hybridization and ligation of fluorophore-labelled probes and
anchor sequences to a DNA strand and capturing the emission spectrum to identify
the DNA base, whereas SBS relies on strand extension using a DNA polymerase and
uses changes in color or changes in ionic concentration to identify the incorporated
nucleotide [3]. SBL is used in platforms such as SOLiD and Complete Genomics,
whereas 454, Ion Torrent and Illumina use the SBS approach.
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The SBS technologies can be classified into two approaches: the first, single
nucleotide addition (SNA), used in 454 and Ion Torrent sequencers. This approach
adds four nucleotides iteratively and scans for a signal after each to record an
incorporated nucleotide. In the case of 454, which sold the first NGS instrument
(the GS20), template-bound beads are distributed into a PicoTiterPlate and emulsion
PCR is performed to clonally amplify a single DNA fragment within a water-in-oil
microreactor. The addition of dNTPs triggers an enzymatic reaction that results in a
fluorescent signal that is captured by a charge-coupled device (CCD) camera and is
indicative of incorporated nucleotide [4]. The SNA method as implemented in Ion
Torrent relies on ion sensing rather than fluorescence and detects the H+ ions that are
released after the incorporation of each dNTP and the resulting shift in pH is used to
determine the incorporated nucleotide. Both 454 and Ion Torrent methods have
limitations in accurately measuring the homopolymer lengths, because all nucleo-
tides in a homopolymer are incorporated at the same time, and the magnitude of the
signal must be used to estimate the homopolymer’s length.

The other SBS approach is found in the NGS instruments that have come to
dominate the market – those manufactured by Illumina. This technology, which was
developed by Solexa before they were acquired by Illumina, uses terminating
nucleotides similar to Sanger, except the termination is reversible. Cyclic reversible
termination (CRT) uses a mixture of four reversible terminators each with a distinct
fluorescence. Each template is extended by a single base only using the appropriate
terminator and the resulting labeled templates are imaged recording which nucleo-
tide was added to each template. The terminators are then cleaved off, and the cycle
continues with the addition and imaging of the next nucleotide. An additional key to
Illumina’s success is the massive number of templates the technology can sequence
in parallel – approaching three billion on a single flow cell in the HiSeq-X instru-
ment. They achieve this through the immobilization of a DNA library onto a glass
flow cell coated with adapter oligos. Clonal clusters of each DNA fragment are
synthesized using bridge amplification on the flow cell resulting in a very large
number of sequence-ready templates. Illumina currently has the largest market share
for sequencing instruments and offers a wide variety of sequencing systems, read
lengths, and throughput to cater to a wider range of applications (Table 1).

2.2 Assembly Technologies

The developments in automated, higher throughput sequencing technologies have
been matched by concomitant development of algorithms and tools to use the
resulting data in various applications. For projects where the goal is the generation
of a reference genome, assembly algorithms have been a key area of development.
The selection of an appropriate algorithm depends on the sequencing strategy being
used (see next section), but here we will describe the main classes available.

Assembly algorithms can be broadly divided into two classes: overlap-layout-
consensus (OLC) and De-Bruijn-graph (DBG) [5]. The OLC approach identifies
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overlaps between all reads, and the reads and overlap information are laid out on a
graph and consensus sequences are then inferred. This algorithm, often used with
Sanger-generated data, has been widely incorporated into assembly programs such
as Arachne [6], Celera Assembler [7], PCAP [8], and PHRAP [9]. Although this
approach provides a cheaper and faster way of utilizing Sanger sequencing for
reference genome development, with larger datasets the assemblies usually have
gaps and result in unplaced scaffolds that require more effort to verify and finish.
This heralded the era of draft genome assemblies and a subsequent change in
standards for the quality of a reference genome.

The significantly higher data volume, shorter read lengths, and platform-specific
error profiles of NGS data present challenges for algorithm developers. The higher
amounts of short-read data from the next generation sequencers furthered new
developments in assembly algorithms and a few overlap-layout-consensus assem-
blers such as Celera Assembler [7], PCAP [8], and Newbler [4] were extended from
their original versions to handle both Sanger and NGS data from 454 sequencers.
However, the increased usage of short read Illumina sequences for assembling large
complex genomes spurred the development of the second class of assembly algo-
rithms – those using the more efficient DBG-based approaches. The DBG approach
works by first chopping reads into shorter k-mers, using those k-mers to build a
graph and using the graph to infer the genome sequence. Assemblers such as ABySS
[10], ALLPATHS-LG [11], and SOAPdenovo [12, 13] rely on the DBG approach
for increased efficiency.

2.3 Reference Genome Project Strategies

2.3.1 Sanger-only Assemblies

Sequencing technologies have enabled the study of genomes across all spheres of
life. The first genomes to be sequenced were bacterial [14, 15] and employed a whole
genome shotgun approach. However, at the time, larger genomes were not consid-
ered good candidates for this approach. Consequently, a hierarchical shotgun strat-
egy was developed for the first large genomes, including the generation of the first
plant reference genome for the model plant Arabidopsis thaliana. The Arabidopsis
Genome Initiative (AGI), an international consortium, generated comprehensive
BAC libraries and used the BAC end-sequences and fingerprints of individual
BAC clones to create a physical map. A minimum tiling path of BAC clones
along each chromosome was identified and the selected BACs were then individu-
ally shotgun-sequenced by consortium members and assembled using assemblers
such as the TIGR Assembler [16] to produce assembled contigs. The BAC ends were
later used to link contigs into scaffolds and the genetic map served as a foundation
for integrating assembled scaffolds into chromosomes [17].

The initial strategies for reference genomes relied predominantly on Sanger
sequencing and continued to make advancements through automation or
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incorporating improved methodologies. For instance, the rice genome sequences
were assembled using PHRED and PHRAP software packages or the TIGR Assem-
bler with the finishing step incorporating some automated and manual improvements
and sequence gaps resolved by full sequencing of gap-bridge clones, PCR frag-
ments, or direct sequencing of BACs [18]. The maize genome also relied on the
hierarchical approach and Sanger sequencing while utilizing optical mapping to
order and orient contigs into chromosomes [19].

The generation of the soybean reference genome [20] used the whole genome
shotgun strategy – first used in the early bacterial genomes in 1995, and later adapted
for the Celera human genome and many other mammalian genomes. The basic WGS
strategy involves randomly shearing the genome and sequencing the fragments from
this WGS library. The modified approach for larger genomes generates sequence
libraries from multiple-sized fragments. For soybean, an initial WGS library of
~1,000 bp inserts was combined with 3, 8 kb, Fosmid and BAC libraries. The
soybean sequence data were assembled using Arachne [6], where an initial assembly
generated from the WGS library was combined with paired end data from multiple
libraries for scaffolding the contigs [20]. Subsequently, many other plant genomes
have been sequenced with this approach [21–25].

2.3.2 NGS Technologies for Reference Genome Generation

With the advent of cheaper and high-throughput NGS technologies, Sanger sequenc-
ing was soon relegated to the back seat for sequencing needs. 454 and Illumina
platforms that could generate several megabases of sequence data in a short time,
opened up genome projects to researchers outside of the large genome centers.
Although the newer technologies produced shorter read lengths (32–500 bp), and
thus presented assembly challenges, the higher throughputs, lower costs, and faster
data turnaround made them hard to resist, and soon there was a surge in reference
genomes from plant species, albeit with lower quality than Sanger genomes. NGS
has been applied to more genomes as the cost of NGS dropped quickly (Fig. 1).
About 73% of first 50 plant genomes published are on crop species and most of them
include NGS as part of sequencing [26].

2.3.3 Hybrid Sanger-NGS Assemblies

Although many genome projects started to rely on NGS for generating assembled
reference genomes, the contiguity from NGS-only assemblies was far shorter than
those from Sanger sequencing. Thus, strategies to sequence large complex crop
genomes began to rely on a combination of Illumina, Roche 454 and Sanger
platforms to balance the cost and contiguity of assemblies. For example, the genome
of oil seed rape, Brassica napus, was sequenced using a combination of multiple
platforms: 21.2� coverage from GS FLX Titanium sequencing (reads of 450 bp
average size), 0.1� Sanger BAC ends (reads of 650 bp average size), and 53.9�
Illumina HiSeq sequencing (reads of 100 bp) [27]. The 454 sequencing included
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regular 8 and 20 kb libraries and Sanger-based BAC ends were from a BAC library
of 139 kb average insert size. The longer reads were assembled using Newbler to
generate an initial assembly and Illumina reads were used for final error correction
and gap filling with the construction of final pseudomolecules facilitated with
genetic maps. A similar strategy of combining benefits from multiple technologies
was used to generate the reference genomes of tomato, cassava, and African rice
[28–30]. As more NGS sequences were used, a drop in assembly quality is generally
seen compared to the genomes sequenced using Sanger method.

2.3.4 NGS-only Assemblies

With continuous improvements in the Illumina platform and assembly algorithms,
NGS-only genomes have increased in number. The Illumina platform was used to
generate a chromosome-based draft sequence of the hexaploid bread wheat
[31]. High depth of Illumina sequences was also added to the B. rapa genome
[32], the diploid [33], and allopolyploid cultivated [34, 35] cotton. Due to the
repetitive nature of crop genomes, the contiguity is much lower than that from
Sanger sequencing. Although the hierarchical approach algorithmically has advan-
tages over WGS approaches, the overall process of generating a BAC library,
physical map, and MTP are very labor and time intensive, making these projects
very expensive and time consuming.
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2.4 Resequencing Strategies

The availability of high-quality reference genome sequences combined with higher
throughput and lower cost of sequencing is making it possible to comprehensively
understand diversity within a species by generating sequence from many accessions.
Whole genome resequencing is being effectively utilized to understand crop diversity
and create genomic resources to enable crop improvement across a wide range of crops.
This approach generates low coverage (usually 2� to 10�) genome sequence data from
accessions of interest and compares the sequences against a reference genome to detect
various kinds of variation – single nucleotide polymorphisms (SNPs), insertion-
deletions (InDels), presence-absence variants (PAVs), copy number variations
(CNVs), and other structural variants – to understand the genetic diversity of a crop
species. In plants, the 1,001 genome project in Arabidopsis [36] demonstrated the value
of resequencing to enhance understanding of a species and soon several large-scale
resequencing projects were initiated in crop plants like rice [37], maize [38, 39],
soybean [40], and sorghum [41]. These resequencing data were able to provide
unprecedented information about the variation existing within each crop species that
can be utilized for improvement of these crops. Such resequencing data are now
routinely used to find novel alleles for genes of interest [42–45], find the signals of
domestication, provide background data to build genomic selection models, and form
the basis for generation of tailored populations such as multi-parent advanced gener-
ation inter-cross (MAGIC) and nested association mapping (NAM) populations.Many
of these applications are discussed in detail later in this volume.

Sequencing several accessions from a crop has demonstrated the presence of
extensive structural variations within crop species [37, 38] leading to the recognition
of the importance of generating multiple de novo assembled genomes (e.g., soybean,
rice) [34, 35, 46]. Although high-throughput NGS technologies have shown advan-
tages in generating variants and draft assemblies at low cost, the incompleteness of
these assemblies and their reliance on a single existing reference genome makes it
challenging to comprehensively identify structural variations.

In 2015, sequence entries archived in NCBI showed an interesting pattern: the
number of entries for WGS surpassed the general sequence entries submitted to
GenBank (Fig. 1). The dramatic increase of WGS data has been a result of
re-sequencing driven by ever-decreasing sequencing cost (Fig. 2). Biologists have
been using the resequencing approach for across a wide range of species and for
varied research goals. For all, the ability to sequence across multiple individuals is a
powerful approach, albeit with logistical challenges.

2.5 Data Management and Visualization

When the first plant genome became available, efforts in data management and
visualization were primarily focused on making the sequence data and the
corresponding annotations available to a broader scientific community and enabling
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the use of genome sequences to address specific research questions. With the large
influx of genome sequencing data from NGS technologies, tools for data analysis,
storage, and management soon became a critical need of the scientific research
community. Initial developments centered on developing data standards and guide-
lines so that data could be easily shared and accessed.

2.5.1 Variant Data Standards

The human 1,000 Genomes Project led the way and provided invaluable insights
into genetic variants in humans, as well as established some of the early standards to
manage and analyze large-scale variant data that soon became the standard for later
large-scale studies in all organisms [47–49]. New file formats to compress and store
sequence alignment data and tools that could manipulate these file formats quickly
came into existence and widely spread within the bioinformatics community
[50]. The 1,000 Genomes Project created the Variant Call Format – a format that
has become the standard for managing and manipulating variant data obtained by
comparing re-sequencing data to reference genomes [51]. The initial development of
VCFtools and the more recent vcfR and PyVCF tools enabled scientists using three
major programming languages used in the bioinformatics community to embrace
VCF as the system to manage and analyze variants [51, 52]. These tools in combi-
nation with SnpEff, a tool for annotating functional impacts of SNPs, provide a
toolkit to utilize variant data in the pursuit of answers to deeper scientific
questions [53].

Jan
2010

Apr
2013

Jun
2015

Oct
2015

0.014

0.52

Sanger & 454
sequencing
500 ~ 800bp

Introduction of
Illumina

36 ~ 50bp

Illumina read length
gradual increase

~ 300bp

Introduction of
PacBio RS II

5,000bp

Oxford Nanopore
MinION

commercially available
10,000 ~ 30,000bp

Read length (bp)Cost ($/Mbp)

Fig. 2 Submitted sequence entries for GenBank and WGS archived in NCBI. Data source: NCBI
(http://www.ncbi.nlm.nih.gov/genbank/statistics/)
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2.5.2 Variant Data Management Systems

While the VCF file is fairly simple, it can contain essentially complete information
about individual variants. However, it is not a user-friendly format for querying as
VCF files can easily contain millions of variants, and be 10s or 100s of Gigabytes in
size. Solutions employing relational database or indexing schemes are needed to
extract information from VCF quickly and efficiently with complex query structures.

One solution to the variant storage and query problem is to utilize relational
database systems such as MySQL. One example of this is the maize HapMap project
[38]: all variants generated in this project are imported into “Ensembl Variations,” in
which each variant, SNP or InDel, is stored as an entry in the relational database and
contains several attributes linking it to other relevant information (Fig. 3). A user can
explore the frequency and genome context, as well as linkage information of variants
using the data schema of Ensembl.

The Ensembl MySQL solution is intended for the most widely used genomes that
have Gold Standard quality assemblies, extensive annotations, and functional stud-
ies. It may not work with the majority of re-sequencing projects, as these projects are
often focused on less well studied species whose data do not meet the high quality
standards of Ensembl. For such projects, VCF is still the best choice for data
retention and downstream analyses, but there are some alternate solutions that do
not rely on relational databases. For example, genome browsers such as JBrowse
render compressed and indexed VCF to visualize information [54]. The “focused”
nature of a genome browser takes advantage of the indices to show only variants in
selected genomic intervals.

In many cases, the primary piece of information needed is the impact of the
variant, i.e., the functional annotation of the variant: is it in a coding region or
non-coding region, is it a synonymous or non-synonymous change, etc. For this
purpose, there are a number of solutions [53, 55, 56]. For example, SnpEff is a suite
of tools for genetic variant annotation and effect prediction. A primary advantage of
SnpEff is the 38,000 genomes supported out-of-the-box, so users can leverage prior
annotation efforts of the community. SnpEff also supports VCF files generated by
major variant calling pipelines such as SAMtools and GATK and appends the
annotation results to the VCF files. The VCF-in and VCF-out workflow for SnpEff
enables users to apply existing tools for manipulating VCF files and allows SnpEff to
be tightly integrated into analysis pipelines without too much additional effort.
Another SNP annotation tool with comparable gene annotation databases is
Ensembl’s Variant Effect Predictor (VEP). Unlike SnpEff, VEP does not generate
VCF files but a unique plain text, closely tied to the unique relational database of
Ensembl. By taking advantage of the rich infrastructure of Ensembl’s web front end,
VEP provides a more user-friendly point-and-click web interface for variant
annotation.

22 P. R. Marri et al.



F
ig
.3

E
ns
em

bl
va
ri
at
io
ns
:
ex
pl
or
e
on

e
va
ri
an
t
at
a
tim

e

Advances in Sequencing and Resequencing in Crop Plants 23



2.5.3 Visualization of Variant Data

Many layers of information are stored in the linear string of four nucleotides that
make up a genome – from single nucleotides, codons, exons and genes to regulatory
units, chromatin structure, and chromosome conformation. Visualization of
re-sequencing results at many different levels is a crucial component of such pro-
jects. Generally, there are two approaches to visualizing data (primarily reads and/or
VCF files) from re-sequencing projects: one is the dedicated application on a desktop
or laptop computer; the other is by utilizing an Application Programming Interface
(API) for existing web-based genome browsers to work with short-read mapping and
variant calling results. Given the amount of data from re-sequencing projects, the key
to achieving performance is to create the ability to access only the reads or variants
needed for the specific slice of genome that is being viewed.

The champion of read-centric visualization tools is Integrative Genomics Viewer
(IGV) [57]. In addition to providing a large number of ready-to-use genomes and
annotations, IGV has the best support for visualizing almost every detail of read-
mapping information, including the very important but largely overlooked CIGAR
string [50]. It also provides a read coloring system that helps users spot split reads
and read pairs with abnormal insert sizes between the mates – crucial for the
exploration of structural variations. IGV has also gone beyond a standalone desktop
application and supports the access of data files from distributed sources via the
HTTP protocol. Tablet is another desktop solution for read visualization that stands
out from the crowd with its great usability and interface. Tablet works extremely
well in terms of zooming in and out, as well as views at different levels in one screen
(Fig. 4).

With the need to visualize the large amount of re-sequencing data, the traditional
feature-based genome browsers are playing a catch-up game. Genome browsers,
such as UCSC browser and GBrowse, have been the data hub and integrator for
feature-based data, i.e., genomic data based on genomic intervals for many years
[58, 59]. The feature-based data are rich, detailed, but small in size, so the traditional
genome browsers have been optimized to primarily handle large numbers of tracks
of small sizes. NGS data from re-sequencing projects present the opposite challenge
– read alignments files are very big, but information for each read is minimal.
Because UCSC and GBrowse both use relational databases in the backend, they
had to create database adaptors to handle read alignments, which turned out to be
inefficient and awkward, especially when the alignment files are large in size.
Subsequently, many new genome browsers have been developed with optimized
functionalities for visualizing short reads. The best examples among these are
JBrowse, a generic genome browser from GMOD, and Savant Genome Browser, a
short-read browser optimized for human genome and medical and diagnostic pur-
poses [54, 60]. Both genome browsers abandoned the old relational database
architecture and embraced read alignment formats directly, so they read the align-
ments and render the reads on-the-fly. Coupled with various indexing schemes, they
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provide intuitive navigating functions to explore read mapping and variant calling
results (Fig. 5).

The advantage of generic genome browsers over a specialized short reads viewer is
that it is very easy to incorporate feature-based genomic data and much more into a
holistic genomic view. Instead of adding short read functionalities as an afterthought,
this new generation of genome browsers puts short reads in the center and builds
genomic resources around them. Moreover, a lot of the new genome browsers have
started to utilize cloud platforms to store and manage sequencing data, majority of
them re-sequencing data (https://cloud.google.com/genomics/, https://aws.amazon.
com/). This should not be surprising since the “big” nature of re-sequencing data fits
nicely to the concept of “Big Data” advocated by cloud technologies.

3 Trends, Advanced Technologies, and Strategies

3.1 Sequencing Technologies

The second-generation sequencing technologies such as Illumina are very useful for
resequencing studies to understand the variability of a crop species. However, due to
their short reads, it is challenging to generate finished quality reference genomes.
The recent emergence of long-read sequencing technologies such as PacBio (http://
www.pacb.com/) and Oxford Nanopore (https://www.nanoporetech.com/), and
technologies that focus on providing long-range genomic linking information such

Fig. 5 Rendered reads and SNP in a JBrowse view, adapted from Ref. [54]
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as Dovetail Genomics (http://dovetailgenomics.com/), 10� Genomics (http://www.
10xgenomics.com/) and BioNano Genomics (http://www.bionano-genomics.com/)
are making it feasible to generate good quality reference genomes faster and cheaper.

PacBio single-molecule real-time (SMRT) sequencing captures the sequence
information during the replication process of a DNA molecule that is tracked in a
zero-mode waveguide (ZMV) on a SMRT cell. The DNAmolecule is circularized by
adding the adapters on both ends and diffused into a ZMV with DNA polymerase
immobilized at the bottom. Four fluorescent bases are flowed through the SMRT cell
and a distinct light pulse is produced for each base that is recorded as a movie. The
movie can then be analyzed to extract DNA sequence. PacBio can produce reads in
the average range of 20 kb and is being routinely used to finish microbial genomes
[61]. Until recently, it has been very expensive to use PacBio data alone for a large
crop genome, and thus many hybrid strategies have been deployed that combine
PacBio sequences with other short read data to improve genome assemblies [62],
and new algorithmic strategies are being developed to better utilize these long reads
in assembly processes both in hybrid strategies and alone [63–66]. The new
SEQUEL system from PacBio can deliver up to 50 Gb sequences for a few thousand
dollars at an average read length of ~20 kb and consensus accuracy >99.999%,
making it an attractive option for crop reference genomes. For example, the genome
of adzuki bean (Vigna angularis) was assembled using SMRT sequencing technol-
ogy and the PacBio assembly produced 100 times longer contigs with 100 times
fewer gaps compared to the NGS-based assemblies [67]. Efforts are currently
underway to improve the B73 reference genome of maize and build high-quality
reference genomes for 23 species of rice using PacBio SMRT Sequencing and create
new resources for crop improvement (http://www.pacb.com/wp-content/uploads/
agi-rod-wing-corelab.pdf).

Oxford Nanopore (ONT) sequencing is the latest long-read sequencing technol-
ogy that offers a lot of promise for generating de novo assemblies of complex plant
genomes. This technology passes a long DNA molecule through a charged protein
nanopore and measures the changes in current as the molecule passes through the
nanopore. The changes in current or “squiggleplot” are then input into a basecaller to
produce DNA sequence information. ONT is very promising technology with reads
as long as 150 kb having been reported by early users, although average read lengths
are much lower. The technology is deployed in two forms – a small mobile
sequencer, the minION, which is approximately the size of a stapler that has
flowcells with 512 nanopores, and a much larger format called the promethION,
which can house 48 flowcells, each with 3,000 nanopores. MinION has been
commercially available since May 2015 and has been applied to the rapid identifi-
cation of viral pathogens [42, 68], 16S sequencing [69], and haplotype sequencing
[70]. At the time of writing, nearly 50 publications have used or developed tools for
the ONT platform. As the accuracy and throughput continue to improve, de novo
sequencing of large complex crop genomes will become practical soon.

The parallel development of several long-range sequencing technologies from
Dovetail Genomics and 10� Genomics, or long-range mapping technologies from
BioNano Genomics, can provide the contiguity information in a genome. The long-
range information when complemented with sequences from long-read single
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molecule technologies can deliver high quality assemblies with fewer gaps and
megabase-long contigs for complex plant genomes without the need to construct
traditional physical and genetic maps. In view of the significant structural variation
in crop species, these new technologies can redefine our understanding of genomes
and help pinpoint the underlying genetics of complex traits.

3.2 Assembly Strategies/Technologies

Developers of assembly algorithms are focusing on developing methods that will
enable the seamless integration of long-read and long-range data into the assembly
process. The long-read technologies in their initial growth cycles have higher error
rates, and algorithms must take these into account. Various software tools have been
developed to handle multiple scenarios involving longer reads. PBJelly2 is effective
on low coverage (<15�) PacBio data and has the ability to use the long-read data to
link scaffolds and close gaps for existing short-read assemblies [65]. Tools such as
ECTools [66], SPAdes [63], and PBcR [64] can handle 20–30� coverage PacBio data
either in combination with Illumina reads or on their own. If more than 50� coverage
is available, the PacBio sequences can be assembled de novo without short-read
sequences using packages such as HGAP [71] and Canu [64]. In some of the most
recent algorithms, with >30� coverage of PacBio sequences, an overlap-layout-
consensus approach can be used to assemble corrected sequences. A final polishing
step is used to correct the errors in the consensus with raw PacBio sequences, which
can improve the consensus accuracy to 99.999%. Similar assembly and error correc-
tion strategies can be applied to ONT data. As each platform continues to improve
accuracy towards a 1% error rate, error correction will not be necessary.

3.3 Genome Project Strategies

The development of new third-generation sequencing technologies is leading to a
trend of combining these data with second generation technologies in genome
sequencing projects. Due to a relatively lower throughput and higher cost (per Gb)
of the long-read technologies, current genome sequencing strategies typically com-
bine lower coverage long-read/long-range data to with higher coverage of short read
data to improve the qualities of genome assemblies especially for large, complex
crop genomes. Ultimately, the selection of a strategy is driven by what can provide
the highest quality for a given cost combined with the perception of what is an
acceptable cost for a genome project. As the technologies continue to develop
further, error rates and cost are expected to drop, which will change both what is
possible and the perception of what is reasonable.

Advances in Sequencing and Resequencing in Crop Plants 29



3.4 Resequencing Strategies

Short-read technologies have been heavily used by projects to generate understand-
ing of the variation within a crop species. However, since they rely on a reference
genome, these projects have had limitations in identifying large structural variations
among accessions within a species. Crop species like maize and soybean have been
shown to have large variation in their genome content between lines – almost to the
extent of 30% [72]. Resequencing that relies on a single reference genome is not able
to adequately capture the full extent of these variations. As long-read technologies
continue to improve and drop in price, we expect projects to generate de novo
reference assemblies for multiple lines within a species – perhaps for all lines within
a species if the price drops far enough. These types of data will enable us to better
characterize and catalog the variation within a species.

3.5 Data Management, Visualization, and Storage

The availability of multiple reference genomes for crops, thewidespread re-sequencing
efforts, and the resulting variant data are constantly pushing the limits of VCF files, as
well as the tools and infrastructure for handling them. For example, one VCF file
containing millions of SNP/InDels from hundreds of thousands of samples could not
be effectively managed by any of the tools previously described. Further evolution of
variant storage is needed.One recent advance isBGT, aflexible genotype query tool that
works with large scale multi-sample VCF files [73]. The key to these tools is to generate
indices of variant genotypes that can be harnessed for rapid retrieval in a flexiblemanner
– whether it be for a subset of genomic locations, or a subset of samples or any
combination of both. Moreover, BGT supports encoded phenotypes associated with
the samples, which creates opportunities to slice and group the samples based on
phenotypes, a convenient way to conduct local and small-scale association studies.

Meshing the concepts contained within VCFtools, PyVCF, vcfR, and BGT, there
are unlimited possibilities to create new tools to extract the information in VCF and
utilize the information in plant genetics and crop breeding. To date, information from
VCF files has been queried, summarized, and manipulated for GWAS, LD analyses,
small-scale association studies, as well as variant data dissemination through various
data visualization frameworks. We expect this trend to continue with ever more
sophisticated data manipulation tools and approaches.

3.6 Beyond Individual Variants: Alleles, Haplotypes, LD
Blocks, and Pan-Genomes

Interpretation of the biological meaning of information contained within sequence
data is not the exclusive domain of bioinformaticians. It takes collaborations
between biologists of all kinds, which is particularly true as the complexity of the
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data and data structure increases. Information stored in genomes comes at several
levels, and the bulk of what we have discussed in this chapter is focused on the
discovery and description of individual variants. But this just scratches the surface of
the full impact of genomic diversity. There are relationships between variants that
can be identified, stored, and visualized.

As an example, consider a gene as a unit within which combinations of multiple
variants create the variant of that gene that may have a phenotypic impact. Each
combination of variants that form a single version of that gene can be considered as a
group to define a single allele of that gene. This requires a more complex form of
annotation and visual representation than is found in current genome browsers.
Genetic linkage beyond gene boundaries forms yet another higher level of informa-
tion, indicating longer segments that are segregating and propagating in the real
world, called haplotypes. Stretches of such haplotype segments form Linkage
Disequilibrium (LD) blocks, in which most native traits harbor. Above the LD
blocks and haplotypes, there are chromatin structure and chromosome conforma-
tions. Characterization of these even higher levels lies beyond the scope of simple
re-sequencing and requires other technologies such as methylation profiling by
bisulfate sequencing and Hi-C profiles [74, 75].

Strategies to explore and exploit the alleles, haplotypes and LD blocks present
within crop plants are active areas of development, both in academia and commercial
breeding contexts. The common goal is understanding the genetic structure of
populations at a more sophisticated level than individual variants, which can then
enable a mix-and-match approach to the traits required in breeding and efficient and
accurate trait characterizations at the molecular level.

One other recent trend is a gradual shift away from the concept of a single
reference used as a basis for all future studies of variation within that species. This
is happening for a number of reasons: the reference accession is often the most “well-
behaved” accession for research, rather than the best representative of the species;
our perceptions of what is possible have changed along with sequencing costs; data
from early re-sequencing studies showed that it is unlikely that any single reference
could represent a species, even with a robust way of describing variants. The concept
of the composite genome of a species, rather than an accession, is known as the
pan-genome [12, 13, 76]. Depending on the evolutionary history and divergence
among the individuals, pan-genomes can be very simple in closely related individ-
uals, or very complex in groups with tremendous genetic diversity. In the latter case,
a pan-genome captures the true nature of genetic variations in a way that a single
reference could not, because the variation is far beyond single nucleotide changes.
Maize is an example of such a species with extremely rich diversity among varieties
and accessions. Variants discovered by comparing re-sequencing data to the B73
reference missed significant fractions of the true variation [38].

Unfortunately, although a simple concept, representing pan-genomes in a file
format is not a simple task. The definition and implementation of pan-genomes is
still in its infancy. One promising idea is to present the genomes in a graph with
genomes represented by a “path” in a hypothetical space and variations represented by
“bubbles” that bulge on the sides of the paths [77] (https://www.technologyreview.
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com/s/537916/rebooting-the-human-genome/). The graph theory supporting the
pan-genomes, by its nature, is capable of capturing and presenting information at
multiple levels from single nucleotides to large linkage blocks. This will lend itself
naturally to representing haplotype LD blocks useful for exploitation of variation in
breeding programs. As more and more data are added, the pan-genome concept
implemented with effective visualizations and query tools are going to be essential
in order to gain biological insights from these incredibly valuable datasets.

4 Conclusion and Outlook

As described in this chapter, technology advances over the last decade have been
tremendous and have provided great benefits across the spectrum of biological
research. The low cost and ease with which sequence data can be generated has led
to larger and larger experiments being imagined by more and more individual
scientists. No longer do genome-wide studies require international consortia. To
coin an overused phrase – we are seeing the democratization of genomics. While
the challenges for individual experiments may be shrinking, the challenges for
community-wide management of these enormous stockpiles of sequence data are
expanding. To truly enable the next wave of genomics-enabled research, the next
advances will need to be not in sequence technology but in the management, access,
and analysis of exabytes of data (1 exabyte ¼ 1 million terabytes). Just as success in
automated sequencing required biologists to recruit the skills of engineers, physicists,
and chemists, success in this next phase will require us to embrace those skilled in
computer and data science, and computational and network infrastructure. Only one
thing is certain, there will be more data tomorrow than yesterday – which is fortunate,
because in science, tomorrow always unveils more questions for us to answer.
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Abstract In the past decade, the application of high-throughput sequencing to crop
genotyping has given rise to novel platforms capable of genotyping tens of thou-
sands of genome-wide DNA markers. Coupled with the decreasing costs of sequenc-
ing, this rapid increase in markers allows accelerated and highly accurate genotyping
of entire crop populations and diversity sets using single nucleotide polymorphisms
(SNPs). These revolutionary advances accelerate crop improvement by facilitating a
more precise connection of phenotype to genotype through association studies,
linkage mapping and diversity analysis. The platforms driving the advances in
genotyping are array technologies and genotyping by sequencing (GBS) methods,
which include both low-coverage whole genome resequencing (skim sequencing)
and reduced representation sequencing (RRS) approaches. Here, we outline and
compare these genotyping platforms and provide a perspective on the promising
future of crop genotyping. While SNP arrays provide high quality, simple handling,
and unchallenging analysis, the lower cost of RRS and the greater data volume
produced by skim sequencing suggest that use of GBS will become more prevalent
in crop genomics as sequencing costs decrease and data analysis becomes more
streamlined.
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1 The Advent of High-Throughput Genotyping

The study of DNA polymorphism in crops is a fundamental step in molecular
breeding programs. Using molecular tools to determine the DNA polymorphisms
of an individual plant, relative to other individuals or species, is known as
genotyping. Genotyping has many applications including marker-assisted selection
(MAS), genomic selection (GS), linking phenotypes to genes, DNA barcoding,
diversity analysis, and improving genome assemblies. Although crop genotyping
has been common practice since the 1990s, genotyping platforms and the types of
polymorphisms used have undergone rapid changes in the past decade [1]. While
earlier methods relied on random amplification of PCR fragments, patterns of DNA
restriction digestion and hybridization, the advance of high-throughput sequencing
technologies and sophisticated assays enables genotyping on a much greater scale
and at higher resolution [2, 3]. As part of this transition, the now widespread use of
single nucleotide polymorphisms (SNPs), the most frequent type of variation in the
genome [4], has increased the number of markers often used from fewer than 100 to
tens of thousands. Furthermore, the single-base resolution of SNPs allows better
detection of markers causally linked to agronomic traits.

Past genotyping efforts have had relatively little impact on breeding practice with
regard to complex traits, because loci linked to traits of interest were not well
resolved or had only weak individual effects and thus could not provide the returns
required by costly MAS. High-throughput genotyping and novel bioinformatics
tools [5, 6] now help resolve this issue by reducing the cost of genotyping while
increasing accuracy. This revolution in genotyping heralds a more substantial impact
of crop genomics on breeding programs in the future [7].

The two most common types of high-throughput genotyping platforms are
commercial SNP assays and genotyping by sequencing (GBS). The most widely
used SNP assays are the Illumina Infinium assay and the Affymetrix GeneChip®,
while GBS encompasses a range of methods using either reduced representation or
whole genome approaches for characterizing polymorphisms in genomes. These
high-throughput platforms each offer an unprecedented scale and quality of genomic
data, providing a foundation for accelerated crop improvement [8, 9].

2 Genotyping by Sequencing

GBS was first used as a combination of restriction site associated DNA (RAD)
techniques and high-throughput sequencing [10, 11]. This allowed the reduction of
genome complexity before sequencing, reducing per-sample costs and effort
required for data analysis. Reduced representation sequencing (RRS) thus became
popular because it allowed the collection of data sampled from across most of the
genome for hundreds of samples, while avoiding the cost of deep whole genome
sequencing. A different solution implemented in rice employed low coverage whole
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genome sequencing, or skim sequencing [12]. RRS has gained increasing popularity
in recent years and protocols have been modified and developed further into over a
dozen approaches. Skim sequencing has also been increasingly adopted in studies on
crops [13–15], and numerous analytical approaches have been developed to over-
come the often lower confidence of SNP calls for low coverage data [12, 13, 16, 17].

2.1 Reduced Representation Sequencing

The original RADseq [10, 11] follows a six-step protocol. First, genomic DNA is
digested with a single restriction enzyme. Adapters with barcodes are ligated onto
the digested ends to enable the sequencing of multiple samples in a single lane. After
a sonication step, an adapter is ligated to the randomly sheared end. In the final steps,
the library is size-selected, and RAD fragments with both adapters are PCR ampli-
fied. The original RADseq was used to develop linkage maps and conduct QTL
analysis in crops as diverse as aubergine [18] and barley [19]. Elshire et al. [20]
simplified the original RADseq protocol to four steps by implementing digestion and
adapter ligation in a single well and eliminating random shearing and size selection
steps. Their “GBS” technique is given in inverted commas here to differentiate it
from the umbrella term GBS, which came into use after the method was developed.
In “GBS,” barcoded adapters and common adapters with an overhang matching the
restriction site are ligated onto digested fragments in a single sticky-end ligation.
While original RADseq involves sequencing fragments to high coverage, the focus
of “GBS” is to sequence with low coverage. This technique has been successfully
used in a number of species, generating 24,186 genome-wide markers in barley [20],
and 30,984 high-quality SNPs in rice [21].

Another important step in the diversification of RADmethods was the introduction
of two enzymes in the double-digest RAD protocol (ddRAD) [22]. Combining a
low-frequency and high-frequency cutter to digest DNA, a barcoded adapter is ligated
to one restriction site and a common adapter to the other restriction site. Samples are
then pooled and size-selected. Lastly, PCR is used to enrich the library and also
introduce a second barcode in the form of an Illumina index, increasing multiplexing
potential. Similar to this approach is two-enzyme “GBS” [23], which also uses two
restriction enzymes. The ddRAD method has been employed for genetic linkage
mapping in cultivated peanut [24] and for linkage disequilibrium and association
analysis in Brassica napus, detecting two loci associated with seed oil content [25].

2.2 Skim Sequencing

Skim sequencing differs from RRS in the lack of complexity reduction steps before
sequencing. Tomake genotyping large populations cost effective, sequencing is carried
out at low coverage depth, typically between 1� and 5� or even lower [12, 13]. To
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simplify data analysis, heterozygous alleles are often eliminated by sequencing recom-
binant inbred lines (RIL) or double haploid (DH) populations. The parental genomes
and a reference sequence are commonly required for these mapping populations,
though they can also be inferred using hidden Markov models [17], reducing the cost
for deep sequencing of the two parents. Training the model on each individual sample
refines this approach by allowing for variation in error rates [16]. This method is
particularly useful in genotyping a constructed cross population, in which the parental
lines are not known and parental genome sequences are not yet determined.

Skim sequencing has allowed detection of 270,820 high quality SNPs and
identification of grain weight QTLs in rice [26]. Genotyping by resequencing has
been applied frequently in rice, e.g., a total of 1,493,461 SNPs were identified in
150 RIL sequenced at 0.02� coverage. Using recombination bins to construct a
linkage map, it was possible to identify 49 QTLs, including four linked to plant
height [12]. In sorghum, the same approach for 244 RILs sequenced at ~0.07�
coverage led to the discovery of 7.76 million high-quality SNPs and, after map
construction, the identification of several major QTLs for heading date and plant
height [27]. Finally, skim GBS genotyping of chickpea and rapeseed identified
511,624 SNPs and 794,837 post-filtered SNPs respectively. Based on these SNPs,
numerous crossovers and gene conversions in both species could be identified
[13]. In a further study on chickpea using skim sequencing, 53,169 post-filtered
SNPs were detected and used for QTL analysis to identify four candidate genes
implicated in drought tolerance [15].

3 High-Throughput SNP Assays

High-density genotyping assays, or “SNP chips,” are a valuable resource for geno-
mic studies in crops. The commercial SNP assays available from Illumina and
Affymetrix rely on distinct technologies, but are both capable of producing highly
scalable assays. Affymetrix’s hybridization arrays and Illumina’s Infinium-based
arrays enable parallel genotyping of hundreds of samples for hundreds of thousands
to millions of SNPs (http://www.illumina.com; http://www.affymetrix.com).
Illumina’s Infinium BeadChip® assay utilizes beads covered with specific oligos
that fit into patterned microwells and is highly scalable, as the number of SNPs
genotyped can be increased with higher densities of microwells. The assays are
based on a two-color single-base extension from a single hybridization probe per
SNP marker [28]. The GeneChip® array of Affymetrix arrays, on the other hand, use
photolithographic printing of oligos on an array, with the Affymetrix Axiom®

technology based on a two-color, ligation-based assay with 30-mer probes. Cur-
rently, arrays from Affymetrix and Illumina are available for many common crop
plants (Table 1). To reduce costs, these arrays are usually developed by agrigenomic
consortia. Illumina currently offers a larger selection of DNA genotyping arrays,
while Affymetrix has a larger selection of expression arrays. Recently an Infinium
genotyping array for 90,000 gene-associated SNPs in wheat was developed and
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Table 1 Crop species with commercial DNA genotyping arrays available from Affymetrix or
Illumina

Affymetrix Reference

Apple Bianco et al. [29]

Broccoli Vosman et al. [30]

Chickpea Roorkiwal et al. [31]

Cotton Rai et al. [32], Byers et al. [33]

Groundnut Pandey et al. [34]

Lettuce Stoffel et al. [35]

Maize Unterseer et al. [36]

Capsicum Hill et al. [37]

Rice Zhao et al. [38], Yu et al. [39], Singh et al. [40]

Rose Koning-Boucoiran et al. [41]

Strawberry Bassil et al. [42]

Soybean Lee et al. [43], Wang et al. [44]

Wheat Winfield et al. [45]

Illumina Reference

Alfalfa Li et al. [46]

Apple Bianco et al. [47, 48]

Barley Comadran et al. [49], Rostoks et al. [50], Close et al. [51]

Bean Song et al. [52]

Brassica napus Snowdon and Luy [53], Edwards et al. [9], Dalton-Morgan et al. [54],
Durstewitz et al. [55], Delourme et al. [56], Clarke et al. [57]

Cherry Peace et al. [58]

Chickpea Choudhary et al. [59], Roorkiwal et al. [60], Gaur et al. [61], Bajaj
et al. [62]

Cocoa Livingstone et al. [63]

Cotton Hulse-Kemp et al. [64]

Cowpea Close et al. [65], Muchero et al. [66]

Eucalyptus Silva et al. [67]

Grape Myles et al. [68]

Maize Ganal et al. [69], Yan et al. [70], Rousselle et al. [71], Tian et al. [72]

Oat Tinker et al. [73], Oliver et al. [74]

Pea Tayeh et al. [75], Deulvot et al. [76]

Peach Verde et al. [77]

Pepper Ashrafi et al. [78]

Perennial ryegrass Blackmore et al. [79], Paina et al. [80], Studer et al. [81]

Pinus taeda Plomion et al. [82]

Populus trichocarpa Geraldes et al. [83]

Potato Hamilton et al. [84], Felcher et al. [85]

Rice Chen et al. [86], Zhao et al. [87], Felcher et al. [85], Travis et al. [88],
Ye et al. [89], Thomson [90]

Rye Haseneyer et al. [91]

Sorghum Bekele et al. [92]

Soybean Song et al. [93], Hyten et al. [94], Akond et al. [95]

(continued)
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46,977 of these SNPs used to create a genetic map [99]. In capsicum, Hill et al. [37]
developed an Affymetrix GeneChip® array for 30,000 gene-associated SNPs, with
the goal of facilitating the introgression of agronomic traits such as disease resistance
into the breeding germplasm. High-throughput genotyping using arrays has also
been applied to facilitate accurate germplasm identification in Brassicaceae, demon-
strating the potential of the method to increase the value of germplasm collections
for plant breeders [102].

4 Comparison of Genotyping Platforms

SNP arrays and the various GBS platforms differ in SNP discovery rate, evenness of
sampling, cost, time, and effort required per sample. Depending on the number and
type of samples and the SNP density needed, the advantages of one platform may
outweigh those of the others. SNP arrays have been used extensively in crops and
livestock and offer several distinct advantages over GBS. These advantages include
robust allele calling with high call rates, low cost per sample when genotyping large
numbers of samples, and simple data analysis. By selecting SNPs rather than
sampling at random across the genome, SNP arrays may also provide substantially
more power than randomly chosen SNPs such as those in skim sequencing. The use
of fewer redundant SNPs than GBS also reduces computational effort and decreases
the false-positive errors from multiple hypothesis testing [28]. Nevertheless, design-
ing a custom SNP array can be a costly and lengthy process, with genotyping
reaching cost-effectiveness at medium to large volumes (thousands of samples).
There can also be ascertainment bias introduced when SNPs are selected for the
array [103]. In summary, SNP arrays provide high quality, robust SNPs, with ease of
data analysis, but potentially at a cost higher than most GBS platforms if sample
numbers are low and with some biases.

RRS is the currently most cost-effective genotyping platform for low sample
numbers, but suffers from several drawbacks. Polymorphisms in the restriction
enzyme recognition site may prevent cutting and lead to erroneous genotyping,
so-called allele drop-out. A further issue is the variance in coverage depth between
loci, which can be caused by an amplification bias towards shorter fragments with
greater GC content. PCR amplification during library preparation can also be
uneven, leading to a bias towards specific alleles. These biases do not apply to
skim sequencing, and although this platform is costlier than RRS, it is capable of
detecting substantially more SNPs, making it more suitable for genome assembly

Table 1 (continued)

Illumina Reference

Sunflower Bachlava et al. [96], Talukder et al. [97]

Tomato Sim et al. [98]

Wheat Wang et al. [99], Akhunov et al. [100], Cavanagh et al. [101]

Revolution in Genotyping Platforms for Crop Improvement 43



and validation. The limitations of low coverage skim sequencing are lower rates of
SNP genotyping and increased false-positive rates. However, SNP discovery rates
and accuracy can be substantially increased using high quality parental genomes,
higher sample size, deeper sequencing, filtering, and imputation [14, 104]. Skim
sequencing currently remains perhaps the costliest genotyping method, but allows
the least biased and most informative sampling of the genome.

5 Conclusion and Perspectives

Genotyping in the era of genomics is now allowing faster, cheaper, more informa-
tive, and higher-throughput characterization of crop genomes. While SNP assays
provide high quality and the convenience of simple data analysis, the lower cost of
RRS and greater data volume produced by skim sequencing suggest that use of GBS
will become more prevalent in crop genomics, especially as sequencing costs
continue to decrease and more bioinformatics tools are developed to simplify data
analysis. New long-read sequencing technologies such as Oxford Nanopore Tech-
nologies and Pacific Biosciences are also becoming more cost-competitive and less
error-prone [105, 106]. These sequencing platforms may help overcome the chal-
lenges associated with short reads, which particularly in complex plant genomes are
harder to map. We expect genotyping methods to profit more from long-read
sequencing through higher accuracy in the near future. These developments in
genotyping platforms and the reducing cost of sequencing will finally help bridge
the gap between basic science in plant genomics and applied plant breeding. On the
basis of genotyping data, plant breeders will be able to introgress complex agro-
nomic traits into crop germplasm, ensuring robust and nutrient-efficient crops in an
age of climate change and increasing food demand [107, 108].
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Linkage Mapping in Plants
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Abstract Quantitative trait loci (QTL) mapping in crop plants has now become a

common practice due to the advances made in the area of molecular markers as well

as that of statistical genomics. Consequently, large numbers of QTLs have been

identified in different crops for a variety of traits. Several computational tools are

now available that suit the type of mapping population and the trait(s) to be studied

for QTL analyses as well as the objective of the program. These methods are

comprised of simpler approaches like single marker analysis and simple interval

mapping to relatively exhaustive inclusive composite interval mapping and Bayes-

ian interval mapping. The relative significance of each of these methods varies

considerably. The progress made in the area of computational analysis involving

the identification of QTLs either through interval mapping or association mapping

is unprecedented, and it is expected that it will continue to evolve over the coming

years. An overview of the different methods of linkage-based QTL analysis is

provided in this chapter.
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1 Introduction

Understanding the genetics of quantitative traits has been a common focus over the

last few decades. Ever since Sax [1] demonstrated the use of a simple t-test for
finding the association between the seed weight and color of beans, methods of

mapping quantitative trait loci (QTL) in plants have evolved steadily over the years.

However, over last three decades there has been a renewed interest in studying the

genetics of these traits due to the availability of large numbers of genomic resources

including mapping populations, molecular markers, linkage maps, and computa-

tional tools. The progress in this area has been quite unprecedented. Consequently,

large numbers of statistical methods are now available that suit the nature of the

trait and mapping population as well as the objective of the research. As a result, it

has now become possible to rapidly identify QTLs as well as candidate genes

associated with individual traits. A large number of marker-trait associations

(MTAs) for different traits have also been identified in different crops, and several

of these have been deployed successfully in crop improvement programs through

marker-assisted selection (MAS) [2, 3]. Some of the QTLs identified over the years

have also been cloned successfully in different crop plants [2, 4, 5]. Similarly, the

literature regarding this aspect has also grown tremendously. Many of reviews

describing different methods of QTL analysis and its various dimensions, with

special emphasis on crop plants, have appeared over the years [2, 6–15]. A partial

list of references on statistical genetics is available at http://pages.stat.wisc.edu/

~yandell/statgen/reference/software.html.

In this chapter, the different methods of QTL analysis that are based on the

principle of linkage are discussed without describing much of the statistics involved

in it (Fig. 1). Comparison between these different methods, factors affecting them,

and the recent trends in the QTL analysis in crop plants are also discussed, along

with different computer programs available for analysis of the data. However, the

aspect of association mapping, which is based on the principle of linkage disequi-

librium (LD), is not covered here, but is available in another chapter in this book.

2 Methods of Linkage-Based QTL Mapping

The different methods of linkage-based QTL analysis can be divided into four main

categories depending upon the principle involved in it, and can be classified as

(1) single-marker analysis when linkage map is not available, (2) interval mapping

when linkage map is available, (3) meta-QTL analysis and (4) joint linkage and

association mapping. Accordingly, these different methods are discussed in the

following sections.

In plant-breeding experiments, data on a trait are recorded in various ways

(during growth stages, at maturity) either in a continuous scale or in several ordered

categories. Therefore based on the nature of trait being studied, the different

methods of QTL mapping have also been discussed in this section.
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2.1 Identification of Marker-Trait Association (MTA) When
Linkage Map Is Not Available: Single-Marker Analysis

During the initial years when limited numbers of marker resources were available

and statistical programs for development of linkage maps and interval mapping were

still in their infancy, MTAs were identified based on rather simple approaches. The

approach of bulk segregant analysis (BSA) proposed by Michelmore et al. [16] was

very commonly used. In this approach, molecular marker(s) showing polymorphism

between the parental genotypes of the mapping population and the two pools or

bulks of DNA samples differing in a trait of interest are first selected and subjected to

BSA for further selection of putative markers, which are then used for genotyping

the whole mapping population. The putative QTL can thus be detected from the

analysis of such markers following any of the single-marker analysis (SMA)

methods. It is still considered as a rapid approach (short cut) for detecting the linkage

of a marker with a QTL for a trait of interest. Several important QTLs that were

earlier identified using BSA were later confirmed following advance methods of

interval mapping. The advantage with this method is that the huge cost often

incurred in genotyping the entire population could be saved.

Linkage map available/
Interval mapping

Linkage map not 
available

SMA
t-test

ANOVA

Robustness of results

CIM /ICIM MTM MIM BIM

No co-factor 
selection

Co-factor 
selection 
possible

Analysis of 
correlated 

traits

Two-locus 
analysis

Use of prior 
information

Germplasm/ Natural 
populationGenotypic 

data Multiparental 
populations

Biparental population

GWAS

JLAM

eQTL
Gene 

expression 
data

Small/ large 
molecular 

weight 
compounds

mQTL/ pQTLSIM

Fig. 1 Pictorial representation of different methods of QTL analysis. It describes that when a

biparental population is genotyped with molecular markers and genotypic data is available but

linkage map is not available, one can use single marker analysis (SMA) (t-test or ANOVA) for

identification of marker-trait associations. When linkage map is available, one can analyze the data

through simple interval mapping (SIM), composite/inclusive composite interval mapping (CIM/

ICIM), multiple trait mapping (MTM), multiple interval mapping (MIM), Bayesian interval

mapping (BIM), expression QTL (eQTL) or metabolite or protein QTL (mQTL/pQTL). The

criteria used in each of these interval mapping approaches are given in the box below the method.

The relative robustness of results of these methods over one another is shown with arrow. When

germplasm/natural population is genotyped, one can perform genome wide association study

(GWAS), while multiparental populations enable joint linkage and association mapping (JLAM)

Trait Mapping Approaches Through Linkage Mapping in Plants 57



Although proposed more than two decades ago, the approach still remains

popular among the scientific community for quick analysis of the data. Large

numbers of studies have used the principle of BSA and identified important QTLs

for various traits in different crop plants. Recently, BSA was used for the identifi-

cation of major grain yield QTLs under drought stress in rice [17]. Similarly, in

another study using the whole genome-resequencing approach (also called

QTL-seq) in rice, two bulks comprising 20–50 individuals with extreme phenotypic

values were analyzed and QTLs for important agronomic traits were identified

[18]. Although initially proposed to be used in biparental populations, the principle

of DNA pooling from extreme genotypes for the rapid identification of QTLs has

also seen application in an association mapping experiment. Using this approach,

recently Kujur et al. [19] identified three major QTLs and candidate genes for seed

weight in chickpea. Because of its simple, time- and cost-effective features, BSA

still holds promise in the QTL-mapping programs.

Different methods commonly used for SMA include the t-test, ANOVA, and
simple regression [7, 20].

(i) t-test, ANOVA, or regression approach: One of the simplest ways to deter-

mine whether an association exists between a molecular marker and the trait of

interest is to conduct a single-factor analysis of variance (ANOVA). In this method

the marker and the trait of interest are considered as independent and dependent

variables, respectively. The marker-trait association (MTA) is considered only if

the marker under consideration shows a significant difference between the two

marker classes for the trait of interest. Based on this simple analysis, a QTL can be

inferred to be located adjoining to, or in the vicinity of, the identified marker.

Similarly, linear regression can be used for the identification of MTA and can help

in estimating the phenotypic variation arising from the QTL linked to the marker.

The advantage with this approach is that it is computationally very easy and can be

performed even when one does not have a linkage map available. Often such types

of situations arise when sufficient markers are not available, which limits the

construction of a linkage map. However, the major drawback with this method is

that the further a QTL is from a marker, the less likely it will be detected. Several

QTL mapping studies in crop plants have utilized this approach for the identifica-

tion of QTLs for a variety of traits. Many of these QTLs were subsequently

confirmed using the approach of interval mapping.

2.2 Identification of QTL When Linkage Map Is Available

The era of development of framework linkage maps and interval mapping in plants

began with the availability of interactive computer package MAPMAKER

[21, 22]. Ever since its availability, it has been by far the most used computer

program for the development of linkage maps. It not only provided the basis for

framework maps, but it also introduced the principle of simple interval mapping

(SIM) for the mapping of QTL by scanning an interval between each pair of
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markers in the genome. Not only did it facilitate QTL identification, but it also

addressed the shortcomings of SMA. During the 1990s, majority of the QTL

mapping studies were carried out using the principle of SIM. It was only when

the principle of combining IM with multiple regression was introduced [23–25] that

the problems of SIM were addressed. This method was later named “composite

interval mapping” (CIM; [25]). This was a significant development and changed the

way QTL mapping studies used to be carried out. CIM became the method of

choice and by far the most popular QTL mapping approach amongst the scientific

community. In order to avoid chances of false-positive associations and to increase

the efficiency of QTL detection, improvements in the form of empirical threshold

and permutation tests have also been proposed [26, 27]. Another method called

inclusive composite interval mapping (ICIM), which fixed the problem of arbitrary

cofactor selection in CIM, was later proposed by Li et al. [28]. The advantage with

this method is that it takes into account the significant cofactors and calculates their

effects using stepwise regression before IM is conducted and the effects are fixed

during genome scanning. This method has been found to improve QTL detection

efficiency over that of CIM and has been used in many studies. Interval mapping

can be accomplished using any of the available methods including SIM, CIM,

ICIM, and several variants proposed later. Comparison between different methods

of QTL analysis is given in Table 1.

Several variants of QTL mapping were proposed subsequent to CIM that offered

a better understanding of the genetics of complex traits. These include studies of

multiple marker intervals simultaneously and identification of epistatic

(interacting) QTLs (multiple interval mapping, MIM), analysis of multiple traits

simultaneously taking into account trait correlations, analysis of dynamic and

ordinal traits, and many more. These methods are discussed in greater detail in

the following sections. Some of these methods, despite once being considered

computationally intensive, are being used on a regular basis due to advances in

computational tools. Large numbers of QTL mapping studies using either of these

approaches have been conducted in different crop plants and it is not possible to

include all of them in this chapter.

2.3 Identification of Interacting or Epistatic QTLs:
Two-Locus Analysis

The principle of epistasis has been known to geneticists for a long time and its

importance in plant breeding has been well documented [29]. However, only QTLs

having a main effect (M-QTL) were used for identification in the majority of the

earlier studies (single-locus analysis). This was mainly because of the computa-

tional complexity involved with using multiple QTLs in the statistical model

[30]. This becomes more complex if higher order interactions are involved

[31]. It therefore did not allow the identification of interacting QTLs (QTL � QTL;
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two-locus analysis). It is also logical to think that there may be QTLs that may or

may not have a main effect, but can interact with another such QTL [32, 33]. These

types of interacting QTLs also contribute significantly to trait variation. Therefore,

it was also thought appropriate to put the principle of epistasis into QTL interval

mapping. Accordingly, multiple interval mapping (MIM) was proposed by Kao

et al. [34]. Similarly, in another study, a mixed model approach was proposed by

Wang et al. [30] that enabled the identification of not only QTL � QTL

(QQ) interactions, but also QTL � environment (QE), and QTL � QTL � environ-

ment (QQE) interactions. Very recently, a three-stage search strategy for the

mapping of epistatic QTLs has been proposed by Laurie et al. [35]. In this approach,

first the main effect QTLs are identified, which is followed by the identification of

epistatic QTLs interacting significantly with other QTLs, and, finally, new epistatic

QTLs are searched in pairs. These methods not only improved the precision of the

commonly used approach of CIM, but also increased the efficiency of

QTL-mapping experiments, as interacting QTLs (QQ and QE) that contribute

significantly to the total variation of the trait could be identified. These approaches

have also been included in the commonly used QTL-mapping software: QTL

Network and QTL Cartographer [30, 36]. A large number of studies involving

identification of such interactions have now been carried out in different crops

including rice [30, 37, 38], wheat [33, 39–41], maize [42, 43], and barley [44, 45]. It

was also shown that in wheat the proportion of variation explained by QQ and QE

or QQE varies from trait to trait [39].

Molecular marker-based QTL mapping studies have provided more evidence for

epistasis than the conventional biometric approaches of quantitative genetics.

Therefore, for long-term progress in plant breeding, one cannot ignore the impor-

tance of epistasis [29]. In order to completely dissect the trait in terms of its total

variation, it is imperative that these interactions, including higher order interac-

tions, be identified [31]. However, the methodology for addressing the issue of

higher order interactions is still underdeveloped.

2.4 Mapping QTL for Correlated Traits Simultaneously

It is a common practice to conduct QTL analysis separately for each trait. However,

it is often observed that some of the traits are significantly correlated with each

other. The ability to identify and use a common QTL governing more than one trait

can accelerate and increase the efficiency of MAS programs significantly. Multiple-

trait QTL analysis is QTL analysis applied to several traits simultaneously and can

help in the identification of pleiotropic QTLs. The importance of such pleiotropic

QTLs and multi-trait QTL analysis has earlier been advocated and also empirically

demonstrated [46–48]. Taking into account the correlation structure among the

traits, this type of analysis was shown to improve the statistical power of QTL

detection and the precision of parameter estimation in these studies. Later this

approach was also incorporated into the popularly used QTL analyses program
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“QTL Cartographer” and other software, and was also successfully used in wheat

[40, 49], sorghum [50], and other crops for different traits.

Recently an improvement over the existing method of multiple-trait analysis was

proposed by Silva et al. [51], which takes into account the genetic and environ-

mental correlations between traits and provides more details on the genetic archi-

tecture of complex traits by separating pleiotropic QTLs from closely linked

non-pleiotropic QTL and QE interactions. Further, it can also estimate the total

genotypic variance-covariance matrix between the correlated traits and decompose

it in terms of QTL-specific variance-covariance matrices. It is expected that this

method of multiple-trait multiple-interval mapping (MTMIM) of correlated traits

will be more rewarding and can enhance the speed of MAS.

2.5 Mapping QTL Using Prior Information: A Bayesian
Approach for QTL Mapping

In genetics, Bayesian analysis has been used for a long time and has now become an

integral part of the QTL mapping studies. It is always said that statistics deals with

uncertainty that is relative to the information we have [52]. In other words, the less

information, the more uncertainty, and vice versa. As opposed to the commonly

used methods of QTL analysis (SMA, SIM, and CIM), also called frequentist

methods, which depend on the fixed parameters, Bayesian analysis deals with the

uncertainty of the data based on prior information that is gathered and updated

regularly to draw the posterior distribution according to Bayes’ rule. It therefore
allows for easy and systematic incorporation of prior knowledge into the data

analysis [53]. Accordingly, a Bayesian model consists of three components:

(1) prior distribution, (2) conditional distribution, and (3) posterior distribution.

Although once considered to be computationally demanding, in recent years the

Bayesian application has become an integral part of not only QTL analysis exper-

iments, but also of association mapping [54, 55] and genomic selection

(GS) experiments [56, 57]. This all has been made possible due to advances in

the computational methodologies over the last few years. In one of its earliest

demonstrated uses in QTL mapping, Satagopan et al. [58] used the Bayesian

principle for estimating the locations and effect parameters for multiple QTLs

with pre-specified numbers of QTLs in a DH progeny of Brassica napus. Since
then, a large number of studies on crop plants involving the principles of Bayesian

statistics have been published and it has now become an almost integral part of any

analyses.

With the growing interest in this approach, new models were also proposed that

facilitated the analysis of binary and ordinal traits [59, 60], interacting QTLs/

epistasis [61–63], permutation testing [64], QE interactions [65], multiple QTL

analysis [66], multiple trait analysis [67, 68], and pleiotropy [69]. The complexity

of identifying epistatic QTLs, appropriate model selection, and many other issues
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that earlier plagued the efficient analysis of QTLs were addressed in these studies.

The only concern that might limit the use of the Bayesian approach in analysis is

that different conclusions can be drawn by different researchers if they use different

priors in their analysis [2, 70]. Notwithstanding this, Bayesian statistics is the

preferred choice of the statistician and will be used for a long time in all aspects

of genetic analysis.

2.6 The Analysis of Traits for Which Data Are Recorded
Periodically: QTL Mapping for Dynamic Traits

In majority of the QTL mapping studies, the data on a quantitative trait measured at

a fixed time point or stage of growth/ontogenesis are used for analysis. This way of

analyzing the data can identify QTLs and estimate their effects, which are accu-

mulated over time from the beginning of growth until the time of actual observa-

tion. However, it is a well-known fact that the development of a trait is an end result

of differential activities of many related QTLs, which express during the life cycle

of the crop. This is because the developmental traits are under the control of genes,

which are expressed at specific stages of development in response to the existing

environmental conditions. Therefore, the traits for which phenotypic values change

over time during the period of growth are called dynamic traits. Wu et al. [71] called

the QTL mapping of such traits time-related mapping (TRM), as opposed to time-

fixed mapping (TFM) for the traits for which the data are recorded at a fixed time or

stage. Later, Wu and Lin [72] termed this aspect “functional mapping.” The

advantage with this approach is that recorded observations of the same individuals

over different developmental stages are a form of replication that can increase the

statistical power of QTL detection. Besides this, another important advantage of

this approach is that the stage of growth at which the heritability of the trait is

highest can also be identified. The QTLs identified at this stage will be more useful

for a breeding program involving MAS [73]. One of the very common examples of

this is plant height in crops, for which the differences are visible during early

growth but are neutralized/minimized towards maturity.

Several QTL mapping studies have been carried out for dynamic traits in

different crop plants and have reported some common as well as growth-stage

specific QTLs. Earlier this approach was successfully used in rice to identify QTLs

associated with increased grain filling percentage per panicle [74]. Similarly,

dynamic QTLs for seed reserve utilization were identified during three germination

stages in rice [75]. It was observed that more QTLs express at the late germination

stage. Osman et al. [76] used this approach along with conditional analysis for

growth and yield traits under submergence conditions in maize and identified some

common and some stage-specific QTLs. Similarly, in a recent study in triticale a

population comprised of 647 doubled haploid lines derived from four families were

phenotyped for plant height using a precision phenotyping platform at multiple time
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points. The study identified main effect and epistatic QTLs for plant height for each

of the time points. Some of these QTLs were detected at all time points whereas

others were specific to particular developmental stages, while the contribution of

the QTL to the genotypic variance of plant height also varied with time

[77]. Recently, a Bayesian nonparametric approach was also proposed for the

analysis of dynamic traits [78], which offers advantages over the existing methods

of analysis. The only limitation of this method is that it cannot be used for traits on

which periodical observations are not possible (for example, grain protein content,

grain yield, etc.).

2.7 Analysis of Traits for Which Data Are Scored
on a Numeric Scale: QTL Mapping for Ordinal Traits

QTL analysis of the trait is based on the data that are recorded on a continuous scale

with the assumption that they show normality. However, in nature, many quantita-

tive traits in plants like disease resistance or quality parameters are recorded on a

certain scale in several ordered categories based on intensity or severity. Although

these traits are quantitative in nature, the data do not show continuous variation and

therefore contain less information. These types of traits are called ordinal traits, and

appropriate statistical treatment is required to deal with this type of trait distribu-

tion. Nevertheless, in many earlier published reports of QTL mapping, data on

ordinal traits was analyzed in the same way as that of continuous traits. One of the

reasons attributed for treating these traits similarly in earlier studies was partly the

lack of availability of statistical tools to deal with these traits. However, QTL

mapping methods for dealing with ordinal traits have evolved over the years,

with more emphasis on traits studied in humans than in plants.

Earlier methods for QTL analysis of ordinal traits in back-crossed populations

using the general linear model (GLM) were proposed by Hackett and Weller [79],

and Xu and Atchley [80], which was later extended to four-way crosses by Rao and

Xu [81]. An improvement over the existing GLM method was later proposed by Xu

and Xu [82] in the form of a multivariate model to deal with the ordinal traits based

on the EM algorithm. Subsequently, the principle of MIM described earlier for

continuous traits was also extended to ordinal and binary traits for the identification

of multiple QTL effects and epistasis [83]. This method is also included in the

popular QTL analysis program QTL Cartographer. More recently, another

approach based on an efficient hierarchical GLM was proposed for the identifica-

tion of main-effect QTL and QE interactions governing ordinal traits in AM

experiments [84].
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2.8 Meta-QTL Analysis

During the last two decades, there has been a surge in the number of QTL mapping

studies in different crop plants, which has resulted in several thousand published

articles (source, Google Scholar). It is also seen that QTL mapping for the same

traits are carried out in different genetic backgrounds in the same crop, leading to

the identification of several QTLs. It thus necessitates the integration of QTL

mapping results from these individual experiments performed on the same crop to

identify common as well as novel loci/alleles underlying complex traits, for their

effective use in crop improvement programs [2]. Meta-analysis of QTLs is an

important approach that integrates information frommultiple QTL-mapping studies

and allows greater statistical power for QTL detection and more precise estimation

of their genetic effects. Besides this, meta-QTL analysis can help to refine the

genomic regions of interest frequently identified in different studies, and can

provide the closest flanking markers [85]. Hence, a meta-analysis can be more

rewarding than those of individual studies and can give greater insight into the

genetic architecture of complex traits [86].

Because of its ability to integrate results from several individual QTL mapping

studies, this approach has been used in many crops, and several meta-QTLs have

also been identified. In one of the first examples, Chardon et al. [87] used the

approach of Goffinet and Gerber [88] to study the genetic basis of flowering time in

maize by integrating results of several mapping studies. From the total of 313 QTLs

used for the study, they identified a total of 62 consensus QTLs and also reported a

twofold increase in the precision of QTL position estimation from the original one.

Several such studies were later carried out in different crops, including: disease

resistance in cocoa [89]; fiber quality, yield, and biotic and abiotic stress tolerance

in cotton [90, 91]; drought tolerance in rice [92]; late blight resistance and plant

maturity traits in potato [85]; root genetic architecture in rice [93] and maize [94];

and protein concentration in soybean [95]. A list of several such studies carried out

in cereals is also given in Gupta et al. [2]. These studies have also been made

computationally possible due to the availability of software tools like BioMercator

[96] and MetaQTL [97].

2.9 Mapping of QTLs for Gene Expression and for Large
and Small Molecular Weight Compounds: The Concept
of Genetical Genomics

As is the case with many physiological traits, variation in gene expression

(m-RNA), as well as that of large and small molecular weight compounds (protein

or metabolite), often shows a quantitative distribution, thereby allowing its genetic

dissection using the commonly used methods of QTL mapping [98]. Earlier, the

term genetical genomics was restricted only to the mapping of expression QTL
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(eQTL) [99]. However, the last decade has seen tremendous progress in terms of

cost-effective high-throughput genotyping techniques, which made it possible to

study the complexity of traits by measuring not only gene expression, but also

thousands of proteins and metabolites to map eQTL, protein QTL (pQTL), and

metabolite QTL (mQTL), respectively [100–102]. In the experiments involving

genetical genomics, data on gene expression or individual proteins or metabolites

can be used as a phenotype in QTL analysis. The large-scale data on gene expres-

sion (genetical genomics), if combined with genetics, can help in connecting

phenotypic variation to genotypic diversity and can lead to the identification of

genetic regulatory loci, and ideally genes, which explain the observed variation

[98]. The rationale behind this approach is that a specific gene’s expression level is
easier to quantify than the more complex developmental or physiological traits.

Thus, if the loci governing differential gene expression patterns is identified and

compared with that of the loci controlling a specific physiological trait, one can

have better understanding of the complex traits [103]. It is thus obvious that

integration of omics data in genetic studies can reduce the number of candidate

genes for a given QTL from hundreds to a sizeable list [98].

The earlier studies on genetical genomics predominantly utilized microarrays for

the analysis of mapping populations in a variety of species. However, experiments

involving microarrays are very expensive, thereby limiting their use in all such

studies. Metabolomics platforms on the other hand are much cheaper per sample

than transcriptomics, enabling large populations to be studied with sufficient

replication for moderate-to-low heritability traits. Moreover, most metabolomics

platforms are higher-throughput than transcriptomics, allowing for rapid analysis.

Therefore, in recent years there are increasing numbers of reports pertaining to

mQTL analysis in plants. Some of them have been described elsewhere ([2, 104];

also see Alseekh et al. [105]). Although earlier these studies were more common in

model species like Arabidopsis ([106] and references therein [107]), they are also

being carried out in different crops including potato [108], brassica [109], tomato,

and wheat. Very recently, a comprehensive mQTL analysis was carried out in

tomato, and a total of 679 mQTLs for secondary metabolism in tomato fruit

pericarp were detected in 76 introgression lines [105]. Similarly, in wheat, mQTL

analysis was combined with that of QTL analysis for agronomic traits in a doubled

haploid population [110]. These studies are not limited to biparental populations,

but are also becoming very popular in AM experiments (for details, see Luo [111]).

Genetical genomics has offered lots of understanding about the influence of

genetic factors on a biological system. However, as like any quantitative trait,

molecular networks are also influenced by environmental conditions. Therefore,

for a better and complete understanding of these networks, it is necessary that this

interaction component (genotype � environment) is also studied. Accordingly, a

modified concept called generalized genetical genomics was proposed by Li et al.

[112], which combines both the genetic as well as carefully chosen environmental

perturbations, to study the plasticity of molecular networks. This will help in

understanding how a genotype responds to different environmental conditions.

The utility of this approach was demonstrated in Arabidopsis by identifying
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G � E interactions in the metabolism of germinating seeds [113]. Although these

studies offer lots of information, the number of such studies in crop plants are not

many and may be due to the cost associated with such experiments [113].

2.10 Identification of QTLs Using Multiparental Mapping
Populations: Joint Linkage-Association Mapping

Generally, QTL mapping is carried out using a biparental mapping population for

which parental genotypes exhibit contrasting phenotypes for the trait of interest.

However, it is well recognized that such a mapping population will segregate for

only those alleles/QTLs for which the parental genotypes differ. This leaves out

many important QTLs that are controlling the trait but are not detected just because

the parental genotypes do not segregate for them. Therefore, another important

approach based on the principle of LD called association mapping (AM), also

called genome wide association studies (GWAS), was suggested. Large numbers

of studies involving AM have been published in different crop plants and are

beyond the scope of this chapter. For further details, readers are referred to another

chapter on this aspect in this book as well as detailed reviews [114–116]. It was also

realized that linkage-based interval mapping and LD-based AM have their own

advantages and limitations when used independently and therefore it was proposed

to integrate these two approaches into one approach called joint linkage-association

mapping (JLAM) [117]. This type of analysis has been facilitated by the availability

of next-generation multiparental mapping populations like Multi-parent Advanced

Generation Intercross (MAGIC) populations, Nested Association Mapping (NAM)

populations, Multiline Cross Inbred Lines (MCILs), and Recombinant Inbred

Advanced Intercross Lines (RIAILs) [2, 118].

These populations have been developed in many important crops including

wheat, rice, maize, chickpea, pigeonpea, peanut, barley, oat, and tomato (for

details, see review by [119, 120]). Although it may not be feasible to develop

multiparental populations in all crops, alternatively one can perform JLAM using a

number of biparental populations as well as an association-mapping population

genotyped with a common set of markers. Several variants of JLAM were later also

proposed including that for the analysis of multi-trait data [121–123]. The utility of

JLAM was shown by Lu et al. [124] in maize. Using the NAM population, they

identified 18 new QTLs and candidate genes for drought tolerance, which were

earlier not identified by either of the two methods individually. Recently, in

rapeseed, this method has identified two major pleiotropic QTLs for seed weight

and silique length [125]. Another advantage of using JLAM is that it can effectively

address the issue of rare alleles, which is a matter of concern in any AM study

[114]. Looking into its important features, this method will be used for a long time

in many more crops.
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2.11 Quantitative Resistance Loci (QRLs) Governing
Quantitative Disease Resistance (QDR)

It is now well recognized that disease resistance in crop plants is quantitative in

nature, involving major as well as minor QTLs. Accordingly, they are described

either as R genes (having major effect) or quantitative resistance loci (QRL), which

governs quantitative disease resistance or QDR in crop plants [126]. While dealing

with QRL, the data on QDR are analyzed in the same way as that of any QTL

analysis experiment for any morphologic or agronomic trait. It is therefore unnec-

essary to make a distinction between QRLs and QTLs. This is also evident from the

fact that in several earlier studies involving QDR, the term QTL was used instead of

QRL. In the last few years, large numbers of these so-called QRLs have already

been identified in different crop plants including cereals and legumes, which

subsequently led to map-based cloning of some of these QRLs. A partial list of

such cloned QRLs in cereals is available in Gupta et al. [2].

In recent years advances in whole genome sequencing accompanied by the

availability of high-throughput marker approaches like GBS has brought down

the cost of genotyping drastically. These advances in genotyping technologies, if

accompanied with precise and high-throughput phenotyping for QDR, will defi-

nitely facilitate the elucidation of complex forms of disease resistance and QRLs

associated with them in crop plants [127–129]. It is expected that the knowledge

gained from detailed understanding of QDR and that of associated QRLs will help

in breeding varieties for disease resistance in crop plants in coming years. An

optimal strategy is therefore needed to effectively and efficiently use the identified

QRLs in breeding programs aimed at disease resistance [128, 129].

Some of the earlier successful examples of MAS for QRLs include: (1) MAS for

single QRL for Fusarium head blight (FHB) in wheat [130], leaf rust in barley

[131], white mold in common bean [132]; (2) multiple QRLs (pyramiding or

stacking) for stripe rust in barley [133], common bacterial blight (CBB) in common

bean [134], FHB in wheat ([135]; for a review, see Miedaner and Korzun [136]),

root and stem rot in pepper [137]; and (3) QRLs plus qualitative resistance genes for

stripe rust in barley [138], bean golden mosaic virus (BGMV) in common bean

[139], potato virus Y in pepper [140], and many others.

2.12 Discovery and Introgression of Useful QTLs from Wild-
Type or Unadapted Germplasm: Advanced Backcross
QTL Analysis

One of the reasons often attributed to the limited use of identified QTLs in crop

improvement programs is that QTL identification and varietal development are

considered as separate activities. In order to deal with this issue and to harness the

potential of the wild/unadapted germplasm in breeding programs, Tanksley and
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Nelson [141], while working on tomato, proposed a novel method of QTL mapping

called advanced backcross QTL (AB-QTL) analysis. The important feature of this

method is that one can simultaneous detect and transfer useful QTLs from the wild/

unadapted relatives to a popular cultivar. The backcross population (BC2, BC3) is

developed from a cross between the superior cultivar and a wild species carrying

the desirable trait, and molecular markers are used to monitor the transfer of

desirable QTLs.

It is a means of reducing the number of donor parent alleles present in any given

backcross inbred line. The reason for delaying QTL analysis until an advanced

generation like BC2, BC3 is that it allows the phenotypic selection to reduce the

frequency of deleterious alleles and at the same time favorable donor alleles at QTL

can be more easily recognized. Since its demonstrated success in tomato, it has been

used in several crops including wheat, barley, and rice for the transfer of desirable

QTLs for a variety of traits from the wild/unadapted germplasm. Details of these

studies are readily available in several reviews and book chapters. In recent years,

its application has been seen in barley for proline accumulation and leaf wilting

under drought stress conditions [142]; in rice for salinity tolerance [143], grain

shape [144], and reproductive stage drought resistance [145]; and in peanut for

resistance to root knot nematode [146]. Having practical significance in breeding

programs, this method is going to be used for a long time.

3 Factors Affecting Results of QTL Mapping in Plants

Several factors that influence the results of any QTL-mapping experiment have

been widely discussed in the literature either using computer simulations or empir-

ical data (e.g., [8, 147–149]). Important factors amongst them are trait heritability,

nature and size of mapping population, number of markers, and method of analysis

(Table 2). All these factors are related to each other. For example, a mapping

population of an average size of n ¼ 200 will yield a low-density linkage map,

which in turn will limit the precision and resolution of the QTL so identified. The

end result will be that the estimates of QTL effects will be biased as QTLs with

small effects will not be identified and those that are closely linked will not be

separated. These factors are discussed in more detail in the following sections.

There are other issues that should be considered before initiating the QTL-mapping

experiment, and which have been discussed in greater detail by Wurschum

et al. [150].

3.1 Heritability of the Trait

It is a well-known fact that the majority of the quantitative traits exhibit poor

heritability, which makes it difficult to detect a minor effect QTL with a smaller
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population size and limited number of markers. Another issue with low heritability

traits in QTL mapping is that QTL effects are always overestimated. This has been

demonstrated empirically as well as by using simulations in several studies.

Although heritability of the trait cannot be increased, scoring of the data in dynamic

fashion wherever possible can help in identifying the correct stage of crop growth

where heritability for the given trait is highest. This can also help in identifying

novel loci that are specific to the growth stage and often escape detection. Similarly,

the mapping population can also be evaluated at different locations and over the

years for the trait of interest to resolve location and year effects.

3.2 Size and Nature of Mapping Population

Often, small mapping populations are used in linkage mapping experiments.

Although one can develop a framework linkage map with smaller populations, it

may not be suitable for QTL mapping. Therefore, the use of larger populations has

always been appreciated for bringing precision in the QTL mapping studies. It has

been shown that with a population size of >200, methods like ICIM achieve

unbiased estimations of QTL position and effect. On the contrary, when using a

smaller population size, there is a tendency for the QTL to be located towards the

center with overestimated QTL effects [148]. Earlier also it was shown that

statistical power, QTL effect estimates, and precision of QTL localization can be

improved from larger populations [147, 151, 152]. Therefore, sufficiently large

Table 2 Factors influencing results of QTL mapping using biparental populations

Factor Details

Size of mapping population More the number of individuals in the population, more

accurate will be the linkage map and more accuracy in the

QTL results; chances of detecting QTL with minor effect is

high with larger population size

Nature of mapping population F2 < BC < DH � RILs

Density and coverage of markers

in the linkage map

More the markers on the map, less the interval distance

between two markers and more accuracy in the results

Statistical method used SMA < SIM < CIM < ICIM � BIM

Heritability of the trait More the heritability of the trait, more the chances of QTL

detection

Significance criteria used More false positives with arbitrary significance criteria;

robustness and accuracy increases with permutation test and

threshold values

Effect of environment If the effect size of the QTL is small, it may not be detected

in all the environments

Experimental error Precision in phenotyping is crucial; errors in scoring of

genotypic data as well as missing marker data can affect the

order of markers on the linkage map and can affect the

estimated QTL location
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populations are needed for QTL mapping studies [29]. However, population size

cannot be arbitrarily increased due to increasing costs associated with phenotyping

all the lines. This issue can be overcome to some extent by using a large number of

markers and high-density marker maps that can increase the precision of QTL

mapping.

3.3 Number of Markers in the Linkage Map

The recent advances in cost-effective high-throughput genotyping techniques have

made it possible to generate thousands of data points in several crops. These

advances are also being effectively utilized in several GWAS and GS experiments.

However, in the majority of the earlier studies on QTL mapping, linkage maps were

developed using a rather limited number of markers. Using computer simulations, it

was earlier shown that a marker density of 10–20 cm is sufficient for precise QTL

detection and that there is no added advantage from higher marker densities

[147, 153]. It is therefore often debated whether the biparental QTL mapping

studies would benefit from high-density maps. Contrary to this, later it was

shown that high-density maps could increase the probability and precision of

QTL detection between two recombination breakpoints and tightly linked markers

could be identified [154–156]. Moreover, two tightly linked QTLs can also be

separated using high-density maps [148]. However, in a recent study based on a

computer simulation as well as on experimental data of DH populations in maize, it

was shown that high-density maps neither improved the QTL detection power nor

the predictive power for the proportion of genotypic variance explained [157]. Fur-

thermore, they observed that the precision of QTL localization, the precision of

effect estimates for small- and medium-sized QTLs, as well as the power to resolve

closely-linked QTLs profited from an increase in marker density from 5 to 1 cM.

However, from an MAS point of view, precise estimates of QTL effects are more

desirable and these relevant parameters may outweigh the higher costs of high-

density genotyping [157].

3.4 Method of Analysis

Different methods of QTL mapping have been discussed in the earlier sections. The

choice of method for QTL analysis also influences the outcome of the study. For

example, ICIM has been found to be more powerful in separating tightly linked

QTLs than the commonly used IM [148]. As has been discussed, the importance of

interacting QTLs (QQ, QE, and QQE) cannot be underestimated. Therefore, while

conducting any QTL analysis, it is necessary to choose the appropriate method that

will not only identify main effect QTLs, but also different interactions with higher

precision.
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4 Computer Programs for QTL Analysis

Over the years, several QTL mapping approaches have been proposed, making it

possible to identify thousands of marker-trait associations in crop plants. Credit for

these studies also goes partly to the availability of different computer programs that

facilitated these studies in a rapid manner. Since the development of the popular

computer program MAPMAKER/QTL [158], large numbers of such programs are

now available that can be efficiently used for the identification of QTLs using either

biparental QTL mapping or association mapping. The majority of these programs

are available free of cost. In recent years a shift has also been seen from the use of

standalone programs to open-source environments like R. It can run on a variety of

platforms and has the same ability as statistical computing and graphics (http://

www.r-project.org/). A comprehensive, though not exhaustive, list of different

types of software that can perform QTL analysis, along with their features, are

given in Table 3. Similarly, a detailed list of computer programs available for AM is

given in Gupta et al. [114].

5 Conclusion and Outlook

During the last two decades or more, significant progress has been witnessed in the

studies involving complex quantitative traits in crop plants. This has been facili-

tated by the availability of the cost-effective high-throughput genotyping tech-

niques as well as the constantly improving area of statistical genomics. Several of

the identified QTLs for various traits have been, and are being, successfully used in

the crop improvement programs following MAS. Starting from SMA and SIM to

ICIM, and more recently BIM, QTL-mapping approaches have evolved over the

years. These advances not only improved the understanding and precision of the

QTL-mapping results but also the outcome of the MAS program. The increasing

emphasis on the identification of interacting QTLs (QQ, QE, and QQE) has also

provided a new dimension to the traditional QTL mapping studies. With growing

interest in the area of genetical genomics involving eQTL, pQTL, and mQTL,

coupled with generalized genetical genomics, it is expected that a better under-

standing about the biosynthetic pathways underlying complex traits will be gained.

In the future, the approaches of biparental QTL mapping as well as of

AM/GWAS, either performed independently or in combination, will be used in

many more crops using the recent advances in genomics. Methods like JLAM have

the ability to harvest the benefits of both the approaches together as has been

successfully demonstrated in maize [150, 181]. Similarly, the recent advances in

the area of GS will address the issue of minor QTLs by way of considering the

effects of all the markers simultaneously. Thus, it is evident that the progress made

in the area of QTL mapping is huge and will be further benefited by recent advances
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Table 3 List of computer programs available for QTL analysis

Program Important features Reference

SAS program ANOVA Knapp and

Bridges [159]

MAPMAKER/

QTL

SIM, DOS based Lincoln et al.

[158]

MQTL CIM Tinker and

Mather [160]

PLABQTL SIM, CIM, Epistatic QTL Utz and

Melchinger

[161]

QGene SIM, CIM Nelson [162]

SOLAR Almasy and

Blangero [163]

Multimapper BIM Sillanpaa and

Arjas [164]

BQTL Bayesian estimation, IM, CIM, runs on R Berry [165]

MultiQTL SIM, MIM www.multiqtl.

com

MapManager

QTX

SIM, CIM Manly and

Olson [166]

QTL network CIM, Epistatic QTL Wang et al. [30]

Pseudomarker Analysis of eQTL Sen and Chur-

chill [167]

QTL Express SIM, CIM Seaton et al.

[168]

R/qtl SIM, CIM, Epistatic QTL Broman et al.

[169]

BioMercator Meta-analysis Arcade et al.

[96]

GridQTL Linkage-Disequilibrium-Linkage-Analysis (LDLA) tool,

epistasis

Seaton et al.

[170]

Genotype matrix

mapping

SIM, CIM, Epistatic QTL Isobe et al.

[171]

IciMapping ICIM, epistasis Li et al. [28]

MetaQTL Meta-analysis Veyrieras et al.

[97]

QTLBIM Map multiple interacting QTL, can handle continuous,

binary and ordinal traits, R based

Yandell et al.

[172]

FlexQTL Single bi-parental mapping population up to complex

multi-generations pedigrees, Bayesian analysis

Bink et al. [173]

QTLMap Linkage analysis and linkage disequilibrium linkage

analysis (LDLA); eQTL, single and multiple trait analysis

http://www.

inra.fr/qtlmap

MAPQTL 6 SIM, CIM van Ooigen

[174]

QTLMiner Discovery of candidate gene within a QTL region Alberts and

Schughart [175]

MapDisto Linkage mapping; ANOVA Lorieux [176]

(continued)
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in computational tools. The success will translate into the crop-improvement pro-

grams of the future.

References

1. Sax K (1923) The association of size differences with seed-coat pattern and pigmentation in

Phaseolus vulgaris. Genetics 8:552–560
2. Gupta PK, Kulwal PL, Mir RR (2013) QTL mapping: methodology and applications in cereal

breeding. In: Gupta PK, Varshney RK (eds) Cereal genomics II. Springer, Dordrecht, pp

275–318

3. Kulwal PL, Thudi M, Varshney RK (2012) Genomics interventions in crop breeding for

sustainable agriculture. In: Meyers RA (ed) Encyclopedia of sustainability science and

technology, vol I. Springer, New York, pp 2527–2540

4. Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future

challenges. Trends Plant Sci 10:297–304

5. Wang M, Wang S, Xia G (2015) From genome to gene: a new epoch for wheat research?

Trends Plant Sci 20:380–387

6. Asins M (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant

Breed 121:281–291

7. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers,

quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement:

the basic concepts. Euphytica 142:169–196

8. Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental

populations. Nat Rev Genet 3:43–52

9. Frommlet F, Bogdan M, Ramsey D (2016) Statistical methods of QTL mapping for exper-

imental populations. Phenotypes and genotypes. Springer, London, pp 73–104

10. Gupta PK, Kulwal PL (2006) Methods of QTL analysis in crop plants: present status and

future prospects. In: Trivedi PC (ed) Biotechnology and biology of plants. Avishkar Pub-

lishers, Jaipur, pp 1–23

11. Hackett CA (2002) Statistical methods of QTL mapping in cereals. Plant Mol Biol

48:585–599

12. Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet

33:303–339

Table 3 (continued)

Program Important features Reference

Windows QTL

Cartographer

SIM, CIM, MIM, multi-trait IM, BIM, Ordinal trait Wang et al. [36]

MAPfastR QTL mapping from inbred and outbred line-crosses; epi-

static interactions, R based

Nelson et al.

[177]

Dslice Dependency detection between a categorical variable and

a continuous variable, R based

Ye et al. [178]

EBEN Multiple QTL mapping, Bayesian mapping, R based Huang et al.

[119, 120]

FastQTL cis-QTL mapping strategy Ongen et al.

[179]

Solarius Linkage and association mapping, R based Ziyatdinov et al.

[180]

74 P. L. Kulwal



13. Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary

biology. Nat Rev Genet 2:370–381

14. Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

15. Xu Y (1997) Quantitative trait loci: separating, pyramiding, and cloning. Plant Breed Rev

15:85–139

16. Michelmore WR, Paran I, Kesseli RV (1991) Identification of marker linked to disease

resistance genes by bulked segregant analysis, a rapid method to detect the markers in specific

genetic region by using the segregating population. Proc Natl Acad Sci U S A 88:9828–9832

17. Vikram P, Swamy BM, Dixit S, Ahmed H, Cruz MS, Singh AK, Ye G, Kumar A (2012) Bulk

segregant analysis: “an effective approach for mapping consistent-effect drought grain yield

QTLs in rice”. Field Crops Res 134:185–192

18. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H,

Tamiru M, Takuno S, Innan H (2013) QTL-seq: rapid mapping of quantitative trait loci in rice

by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

19. Kujur A, Bajaj D, Saxena M, Tripathi S, Upadhyaya H et al (2014) An efficient and cost-

effective approach for genic microsatellite marker-based large scale trait association map-

ping: identification of candidate genes for seed weight in chickpea. Mol Breed 34:241–265

20. Broman KW (2001) Review of statistical methods for QTL mapping in experimental crosses.

Lab Anim 30:44–52

21. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using

RFLP linkage maps. Genetics 121:185–199

22. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987)

MAPMAKER: an interactive computer package for constructing primary genetic linkage

maps of experimental and natural populations. Genomics 1:174–181

23. Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

24. Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping

quantitative trait loci. Proc Natl Acad Sci U S A 90:10972–10976

25. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

26. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping.

Genetics 138:963–971

27. Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative

character. Genetics 142:285–294

28. Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval

mapping. Genetics 175:361–374

29. Holland JB (2001) Epistasis and plant breeding. Plant Breed Rev 21:27–92

30. Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and

QTL � environment interactions by mixed linear model approaches. Theor Appl Genet

99:1255–1264

31. Pang X, Wang Z, Yap JS, Wang J, Zhu J, Bo W, Lv Y, Xu F, Zhou T, Peng S, Shen D (2013)

A statistical procedure to map high-order epistasis for complex traits. Brief Bioinform

14:302–314

32. Jannink JL, Jansen R (2001) Mapping epistatic quantitative trait loci with one-dimensional

genome searches. Genetics 157:445–454

33. Kulwal PL, Singh R, Balyan HS, Gupta PK (2004) Genetic basis of pre-harvest sprouting

tolerance using single-locus and two-locus QTL analyses in bread wheat. Funct Integr

Genomics 4:94–101

34. Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci.

Genetics 152:1203–1216

35. Laurie C, Wang S, Carlini-Garcia LA, Zeng Z-B (2014) Mapping epistatic quantitative trait

loci. BMC Genet 15:112

36. Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL Cartographer 2.5. Department of

Statistics, North Carolina State University, Raleigh. http://statgen.ncsu.edu/qtlcart/

WQTLCart.htm

Trait Mapping Approaches Through Linkage Mapping in Plants 75

http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
http://statgen.ncsu.edu/qtlcart/WQTLCart.htm


37. Huang A, Xu S, Cai X (2014) Whole-genome quantitative trait locus mapping reveals major

role of epistasis on yield of rice. PLoS One 9:e87330

38. Sandhu N, Singh A, Dixit S, Cruz MT, Maturan PC, Jain RK, Kumar A (2014) Identification

and mapping of stable QTL with main and epistasis effect on rice grain yield under upland

drought stress. BMC Genet 15:63

39. Kulwal PL, Kumar N, Kumar A, Gupta RK, Balyan HS, Gupta PK (2005) Gene networks in

hexaploid wheat: interacting quantitative trait loci for grain protein content. Funct Integr

Genomics 5:254–259

40. Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL analysis for yield and yield

contributing traits in two mapping populations of bread wheat. Mol Breed 19:163–177

41. Xing W, Zhao H, Zou D (2014) Detection of main-effect and epistatic QTL for yield-related

traits in rice under drought stress and normal conditions. Can J Plant Sci 94:633–641

42. Berger DK, Carstens M, Korsman JN, Middleton F, Kloppers FJ, Tongoona P, Myburg AA

(2014) Mapping QTL conferring resistance in maize to gray leaf spot disease caused by

Cercospora zeina. BMC Genet 15:60

43. Ku LX, Sun ZH, Wang CL, Zhang J, Zhao RF, Liu HY, Tai GQ, Chen YH (2012) QTL

mapping and epistasis analysis of brace root traits in maize. Mol Breed 30:697–708

44. Bocianowski J (2013) Epistasis interaction of QTL effects as a genetic parameter influencing

estimation of the genetic additive effect. Genet Mol Biol 36:93–100

45. Bocianowski J (2014) Estimation of epistasis in doubled haploid barley populations consid-

ering interactions between all possible marker pairs. Euphytica 196:105–115

46. Jiang C, Zeng Z-B (1995) Multiple trait analysis of genetic mapping for quantitative trait loci.

Genetics 140:1111–1127

47. Korol AB, Ronin YI, Kirzhner VM (1995) Interval mapping of quantitative trait loci

employing correlated trait complexes. Genetics 140:1137–1147

48. Korol AB, Ronin YI, Nevo E, Hays PM (1998) Multi-interval mapping of correlated trait

complexes. Heredity 80:273–284

49. Kulwal PL, Roy JK, Balyan HS, Gupta PK (2003) QTL analysis for growth and leaf

characters in bread wheat. Plant Sci 164:267–277

50. Apotikar DB, Venkateswarlu D, Ghorade RB, Wadaskar RM, Patil JV, Kulwal PL (2011)

Mapping of shoot fly tolerance loci in sorghum using SSR markers. J Genet 90:59–66

51. Silva LDCE, Wang S, Zeng Z-B (2012) Multiple trait multiple interval mapping of quanti-

tative trait loci from inbred line crosses. BMC Genet 13:67

52. Chen Z (2013) Statistical methods for QTL mapping. CRC Press, Boca Raton, pp 1–308

53. Beaumont MA, Rannala B (2004) The Bayesian revolution in genetics. Nat Rev Genet

5:251–261

54. Li J, Das K, Fu G, Li R, Wu R (2011) The Bayesian lasso for genome-wide association

studies. Bioinformatics 27:516–523

55. Stephens M, Balding DJ (2009) Bayesian statistical methods for genetic association studies.

Nat Rev Genet 10:681–690
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Trait Mapping Approaches Through
Association Analysis in Plants

M. Saba Rahim, Himanshu Sharma, Afsana Parveen, and Joy K. Roy

Abstract Previously, association mapping (AM) methodology was used to unravel
genetic complications in animal science by measuring the complex traits for candi-
date and non-candidate genes. Nowadays, this statistical approach is widely used to
clarify the complexity in plant breeding program-based genome-wide breeding
strategies, marker development, and diversity analysis. This chapter is particularly
focused on methodologies with limitations and provides an overview of AM models
and software used up to now. Association or linkage disequilibrium mapping has
become a very popular method for discovering candidate and non-candidate genes
and confirmation of quantitative trait loci (QTL) on various parts of the genome and
in marker-assisted selection for breeding. Previously, various QTL investigations
were carried out for different plants exclusively by linkage mapping. To help to
understand the basics of modern molecular genetic techniques, in this chapter we
summarize previous studies done on different crops. AM offers high-resolution
power when there is large genotypic diversity and low linkage disequilibrium
(LD) for the germplasm being investigated. The benefits of AM, compared with
traditional QTL mapping, include a relatively detailed mapping resolution and a far
less time-consuming approach since no mapping populations need to be generated.
The advancements in genotyping and computational techniques have encouraged the
use of AM. AM provides a fascinating approach for genetic investigation of QTLs,
due to its resolution and the possibility to study the various genomic areas at the
same time without construction of mapping populations. In this chapter we also
discuss the advantages and disadvantages of AM, especially in the dicotyledonous
crops Fabaceae and Solanaceae, with various genome-size reproductive strategies
(clonal vs. sexual), and statistical models. The main objective of this chapter is to
highlight the uses of association genetics in major and minor crop species that have
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trouble being analyzed for dissection of complex traits by identification of the factor
responsible for controlling the effect of trait.

Graphical Abstract

Keywords Association mapping (AM), Linkage disequilibrium (LD), Marker-
assisted selection (MAS), Quantitative trait loci (QTLs)
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1 Introduction

Population genetics was derived from Mendel’s theory in 1900 and explains the
concept of heredity in science. Further, it explains that phenotypic variation can be
affected by environmental conditions [1]. Nowadays it has a great impact on
agriculture in the study of evolutionary and molecular biology. The complexity of
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phenotypic traits is related to segregation of alleles and the interactions between loci
controlling the effects of individual traits. In modern genetics, basic statistics makes
it possible to understand genetic changes and to identify the chromosome region
involved. In this chapter we describe the advancements in association mapping
(AM), their methodology, different statistics models, population types, traits used
in plants, and limitations with a special focus on developing the understanding of
marker-trait associations for the breeding community.

AM was widely used as a statistical method in animal science for high-resolution,
genome-wide association analysis for several diseases such as diabetes and cancer [2], to
translate the susceptibility of traits with a complete description of associated diseases
[3]. In plant science, AM studies are used to identify the marker trait associations. In
addition, the associated marker is used in marker-assisted breeding for phenotype
selection, and in this way it is more efficient, reliable, and cost effective as compared to
traditional breedingmethodology [4]. Thus, AM is a strategy that applies fromphenotype
to genotype, localizing the chromosomal region that might contain a gene or a cluster of
genes that contribute phenotypic variation. The removal of obstructions in breeding
programs is required for the improvement of crops by facilitating high-resolution map-
ping of adapted diversification, but it is challenging to identify a locus that controls the
trait of variation. AM and linkage mapping are two widely used methods to identify
quantitative trait loci (QTLs) with genetically linked molecular markers, which are used
for incorporating genes into cultivars via map-based cloning of the tagged gene.

AMhas opened the path in agriculture for QTL analysis andmarker-assisted selection
(MAS). Many important traits such as crop yield, quality, abiotic resistance, disease
resistance, and adaptation are due to polygenic effects measured among individuals
through the action of genes and their interaction in different environmental conditions.
The selection of a population is an important factor in conducting a preliminary genetic
map based on association analysis. In this chapter we address the limitations and
application of AM in plant science. We also detail the methods and statistics used in
AM, and list complete information such as marker number and type, germplasm number
and type, statistics, and software used in association and QTL mapping.

2 Trait Mapping Approaches

The basic objective of AM studies is to detect correlations between genotypes and
phenotypes in a sample of individuals on the basis of linkage disequilibrium
(LD) [5]. AM is an alternative of QTL mapping that does not require development
of bi-parental crosses or screening generation of progeny. Thus, AM is a statistical
assessment of the association between genotypes and phenotypes, and we can apply
this approach to detecting QTL for traits that show variation [6]. We applied AM in
crops for the identification of genetic markers sharing an association with traits. In this
approach, the pre-selection of genotypes is necessary, such as linked or unlinked
markers, for better elucidation of genetic linkage [7]. Several authors claim that two to
four markers per chromosome are needed for candidate gene association. However,
the number of chromosomes and diversity among the sample affect genotype study.
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Several molecular markers such as RFLP, RAPD, AFLP, SSR and DArT, SNP, and
EST have been used for AM. In the past, protein-based markers and isoenzymes were
used to detect sequence differences between two individuals. Important advantages of
the AM include sampling of complex or unrelated individuals in the plant population
as well as human disease, marker-assisted selection in plant breeding [8], and studies
of several phenotypic traits in the same population by using the same genotypic data.

An ideal sample with subtle population structure and familial relatedness, a multi-
family sample, a sample with population structure, a sample with both population
structure and familial relationships, and a sample with severe population structure
and familial relationships determined the amenable association studies [9, 10]. The
phenotypic data are dependent on traits being analyzed. The screening of more
complex traits is more valuable for trait mapping. AM studies in many major
crops such as rice (Oryza sativa L.), wheat (Triticum aestivum L.), barley (Hordeum
vulgare L.), vegetables such as tomato (Lycopersicum esculentum L.), eggplant
(Solanum melongena L.), potato (Solanum tuberosum L.), grasses such as sugarcane
(Saccharum officinarum L.), Arabidopsis plant, as well as trees such as aspen
(Populus tremula L.) and lobolly pine (Pinus taeda L.) have already been conducted
for several traits including plant height, heading date, heading time [11], tiller
number, tiller angle, flag leaf length, flag leaf width, pericarp color [12], kernel
weight, kernel width, kernel area, kernel length, higher flour yield [13], grain yield,
bio-ethanol production [14], tolerance to pre-harvest sprouting [15], number of
spikelets/spikes, spike length, grain protein content, hardness index [16], starch,
oil, moisture [17], spot blotch resistance [6], fruit weight, fruit length, fruit curvature,
flesh color, plant growth habit, leaf width, leaf length [18], amino acid, organic acid,
seven phenylpropanoids, and other metabolites [19] (Fig. 1 and Table 1).

3 Objectives of Trait Mapping

• AM of appropriate traits
• Evaluate the factors controlling a phenotype throughout the population
• Develop marker/s

Table 1 Molecular markers
used in trait mapping

Molecular markers Acronym

Restriction fragment length polymorphism RFLP

Random amplified polymorphic DNA RAPD

Short sequence repeats SSR

Amplified fragment length polymorphism AFLP

Single nucleotide polymorphism SNP

Variable number tandem repeats VNTR

Presence absence variance PAV

Diversity arrays technology DArT

Sequence characterized amplified region SCAR

Allele specific associated primer ASAP
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• Design a genetic construct that shows the major difference between two varieties
of a particular trait

• Identify disease carrier or resistance
• Estimation of genetic distance
• Discover and analyze genes associated with traits.

4 Steps for Association Mapping

5 Advances and Scope (Methodology)

A Bayesian approach for the inference of population structure based on markers is
implemented in the computer program “STRUCTURE [22].” Several other types of
software are enabled for population analysis such as FRAPP, EIGENSOFT, PLINK,
and HAPMIX. The recently released StrAuto v0.3.1 is a Python-based structure
software with an automated approach for linux-based computers [25]. The program
has been widely used for the detection of genetic structure in sample populations for
medical purposes [26, 27], assignment studies [28], population structure and hybrid-
ization analysis [29–31], migration and dispersal analysis [32–34], and also for
detecting the cryptic genetic structure of natural populations [35, 36] (Fig. 2).

For 2D or 3D space, multiple correspondence analysis (MCA) and principle
component analysis (PCA) is performed to observe the relative dispersion of the
subpopulation. It takes less computing time than maximum likelihood estimation.
PCA produces a two- or three-dimensional scatter plot of the samples in which
geometric distances among samples in the plot reflect the genetic distances among

Fig. 1 Flow chart showing the steps involved in association mapping (AM)
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them with a minimum distortion and ambiguity compared to cluster analysis [37]. It
can be performed only on numerical data sets that do not have missing values.
Therefore, PCA is currently used more for population structure analysis and dis-
criminate analysis, while “STRUCTURE” is widely used for the “Bayesian cluster-
ing method.” To detect the true number of clusters, we use ad hoc statistics to find
ΔK based on the posterior probability in the second-order rate of change from the
individual ancestry coefficient [LnP(d)] value provided by the software “STRUC-
TURE.” The results are sensitive to genetic markers such as AFLP and microsatel-
lite. These microsatellite DNA markers are widely used because they are both
co-dominant and highly polymorphic [38].

6 “STRUCTURE” Run Parameters (Ancestry Model)

There are lots of parameters in the default settings of extraparam that are mentioned
in the user’s manual of “STRUCTURE” software (Pritchard et al. 2003). Among
these we can choose the level of ancestry model as admixture, without admixture and
linkage model, degree of admixture between population “alpha” to be inferred from
the data, the parameter of the distribution of allelic frequencies “lambda,” and
informativeness of the sampling location data “r” in mainparam. We set the length
value of burn-in and Markov Chain Monte Carlo (MCMC); typically a burn-in of
10–100 K is more than adequate. You can choose the possible length of burn-in and
MCMC, and will need to do several runs at each K.

Fig. 2 Work flow to develop a population-based marker in an association-mapping (AM) panel
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6.1 Admixture Model

This is a flexible model that deals with many complexities in a population because
the individuals have mixed ancestry, i.e., some fraction of the individual genome is
inherited from an ancestor in the population.

6.2 No Admixture Model

This type of model is used when the individual originated purely from one popula-
tion. The feature of this model is to analyze fully discrete populations to detect
clustering.

6.3 Linkage Model

This is the generalized admixture model for dealing with admixture linkage disequi-
librium. The detailed computations of the model are described in [39]. Briefly, we
can use this model to better perform and simplify the complex of admixed
populations [40].

7 Estimation of Sub-populations (K)

To detect the true K is an estimate of the posterior probability of the data of the given
K, Pr(X | K) [22], which is called “LnP (D)” in STRUCTURE output. First, we plot
the mean likelihood L (K ) over possible runs for each K. Second, we plot the mean
difference between the successive likelihood values of K, L0 (K ) ¼ L (K )�L (K�1),
this is the first-order rate of change. In the third step we plot the difference between
the successive likelihood values of L0 (K ), |L00 (K )| ¼ |L0 (K + 1) � L0 (K )|. This
corresponds to the second-order rate of change of L (K ) with respect to K. Finally,
we estimate ΔK as the mean of the absolute values of L00(K ), averaged over possible
runs, divided by the standard deviation of L(K ), ΔK ¼ m(|L00(K )|)/s[L(K )]. We find
the modal value of the distribution of ΔK to be located at the real K. The graph
indicates the strength of the clear peak at the true value of K [41].

Several studies carried out genomic control (GC) and structured association
(SA) to overcome the effect of ambiguous structure [26]. Principle component
analysis (PCA) is the best way to analyze genetic diversity and at the level of
admixture population structure analysis, it is an effective way to diagnose the
population structure [21, 42]. This analysis is based on correlation as well as
covariance between the variables, on the basis of principle components. In PCA,
Q (Membership coefficient) is replaced by a loading factor of each individual that
describes the population membership of the individual.
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Alternatively, we can classify the population according to the germplasm collec-
tion based on sources; they are derived from wild populations or breeding germ-
plasm, synthetic populations, and elite germplasm [13].

8 Analyzing the Results

8.1 Summary of “STRUCTURE” Output

----------------------------------------------------

STRUCTURE by Pritchard, Stephens and Donnelly (2000)

And Falush, Stephens and Pritchard (2003)

Code by Pritchard, Falush and Hubisz

Version 2.3.4

----------------------------------------------------

Run parameters:

10 individuals

67 loci

3 populations assumed

10000 Burn-in period

100000 Reps

--------------------------------------------

Estimated Ln Prob of Data = -9535.7

Mean value of ln likelihood = -9362.8

Variance of ln likelihood   = 345.9

Mean value of alpha  = 0.1509

Mean value of Fst_1         = 0.2685

Mean value of Fst_2         = 0.2193

Mean value of Fst_3         = 0.2080
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Inferred ancestry of individuals (Q)

Label (%Miss) :  Inferred clusters

1      A  (12)  :  0.239 0.449 0.311

2     B   (8)  :  0.246 0.740 0.014

3      C   (11)  :  0.347 0.640 0.013

4      D  (14)   :  0.004 0.007 0.989

5     E   (22)  :  0.291 0.029 0.681

6      F (11)   :  0.234 0.427 0.338

7     G  (16)  :  0.989 0.007 0.004

8      H  (13)  :  0.986 0.010 0.004

9 I  (23)  :  0.980 0.007 0.013

10     J  (13)  :  0.060 0.759 0.181

There are several types of plots of ancestry estimates and plots of summary statistics.
Histogram plots of Fst and alpha are shown in the text result.

8.2 Ancestry Estimates

There are two types of plots provided for the Q (estimated membership coefficient of
individual). In these types of bar blot, each individual in the data set is represented by
a single vertical line, partitioned into K color segments that represent the inferred
cluster. Another type of plot is visualized for the Q into a triangle that explores the
data for K ¼ 3 [43] (Figs. 3 and 4).

8.3 Plots of Summary Statistics

During the course of running the software program plot, the time-series plots for
each K that summarizes the brief period at the start of the run where the value
increases up to stationary distribution at the end of burn-in (Fig. 5).

1.00

0.80

0.60

0.40

0.20

0.00

Fig. 3 The bar plot represents sub-populations arranged according to their most likely ancestry
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8.4 Histogram Plots of Fst and alpha

In a population structure, Fst is useful to examine the overall genetic divergence
relative to the subpopulation within the total population.

9 Why Do Association Mapping (AM)?

• To discover the linked marker/s associated with a gene that controls the trait.
• To ascertain if the effect of a gene is either additive or dominant.
• To exploit the natural variation found in a species
• Landraces
• Cultivars from multiple programs
• Variation from regional breeding programs.

1.0

0.5

0.0
5.0 10.0

Fst1 Vs. iterations x103

15.0

Fig. 5 Time series plot of FST

All others

Cluster 1 Cluster 2

Fig. 4 Triangular plot developed by “STRUCTURE” that represents sub-populations
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In plants and animals, AM study is the implementation of trait mapping by using
genetic marker information. In this approach, the estimated membership coefficient
value (Q) from the structure output is further used for structure association. The use of
genetic markers to assist trait mapping is successful in marker-assisted selection (MAS),
and genomic selection (GS) for breeding strategy. These population genetics studies not
only allow researchers to integrate studies for need interests but also allow a deep
understanding of candidate genes and dissection of related complex traits. The hypoth-
esis of the association of genetic markers with traits is tested by different algorithms
such as the mixed linear model (MLM) based on Kinship matrix (K –model), both the
K + Qmodel, and the general linear model (GLM). Based on theQmatrix, single-locus
single traits (SLST), multi-locus mixed model (MLMM), and multi-trait mixed model
(MTMM) have been proposed. Genome-wide association analysis (GWAS) is involved
for the dissection of a large complex trait analysis. The GWAS presents the best
understanding of the genetic architecture of the traits of a crop [15].

10 Stratification of Data

For the accuracy and validity of associations, several studies have applied STRAT-
based stratification to improve the sample size, number of loci, and degree of
divergence between populations [22]. STRAT-based stratification can also be used
when two or more populations are admixed [44, 45]. Campbell et al. [46] studied and
analyzed the efficacy of stratification by constructing a case-control group with the
presence or absence of stratification.

11 Input File Required for AM Using a General Linear
Model (GLM)

• Genotypic data (Molecular markers)
• Phenotypic data (Traits)
• Covariates (Q matrices)

12 Input File Required for AM Using a Mixed Linear
Model (MLM)

This is similar to running GLM but the difference is that it requires Kinship data (K ).

94 M. Saba Rahim et al.



13 Coefficient of Kinship Data

The K matrix is developed by marker data that provide more information about
relatedness among individuals.

In AM analysis, an individual statistical model contains dependent variables such
as trait/s data and independent variables such as marker data. In Q + K models of
AM, Q matrices show variables as fixed effects and K matrices show variables as
random effects (Table 2 and Fig. 6).

Table 2 Summary of models used in association mapping

S. N. Model Description References

1 NAIVE Simple test of association (Kruskal-Wallis)
with no correction for population structure

Thornsberry et al. [20]
Yu et al. [10]
Price et al. [21]
Pritchard et al. [22]
Zhao et al. [23]

2 Q Inferred population structure as cofactor,
i.e., structured association

3 K Mixed model without inferred population structure
as cofactor

4 Q + K Mixed model with inferred population structure as
fixed effect

5 K* Same as K, but using an alternative kinship matrix
based on haplotype sharing

6 Q + K* Same as Q + K, but using an alternative kinship
matrix based on haplotype sharing

7 P PCA

8 P + K Same as Q + K, but using P instead of Q

9 P + K* Same as Q + K*, but using P instead of Q

Fig. 6 Statistical model
defining the function used in
a general linear model and
mixed linear model

Trait Mapping Approaches Through Association Analysis in Plants 95



14 Models Used in AM

15 Presentation of the Statistical Model in AM

16 Statistics for Phenotypic Trait and Association Analysis

A model-based clustered analysis of AM was performed earlier [47]. Through
descriptive statistical analysis including frequency distribution, mean value, coeffi-
cient of variability (CV), and Pearson’s correlation coefficient, we can find an
association between genetic information and phenotypic variation at a molecular
level. Correlations based on LD are the primordial statistics of AM [48]. Gupta et al.
[49] have already discussed the different factors affecting the LD, their current
issues, and uses in plant sciences.

17 Correction of “Type I” and “Type II” Errors

Due to the presence of another variable or type I and II errors, AM shows
confounding results or gives spurious associations. There are two multiple signifi-
cance tests that are required to reduce the chance of false association, (I) Family-
Wise Error Rate (FWER), and (II) False Discovery Rate (FDR). FDR is based on
statistical models to remove “Type I” error [50] and “Type II” error [51], and gives
the most conservative Bonferroni-corrected significance level. New approaches of
FDR have also been developed to control the FWER.

18 Model Selection for Marker-associated Trait

The following two criteria were used for model selection, lowest mean of squared
difference (MSD) between the observed and expected p value of all marker loci, and
percentage of observation that is below the nominal level (alpha ¼ 0.05) in a
p (expected) – p (observed) plot quantile–quantile plot (Q–Q plot).

19 Application

• AM is usually performed and genome type based selection of individual in plant
species is applied.

• Genome-wide association analysis in different plant species.
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• Comprehensive genome scans can be built through intensive sequencing and
high-density genotyping.

• In breeding, several national laboratories have been able to advance the research
work in marker development and marker-assisted selection through trait
mapping.

• Linkage analysis and map construction.
• Dissection of gene-associated complex traits to find genes or a genomic region

can move toward economically and evolutionary valuable traits for superior
research.

• For parental selection, a mixed model is used to calculate the breeding values in
the aid of selecting parents for crossing.

• Through this approach we can define bi-parental populations of rare alleles and
emphasize the study of epistatic interactions.

20 Limitations

• AM has higher probabilities of type I and type II errors than QTL analysis. Type I
error or false positives arise from unaccounted subdivisions in the sample,
referred to as population structure [22].

• QTL analysis is attributed at least three factors: (1) lower correlation between
markers and genes due to the decay of LD, (2) the presence/absence of alleles at
different frequencies, (3) a serious multiple testing problem, which results in an
extremely strict genome-wide significance threshold [52].

• The hexaploid nature of the wheat genome has introduced more difficulty for AM
compare to other crops having less complex genomes.

• Due to random mating in the sampling population and some individuals being
more closely related than others, some authors conduct the analysis within sub-
populations [53, 54] to avoid this problem.

• When the mode of ΔK at the true K was absent, it was either because sample size
and marker number was small, leading to an absence of signal, or visual inspec-
tion of the values of L (K ) would have identified runs of the MCMCwith outlying
values for L (K ).

• We further found the algorithm underlying the structure detects the upper most
level of population, and that subgroups created by the best individual assignment
produced by the structure permits the identification of sublevels of
structuring [41].

• If the population structure and familial relatedness are not analyzed properly it
may cause spurious associations (Table 3).
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21 Conclusion

The population structure analysis defined the best groups of individuals within the
group structure. However, ΔK emphasizes the correct number of clusters. Various
genetic demands have gained a better hold, such as in choosing a better quality of
individual for breeding programs and in the collection of germplasm bank acces-
sions. Before starting AM, researchers should have knowledge of all genetic aspects
of the germplasms and molecular markers. Through AM we can conduct genetic,
physiological, and biochemical studies within individuals. The evolution of these
genomic technologies continues to advance the debate of candidate gene versus
genome. Originally, we had to search only a tiny fraction of the genome as needed.
We expect to see more genome-wide association analysis and accept promising
offers of complex trait dissection.
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Abstract Fine mapping of quantitative trait loci (QTL) is the route to more

detailed molecular characterization and functional studies of the relationship

between polymorphism and trait variation. It is also of direct relevance to breeding

since it makes QTL more easily integrated into marker-assisted breeding and into

genomic selection. Fine mapping requires that marker-trait associations are tested

in populations in which large numbers of recombinations have occurred. This can

be achieved by increasing the size of mapping populations or by increasing the

number of generations of crossing required to create the population. We review the

factors affecting the precision and power of fine mapping experiments and describe

some contemporary experimental approaches, focusing on the use of multi-parental

or multi-founder populations such as the multi-parent advanced generation inter-

cross (MAGIC) and nested association mapping (NAM). We favor approaches such

as MAGIC since these focus explicitly on increasing the amount of recombination

that occurs within the population. Whatever approaches are used, we believe the

days of mapping QTL in small populations must come to an end. In our own work in

MAGIC wheat populations, we started with a target of developing 1,000 lines per

population: that number now looks to be on the low side.
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1 Introduction

In this chapter, we review the use of mapping populations for precision location of

quantitative trait loci (QTL). We focus on experimental populations created explic-

itly for trait mapping, distinguishing these from collections of lines or individuals

used in the association-mapping approaches described in Chapter 5. We start by

discussing trait mapping and the need for fine mapping, next describe some general

properties and requirements of approaches to fine mapping, after which we describe

specific approaches. We finish by considering prospects for the future.

2 The Importance of Mapping Trait Loci

The tagging of QTL with genetic markers has a long history [1]. However, most

progress has been made since the 1980s with the development of DNA markers

initiating the era of genome scans in bi-parental crosses [2, 3]. This has continued to

the present, as new, cheaper classes of genetic markers (e.g., [4]) and improved

statistical methods and software (e.g., [5]) have become available. Markers tagging

QTL can be used to ease introgression of novel variation from un-adapted germ-

plasm into elite lines, for marker-assisted selection, and for stacking multiple

sources of disease resistance [6]. However, trait mapping has also been tempered

by cautious voices, alerting people to the risks of bias in estimating effects [7], of

lack of precision of QTL location [8], and of relevance to plant breeders’ germ-

plasm. Nearly 10 years ago Bernardo [9] commented on the very poor transfer rate

of results from trait-mapping experiments to breeding programs. New population

and genomics resources and more widespread understanding of the requirement for

statistical power are now focusing effort on studies that map more QTL to smaller

intervals in breeder-relevant germplasm. Our hope is that this will result in better

application of QTL within breeding programs and other studies in the future, rather

than being an end in itself.
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3 The Importance of Fine Mapping

Fine mapping is the process by which the location of a QTL is reduced from an

initial interval of 20 cM or more to an interval of a few cM or less. Taken to its final

conclusion, fine mapping can lead to the identification of the causative genomic

lesion, which could be a single nucleotide polymorphism, SNP, or other variant.

Fine mapping has merit in biological studies: clearly if the causative polymorphism

is identified, then the door is opened to further detailed molecular characterization

and functional studies of the relationship between polymorphism and trait, and the

wider genetic network. However, reduction of a QTL linkage interval to a smaller

region without exactly identifying the functional polymorphism or gene is also of

value. Near isogenic lines (NILs) can be created containing the alternative states at

the QTL locus and used for detailed phenotyping. NILs cannot discriminate

between pleitropy and close linkage but the smaller the interval, the lower the

chance of misinterpretation. For example, fine mapping in rice showed a rice

photoperiod sensitivity locus, previously known as Heading date 3 (Hd3), could
be genetically dissected into two closely linked loci Hd3a and Hd3b, allowing
allele-specific effects at both loci to be discriminated in NILs [10]. Fine mapping is

also of direct relevance to breeding since it makes QTL more easily integrated into

marker-assisted selection programs. A QTL located to an interval of 20 cM requires

that a 20 cM tract of chromosome is tagged during selection and backcrossing. This

prevents recombination within the region and the potential creation of favorable

haplotypes containing the QTL and other, unidentified loci. In addition, wide

intervals reduce the potential to stack favorable QTL since even with a small

number of QTL, it is quite likely that intervals will overlap.

Genomic selection [11, 12] is the process whereby statistical models are applied

to large numbers of genetic markers to predict the breeding (or trait) values of

candidates for selection which are not themselves phenotyped. Because selection

and phenotyping are decoupled, very high intensities of selection are possible

(because single individuals rather than cultivars are selected) and reductions in

cycle time can be made (because the breeding cycle is from parent to progeny,

without time taken for cultivar development). In the near future, genomic selection

will become routine in plant breeding [13]. QTL, known or recently discovered, can

be incorporated into genomic prediction equations in an optimum manner, but a

QTL characterized only by loosely linked flanking markers eliminates large tracts

of chromosome from inclusion in trait prediction algorithms with potential loss of

precision.

Identification of functional polymorphisms also allows genome-editing technol-

ogies, such as clustered regularly interspaced short palindromic repeat (CRISPR)/

CRISPR-associated protein 9 (Cas9) [14], to introduce favorable changes directly

into plant genomes without any subsequent linkage drag. Methods to increase the

number of functional polymorphisms identified could have a substantial influence

on rates of genetic improvement [15]. Breeding programs have already been studied

in which genome editing is used to this end [15].
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4 Factors Determining Precision in Fine Mapping

The precision with which a QTL can be located depends on three related factors: the

recombination fraction between it and the available genetic markers, its heritability,

and the size of the mapping population. These factors are general across all types of

mapping populations. Other factors can affect specific approaches to fine mapping

and will be discussed in context as they arise.

4.1 Recombination

Trait mapping in plants exploits the correlation between genetic markers and QTL.

A zero correlation is expected between unlinked markers, rising to an expected

maximum for a marker co-located with the QTL. However, the observed maximum

is very unlikely to be located precisely at the QTL position. For example, for a

marker and QTL separated by a recombination fraction of 0.01, the probability of

observing at least one recombination in 100 meioses is only 63%; there is a very

high chance that none occur, in which case a marker located at the QTL and a

marker located ~1 cM away cannot be distinguished. In practice, the discrimination

is likely to be much worse. With 1,000 meioses, the chance of observing no

recombinations with a recombination fraction of 0.01, is 0.99996. Populations for

fine mapping therefore require high levels of recombination. This is achieved in two

ways. Firstly, population size can be increased, and secondly, the mapping popu-

lation can be created over multiple generations of crossing. The early generations of

selfing to generate recombinant inbred lines, when the frequency of double hetero-

zygotes is reasonably high, also provide some opportunity for recombination. For

this reason, fully inbred lines give greater precision than doubled haploid

(DH) lines.

There is a conflict between power and precision in fine mapping. Power to detect

a QTL is increased in populations with reduced recombination. This is exploited in

standard bi-parental populations, but also, for example, in the pre-QTL mapping era

by methods such as use of anisoploid lines (which possess a chromosome number

that is an odd multiple of the haploid number, e.g., triploid) and whole chromosome

substitution lines (e.g., [16]) which allowed the location of major effects (or the

cumulative effect of many small effects) to whole chromosomes or chromosome

arms. To increase precision, the mapping population requires more recombination

events, but this comes at the expense of power. As a simple example: suppose a

genome-wide significance threshold of 0.001 is required to detect a QTL linked to a

marker located at a distance of 10 cM in an F2, and that additional cycles of crossing

were used to increase precision to 1 cM. Ignoring complications from interval

mapping and other multi-marker approaches, this would require a tenfold increase

in marker density and therefore a tenfold change in the genome-wide Bonferroni

corrected p-value to 0.0001. To maintain power to detect such an effect, population
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size would need to be increased (see below). Adopting a lower significance

threshold is an alternative, and this may be possible if the study population is not

being used for GWAS, but to fine map a QTL identified in other studies.

4.2 Population Size

Population size has two effects. Firstly, as described above, bigger populations

capture more recombination and therefore offer greater precision. However, in

addition, bigger populations have greater power to detect QTL. For example, in a

mapping population in which QTL and markers are segregating at a frequency of

0.5, for example a DH population or population of recombinant inbred lines (RILs),

the power to detect a QTL accounting for 10% of the phenotypic variation between

lines at a significance threshold of p� 0.001, and assuming a perfect marker for the

QTL, is 0.52 with a population size of 100. Increasing the population size to

200 increases the power to 0.92. Increasing population size, therefore, increases

both the precision with which phenotypic effects of marker classes are estimated

and also increases the power to detect QTL. It is for this reason that increasing

population size is preferred over increasing replicate number for a fixed population

size. This latter approach increases the power with which QTL are detected but has

less effect on precision.

4.3 Size of Effect

Bigger effects are easier to detect and are more precisely located. In the extreme, a

QTL may be so large that, in practice, it behaves as a completely penetrant major

gene: essentially as a marker itself. At the other extreme, for a highly polygenic

trait, the effect of any individual locus may be very small and there will be very

little power to detect or locate QTL. This is true even if the heritability of the trait is

very high: it is the heritability of the QTL effect itself that is the dominant

determinant of power and precision. However, for traits of low heritability, repli-

cation can be used to increase the heritability of line means and thus increase power

and precision, though as previously mentioned precision is better increased by

increasing recombination. There is a counter view, however [17], that conventional

QTL mapping is very successful in locating QTL precisely, though the examples

given are what most workers would regard as large QTL effects.
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5 The Need for Replication

Whatever the interval reported or the method used, there is a requirement for

replication, or validation, of the observed effect prior to progression of the QTL

into marker-assisted breeding or functional investigation. Such studies should

preferably be in a completely different population to that in which the QTL were

first identified: it is not appropriate, for example, to partition a collection of

germplasm, or a mapping population, and use one portion for “discovery” and the

other for “validation.” Such an approach amounts to cross validation, and may

reduce the rate of false positives within that study or result in reduced bias in the

estimation of genuine effects through elimination of the winner’s curse [18], but it
is not an independent study. The winner’s curse is the phenomenon that evidence of

a new effect, provided by significance testing, often gives an inflated estimate of the

size of that effect. In linkage analysis, this is often referred to as the Beavis effect

[7]. Replication in independent studies has become a standard for publication of

association-mapping studies in some journals [19] and has been more widely

advocated, e.g., [20, 21]. In wheat, for example, we have identified 26 QTL

associated with yellow rust resistance in a large panel of 488 lines, of which

11 out of 13 of the strongest associations were replicated in independent

bi-parental mapping populations created for that purpose. Out of nine hits in the

original association-mapping panel that were statistically significant at a less

stringent significant threshold ( p � 0.001), only three were replicated. Breeders

were substantially more confident of incorporating the replicated QTL into their

marker-assisted selection programs. Distrust of results from single studies contrib-

utes to the relative lack of uptake of QTL into marker-assisted selection

programs [9].

6 Association Mapping

Association mapping, also known as linkage disequilibrium mapping, detects and

locates QTL based on the strength of the association (correlation) between genetic

markers and the traits under study. It relies on the magnitude of linkage disequi-

librium (effectively the correlation) between genetic markers and QTL declining

rapidly with genetic distance. Detection of a strong correlation between a trait and a

genetic marker is therefore taken as evidence that a QTL is in close proximity to the

marker. Association mapping can, in principle, be applied to any population or

collection of lines or individuals, and in general will give higher precision than

found in bi-parental populations. The pattern of LD decay is remarkably similar in

diverse populations, due to the mechanism by which LD decays over time: at a rate

of (one – the recombination fraction) per generation. However, differences in scale
will be seen, due to differences between populations and species in the forces that
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create LD – mutation, selection, and drift – and the age of the population or

collection of lines under study with reference to their shared genealogy.

However, virtually all populations or panels assembled for association mapping

include some degree of population structure or subdivision arising from ancient and

very recent differences in the shared ancestry of the lines in the collection. If these

are not taken into account, very high frequencies of false-positive results can arise:

false in the sense that the observed association, though genuine, has arisen from

some other cause than the close linkage of marker and QTL. Fortunately, statistical

methods, in particular the use of the mixed model, can robustly adjust for popula-

tion structure effects. For example, in the TriticeaeGenome association-mapping

panel of European wheat [22], 11% of squared correlations between markers pairs

�0.8 were among unlinked markers. However, with simulated traits, application of

the mixed model gave good control of false positives but identified that a higher

marker density was required to improve precision. Power calculations, and associ-

ated estimates of expected precision, should always be reported in association-

mapping studies. Association-mapping studies have therefore become routine in

plants. For major genes, accuracy can be to the gene level (e.g., [23]), though

independent evidence of the functionality of the candidate should also be obtained,

for example through transformation or reverse genetics studies. For QTL that do not

account for most of the genetic variation, accuracy is lower, but is generally greater

than seen from bi-parental mapping populations. However, association mapping is

not a panacea and other approaches still have a role, and may be better under some

circumstances.

7 Genome-Wide Association Studies (GWAS) Compared

to Experimental Populations for Fine Mapping

Genome-wide association studies (GWAS) have become increasingly popular in

plants: they are easy to set up, requiring only the collection of pre-existing lines or

cultivars with no need for de-novo crossing and selfing [24]. They also often come

with pre-existing phenotypic data [23, 25]. However, there are a few notes of

caution to be made:

GWAS studies are often proposed because of their assumed increased precision

for locating QTL. However, this is often not realized. A demonstration that linkage

disequilibrium (LD) decays quickly is usually used as an indication of likely

precision in mapping, but if QTL are to be discovered in a genome scan, very

large population sizes are required for fine mapping. Often, the sizes used in

published studies are ludicrously small and there is no accompanying estimate of

power. Occasionally, both population size and marker numbers are risibly low;

46 SSRs and 30 accessions with accompanying claims of high power and precision

is the worst example we have seen published in an otherwise reputable journal, in

this case with no report of the rate of LD decay or of power. Low power to detect a
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QTL must throw doubt on published statements about the frequently large number

of QTL detected [26]. This problem is not overcome by establishing, as often

reported, that putative hits lie in known QTL linkage regions. Given the long

history of QTL mapping, it is difficult for a locus not to lie in any region of the

genome chosen at random. Statements, therefore, that say some proportion of the

detected marker trait associations are new and the rest replicate previous results

require greater statistical support, which can be easily calculated or simulated, but

this is seldom done in plants. An excellent example in Drosophila is given by

Highfill et al. [27]. They identified five QTL for variation in lifespan in a multi-

parent advanced generation inter-cross (MAGIC) population. Over 100 QTL for

this trait had previously been identified and they established through simulation that

that the probability that all of five randomly located QTL would overlap with one or

more of these 100 was 0.85.

The problem of low power may be insurmountable. Population sizes can be

unredeemably small, especially in the public sector where the only germplasm

available may be from collections of varieties released commercially by breeders. If

the number available is too low, the only option may be to create more, in which

case an experimental population such as MAGIC may be a better alternative.

The statistical control of population structure and kinship works well in control-

ling the false-positive (Type I error) rate, but this can be at the expense of power. If

a QTL is highly associated with a major population subdivision (e.g. [28]), it may

be difficult to detect, or in extreme cases, not be detected at all: adjustments for

kinship and population structure will reduce the power to detect any association

between a QTL and linked marker that is also correlated with those effects. This can

be a major problem: an attempt to increase power by capturing lines grown over a

greater geographical and temporal range inevitably also increases population struc-

ture within the dataset. For example, the TriticeaeGenome panel [22] includes lines

of British, German and French origin. German lines tend to be taller: height being

controlled by the use of growth regulators rather than through semi-dwarfing genes,

and French lines tend to be earlier flowering – to avoid summer drought stress.

Therefore, the frequency of major flowering time and height-reducing loci differs

between countries so power to detect these is also reduced. In this case, these loci

are of such great effect that they were still detected, though it is quite possible that

minor QTL affecting these traits were not.

In addition, within narrow temporal and geographical ranges, although the

problems of population structure may be reduced, LD may decay quite slowly

with genetic distance; a consequence of close kinship among all lines. As a result,

the precision with which QTL are detected can be reduced.

Power to detect and locate QTL in association-mapping panels also depends on

the allele frequency of the QTL. Very rare alleles will not be detected in genome

scans, even if the function polymorphism itself is tested and the effect is large. The

detection of rare variants is an acknowledged problem in human genetics [20]. In

plant science, we have the alternative of making experimental crosses and

populations to reduce this problem, though success depends on the identification

of appropriate founders.
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Many of the issues surrounding the use of association-mapping panels for fine

mapping can be avoided if the stringency of statistical significance is reduced. This

is justified if the purpose of the experiment is not a GWAS but rather to test a small

number of candidate genes or polymorphisms, or to fine map a genomic region for

QTL identified in a previous study. For example, a genome scan with 10,000

markers would require a Bonferroni-adjusted significance threshold for an

experiment-wide p-value of 5% of 0.0005%. Testing 100 candidate polymorphisms

would require 0.05%.

In spite of the problems, association mapping is a powerful tool for fine mapping

and notable successes have been reported [21, 23]. There is still of course a role for

other methods: in particular using bespoke experimental populations.

8 Experimental Populations

Experimental populations for trait mapping pre-date the use of association-mapping

panels, though, in essence, the principles are identical: QTL are located by the

strength of the association between markers and traits, exploiting LD. In most

experimental populations, LD decays slowly with genetic distance: a consequence

of the limited number of generations between the creating of extensive LD by

crossing a small number of founder or parental lines, and the small number of

generations from that event before mapping takes place.

Experimental populations circumvent many of the problems with the use of

association-mapping panels, but introduce problems of their own. There is little or

no effect of population structure within them, so the correct Type I error rate is

usually achieved. They tend to have higher power to detect QTL than association-

mapping panels – a consequence of the slower rate of decay of LD with genetic

distance. Correlated with this, they can lack precision in locating QTL in compar-

ison to similar size association-mapping panels. In addition, they generally lack

genetic diversity compared to association-mapping panels.

Selection of parents or founders is of great importance in experimental

populations. This will be discussed in the context of individual population types

below. As general principles, however, we note that parents or founders can be

selected for similarity of phenological traits, in the hope of reducing segregational

variation in the population for those traits to ease the phenotyping of the traits of

major interest. For example, in many cereal species, lodging and resistance to

abiotic stresses such as drought are affected by the developmental phase of the

plants. Reducing segregational variation in, for example, flowering time, may

increase both the power and precision with which QTL for stress are identified –

in essence by increasing the heritability of the QTL for stress per se. However,
matching parents on phenology is absolutely no guarantee that the problem is

eliminated: dispersion of alleles with variable effects on phenology among the

parents will generate substantial, and commonly transgressive, segregational vari-

ation in the progeny. In addition, selection of parents in this manner may eliminate
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variation at linked loci, particularly if, as seems inevitable, there are interactions

between phenology and other traits. The opposing view is to adjust for phenological

variation during analysis by inclusion of covariates, or through partitioning the

population into subsets with matched phenology (“slicing and dicing”), and then

carrying out QTL analysis only within subpopulations. “Slicing and dicing” is

equivalent to inclusion of covariates in the analysis to account for subgroup

membership: in essence it amounts to binning a quantitative phenological factor

such as flowering time into covariates with values of 0 and 1, and is therefore

crudely equivalent to simply including phenology traits directly as covariates. Our

opinion is that the inclusion of covariates is the better approach and is more flexible,

plus it is likely that this will be required with matched parents anyway. However, as

far as we are aware, the approaches have not been compared empirically or by

simulation. In our own work, we have found the presence of transgressive segre-

gation to be useful in interpretation rather than a hindrance in phenotyping.

9 Biparental Populations

Mapping in the progeny or lines from a cross between two inbred lines remains the

standard approach for genetic mapping in plants (Chapter 4). Mapping usually takes

place among DH lines derived from the F1, or RILs derived from the F2 or

backcross generations. Mapping directly among F2 individuals is rarely used, partly

because the genotypes of individuals are often poorly assessed by their phenotype

(due to low heritability) and partly because, in the absence of clonal propagation,

the individuals cannot be maintained indefinitely for annual or biennial species. The

strength of the standard bi-parental population is in its power: LD decays slowly

within chromosomes and there is no expectation of LD between loci on different

chromosomes (LD between chromosomes is eliminated by the non-random mating

of the parents: only the cross is made, not the selfs. With randommating, substantial

LD would be found between chromosomes). As ever, the higher power is associated

with low precision: Kearsey and Farquhar [8] state that precision for a standard

QTL is to a region of 10–30 cM. They also make the point that the addition of

markers to bi-parental mapping populations beyond a density of about one per

15 cM has limited effect on precision. The same point was made by Darvasi and

Soller [29], who state that no increase in precision is made once an inter-marker

recombination fraction of 0.1–15 is achieved. However, in practice more markers

are commonly used: although only modest numbers of evenly spaced markers are

required, it generally takes a much higher density of markers in the same population

to produce an accurate genetic map in the first place. Moreover, reduced marker

costs, SNP chips, and cheap genotyping by sequencing (GbS) will make discussions

of marker density of historical interest. However, Kearsey and Farquhar [8] and

Darvasi and Soller [29] point that it is more meiosis that is required to increase

precision remains valid: small mapping populations, even if they have adequate

power to detect QTL, lack in precision for QTL of modest size.
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Selection of parents to create bi-parental mapping populations is generally trait

driven: they are often selected as contrasting extremes for the trait of interest. This

is a strength, in so far as it increases the likelihood that the population is segregating

for multiple QTL for the trait. It also increases the chance of capturing alleles that

are rare in the population sampled (and so are unlikely to be detected in GWAS

studies). However, it is also a weakness in that the favorable alleles mapped may

already have been fixed in breeders’ germplasm. The trait-focused nature of many

bi-parental mapping populations also means they tend to have short-term use.

Interest in mapping additional traits is better served by creating additional targeted

crosses, though there are exceptions of populations that have been more widely

used. For example, the wheat Avalon� Cadenza mapping population has been used

a lot to map many traits [30]. Nevertheless, if inbred parents are sampled at random

from a population, at most only half the loci segregating in the population will be

segregating in the cross – assuming two alleles at equal frequencies at all loci – and

it could be a much lower proportion.

One method of reducing the cost of creating bi-parental mapping populations is

to use Rapid Bulk Inbreeding (RABID) [31, 32]. Here, inbreeding takes place in

bulk, so is cheap, with modest numbers of markers (~100) used after inbreeding to

identify a set of individuals with minimal relationships as the mapping population.

As bulk inbreeding is cheap, it is possible to create multiple populations specula-

tively, but only genotype them, and multiply selected lines for phenotyping as

required. A similar use of markers to select the most unrelated set of individuals

could also be applied to lines produced by single seed descent or DHs, also

providing the opportunity, for example, to eliminate lines carrying

un-recombined chromosomes. Such chromosomes increase power but clearly do

nothing for precision! We are not aware of any research looking at this.

10 Bulk Segregant Analysis (BSA)

Bulk segregant analysis (BSA) has had a revival now that DNA and RNA

resequencing is routine in most plant species (reviewed for crops by Zou et al.

[33]). The principle is that contrasting extremes are selected from a population and

genotyped in bulks. Markers that distinguish between the bulks are judged to be

closely linked to causative polymorphism. Bulking of the extremes saves money on

genotyping, but is not necessary: genotyping individuals rather than bulks is more

accurate.

There are three general approaches in terms of the biological materials used:

(1) F1-derived individuals (F2s, RILs, DHs), e.g., identification of metabolite QTL

for flavonoid production in Arabidopsis [34], (2) EMS-induced mutations, such as

targeting induced local lesions in genomes (TILLING) populations, and (3) pooling

genetically diverse breeding lines, e.g., red versus green hypocotyl in sugar

beet [35].
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Although the underlying principle of BSA is very simple, the expected compo-

sition of the selected pools, taking into account population size, number of selected

individuals, genotype frequencies in the population, and genetic and environmental

effects, is surprisingly complex [36]. Mackay and Caligari [37] used the methods of

Hill [36] to compare BSA in F2 and backcross generations, concluding that the F2
was to be preferred if screening with dominant markers. There is, perhaps, a need to

study strategies and population types more extensively, particularly in the light of

DNA resequencing for genotyping: it is telling that the Hill [36] paper has only been

cited four times.

11 Advanced Intercross (AIC)

The first experimental design intended specifically to improve precision in mapping

was the Advanced Intercross (AIC) of Darvasi and Soller [29]. Acknowledging that

absence of precision came from the limited recombinations captured in most

bi-parental populations, they proposed increasing this by intermating the F2 for

several generations prior to mapping. For example, they stated that eight additional

cycles of random mating could reduce the confidence interval of a QTL from 20 to

3.7 cM. Recent examples of AIC in plants include genetic investigation of female

control of non-random mating in Arabidopsis (four rounds of intercrossing,

490 RILs, [38]) and disease resistance in maize (four rounds of intercrossing,

302 RILs [39, 40]). AIC, however, is used surprisingly rarely for crops. One reason

for this may be the time required to make the additional crosses – especially if the

mapping population was established in the first place only to detect (and locate)

QTL for a specific trait in a short-term project, as is often the case. Another reason is

that whereas a DH-mapping population may be created reasonably economically

from an F1, since multiple DH lines can be created from a single individual, to do

the same with an advanced intercross, or just an F2, requires, ideally, that a single

DH is produced from as many outcrossed individuals as possible. Using the

technologies currently available in many crops, this is not practical. Note that

although the AIC will increase precision, this is at the expense of power. Essen-

tially, this is a multiple testing problem. The number of independent genomic

intervals, or their effective equivalent, which must be tested for the presence of a

QTL in an AIC, is greater than in a simple cross. The genome-wide significance

threshold must therefore rise. As an approximation, if QTL are located to 20-cM

intervals in an F2 but to 4-cM intervals in an AIC, then a genome-wide significance

threshold of –log10(p) ¼ 3 (say) would need to be increased to 3.7 in the advanced

intercross. It is possible that a two-stage strategy could be derived in which QTL

detection is first undertaken in a standard population with a lenient significance

threshold with validation and fine mapping of these intervals occurring in an AIC as

a second stage. The optimization of such a mapping strategy across two

populations, which could also involve selective genotyping and phenotyping,

merits study.
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12 Near Isogenic Lines (NILs)

Near isogenic lines (NILs) are derived via repeated backcrossing of genetically

distinct parental lines, most commonly with the aim of transferring a single

chromosomal region of the donor parent into the genetic background of the

recipient parent (reviewed by Kooke et al. [41]). Ultimately, over several genera-

tions of backcrossing, selection, and phenotyping, the interval containing the QTL

should be eroded to something quite small. In practice, backcrossing beyond the

second or third backcross is seldom carried out, the interval containing the QTL can

remain large, and significant additional regions of donor parent genome can remain

in the genetic background. The main use of NILs is that the effect of the QTL (and

surrounding genome) can be characterized in much greater detail simply by

phenotyping two lines rather than the whole, or a substantial part, of the mapping

population. The power of NILs to detect a phenotypic effect of the QTL may not be

substantially greater than from a similar size: if the QTL is the sole cause of genetic

variation in the cross, power will be identical for identically-sized experiments.

However, for a trait with a heritability of 50% of which the QTL accounts for 10%,

the size of the mapping population would need to be 1.67 times greater than the

experiment with NILs to get the same power.

Additionally, NIL pairs can be crossed, for example to fine-map a single QTL

within the interval, or to combine two or more regions to investigate combined QTL

effects. Collections of NILs that collectively capture all of the donor parent genome

can be used for genetic mapping. Generation of such NIL populations, also termed

chromosome segment substitution lines (CSSLs), can be aided via the use of

molecular markers. Here, markers are used to both select for specific donor regions

(foreground selection) and select against unwanted donor regions elsewhere in the

genetic background (background selection), ultimately leading to an inbred popu-

lation that can be used for genetic mapping. A recent example is the development of

NIL populations in Arabidopsis (75 NILs [42]).

The backcrossing and purification required to develop NILs take time, leading to

lag in their creation following QTL discovery by some other means. In mapping

populations of inbred lines produced by selfing, inbreeding is seldom complete; the

probability that an inbred line is fully homozygous after six generations of selfing is

0.03 for a species with 21 chromosome pairs and a total map length of 17 Morgans

[43]. At this stage, the average line will contain 3.5 heterozygous tracts of chro-

mosome and the total length of the genome that is heterozygous will be 27 cM on

average. As a result, it is likely that individuals who are heterozygous, or families

that are still segregating, for any tract can be found. Such heterogeneous inbred

families (HIFs) can be used to rapidly create NILs through selfing [44]. Essentially

the same approach was been used by Yamanaka et al. [45], for example, to fine map

the FT1 locus for soybean flowering time to a distance of 0.1 cM from the closest

marker. In this case, a fully homozygous F8 inbred line, aside from a 17 cM

heterozygous tract around the FT1 QTL was identified and 18 F9 individuals
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from the same line were selfed to create a population of>1,006 F10 individuals that

were used for mapping.

The utility of HIFs for power and precision is, of necessity, restricted to mapping

populations produced by selfing rather than through DH. The probability of

detecting HIFs for any particular QTL will depend on the generation of selfing. In

the case of Yamanaka et al. [45], assuming the F8 family originated from a single F7
individual, there is a 0.0156 probability that the F8 is segregating. Yamanaka tested

210 plants so the probability of not finding a segregating family is (1-0.0156)210 or

3.7%: even with deep inbreeding, provided population sizes are modest, it is likely

that HIFs will be found in bi-parental mapping populations and can be used to create

NILs. This opens up the possibility of creating a tiled array of HIF’s covering the

genome.

13 Multi-Founder Populations

Within the last few years, and in parallel with the advent of association mapping for

crops, more complex mapping populations have been advocated and used. These

benefit from capturing increased levels of genetic diversity from the use of multiple

founders. The use of multiple founders can also allow the incorporation of LD

relationships among the founder into the analysis, with a potential gain in precision.

These properties make multi-founder populations well suited to investigation of

multiple traits, and are therefore used as community resources for genetic research.

It is a feature of multi-founder populations that they are large: as a second-

generation approach to mapping, it has been recognized that small populations

are underpowered: a problem that is compounded in fine mapping where experi-

mental methods to increase precision generally reduce power of QTL detection.

Multi-founder populations differ conceptually from bi-parental populations.

Greater effort is required in their creation and they are generally designed to map

multiple QTL for multiple traits. They are not a “use once and throw away”

resource in the same way that bi-parental mapping populations can be. Choice of

founders is important. The expectation is that inferences and discoveries in a multi-

founder population will be applied to a wider population. An explicit understanding

of the extent or range of this population is likely to give rise to the best choice of

founders. For instance, selecting a set of lines to maximize global diversity is not

the best strategy if the prime interest is to map traits for productivity in one

particular agro-ecological environment. As with bi-parental mapping populations,

there would be a risk, though reduced, of mapping QTL for loci for which the

favorable allele is already fixed in the target environment. However, if the prime

interest is in positional cloning, the best strategy may well be to select a set of

founders that maximize species or crop diversity, though conditioned by the

understanding that the lines that are produced will require phenotyping. This

could cause problems in crosses between wild and cultivated forms, for example,

or at least limit the range of traits that can be scored.
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13.1 Nested-Association Mapping

Nested-association-mapping (NAM) populations, first proposed by Yu et al. [46]

for the outcrossing species maize (Zea mays), are based on crossing multiple inbred

lines to a single reference line then deriving multiple bi-parental sub-populations,

either as DH lines or RILs. Originally designed for outcrossing species where LD

decay is rapid (in maize, LD decays to background levels within ~1 kb), NAM

combines the benefits of linkage mapping and association mapping: the linkage

analysis within populations gives power to detect loci without the need for very

high marker coverage, while the exploitation of more rapidly decaying LD across

the multiple founders improves precision [46]. Protection against false positives

arising from population structure is provided, in effect, by testing for association in

the presence of linkage, an approach analogous to that of the QTDT [47, 48] in

human genetics. NAM can capture high genetic variation while avoiding the

complications of population structure, as usually found in GWAS panels.

The first NAM population was published in 2009, consisting of 25 maize inbred

lines crossed to a single recurrent parent, resulting in 200 RILs per sub-population,

and 5,000 RILs in total [49]. Since then, the maize NAM population has been

extensively used for genetic analysis of multiple traits, including morphological,

disease resistance, and metabolite phenotypes (e.g., [50–58]). Subsequently, NAM

populations have been created in sorghum [59], as well as the inbreeding species,

barley (Hordeum vulgare) [60] and wheat [61, 62]. While the classic NAM popu-

lation design as exemplified by McMullen et al. [49] has invariably been used to

date, related designs have been advocated. Simulation using empirical data in maize

and Arabidopsis has shown that given a fixed total population size, power and

reduction of false positives is optimized via employing designs such as diallel or

factorial designs for outbred species [63].

For inbreeding species, where consideration was given to the effort needed to

achieve the crosses required, double round robin design was found to be a good

alternative [63]. Recently, an advanced backcross NAM (AB-NAM) population has

been developed in barley that introgresses wild barley landraces into the exotic

background [64]. The populations were developed by backcrossing 25 wild barley

accessions to an elite barley cultivar. The lower proportion of wild genome in the

recombinant lines makes phenotyping and mapping of loci in unadapted material

easier.

NAM populations involve fewer crosses than alternative designs such as

MAGIC (discussed below), and additional crosses can be added over time. More-

over, NAMs can emerge as a bi-product of other breeding and research activities.

For example, theWheat Improvement Strategic Programme (WISP) [65] is creating

novel allohexaploid germplasm in wheat (synthetic wheat) by crossing tetraploid

wheat with wild diploid goat grass (Aegilops tauchii). New synthetics are

backcrossed to two elite lines and recombinant inbreds produced. This work was

initiated purely for pre-breeding, but in essence has also created a NAM similar to

that of Nice et al. [64]. A similar exercise in the WISP is producing lines from
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backcrosses of landraces to elite wheat; also producing a NAM. Care must be taken

with these emergent resources, however, to be aware of their statistical power. As

they are not necessarily designed for mapping in the same way as the maize NAM,

the numbers of lines created may be quite low. Power in mapping [66], as in life

[67], is always worth thinking about.

Although multiple parental lines are involved in NAM, the creation of haplotype

diversity is limited. With 26 lines at most 50 recombinant haplotypes can be created

between two loci (out of 67,108,864 possible, assuming the parental loci are all

difference). A greater limitation may be that these 50 will always involve the

common parent: no novel haplotypes between the 25 unique parents are generated.

Guo et al. [48] proposed that NAMs were created with two recurrent parents to

avoid the emphasis on detection of QTL for which the recurrent and non-recurrent

parents differ. This would create more haplotype diversity (100 recombinant hap-

lotypes), but the potential for generating novel haplotype diversity is not as great as

with MAGIC populations, as discussed below.

Where founders have been sequenced, lower-cost genotyping approaches (such

as SNP arrays, GbS, or low-pass sequencing) in the progeny allows founder

genotype to be projected onto the progeny. The prospect of sequencing the genomes

of all individuals to medium-to-high coverage within a mapping population is now

being realized. To date this has occurred in diversity and association-mapping

panels, as this approach provides a wide survey of genetic diversity within a

species. Examples include 3,000 rice accessions to 14� sequencing depth [68]

and 80 accessions to ~15� depth within the Arabidopsis 1,001 Genomes Project

[69]. The continued development of sequencing technologies means that the appli-

cation of genome re-sequencing to other types of plant mapping populations is

inevitable in the near future.

13.2 Heterogeneous Stock

Mott et al. [70] proposed the use of an outbred mouse population (heterogeneous

stock), created from eight inbred laboratory strains intercrossed for 60 generations,

for fine mapping. Subsequently, Valdar et al. [71] mapped 843 QTL for multiple

complex traits including aspects of behavior, which were located to 95% confidence

intervals of ~2.8 Mb on average. Historically, development of heterogeneous stock

in the mouse was instrumental in initiating the development of the first MAGIC

populations in Arabidopsis and wheat. However, the mouse heterogeneous stock

was not developed initially for mapping. Similar populations exist in crops, also not

developed for trait mapping. In outbreeding species, including many crops,

populations are often maintained in isolation for recurrent selection programs.

For highly heritable traits, these can be used directly for mapping, though for traits

with low heritability, clones (or inbred lines) would need to be extracted for

phenotyping first. Similar populations exist in inbreeding species too. In wheat,

for example, a French population was established with 60 founders, segregating for
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genetic male sterility [72]. Provided seed is only ever harvested from the male

sterile individuals, the population is maintained in a crossbred state. Population

structure effects should be minimal, though there will be close familial relation-

ships, so the risk of spurious marker trait associations should not be high. 1,000

inbred lines have been extracted from the French population after 12 generations of

outcrossing. The population had been maintained as a bulk plot grown outside, so

natural selection occurred, following the principles of Dynamic Management

[72]. Thépot et al. [73] reported the first results from the French population,

detecting 26 genomic regions under selection, of which six were associated with

flowering time.

13.3 MAGIC

Following the success of the heterogeneous stock in mouse, we advocated the

development of similar resources in crops – which we termed MAGIC populations

[25]. These are in essence identical in construction to the mouse Collaborative

Cross [74], with the exception that inbred lines are typically produced by selfing

rather than by sib-mating (all that is possible in animals). Since then, MAGIC

populations (reviewed by [75]) have been developed for many plant species

(Table 1), including many of the world’s most important crops, e.g., rice [76, 77],

wheat [78, 79], maize [49], and tomato [80]. The key characteristics of MAGIC

populations are the use of multiple founders (typically eight) and multiple rounds of

intercrossing, before the development of progeny for genetic mapping. With eight

founders, there are 28 possible F1 (2-way) crosses and 210 possible four-way

crosses among unrelated F1s. There are then 315 possible ways of creating the

eight-way crosses [79] (Fig. 1). Depending on the species, at the four-way stage and

eight-way stage, the amount of crossing can become impractical and reduced

numbers may be considered. In addition, progeny of four-way crosses are segre-

gating, so there can be an advantage to replicating eight-way crosses with additional

four-way parents. The design options and consequences for MAGIC populations

have not been fully exhausted, though it is important to maintain a balance of

contribution in lines of descent from each founder, to avoid introducing population

structure into the population and produce as uniform a decay in LD across the

genome as possible.

MAGIC populations afford a number of important benefits over the more

commonly used bi-parental and/or association-mapping populations: (1) using

multiple parent samples more genetic variation than in any traditional bi-parent

cross. (2) The allele frequencies are balanced, because founders contribute equally

to the population. (3) Dense, evenly distributed recombination sites provide con-

siderable resolution for genetic analysis, genetic map construction, and gene isola-

tion. MAGIC will work well in species where LD is extensive (such as inbreeding

species like rice and wheat), and where LD mapping approaches may not give

adequate precision, thus requiring more highly recombined resources. Combined
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Table 1 Examples of published plant multi-founder populations

Population

type Species

Founder

number Population details

Genotype

data Reference

NAM Maize 26 25 ILs crossed to 1 refer-

ence line, 5,000 RILs

1.5k SNPs McMullen

et al. [49]

NAM Barley 26 25 wild barleys crossed

to 1 reference line, 1,420

RILs

5.7k SNPs Maurer

et al. [60]

26 25 wild barleys crossed

to 1 reference line,

796 RILs

384 SNPsa Nice et al.

[64]

NAM Bread

wheat

11 10 varieties crossed to

1 reference line,

852 RILs

13.4k

GbyS-

derived

SNPs

Bajgain

et al. [61]

MAGIC Bread

wheat

4 2 rounds of intercrossing,

1,579 RILs

1,670

DArT/SSR/

SNPs

Huang et al.

[78]

8 3 rounds of intercrossing,

1,000 RILs

82k SNP

array

Mackay

et al. [79]

MAGIC Tomato 8 3 rounds of intercrossing,

397 RILs

1.5k SNP

array

Pascual

et al. [80]

MAGIC Rice 8 ssp. indica. 3 rounds of

intercrossing, 1,328 S7

RILs

GbS Bandillo

et al. [76]

8 ssp. indica. 5 rounds of

intercrossing

Bandillo

et al. [76]

8 ssp. japonica. 3 rounds of
intercrossing, 500 S5

RILs

Bandillo

et al. [76]

16 4 rounds of intercrossing,

ssp. japonica and indica
Bandillo

et al. [76]

4 ssp. indica. 2 rounds

intercrossing, 271 RILs

6k SNP

array

Meng et al.

[77]

4 ssp. indica. 2 rounds

intercrossing, 268 RILs

6k SNP

array

Meng et al.

[77]

8 ssp. indica. 3 rounds

intercrossing, 531 RILs

6k SNP

array

Meng et al.

[77]

MAGIC Barley 8 3 rounds intercrossing,

533 DH lines

4.5k SNPs Sannemann

et al. [90]

MAGIC Arabidopsis 19 527 RILs 1.3k SNPs Kover et al.

[91]

(continued)
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Table 1 (continued)

Population

type Species

Founder

number Population details

Genotype

data Reference

MAGIC Maize 8 3 rounds of intercrossing,

1,636 RILs

54k SNPs Dell’Acqua
et al. [92]

AMPRIL Arabidopsis 8 2 rounds of intercrossing,

532 RILs

321

SSR/SNPs

Huang et al.

[87]

SNP single nucleotide polymorphism, DArT Diversity Array Technology, SSR simple sequence

repeat, RIL recombinant inbred line, IL inbred line, GbyS genotyping-by-sequencing, Arabidopsis
Arabidopsis thaliana, Barley Hordeum vulgare, Bread wheat Triticum aestivum,Maize Zea mays,
Rice Oryza sativa, Tomato Solanum lycopersicum, Genotype details refer to those listed in the

original publication; some populations have been overlaid with additional genotype data

subsequently
aAdditionally, 4,022 SNPs and 263,531 sequence variants imputed into the population via addi-

tional genotyping of the parents

Fig. 1 A balanced eight-way MAGIC crossing scheme. Top line: eight founder parents. Second

line: 28 two-way crosses resulting from all pairwise crosses (half-diallel) between the founders.

Third line: 210 four-way crosses, resulting from intercrossing all unrelated two-ways. Fourth line:

315 eight-way crosses resulting from intercrossing all unrelated four-ways
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with their suitability for the generation of high-density genetic maps, MAGIC

populations are ideal community-based resources for crop improvement, fine map-

ping QTL, QTL� environment and epistatic effects, and the anchoring of physical-

genetic maps. However, a significant disadvantage of MAGIC populations, com-

pared to say a bi-parental population, is the time they take to create. For example,

the eight-way winter wheat MAGIC population created by Mackay et al. [79] took

3.5 years to complete: 1.5 years for the intercrossing, plus 2 additional years to

reach the F5 stage of inbreeding. Creation of DH lines from the final outcrossed

population would reduce time, but a small number of DH lines are required from a

large number of outcrossed individuals, unlike the case in a bi-parental population,

where a large number of lines are required from a single individual (the F1). This

makes DH production to generate MAGIC populations prohibitively expensive for

species like wheat.

An extension of MAGIC that has yet to be widely tested is the extraction of lines

after further generations of outcrossing of the initial population. This was proposed

by Mackay and Powell [25]. These lines would be more highly recombined than the

initial set and therefore give finer location of QTL. High-density genotyping or

sequencing of QTL containing regions identified in the initial population followed

by selective phenotyping of recombinants should increase precision for only a

modest cost. There is a limit to the number of additional generations of additional

crossing that are worth carrying out: the reduction of linkage disequilibrium

through crossing is countered by its increase as a result of finite population size

together with loss of variation through drift. This process is under development in

the ‘NIAB Elite MAGIC’ (eight-founders) and ‘NIAB Diverse MAGIC’ (16 foun-

ders) populations: an additional four cycles of crossing have been carried out and

inbred lines are being created from the more advanced generation.

14 Analysis Approaches for MAGIC

There is a basic split of methods of analysis into those that regress traits onto

individual markers and those that regress traits on probabilities of inheritance from

founders. Within each of these categories there are then several variants. We give

an outline of the three most common below. A fuller account and description are

given in Verbyla et al. [81].

Standard statistical methods of analysis to test for marker-trait associations, such

as a t-test, do not take into account the method of construction of MAGIC

populations, and will result in an increased frequency of false-positive results. A

typical MAGIC population is constructed from a set of funnel crosses in which

founders are crossed in different orders. For an eight-founder population, there are

315 possible ways in which all founders can be combined. For any polygenic trait,

the additive genetic variance expressed between funnels is expected to be 1/8th of

the whole. In addition, (1) replicate crosses may be made when selecting parents

from four-way and subsequent segregating generations, (2) replicate individuals
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within the final generation of crosses may be selected to initiate inbreeding, and

(3) more than one inbred line may be derived from each outcrossed individual.

These nested relationships among the resulting lines must be taken into account

during analysis. For example, we have used gene dropping, as implemented in the

bespoke software GeneDrop [82] (available from http://www.niab.com/), to simu-

late a quantitative trait segregating in the “NIAB Elite MAGIC” population. We

simulated an eight-founder population with an average of six inbred lines per

funnel; 10,000 pairs of unlinked SNPs were tested for association. In the absence

of correction for family structure, false-positive rates were 0.1678, 0.0322, 0.0056,

and 0.0009 at nominal significance thresholds of 0.1, 0.01 0.001, and 0.0001,

respectively: a considerable increase over expected, particularly at more stringent

significance thresholds. Incorporating family structure, the corresponding false-

positive rates were 0.1056, 0.0126, 0.0011, and 0.0000: much closer to the nominal

significance levels.

The hierarchical structure described above is most easily taken into account in a

mixed model incorporating random effects (i.e., variance components) for differ-

ences at each level. In a typical eight-founder population, this would include terms

for differences between funnels, between replicate crosses within funnels, and

between replicate plants within replicate crosses. The marker effects of greatest

interest are included as fixed effects. For bi-allelic markers a simple additive model

is most powerful, in a one degree of freedom (df) test in which the trait is regressed

on the gene dosage (0, 1, 2 in a diploid), of an arbitrarily chosen reference allele. A

two df test can also be used in which the three genotype classes are treated

separately. However, the heterozygous class is usually rare and, even for dominant

QTL, the two df test generally has reduced power. The effect of the heterozygotes

can readily be examined after the initial scan, however. Multi-allelic loci are best

tested for linkage in a (no. of alleles – 1) test.

In this model, there is no requirement to estimate and incorporate into the

analysis a genetic relationship matrix among SSD lines in the manner required in

association mapping. An advantage of this approach is therefore that it is easy to

implement in almost all standard statistical packages. In R [83] for example, the

lmer package [84] can be used to incorporate the desired random effects. As a

result, modelling multiple markers, their interactions, and other covariates is also

straightforward.

Incorporation of a marker-based relationship matrix is also possible, however,

and has been used in mapping within a rice MAGIC population [76]. It has the

advantage that relationships among the founder lines are also taken into account,

though computational ease and simplicity is reduced.

Single-marker methods of analysis should always be included: they are quick,

flexible, and robust to genotype error, which will generally reduce power but not

increase the false-positive rate. Alternative methods of analysis use the marker data

to estimate probabilities of identity by descent between each RIL and each founder

at all selected locations over the genome. Ideally, these probabilities will be one or

zero, indicating that a particular location in a line is known to have originated with

certainty from one of the founders. In the worst case, these probabilities would be
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1/(number of founders). Software to calculate these probabilities is available in r/qtl

[5], mpMap [85], RABBIT [86], and HAPPY [70]. The first three packages require

the pedigree of each line (with reference to the founders) to be known, whereas the

latter does not. We are not aware of an independent comprehensive analysis of the

absolute and relative accuracies of these methods, while also taking into account

their availability, reliability, and ease of use.

Once calculated, traits can be regressed on each founder probability to give a test

with 1 df for a QTL allele carried by that founder. Since there would be (no. of

founders -1) such independent tests, a multiple regression is carried out on the

identity by descent (IBD) values to give a single test with (no. of founders -1)

degrees of freedom. To achieve this, one of the founder probabilities (it doesn’t
matter which) is dropped. Just as for single-marker analyses described above, the

hierarchical population structure of the MAGIC populations should still be taken

into account. HAPPY does not do this, but estimates empirical significance thresh-

olds through a resampling procedure. IBD probabilities can also be calculated for

locations between markers. These too, can be used for analysis. This is analogous to

interval mapping in bi-parental crosses. IBD methods are generally restricted to

additive models: with eight founders there are 28 heterozygous combinations, so

the locus specific test for association would require 35 df, assuming all heterozy-

gous classes were represented. The IBD approach to analyzing MAGIC populations

allows each founder to carry separate QTL alleles. This will be an advantage over

the single (bi-allelic) marker approach in some circumstances. This depends on the

true number of QTL alleles, the distribution of their effects, the pattern of LD

between marker and QTL alleles, the accuracy of IBD determination, the accuracy

of genotyping (which will disproportionately affect IBD probability estimation),

and marker density. It is possible that in the near future, IBD methods may be

superseded as methods of genotyping and sequencing result in marker densities

approaching the limit of capturing all variants segregating in the population (though

this will increase the problem of multiple-testing). Our best advice would be to try

an IBD-based method and a single-marker method. If results agree, all well and

good (and in our experience, they usually do). Lack of agreement should be

explored further to establish the cause. More complex models (reviewed by Verbyla

et al. [81]) involve approaches analogous to composite interval mapping, Bayesian

methods, and can fit multiple QTL models with simultaneous analysis of pheno-

types. Sadly, most methods are currently not easily accessible to the non-statistician

or data analysist.

14.1 Arabidopsis Multi-Parent Recombinant Inbred Line
(AMPRIL)

The Arabidopsis multi-parent recombinant inbred line (AMPRIL) population

described by Huang et al. [87] was developed from eight inbred Arabidopsis
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accessions from diverse geographical origins. Four unrelated F1 combinations were

made among the eight founders. These F1s were crossed in a diallel to give six four-

way crosses (pooling reciprocals), which were then selfed to produce 532 inbred

lines. This pattern of construction is similar to that for MAGIC, but required fewer

crosses and generations to create than the equivalent eight-founder MAGIC popu-

lation. The comments above about MAGIC populations therefore apply to

AMPRIL too. For an equivalent population size, a MAGIC population will provide

more resolution than AMPRIL, although AMPRIL would be quicker to create.

14.2 Linked or Multiple Mapping Populations

In principle, any set of mapping populations can be analyzed simultaneously to

detect QTL and, by increasing sample size, to increase power and precision. If links

between populations can be made, power may be increased further by incorporating

information on linkage disequilibrium across populations in addition to linkage

information within populations. This has resulted in the use of lines derived from

various sets of linked crosses, such as from diallels [88], though these links are not

an absolute requirement. The focus of these approaches has been largely on

detection of QTL in different genetic backgrounds and on epistasis rather than

primarily on improving precision, though that should be a consequence of increas-

ing population size. A recent example, with references to earlier work, is that of

Han et al. [89].

15 Conclusion and Outlook

Precision mapping requires that marker-trait associations are tested in populations

in which large numbers of recombinations have occurred. To achieve this goal,

there are two broad approaches: increase population size and increase the number of

generations of crossing. The methods described in this review attempt one or both

of these. We favor approaches such as MAGIC and AMPRIL, since these focus

explicitly on increasing the amount of recombination that occurs within the popu-

lation. This bias may be because our own background is of working with inbred

crops where LD generally decays quite slowly in collections of lines and the

number of elite cultivars available is limited. Consequently, the power and preci-

sion of association mapping may be limited. In contrast, approaches that rely on

linked sets of crosses, such as NAM, may be better suited to outcrossed species such

as maize (where the limitation can be that LD decays too quickly in association-

mapping panels, so power is limited but precision is increased). In these circum-

stances, experimental populations may be required to increase power as much as to

increase precision. An equivalent way of viewing the choice would be that MAGIC

populations are better for fine mapping in germplasm of immediate relevance to
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breeders’ elite germplasm, but NAM is better for progression towards gene discov-

ery and positional cloning, since greater diversity can be captured in very diverse

germplasm and the use of linkage in addition to linkage disequilibrium protects

against loss of power for QTL detection.

Whatever approach is followed, the days of mapping QTL in small populations

must come to an end. In our own work in MAGIC wheat populations, we started

with a target of developing 1,000 lines per population: that number now looks on

the low side.
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Glossary

Advanced inter-cross (AIC) A bi-parental population, in which founders have

been intercrossed for two or more generations prior to the production of inbred

lines.

Doubled haploid (DH) A genotype formed when haploid cells undergo chromo-

some doubling.

Genomic selection (GS) A form of marker-assisted selection in which genetic

markers are combined with phenotypic data to estimate breeding values in the

absence of precise knowledge of where specific genes are located.

Genome wide association scan (GWAS) Method for genetic mapping using a

collection of varieties or landraces with phenotypic and genome-wide genotypic

datasets.

Linkage disequilibrium (LD) The non-random association of alleles at separate

loci located on the same chromosome.

Multiparent advanced generation inter cross (MAGIC) population A multi-

founder population created by intercrossing the founders over multiple genera-

tions in a balanced crossing scheme, prior to the production of inbred lines.

Nested association mapping (NAM) population A multi-founder population

created by generating multiple bi-parental inbred populations, each of which

contains a common founder.

Quantitative trait locus (QTL) A polymorphic site contributing to the genetic

variability of a quantitative trait.

Recombinant inbred line (RIL) A population developed by single seed descent

from the F2 generation.
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35. Ries D, Holtgräwe D, Vieh€over P, Weisshaar B (2016) Rapid gene identification in sugar beet

using deep sequencing of DNA from phenotypic pools selected from breeding panels. BMC

Genomics 17:236

36. Hill WG (1998) A note on the theory of artificial selection in finite populations and application

to QTL detection by bulk segregant analysis. Genet Res 72:55–58

37. Mackay IJ, Caligari PDS (2000) Efficiencies in F2 and backcross generations for bulked

segregant analysis using dominant markers. Crop Sci 40:626–630

38. Fitz Gerald JN, Carlson AL, Smith E, Maloof JN, Weigel D, Chory J, Borevitz JO, Swanson RJ

(2014) New Arabidopsis advanced intercross recombinant inbred lines reveal female control of

nonrandom mating. Plant Physiol 165:175–185

39. Balint-Kurti PJ, Wisser R, Zwonitzer JC (2008) Use of an advanced intercross line population

for precise mapping of quantitative trait loci for gray leaf spot resistance in maize. Crop Sci

48:1696–1704

40. Balint-Kurti PJ, Zwonitzer J, Wisser R (2008) Use of an advanced intercross line population

for precise mapping of quantitative trait loci for grey leaf spot resistance in maize. Crop Sci

48:1696–1703

41. Kooke R, Wijnker E, Keurentjes JJ (2012) Backcross populations and near isogenic lines.

Methods Mol Biol 871:3–16

42. Fletcher RS, Mullen JL, Yoder S, Bauerle WL, Reuning G, Sen S, Meyer E, Juenger TE,

McKay JK (2013) Development of a next-generation NIL library in Arabidopsis thaliana for

dissecting complex traits. BMC Genomics 14:655

43. Gale JS (1980) Population genetics. Blackie and Son, Glasgow and London

Genetic Mapping Populations for Conducting High-Resolution Trait. . . 135



44. Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred family (HIF) analysis: a

method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl

Genet 95:1005–1011

45. Yamanaka N, Watanabe S, Toda K, Hayashi M, Fuchigami H, Takahashi R, Harada K (2005)

Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line

derived from a recombinant inbred line. Theor Appl Genet 110:634–639

46. Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of

nested association mapping in maize. Genetics 178:539–551

47. Abecasis GR, Cardon LR, Cookson WOC (2000) A general test of association for quantitative

traits in nuclear families. Am J Hum Genet 66:279–292

48. Guo B, Sleper DA, Beavis WD (2010) Nested association mapping for identification of

functional markers. Genetics 186:373–383

49. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Lu H et al (2009) Genetic properties of

a maize nested association mapping population. Science 178:539–551

50. Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ et al (2011) Distinct genetic

architectures for male and female inflorescence traits of maize. PLoS Genet 7:e1002383

51. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ et al (2009) The genetic

architecture of maize flowering time. Science 325:714–718

52. Hung H-Y, Shannon LM, Tian F, Bradbury PJ, Chen C et al (2012) ZmCCT and the genetic

basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl

Acad Sci U S A 109:E1913–E1921

53. Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR et al (2011) Genome-wide

association study of quantitative resistance to southern leaf blight in the maize nested associ-

ation mapping population. Nat Genet 43:163–168

54. Peiffer JA, Flint-Garcia SA, De Leon N, McMullen MD, Kaeppler SM et al (2013) The genetic

architecture of maize stalk strength. PLoS One 8:e67066

55. Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z et al (2014) The genetic

architecture of maize height. Genetics 196:1337–1356

56. Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association

mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci U S A

108:6893–6898

57. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q et al (2011) Genome-wide association study of

leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

58. Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M, Buckler ES (2014) Association mapping

across numerous traits reveals patterns of functional variation in maize. PLoS Genet 10:

e1004845

59. Jordan D, Mace E, Cruickshank A, Hunt C, Henzell R (2011) Exploring and exploiting genetic

variation from unadapted sorghum germplasm in a breeding program. Crop Sci 51:1444–1457

60. Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E, Killian B, Reif JC,

Pillen K (2015) Modelling the genetic architecture of flowering time control in barley through

nested association mapping. BMC Genomics 16:290

61. Bajgain P, Rouse MN, Tsilo TJ, Macharia GK, Bhavani S, Jin Y, Anderson JA (2016) Nested

association mapping of stem rust resistance in wheat using genotyping by sequencing. PLoS

One 11:e0155760

62. Wingen LU, West C, Leverington-Waite M, Collier S, Orford S et al (2017) Wheat landrace

genome diversity. Genetics 205:1657–1676

63. Stich B (2009) Comparison of mating designs for establishing nested association mapping

populations in maize and Arabidopsis thaliana. Genetics 183:1525–1534
64. Nice LM, Steffenson BJ, Brown-Guedira GL, Akhunov ED, Liu C, Kono TJY, Morrell PL,

Blake TK, Horsley RD, Smith KP, Meuhlbauer GJ (2016) Development and genetic charac-

terization of an advanced backcross-nested association mapping (AB-NAM) population of

wild x cultivated barley. Genetics 203:1453–1467

65. Moore G (2015) Strategic pre-breeding for wheat improvement. Nat Plants 1:15018

136 J. Cockram and I. Mackay



66. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association

mapping: critical considerations shift from genotyping to experimental design. Plant Cell

21:2194–2202

67. Tversky A, Kahneman D (1971) Belief in the law of small numbers. Psychol Bull 76:105

68. 3000 Rice Genomes Project (2014) The 3000 rice genomes project. Gigascience 3:7

69. Cao J, Schneeberger K, Ossowski S, Gunther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O,

Lippert C, Wang X, Ott F, Müller J, Alonso-Blanco C, Borgwardt K, Schmid KJ, Weigel D

(2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet

43:956–963

70. Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping

quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci U S A 97:12649–12654

71. Valdar W, Solberg LC, Gauguier D, Burnett S, Klenerman P, Cookson WO, Taylor MS,

Rawlins JNP, Mott R, Flint J (2006) Genome-wide genetic association of complex traits in

heterogeneous stock mice. Nat Genet 38:879–887

72. Goldringer I, Enjalbert J, David J, Paillard S, Pham JL et al (2001) Dynamic management of

genetic resources: a 13-year experiment on wheat. In: Cooper HD, Spillane C, Hodgkin T (eds)

Broadening the genetic base of crop production. CABI, Wallingford, pp 245–260

73. Thépot S, Restoux G, Goldringer I, Gouache D, Mackay I, Enjalbert J (2015) Efficiently

tracking selection in a multiparental population: the case of earliness in wheat. Genetics

199:609–623

74. The Complex Trait Consortium (2002) The collaborative cross, a community resource for the

genetic analysis of complex traits. Nat Genet 36:1133–1137

75. Huang BE, Verbyla KL, Verbyla AP, Raghavan C, Singh VK, Gaur P, Leung H, Varshney RK,

Cavanagh CR (2015) MAGIC populations in crops: current status and future prospects. Theor

Appl Genet 128:999–1017

76. Bandillo N, Raghaven C, Muyca PA, Sevilla MAL, Lobina IT (2013) Multi-parent advanced

generation inter-cross (MAGIC) populations in rice: progress and potential for genetic

research and breeding. Rice 6:11

77. Meng L, Guo L, Ponce K, Zhao X, Ye G (2016) Characterization of three indica rice

multiparent advanced generation intercross (MAGIC) populations for quantitative trait loci

identification. Plant Genome 9(2).

78. Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012)

A multiparent advanced generation inter-cross population for genetic analysis of wheat. Plant

Biotechnol J 10:826–839

79. Mackay I, Bansept-Basler P, Barber T, Bentley AR, Cockram J et al (2014) An eight-parent

multiparent advanced generation intercross population for winter-sown wheat: creation, prop-

erties and validation. G3 (Bethesda) 4:1603–1610

80. Pascual L, Desplat N, Huang BE, Desgroux A, Bruguier L, Bouchet JP, Le QH, Chauchard B,

Verschave P, Causse M (2015) Potential of a tomato MAGIC population to decipher the

genetic control of quantitative traits and detect causal variants in the resequencing era. Plant

Biotechnol J 13:565–577

81. Verbyla AP, George AW, Cavanagh CR, Verbyla KL (2014) Whole-genome QTL analysis for

MAGIC. Theor Appl Genet 127:1753–1770

82. Ladejobi O, Elderfield J, Gardner KA, Gaynor RC, Hickey J, Hibberd JM, Mackay IJ, Bentley

AR (2016) Maximizing the potential of multi-parental crop populations. App Transl Genom

11:9–17

83. R Core Team (2015) R: a language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna. URL: https://www.R-project.org/
84. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using

lme4. J Stat Softw 67:1–48

85. Huang BE, George AW (2011) R/mpMap: a computational platform for the genetic analysis of

multiparent recombinant inbred lines. Bioinformatics 27:727–729

Genetic Mapping Populations for Conducting High-Resolution Trait. . . 137

https://www.r-project.org


86. Zheng C, Boer MP, van Eeuwijk F (2015) Reconstruction of genome ancestry blocks in

multiparental populations. Genetics 200:1073–1087

87. Huang X, Paulo MJ, Boer M, Effgen S, Keizer P, Koornneef M, van Eeuwijk FA (2011)

Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line

population. Proc Natl Acad Sci U S A 108:4488–4493

88. Rebai A, Goffinet B (1993) Power of tests for QTL detection using replicated progenies

derived from a diallel cross. Theor Appl Genet 86:1014–1022

89. Han S, Utz HF, Liu W, Schrag TA, Stange M, Würschum T, Miedaner T, Bauer E, Sch€on CC,
Melchinger AE (2016) Choice of models for QTL mapping with multiple families and design

of the training set for prediction of Fusarium resistance traits in maize. Theor Appl Genet

129:431–444
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6X Hexaploid
ATP Arabidopsis TILLING Project
Az Azide
CIAT International Center for Tropical Agriculture
CRISPR Clustered Regularly-Interspaced Short Palindromic Repeats
CRISPRa CRISPR activator
CRISPRi CRISPR interference
DNA Deoxyribonucleic acid
DSBs Double strand breaks
EMC Enzymatic mismatch cleavage
EMCA EMC with aragose gel
EMCC EMC with capillary electrophoresis
EMCH EMC with HPLC
EMCL EMC with LI-COR gels
EMCP EMC with polyacrylamide gels
EMS Ethyl methanesulfonate
ENU N-ethyl-N-nitrosourea
Gb Giga bases
HDR Homology-directed repair
HPLC High performance liquid chromatography
HRM High resolution melt
indel Insertion or deletion of bases
kb Kilobases
M0 Plant generation prior to mutagenesis
M1 First generation of mutagenized plant
M2 Second generation of mutagenized plant
Mbp Million base pairs
MNU N-Nitroso-N-methylurea
NHEJ Non-homologous end joining
PAGE Polyacrylamide gel electrophoresis
PCR Polymerase chain reaction
RNA Ribonucleic acid
sgRNA Single guide RNA
SNP Single nucleotide polymorphism
TALENs Transcription Activator-Like Effector-based Nucleases
TILLING Targeting Induced Local Lesions IN Genomes
ZFNs Zinc finger nucleases

1 Introduction

The Dutch botanist Hugo de Vries is credited as the first person to introduce the word
mutation to the scientific vocabulary. His “mutation theory” was based in part on
observations of spontaneous and heritable phenotypic changes (mutations) occurring
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in evening primroses over a 13-year period [1]. What de Vries was observing was
later determined to be the result of large chromosomal aberrations unique to
Oenothera species. It was the work of Thomas Hunt Morgan and colleagues in the
first quarter of the twentieth century on Drosophila melanogaster that would pop-
ularize the use of the word “mutation” to describe genetic variations in single genes
[2]. In addition to stimulating mutation research, de Vries would later go on to
describe the phenomenon of genetic recombination in 1903 [3]. Thus, by the early
1900s the major driving forces of genetic diversity, mutation and recombination,
were described. These two events underlie biological evolution and provide the
means for humans to generate novel diversity in plants and animals (Fig. 1).

Mutations are a particularly useful tool for both geneticist and breeder. New
mutations create novel alleles that can have a profound impact on organismal
phenotype, and provide the raw material for breeders to create combinations of
alleles to improve crop performance [5]. While spontaneous mutations are a major
source of heritable phenotypic diversity, they pose a problem for the researcher: they
happen quite rarely. Indeed, recent studies employing whole genome sequencing
suggest a spontaneous mutation rate of 7.4 � 10�9 in rice and 7 � 10�9 in
Arabidopsis [6, 7]. A major milestone, therefore, was the discovery that mutations
could be induced much faster than they appear in nature.

Herman Muller used X-rays to create mutations in Drosophila melanogaster that
accumulated orders of magnitude faster than what was observed spontaneously
[8]. Contemporary with this, Lewis John Stadler used X-rays to induce mutations
in cereals [9, 10]. The idea that mutations could be used for breeding was quickly
adopted and by the late 1930s the first mutant crop variety was released, a cultivar of
tobacco named Chlorina that had improved characteristics for cigar smoking
[11, 12]. This ushered in the field of plant mutation breeding that has resulted in
the official release of more than 3,200 mutant crop varieties [13, 14]. Forward
genetic approaches that utilize induced mutations remain popular likely because of
the ease of mutation induction in many crops and the fact that phenotypes can be
observed without any prior knowledge of genes or gene function.

Activities to determine the sequence of DNA, and thus genes, in organisms began
in the 1960s and led to the first full DNA genome (bacteriophage φX) in 1977
[15]. Years later, the development of next-generation sequencing technologies has
led to a massive increase in the acquisition of gene sequences that had vastly
outpaced the establishment of in vivo functions of genes through direct experimental
evidence. Reverse-genetic methods can bridge this gap as they provide direct in vivo
testing of the function of genes. The process involves the creation of gene disrup-
tions in the selected genotype, the identification of individuals having affected gene
sequences or gene expression, and the testing of these organisms to determine the
phenotypic consequence of the mutation (Fig. 2). This is in essence the opposite
direction of traditional genetic analysis, where plants are selected based on pheno-
type and only later are analyzed to determine the genetic alteration that is causative
for the observed trait. Thus, the process is the “reverse” of traditional genetic
analysis. A key component of reverse-genetic approaches is that they are hypothesis
driven endeavors where the researcher seeks to study the in vivo function of a gene
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Fig. 2 Overview of the TILLING procedure. The first step is the development of a mutagenized
population (a). The chemical mutagen ethyl methanesulfonate (EMS) is typically used. The goal is
to obtain a high density of induced point mutations while maintaining suitable survivability and
fecundity. While seed mutagenesis is common, examples exist of pollen and tissue culture muta-
genesis [16, 17]. For seed propagated crops a single-seed descent strategy is often employed so that
the maximum mutation diversity can be captured with the minimum of samples to screen. The
optimal population size depends on the density and spectra of induced mutations. Higher mutation
densities are achieved in polyploids and thus smaller population sizes are required [18–20]. DNA
and seed are collected from plants selected for the TILLING population. The time for the
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or other sequence element. Some prior knowledge of appropriate targets (genomic
sequences) is therefore required. Candidate targets can often be chosen based on
homology to sequences in other organisms where some evidence exists of their
function. Prior to the advent of TILLING, reverse-genetics approaches had several
limitations including the fact that many were species-specific, using, for example,
endogenous transposons, or employed transient disruptions that were not
heritable [14].

Chemical mutagenesis was first described in the 1940s with the observation of
“chemical production of mutations” in Drosophila treated with mustard gas
[22]. Mutagens such as EMS became popular and ubiquitous in forward-genetic
studies that aimed to elucidate gene function and biological pathways in model
organisms. Indeed, many groundbreaking discoveries such as cell cycle control in
yeast, segment polarity in Drosophila, and meristematic cell signaling in Arabidopsis
were achieved by forward-genetic screens using EMS [23–25]. Chemical mutagens
were thus firmly established by the 1980s as compounds that could produce a high
frequency of useful, heritable, and stable mutations for gene function studies.
Pioneering work using observed phenotypes provided early estimations on the
frequency of genic mutations and optimal population sizes when using EMS
[26]. Early work also established that EMS induces primarily point mutations in
plants [27].

By the 1990s, technologies for rapid and accurate discovery of SNP variations
advanced enough to enable the formulation of reverse-genetics approaches utilizing
mutagens inducing primarily single base substitutions. The first reports used dena-
turing high-performance liquid chromatography (HPLC) for the discovery of point
mutations in Arabidopsis thaliana and Drosophila melanogaster [28, 29]. The
Arabidopsis group coined the term TILLING (Targeting Induced Local Lesions IN
Genomes) for this approach (Fig. 2). This name became widely adopted for subse-
quent reverse-genetic projects in plants and animals that employed mutagens causing
primarily small (SNP and indel) variations [30].

⁄�

Fig. 2 (continued) development of a TILLING population varies and can take more than 1 year for
field propagated crops. The second step of TILLING is screening the DNA library for induced
mutations (b). Since the inception of TILLING this has been the fastest step. With classical
mismatch cleavage and fluorescence detection, an allelic series of ~30-point mutations could be
discovered in 1 week using a single DNA analyzer machine [21]. Next-generation sequencing
methods have allowed much higher throughputs and the possibility of indexing all mutations in a
TILLING population in a short time rather than taking a gene by gene approach. Technologies for
DNA sequence evaluation are constantly improving and new approaches will eventually make the
discovery and assignment of millions of EMS mutations to individual samples a routine affair. The
final step in the TILLING process is testing the effect of the discovered mutations on the mutant
plant (c). This step is, and will likely remain, the bottleneck for TILLING or any other reverse-
genetic approach. Owing to the high density of background mutations induced by chemical
mutagens, one or more backcrosses may be needed to unambiguously correlate genotype with
phenotype
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2 The First TILLING Service and Expansion into Other
Plant Species

Immediately upon the first description of TILLING, efforts were made to improve
technologies for mutation discovery so that sample throughput could be increased
while at the same time reducing false-positive and false-negative error rates. Devel-
opment and adaption of mutation discovery technologies for TILLING remains an
active area of research as described later in this chapter. A major milestone in the
early days of TILLING was the adaptation of enzymatic mismatch cleavage (EMC)
for SNP discovery. The activity of single-strand-specific nucleases to cleave single-
base-pair mismatches had been reported as early as the 1970s [31, 32], but progress
and interpretation of the activity of nucleases on single-base mismatches was
hindered due limitations in available methods to observe cleaved DNA fragments
[33, 34]. Henikoff and colleagues developed a method that paired enzymatic
mismatch cleavage, eightfold sample pooling, base-pair resolution denaturing poly-
acrylamide gel electrophoresis, and laser-based fluorescence detection. This
approach was termed “high-throughput TILLING” owing to the fact that 768 mutant
plants could be screened for mutations in approximately 1 million base pairs in a
single gel run [35]. The method proved to be highly robust and accurate and became
widely used for mutation discovery in the first decade of TILLING [30, 36].

The major inputs into a TILLING project are the development of suitably a
mutagenized population and the generation of a library of high quality genomic
DNAs. It was clear from the initiation of the first TILLING efforts in Arabidopsis
thaliana, that the TILLING population could become a valuable community
resource. The first TILLING service was started in 2001 for Arabidopsis
[37]. Users of the service interfaced online with the Arabidopsis TILLING Project
(ATP) website. A suite of computational tools guided requestors to choose optimal
genic regions of ~1.5 kb to screen for mutations, design PCR primers, and place
orders [21]. The ATP would then screen a population of 3,000–6,000 mutagenized
lines for mutations in the chosen amplicons, deliver results of alleles discovered, and
provide access to seed. In cases where a user requested mutations in a gene that had
been previously screened, the requestor was provided a list of mutations already
discovered. Thus, within the first year of TILLING being established, one can
observe the beginnings of in silico TILLING. The ATP later changed its name to
the Seattle TILLING Project as it developed a service for TILLING in Drosophila
melanogaster and collaborated with other groups to expand TILLING into other
species such as rice, maize, and soybean [17, 38, 39]. To date, classical TILLING
has been reported for over 25 plant species (Table 1 and [36]). TILLING services
expanded as other groups provided screening for a range of different plants including
rice, tomato, Brassica rapa, Lotus japonicus, tetraploid and hexaploid wheat, pea,
and zebrafish [55–59]. Facilities have either provided screening for free or have
charged a fee to recover costs. One issue with single customer-based cost-recovery
services is that they depend on having a minimal number of requests over a set
period of time to ensure a stable flow of resources to support staff. Sustainability of
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Table 1 Selected examples of TILLING projects

Species (common namea),
ploidy Mutagen

Mutation
frequency 1/kb

Mutation detection
technologyb References

Arabidopsis thaliana
(Arabidopsisa), 2X

EMS 1/200 EMCL [21, 40]

Arabidopsis thaliana
(Arabidopsisa), 4X

EMS 1/51.5 Illumina amplicon [41]

Arachis hypogaea
L. (peanut), 4X

EMS 1/967 EMCL [42]

Arachis hypogaea
L. (peanut), 4X

EMS 1/344 kb (single
copy)
1/3,028 (multi-
copy)

Illumina amplicon [43]

Brassica napus (canola), 2X EMS 1/109 Illumina amplicon [44]

Eragrostis tef (tef), 4X EMS 1/115; 1/370 454 amplicon [45]

Helianthus annuus
L. (sunflower), 2X

EMS 1/475 EMCL [46]

Helianthus annuus
L. (sunflower), 2X

EMS 1/480 EMCL [47]

Hordeum vulgare (barley),
2X

EMS 1/1,000 EMCH [48]

Hordeum vulgare (barley),
2X

EMS 1/500 EMCL [49]

Hordeum vulgare (barley),
2X

EMS 1/1,333 454 amplicon [50]

Musa acuminata (banana),
3X

EMS 1/57 EMCL [16]

Oryza sativa ssp. japonica
(ricea), 2X

EMS
Az-
MNU

1/294
1/265

EMCL
Illumina amplicon,
exome capture/
Illumina

[39, 51, 61]

Oryza sativa ssp. japonica
(rice), 2X

MNU 1/135 EMCC [52]

Triticum aestivum (hexaploid
wheat), 6X

EMS 1/24 EMCL [19]

Triticum aestivum (hexaploid
wheat), 6X

EMS 1/38 EMCP
Exome capture/
Illumina

[20, 62]

Triticum aestivum (hexaploid
wheat), 6X

EMS 1/23.3 to 1/37.5 EMCA [18]

Triticum aestivum (hexaploid
wheat), 6X

EMS 1/34; 1/47 EMCA, EMCP [53]

Triticum durum (tetraploid
wheat), 4X

EMS 1/40 EMCL [19]

Triticum durum (tetraploid
wheata), 4X

EMS 1/51 EMCP, exome cap-
ture/Illumina

[20, 62]

Triticum monococcum (dip-
loid wheat), 2X

EMS 1/92 EMCA [54]

Zea mays (corna), 2X EMS 1/500 EMCL [17]
aIndicates present or former TILLING service
bEMC (+ symbol) Enzymatic mismatch cleavage using one type of readout platform, A agarose gel,
C capillary electrophoresis, H HPLC, L LI-COR, P Polyacrylamide gel
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public sector TILLING has thus been an issue and several services have already
closed down. Development of fully sequenced TILLING libraries as complete in
silico resources may be a more sustainable model as it requires only limited labor and
resources to maintain databases and seed stocks. This has been possible in recent
years through advances in genome sequencing technologies (see below).

One result of the expansion of TILLING into different plant species was the rapid
acquisition of data on the effect of chemical mutagens on the plant genome. Keeping
in mind that the pre-NGS mutation discovery methods used are highly biased for the
recovery of SNP and small indel mutations, data from thousands of discovered EMS
mutations showed that for many species the majority of induced changes were G:C
to A:T transitions (Table 1, [40]). This supports earlier studies showing EMS
alkylating the G residue at the O06 position resulting in the replication machinery
incorporating a T rather than a C in the newly synthesized strand. In some species
nearly 100% transition changes have been observed. This deviates in other species,
owing possibly to alkylation of other oxygens, variations in DNA repair, and
pathways involving depurination [60]. Few mutation hot-spots or regional biases
have been reported in studies with data sets large enough to provide statistical
significance. Rather, data suggests that EMS results in a generally random distribu-
tion of mutations across euchromatic chromosomal locations with some local bias
based on adjacent base-pairs [40, 61]. The adoption of next generation sequencing
for TILLING screens in the last 5 years has resulted in an increase in datasets on the
effect of EMS in plants by two orders of magnitude. The analysis of millions of
mutations discovered in wheat will help address the issue of any positional bias in
the accumulation of EMS induced changes.

Other chemicals and combinations of chemicals such as sodium azide–MNU
have been successfully used for TILLING in plants. Mutation densities reported are
similar to that with EMS, while the spectra differ slightly (Table 1). The choice of
mutagen may be important in species/genotypes where achieving a high density of
mutations with EMS is somehow prohibited due to a cytotoxic barrier or some other
effect. Chemical mutagens such as EMS can also result in double strand breaks
(DSBs) that could cause larger chromosomal aberrations that were not detected in
mutation discovery methods employing PCR amplicons. This is a potentially inter-
esting phenomenon that may be observed when using whole genome or reduced
representation genome sequencing approaches. Indeed, analysis suggests that large
deletions are induced in polyploid wheat [62]. The frequency of such events is
predicted to be quite low compared to SNPs, owing to the fact that large changes will
likely be more deleterious, resulting in higher sterility and lower heritability.

3 Next-Generation TILLING

One continual field of study in TILLING has been the development and adaptation
of different methods for mutation discovery (Fig. 2). During the first decade of
TILLING, numerous publications reported alternative methods for SNP discovery
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with the ultimate goal of increasing sensitivities and thus improving throughput and
reducing costs. These included capillary and gel-based systems, High Resolution
Melt (HRM) analysis, denaturing HPLC coupled with enzymatic mismatch cleav-
age, conformation-sensitive capillary electrophoresis, and mass spectroscopy
[36]. While each method has its advantages and disadvantages, none proved to be
such a substantial improvement that it replaced the predominant mode of mutation
discovery of enzymatic mismatch cleavage and fluorescence detection. Rather,
laboratories adopted the best fit for their purpose based on run-costs, amplicon
length, equipment maintenance and automation. This began to change with the
commercialization of next generation sequencing. Massively parallel whole genome
sequencing coupled with bioinformatics analyses allows rapid discrimination of rare
sequence variants versus errors due to the sequencing process [6]. The approach
offers a vast improvement on sample screening throughput while dramatically
reducing wet bench experiments. Disadvantages include the production of very
large data sets, a high bioinformatics load, and higher costs. In addition, much of
the cost is spent on sequencing nucleotides outside of genes that will have no
phenotypic consequence when mutated.

A natural solution for the discovery of chemically induced mutations using NGS
was the adaptation of the original TILLING method of screening PCR amplicons
rather than sequencing whole genomes. TILLING remains the same except for the
mutation discovery step. Several versions of this have been described (Table 1). All
approaches share the goal of maximizing screening throughput by increasing the
number of samples screened, the level of pooling, and/or the number of amplicons
(total bases of unique sequence) screened. In addition to increasing throughput,
sample pooling strategies can also increase the accuracy of mutation calls and allow
the determination of the exact individual harboring the identified induced mutation
in a pool of samples. Two-dimensional eightfold pooling was used in traditional
TILLING screens whereby discovery of a mutation in a row and column pool
provided the coordinates of the position of the mutant sample arrayed on a 96-well
plate [16]. Higher level pooling is possible with next generation sequencing and so
three-dimensional strategies could be considered where samples are arrayed in a
cube of stacked plates and mutations are identified in row, column, and plate pools
providing the x, y, and z coordinates to identify the exact sample having the
mutation. This was used in the TILLING by Sequencing approach described by
Comai and colleagues where they screened a total of 768 individual rice mutants in a
three-dimensional pool consisting of two dimensions of samples pooled 48-fold and
one dimension pooled 64-fold [51]. The group also used TILLING by Sequencing to
discover EMS induced mutants in wheat. PCR amplification in this approach closely
followed that previously reported for traditional TILLING with single-amplicon
reactions performed with pooled genomic DNA [39]. One important issue that was
addressed in this work was the fact that higher pooling requires higher amounts of
genomic DNA in PCR reactions to ensure that when performing a PCR on a pool,
amplification occurs on template DNA from all samples. Failure to achieve this
would result in elevated false negative error rates. After PCR products were quan-
tified and then pooled, amplicons were fragmented to an appropriate size for library
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preparation, and sequencing was performed using the Illumina platform. Purpose-
built bioinformatics tools were also developed for mutation calling and are freely
available [63]. Comai and colleagues would also use this method for the develop-
ment of a tetraploid Arabidopsis TILLING population showing a density of 19.4
mutations per Mb [41]. While many different next generation sequencing technol-
ogies have been described, Illumina is currently the most popular for TILLING by
Sequencing and exome capture TILLING projects. Haughn and colleagues
described a modification of the TILLING approach to identify EMS induced muta-
tions in three-dimensionally pooled DNA samples of polyploid canola [44]. A three-
dimensional pooling approach using multiplex semi-nested PCR was described for
recovery of sodium azide-induced mutations in rice [64]. Ozias-Akins and col-
leagues used the TILLING by Sequencing approach, employing two-dimensional
pooling, to recover mutations in single and multi-copy stress resistance genes in
peanut [43]. PCR products were typically fragmented prior to sequencing because
amplicon lengths were greater than available sequencing read lengths.

As read lengths have increased with the Illumina platform it is now possible to
consider direct sequencing of amplicons without fragmentation. This may be espe-
cially efficient in organisms with small exons such as zebrafish. Moens and col-
leagues described a strategy for direct sequencing of 250 base-pair amplicons using
Paired-End sequencing to find induced mutations in N-ethyl-N-nitrosourea (ENU)
mutagenized zebrafish [65]. Similar work is being carried out using 600 base-pair
amplicons and 2 � 300 Paired-End reads to identify EMS induced mutations in
tomato [66]. One interesting aspect of the zebrafish work surrounds the type of
alleles induced by chemical mutagens. From the start of TILLING, efforts were
made to integrate predictions of the effect of point mutations on gene function for
optimal primer design and to prioritize identified mutants for phenotypic character-
ization [67–69]. Owing to the fact that splice-site and nonsense changes are easy to
predict, activities surrounded the evaluation of missense changes (where the muta-
tion causes a change from one amino acid to another). In general, only about 5% of
EMS induced mutations in an average plant gene will be splice-site or nonsense
mutations, and only a fraction of missense changes will be predicted to alter gene
function. Therefore, on average more than half of mutations identified in a TILLING
screen are expected to be of no value. Why then should efforts be undertaken to
identify the individual sample that harbors an unwanted induced mutation? An
alternative strategy is to screen larger one-dimensional pools of samples in order
to capture all mutations as efficiently as possible. The next step is to evaluate the
effect of mutations and choose only those of interest to follow up. This approach was
used for zebrafish TILLING. One-dimensional pools of DNA from 288 fish were
first screened using the Illumina MiSeq. High throughput genotyping assays (HRM)
were then designed for specific genes and all individuals from a pool were screened
to identify the one harboring the sought after mutation. A similar approach is being
used to identify natural mutations in cassava accessions held at the International
Center for Tropical Agriculture (CIAT) and also for TILLING by Sequencing in
soybean [70, 71].
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4 Towards In Silico TILLING

With advances in next generation sequencing, one can consider developing an in
silico resource where all mutations from a mutagenized population are discovered
simultaneously and recorded in a database. This is in contrast to traditional TILLING
where the user orders mutations in a specific gene prior to screening (Fig. 3).

The in silico TILLING approach allows researchers to get results on available
mutations in his or her target gene immediately. The challenge with creating such a
resource is that while sequencing costs have reduced, many plant genomes are large
and accurate discovery of rare SNP mutations requires a suitable depth of coverage.
While examples do exist of whole genome sequencing of thousands of plant
accessions in order to uncover natural nucleotide variation, the approach remains
cost-prohibitive for most TILLING projects [72, 73]. An alternative way is to
sequence only a subset of genomic DNA that is most likely to cause phenotypic
variation when mutated (Fig. 4). The first example of this is in zebrafish where DNA
was enriched with the annotated exons of all 26,206 protein coding genes [74]. This

Fig. 3 Traditional TILLING services versus in silico resources. In traditional TILLING services
screening for mutations begins when a user requests mutations in a specific gene region (top).
Screening of the population is performed for that target and identified mutations are reported back to
the user along with information on how to access seed stock. Depending on the speed of the
TILLING facility and the number of orders placed, it may take weeks to months before the user
receives results [21]. In in silico TILLING, all mutations in a population are discovered and
catalogued in a database prior to any user requests. The user searches a database for mutations in
the selected gene and results are provided in the time it takes for the search to be completed,
typically seconds
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Fig. 4 A simplified example of developing an in silico TILLING resource using reduced repre-
sentation exome capture sequencing. Probes are designed to cover all genomic sequences of interest
(top). Exon sequences that code for proteins are good targets for mutagenesis as the effect of
mutations can be predicted in advance. Probes can be designed for any region such as promoters and
other regulatory elements. Genomic DNA from mutant plants is isolated, sheared, and then
hybridized to the probes. DNA-Probe hybrids are then physically separated and sequenced (mid-
dle). This process is performed on the entire TILLING population and a database of mutation
information for each plant is created (bottom). Users of the resource access the database and search
for mutations in their specific gene target(s). A list of plants harboring identified mutations is
returned along with information on how to access seed for the selected plants
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covered approximately 60 Mbp of exonic sequence. The size of the zebrafish
genome is ~1.4 Gb and so the exome approach represents a major reduction in
sequencing loads (about 23�) while not reducing the ability to identify genic
mutations.

The approach is especially appealing for large genome plants where there has
already been reported success in TILLING. There have been many examples of
successful TILLING in polyploid wheat with high mutation densities [18–20, 75].
Reverse-genetics is a powerful approach in polyploids where recessive mutations are
not observed due to the presence of homeologous sequences that must also be
mutated before a phenotype can be observed. Slade and colleagues combined muta-
tions in starch branching IIa genes in the A, B, and D genomes to produce high
amylose wheat [75]. Uauy and colleagues have taken a similar approach of combin-
ing mutations in the genomes to increase grain size [76]. An in silico TILLING
resource has been produced for both tetraploid and hexaploid wheat. More than
10 million mutations have been reported, making it the largest dataset on the effects
of EMSmutagenesis on a plant genome [62]. It is likely that the success of this project
will stimulate similar endeavors in other important plants.

5 Reverse-Genetics Using Targeted Genome Editing

Huge progress has been made in targeted genome editing within the past few years
[77]. A pubmed search for the term “CRISPR” performed 20 February 2018 showed
a total of 8,340 hits with a 30% increase between 2016 and 2017. It is a safe
estimation that this number will be much higher and there will be many new
breakthroughs by the time this book chapter is published. Targeted genome editing,
as the name implies, involves the generation of a genomic change of a precise type in
a precise location in the genome of a plant, animal, or microorganism. It is thus a
reverse-genetic technique that utilizes induced mutations and therefore shares many
similarities to TILLING. With the exception of relatively rare off-target mutations,
the approach has the advantage that only the desired change is produced in the
organism. A variety of methods and variations on methods have been described
including Meganucleases, Zinc finger nucleases (ZFNs), Transcription Activator-
Like Effector-based Nucleases (TALENs), and RNA-guided editing using the
CRISPR/Cas system [78]. The nucleases create double-strand breaks (DSBs) at
desired sequence-specific locations in the genome, following which the DSBs sites
are repaired either by non-homologous end joining (NHEJ) or homology-directed
repair (HDR) mechanisms that result in the fixation of mutations in the genomic
sequence.

Differences between the above-mentioned engineered nucleases have been exten-
sively reviewed [78]. The simplicity of the CRISPR/Cas system has enabled it to
become the predominate genome editing method. It is based on the bacterial
CRISPR/Cas type II prokaryotic adaptive immune system and uses a Cas9 nuclease
and only one engineered single-guide RNA (sgRNA) to specify the target DNA
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sequence. In addition to creating novel specific sequence changes, there is an added
advantage that homozygous mutations can be immediately produced in a single
generation [79, 80]. Further, homeologous loci in polyploid species can be simulta-
neously edited as was shown by Qiu and colleagues in their work procuring
resistance to powdery mildew in hexaploid wheat by mutating three MLO loci
[81]. Modifications such as CRISPR interference (CRISPRi) and CRISPR activator
(CRISPRa) allow modulation of gene expression that can be used for plant studies
including pathway analysis of plant stress response [82]. While the focus of this
chapter is on plant sciences, it should be noted that the CRISPR based approaches
hold tremendous potential to revolutionize human health through the development of
disease models and the direct correction of deleterious (disease causing) variants in
human cells [83]. Modification of human embryos has been described, something
that was merely a trope of science fiction a scant decade ago [84, 85]. The ethical and
regulatory issues of using CRISPR approaches in humans, as well as regulatory and
social acceptance issues of their use in crops are still being promulgated.

6 Choosing the Best Approach

Given the choices of forward- versus reverse-genetics and random versus targeted
mutagenesis, one can consider the comparative advantages of the different
approaches to meet breeding and research objectives (Table 2). For example,
forward-genetics has been a mainstay of basic research and breeding for decades.
Advantages include the fact that it is phenotype driven and no prior knowledge of
gene function is required for success. Indeed, the first mutant crop variety was
released in the 1930s long before DNA was shown to be the genetic material.
There is no intellectual property or regulation when using induced mutations in
crop breeding programs and it can be initiated cheaply and easily in any country,
including developing ones. This may be one reason why mutation breeding has been
so successful and resulted in the addition of billions of dollars to economies [5, 14].

Table 2 A comparison of forward- and reverse-genetics and random versus targeted mutagenesis

Random mutagenesis
and phenotyping TILLING CRISPR/Cas

Method type Forward-genetics Reverse-genetics Reverse-genetics

Knowledge of
genes/alleles
required?

No/No Yes/No Yes/Yes

Procedure for induc-
ing variation

Random mutagenesis Random mutagenesis Targeted
mutagenesis

Target specificity? No No Yes

Regulated? No No No policy yet in
some countries

Issues Possible genetic linkage
of induced mutations

Possible genetic linkage
of induced mutations

Off target events
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Reverse genetics by TILLING requires knowledge of candidate gene targets, but
not of specific alleles. An advantage with TILLING is that populations can be
prepared in advance where allelic series are available in all genes so that both
knockout and missense changes can be recovered by researchers as quickly as
seed can be sent from a stock center. Multiple alleles can be tested directly to deepen
knowledge on gene function. With advances such as exome capture sequencing, the
development of in silico TILLING resources will become inexpensive and common.
The major disadvantage with TILLING is the fact that any plant may harbor
thousands of point mutations and several backcrosses may be required to unambig-
uously assign gene function. This is relatively straightforward in genetically tracta-
ble crops like cereals but can become extremely challenging in crops like triploid
bananas, which are obligate vegetatively propagated. With targeted genome editing
approaches one must design and create each mutation. This is considerably more
up-front work than random chemical mutagenesis. However, one can avoid the issue
of background mutations/linkage drag and make a “clean” variant. Further, the
ability to make homozygous lesions has great potential in obligate vegetatively
propagated crops like triploid banana, where creating and utilizing recessive alleles
is laborious.

When considering forward- versus reverse-genetics and random versus targeted
mutagenesis, it is likely that many researchers will not treat these as either/or
propositions but rather choose a combinatorial approach that allows the quickest
and most cost-effective means to reach his or her goal. One can imagine, for
example, using an in silico TILLING resource to first test and validate gene function
and then later using CRISPR to create a single mutation in an elite breeding cultivar.
This could in some cases be substantially faster than traditional introgression and
would avoid any problems with genetically-linked induced mutations that might be
present in TILLING lines. The opposite approach could also be taken if targeted
genome editing is not desired in the final product. Once genes and alleles are
validated by CRISPR, a traditional TILLING population could be created to gener-
ate the desired improved trait. Forward-genetics will remain powerful for gene
discovery and new sequencing based approaches to cloning mutant alleles will
provide information on genes and variants causative for phenotypes that can support
reverse approaches [86, 87].

7 Concluding Remarks and Future Perspectives

Genetic mutations and recombination allowed the evolution of species, domestica-
tion of plants and animals, and provides the diversity required for modern plant
breeding. New technological developments have meant that mutations remain a
fundamental tool for both breeder and basic researcher. The advent of reverse-
genetics in the 1980s marked the beginning of a new way to use mutations through
disruption of specific genes of interest. The vast amount of gene sequence available
means that reverse-genetics can be considered for many species. Indeed, whole
genome sequences are now available for 47 important crops [88]. TILLING is easily
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adapted for most crops as it relies on traditional chemical mutagenesis. A variety of
mutation discovery methods can be efficiently used in TILLING screens and so it is
expected that TILLING will remain an important approach for functional genomics
studies and for breeding. In silico TILLING has been established in wheat, one of the
most important food crops. As mutation discovery technologies improve and large-
scale sequencing becomes cheap and commonplace, it is expected that in silico
TILLING resources will become standard for many plant research communities.
Targeted genome editing complements random mutagenesis. As methods such as
CRISPR/Cas become routine, the genetic toolkit for many plant species will expand
further. This will allow fundamental new biological insights, and also the improve-
ment and domestication of plants that have great potential to help address growing
pressures on global food security.
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Abstract The current global population of 7.3 billion is estimated to reach 9.7
billion in the year 2050. Rapid population growth is driving up global food demand.
Additionally, global climate change, environmental degradation, drought, emerging
diseases, and salty soils are the current threats to global food security. In order to
mitigate the adverse effects of these diverse agricultural productivity constraints and
enhance crop yield and stress-tolerance in plants, we need to go beyond traditional
and molecular plant breeding. The powerful new tools for genome editing, Tran-
scription Activator-Like Effector Nucleases (TALENs) and Clustered Regulatory
Interspaced Short Palindromic Repeats (CRISPR)/Cas systems (CRISPR-Cas9),
have been hailed as a quantum leap forward in the development of stress-resistant
plants. Plant breeding techniques, however, have several drawbacks. Hence, identi-
fication of transcriptional regulatory elements and deciphering mechanisms under-
lying transcriptional regulation are crucial to avoiding unintended consequences in
modified crop plants, which could ultimately have negative impacts on human
health. RNA splicing as an essential regulated post-transcriptional process, alterna-
tive polyadenylation as an RNA-processing mechanism, along with non-coding
RNAs (microRNAs, small interfering RNAs and long non-coding RNAs) have
been identified as major players in gene regulation. In this chapter, we highlight
new findings on the essential roles of alternative splicing and alternative
polyadenylation in plant development and response to biotic and abiotic stresses.
We also discuss biogenesis and the functions of microRNAs (miRNAs) and small
interfering RNAs (siRNAs) in plants and recent advances in our knowledge of the
roles of miRNAs and siRNAs in plant stress response.
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1 Introduction

Biotic and abiotic stresses, global climate change, and environmental pollution have
a significant negative impact on crop yields. Together with rapid global population
growth, these factors threaten global food security. The current world population of
7.3 billion is expected to reach 8.5 billion by 2030, 9.7 billion in 2050 and 11.2
billion in 2100, according to the most recent UN DESA report, “World Population
Prospects: The 2015 Revision” [1]. Moreover, food demand is expected to increase
by 59–98% between 2005 and 2050 [2]. In order to mitigate and control these
diverse agricultural productivity constraints, extensive effort has been put into
improving crop yield and stress-tolerance through traditional and molecular plant
breeding. Traditional or conventional plant breeding is a time-consuming and labor-
intensive approach. It is limited to the exchange of genes between fairly closely
related species [3]. In order to overcome these hurdles, molecular breeding through
gene manipulation has widely been used to develop new high-yielding, stress-
tolerant crop varieties [4]. However, this technology has some limitations such as
non-targeted and unanticipated effects [5]. Recently, new technologies such as
Transcription Activator-Like Effector Nucleases (TALENs) and Clustered Regula-
tory Interspaced Short Palindromic Repeats (CRISPR)/Cas systems have emerged
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for genome editing [6]. However, harnessing the benefits of these technologies
requires a complete understanding of the complexity of plant defense mechanisms
and stress signaling pathways at the molecular level. This knowledge is crucial to
enable development of high-yielding, stress-resistant crop plants with minimum
yield penalty through selective genetic engineering and precise gene editing
techniques [7].

Over the past 20 years, the field of gene expression profiling has undergone a
dramatic revolution. Transcriptomics has witnessed remarkable success due to major
advances in transcriptome sequencing and analysis technologies. A wide variety of
molecular biology techniques have been used for expression profiling and transcrip-
tion quantification. Traditional techniques such as northern blotting and in situ
hybridization [8] and reverse transcription polymerase chain reaction (RT-PCR)
[9] allow only single transcripts or small groups of transcripts to be analyzed at
once. The real-time RT-PCR method is a medium-throughput and very sensitive
technique for the detection of low-abundance mRNA. It has been widely used for
absolute and relative gene expression quantification [10–12]. The development of
microarrays in the mid-1990s revolutionized gene expression studies and provided a
new tool for genome expression profiling by allowing large-scale analysis of thou-
sands of genes simultaneously [13]. Microarrays have widely been employed to
understand molecular mechanisms underlying plant development and response to a
multitude of stresses [14–17]. More recently, next-generation sequencing (NGS) has
essentially provided the second revolution since the development of microarrays.
Through high-throughput sequencing, it has remarkably improved our understand-
ing and knowledge of gene regulatory mechanisms and epigenetics [18, 19].
NGS-based RNA sequencing (RNA-seq) allows detection and quantification of
known, novel and rare transcripts, genome annotation, and rearrangement detection
to non-coding RNA discovery. Furthermore, it provides greater insights into bio-
logical pathways and molecular mechanisms that regulate cell fate, development,
and disease progression [6, 18, 20].

Recent advances in transcriptomics technologies shed light on the dark intergenic
regions between protein-coding genes traditionally referred to as transcriptional
“noise,” “junk DNA,” or experimental artifact. In 2012, ENCODE (Encyclopedia
of DNA Elements) declared that 80% of the human genome has a biochemical
function. However, scientists of the ENCODE project recently got together in
Potomac, MD, USA and claimed that ~50% is functional [21]. By contrast, Rands
and Colleagues claim that 8.2% of the human genome is likely to be functional
[22]. In comparison, only a tiny portion of the transcribed human genome (~1–2%)
codes for proteins [23]. The number of protein-coding genes in the human genome is
reported to be fewer than 20,000 genes and has continued to shrink [24]. According
to the most recent estimate of the GENCODE annotation of the human genome,
GENCODE release 24 (09.12.2015) corresponds to Ensembl 83, 84, and the human
genome encompasses 19,815 protein-coding genes and 25,823 non-coding RNA
genes (ncRNAs). Of these, 15,941 and 9,882 are long and small non-coding RNA
genes, respectively. Moreover, many new non-coding RNA classes have been
identified in the last few years and classified based on their distinct biogenesis
pathways. Although little is known about plant genomics and plant genome
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composition, several recent studies have identified different types of non-coding
RNAs with diverse functions in plants [25]. In this chapter, we discuss recent
advances in our knowledge of the biological functions of mRNAs (with a particular
focus on alternatively spliced mRNAs and polyadenylation) and ncRNAs (with a
particular focus on miRNAs and siRNAs) in plant development and response to
biotic and abiotic stresses. The purpose of this chapter is to provide an overview of
important regulatory components, apart from pure mRNA expression, which has
been studied for several decades.

2 Alternative Splicing, Alternative Polyadenylation,
and Other Modifications of mRNA

The pre-mRNA containing introns can be alternatively spliced to generate multiple
transcripts from a single gene through the differential use of splice sites that increase
the transcriptome and proteome complexity of the cells and tissues [26, 27]. Eighty
percent of the genes in plants and animals contain introns. Splicing, which is the
removal of introns, is carried out by the spliceosome that surrounds the splice sites at
each intron. The pre-mRNA (primary transcript) structure includes cis-elements such
as the 50 splice site, the branch-point that is close to the 30end splice site, the
polypyrimidine ring tract, and the 30 splice site, which are required for splicing.
The splice sites contain consensus sequences that are recognized by the spliceosome.
The spliceosome, which is a complex ribonucleoprotein mega particle, consists of
small nuclear ribonucleoproteins (snRNPs)- U1, U2, U4, U5, U6, and auxiliary
factors, U2AF65 and U2AF35. Spliceosomes have a stronger affinity for some splice
sites and a weaker affinity for others, and this phenomenon is important in alternative
splicing (AS) [28]. The spliceosome recognizes these features and it applies two
sequential trans-esterification reactions that ligate the selected exon sequences and
remove the introns. The first step involves the nucleophilic attack by the 20OH group
of an important adenosine in the branch consensus site on the 50 splice site, forming a
branched RNA intermediate called intron lariat. After this, some of the snRNPs are
released. In the second step, the 30OH group of the upstream exon targets the 30

splice site. This reaction results in the spliced mRNA and the intron lariat is removed
and degraded [28]. The cis-regulatory sequences in the pre-mRNA (exon splicing
enhancers (ESE), exonic splicing silencers (ESSs), intronic splicing enhancers
(ISEs), and intronic splicing silencers (ISSs)) as well as the AS regulatory proteins
(Ser/Arg-rich proteins (SRs), and heterogeneous nuclear ribonucleoproteins
(hnRNPs)) are important regulators of the splicing process [29, 30]. The exon-
exon junction complex (EJC) accumulates 24 nt upstream of the exon-exon junction
for exportation of mRNA from the nucleus and for the cytoplasmic mRNA control
[31]. The binding of the serine/arginine-rich (SR) family of splicing factors to ESE
helps in the recruitment of the splicing components and prevents “exon skipping”
[32]. The key studies on mRNA modification are summarized in Table 1.
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Table 1 Key studies on mRNA modification, and miRNA and siRNA biogenesis

Features Steps in biogenesis References

mRNA modification

AS Recognition of consensus sequences in
splice sites by the spliceosome

Kornblihtt et al. [28]

Application of trans-esterification reac-
tions by spliceosome which ligates
selected exons and removes introns

Cis-regulatory sequences in the
pre-mRNA are important regulators of the
splicing process

Wang et al. [29] and Wang and
Burge [30]

EJC accumulation 2 nt upstream of the
exon-exon junction for exportation of
mRNA and cytoplasmic mRNA control

Le Hir and Anderson [31]

Forms of AS Sequences of exons and introns are
included or excluded from the mRNA
based on AS (Formation of cassette exon,
mutually exclusive exons, etc.)

Reddy [27]

Coupling of
transcription
with AS

AS is co-transcriptional, in which the
CTD is involved

Dujardin et al. [33]

Alternative
polyadenylation

Production of different transcripts with
altered coding capacity

Xing and Li [34]

Modifications
in mRNA

Involvement of N6-methyladenosine (m6

A), 5-methylcytosine (m5C) and
pseudouridine (ψ)

Li et al. [35], Gilbert et al. [36]
and Shen et al. [37]

miRNAs and siRNAs

Processing of
miRNA

Formation of precursor miRNA involving
DCL1

Bartel [38] and Bologna and
Vionnet [39]

Involvement of DCL1 in the formation of
mature miRNA

Jones-Rhoades et al. [40]

Exportation of miRNA from the nucleus Bollman et al. [41] and Park et al.
[42]

The miRISC is loaded onto an Argonaute
protein family member and is guided to
the targeted mRNA

Bartel [43] and Meister [44]

Processing of
siRNA

Cleaving of long duplex RNA structures
by DCL3 and DCL4 into 22-nt, 24-nt, and
21-nt siRNAs

Liu et al. [45], Nagano et al. [46]
and Bologna and Voinnet [39]

Formation of RNAi complex RISC Bologna and Voinnet [39]

Endogenous siRNA in plants: hp.-
siRNAs, nat-siRNAs

Borges and Martienssen [47],
Chapman and Carrington [48]
and Vasquez [49]

Secondary siRNAs: tasiRNAs,
phasiRNAs, easiRNAs

Borges and Martienssen [47] and
Liu et al. [45]
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2.1 Types of Alternative Splicing (AS)

Using different splice sites, the AS generates two or more mRNAs from the same
pre-mRNA. Based on the type of AS, sequences of exons and introns are either
included or excluded from the mRNA. The cassette exon is an exon that is included
or excluded from the mRNA. Mutually exclusive exons refer to the splicing of the
adjacent exon, causing only one of them to be included at a time in the mRNA. The
alternative 50 splice site involves the use of the distal or proximal 50 splice site
producing mRNAs of different size. The alternative 30 splice site involves the
exploitation of the 30 proximal and distal splice sites, resulting in the production of
mRNAs of different sizes. The final type of AS is the retention of an intron where the
intron is retained or removed from the mRNA [27].

2.2 Coupling of Transcription with AS

More recently, it has become widely accepted that AS is a co-transcriptional event in
which crosstalk is involved [33, 50]. The carboxy-terminal domain (CTD) involved
in the coupling of transcription and processing steps is required for the recruitment of
Ser/Arg-rich splicing factor 3 (SRSF3), which then inhibits the inclusion of alterna-
tive exons [51]. The mediator joins with the general transcription factors (GTFs) at
promoters and specific TFs that are bound to gene enhancers, and recruits the
negative splicing factor hnRNPL. This process causes hnRNPL to inhibit the
inclusion of an alternative exon during splicing [52].

2.3 AS in Plants

AS is uncommon in unicellular eukaryotes and commonly found in multicellular
eukaryotes and differs greatly among tissues and species [28, 53]. Only about 4% of
the genes in budding yeast contain introns and AS is uncommon [54]. In compar-
ison, the RNA structures containing exon-intron precincts, spliceosome components,
and other splicing factors are commonly found in plants [27]. However, splicing in
plants is unique due to their shorter introns compared to animals. Furthermore, intron
retention is a common method of AS in plants and they contain more genes encoding
Ser/Arg-rich (SR) proteins. The pre-mRNA of the spliceosomal proteins, particu-
larly SR proteins, which have a key role in spliceosome assembly and splicing
regulation, are extensively spliced. The availability of plant genome and transcript
sequence data has allowed the global analysis of AS in many plant species. Genome-
wide analysis of AS has been performed in model plants such as Arabidopsis [55],
Brachypodium [56], and in crop plants such as rice [57] and soybean [58]. These
studies have shown that plant genes have one or more alternative transcript isoforms
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(~20% of the genes) [59]. Studies have shown that nearly 61% of multiexonic genes
in Arabidopsis and nearly 33% of rice genes are alternatively spliced [55, 57]. The
AS of genes has been studied to understand their role in plant growth development,
environmental changes, and stress responses [60–62]. The studies mentioned above
and others support the importance of intron retention in plants.

2.4 Database Resources of Plant Spliceosomal Proteins
and AS

There are several resources available in relation to plant spliceosomal proteins and
AS. Many of them are based on the model plant, Arabidopsis, such as the
Arabidopsis slicing-related genes (ASRG) [63], and The Arabidopsis Information
Resource (TAIR) [64]. Others include the AS in plants (ASIP), which is available for
Arabidopsis and rice [65].

2.5 Role in Plant Development

Whole transcriptome profiling using RNA-seq was useful in enhancing the under-
standing of the gene expression of key genes and the coordinated expression of
related genes during early somatic embryogenesis in maize [66]. AS is important in
photosynthesis as it generates two protein products from the Rubisco activase gene,
which is a nuclear-encoded chloroplast protein that mediates light activation of
ribulose 1,5-biphosphate carboxylase/oxygenase (Rubisco) [67]. Based on the
cDNAs and ESTs of Arabidopsis and rice analyzed using genome-wide computa-
tional analysis, AS has been shown to be common during flowering [65]. The
alteration from the vegetative to the reproductive developmental stages is regulated
by the alternative processing of the FCA pre-RNA [68]. Further, AS of the tran-
scripts controls the spatial and temporal production of the FCA protein that regulates
flowering.

2.6 Role in Biotic and Abiotic Stress Response

The pre-mRNAs of spliceosomal proteins are severely affected by biotic and abiotic
stresses leading to AS [69, 70]. For example, OSDREB2Bwas shown to be regulated
by stress-inducible AS [71]. Furthermore, the AS of the NRR transcript (related to
root growth) identified in rice, produced two 50 co-terminal transcripts (NRRa and
NRRb), and both products were shown to possess negative regulatory roles [72]. In
another example, the TIR-NBS-LRR gene that is involved in tobacco mosaic virus
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(TMV) resistance produced two transcripts, NS and NL, through AS. Expression of
both transcripts were shown to be required for complete resistance to the virus
[73]. Similarly, the combined presence of RPS4 transcripts containing both full-
length and truncated open reading frames was required to mediate disease resistance
[74]. Abiotic stresses have been shown to affect the AS of the pre-mRNA in several
SR genes [75]. The AS regulators such as the SR proteins, hnRNPs, and protein
kinases have been suggested to play significant roles in stress responses [27]. They
have been suggested to allow plants to react promptly in regulating splicing and gene
expression.

2.7 Alternative Polyadenylation

The regulatory role of polyadenylation in eukaryotic gene expression involves
alternative polyadenylation (APA) sites that produce different transcripts with
altered coding capacity for proteins and/or RNA [34]. APAs have been reported in
plants, in relation to flowering time control pathways [76], seed dormancy [77], and
stress responses [78, 79]. It has been exhibited through global profiling methods that
plants exploit APA for diversity generation in their transcriptomes. Through
genome-wide analysis in Arabidopsis, the HLP1 protein was identified to regulate
the pre-mRNA 30-end processing and targets APA. It was enriched at transcripts
involved in metabolism and flowering [76]. Another genome-wide study in
Arabidopsis showed that the CPSF30 is associated with APA in response to oxida-
tive stress [80]. The Plant APA is a recently developed database for the visualization
and analysis of APA [81]. The role of AS in plant development and response to
biotic and abiotic stresses is summarized in Table 2.

2.8 Modifications in mRNA

Recently, modifications of mRNA with N6-methyladenosine (m6A),
5-methylcytosine (m5C), and pseudouridine (ψ) have been revealed through techni-
cal advances. The m6A mRNA was the first internal mRNA modification to be
identified. Due to its abundance it has been easily detected through bulk mRNA
analysis, and NGS approaches have allowed the mapping of its locations
[36]. Recently, transcriptome-wide m6A profiling of rice callus and leaf [35] and
shoot [37] have been reported. There are, however, other RNA methylation events
that have been found in other organisms and are thought to occur in plants.
Subsequent studies will reveal their frequency of occurrence in plants and if they
have any role in development or response to biotic/abiotic stresses.
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Table 2 Role of alternate splicing, miRNA and siRNAs in plant development, and response to
biotic and abiotic stresses

Response
type

Function of mRNA modification,
miRNA and siRNA in plants

Plant
species References

Plant
development

Expression of genes during somatic
embryogenesis

Maize Salvo et al. [66]

AS involved in photosynthesis Rice Zhang and Komatsu [67]

AS involved in flowering Arabidopsis
and rice

Wang and Brendel [65]

Alteration from vegetative to repro-
ductive stages involving the FCA
pre-RNA

Arabidopsis Razem et al. [68]

Pre-mRNA 30- end processing and
targeted APA in flowering and
metabolism

Arabidopsis Zhang et al. [76]

APA in seed dormancy Arabidopsis Cyrek et al. [77]

Abiotic
stress

OSDREB2B regulation by AS under
drought and heat shock

Rice Matsukura et al. [71]

AS of NRR transcript under macro-
nutrient deficiency

Rice Zhang et al. [72]

Association of CPSF30 with APA
under oxidative stress

Arabidopsis Thomas et al. [80]

miR319 expression increased salt and
drought tolerance

Transgenic
creeping
bentgrass

Zhou et al. [82] and Zhou
and Luo [83]

miR319a/b, and miR319b.2 in cop-
per, cadmium & sulphur deficiency
conditions and salt stress

Arabidopsis Barciszewska-Pacak
et al. [84]

miR169 repression under drought
stress, phosphate deficiency, and
nitrogen starvation

Arabidopsis Hsieh et al. [85], Li et al.
[86], Xu et al. [87] and
Zhao et al. [88]

miR169 repression under nitrogen-
starvation

Maize Xu et al. [87]

Overexpression of miR169 under
drought stress

tomato Zhang et al. [89]

Downregulation of mi169 and
overexpression of StNF-YA genes
enhanced drought tolerance

tomato Yang et al. [90]

Repression of P5CDH expression by
nat-siRNA under salt stress

Arabidopsis Borsani et al. [91]

siRNAs: siRNA
002061_0636_3054.1,
005047_0654_1904.1,
080621_1340_0098.1,
007927_0100_2975.1 were differen-
tially expressed under cold heat, salt,
and drought stress

Wheat Yao et al. [92]

(continued)
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2.9 Stress Response Mechanism and the Cytoplasmic
RNA-Containing Granules

It is important in transcriptomics to study the mRNAs that are translated, degraded,
or stored temporarily during stress [97]. Based on the environmental or develop-
mental conditions, the messenger ribonucleoprotein complexes (mRNPs) are formed
through transcribed mRNA. While the polysome-associated mRNAs are translated,
the non-translated mRNAs are localized on either the mRNA processing body
(PB) or stress granules (SG), which are cytoplasmic mRNP granules. The PB
(identified in yeast and mammals) contains RNA decay machinery for destroying
unwanted mRNA in the 50-30 direction. The SG store the non-translated mRNA that
is stalled during initiation of translation and under stress conditions that cause the SG
numbers to increase and accumulate. Several studies have suggested that SGs and
PBs are an essential cytoplasmic structure that control gene expression during plant
stress responses [98, 99].

3 microRNAs (miRNAs) and Small Interfering RNAs
(siRNAs)

microRNAs (miRNAs, 19–25 nt) and small interfering RNAs (siRNAs, 21–22 nt)
are small non-coding RNAs with important regulatory functions. Though miRNAs
and siRNAs share a number of features in size, structure, and molecular function,
they differ in biogenesis pathway and precursor structure [39, 49, 100, 101]. Both,

Table 2 (continued)

Response
type

Function of mRNA modification,
miRNA and siRNA in plants

Plant
species References

Biotic stress AS involved in the TIR-NBS-LRR
gene expression under TMV
resistance

Tobacco Dinesh-Kumar and
Baker [73]

AS in RPS-mediated disease
resistance

Arabidopsis Zhang and Gassmann
[74]

miR156, miR159, miR172, miR319,
and miR393 responsive to Cucumber
mosaic virus

Tomato Feng et al. [93]

Negative correlation between miR319
and its target TCP4 in response to
RKN

Zhao et al. [94]

miR319 responsive to Verticillium
longisporum

Rapeseed Shen et al. [58]

miR393 responsive to Pseudomonas
syringae

Arabidopsis Navarro et al. [95]

nat-siRNAATGB2 induced resistance
against Pst

Arabidopsis Katiyar-Agarwal et al.
[96]
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miRNAs and siRNAs are capable of producing a gene silencing effect at the post-
transcriptional and transcriptional (epigenetic regulation) levels [38, 47, 102]. In
contrast to miRNAs that are derived from either double-stranded or hairpin-like
(60–70 nt) RNA precursors in almost all eukaryotes [38], siRNAs are generated from
long double-stranded RNAs [103]. The miRNAs are endogenous, encoded by the
host genome, while siRNAs can be exogenous or endogenous in origin. The former
is originally derived from the transcription of viruses, transposons, repetitive DNA
sequences, or transgene trigger [104, 105]. The miRNAs have numerous targets and
regulate the expression of large numbers of target mRNAs. In contrast, the siRNAs
are specific and mostly regulate the same genes they originate from [106]. Another
major difference between miRNAs and siRNAs is that siRNAs base-pair to their
target gene and exert targeted gene knockdown through the siRNA-induced mRNA
cleavage, translational repression, and DNA methylation, whereas the former are
partially complementary to target mRNAs and mediate post-transcriptional gene
regulation through either mRNA cleavage or translational repression [47, 106].

3.1 Biogenesis of miRNAs in Plants

miRNAs are evolutionary highly conserved RNA molecules [39]. In the nucleus,
miRNAs are transcribed by RNA polymerase II into primary miRNA (pri-miRNA),
which are capped and polyadenylated. Subsequently, the pri-miRNAs are processed
by the ribonuclease III enzyme, Dicer like 1 (DCL1), in the Dicer family, to a smaller
stem-loop structure called precursor miRNAs (pre-miRNAs) [38, 39]. The
pre-miRNAs are further processed again by DCL1 into the mature miRNA:
miRNA* duplexes that carry 50 phosphates and 2-nt overhangs on their 30 end that
are not fully complementary [40]. Next, they are exported from the nucleus to the
cytoplasm by HASTY, the Arabidopsis homolog of exportin 5 in animals [41, 42]. In
the cytoplasm, the mature miRNA strand, the so-called guide strand, is subsequently
incorporated into the RNA-induced silencing complex (RISC, or miRISC for
miRNA-containing RISC), where it is loaded onto a member of the Argonaute
protein family and guides effector RISC to the target mRNA. The miRNA*,
which is derived from the other strand known as the passenger strand, can be either
degraded or functional [43, 44]. The key studies on miRNA and siRNA biogenesis
are summarized in Table 1.

3.2 Biogenesis of siRNAs in Plants

In contrast to miRNAs, siRNAs are derived from double-stranded RNAs originating
from protein-coding genes, non-coding transcripts, and transposable elements with
perfect base-pairing complementarity to target mRNAs [47]. The DCL2, DCL3, and
DCL4 sequentially cleave the long duplex structure into 22-nt, 24-nt, and 21-nt
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siRNAs, respectively [39, 45, 46]. Short RNA duplexes are similar to the miRNA:
miRNA* duplexes but are fully based-paired along the length. Once small RNA
duplexes are generated, they are also loaded on an Argonaute protein. Next, the
passenger strand is removed and the remainder forms the effector RNAi complex
RISC (siRISC, which is loaded with siRNA [39]). Besides the RNA-dependent RNA
polymerase 2 and 6 (RDR2, RDR6), SUPPRESSOR OF GENE SILENCING
3 (SGS3), and dsRNA-BINDING 4 (DRB4) are also implicated in siRNA biogen-
esis [107, 108].

Endogenous siRNAs in plants have been characterized based on their character-
istics and biogenesis pathways into hairpin-derived siRNAs (hp-siRNAs, 21–24 nt),
natural antisense siRNAs (nat-siRNAs, 21–24 nt), secondary siRNAs, and hetero-
chromatic siRNAs (het-siRNAs, 24 nt) [47–49]. Secondary siRNAs could be
subclassified into trans-acting siRNAs (tasiRNAs), phased siRNAs (phasiRNAs),
and epigenetically activated siRNAs (easiRNAs) [45, 47].

3.3 Functions of miRNAs and siRNAs in Plants

A large number of miRNAs have been identified and characterized in plant genomes
with diverse functions. Several miRNAs have been identified to have a crucial
regulatory role in a wide range of biological processes in diverse plant species
including but not limited to, cell signaling, differentiation, heterosis, DNA damage
repair, hormone signaling, organ development, and response to biotic and abiotic
stresses (reviewed in [47, 109, 110]).

The siRNA are widespread and numerous endogenous siRNAs have been dis-
covered in plants by deep sequencing. The results of several studies revealed that
siRNA is implicated in the morphological control of leaf [111]; developmental
timing (temporal regulation) [112, 113]; hormone signaling [114]; fertility and
reproductive function [115]; maintenance of genomic integrity, and developmental
patterning [116].

Furthermore, both miRNAs and siRNAs, as part of multi-layered sophisticated
defense mechanisms, play pivotal roles in regulating immune responses to environ-
mental stresses [109, 116–118]. The role of miRNAs and siRNAs in plant develop-
ment, and response to biotic and abiotic stresses is summarized in Table 2.

3.4 Role of miRNAs in Plant Stress Responses

Plants as sessile organisms are continuously and simultaneously challenged by
multiple biotic and abiotic stressors. They have evolved sophisticated defense
mechanisms and intricate regulatory networks to perceive their attackers. The
miRNAs as critical regulators of gene expression, fine-tune defense responses by
regulating the expression of their stress/defense-related target genes. Thousands of
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miRNAs responsive to biotic and abiotic stresses and their targets have been
identified in diverse plant species using deep sequencing technologies and
degradome sequencing, respectively [119].

3.5 miRNAs in Biotic Stress

miRNAs orchestrate plant adaptive response to pathogens as the key players in
hormone signaling pathways and plant immunity [89, 95, 117, 120]. Thus far,
numerous biotic stress-responsive miRNAs have been identified in different plants
[93, 94, 120–122]. Recently, several miRNAs such as miR156, miR159, miR172,
miR319, and miR393 were found to be responsive to Cucumber mosaic virus in
tomato [93]. In response to the fungal pathogen Verticillium longisporum, several
miRNAs including the miR319 family have been identified in oilseed rape (Brassica
napus) [121]. Flagellin-22 triggered miR393 expression and conferred resistance to
Pseudomonas syringae in Arabidopsis [95]. In line with this, several miRNAs have
been identified to be differentially expressed in Arabidopsis in response to a bacterial
pathogen, P. syringae pv. tomato, using deep sequencing [122]. The results of these
studies indicate that miRNAs target genes that are related to hormone signaling
pathways and negatively regulate their target genes to enhance plant resistance to
bacterial infection. The miR393 was reported to target TIR1 (Transport Inhibitor
Response 1) and its functional paralogs, AFB2 and AFB3 (Auxinsignaling F-Box
proteins 2 and 3). Whereas miR160 and miR167 target ARF8, ARF10, ARF16, and
ARF17 to repress auxin signaling. Therefore, miRNAs confer a high degree of
resistance to the bacterial pathogen P. syringae through miRNA-mediated suppres-
sion of auxin signaling [95, 122]. A recent study found that there is a negative
correlation between miR319 and its target TEOSINTE BRANCHED1/
CYCLOIDEA/PROLIFERATING CELL FACTOR 4 (TCP4) in response to root-
knot nematode (RKN, Meloidogyne incognita) invasion in tomato (Solanum
lycopersicum var Castlemart) [94]. The TCP genes encode plant-specific transcrip-
tion factors that positively regulate jasmonic acid (JA) biosynthesis genes and JA
levels in plants. The expression of miR319b was repressed, while the expression of
its target, TCP4, was increased under JA treatment. On the other hand, the expres-
sion levels of all miR319-targeted TCP genes were significantly decreased in
transgenic tomato plants overexpressing miR319 [94]. The results of this study
showed that miR319 negatively regulates RKN resistance and JA-mediated
miR319 confers systemic resistance to RKN infection. Additionally, crosstalk
between miRNAs and hormone signaling pathways was revealed.

Altogether, miRNAs are responsive to a broad range of biotic stresses and confer
resistance to plants against pathogens through complex mechanisms such as
miRNA-mediated hormone signaling and/or hormone-mediated miRNA regulation.

Advances in Transcriptomics of Plants 175



3.6 miRNAs in Abiotic Stress

Several studies have shown that miRNA expression is regulated in response to a
wide array of abiotic stresses such as drought, salinity, cold, heat, heavy metals,
nutrients, oxidation, hypoxia, and UV-B in an miRNA-, stress-, tissue-, and
genotype-dependent manner (reviewed in [109, 118, 119, 123]). The miR319
miRNA family is one of the most conserved and ancient miRNA families in plants
[83]. miR319 was found to be induced in response to not only different biotic
stresses, e.g., bacteria, fungi, viruses, and nematodes [93, 94, 121, 122], but also
to multiple abiotic stress factors such as drought, salinity, cold, and aluminum
[82, 83, 124–127]. Constitutive expression of miR319 significantly increased salt
and drought tolerance in transgenic creeping bentgrass (Agrostis stolonifera)
[82, 83]. Hence, miR319 can be a general multi-stress responsive miRNA. A recent
study in Arabidopsis revealed that three miRNAs from the miR319 family, i.e.,
miR319a/b and miR319b.2, are associated with several abiotic stresses [84]. Inter-
estingly, miR319a and miR319b exhibited the same patterns of expression in
response to copper, cadmium, and sulfur deficiency conditions as well as salt stress.
Moreover, the expression of miR319b.2 was augmented in response to copper,
cadmium, and sulfur deficiency stresses, whilst it was down-regulated in response
to drought, heat, and salinity. Similarly, the expression levels of miRNA319a/b were
increased under metal stresses. On the other hand, miRNA319a/b was notably
up-regulated under salinity stress [84]. These results suggest that miRNAs appear
to have a complex regulatory role and orchestrate defense responses to a wide range
of abiotic stresses through different regulatory networks.

In addition to the miR319 family, the miR169 family is another highly conserved
family that plays a critical role in response to abiotic stresses in several plant species.
The results of several studies indicated that miR169 plays an important role in
response to several abiotic stresses including drought, salt, cold, abscisic acid,
nitrogen starvation, and phosphate deficiency [85, 86, 88, 128–130].

The miR169 was repressed under drought and phosphate deficiency in
Arabidopsis and nitrogen-starvation in Arabidopsis and maize [85–88]. In contrast,
miR169 was up-regulated in response to cold stress in different plant species
[130]. Overexpression of miR169 enhanced drought tolerance in Solanum
lycopersicum [122]. The miR169 family members are up-regulated in Arabidopsis,
maize, and soybean under cold, drought, and salinity stresses [129]. Their results
showed that stress-induced miR169 promotes early flowering by repressing the
AtNF-YA transcription factor [129]. Conversely, a recent study in Solanum
tuberosum exhibited that downregulation of miR169 enhanced drought resistance
through over-expression of StNF-YA genes [90]. Nuclear factor Y (NF-Y) transcrip-
tion factors are the main targets of miR169. NF-Y encodes a CCAAT-binding
transcription factor [86]. These findings revealed that there is a negative correlation
between the expression of miR169 and its target NF-YA genes, and the miR169
regulates negatively and/or positively their target expression at the post-
transcriptional level to enhance stress tolerance in different plant species

176 N. Nejat et al.



[90, 129]. Taken together, these results suggest that multi-stress responsive miR169
may orchestrate the expression of its target genes in a host- and stress-dependent
manner. Different signaling pathways are mediated by miR169 and there is a
complex crosstalk between the miR169 family members and their target transcrip-
tion factors.

3.7 Role of siRNAs in Plant Stress Responses

Several studies have indicated that natural antisense transcripts (NATs) play a vital
role in the regulation of defense signaling pathways and are involved in the response
to different environmental stimuli by orchestrating corresponding NAT mRNAs
[91, 96, 131].

3.8 siRNAs in Biotic Stress

nat-siRNAATGB2, the first endogenous siRNA, was specifically expressed in
Arabidopsis thaliana leaves challenged with a virulent form of the bacterial patho-
gen Pseudomonas syringae pv. tomato (Pst) carrying effector avrRpt2 [96]. The
nat-siRNAATGB2 and its antisense target PPRL were transcribed in the opposite
direction and a negative correlation was observed between the nat-siRNA and its
antisense target expression in response to P. syringae infection. nat-siRNAATGB2
induced resistance by repressing the expression of PPRL as a negative regulator
of the RPS2-mediated resistance against Pst that triggered hypersensitive
response (HR) and cell death by recognition of PstavrRpt2 effector [96]. A novel
class of siRNAs known as long siRNAs (lsiRNAs, 30–40 nt) was discovered by
Katiyar-Agarwal and colleagues in 2007. The results of this study revealed that
lsiRNAs are stress-induced and expressed by a bacterial infection. AtlsiRNA-1 was
remarkably and specifically over-expressed in response to Pst carrying effector
avrRpt2. Overexpression of AtlsiRNA-1 repressed the expression of its target
AtRAPmRNA and induced resistance by silencing AtRAP as a negative regulator
of plant defense [132].

Using deep sequencing, 17,000 unique siRNAs corresponding to cis-NATs have
been found in Arabidopsis thaliana in response to biotic stress in the form of
bacterial infection and abiotic stresses in the form of cold, drought, and salt
[72]. The results of these studies suggest that siRNAs are stress-induced and regulate
defense response in plants through the reprogramming of gene expression.
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3.9 siRNAs in Abiotic Stress

A large number of nat-siRNAs have been identified in rice (Oryza sativa
cv. japonica) in response to cold, drought, and salt [133]. In Arabidopsis thaliana,
the 21-nt nat-siRNAs repressed the expression of Δ1-pyrroline-5-carboxylate dehy-
drogenase (P5CDH), a stress-related gene, through mRNA cleavage under salt
stress. Down-regulation of the P5CDH led to proline accumulation. Proline is as
an osmoprotectant and ROS quencher that helps to tolerate salt stress, although
under-expression of P5CDH instigated increased ROS production [91]. One study
has indicated that four siRNAs were differentially expressed in response to cold,
heat, salt, and drought in wheat (Triticum aestivum) [92]. The siRNA
002061_0636_3054.1 was significantly repressed by heat, salt, and drought stress;
005047_0654_1904.1 was strongly over-expressed in response to cold, whilst
down-regulated in response to heat, salt, and drought stress; 080621_1340_0098.1
was faintly induced by cold and repressed by heat but not by either salt or drought
stress; and 007927_0100_2975.1 was down-regulated by cold, salt, and drought
stress [92]. Further, their results revealed that the four siRNAs were preferentially
expressed in spikes and uniformly expressed in leaves and roots [92]. Therefore, the
results of these studies exhibited that nat-siRNAs respond to biotic and abiotic stress
conditions in a stress-specific and developmental stage-dependent manner.

4 Conclusions and Future Prospects

Alternative splicing, miRNAs, and siRNAs play critical regulatory roles in modu-
lating gene expression during plant growth and development, in response to biotic
and abiotic stresses, and plant adaptation to an ever-changing environment. Several
small regulatory molecules have been identified to have versatile functions in food
and feed crops. Manipulating expression levels of miRNAs and siRNAs in econom-
ically important crop plants can be an effective strategy to improve desirable traits,
stress tolerance, and resiliency in response to environmental stress and pathogen
attack in plants. Therefore, miRNAs and siRNAs can be used as new targets for
developing trait-improved crop plants and improving plant tolerance to stresses.
Two powerful genome editing tools, TALENs and CRISPR/Cas, can be used for
targeted genome editing and knockdown/knockout of small RNAs.

In addition to the identification of small regulatory molecules and their transcrip-
tional profiling, it is indispensable for scientific communities to understand the
regulatory mechanisms of small RNAs that orchestrate cellular functions and adap-
tation to environmental stresses to minimize the unintended side effects in modified
plants.
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Abstract Metabolomics is an essential technology for functional genomics and
systems biology. It plays a key role in functional annotation of genes and under-
standing towards cellular and molecular, biotic and abiotic stress responses. Differ-
ent analytical techniques are used to extend the coverage of a full metabolome. The
commonly used techniques are NMR, CE-MS, LC-MS, and GC-MS. The choice of a
suitable technique depends on the speed, sensitivity, and accuracy. This chapter
provides insight into plant metabolomic techniques, databases used in the analysis,
data mining and processing, compound identification, and limitations in
metabolomics. It also describes the workflow of measuring metabolites in plants.
Metabolomic studies in plant responses to stress are a key research topic in many
laboratories worldwide. We summarize different approaches and provide a generic
overview of stress responsive metabolite markers and processes compiled from a
broad range of different studies.
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1 Introduction

Recent advances in technology have revolutionized the approach in which biological
systems are visualized and questioned. Progressive developments in the field of
genetics and automated nucleotide sequencing have supported the large-scale map-
ping and sequencing of many genomes, which include Arabidopsis thaliana [1], rice
[2, 3], tomato [4], humans [5], etc. Technologies like expressed sequence tag (EST),
mRNA profiling using microarrays [6], or serial analysis of gene expression (SAGE)
[7] have allowed comprehensive analysis of the transcriptome. Advancements in
mass spectrometry have enabled the analysis of cellular proteins and metabolites on
a large scale, which was previously not possible [8–18]. The cumulative application
of these technologies in various fields has led to advancement in the research of
functional genomics and systems biology [19–23]. The foundations of both func-
tional genomics and systems biology rely on comprehensive genome-scale mole-
cular analysis [16, 18]. These approaches are commonly referred to as genomics,
transcriptomics, proteomics, and metabolomics (Fig. 1).

Metabolomics is a complementary tool for functional genomics and systems
biology, together with well established “omics” technologies for high-throughput
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data acquiring [16, 24–26]. The components of the metabolome can be viewed as
the end-product of gene expression that defines the biochemical phenotype of a cell
or a tissue. Quantitative and qualitative measurement of cellular metabolites thus
provides a broad view of the biochemical status of an organism that can be used to
monitor or assess gene function [16, 24]. The transcriptome represents mRNA
changes in cellular machinery required for protein synthesis, but an increase in the
levels of mRNA does not always correlate with protein levels [27]. Furthermore,
translated proteins may or may not be enzymatically active. Thus, due to these
reasons, changes in the transcriptome or proteome level do not necessarily corre-
spond to the alteration in biochemical phenotypes. Moreover, transcriptome and
proteome profiling includes the identification of mRNA and proteins through
sequence similarity or database search (i.e., it depends on organism-specific
genome information). Absence of these information/databases often limits the
outcome of the analysis. Considering the above limitations, metabolite profiling
provides essential functional information that has to be integrated with
transcriptome and proteome analysis in order to increase the understanding of a
given cellular state/biological sample [16–18, 28]. The qualitative and quantitative
metabolomic profiling of a cell, tissue, or organism is very crucial because metab-
olites are structurally very small (less than 2,000 Da) and diverse molecules that
are chemically transformed during cellular metabolism and hence pose a great
challenge for analytical technologies [16, 29, 30]. Many stress responses lead to
altered gene expression, particularly in plants, which results in qualitative changes
in the metabolite pool, therefore identification of metabolites becomes even more
critical [30].

One of the earliest metabolic profiling methods originated from Baylor College of
Medicine in the early 1970s [31–33], which includes multicomponent analyses of
steroids, acids, and neutral and acidic urinary drug metabolites using
GC/MS. Thereafter, the concept of metabolite profiling was widely used for diag-
nostics and to assess health regimes [34, 35]. Gradually, there was an increase in
research on automation [36] and expansion of GC-based methods to a wide range of
chemical classes [37], followed by the use of high performance liquid chromatog-
raphy (HPLC) and nuclear magnetic resonance (NMR) techniques for metabolite
profiling [38, 39]. In the early 1990s, Sauter and colleagues used GC-MS metabolic
profiling as the diagnostic technique in order to determine the mode of action of
herbicides on barley plants [40]. Based on this and other studies, the concept of
metabolic profiling and metabolomics in the context of functional genomics was
introduced [24, 25, 41–43]. A first introduction of metabolomics as an integral
technique for systems biology, linking metabolite profiling and metabolomics with
genome-scale metabolic modelling, was described in 2003 [16]. There are many
research institutes and commercial entities that are growing exponentially and
working towards the development and improvisation of metabolomics science to
broaden the range of its application.
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2 Analytical Platforms in Metabolomics

A single analytical technique is not sufficient for detection and quantification of the
metabolome and, therefore, multiple technologies are needed for a comprehensive
view [16, 22, 29, 44]. Analytical technologies used in metabolomics include thin
layer chromatography (TLC), HPLC with ultraviolet and photodiode array detection
(LC/UV/PDA), gas chromatography–mass spectrometry (GC-MS), capillary
electrophoresis–mass spectrometry (CE-MS), liquid chromatography–mass spec-
trometry (LC-MS), liquid chromatography–electrochemistry–mass spectrometry
(LC-EC-MS), NMR, LC-NMR, direct infusion mass spectrometry (DIMS), and
Fourier–transform infrared (FT-IR), etc. [16, 25, 43, 45, 46]. Of the above-
mentioned techniques, NMR, GC-MS, LC-MS, and CE-MS are the most widely
used technologies today [24, 45, 47–50]. Selection of the most suitable technology is
based on speed, selectivity, sensitivity, and accuracy. NMR is rapid and selective,
whereas mass spectrometry methods (GC-MS, LC-MS, and CE-MS) offer good
selectivity and sensitivity but with longer analysis time [40, 51].

2.1 Nuclear Magnetic Resonance (NMR)

The use of NMR in metabolomics has opened the areas of biochemistry and
phytochemical analysis [47, 52]. It is an unbiased, rapid, non-destructive technique
that requires little sample preparation [48]. NMR analysis is not based on the analyte
separation (as in the case of chromatographic analysis); rather it provides selectivity
without separation and is also independent of the analyte polarity and does not
require sample derivatization prior to the analysis. When the samples are placed in a
strong magnetic field and irradiated with radio frequency, the absorption of energy
promotes nuclei from a low-energy to a high-energy state. The subsequent emission
of radiation generates resonance or signals that are recorded on the NMR spectrum
as “chemical shifts,” representing frequencies from all NMR-visible nuclei in the
sample, is relative to the reference proton present in a reference compound
[53]. Hence, NMR analyses generally provide a global view of all the metabolites
(primary and secondary) in a sample, provided they are in the detectable range
[30, 49]. The disadvantage of low sensitivity and resolution has been addressed by
using cryogenic probes, higher strength of superconducting magnets, miniaturized
radio frequency coils, and multidimensional techniques (for example 2D-J-resolved
and heteronuclear single quantum coherence) [48, 49]. 2D-NMR facilitates the
identification of the compounds, which also includes the observation of minor
compounds along with structural elucidation. Further, NMR has been applied in
the areas of plant metabolism [54, 55], Duchenne muscular dystrophy [56], bio-
availability, and metabolic responses of rats to epicatechin, hypertension, and
acetaminophen toxicity [57, 58].
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2.2 Mass Spectrometry (MS)

Flow-injection mass spectral analysis has been widely used in metabolic fingerprint-
ing. Vaidyanathan et al. [59] demonstrated the use of flow injection ESI/MS for
metabolic fingerprinting of cell-free extracts used for bacterial identification
[59]. Similarly, multiple ionization techniques coupled to Fourier transform mass
spectrometry (FT-MS) were used to identify metabolites associated with develop-
ment and ripening of strawberry fruit [60]. FT-MS has a high resolution and high
mass accuracy capacity, which allows separation and differentiation of very complex
samples with the calculation of elemental composition, which facilitates structural
differentiation and characterization. Unfortunately, this technology cannot differen-
tiate chemical isomers that have an exact mass, e.g., hexoses [51].

Column chromatographic techniques (GC/LC) have a medium to high sensitivity
that provides separation based on the physiochemical properties of an analyte
[16, 50]. For complex samples, chromatographic separations include factors like
column chemistry, an elution method for LC (gradient or isocratic), and a program–

temperature method for GC. Multidimensional separation systems such as
two-dimensional gas chromatography (GC � GC) and two-dimensional liquid
chromatography (LC � LC) are used to enhance chromatographic separation of
complex mixtures. Coupled to mass spectrometry (MS) for detection, these tech-
niques are sensitive and capable of detecting low abundance metabolites [61–
65]. GC-MS is a robust, technically reproducible, and sensitive approach. It is a
well-suited platform for non-targeted metabolite profiling of volatile and thermally
stable non-polar or derivatized polar metabolites [16, 26, 28, 66–69]. This technique
is also used for targeted analysis of derivatized primary metabolites [70]. Electron
impact (EI) is most commonly used in GC-MS, which results in fragmentation
patterns that are highly reproducible. A mass analyzer like time-of-flight (TOF)-
MS is widely used for detection because it has a faster “scan rate,” which improves
deconvolution, high mass accuracy, and reduces the run time for complex mixtures
[28, 66, 67, 69, 71, 72]. This technology is widely used for metabolite profiling, and
thus contains several stable protocols for machine setup and maintenance, along with
chromatogram evaluation and interpretation. Additionally, it has a short running
time and a relatively low running cost. The use of the GC-MS platform is limited for
thermally stable volatile compounds, thus making the analysis difficult for high
molecular weight compounds (larger than 1 kDa) [16, 50, 73–75]. GC-MS facilitates
the identification and quantification of hundreds of metabolites in plant samples,
which include sugars, amino acids, organic acids, and polyamines, leading to the
comprehensive coverage of primary metabolites in the central pathways. Quantita-
tive metabolite profiling of potato tuber (Solanum tuberosum) using GC-MS leads to
the identification of sugars, sugar alcohols, amino acids, and organic acids [69, 72,
76, 77]. The non-biased approach in the metabolite profiling of Arabidopsis leaf
extract led to the identification of up to 652 metabolites and metabolite features
[25, 28, 78]. Several studies were performed using other GC-MS methods, such as
the metabolite profiling of tomato (Lycopersicon esculentum) and Lotus japonicus,
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which led to the identification of 200 and 87 metabolites respectively
[79, 80]. LC-MS does not require prior sample treatment and separates the compo-
nents in a liquid phase [16, 50]. The choice of columns includes reversed phase ion
exchange and hydrophobic interaction columns that separate metabolites based on
the different chemical properties. In plant metabolomics, LC-MS is frequently used
in the profiling of secondary metabolites [71, 81–85]. Hydrophilic interaction liquid
chromatography coupled to mass spectrometry (HILIC-MS) is also widely used to
analyze highly polar plant extracts [86, 87].

There are three main components in all types of MS instruments: (1) an ionization
source such as electron impact (EI), electrospray (ESI), and atmospheric pressure
chemical ionization (API); (2) a mass analyzer such as time of flight (TOF),
quadrupole mass filters, and quadruple ion trap; and (3) a detector such as an electron
multiplier-based detector or micro-channel plate linked to a time-to-digital con-
verter. The detected ions are recorded as pairs of m/z and abundance value,
processed and displayed in a mass spectral format that allows us to identify and
quantify a large variety of metabolites even with high molecular mass, high polarity,
and low thermostability [45, 46].

2.3 Capillary Electrophoresis (CE) MS

Capillary electrophoresis (CE) uses charge-to-mass ratio to separate polar and
charged compounds. CE is a powerful technique that can separate a diverse partially
complementary range of chemical compounds compared to liquid chromatography
[88–90]. In many CE-MS-based metabolomics studies, ESI is used for ionization in
combination with TOF-MS, which provides high mass accuracy and high resolution.
A small amount of a sample is required for the analysis (nanoliters of samples in the
capillary). It can be used for volume-restricted sample analysis. One of the major
drawbacks of this technique is less sensitivity, poor migration time, reproducibility,
and lack of reference libraries. CE and LC can both separate a large variety of
metabolites based on fundamentally different mechanisms, they can often be used
together to provide a wider coverage of metabolites [91].

Wantanabe et al. quantified carbohydrates, amino acids, and primary metabolites
using CE-MS in response to elevated CO2 [92]. Several studies have also been
performed in rice using CE and CE-MS for the identification of primary metabolites.
Maruyama and co-workers identified cold and dehydration-responsive metabolites,
phytohormones, and gene transcription in rice. This analysis led to the identification
of several genes that were up-regulated and involved in starch degradation, sucrose
metabolism, and the glyoxylate cycle. It has also demonstrated the accumulation of
glucose (Glc), fructose, and sucrose. Additionally, it was also observed that regu-
lation of the glyoxylate cycle is correlated with glucose accumulation in rice, which
was not observed in Arabidopsis [93].
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2.4 Data Mining and Data Processing

All the “omics” analysis generates a large volume of data. In order to handle these
large data sets, automated software is needed that can identify peaks from raw data,
align the peaks among different samples, and replicate to identify and quantify each
metabolite [81, 94–98]. Therefore, informatics and statistics are essential tools for
processing metabolomics datasets. Data mining consists of data pre-processing, data
pre-treatment, and statistical interpretation of the primary data [96]. The statistical
interpretation is essential for central data analysis [68, 99, 100].

Metabolomics studies generate high-dimensional complex datasets that are diffi-
cult to analyze and interpret using univariate statistical analysis. Therefore, multi-
variate data analysis (MVDA) and mathematical modelling approaches are used to
obtain meaningful information. These methods provide models that are well suited
for a covariance pattern (both within and between variables) analyses [16, 17, 24, 28,
68, 98, 101–103]. Most commonly used methods for MVDA are principal compo-
nent analysis (PCA), ANOVA, partial least square (PLS), and SIMCA (Soft Inde-
pendent Modelling of Class Analogy). Web-based applications like MetaGeneAlyse
implements standard normalization/clustering methods like k-means and indepen-
dent component analysis (ICA) [104]. This software also provides other statistical
analysis like the t-test, PLSDA (partial least square discriminant analysis), pathway
enrichment analysis, etc. Other web-based applications are MetaboAnalyst [105],
MetaMapp [106], metaP-Server [107], MeltDB [108], MetiTree [109], etc. These
applications cover multiple steps from data pre-processing to biological interpreta-
tion. Many different multivariate statistical tools, metabolic modelling, and struc-
tural elucidation of unknown metabolites were integrated into a toolbox for
metabolomics called COVAIN [96, 97]. The name stems from “covariance inverse,”
implying that a covariance pattern is indeed used for functional interpretation of
metabolite dynamics. This concept was recently developed and provides a funda-
mental novel approach to link causal relationships of biochemical networks with
metabolite dynamics measured with metabolomics technology such as GC-MS,
LC-MS, or any other technology [16, 18, 50, 68, 96, 97]. This approach goes beyond
the classical MVDA analysis or correlation network analysis because it is able to
identify causal biochemical perturbation points. It was recently applied to the
analysis of the interface of primary and secondary metabolism in plants in
Arabidopsis and Theobroma [81, 84, 85] and for the analysis of energy starvation
and subsequent biochemical regulation [110, 111].

The high throughput metabolic data can be analyzed in supervised and
unsupervised strategies [68]. The unsupervised method focuses on the intrinsic
structure, relation, and interconnection of the data, which are sometimes referred
to as descriptive and explorative models. Supervised methods seek to transform
multivariate data from metabolite profiling into representations of biological interest
under “supervision” and are often referred to as predictive models [29].

Metabolite data contain information such as metabolite name, change in levels,
and their relationships, which are very useful for the interpretation of the biological
significance. Most commonly, the identified metabolite is described in pathways or
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networks to understand its biological context. Some of the well curated databases for
metabolic pathways in plants are KEGG (which is based on resources like GenBank/
EMBL/DDJB) [112], ArcCyc [113], MetaCrop [114], UniPathway [115], SMPDB
[116], and MapMan [117] etc. Table 1 shows the details of other metabolomic
databases that are widely used for the analysis.

2.5 Compound Identification

Compound identification is the conclusive step in metabolite analysis; it is one of the
critical steps because the biochemical interpretation of metabolomic data is based on

Table 1 List of metabolomics databases involving tools for analysis, data processing, statistical
analysis, biomathematical modeling and functional interpretation

Tools for analysis Website URL

COVAIN http://www.univie.ac.at/mosys/software.html

MetaboAnalyst http://www.metaboanalyst.ca/

MetaMapp http://metamapp.fiehnlab.ucdavis.edu/

MetiTree http://www.metitree.nl/

MetaGeneAlyse http://metagenealyse.mpimp-golm.mpg.de/

metaP-server http://metabolomics.helmholtz-muenchen.de/metap2/

MeltDB 2.0 https://meltdb.cebitec.uni-bielefeld.de/cgi-bin

MetMask http://metmask.sourceforge.net/

MetNetDB http://www.metnetdb.org/MetNet_overview.htm

SMPDB http://smpdb.ca/

GMD@CSB.DB: The Golm
metabolome database

http://gmd.mpimp-golm.mpg.de/Default.aspx

McGill metabolome database http://metabolomics.mcgill.ca/

SoyMetDB http://soymetdb.org/

MoTo DB http://www.transplantdb.eu/node/1843

Pathway-related databases Website URL

MapMan http://mapman.gabipd.org/

MetaCyc http://metacyc.org/

MetaCrop http://metacrop.ipk-gatersleben.de

AraCyc https://www.arabidopsis.org/biocyc/

BioCyc http://biocyc.org/

AraPath http://bioinformatics.sdstate.edu/arapath/

KaPPA-view http://kpv.kazusa.or.jp/

KEGG http://www.genome.jp/kegg/

VANTED https://immersive-analytics.infotech.monash.edu/vanted/

Pathvisio http://www.pathvisio.org/

PlantCyC http://www.plantcyc.org/databases
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the availability of a well-structured database for identification of metabolites
[118, 119]. Putative compound identification is based on molecular properties like
the mass spectral pattern and accurate mass to define molecular and/or empirical
formulae from which the metabolite can be derived or identified by the comparative
search [82]. Definitive compound identification is based on retention time (Rt),
retention index (RI), mass spectral fragmentation, and NMR spectral shift. Confir-
mation of the identified compound is done by a comparative library search, authentic
chemical standards, and by using in vivo labelling methods. Sometimes analytically
detected entities with biological significance are reported as “unknowns” with no
structural identification [46, 118]. Recently, we have introduced a novel algorithm
for structural elucidation of unknown compounds and even full pathways from
untargeted metabolomics data [82]. This algorithm is especially suited for stress-
related secondary metabolites such as flavonoids as an antioxidative response to cold
and light stress [82]. In this study we also demonstrated how cold and light stress
change the oxygen-to carbon-ratio in secondary metabolites systematically using
so-called van Krevelen plots [82]. For compound identification at different levels of
accuracy, minimum reporting standards need to be described. The metabolomics
community has developed a nomenclature for publication of metabolomics
data [120].

2.6 Limitations of Metabolomics

Metabolomic platforms lack the ability to comprehensively profile all the metabo-
lites of a given cell/tissue [98]. This limitation is directly linked to the chemical
complexity of the metabolites, the biological variance that is inherent in living
organisms, and the dynamic range of the instruments. The genome and
transcriptome consist of linear polymers of nucleotides with high chemical similar-
ity; this structure facilitates high-throughput analytical approaches. The proteome is
substantially more complex, but it is still based on a limited set of amino acids. The
chemistry of these biopolymers is well defined and analytical technologies like 2DE
gel electrophoresis and shotgun proteomics can readily identify and differentiate a
large number of proteins in a single analysis and even post-translational modifica-
tions such as phosphorylation or methylation [14, 121, 122]. In the case of the
metabolome, the chemical complexities are significantly greater and range from an
ionic inorganic moiety to hydrophilic carbohydrates, hydrophobic lipids, and com-
plex natural products. Hence, the chemical diversity and complexity make
metabolome profiling extremely difficult. This obstacle can be circumvented by
using selective extraction protocols and combinations of technologies for the ana-
lysis to obtain a more comprehensive coverage of the metabolome [16, 28, 71, 81].

Analytical variation can be defined as the coefficient of variation or relative
standard deviation that is directly related to the experimental approach; this variance
differs depending on the technology platform being employed. Biological variance
arises from the quantitative variation in metabolite levels between plants of the same

196 A. Ghatak et al.



species that are grown under identical conditions [28, 123]. Biological variance is
the major limitation of “resolution” in metabolomics. Pooling of the samples tends to
avoid or reduce biological variance. This strategy helps to minimize random varia-
tion by using statistical knowledge, but also leads to dilution of the samples, which
results in the dilution of sites or tissues that are important for specific regulations
(up/down) of the metabolite. Therefore, more targeted analysis can help to minimize
the variation. In the case of plants, parameters like the synthesis of natural products,
growth stage, environmental cues, etc. make the sampling critical and strategies are
required to minimize the variations [44, 51].

The major analytical challenge encountered in metabolomics is dynamic range.
Dynamic range can be defined as the concentration boundaries for analytical deter-
mination. The dynamic range can be critically limited by a sample matrix or by the
presence of interfering and competing compounds. Most of the mass spectrometers
have a dynamic range of 104–106 for individual components; however, this range is
reduced significantly due to the presence of other chemical components (i.e., the
presence of excessive metabolites that can cause significant interference that limits
the range for the identification of other metabolites) [44, 51]. For example, high
levels of sugars (primary metabolites) often interfere with the identification of
secondary metabolites such as flavonoids. However, many of the highly expressed
metabolites are often unique and provide a basis for the differentiation of the cellular
states, organs, tissues, and organisms. These exclusive compounds are often referred
as “biomarkers.” Selective profiling of these biomarkers is very useful for high-
throughput diagnosis of a specific disorder, for example diabetes (i.e., glucose
monitoring) or cancer. This detection should not be regarded or classified as
metabolomics due to the highly targeted nature of profiling [24]. Another problem
is salts; low levels of these ionic species reduce the ionization efficiency in ESI/MS
and significantly interfere with the profiling of all other species [124]. Therefore,
different analytical approaches have been developed to improve the dynamic range
and to increase the level of identifications [51].

3 Plant Metabolomics

Metabolomic platforms can be used for unbiased identification of the metabolite
levels in different genotypes that may or may not produce visible phenotypes
[16, 72, 125]. The total number of metabolites found in plants are currently estimated
to be ~200,000, with ~7,000–15,000 found in any individual species [73], of which
3,000–5,000 were exclusively determined in leaves [48]. So far metabolite profiling
has been performed on a wide range of plant species, which includes Arabidopsis,
tomato, potato, rice, wheat, strawberry, Medicago, cucumber, lettuce, tobacco,
poplar, and Eucalyptus.

Selective metabolite profiling has been used in many studies to provide biological
information beyond simple identification of the plant constituents. These include:
(1) fingerprinting of species, genotypes, and ecotypes for taxonomic or biochemical
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information [29, 44, 126]; (2) monitoring the behavior of a specific class of metab-
olites in response to exogenous chemicals or physical stimuli [127, 128]; (3) under-
standing the developmental process and symbiotic associations [129]; and
(4) comparison of the metabolite content of mutant or transgenic plants with the
wild type [44, 51]. In each of these studies, metabolite profiling can be coupled with
other “omics” technologies to provide an integrated picture of all aspects of infor-
mation from genome to metabolome and the resulting phenotype [18]. For example,
metabolite profiling can be combined with marker-assisted selection providing
integral information and understanding about the chemical composition of crop
species [130]. Apart from the wide application of metabolomics in plant research,
there has been considerable progress in the metabolomic analysis of single cells from
different plant species, which includes tissues like pollen, trichrome, root hairs,
guard cells, etc.; these studies have been well reviewed [131].

The phenotype of a plant depends on the synthesis and accumulation of a series of
metabolites in specific organs, at specific developmental stages [132]. It also
depends on the environmental signals. Therefore, there are various kinds of meta-
bolites in plants that have organ-/tissue-specific characteristics. For example,
sphingolipids, a class of lipids that are critical in the development of the male
gametophyte, are significantly different in the pollen and leaf tissues of Arabidopsis
[133]. Anthocyanins accumulate in hypocotyls of young tomato seedlings, whereas
several flavonols and phenolic compounds have been identified in cotyledons and
some alkaloidal compounds are found in the root [132]. There are a lot of variations
in biochemical pathways at cellular and sub-cellular levels in plants; therefore, the
use of metabolomic platforms with different methods has significantly increased.

4 Workflow for Plant Metabolomic Analysis

Plant metabolomes are very complex and diverse in their chemical structures.
Comprehensive identification and a broad range of metabolic pictures can be
achieved by the combination of two or more metabolomic strategies and analytical
systems, including variation in the extraction protocols [16, 28, 49, 71, 81, 134–
136].

Metabolomic analyses consist of three main experimental strategies: (1) sample
preparation; (2) acquisition of the data using analytical methods; and (3) compound
identification and data mining. These steps are crucial and inter-related, as is
illustrated in Fig. 2, with each step consisting of a series of sub-steps with various
experimental phases to form a meaningful biochemical interpretation [118, 136].

Sample preparation is one of the critical steps as it contributes to the identification
of the wide array of metabolites. This step consists of selection and harvesting of
samples, drying or quenching procedure, and extraction of metabolites for analysis
(derivatization). The selection of plant material depends on the researcher and the
experimental design. Throughout this step, care must be taken to avoid the intro-
duction of unwanted variability, which could significantly affect the outcome of the
analysis. Sample degradation (oxidative or enzymological) and contamination are
the major factors. Various enzyme quenching methods like drying, use of enzyme
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inhibitors, use of acids, or high concentrations of organic solvents can also affect the
analyses/identification [24, 136].

Plant metabolites are structurally diverse with high complexities like different
size, solubility, volatility, polarity, quantity, and stability [51]. There are several
metabolite extraction protocols; the choice of method depends on a variety of factors
such as physiochemical properties of the targeted metabolites, biochemical compo-
sition, and solvent used. Some of the common extraction protocols include solvent
extraction, supercritical fluid extraction, solid phase extraction, and sonication
[30, 52, 136]. However, no comprehensive extraction technique exists that can
lead to the identification of all classes of metabolites with high reproducibility and
robustness.

Sample analysis requires an advanced analytical platform (separately/combina-
tion) to measure the ultra-complex metabolite samples [51]. The ranges of analytical
platforms are well discussed above, and each platform has its own limitations, either
in sensitivity or selectivity. The choice of the platform depends on the study
undertaken, consideration of the class of compounds, and their chemical and phys-
ical properties along with their concentration levels [45, 137].

Recently we have developed an integrative protocol that combines comprehen-
sive metabolite extraction and analysis with proteomics and RNA analysis from one
sample [28]. This protocol is adapted to allow the simultaneous analysis of all
molecular levels and investigate their inter-relation and covariance structure
[28, 66, 67, 138, 139]. This covariance structure of molecular dynamics of a cellular
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Fig. 2 Flowchart detailing the steps involved in plant metabolomics. There are three main steps in
the metabolomic analysis, which include sample preparation, data acquisition, and data analysis,
which lead to the biochemical interpretation of the identified metabolite
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system is a result of biochemical regulation [139]. Therefore, it is possible to read
biochemical regulation from the molecular association networks or in other words
the corresponding covariance data [16–18, 66, 68, 72, 84, 110, 139].

5 Metabolomic Studies in Plant Stress Responses

Metabolomic studies have become increasingly common in plant physiology and
biochemistry. In the following section, we review applications of metabolomics to
study plant responses to environmental stress (like abiotic and biotic factors)
(Table 2). Abiotic factors include drought, temperature, salt, oxidative stress,
flooding, nutrient deficiency, heavy metals, and effects of combinations of stress.
We describe the nature and symptoms of various stresses and introduce several
metabolomic studies with major metabolite changes (Table 2).

5.1 Drought Stress

Drought is one of the major threats to crop production worldwide and the situation is
projected to get worse in the near future [193, 194]. The physiological response of plants
under drought stress includes reduction of leaf area, leaf abscission, and increase in root
growth to enhance the uptake of nutrients. Additionally, closure of leaf stomata takes
place, which reduces water loss through transpiration. These physiological changes
improve thewater use efficiency (WUE) of the plant in the short term, but have a negative
effect on photosynthesis, for example, closure of stomata lowers the intercellular CO2

concentration, which adversely affects photosynthesis [193, 194]. Fine metabolomic
adjustment is another strategy of plants to cope with drought stress. These metabolomic
adjustments include net accumulation of osmolytes in the cell to retain or promote the
uptake of water into the cell via osmosis in order to maintain turgor pressure [193].

Compatible solutes are highly soluble and small molecular-weight osmolytes that
do not inhibit cellular metabolism even at high concentrations [195, 196]. Common
osmolytes include soluble sugars (e.g., glucose, sucrose, and trehalose), the RFOs
(raffinose, stachyose, and verbascose), polyols (e.g., mannitol, sorbitol), amino acids
(e.g., proline), quaternary ammonium compounds (e.g., glycine betaine), and other
polyamines (e.g., putrescine, spermidine, and spermine). Accumulation of these
osmolytes in plant cells is important for sustaining cell turgor by osmotic adjustment,
and stabilization of enzymes that reduce the levels of reactive oxygen species (ROS)
in order to maintain the cellular redox balance.

The targeted metabolite approach using LC-MS was established by Antonio and
co-workers in 2008 to investigate the effect of drought in Lupinus albus stem tissues
[140]. In this analysis, 12 water-soluble organic osmolytes – like mono- and
disaccharides, raffinose, stachyose, and verbascose – and sugar alcohols were
identified by chromatographic analysis using PGC stationary phase. Although the
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Table 2 List of significantly changed metabolites under stress conditions

Plant species
Tissue of
interest

Analytical
approach List of metabolites References

Metabolites under drought stress conditions
Lupinus albus Stem PGC-LC-

ESI-MS
Raffinose, Stachyose,
Verbascose, Sucrose,
Glucose

[140]

Haberlea
rhodopensis

Leaf GC-MS,
LC-MS

Maltose, Sucrose,
Threonate, Fructose, Raffi-
nose, Trehalose, Serine,
Glycine, Myconoside,
valine, Isoleucine, Phenyl-
alanine, Tyrosine, Threo-
nine, Asparagine, Proline,
Glutamate, Malate, Phos-
phate, Fumarate,
Spermidine, beta-Alanine

[141]

Physcomitrella
patens

Multiple tissue GC–quadru-
pole MS

Altrose, Fructose,
Glycopyranoside,
Isomaltose, Maltitol,
Ascorbic acid, Proline,
Allonic acid, Galactonic
acid, Myo-Inositol, Ala-
nine, Glycine, Norvaline,
Threonine, Aspartic acid,
Glutamine, Serine, Threo-
nine, Ascorbic acid, Butyric
acid, Oxalic acid, Malic
acid, Allantoin, Phosphoric
acid

[142]

Triticum aestivum Leaf GC-MS Glutamine, Quebrachitol,
Proline, Methionine,
Pipecolate, Lysine,
2-Amino-adipate, Aspara-
gine, beta-Alanine,
Homoserine,
2-Oxo-butanoate, Isoleu-
cine, Valine, Leucine,
Tyrosine, Oleic acid,
Linoleic acid, Octadecanol,
Nonanoate, Tryptophan,
Phenylalanine, Rhamnose,
Fucose, Mannose, Galac-
tose, Sucrose, Gentibiose,
Mannitol, Glycerol-3-P,
Digalctosyl-glycerol,
Xylose, Ribonate, Arabi-
nose, Ribose, Galactinol,
Inositol, Erythronate,
Isocitrate, Succinate,
Fumarate

[143]

(continued)
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Table 2 (continued)

Plant species
Tissue of
interest

Analytical
approach List of metabolites References

Oryza sativa Leaf GC/EI-TOF-
MS

Putrescine, Spermidine,
Spermine, Arginine, Orni-
thine, GABA, beta-Alanine,
Proline, Glutamate

[144]

Oryza sativa Leaf HPLC Putrescine, Spermidine,
Spermine, Arginine,
Ornithine

[145]

Arabidopsis
thaliana

Aerial parts GC/TOF-
MS, CE-MS

Agmatine, Proline, Lysine,
Methionine, Saccharopine,
beta-Alanine, Phenylala-
nine, Galactinol, Raffinose,
Citrate, Malate, Succinate,
Alanine, GABA, Adeno-
sine, Ascorbate, Glycine,
Sarcosine, Threonine, Ura-
cil, Xylose, Ascorbate,
Pyruvate, Aspartate,
Dehydro-L-ascorbate, Glu-
cose, maltose, myo-Inositol,
Indole-3-acetone,
Succinimide

[146]

Arabidopsis
thaliana

Leaf GC/TOF-
MS

Arginine, Ornithine, Pro-
line, Putrescine, Erythritol,
Fumarate, Fructose, Glu-
cose, Aspartate, Glycine,
myo-Inositol, Isoleucine,
Trehalose, Valine,
Glycerate, Glycerol-3-P,
malate, Threonate,
Threonic acid, Alanine,
Arginine, Fructose-6-P,
Fumarate, Glutamate, Glu-
tamine, 2-oxoglutate,
Homoserine, Maltose,
Methionine, Ornithine,
Phenylalanine,
Pyroglutamate, Serine,
Threonine

[147]

Solanum
lycopersicum

Fruit, pericarp
tissue

GC-MS Aconitate, Citrate,
Isocitrate, Fumarate,
Malate, Succinate, Sucrose,
Inositol, Tocopherol, Phe-
nylalanine, Methionine,
Dehydroascorbate, Alanine,
Aspartate, beta-Alanine,
GABA, Glutamate, Gly-
cine, Homoserine, Isoleu-
cine, Proline, Serine,
Valine, Cysteine

[148]

(continued)
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Table 2 (continued)

Plant species
Tissue of
interest

Analytical
approach List of metabolites References

Zea mays Multiple
tissues

GC-TOF-
MS

Xylose, Vanillic acid,
Methionine, Putrescine,
Proline, Histidine, beta-
Alanine, Phosphoric acid,
Pyruvic acid, Succinic acid,
Isoleucine, Phenylalanine,
Adenine

[149]

Zea mays Leaf UPLC-GC/
MS

Aconitate, Shikimate, Ser-
ine, Glycine, Proline,
Malate, Fumarate,
2-oxoglutarate, Nitrate,
Alanine, Aspartate,
Sucrose, myo-Inositol, Raf-
finose, Shikimate, Gluta-
mate, Threonine, GABA,
Methionine, Tyrosine, Leu-
cine, Phenylalanine

[150]

Glycine max Leaf and
nodule

NMR Myo-Inositol, Pinitol,
Sucrose, Alanine, Aspara-
gine, Aspartate, Choline,
Proline, Glutamine, GABA,
Succinic acid, Fumaric acid,
Malic acid, Citric acid,
2-Oxoglutarate

[151]

Metabolites under temperature stress
Arabidopsis
thaliana

Complete
plant

GC-TOF-
MS

Glutamine, Proline, Fruc-
tose, Galactinol, Glucose,
Raffinose, Aconitate, alpha-
ketoglutarate, Ascorbate,
Gluconate,
Gluconatelactone,
Isosuccinate, Malate, Inosi-
tol, Melibiose, Threitol,
Trehalose, Asparagine. Cit-
rulline, Cycloserine, Gly-
cine, Homoserine,
Ornithine, Putrescine,
Tryptophan, Proline

[152]

Arabidopsis
thaliana

Complete
rosettes

GC-TOF-
MS

Lysine, Fructose, Sorbose,
Glucose, Ornithine, Raffi-
nose, Serine, beta-Alanine,
Homoserine, Methionine,
Arginine, Isoleucine,
Valine, Glycine, GABA,
Alanine, Phenylalanine,
Pyruvic acid, Glutamine,
Maltose, Trehalose, Proline,
Asparagine

[153]
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Table 2 (continued)

Plant species
Tissue of
interest

Analytical
approach List of metabolites References

Arabidopsis
thaliana

Aerial tissues GC-MS Heat Stress: Uracil, D-(2)-
Quinic acid, Citramalic acid
Cold Stress: Allantoin,
Aconitic acid, Ferulic acid,
Sinapic acid, Fru-6-P,
Glyceric acid-3-P, Ascorbic
acid, Arginine, Cysteine,
Proline, Tryptophan,
Maleic acid, Octadecanoic
acid, Sorbitol, Isocitric acid,
Lactic acid
Common response:
2-Ketoglutaric acid, beta-
Alanine, Citric acid,
Erythritol, Fructose,
Fumaric acid, GABA,
Galactinol, Glycerol, Gly-
cine, Alanine, Isoleucine,
Valine, Putrescine, Treha-
lose, Xylose,
Dehydroascorbic acid
dimer, Glyceric acid,
Asparagine, Succinic acid,
Myoinositol-P, Ornithine

[154]

Arabidopsis
thaliana

Aerial tissues GC-MS Proline, Glutamate, Gluta-
mine, Arginine, Ornithine,
Putrescine, GABA, Lysine,
Methionine, Isoleucine,
Threonine, Aspartate,
Asparagine, Valine, Leu-
cine, Alanine, Shikimate,
Tryptophan, Tyrosine, Phe-
nylalanine, Serine, Glycine,
Cysteine

[155]

Arabidopsis
thaliana

Leaf GC-MS Fumaric acid, Succinic acid,
Fructose, Galactose, Raffi-
nose, Galactinol, Maltitol,
Glycine, Proline,
Dehydroascorbic acid
dimer, Hexadecanoic acid,
Itaconic acid, Ethanol-
amine, Pyroglutamic acid,
Xylose, Aspartic acid

[156]
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Table 2 (continued)

Plant species
Tissue of
interest

Analytical
approach List of metabolites References

Arabidopsis
thaliana

Leaf rosettes GC-MS Galactose, Raffinose, Glu-
cose, fructose, Galactinol,
Serine, Threonic acid,
Pyruvate, Citrate, Succi-
nate, Malate, Proline, Glu-
tamate, Glutamine,
Melibiose, Tryptophan,
Isoleucine, Alanine, Lysine,
Aspartate, Tyrosine,
Spermidine, Putrescine

[157]

Arabidopsis
thaliana

Leaf GC-TOF-
MS

Galactinol, Raffinose, Pro-
line, Allantoin, Tryptophan,
Glyceric acid, Citrulline,
Glutamine, Fructose, Argi-
nine, Ornithine, Ascorbic
acid, Asparagine,
myo-Inositol, Fructose,
Sucrose

[139]

Miscanthus
species

Aerial organs NMR Leucine, Isoleucine, Valine,
Lactic acid, Threonine,
Alanine, Quinic acid, Pro-
line, Glutamic acid, Gluta-
mine, Shikimic acid, Malic
acid, Asparagine, Glucose,
Choline, Aconitic acid,
Fructose, Raffinose,
Trigonelline, Adenine, Phe-
nylalanine, Tyrosine,
Adenosine, Formic acid

[201]

Solanum
lycopersicum

Pollen LC-QTOF-
MS

Spermidine, Spermine,
Kaempferol dihexoside,
Quercetin,
Hydroxycinnamic,
Tomatin, Hydroxytomatine

[158]

Triticum aestivum Leaf GC-MS Fumaric acid, Pyruvic acid,
Glyceric acid, Succinic
acid, Asparagine, Alanine,
Glutamic acid, Isoleucine,
Phenylalanine, Proline,
Fructose, Inositol, Xylitol,
Mannitol, Hexadecanoic
acid, Malic acid, Threonic
acid, Glycine, Lysine, Ser-
ine, Melibiose

[159]

Zea mays Leaf NMR Proline, Alanine, Choline,
Inositol, Linoleyl fatty acid,
Tyrosine, Isoleucine,
Valine, Asparagine, Threo-
nine, Aspartate, GABA,
Fructose, Sucrose

[160]
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Table 2 (continued)

Plant species
Tissue of
interest

Analytical
approach List of metabolites References

Metabolites under salt stress
Populus
euphratica

Leaf GC-MS Fumaric acid, Malic acid,
Succinic acid, Glyceric
acid, Fructose, Raffinose,
Trehalose, Xylulose,
Galactinol, Myo-inositol,
Mannitol, Glycerol,
β-alanine, Proline, Serine,
Valine

[161]

Vitis vinifera Shoot tips GC-MS Malate, Citrate, Isocitrate,
Succinate, Fumarate, Chlo-
ride, Phosphate, Proline,
Glutamate, Glutamine,
Glycine, Serine, Aspara-
gine, Fructose, Glucose,
Aspartate

[162]

Limonium
latifolium

Shoot and root HPLC and
NMR

Proline, Sucrose, Aspartate,
β-alanine betaine, Fructose,
Glucose, Glutamate, Cho-
line-O-sulfate, Chiro-
inositol, Myo-Inositol,
Glutamine

[163]

Zea mays Shoot and root NMR Alanine, Glutamate, Aspar-
agine, GABA, Glycine
betaine, Sucrose, trans-
Aconitic acid, Malic acid,
Succinic acid, Aspartate

[164]

Thellungiella hal-
ophile and
Arabidopsis
thaliana

Whole plant GC-MS Trehalose, Threonine,
Sucrose, Succinic acid,
proline, Raffinose, Serine,
Phosphoric acid, Malic
acid, Glutamic acid, Citric
acid

[165]

Arabidopsis
thaliana

Cell culture LC-MS and
GC-MS

Tryptophan, Fructose,
Sucrose, Tyrosine, Phenyl-
alanine, Shikimate, Pyru-
vate, Lactate, Malate,
Fumarate, Succinate, Cys-
teine, Ethanolamine, Pro-
line, Isoleucine, Leucine

[166]

Oryza sativa Leaf GC-MS Pyruvic acid, Quinic acid,
Gallic acid, L-Tyrosine,
Shikimic acid,
L-tryptophan, Serotonin,
Kaempferol, Ferulic acid.
Glucose-6-Phosphate,
Lactobionic acid, Raffinose,
D-Trehalose, Stearic acid,
Palmitic acid,
4-Hydroxybenzoic acid,
Vanillic acid

[167]
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Table 2 (continued)

Plant species
Tissue of
interest

Analytical
approach List of metabolites References

Oryza sativa Cultured cells GC-MS Succinate, Proline, GABA,
Valine, Cysteine, Leucine,
Asparagine, Alanine, Orni-
thine, Glucose, Fructose,
Gallactose, Trehalose,
Tyrosine, GABA, Methio-
nine, serine, Phenylalanine

[168]

Lotus japonicas Multiple
tissues

GC/EI-TOF-
MS

Proline, Leucine, Lysine,
Serine, Threonine, Glycine,
maltose, Glucose, Fructose,
Pinitol, Arabitol, Glutamic,
Succinic, Citric, Malic,
Threonic

[169]

Lotus creticus,
Lotus
corniculatus,
Lotus tenuis

Complete
shoot

GC/EI-TOF-
MS

Malic acid, Threonic acid,
Ononitol, Erythronic acid,
Succinic acid, Citric acid,
Sucrose, Serine, Proline

[170]

Hordeum vulgare Root and leaf GC-MS Proline, GABA, Putrescine,
beta- Alanine, Aspartate,
GABA, Glutamine,
N-acetylglutamate, Proline,
Phenylalanine, Putrescine,
Serine, Threonine,
Aconitate, Ascorbate,
Monomethylphosphate,
Isocitrate, 3PGA,
1,6-Anhydroglucose,
2-Keto-gluconate, 2-O-
glycerol-b-D-galactose,
Ribonate, Shikimate,
Threonate-1,4-lactone,
Fructose, Galactinol,
Galacturonate, Gluconate,
Glucose, Trehalose

[171]

Hordeum vulgare
and Hordeum
spontaneum

Root and leaf GC-MS Fumaric acid, Succinic acid,
Isoleucine, Putrescine, Pro-
line, asparagine, Leucine,
Glycine, Serine, 3-PGA,
Raffinose, Citric acid,
Isocitric acid, Inositol, Tre-
halose, Mannitol, Sucrose

[172]

Metabolites under oxidative stress
Arabidopsis
thaliana

Cell suspen-
sion cultures

GC-MS Alanine, Ascorbate, Aspar-
agine, Aspartate, Gluco-
nate, Malate, Ribose,
Proline, Glycine

[173]
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Table 2 (continued)

Plant species
Tissue of
interest

Analytical
approach List of metabolites References

Arabidopsis
thaliana

Roots GC–TOF–
MS, LC–MS

GABA, O-acetyl serine
(OAS), Pyruvate,
Glucosinolates, Citrate,
2-oxoglutarate, Succinate,
Fumarate, Malate, Alanine
and Isoleucine

[174]

Oryza sativa Cell cultures CE-MS Pyruvate,
3-phosphoglyceric acid,
Dihydroxyacetone Phos-
phate, Fructose-6-phos-
phate, Glucose-1-phosphate
(G1P), G6P, G3P, Phos-
phoenolpyruvate (glycoly-
sis intermediates),
O-Acetyl-L-serine, Cyste-
ine, and γ-Glutamyl-L-
cysteine

[175]

Metabolites under flooding stress
Glycine max Mitochondrial

fractions
CE-MS Citrate, Succinate aconitate,

Gamma-amino butyrate
(GABA), Pyruvate, NAD,
NADH, UDP-glucose
(UDPG), Glyceraldehyde-
3-phosphate (GA3P), Glu-
cose-1-phosphate (G1P)
and 6-phospho-gluconate
(6PG)

[176]

Glycine max Root tips CE-MS Gamma-aminobutyric acid,
Glycine, NADH2, and
Phosphoenol pyruvate

[177]

Metabolites under nutrient deficiency
Oryza sativa Leaf and root GC-TOF-

MS
Sugars and sugar phos-
phates, Tryptamine, Tyra-
mine and
1,3-diaminopropane and
Intermediates of TCA cycle

[178]

Solanum
lycopersicum

Leaf GC-MS Cysteine, β-alanine, Gly-
cine, Isoleucine, Phenylala-
nine, Valine, GABA, Lysin,
Arabinose, Fucose, Inositol,
Sucrose, Trehalose,
2-Oxoglutarate, Glutamate

[179]

Arabidopsis
thaliana

Shoots GC-MS Malate, Fumarate, Orni-
thine, Raffinose, Trehalose,
Succinate, GABA

[180]
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Table 2 (continued)

Plant species
Tissue of
interest

Analytical
approach List of metabolites References

Arabidopsis
thaliana

Seedlings GC-MS,
LC-MS

Flavonoids, Starch
S-adenosylhomocysteine,
O-acetylserine (OAS),
Trptophan, Glucosinolates,
Uric acid

[181]

Arabidopsis
thaliana

Seedlings – Sugar phosphates, Glycoly-
sis, Glycerate-3- phosphate,
Glycerate-2-phosphate,
Phosphoenolpyruvate,
Starch, Sucrose and Reduc-
ing sugars, Citrate, Fuma-
rate, Malate, Oxoglutarate,
Histidine, Arginine and
threonine

[182]

Phaseolus
vulgaris

Nodule GC-TOF-
MS

Putrescine, Picolinic acid,
Malonic acid, Tartaric acid,
Glyceric acid, Galactonic
acid, Threitol, Sucrose,
Glycine

[183]

Phaseolus
vulgaris

Roots GC-MS Putrescine (agmatine),
ß-Alanine, 4-Aminobutyric
acid, Threitol, Fructose,
[926; Galactosyl glycerol
(6TMS)]

[184]

Hordeum vulgare
L.

Shoots and
roots

GC-MS and
LC-MS

Glucose-6-P, fructose-6-P,
Inositol-1-P, Glycerol-3-P,
2-Oxoglutarate, Succinate,
Fumarate and Malate

[185]

Arabidopsis
thaliana

Shoots and
roots

– Sucrose, Fructose, Glucose,
Malate, 2-Oxoglutarate
[2-OG]

[186]

Metabolites under heavy metal stress
Brassica rapa Leaf and root 1H–NMR Glucosinolates,

Hydroxycinnamic acids,
Amino acids, Phenolics

[187]

Arabidopsis
thaliana

Seedlings GC-TOF-
MS

Alanine, ß-Alanine, Proline,
Serine, Putrescine, Sucrose
GABA, Raffinose and Tre-
halose, α-Tocopherol,
Campesterol, ß-Sitosterol
and Isoflavone

[188]

Metabolites under biotic stress
Oryza sativa Stem region,

close to apical
meristem

GC-MS Margaric acid,
Tetracosanoic acid,
Arachidic acid, Galactose-
6-phosphate, Ribose,
Inosine

[189]
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role of RFOs is not completely understood, there are several reports that show
evidence for the strong correlation between accumulation of RFOs and development
of desiccation tolerance [140].

Urano et al. [146] demonstrated metabolomic changes in A. thaliana (ecotype
Col-0 (WT) and the NCED3 knockout mutant) under drought stress. Many meta-
bolites were identified including amino acids such as proline, raffinose family oligo-
saccharides, and γ-amino butyrate (GABA). In this study an nc3-2 mutant that lacks
the NCED 3 gene is involved in the dehydration-inducible biosynthesis of abscisic
acid (ABA), to determine the effect of ABA under drought stress. In combination
with the transcriptome analysis, it was clearly demonstrated that ABA-dependent
transcriptional regulation is important to activate metabolomic pathways like
branched amino acids, polyamine and proline biosynthesis, GABA shunt, etc., but
regulation of a raffinose biosynthetic pathway still remains unknown [146].

Polyamines such as putrescine, spermidine, and spermine are ubiquitous in nature
and also provide protection to plants under drought stress [145, 197, 198]. GC-TOF-
MS analysis by Do et al. [144] determined the level of selected metabolites related to
polyamine metabolism in rice cultivar (Oryza sativa L. Ecotype indica and japonica)
undermoderate long-term drought stress. The combination of gene expression andGC-
TOF-MSmetabolite data showed coordinated adjustment of polyamine biosynthesis in
order to facilitate the accumulation of spermine under drought stress conditions [144].

Gechev and collaborators combined transcriptomics and metabolomics to investi-
gate desiccation tolerances in Haberla rhodopensis in four different conditions (i.e.,
well-watered, partially dehydrated, desiccated, and rehydrated) [141]. Transcripts of
proteins involved in carbohydrate metabolism (e.g., genes that encode galactinol

Table 2 (continued)

Plant species
Tissue of
interest

Analytical
approach List of metabolites References

Oryza sativa Leaf GC-TOF-
MS,
LC-TOF-MS

Acetophenone,
2-Phenylpropanol Xantho-
phylls, Alkaloids, Phenylal-
anine, Glutathione,
Tyrosine

[190]

Hordeum vulgare
L., Oryza sativa
and
Brachypodium
distachyon

Leaf GC-TOF-
MS

Glutamate, Malate, Aspar-
tate, GABA

[191]

Triticum aestivum Spikelets LC-ESI-
LTQ-
Orbitrap

Cinnamyl alcohol dehydro-
genase, Caffeoyl-coa
O-Methyltransferase,
Caffeic acid
Omethyltransferase, Flavo-
noid O-methyltransferase,
Agmatine coumaroyl-
transferase and Peroxidase

[192]
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synthase and stachyose synthase), sucrose synthase, and sucrose-6-phosphate
synthase showed increased levels. These finding showed the importance of carbo-
hydrate metabolism for protecting cells during desiccation. Genes that mainly encode
proteins to prevent cellular damage and participate in antioxidant defense (e.g., LEA)
were found to be most abundant in response to dehydration. In this study, the GC-
TOF-MS approach was used to determine metabolite profiling combined with two
different LC-MS approaches, which allowed the broad range of metabolome identifi-
cation. This study also revealed that sucrose, maltose, and RFOs such as stachyose
and verbascose accumulate in H. rhodopensis in significantly high levels upon
dehydration. Additionally, other metabolites like amino acids, phenylalanine, and
tyrosine were also observed in the dehydrated state, which suggests the activation of
the shikimate pathway that results in the synthesis of antioxidants.

Skirycz and co-workers performed metabolite profiling of Arabidopsis leaves
under mild drought stress. The response to stress in the growing and mature leaves
was significantly distinct. Metabolites such as proline, erythritol, and putrescine
were identified in mature leaves. Comparing the data with other studies revealed that
decreases in the level of aspartate and increases in the level of proline are two
common responses shared between mild and severely desiccated leaves [147, 199].

Metabolite profiling has been additionally carried out in other crop plants (maize,
wheat, tomato, and soybean) under drought stress and it was observed that changes
in the metabolite levels including branched chain amino acids are one of the
common factors [143, 148, 149, 151].

A metabolic adjustment also depends on the severity of the stress. Maize was
subjected to a drought stress for 17 days. GC-MS metabolomic analysis showed
changes in the concentrations of 28 identified metabolites. Further, accumulation of
carbohydrates, proline, amino acids, shikimate, serine, glycine, and aconitase were
identified. Additionally, decreased levels of leaf starch, malate, fumarate, and
2-oxoglutarate were also observed in the drought-treatment course. However,
between the 8th and 10th days, some metabolites were changed drastically, hence
showing their dependency on stress severity [150].

The GC-MS metabolomic analysis was also performed on the moss
Physcomitrella patens under drought stress. In this analysis, 2 weeks of physiolog-
ical drought stress was applied, which showed that 26 metabolites were differentially
affected in gametophores, including altrose, maltitol, L-proline, maltose, isomaltose,
and butyric acid. More interestingly, a new compound, annotated as
EITTMS_N12C_ATHR_2988.6_1135EC44, was also accumulated specifically in
response to drought stress in this moss [142].

5.2 Temperature Stress

A freezing environment leads to the formation of ice, which can seriously damage
plant cells and cellular membranes. Many plant species develop freezing tolerance
during their exposure to non-freezing low temperatures, and this process is known as
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“cold acclimatization” [200]. The molecular basis of this process has been widely
studied. The first metabolomic studies of cold acclimatization were performed by
two groups in 2004. Cook et al. [152] compared the metabolomic changes during
cold acclimatization in A. thaliana (ecotype Wassilewskija – 2 (Ws-2) and Cape
Verde islands-1 (CVi-1)). A metabolome of the Ws-2 plant was significantly
changed in response to low-temperature stress. Seventy-five percent of metabolites
monitored were found to increase under cold-acclimated plants, which include
amino acids such as proline and sugars (glucose, fructose, inositol, galactinol,
raffinose, and sucrose). Additional changes were also identified with increased levels
of trehalose, ascorbate, putrescine, citrulline, and some TCA-cycle intermediates.
However, there were considerable overlaps in the metabolite changes between the
two ecotypes in response to low temperature [152].

Time-course metabolomic analysis (from cold to heat conditions) showed an
increase in the pool size of amino acids derived from pyruvate, oxaloacetate,
polyamine precursors, and other compatible solutes [154]. The study concluded
that the majority of the heat shock metabolite responses were shared with cold
stress, while heat shock had a less pronounced effect on metabolism.
Transcriptomics analysis revealed the regulation of GABA shunt and the accumu-
lation of proline under a cold condition that was obtained by transcriptional and post-
transcriptional processes [155]. Espinoza et al. [153] studied the effect of diurnal
gene/metabolite regulation during cold acclimatization by using metabolomics and
transcriptomics. Approximately 30 % of identified/analyzed metabolites showed the
circadian rhythm in their pool size and low temperatures affected the cyclical pattern
of metabolite abundance [153].

The number of important traits in plants, such as stress resistance, post-harvesting
etc., largely dependents upon the metabolic content, which can be used for the
manipulation of the metabolic phenotype via a classical breeding method. A study
performed by Korn et al. [156] combined GC-MS metabolite profiling and statistical
methods to decode or identify the combination of metabolites that can predict the
freezing tolerance in Arabidopsis. One of the identified candidates was raffinose,
which can also be considered as a good marker for freezing tolerance [156].

Metabolomics was also used for functional characterization of candidate genes
involved in cold acclimatization. One of the well-characterized genes is a C-repeat
binding factor (CBF) that increases freezing tolerance by multiple mechanisms.
Cook et al. [152] investigated the regulation of CBF and its effect on the metabolome
of the plant under low temperatures using GC-MS analysis. Metabolite profiling of
the non-acclimated plants that over-expressed the CBF 3 was similar to that of the
cold acclimatedWs-2 ecotype. Hence these data indicate that the CBF pathway plays
a prominent role in determining metabolite regulation at low temperatures. Further,
the analysis reveals the accumulation of raffinose and galactinol, which are synthe-
sized through the action of CBF-targeted genes AtGolS3.

In another study, Wienkoop et al. investigated the dynamics of metabolite-protein
covariance networks and the relation of starch metabolism during cold acclimation
[139]. This study revealed that raffinose accumulation belongs to general cold and
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heat temperature stress responses and that starch metabolism can be compensated by
increased sucrose synthesis for cold adaptation processes. A follow-up study
revealed the essential role of starch metabolism during cold adaptation in different
Arabidopsis ecotypes, thus demonstrating that different ecotypes developed differ-
ent biochemical strategies to cope with cold acclimation [157]. In another study,
Doerfler et al. investigated the interface of primary and secondary metabolism as a
response to cold and light stress [81, 82]. Arabidopsis accumulated huge amounts of
flavonoid structures due to the combined cold and light stress and a novel algorithm
for metabolite identification in non-targeted LC-MS metabolomics data was able to
identify new potential flavonoid structures as anti-oxidative response factors
[82]. Several other metabolomics analyses have been performed in crop and grass
species (tomato, wheat, maize, and miscanthus) [158–160, 201] that determined the
diverse range of metabolites in plants to confers stress tolerance (Table 2).

5.3 Salt Stress

Increasing salt concentration in soil damages plants in various ways: (1) it hampers
the uptake of water and nutrients from the environment, which in turn reduces the
water potential of the soil and leads to osmotic stress. Salt stress reduces plant
growth and damages cells/tissues. (2) The steady accumulation of sodium ions in
plant tissues inhibits essential cellular processes [202, 203]. Plants have adapted
strategies to cope with salt stress, which includes adjustment of metabolic
status [204].

Gong et al. [165] conducted metabolite profiling on Thellungiella halophila, a
distant relative of A. thaliana, under salt stress. This plant shows “extremophile”
characteristics manifested by extreme tolerance to a variety of abiotic stresses like
low humidity, freezing, and high salinity (it can even grow and reproduce in a
500 nM NaCl concentration) [205]. A comparative metabolomics study between
T. halophila and Arabidopsis (under controlled conditions) showed increased levels
of proline in both the species along with inositols, hexoses, and complex sugars. The
concentration of these metabolites was higher in T. halophila. Transcriptome ana-
lysis showed similar results suggesting that T. halophila is primed for acclimatiza-
tion under stress conditions [165]. Kim et al. [166] showed the effect of high salt
concentrations on primary metabolism in a cell culture of A. thaliana (T87 cultured
cells). The obtained results showed that the methylation cycle and phenylpropanoid
pathways are synergistically induced over the short term in response to salt stress.
Long-term responses include co-induction of glycolysis and sucrose metabolism as
well as co-reduction of the methylation cycle [166].

There have been several metabolomic studies performed to assess the metabolic
effect of salinity in various crops and other plant species, which include tomato
[206, 207], grapevine [162], poplar [161], sea lavender (Limonium latifolium), [163]
and rice [167]. A study performed by Sanchez and co-workers extensively used the
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integrated approach of genomic, transcriptomic, and metabolomic analysis on
L. japonicus and other lotus species in long-term regimes of non-lethal salt stress.
The metabolomic changes were characterized by steady-state increased levels of
amino acids, sugars, and polyols with decreases in most organic acids [169]. A
comparative metabolomic study between extremophile (Lotus crticus) and
glycophyte (Lotus corniculatus) generated similar metabolomic responses under
salt stress conditions [170].

Barley (Hordeum vulgare) cultivars that differ in their salt tolerance capacity
were subjected to metabolite profiling. In this study long-term salt stress was applied
to the barley plants [171]. The more tolerant cultivar (Sahara) demonstrated
increased levels of hexose phosphates and intermediates of the TCA cycle, which
include citrate, aconitate, isocitrate, α-ketoglutarate, succinate, and malate. The
levels of metabolites remain unchanged in the less tolerant cultivar (Clipper) during
salt stress. From this study it was proposed that accumulation of proline, γ-amino
butyric acid (GABA), and other amino acids in Clipper showed growth or induction
of leaf necrosis under salt stress; however, accumulation of these metabolites does
not indicate the phenomenon of acclimatization [171]. Another comparative study of
barley (cultivated vs. wild) demonstrated that the wild type of barley is more salt
tolerant than cultivated barley and possesses an improved ability to regulate osmotic
stress through the accumulation of more carbohydrates and proline in its roots. GC-
MS-based metabolite profiling led to the identification of 82 metabolites, which
include water-soluble carbohydrates (sucrose, trehalose, and raffinose) and proline,
which were predominant and contribute potentially to salt tolerance in roots [172]. A
change in the amino acid metabolism in leaves seems critical to develop a salt
tolerance mechanism.

Rice is one of the most sensitive crops to elevated salt concentration because its
roots are highly permeable to sodium ions present in the soil [203]. A GC-TOF-MS
metabolomic analysis revealed the lower levels of TCA cycle intermediates and organic
acid in the roots of tolerant rice cultivars in comparison to the sensitive cultivar. In
addition, accumulation of amino acids was also observed in the tolerant cultivar
[167]. Liu et al. [168] conducted metabolite profiling of rice cell culture focusing on
the initial phase of salt stress that was exclusively characterized by osmotic stress.
Further, glucose, fructose, galactose, hexose phosphates, glucose-6-phosphate, and
fructose-6-phosphate accumulated in rice suspensionculture subjected to100mMNaCl
for 1–24 h. Several studies on different rice cultivars showed a decrease in the TCA
cycle-dependent organic acids and accumulation of various amino acids [168].

Maize plants exposed to salt stress (50–150 mM NaCl saline solution) showed an
increase in the levels of sucrose and alanine, but the levels of glucose were decreased
in roots and shoots. Other osmoprotectants like GABA, malic acid, and succinate
showed increased levels in roots, whereas acetoacetate showed decreased levels.
Simultaneously glutamate, asparagine, and glycine betaine showed increased levels
in shoots, whereas malic acid and trans-aconitic acid showed decreased levels.
Increased metabolic response was more evident in shoots than in roots [164].

214 A. Ghatak et al.



5.4 Oxidative Stress

Oxidative stress is one the major limiting factors for plant growth. It occurs by
overproduction of ROS, for example hydrogen peroxide (H2O2), superoxide (O

2�),
and singlet oxygen (1O2.). A wide range of abiotic stresses like high light, low
temperature, drought, and salt stress can cause oxidative stress [208]. ROS are
produced constantly in the cell as a by-product of aerobic metabolism even under
non-stress conditions, particularly during photosynthesis, in mitochondria via the
mitochondrial electron transport chain, and in peroxisomes upon photorespiration
and β-oxidation of fatty acids. However, the cellular antioxidant system can detoxify
ROS via the ascorbate glutathione (GSH) cycle; a balanced cellular redox-status is
maintained. Although low levels of ROS are important for signaling and response
for certain stress signals, elevated ROS levels can contribute to a plants defense
program by initiating programmed cell death, especially during pathogen
attack [209].

In a study performed by Baxter et al. [173], heterotrophic Arabidopsis cells were
treated with menadione, which enhances ROS production via the electron transport
chain and hence changes metabolite abundance. Metabolomic abundance was quan-
tified using 13C-labelling kinetics. It was observed that sugar phosphates related to
glycolysis and oxidative pentose phosphate pathways (OPPPs) were accumulated,
which directs the flow of the glycolytic carbon into the OPPP to provide NADPH for
antioxidant activity. In addition, levels of ascorbate decreased and the accumulation
of its degraded products like threonate was observed, which indicated activation of
the antioxidative pathway in menadione-treated cells. Reduction in glycolytic activ-
ity probably leads to decreased levels of amino acids derived from glycolytic
intermediates. Further inhibition of the TCA cycle intermediates was also observed
and confirmed by 13C redistribution analysis [173].

Lehmann et al. [174] also performed a similar kind of study considering meta-
bolite profiling and 13C-redistribution analysis on menadione-treated Arabidopsis
roots. The results obtained were distinct from the heterotrophic cell study. In this
analysis, roots showed pronounced accumulation of GABA, O-acetylserine (OAS),
pyruvate, glucosinolates, and other amino acids. It is likely that cellular oxidation
inhibits sulfur assimilation and leads to the accumulation of OAS [174]. Similarly,
rice cell cultures treated with menadione redirected the carbon flux from glycolysis
through the OPP pathway and subsequently increased the levels of NADPH. CE-MS
analysis of these rice cultures showed depletion of sugar phosphates like pyruvate,
3-phosphoglyceric acid, dihydroxyacetone phosphate, fructose-6-phosphate, glu-
cose-1-phosphate (G1P), G6P, G3P, phosphoenolpyruvate (glycolysis intermedi-
ates), and TCA intermediates like 2-oxoglutarate, aconitate, citrate, fumarate,
isocitrate, malate, and succinate; followed by the increase in OPP pathway inter-
mediates like 6-phosphogluconate, ribose 5-phosphate, and ribulose 5-phosphate.
Additionally, an increase in the biosynthesis of GSH and its intermediates (O-acetyl-
L-serine, cysteine, and γ-glutamyl-L-cysteine) was also observed in the menadione-
treated rice cell cultures [175]. Down-regulated expression of manganese superoxide
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dismutase (MnSOD) levels, which cause oxidative stress on the metabolome, was
also observed. GC-MS metabolite profiling in Arabidopsis revealed a redox shift in
mitochondria, followed by a specific decrease in TCA cycle flux, due to the
inhibition of aconitase and isocitrate dehydrogenase [210].

5.5 Flooding

Flooding imposes severe stress on plants. This is principally because excess water in
the surroundings can deprive them of oxygen and CO2, which in turn hampers the
process of photosynthesis and reduces growth and grain yield [211]. Mitochondrial
fractions from the roots and hypocotyls of 4-day-old soybean seedlings that had been
in flooding stress for 2 days were subjected to proteomics and metabolomics
analysis. Proteins and metabolites related to the TCA cycle (like citrate, succinate,
and aconitate), GABA shunt, and amounts of NADH and NAD were up-regulated
under stress conditions, but ATP was significantly decreased by flooding stress
[176]. Similarly, Komatsu et al. [177] investigated the root tips of soybean under
flooding stress – in total 73 flood responsive metabolites were identified using
capillary electrophoresis-mass spectrometry. The levels of gamma-aminobutyric
acid, glycine, NADH2, and phosphoenol pyruvate were increased under flooding
stress conditions [177].

5.6 Nutrient Deficiency

Nutrients are essential for plant growth and development. They can affect and
regulate fundamental processes of plant physiology like photosynthesis and respi-
ration. Depending upon the growth requirement of the plants, nutrients are referred
to as either macronutrients (e.g., nitrogen, phosphorus, potassium, sulfur, and
magnesium) or micronutrients (e.g., iron, zinc, etc.). Nutrient starvation or limitation
of macronutrients has direct effects on the metabolism of the plant since
most organic molecules are made up of a combination of these elements.

5.6.1 Nitrogen (N)

Nitrogen is the most important nutrient required by plants and its metabolism is
highly coordinated with carbon metabolism in the fundamental process of plant
growth. Paddy fields of rice plants preferentially use ammonium as a source of
inorganic nitrogen. The conversion of ammonium to glutamine is catalyzed by
glutamine synthetase (GS). Kusano et al. [178] performed comparative metabolomic
analysis between the rice mutant lacking the OsGS1;1 gene and the wild type. The
results revealed that mutant lines showed retardation in shoot growth in the presence
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of ammonium compared to the wild type. Overaccumulation of free ammonium in
the leaf sheath and roots of the mutant lines demonstrated the importance of the
OsGs1;1 gene for ammonium assimilation. The metabolomic profile of the mutant
line revealed decreased levels of sugars, amino acids, and intermediates of the TCA
cycle. In contrast, overaccumulation of secondary metabolites was observed parti-
cularly in roots under a continuous supply of ammonium [178]. Further, the effect of
nitrogen deficiency at the metabolite levels in tomato leaves was investigated by
Urbanczyk-Wochniak and Fernie [179]. Based on the analysis, the decreased levels
of 2-oxoglutarate, as well as other TCA-cycle intermediates including citrate,
isocitrate, succinate, fumarate, and malate, were observed under nitrogen stress
[179]. Similarly, Tschoep et al. [180] analyzed the effect of mild nitrogen limitation
in Arabidopsis, where the levels of malate and fumarate showed significant
decreased levels [180]. These findings were in agreement with a previous study
performed in tomato leaves [179].

5.6.2 Sulfur (S)

Sulphur is another macronutrient essential for the synthesis of sulfur-containing
amino acids like cysteine and methionine as well as a wide range of sulfur-
containing metabolites like glutathione. Sulfur stress has been well studied using
metabolomics by several groups, and has been well elaborated by Hoefgen and
Nikiforova [212]. Nikiforova et al. used GC-MS and LC-MS profiling methods to
monitor the response of 134 metabolites and 6,023 unknown peaks of non-redundant
ion trances under sulfur stress. Based on the profiling data, the coordinated network
of metabolic regulation was successfully reconstructed under sulfur stress
[213]. These data were also analyzed together with transcriptomic data in order to
generate a gene-metabolite correlation network in Arabidopsis under sulfur
stress [181].

5.6.3 Phosphorus (P)

Morcuende et al. [182] analyzed Arabidopsis seedlings grown in liquid culture under
phosphorus starvation. The metabolite profile revealed the levels of sugar phos-
phates were decreased but other metabolites like glycolysis, glycerate-3- phosphate,
glycerate-2-phosphate, and phosphoenolpyruvate were increased in P-deficient seed-
lings. P-deficient seedlings also showed accumulation of starch, sucrose, and
reduced sugars as well as a general increase of organic acids including citrate,
fumarate, malate, and oxoglutarate. The levels of aromatic amino acids like histidine,
arginine, and threonine did not alter or increased slightly. Together with
transcriptomic data, analysis of metabolites revealed that phosphorus deprivation
leads to a shift towards the accumulation of carbohydrates, organic acids, and amino
acids [182]. Hernández et al. performed metabolite profiling to understand the effect
of phosphorus deficiency in the roots [184] and nodules [183] of the common bean.
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Huang et al. [185] performed metabolomic analysis in both shoots and roots of
phosphorus-deficient barley. Severe phosphorus deficiency decreased the levels of
phosphorylated intermediates (glucose-6-P, fructose-6-P, inositol-1-P, and glycerol-
3-P) and organic acids (2-oxoglutarate, succinate, fumarate, and malate). It was also
identified that phosphorous-deficient plants reconstruct carbohydrate metabolism
initially in order to reduce phosphorus consumption, which consequently reduces
the levels of organic acid in the TCA cycle [185].

5.6.4 Potassium (K)

Potassium (K) plays essential roles as a major cation in plants and as a cofactor of
enzymes. Armengaud et al. [186] performed metabolite profiling in order to identify
metabolic targets of potassium stress. Metabolite profiles of Arabidopsis plants
(roots and shoots) under low-K concentration revealed increases in the levels of
soluble sugars (sucrose, fructose, and glucose) and a slight net increase of total
protein content and the overall amino acid level. Additionally, a strong decrease in
pyruvate and organic acids was observed only in the roots but not in the shoots [186].

5.6.5 Heavy Metals

Heavy metals such as cadmium (Cd), cesium (Cs), lead (Pb), zinc (Zn), nickel (Ni),
and chromium (Cr) are major soil pollutants (from the beginning of the industrial
revolution) causing stress on plants. Heavy metals induce enzyme inhibition, cellular
oxidation, and metabolic perturbation, resulting in growth retardation and plant
death in extreme instances [214]. Sometimes essential nutrients including copper
(Cu), iron (Fe), and manganese (Mn) can cause heavy metal stress if present in an
inappropriate concentration. Jahangir et al. [187] analyzed the effects of Cu, Fe, and
Mn on the metabolite levels of Brassica rapa (leaves and roots). The levels of
metabolites such as glucosinolates and hydroxycinnamic acids as well as primary
metabolites such as carbohydrates and amino acids were affected constitutively
[187]. Similarly, Arabidopsis plants treated with Cd showed increased levels of
alanine, ß-alanine, proline, serine, putrescine, sucrose, and other metabolites with
compatible solute-like properties, notably GABA, raffinose, and trehalose. This
study also indicated a significant increase in the concentrations of α-tocopherol,
campesterol, ß-sitosterol, and isoflavone. When taken together these data indicate an
important role of antioxidant defense in the mechanisms of resistance to cadmium
stress [188].
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5.7 Biotic Stress

In order to combat the stress from pathogens and pests, plants use complex chemical
machinery as a major defense mechanism. The metabolic response of plants to biotic
stresses depends highly on tissues, species, and plant-pathogen or pest interactions.
A number of metabolites have been identified as metabolic biomarkers for biotic
stress in diverse plant species [215]. For example, metabolic profiling of host tissues
from the three rice varieties TN1, Kavya, and RP2068 exposed to gall midge biotype
1 (GMB1) was performed using GC-MS. In total, 16 fatty acids (such as unsaturated
linoleic acid) together with two amino acids (glutamine and phenylalanine) were
identified as the major components of the resistance features of gall midge (Orseolia
oryzaeWood-Mason)-resistant rice varieties [189]. Similarly, metabolite profiling of
sensitive and tolerant rice cultivars subjected to BLB (bacterial leaf blight) caused by
Xanthomonas oryzae pv. oryzae (Xoo) led to the identification of several specific
metabolites, such as acetophenone, xanthophylls, alkaloids, carbohydrates, and
lipids [190]. Metabolomic analysis of barley, rice, and purple false brome grass,
revealed identical changes in the metabolic patterns in which malate, polyamines,
quinate, and non-polymerized lignin precursors accumulate during infection by
Magnaporthe oryzae [191]. Phenylpropanoids are the precursors of lignin and con-
stitute an important component of the plant stress defense mechanism by modulating
cell wall composition and stiffness in roots. The thickened cell wall may help to
defend against pathogen infection in the plant. Accumulation of phenylpropanoid
and phenolic compounds was reported in response to Fusarium graminearum in
wheat [192].

5.8 Stress Combination

In the natural habitat, plants are actually subjected to combinations of abiotic stress.
Some of these stress conditions are already in combination, for example, high salt
concentration leads to ionic and osmotic stresses. Although the metabolic response
of plants under single stress conditions has been studied extensively as detailed in
the previous section [216], Rizhsky et al. [217] applied the combination of drought
and heat stress in Arabidopsis. The metabolite profiling showed high-level accumu-
lation of sucrose and other sugars. Interestingly, proline was not accumulated in
stress combination and hence it was concluded that sucrose replaces proline as an
osmoprotectant in plants in order to avoid combined stress conditions because
proline shows high-level toxic effects under heat stress conditions [217]. Wulff-
Zottele et al. [218] also analyzed the effect of high light irradiance and sulfur
depletion. In this study, it was observed that proline accumulated in a differential
time course and other metabolites like raffinose and putrescine replaced proline
during its delayed accumulation under stress [218].
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6 Metabolite Accumulation: Adjustment in Response
to Stress Conditions

Under abiotic stress conditions, a common defensive mechanism is activated in
plants that leads to the production and accumulation of compatible solutes (meta-
bolites). These are small molecular weight osmoprotectants that are diverse in
nature, and include amino acids like asparagine, proline, and serine, and amines
like polyamines, glycine betaine, and GABA (γ-amino-N-butyric acid). Addition-
ally, they also include carbohydrates (e.g., fructose, sucrose, and trehalose), raffi-
nose, and polyols (myo-inositol, D-pinitol), and antioxidants such as glutathione
(GSH) and ascorbate [219]. These osmolytes have high levels of solubility/perme-
ability in the cell and lack enzyme inhibition activities even at high concentrations.
Accumulation of the solutes in response to stress is not only observed in plants, it is
also a defense mechanism triggered by animal cells, bacteria, and marine algae,
which indicate an evolutionarily conserved trait [196, 220, 221].

Several studies have been performed to understand the beneficial effects of these
metabolites in plant tolerance against environmental stimuli. Proline is one of the
best examples, and the correlation between proline accumulation and stress tolerance
has been well described in Bermuda grass during water stress conditions [222]. In
the follow-up studies, several research works were conducted to prove and correlate
the importance of proline accumulation in plants under stress conditions. Based on
the findings it can be concluded that proline can act as a protein stabilizer, a signaling
molecule, a ROS scavenger (against several abiotic stresses), and a cryoprotectant/
osmoprotectant in plants under stress conditions [223, 224]. Figure 3 represents the
biosynthesis of the key metabolites that accumulate in plants in response to the stress
condition.

Proline metabolism and its regulations are well characterized in plants (Fig. 3(1)).
Proline is synthesized in cytoplasm or chloroplast from glutamate, which reduces to
glutamate semialdehyde (GSA) by Δ-1-pyrroline-5-carboxylate synthetase (P5CS).
GSA can spontaneously convert into pyrroline-5-carboxylate (P5C), which is further
reduced by P5C reductase (P5CR) to proline. Proline is degraded within the mito-
chondrial matrix by proline dehydrogenase (ProDH) and P5C dehydrogenase
(P5CDH) to glutamate [225]. Under stress conditions proline synthesis is stimulated,
whereas during recovery from stress catabolism of proline is enhanced. In tobacco
and petunia, over-expression of P5CS led to increasing accumulation of proline and
showed enhanced tolerance to salt and drought [226]. Arabidopsis P5CS1 knock-out
plants were impaired in proline synthesis and showed hypersensitivity to salt stress
[227]. ProDH antisense Arabidopsis accumulated more proline, which shows
enhanced tolerance against low temperature and high salinity [228]. An alternative
pathway, mitochondrial P5C, can be produced by δ-aminotransferase (δ-OAT) from
ornithine. Over-expression of Arabidopsis δ-OAT enhances proline levels, which in
turn increases stress tolerance in rice and tobacco [229]. The core enzymes P5CS,
P5C, P5CR, ProDH, and OAT are responsible for maintaining the balance between
biosynthesis and catabolism of proline.
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Extensive research work has been performed for other metabolites such as
γ-aminobutyric acid (GABA), glycine betaine, trehalose, raffinose, and polyamines
(like putrescine, spermidine, and spermine) etc.; these metabolites have also been
proven to be efficient protectors against some abiotic stresses. GABA is a
non-protein amino acid that accumulates rapidly under high-stress levels [230–
232]. GABA is mainly synthesized from glutamate in cytosol and then transported
into mitochondria. GABA-T (GABA transaminase) and SSADH (succinic
semialdehyde dehydrogenase) convert GABA into succinate, which enters into the
TCA cycle (Fig. 3(2)) [233]. GABA metabolism plays a major role in the carbon-
nitrogen balance and ROS scavenging activity [234, 235]. GABA shunt also plays
an important role in stress tolerance. Enzymes involved in GABA metabolism
showed enhanced enzyme activity under salt stress [232]. GABA-T deficient
Arabidopsis mutants showed hypersensitivity against ionic stress – increased levels
of amino acids were accumulated while carbohydrate levels were diminished
[232]. Similarly, disruption of the SSADH gene showed ROS accumulation and
hypersensitivity against UV-B and heat stress [236].

Glycine betaine (GB) is a quaternary ammonium compound that occurs widely in
the plant kingdom [237]. GB is synthesized from choline and glycine
[238]. Arabidopsis and many other crops species do not accumulate GB. Plants
with natural production of GB under stress conditions (cold, drought, and salt)
showed enhanced accumulation of GB (Fig. 3(3)) [238]. In salt-tolerant species, a

Fig. 3 Biosynthetic pathway of the metabolites that are accumulated under stress conditions (e.g.
drought, temperature, salt, etc.). (1) proline, (2) GABA, (3) glycine betaine, (4) trehalose, (5)
raffinose
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significant level of GB accumulation was determined. GB protects photosystem II,
stabilizes the membrane, acts as a molecular chaperone, maintains water balance,
and provides protection from oxidative stress [239–241].

Trehalose is a non-reducing disaccharide that accumulates in higher concentra-
tions under some desiccation-tolerant plants like Myrothamnus flabellifolius
[242]. At high levels, trehalose can act as an osmolyte to stabilize proteins
[243]. In plants, trehalose is present in a small amount, but under high-stress
conditions trehalose increases moderately [154, 244]. Biosynthesis of trehalose
takes place in two steps: trehalose-6-phosphate synthase (TPS) produces trehalose-
6-phosphate (T6P) from UDP-glucose and glucose-6-phosphate followed by
dephosphorylation of trehalose by trehalose-6-phosphate phosphatase (TPP) [243]
(Fig. 3(4)). Several research studies demonstrated the role of trehalose in stress
tolerance; transgenic expression of the genes involved in trehalose biosynthesis
enhances the tolerance of plants against abiotic stress. Heterologous expression of
genes involved in the trehalose pathway from E. coli or Saccharomyces cerevisiae
showed enhanced tolerance to abiotic stresses in several plants [245]. Further, over-
expression of the TPS isoform conferred enhanced resistance in rice against salt,
cold, and drought stress [246]. Loss of TPS5 (TPS with TPP domain) function
lowered the basal thermotolerance in Arabidopsis [247]. Panikulangara et al. [248]
demonstrated that levels of trehalose and activity of TPP increase under cold stress in
rice, and overexpression OsTPP1 in rice showed enhanced tolerance against cold
and salinity, although trehalose content was not observed to be increased [248].

Raffinose family oligosaccharides (RFOs) include raffinose, stachyose, and
verbascose, which accumulate in various plant species (in desiccated seeds and
leaves) under environmental stress like cold, heat, drought, or salinity [249]. RFO
biosynthesis is initiated by formation of galactinol from myo-inositol and
UDP-galactose by galactinol synthase (GolS). Sequential addition of galactose
units by galactinol to sucrose leads to the formation of raffinose, and a higher
class of RFO (Fig. 3(5)) [249]. The complete biosynthetic pathway of RFOs under
stress conditions is not completely known. Research work performed by Taji et al.
[250] and Nishizawa et al. [251] demonstrated that over-expression of Arabidopsis
GolS1 and GolS2 accumulates high levels of galactinol and sucrose in Arabidopsis,
which showed enhanced tolerance under drought and salt stress [250, 251].

Metabolomic adjustments play a very important role in plant survival; therefore,
regulation of the metabolic pathways (biosynthesis and catabolism) is very critical in
order to improve tolerance mechanisms against environmental stimuli in plants.

7 Conclusion and Outlook

Metabolomics is the comprehensive platform that can identify and quantify small
molecules present in plants that lead to the ultimate expression of its genotype in
response to environmental stimuli (abiotic and biotic stresses). Information obtained
from the metabolomic studies in plants against different abiotic and biotic stresses

222 A. Ghatak et al.



have provided relevant information about the specific metabolites that are directly
involved in physiological and biochemical changes. In an applied context,
metabolomic approaches provide a broader, deeper, and integral perspective of the
metabolic profiles in the acclimatization of plants against environmental stress. The
obtained information is also transferable to the sensitive and economically important
crops, to improve their adaptation strategies towards adverse conditions. The appli-
cation of more advanced metabolomics tools will accelerate and improve plant
breeding approaches, which will surely lead to the next generation of crops that
are more tolerant to abiotic and biotic stresses worldwide.
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Abstract The genetic material DNA in association with histone proteins forms the
complex structure called chromatin, which is prone to undergo modification through
certain epigenetic mechanisms including cytosine DNA methylation, histone mod-
ifications, and small RNA-mediated methylation. Alterations in chromatin structure
lead to inaccessibility of genomic DNA to various regulatory proteins such as
transcription factors, which eventually modulates gene expression. Advancements
in high-throughput sequencing technologies have provided the opportunity to study
the epigenetic mechanisms at genome-wide levels. Epigenomic studies using high-
throughput technologies will widen the understanding of mechanisms as well as
functions of regulatory pathways in plant genomes, which will further help in
manipulating these pathways using genetic and biochemical approaches. This tech-
nology could be a potential research tool for displaying the systematic associations
of genetic and epigenetic variations, especially in terms of cytosine methylation onto
the genomic region in a specific cell or tissue. A comprehensive study of plant
populations to correlate genotype to epigenotype and to phenotype, and also the
study of methyl quantitative trait loci (QTL) or epiGWAS, is possible by using high-
throughput sequencing methods, which will further accelerate molecular breeding
programs for crop improvement.
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1 Introduction

In plants, epigenetic regulation of the genome plays a significant role in normal growth
and development. DNA methylation, which is a crucial constituent of epigenetic
phenomena, controls gene expression during plant growth and development. These
epigenetic marks recruited through methylation events are heritable to successive
generations. DNA methylation also plays a crucial role in normal plant reproduction
and seed development because it is involved in genomic imprinting [1]. In addition to
DNA methylation, repeating units of chromatin called nucleosomes are also an impor-
tant regulator that affect the accessibility of transcription factors and regulators for the
expression of genes through various epigenetic mechanisms that involve specific chem-
ical and post-translational modifications of histones. Epimutations, DNA methylation
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level, and chromatin remodeling at the genome levelmaybe involved in various kinds of
developmental process regulations. These peculiar regulation mechanisms may also
cause various kinds of developmental abnormalities, such as sterility, transposon acti-
vation, and defects in flowering response pathways [2]. These epigenetic regulators
studied at the genome level are called epigenomics. At present, epigenomic studies are
possible by microarrays and high-throughput-sequencing technologies that will help in
unfolding the complex network of epigenomic regulation and genome activity of plants.

2 Epigenetics

The term “epigenetics” was proposed byWaddington in the 1940s, and he defined it as
“causal interactions between genes and their products which bring the phenotype into
being.” Later, a more concrete definition of epigenetics was formulated, whereby it is
defined as “the study ofmitotically and/ormeiotically heritable changes in gene function
that cannot be explained by changes in DNA sequence [3].” Epigenetic modifications
involve DNA methylation and chromatin modifications. In DNA methylation, the 50

position of cytosine and the N6 position of adenine bases are methylated. The rate of
DNA methylation varies in different species with 14% of methylated cytosine reported
in Arabidopsis thaliana, 4% inMus musculus, 2.3% in Escherichia coli, and 0.03% in
Drosophila [4]. Histone modifications include lysine and arginine methylation, lysine
acetylation, ubiquitination, sumoylation, and serine and threonine phosphorylation
towards the regulation of gene expression. Epigenetic modifications are species-,
tissue-, organelle-, and age-specific, and are involved in various processes like transpo-
son repression, genomic imprinting [5], and stress-associated defense responses.

2.1 DNA Methylation

DNA methylation is an enzyme-catalyzed addition of amethyl (-CH3) group to the fifth
position of cytosine to form 5-methylcytosine. DNAmethylation is not only restricted to
prokaryotes but also occurs in eukaryotes. Cytosine methylation is common in both
animals and plants, whereas adenine methylation is restricted to prokaryotes. In bacteria,
the DNA methylation mechanism is slightly peculiar as this helps bacteria in differenti-
ating the host genomic DNA from invading phage DNA, and eventually leads to the
cleavage of phage DNA by host restriction enzymes. DNAmethylation mechanisms are
mostly conserved in eukaryotes such as fungi, plants, and animals. In plants, DNA
methylation takes place in three different sequence contexts, viz. CG, CHG, and CHH
(H ¼ A, C, or T), catalyzed by DNA methyl transferases. DNA methylation is a
reversible, enzyme-mediated modification of bases (Fig. 1). Enzymes responsible for
cytosine methylation in plants fall under three distinct categories: First is DNA
METHYLTRANSFERASE1 (MET1), a homologue of mammalian methyltransferase
(Dnmt1), which is required for maintaining symmetric cytosinemethylation (CpG) of the
genome. The MET1-silenced plant showed a lack of widespread CpG methylation
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[6]. Another variant of MET1 showed various phenotypic changes after creating a
mutation in the functional gene region. For example, met1a mutants in rice showed a
normal phenotype, whereas met1b mutants display aberrant seed development [7, 8]. In
this example,DNAmethylationwas suddenly decreased at specific regions of the genome
such as repetitive centromeric, transposon, and retrotransposon sequences [7, 8]. The
second category includes plant-specific CHROMOMETHYLASE3 (CMT3), which
recruits a methyl group at the CHG type of sequence, especially at centromeric repeats
as well as at transposons [6, 9]. The above-mentioned DNA methyltransferases create a
symmetric type of cytosine methylation in the genome [10]. The third category catalyzes
asymmetrical cytosine methylation at the CpNpNp site and includes two DNA
methyltransferases, DRM1 (DOMAIN REARRANGED METHYLASE1) and DRM2,
which are responsible for de novo methylation [11] (Fig. 1).

2.2 Chromatin Modifications

The other epigenetic modification associated with the regulation of gene expression
is the covalent post-translational modification of the N-terminal tail of core histone
proteins in certain amino acid residues such as lysine, arginine, serine, and threonine.

Fig. 1 Diagrammatic representation of chromatin remodeling via histone modification and meth-
ylation mechanisms. (a) Histone methylation and acetylation alter the gene expression via DNA
condensation and relaxation. (b) Alterations in gene expression could occur by DNA methylation
that involves recruitment of a methyl group to the fifth position of cytosine by CMT3,
chromomethylase; DRM3, domain rearrangement methyltransferase; MET1, methyltransferase
during DNA methylation events that lead to hypomethylation to activate the gene/transposon or
while hypermethylation reduces the activity of the gene/transposon
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These modifications will either activate or repress the transcription, depending on the
type of histone modification. Histone acetyltransferases (HATs) catalyzed acetyla-
tion of H3 and H4 lysine (K) at positions 4, 9, 27, 36, and 73 and is important for the
positive regulation of transcription whereas deacetylation catalyzed by histone
deacetylase (HDAC) leads to negative regulation. The other form of modification
i.e., methylation, affects transcription in a way depending on position and degree of
methylation. Lysine and arginine methyltransferases mediate the methylation of
histone proteins in lysine (K) and arginine (R) residues, respectively. Active tran-
scription is associated with H3K36me, H3K48me, H3K79me, and trimethylation of
histone H3 at lysine 4 (H3K4me3). In contrast, methylation at H3K9, H3K27,
H4K20, and H4R3me2 are responsible for chromatin condensation, thus resulting
in transcription repression (Fig. 1). Transcriptional activation is also linked to H3
phosphorylation at serine and threonine residues [12].

Understanding the role of histone modification in developmental reprogramming
and in response to a range of environmental adversity in plants has been progressed
in recent years. Histone modifications are important players in vernalization and
photomorphogenesis. H3K4me3 and histone acetylation are responsible for active
expression of Flowering Locus C (FLC) resulting in late flowering, whereas
H3K9me2, H3K27me2, and histone deacetylation reverse this effect by repression
of FLC in A. thaliana [13]. In addition to flowering time regulation, histone
modification, particularly H3K9ac, contributes to light-induced activation of HY5
and HYH and their downstream effectors like photosynthesis-related genes such as
photosystem I subunit F (PsaF) [14]. The promoter and coding region of another
photosynthetic gene like phosphoenolpyruvate carboxylase (Pepc) in maize showed
light-induced acetylation of H4K5 and H3K9 [15]. Moreover, regulation of gibber-
ellin metabolism genes is also associated with light-induced acetylation of H3K27ac
and trimethylation of H3K27me [14].

Histone modifications are also important regulatory mechanisms involved in the
abiotic stress response. H3K4me3 is a positive regulator of water stress response and it
is well illustrated when transcription of NCED3 (9-cis-epoxycarotenoid dioxygenase),
which encodes an important ABA biosynthesis enzyme, is reduced in Arabidopsis
trithorax-like factor ATX1 mutant (which trimethylates H3K4). This results in a
decrease in dehydration tolerance [16]. Histone methylation is important in imparting
salinity tolerance by regulating the expression of certain salinity stress-induced tran-
scription factors such as MYB, b-ZIP, and AP2/DREB family members in soybean
[17]. Understanding the mechanism behind low temperature tolerance is an important
strategy for developing cold-acclimatized plants. In this context, the dynamics of
H3K27me3 are correlated with the transcriptional regulation of two cold responsive
genes, COR15A (cold-regulated 15A) and ATGOLS3 (galactinol synthase 3) in
Arabidopsis thaliana, which showed that levels of H3K27me3 gradually decreased
in the promoter region of these two genes upon exposure to cold temperature [18]. His-
tonemodification also plays a significant role in gene regulation under high temperature
conditions. Repressive chromatin marks the H3K9me2 level of Fertilization-Indepen-
dent Endosperm1 (OsFIE1) as sensitive to temperature variation during seed develop-
ment in O. sativa. The H3K9me2 level of OsFIE1 reduces under moderate heat
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exposure, leading to increased OsFIE1 expression [19]. FERTILIZATION-
INDEPENDENT SEED (FIS) Polycomb group (PcG) proteins are an evolutionarily
conserved class of proteins that are involved in fertilization-independent seed formation
and also ensure the stable transmission of developmental decisions. The FIS Polycomb
complex alter the target genes by implementing repressive methylation on histone H3
lysine 27. Further, it is also involved in endosperm proliferation and reproductive
developments. However, most importantly, the imprinting phenomenon during seed
formation and in the endosperm development is controlled by the FIS complex along
withDNAmethylation [20]. Recently, it was reported that FIE does not have repressive
functions in apomictic Hieracium, and on down-regulation of FIE, autonomous
embryo development is blocked in FIS1:HFIE:RNAi but autonomous endosperm
development is capable of occurring. Thus, it was found that maternal FIE is a
requirement in an apomictic Hieracium [21]. FIE also regulates methyl transferase
gene (MET1) expression in ovules as MET1 expression is up-regulated in FIS1:HFIE:
RNAi lines.

2.3 RNA-based Control Mechanisms

Small interfering RNAs (siRNAs) lead to de novo DNA methylation in a sequence
similarity specific manner at CG, CHG, and CHH sites. It was first discovered by
Wassenegger in plants [22] and called RNA-directed DNA methylation (RdDM).
The pathway of siRNA biogenesis starts from the generation of double-stranded
RNAs (dsRNAs). The source of dsRNAs may be transposable elements, transcribed
inverted repeats, or intermediates of viral replication. RdDM is initiated by RNA
polymerase IV (POL IV), which generates single-stranded RNA (ssRNA). This
ssRNA serves as a template for the generation of dsRNA catalyzed by
RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) with the help of the chroma-
tin remodeler CLASSY 1 (CLSY1). This dsRNA is further cleaved by DICER-LIKE
3 (DCL3) into 24-nt siRNA, having 30 overhangs, which are subsequently methyl-
ated by HUA-ENHANCER 1 (HEN1). A single strand of this methylated siRNA is
then loaded on ARGONAUTE 4 (AGO4) and forms an RNA-induced silencing
complex (RISC)-AGO4 complex, which then guides the methylation of homologous
loci. Simultaneously, at the target site, PolV transcribes long non-coding RNA
(lncRNA) with the help of DDR complex (DRD1 (DEFECTIVE IN
RNA-DIRECTED DNA METHYLATION 1), DMS3 (DEFECTIVE IN MERI-
STEM SILENCING 3), RDM1 (REQUIRED FOR DNA METHYLATION 1),
and DMS4. Previous reports proposed that DDR helps to unwind the DNA for
transcription [23]. The (RISC)-AGO4 complex associates with PolV by base pairing
of siRNA with lncRNA and this association is stabilized by the interaction of AGO4
with subunits of PolV-NUCLEAR RNA POLYMERASE E1 (NRPE1) and NRPE2
along with KTF1 (KOW DOMAIN-CONTAINING TRANSCRIPTION FACTOR
1). RDM1 binds with AGO4 and DRM2 (de novo methyltransferase) leading to
cytosine methylation at the target site [24] (Fig. 2).
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3 Epigenomics

Epigenomics are the mechanisms that contribute to regulation of the genome through
various processes of epigenetics. For example, genome regulation by the action of
DNA methylation, histone modifications, and lncRNA expression into a particular
tissue, or even one particular cell type or organ. Unlike genomics, epigenomics is a
dynamic process that can be influenced by environmental factors such as biotic and
abiotic stress in a particular tissue or organ. Aberrant changes in the genome through
various epigenetic events lead to distortion in morphological, developmental stages
and results in plant abnormalities in the form of plant diseases. Nowadays, the most
challenging task is to understand how the epigenome contributes to gene regulation,
which in turn will give us greater insight into plant development. High-resolution
epigenome mapping could be done through genome-wide analysis of DNA methyl-
ation, histone modifications, and siRNAs in correlation with chromatin accessibility
and finally to mRNA transcription in plants. In the era of next-generation sequenc-
ing, genome-wide epigenetic changes could be quantified in the genome through
various high-throughput techniques such as DNA methylation, histone modification,
chromatin remodeling, and regulatory noncoding RNAs. A variety of next genera-
tion sequencing platforms are available for identifying the epiallelic variation in the
genome.

The three most popular distinctive sequencing platforms: 454 Genome Analyzer
FLX (Roche), the HiSeq (Illumina), and the 5500xl SOLiD System (Life
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Fig. 2 Diagrammatic representation of RNA-directed DNA methylation (RdDM) pathways. Ini-
tially, RDR2 physically interacts with Pol IV and results in the conversion of Pol IV transcripts into
double-stranded RNA (dsRNA) with the help of the chromatin remodeler CLSY1. The dsRNAs are
further processed into 24-nucleotide (nt) siRNAs by the action of DCL3, and the guide strand is
loaded onto AGO4, which then enters the Pol V–mediated pathway of de novo DNA methylation
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Technologies) have since been developed for the generation of large-scale reads and
higher throughput (Table 1). The different sequencing platforms have particular
advantages that are utilized on the basis of the required scientific goals during
research. For epigenomic studies, the number of sequenced reads to consider the
best-read depth and -read length for genome coverage are important key factors to
choose the best suitable sequencing platform for every experiment. HiSeq and
SOLiD are the best suited sequencing platform for epigenomic studies including
transcriptomics, sRNA analysis, ChIP-Seq, and DNA methylome analysis because a
large number of reads can be obtained using these platforms. 454 Genome Analyzer
FLX sequencer produces longer reads, hence it is presently best suited for de novo
genome and transcriptome assemblies. Detailed technical background regarding
different NGS platforms with respect to sequence read generation and sequencing
reactions are extensively described by Buermans et al. [25].

4 Strategies for Genome-wide Epigenetic Profiling for High
Resolution of Epigenome

During the last few decades, it has been revealed that gene expression regulation or
repression through DNA methylation entails several steps that suppress the gene
response within partial pathways; however, it is still unclear whether gene body and
intergenic region methylation could play a crucial role in gene expression. Nowa-
days it is well established that the promoter region of gene is a strong key factor for
gene silencing. Generally, promoter regions are the CpG-rich region as compared to
other parts of the genome and these CpG rich nucleotides are methylated. In plants,
several environmental factors that induce a hypermethylation state in the promoter
regions, which has CpG-islands and concern genes, becomes inactivated. Therefore,
differentially methylated regions (DMRs) in the plant genome could be quantified
even in response to various stress conditions. In genome DNA, methylation levels
increase through the action of DNA methyl transferases (DNMTs), which provide an

Table 1 Summary of the most popular next-generation sequencing platforms

Method
Accuracy
(%)

Read
length
(bp)

Reads per
run Advantages Disadvantages

Pyrosequencing
(454)/Roche

99.90 700 1 million Long read size.
Fast

Runs are expensive

Illumina/Solexa 99.90 2 � 100 3 billion Potential for
high sequence
yield

Equipment can be
very expensive

Life technolo-
gies (SOLiD)

99.90 200–400 4 billion Low cost per
base

Has issues sequenc-
ing palindromic
sequences

Ion Torrent
sequencing

98 40,000% Up to
80 million

Less expensive
equipment

Homopolymer errors
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epigenetic mark for the recognition of methyl-DNA binding proteins. Ultimately,
other multi-protein complexes possessing chromatin-modifying activity, for instance
histone-deacetylases (HDACs), and chromatin remodelers are recruited in the
genome to establish a repressive chromatin configuration.

Techniques to detect the DNA methylation and chromatin modification patterns
in the genome can be classified into following categories: (1) bisulphite conversion,
(2) digestion with methylation sensitive restriction enzymes, (3) chromatin immu-
noprecipitation mediated with high throughput sequencing (chip-seq), and (4) small
RNA-mediated methylation (Table 2). The above-mentioned techniques differ in
their principle of distinguishing methylated from unmethylated DNA.

4.1 Bisulfite Sequencing

The bisulfite conversion method involves treating genomic DNA with sodium
bisulfite, which leads to the conversion of unmethylated cytosine into uracils,
whereas methylated cytosine residues remain unaffected during the treatment. This
converted DNA can be amplified with PCR by using sequence-specific primers and
finally the methylation status of the DNA can be revealed. Thus, bisulfite treatment
could be a promising tool to detect specific modifications in a DNA sequence that
relies on the methylation status of individual cytosine residues, providing single-
nucleotide resolution information on the methylation status of a DNA sequence.
After that, various bioinformatic analyses can be carried out on the converted
sequence to recover the information for nucleotide resolution. The advancement of
sequencing techniques, especially Illumina sequencing, i.e., sequencing by synthesis
technology, provides us with an opportunity to sequence the entire cytosine
methylome of a genome at single-base resolution (methylC-seq). This single-base
methylome map provides us with earlier undetected DNAmethylation, facilitates the
determination of context as well as of the level of methylation at each site, and the
effect on the state of DNA methylation influenced by nearby sequence composition.
This whole genome bisulfite sequencing would also provide the methylation level in
promoters, UTRs, and other protein-coding regions of the gene. Small RNA and
transcriptome sequencing, and their direct association between abundance of sRNAs
and DNA methylation, can be quantified with bisulfite sequencing. Strand-specific
mRNA-sequencing revealed altered transcript abundance of certain genomic regions
such as transposons, intergenic regions, and gene changes in the transcript abun-
dance of hundreds of genes, transposons, and unannotated intergenic transcripts
apon changing their DNA methylation state. In brief, these complete and well-
integrated data sets divulge earlier unexplored subsets of the epigenome and help
in understanding the intricate relationship between DNA methylation and
transcription.

Nowadays many researchers are using bisulfite sequencing-based methods for
studying methylation across entire genomes of plant, populations, and plant species.
Whole genome bisulfite sequencing (WGBS) is possible for identifying the genetic
basis for phenotypic variation within large populations either in a segregating
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Table 2 Epigenomics studies for methylation quantification in diverse plant species

Methodology Plant Nature of study References

ChIP
(MeDIP)

Maize Maize methylome profiling in response to
abiotic stress

Eichten and
Springer [26]

Chip
(MeDIP)

Arabidopsis The progeny of Arabidopsis thaliana plants
exposed to salt exhibit changes in DNA
methylation, histone modifications, and gene
expression

Bilichak et al.
[27]

ChIP Maize Epigenetic regulation of the cell wall related
genes in response to salt stress

Li et al. [28]

ChIP Arabidopsis Decrease in H3K27me3 Kwon et al.
[18]

ChIP Maize Increase in H3K9ac and H4K5ac in promoter
of cell cycle genes

Zhao et al.
[29]

ChIP Rice Transcriptional activation of OsDREB1b by
hyperacetylation H3

Roy et al. [30]

ChIP Maize Selectively suppresses the cold-induced
transcription of the ZmDREB1 gene in maize

Hu et al. [31]

ChIP-qPCR
analysis

Arabidopsis Transgenerational phenotypic and epigenetic
changes in response to heat stress in
Arabidopsis thaliana

Migicovsky
et al. [32]

ChIP seq Arabidopsis Increased sodium transporter gene in
response to salt stress

Sani et al.
[33]

ChIP seq Physcomitrella
patens

Changes in H3K4me3, H3K27Ac, and
H3K9Ac during drought stress

Widiez et al.
[34]

ChIP seq Rice Genome-wide profiling of histone H3K4-tri-
methylation and gene expression in rice
under drought stress

Zong et al.
[35]

Bisulfite
sequencing

Arabidopsis Reference-guided assembly of four diverse
Arabidopsis thaliana genomes

Schneeberger
et al. [36]

Bisulfite
sequencing

Tomato Epigenetic marks in an adaptive water stress-
responsive gene in tomato roots under normal
and drought conditions

González
et al. [37]

Bisulfite
sequencing

Maize CHH islands: de novo DNA methylation in
near-gene chromatin regulation in maize

Gent et al.
[38]

Bisulfite
sequencing

Rice Plants regenerated from tissue culture contain
stable epigenome changes in rice

Stroud et al.
[39]

Bisulfite
sequencing

Soybean Epigenome-wide inheritance of cytosine
methylation variants in a recombinant inbred
population

Schmitz et al.
[40]

Bisulfite
sequencing

Brachypodium Gene body methylation is conserved between
plant orthologs and is of evolutionary
consequence

Takuno et al.
[41]

Bisulfite
sequencing

Capsella
rubella

Evolution of DNA methylation patterns in
the Brassicaceae is driven by differences in
genome organization

Seymour et al.
[42]

MSAP Rice Salt stress-induced variation in DNA meth-
ylation pattern and its influence on gene
expression in contrasting rice genotypes

Karan et al.
[43]

(continued)
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Table 2 (continued)

Methodology Plant Nature of study References

MSAP Rice DNA methylation changes detected by
methylation-sensitive amplified polymor-
phism in two contrasting rice genotypes
under salt stress

Wang et al.
[44, 45]

MSAP Wheat DNA-methylation changes induced by salt
stress in wheat Triticum aestivum

Zhong et al.
[46]

MSAP Maize Analysis of DNA methylation of maize in
response to osmotic and salt stress based on
methylation-sensitive amplified
polymorphism

Tan et al. [47]

MSAP Brassica Use of MSAP markers to analyze the effects
of salt stress on DNAmethylation in rapeseed
(Brassica napusvar. oleifera)

Marconi et al.
[48]

MSAP Rice Drought-induced site-specific DNA methyl-
ation and its association with drought toler-
ance in rice (Oryza sativa L.)

Wang et al.
[44, 45]

MSAP Rice Transgenerational variations in DNA meth-
ylation induced by drought stress in two rice
varieties with distinguished difference to
drought resistance

Zheng et al.
[49]

MSAP Rice Epigenetic responses to drought stress in rice
(Oryza sativa L.)

Gayacharan
and Joel [50]

MSAP Brassica Comparison of the heat stress induced varia-
tions in DNA methylation between heat-
tolerant and heat-sensitive rapeseed seedlings

Gao et al. [51]

MSAP Grapevine Dynamics and reversibility of the DNA
methylation landscape of grapevine plants
(Vitis vinifera) stressed by in vitro cultivation
and thermotherapy

Baranek et al.
[52]

MSAP Rice Transgenerational inheritance of modified
DNA methylation patterns and enhanced
tolerance induced by heavy metal stress in
rice (Oryza sativa L.)

Ou et al. [53]

MSAP Poplar Epigenetic control of heavy metal stress
response in mycorrhizal versus
non-mycorrhizal poplar plants

Cicatelli et al.
[54]

MSAP Posidonia
oceanic

In Posidonia oceanica cadmium induces
changes in DNA methylation and chromatin
patterning

Greco et al.
[55]

MSAP Radish Analysis of genomic DNA methylation level
in radish under cadmium stress by
methylation-sensitive amplified polymor-
phism technique

Yang et al.
[56]

MSAP Brassica The protective role of selenium in rape seed-
lings subjected to cadmium stress

Filek et al.
[57]

MSAP Chickpea DNA methylation and physio-biochemical
analysis of chickpea in response to cold stress

Rakei et al.
[58]
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population or in natural germplasm lines. Recently, a large number of research
groups are focusing on WGBS in a number of plants to generate the methylomes
maps, ranging from model plants like A. thaliana [40, 59, 60] to economically
important crops like Z. mays [28, 61, 62]. This approach could be important for
the study of evolutionary epigenomics and comparative epigenomics to understand
both the variable and also the invariable portions of epigenomes by profiling DNA
methylomes, histone tail modifications, and RNAs from a variety of flowering plant
species. The use of WGBS together with de novo transcript assemblies has provided
an opportunity to monitor the changes in methylation of gene bodies among species
[63], but does not provide a full view of changes in the patterns of context-specific
methylation at different types of genomic regions [42]. Bisulfite sequencing
(BS-seq) was done by Takuno et al. [63] by taking two different tissues (leaves
and immature floral buds) of Brachypodium distachyon to see the comparative
methylation pattern in B. distachyon tissues and also among B distachyon and rice
(Oryza sativa ssp. japonica) [64]. Cytosine DNA methylation through whole-
genome bisulfite sequencing was carried out by Lister et al. [60] in Arabidopsis, in
soybean by Schmitz et al. [40], in tomato by Zhong et al. [65], and in maize by Gent
et al. [38]. Stroud et al. [39] investigated the effect of DNA methylation through
bisulfite sequencing in rice plant regenerated through tissue culture and compared
the single-base resolution maps of DNA methylation of transformed, regenerated
rice lines with non-transformed, regenerated rice lines. They found that tissue culture
practice induces stable changes in DNA methylation in regenerated plants, resulting
in ectopic losses of DNA methylation in regenerated lines.

An alternative and most effective cost-reduced bisulfite sequencing approach
called the reduced-representation bisulfite sequencing (RRBS) approach has been
developed by Meissner et al. [66] to investigate the mammalian methylome. The
RRBS method involves Msp1 restriction enzyme digestion of genome followed by
bisulfite conversion and subsequently next-generation sequencing to analyze meth-
ylation patterns of specific fragments. RRBS-based protocols are more economic
since these methods rely on the enrichment of CpG-rich regions in close proximity to
the recognition sequence of restriction enzymes; however, these protocols might
show lack of coverage at intergenic and distal regulatory elements that are relatively
less studied. Methylation quantification with RRBS has been widely used in the
profiling of plant methylomes on large-scale samples for the demonstration of
epigenome-wide association studies (EWAS). Schmitz et al. [40] performed RRBS
in 83 soybean recombinant inbred lines (RILs) and their parents, to identify the
patterns and heritability of methylation variants for understanding how methylation
variants contribute to phenotypic variation. The RRBS method was also applied by
[67] in Brassica rapa to decipher the role of epigenetic variation and it was
suggested that these epigenetic variations could play a strong role in polyploid
genome evolution and also could be an alternative mechanism for duplicate
gene loss.

Bisulfite sequencing data could provide the methylation state of cytosine residues
at a single-base resolution. However, a systematic analysis of sequencing data is
required for statistical evaluation of methylation at all possible sites in the complete
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genomic region. With the advancement of sequencing and availability of methylome
data, publicly accessible computational tools are required to analyze the data. For
example, a web-based tool Cytosine Methylation Analysis Tool (CyMATE), could
be used for aligning the bisulfite-converted sequence with a reference sequence to
get the methylation pattern at CG, CHG, and CHH (H ¼ A, C, or T) sites, in each
sequence and at the single-base position. Similarly, another bioinformatics tool for
bisulfite sequencing-data evaluation is Kismeth, which is used to find out the
cytosine methylation in different sequence contexts (CG, CHG, and CHH). This
tool can also be used for designing bisulfite primers as well as for the analysis of the
bisulfite sequencing results.

Besides web-based tools, various standalone computational tools are available
that help in the quantitative assessment of bisulfite sequencing data obtained from
methylation changes occurring in plants. An example is a computational pipeline
(methylKit) developed by Akalin et al. [68], which is a multi-threaded R package
that can quickly and simultaneously analyze and characterize data from a set of
methylation experiments. It is a user-friendly tool as it can use a text file as well as an
alignment file to read DNA methylation information. Comparative differential
methylated regions among individuals can be carried out with this tool. MethylKit
would also carry out the categorization of the sample, as well as the annotation and
visualization of DNA methylation events. Similarly, another methylome analysis
pipeline (Methy-Pipe) was developed by Jiang et al. [69], which is an efficient and
integrative bioinformatics software package for methylation data analysis along with
downstream analysis. A flexible and time-efficient tool (Bismark) for the analysis of
bisulfite sequencing data was developed by Krueger and Andrews [70]. This pro-
vides a snapshot of a cell’s epigenomic state by figuring out its cytosine methylation
at a single-base resolution for the complete genome. This tool can be used to map the
reads and methylation, using only a single step to distinguish the methylated
cytosines in the CG, CHG, and CHH context, and it facilitates the analysis and
interpretation of researchers’ methylation data. There are some software packages
that are designed for bisulfite sequencing read alignment only, for example see Chen
et al. [71], Krueger et al. [70], Lim et al. [72], Xi et al. [73], whereas downstream
analysis requires specific software packages for visualization and comparative
analysis [74, 75] (Table 3).

4.2 Digestion with Methylation-Sensitive Restriction Enzymes

A variety of techniques have been developed for quantifying DNA methylation
without any prior information of the DNA sequence, including methylation-sensitive
amplified polymorphism (MSAP). The MSAP method was established to identify
the cytosine methylation pattern in the genomes. This method involves the use of
two methylation-sensitive isoschizomers viz. Hpa II and Msp I, which differ in their
sensitivity to the methylation status of the same recognition sequences (50-CCGG-
30). HpaII cannot cut when cytosine is fully methylated (both strands methylated) but
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Table 3 Tools for methylation quantification

Name Application Web-link Reference

Bisulfite

PEAR Merging raw Illumina paired-
end reads (RRBS)

http://www.exelixis-lab.org/
web/software/pear

Zhang et al.
[76]

R/
Bioconductor
package

Identification of differentially
methylated regions

– –

DMRcate Differentially methylated
regions (DMRs)

https://www.bioconductor.
org/packages/release/bioc/src/
contrib/DMRcate_1.8.5.tar.gz

Peters et al.
[77]

MOABS Analysis of large scale base-
resolution DNA methylation

https://s3.amazonaws.com/
deqiangsun/software/moabs/
moabs-v1.3.2

–

DMAP DMRs http://biochem.otago.ac.nz/
assets/software/meth_progs_
dist.tar.gz

–

Methpipe WGBS and RRBS http://smithlabresearch.org/
downloads/methpipe-3.4.2.
tar.bz2

Song et al.
[78]

Minfi Tools for analyzing and visual-
izing Illumina’s 450k array data

http://bioconductor.org/pack
ages/release/bioc/src/contrib/
minfi_1.18.2.tar.gz

Aryee et al.
[79]

BEAT BS-Seq Epimutation Analysis
Toolkit

https://www.bioconductor.
org/packages/release/bioc/src/
contrib/BEAT_1.10.0.tar.gz

Akman
[80]

Bismarch A flexible aligner and methyla-
tion caller for Bisulfite-Seq
applications

http://www.bioinformatics.
bbsrc.ac.uk/projects/bismark/

Krueger
et al. [70]

Mehtylkit A comprehensive R package for
the analysis of genome-wide
DNA methylation profiles

http://code.google.com/p/
methylkit

Akalin
et al. [68]

Epigenomics

coMET Visualization of EWAS results
in a genomic region

http://epigen.kcl.ac.uk/comet Martin
et al. [81]

Repitools Analysis of enrichment-based
epigenomic data

http://bioconductor.org/pack
ages/release/bioc/src/contrib/
Repitools_1.18.0.tar.gz

Statham
et al. [82]

methylPipe
and
compEpiTools

Epigenomics https://doi.org/10.1186/
s12859-015-0742-6

Kishore
et al. [83]

RnBeads Comprehensive analysis of
DNA methylation data

http://rnbeads.mpi-inf.mpg.
de/installation.php

–

ALEA Computational toolbox for
allele-specific
(AS) epigenomics analysis

ftp://ftp.bcgsc.ca/supplemen
tary/ALEA/files/ALEA-
userguide.pdf

–

(continued)
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cleaves when external cytosine is hemimethylated; in contrast, MspI cuts hemi- or
fully methylated C5mCGG but not 5mCCGG. In this way, based on restriction sites,
the locus-specific discrimination between methylated and unmethylated DNA
sequences can be identified. A number of research groups have investigated the
methylation/demethylation events in plants using the MSAP technique. For exam-
ple, the change in methylation pattern has been investigated by Zheng et al. [49] in
response to drought, in salt stress conditions by Karan et al. [43], in heat conditions
by Gao et al. [51], in heavy metals by Ou et al. [53], and in aluminum by Choi and
Sano [87].

Several research groups have utilized the MSAP technique to quantify the
differentially methylated regions for important agronomic traits by comparing the
methylation pattern in contrasting cultivars. For example, Marconi et al. [48]
reported that methylation levels were greatly reduced in a tolerant cultivar (Exagone)
of Brassica in response to salinity stress, whereas the sudden enhancement of
methylation was recorded in a susceptible Brassica cultivar (Toccata) under salinity
stress. Similar kinds of methylation patterns in tolerant and susceptible cultivars
were also observed in foxtail millet under salt stress conditions. However, in some
cases, methylation events are highly dependent upon specific types of tissue and
genotype rather than the tolerance or susceptibility of plants. For example, Karan
et al. [43] investigated rice cultivars and found that the tolerant cultivar (Pokkali and
IR29) and Nipponbare, which is sensitive to salinity stress, showed tissue and
genotype-specific methylation/demethylation events under salt stress, which was
totally irrespective of the tolerance and susceptibility of the plant [43]. Similarly,
in Vitis vinifera, the authors have characterized for multiple stresses and found that
the Sangiovese cultivar showed a sensitive response for photo inhibition manifested
as incomplete damage to plant leaves, whereas the Montepulciano cultivar does not
show any such response. These tolerant and susceptible cultivars were screened for
differential methylation patterns using MSAP and many differential methylated
regions were found in both the cultivars during drought stress conditions [88].

Table 3 (continued)

Name Application Web-link Reference

Epigenomix Analysis of RNA-seq or micro-
array based gene transcription
and histone modification data
obtained by ChIP-seq

http://epigenie.com/epige
netic-tools-and-databases/

Klein et al.
[84]

MACS Analysis of ChIP-Seq – Zhang et al.
[85]

EaSeq Visualization of ChIP-
sequencing data

http://epigenie.com/epige
netic-tools-and-databases/

–

MMDiff Analysis of ChIP-Seq data sets http://homepages.inf.ed.ac.
uk/gschweik/MMDiff.html

Schweikert
[86]

ODIN ChIP-seq signals with differen-
tial peaks

http://costalab.org/wp-con
tent/uploads/2014/04/ODIN-
sim.tar.gz

–
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4.3 Chromatin Immunoprecipitation

Accessibility of nucleosome to regulatory proteins is an important key regulator for
the expression of genes. Chromatin modifiers as well as histone proteins are key
players in transcriptional regulation through changing the compactness of DNA
through nucleosome rearrangements. These dynamic alterations in chromatin are
also denoted as the epigenome, which are different for distinct tissue types, devel-
opmental stages, and disease states, and also dynamic in response to environmental
changes. These kinds of variations in chromatin state or epigenomic phenomena can
be quantified with recent high-throughput technologies at the genome-wide level.
Currently, a popular technique is the chromatin immunoprecipitation (ChIP) assay,
which is used to study the epigenome. ChIP assays or ChIP sequencing (ChIP-Seq)
is a useful method for discovering genome-wide modifying positions in the chro-
matin complex containing transcription factors and other proteins. This could be an
important approach for studying the histone or other protein–DNA interactions in a
particular tissue type, in cells of different developmental stages, or in cells altered by
various environmental factors. This will also display a deep insight into gene
regulation mechanisms during exposure to diverse environmental stresses and bio-
logical pathways involved in plant development and growth. Using this technique, a
genome-wide interaction between proteins and nucleic acids could be examined. The
ChIP method involves crosslinking, isolation, and fragmentation of chromatin
followed by capturing of the protein–DNA complexes by using antibodies against
the histone or transcription factor under study. The immunoprecipitated protein-
DNA complex are reverse crosslinked, DNA is then purified for further analysis
either by hybridization to microarrays, i.e. ChIP-chip, or by high-throughput
sequencing (ChIP-seq).

In the ChIP–chip technique, plant materials containing histones and DNA called
nucleosome complex are crosslinked with formaldehyde followed by extraction and
fragmentation of chromatin. Finally, these sheared fragments are allowed to undergo
chromatin immunoprecipitation (ChIP) with modification-specific antibodies. The
enrichment process could be performed with PCR amplification to obtain adequate
DNA that is then denatured to get the single-strand DNA (ssDNA). ssDNA frag-
ments are subjected to labelling with fluorescent tags to differentiate the samples.
Finally, these labeled fragments are used for hybridization to the target single-
stranded sequences spotted on the DNA microarray surface representing the geno-
mic regions of interest. The complementary fragments of labelled fragments will
hybridize on the target sequences on the chip array to form double-stranded DNA
fragments followed by illumination with a fluorescent light. The fluorescence signals
generated from the array are normalized with control signals, and statistical tests are
applied to find out the methylated region. The existing coordinates of microarray
probes can then be mapped onto the reference genome to find their physical
positions. This method was found to be useful in studying histone modifications
linked with C4 photosynthesis in maize [15, 89] and systemic immunity in
Arabidopsis [90]. Several studies in different plant systems have been performed
using immunoprecipitation combined with microarray hybridization for epigenomic
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studies. ChIP on ChIP was performed by Eichten and Springer [26] in maize
genomes to estimate the DNA methylation under environmental stress such as
cold, heat, and UV stress. A comparison of the DNA methylation pattern suggested
a low-rate of putative variation present between control and cold, heat and
UV-stressed plants. Similarly, Zhang et al. [91] investigated the distribution pattern
of mono-, di-, and trimethylated H3K4 on a genome-wide scale in Arabidopsis
thaliana seedlings. They used chromatin immunoprecipitation in combination with
high-resolution whole-genome tiling microarrays (ChIP-chip). They found that all
three methylation patterns showed different distribution patterns in the Arabidopsis
genome. For example, promoters as well as 50 genic regions were mainly occupied
with H3K4me2 and H3K4me3 types of modification; in contrast H3K4me1 was
found to be distributed in the transcribed regions. In rice, ChIP-on-ChIP analysis
showed that the gene expressions were relatively low when H3K4me was increased,
and decreased for genes with high expression levels [35].

However, ChIP-Seq is the technique in which chromatin immunoprecipitation is
followed by next-generation sequencing techniques. It has emerged as one of the
most interesting and leading technologies for epigenetic study on a genome-wide
scale as it relies on the combination of ChIP with next-gen sequencing. The first step
is crosslinking the DNA binding protein with the DNA strand, followed by shearing
of the DNA along with bounded proteins to obtain the small fragments. These
fragments are subjected to immunoprecipitation by using antibodies specific for
particular histone modification and finally enriched modified chromatin will be
obtained by reverse crosslinking the DNA-protein complex. Again, the ChIP DNA
ends are repaired and ligated to a pair of adaptors, followed by PCR amplification
using primers compatible with the sequencing platform. Illumina platform or other
next-gen sequencing techniques could be used for ChIP library sequencing. After-
wards, the raw data obtained is subjected to processing by the Illumina base-calling
pipeline. The large scale of sequence reads that correspond to the
immunoprecipitated fragments resulting after sequencing could be mapped onto
the reference genome to get their physical positions on the genome. These mapped
positions are the classified genomic locations of DNA-binding proteins such as
DNA-binding enzymes, transcription factors (TFs), modified histones, chaperones,
and nucleosomes, thus revealing the importance of these protein-DNA interactions
in gene expression and other cellular processes. A wide range of plant genomes has
been scanned for histone alteration mark using Chip seq. In Arabidopsis thaliana, a
genome-wide distribution of histone H3K4me1, H3K4me2, and H3K4me3 were
performed by van Dijk et al. [92] using ChIP-Seq during watered and dehydration
stress conditions. They found that one or more of the H3K4 methylation marks are
central to ~90% of annotated genes. Widiez et al. [34] have performed genome-wide
studies in Physcomitrella patens for the mapping of five histone modifications
(H3K4me3, H3K27me3, H3K27Ac, H3K9Ac, and H3K9me2) using ChIP-seq on
the SOLiD platform and they found that H3K4me3, H3K27Ac, and H3K9Ac, which
are activating marks, showed significant changes during early developmental stages
in response to drought stress, whereas changes to H3K27me3 are mostly observed
for genes differentially expressed at the time of development. Genome-wide histone
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modification profiling by chip-seq in moss showed H3K27me3 modification, which
plays a crucial role in developmental transitions [93, 94].

The use of NGS for sequencing of ChIP fragments is a potentially strong strategy
for providing the relatively high-resolution, low-noise, and high-genomic coverage
compared with ChIP-on-chip assays. The resolution of ChIP-on-chip strictly
depends on the compactness of, as well as the size of, the chromatin fragments
that are used for ChIP and the probes on the array, whereas the resolution of ChIP-
Seq depends on sheering of chromatin fragments for generation of equal size
fragments, as well as the depth of reeds during sequencing. As for the cost to achieve
nucleosome resolution in plant genomes, ChIP-Seq is less expensive than ChIP-on-
chip, given the current cost of whole-genome tiling arrays.

4.4 Small RNA Sequencing for Their Possible Role
in Chromatin Modifications

Small interfering RNA (siRNA) also plays an important role by targeting chromatin
to regions of sequence similarity in the genome. These siRNAs typically guide
sequence-specific DNA and histone methylation known as RNA-directed DNA
methylation (RdDM) and form heterochromatin leading to transcriptional gene
silencing [2, 95]. For sRNA-mediated epigenomic study, the most popular method
is based on size selection of total RNA population from diverse genotypes, tissue
types, mutants, and accessions or subspecies. In this, total RNA is isolated from
required samples followed by size fractionation. Subsequently, ligation steps are
performed to add DNA adaptors at both the ends of the sRNAs, which act as primer
binding sites during reverse transcription and PCR amplification. Finally, genome-
wide large-scale reads can be obtained after sequencing using NGS approach.

Recent findings also point to a role for small RNAs derived from transposons to
specific regions to regulate expression of genes related to female gametophyte
developments [96]. Recent evidence has also indicated the involvement of
retrotransposons in tissue-specific silencing leading to heterochromatin formation
[96]. It was also shown that the Argonaute 9 (AGO9) gene belonging to the small
RNA pathway is indicative of a significant proportion of long terminal repeat
retrotransposons (LTRs) in the ovule and that its predominant TE targets are located
in the pericentromeric regions of all five chromosomes of Arabidopsis. This suggests
a link between the AGO9-dependent sRNA pathway and heterochromatin formation
during megagametophyte formation. Thus, an understanding of epigenetic regula-
tion during reproductive developments in plants helps researchers to target suitable
retrotransposons for the regulation of phenotypic variations. Thus, the chromatin
environment can be manipulated using siRNA/miRNA to make certain regions of
the genome more or less susceptible to transcription.
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5 Epigenomics in Crop Plants

Being sessile in nature, plants adapt to environmental changes through various
physiological or developmental adjustments by altering the chromatin structure.
This affects several processes, like floral development, flowering time, imprinting,
and environmental stress (both biotic and abiotic) responses in plants. Chromatin
changes include the process of histone modifications, DNA methylation, and small
RNA-mediated silencing to regulate gene expression. Recent advances in sequenc-
ing technologies provide us the opportunity to harness the role of epigenetic and
epigenomic studies in understanding the regulation of gene expression on perception
of developmental and environmental stimuli for crop improvements. Changes in the
epigenetic state, chromatin modifications, or DNA methylation under the influence
of environmental cues, such as temperature, light, hypoxia, drought, salt stress, and
pathogen response, is evident from several studies. Several recent epigenetic studies
have also been demonstrated to identify the epimark in the genome towards the
regulation of agronomic traits in plants.

Schmitz et al. [40] demonstrated an epigenomic study in soybean recombinant
inbred lines (RILs) along with their parents and stated that the majority of methyl-
ation variants adhere to Mendelian modes of inheritance but also demonstrate rare
examples of epigenetic variation that do not follow the standard laws of inheritance.
The interconnection between methylation, gene expression, and genetic variation
could be inferred through population epigenomic approaches, which integrate the
epigenetic data with expression data derived from transcriptome sequencing or
genomic data generated through resequencing [97]. Implementation of population
epigenomic approaches to natural and novel experimental populations will unravel
the role and effect of DNA methylation in inducing phenotypic variation. These
epigenetic variations in segregating population such RILs could be used as tools for
the identification of quantitative traits and their associated morphological traits,
based on epigenetic variations at particular loci. In plant genomes, most of the
variation could arise due to the transposition of transposable elements, which is
equally responsible for maintenance of selection pressure. Epigenetic mechanisms
are also involved in conferring stress adaptation by inducing post-translational
modifications to the N-terminal region of nucleosome core complex histones via
acetylation, phosphorylation, ubiquitination, and sumolaytion [98, 99]. With the
Arabidopsis WD-40 protein gene, HOS15 plays a role in histone deacetylation,
and this protein is also important for the repression of genes responsible for
acclimation and tolerance to cold stress, as HOS15 mutants are hypersensitive to
cold stress [100]. Phosphorylation of histone H3, S10, and acetylation of histone H4,
is correlated with increased abundance of salt tolerance transcripts in tobacco and
Arabidopsis [101].
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6 Conclusion and Outlook

The mechanism as well as the importance of epigenetic inheritance in plants is now
well explored. There is indeed the possibility for a better understanding of epige-
netics to facilitate novel and better approaches to crop improvement. The advance-
ment of technologies for rapid and efficient profiling of both genotype and
epigenotype will contribute many resources for dissecting the role of epigenetics
in imparting variation to important phenotypes and responses to environmental
signals. These epigenetic signatures in response to environmental factors that are
involved in cell-fate determination, development and cellular proliferations by gene
activity modification via histone modifications, DNA methylation, or gene silencing
by small RNAs, could be specified with various epigenetic technologies. In view of
this, involvement of DNA methylation and small RNA pathways could be identified
during plant growth and development by mutating the alleles of genes that will lead
to the development of an aberrant phenotype. Thus, an illustration on epigenetic
regulation during plant growth and development helps researchers to target suitable
genes/transcription factors or genomic regions for the induction of desired pheno-
types for further crop improvement programs.
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Abstract The integration of nanotechnology in medicine has had a tremendous
impact in the past few decades. The discovery of synthesis of nanomaterials (NMs)
and their functions as versatile tools promoted various applications in nano-
biotechnology and nanomedicine. Although the physical and chemical methods
are still considered as commonly used methods, they introduce several drawbacks
such as the use of toxic chemicals (solvent, reducing, and capping agents) and poor
control of size, size distribution, and morphology, respectively. Additionally, the
NMs synthesized in organic solvents and hydrophobic surfactants rapidly aggregate
in aqueous solutions or under physiologic conditions, limiting their applications in
medicine. Many of the phase-transfer strategies were developed and applied for the
transfer of NMs into aqueous solutions. Although great efforts have been put into
phase transfers, they mostly include expensive, time-consuming, intensive labor
work, multi steps, and complicated procedures.

Use of plant extracts in the biological synthesis method offers stark advantages
over other biomolecules (protein, enzyme, peptide, and DNA). Plant extracts have
been commonly used for food, medicine, NM synthesis, and biosensing. There are
many viable techniques developed for the production of plant extracts with various
contents based on their simplicity, cost, and the type of extract content. In this
chapter, we conduct a comparative study for extract preparation techniques, the use
of extracts for metallic single and hybrid nanoparticle (NP) synthesis, and their
antimicrobial properties against pathogenic and plant-based bacteria.
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1 Introduction

In recent years, nanotechnology has been increasingly utilized for the synthesis,
engineering, and designing of various nanomaterials (NMs) used as antioxidants,
antimicrobials, anticancer agents, therapeutics, and diagnostics agents, and in the
fabrication of nanosensors. The NMs have been intensively applied in many
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different scientific and industrial fields. However, production of biogenic NMs in
nanotechnology and their uses in medicine have become the fastest developing and
most attractive research. The use of plant extracts is prominent, not only because of
their easy production and cheap cost compared to other biomolecules (protein,
enzyme, peptide, and DNA), but also because they provide large-scale and environ-
mentally benign NMs, which can widen their medical applications.

2 A Comparative Study of Extraction Methods
for Medicinal Plants

Medicinal plants have been practically used as effective and traditional drugs or
biocides for various disorders for a long time. The research has focused on the
elucidation of the chemical structures of these plant extracts. The physicochemical
properties of plants are investigated at the following steps: (1) authentication,
(2) extraction, (3) separation, (4) isolation, (5) characterization of isolated com-
pounds, and (6) quantitative evaluation. The methods vary in simplicity, cost,
efficiency, and degree of extracted or isolated molecule damage. It is worth men-
tioning that each extract needs its own characteristic extraction method for produc-
tion with greater efficiency. For instance, while essential oils as volatile compounds
in aromatic plants are extracted using distillation methods, solvent extraction
methods are viable and suitable for obtaining other volatile compound-rich extracts.

In addition to conventional extraction methods, some modern extraction methods
including microwave-assisted extraction (MAE), ultrasonication-assisted extraction
(UAE), supercritical fluid extraction (SFE), and solid-phase micro-extraction
(SPME) have been developed and are actively used. They display certain advantages
over conventional methods. Although classical methods are fairly simple, standard,
and have widespread use, they consume large quantities of organic solvents, cause
degradation of heat-labile constituents, produce extracts with a low yield, and have
time-consuming and labor-intensive procedures. The use of these classical extraction
methods allows the benefits of production efficiency, selectivity, and the elimination
of additional steps of modern extraction methods before chromatographic analysis
allows them to be used intensively and preferentially. The extraction procedures can
also be redesigned to obtain the desired molecules by manipulating experimental
parameters. Additionally, the extraction method selection to isolate targeted compo-
nents with the highest yield and highest purity is dependent upon the plant source
[1, 2]. Thus, the development of modern extraction methods plays an important role
in the overall effort of ensuring and providing high-quality herbal products [3].
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3 Preparation of Extract for Nanoparticle (NP) Synthesis

The extraction of plant contents has received considerable attention owing to the use
of plant contents in medicine, nanoparticle (NP) synthesis, and biosensing. Three
major extraction methods for NP synthesis are: (1) solvent extraction, (2) micro-
wave-assisted extraction, and (3) maceration extraction. The ideal extraction method
should be cost-effective, simple, less time-consuming, and simply conducted in any
laboratory.

3.1 Solvent-based Extraction Methods

The solid-liquid extraction provides soluble components in the solid material to be
integrated with the solvent. The mass transfer ratio decreases as the concentration of
the active principle in the solvent increases. This process results in the solvent and
solid material reaching an equilibrium concentration when a mass transfer of the
active components from plant material to solvent occurs. There are different types of
this technique: cold percolation, hot percolation, and concentration [4, 5].

3.1.1 Cold Percolation

The extraction of the plant contents is carried out in a percolator that is connected to a
condenser and a receiver for removing the solvent from the mixture. The powdered
material is in contact with the percolator along with a suitable solvent until equili-
brium is reached.

3.1.2 Hot Percolation

The principle of hot percolation is based on increasing the temperature of the
solvent, which increases the solubility. The extract is permanently passed into a
tubular heat exchanger by steam heating.

3.2 Microwave-assisted Extraction Technique

Microwave-assisted extraction (MAE) allows the materials to reach the given energy
that is associated with the dielectric susceptibility of both the solvent and the
solid plant material, through rapid heating [6, 7].
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3.2.1 Maceration

The maceration process can be completed in three steps: (1) grinding of plant
materials into small particles, (2) choosing the appropriate solvent, which is added
in a closed vessel, and (3) filtration for the separation of the liquid phase from the
plant pulp. The mixture of the plant powder and solvent should be shaken to provide
proper extraction with a high efficiency [8, 9].

4 Isolation of Specific Molecules from Plant Extracts Using
Appropriate NPs

It is well known that titanium dioxide (TiO2), with a certain crystal form, potentially
reacts with phosphorylated biomolecules including peptides, proteins, and glyco-
proteins, under the proper acidic experimental conditions. The phosphate moieties of
those molecules specifically attach to the surface of TiO2 NPs and retain their
surfaces, which provides the isolation or enrichment of the corresponding molecules.

Recently, TiO2 NPs have been integrated into plant nanobiology for isolation of
specific molecules from plants. In a recent studies, TiO2 NPs acted as nano-
harvesting agents to isolate bioactive compounds from living cells. For instance,
Kurepa et al. [10] used phosphorylated anatase TiO2 NPs with a 20-nm diameter to
capture the specific flavonoids from Arabidopsis plants. This work showed that
quercetin and kaempferol as enediol and catechol groups containing flavonoids
can successfully bind to the phosphorylated TiO2 NPs, and they were isolated
from the plant matrix.

5 Synthesis of NPs Using Plant Extracts

The production of colloidal metallic NPs has become one of the fastest developing
and most exciting fields of research and has had an enormous impact on the
evolution of nanotechnology over the past decades. The size, shape, and
composition-dependent electronic, optical, luminescent, and magnetic features of
the NPs with great enhancement have found a wide spectrum of applications in
scientific and technical fields [11–16]. In general, three major methods, chemical,
physical, and biological, have been actively and extensively used for the synthesis of
NPs. Although chemical methods are used the most for the synthesis of high-quality
NPs with a narrow size distribution, the use of toxic organic solvents as well as
reducing and stabilizing agents greatly limits the applications for NPs, especially in
biomedicine and bioanalytics [16–19]. Additionally, in order to use NPs synthesized
in organic solvents in biologically-related applications, phase transfer is an indis-
pensable step for introducing the NPs into aqueous solutions. The NPs can be made

Nanotechnology in Plants 267



water-soluble with two common surface-engineering procedures: (1) ligand
exchange and (2) ligand polymerization [20–25].

Physical methods include simple one-step procedures and provide large-scale
production in a short time. However, those methods almost always result in a lack of
size, shape, and size distribution of the NPs [26, 27]. To address the drawbacks
encountered in chemical and physical methods, researchers have recently focused on
biological methods called “green methods” for NP synthesis [28, 29].

The main principle of green methods is to use nontoxic biomolecules including
DNA, proteins, enzymes, carbohydrates, and plant extracts for the synthesis of
biocompatible metallic NPs through the reduction of metal ions in aqueous solution
[30–38]. Although DNA, proteins, and enzymes have been employed as scaffolds
for nucleation and growth of metallic NPs with unique crystalline structures [39–43],
those biomolecules are quite costly, easily decomposable, and can be contaminated.
In contrast to those molecules, plant extracts are easily reachable, quite affordable,
and very stable against environmental conditions (temperature, pH, and salt
concentration).

Plant extracts are a rich source of polyphenols, flavonoids, sugars, enzymes,
and/or proteins, and can be utilized as reducing and stabling agents for the biosyn-
thesis of metallic NPs. In the potential proposed mechanism, hydroxyl, amine, and
thiols groups existing on particular extracts of plants may bind to metal ions,
canalize electron flow from the extracts to metal ions, and lead to the completion
of the eventual NP synthesis [44–49]. Numerous numbers of plant extract-directed
metallic NPs have been synthesized and used in various fields [47–49]. Using plant
extracts for the rapid reduction and formation of metallic NPs was discovered by
Sastry and co-workers. They used lemongrass plant extract to synthesize the spher-
ical gold NPs and triangular gold nanoprisms [50]. In addition to the aforementioned
unique properties of plant extracts, plant-based biogenic synthesis can provide cost-
effective, environmentally-friendly, simple, less labor intensive, and large-scale
production procedures.

5.1 Synthesis of Silver and Gold NPs

Silver (Ag) and gold (Au) are two commonly synthesized plasmonic NPs, due to
their unique intrinsic properties. Ag NPs have been considered as effective and
universal germicidal agents against various microbes. Their use has also been
recognized in nanomedical and industrial applications [51–54]. As stated above,
the plant extract-based synthesis method for Ag NPs provides simple, one-step, and
rapid procedures compared to other synthesis methods. The extracts produced from
different parts of the plant such as leaves, roots, seeds, and fruit act as potential
reducing and stabilizing agents to form Ag NPs of various sizes and shapes. For
instance, square, spherical, triangular, and hexagonal-shaped Ag NPs with diameters
ranging from 10 to 90 nm were synthesized using leaf extracts obtained from plants
[55–57]. In our view, different plants contain different contents in the extract, which
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may lead to the formation of Ag NPs of various sizes and shapes. The synthesis of
Ag NPs of various morphologies was systematically reported using extracts of roots,
seeds, and fruit [58–60].

Similar strategies have been used for the synthesis of Au NPs. Au NPs have
received considerable attention due to their attractive optical and non-toxic proper-
ties, which market them for use in a wide variety of scientific areas including
nanomedicine, nanoelectronics, nanobiosensing, and catalysis [61–66]. Similar to
Ag NPs, the extracts obtained from different parts of plants reacted with Au ions to
reduce them and to eventually form Au NPs. For instance, while leaf extract from the
Menta piperita plant resulted in the formation of spherical Au NPs with a diameter of
150 nm, triangular-, hexagonal-, and pentagonal-shaped Au NPs with a size ranging
from 5 to 500 nm were synthesized from the extracts of Coriandum sativum,
Memecylon edule, and Magnolia kobus plants [55, 67, 68].

6 Plant Disease Treatment

Various techniques have been developed and applied to control microorganism-
caused diseases in plants. For instance, the antibiotic streptomycin, as part of a
chemical technique, was used in the 1950s to prevent the proliferation of
Xanthomonas vesicatoria found on plants. However, those bacterial strains devel-
oped resistance against streptomycin and thus made it ineffective [69]. Copper-based
(Cu) bactericides incorporated ethylene-bis-dithiocarbamate (EBDC) fungicides
(e.g., maneb or mancozeb). These fungicides (e.g., maneb or mancozeb) have
acted as potential biocides in order to effectively manage the diseases existing on
plants. Nevertheless, Cu-resistant bacterial strains have been observed due to their
frequent use and the resulting drastic reduction in antimicrobial activity of those
biocides [70–72].

Research has focused on investigation and development of bacteriophages and
systemic-acquired resistance (SAR) inducers as alternative disease-management
techniques over the last decade [73, 74]. As an example, acibenzolar-S-methyl
(ASM) was used as an SAR inducer agent, to activate and enhance plant defense
systems by increasing the transcription of stress-related genes against bacterial
tomato spot [73]. Although bacteriophages have been introduced as biological
alternatives to Cu-based bactericides, real-time use in the field reduced their viability
and then their use was highly limited due to environmental conditions [75, 76]. It is
worth mentioning that only very few chemical techniques are available and there is
an urgent need to develop effective, biocompatible, and economical materials for
disease management.

No reports have fully explained the mechanism underlying the antimicrobial
activity of NPs, and the mechanism is still under debate. Recently, various types
of single-component metallic NPs and metal-graphene oxide (GO) NPs have been
synthesized and used as novel and effective antimicrobial agents for the management
of agricultural crop diseases. The key point in the use of NPs is their toxicity, which
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can adversely influence environmental and human health [77–80]). For instance,
Paret et al. studied antibacterial properties of light-activated titanium dioxide (TiO2)
and metal-doped hybrid TiO2 NPs (TiO2/Ag, TiO2/Zn) against Xanthomonas
perforans, which causes bacterial tomato spot disease. This study demonstrated
that TiO2 did not show any antimicrobial function under non-illuminated conditions
and only TiO2/Ag exhibited some antimicrobial activity due to the intrinsic antimi-
crobial property of Ag. In contrast, all TiO2-based NPs effectively inhibited bacterial
growth when exposed to an incandescent light intensity of 3 � 104 lux. The
combination of the photocatalytic activity of TiO2 and the natural germicidal activity
of Ag introduced the best antimicrobial activity under illuminated conditions [80].

6.1 Antimicrobial Properties of Silver Nanoparticles

Silver NPs have been considered to be the strongest and most universal biocides
compared to other metallic NPs. The one logical proposed mechanism offered is that
Ag NP may interact with some functional groups (thiol, carboxyl, hydroxyl, amino,
and phosphate groups) existing on bacterial membranes, with membrane degrada-
tion then leading to serious structural deformation. In addition to that, some Ag NPs
can be internalized through the membranes and may inactivate or distort the working
function of enzymes, which may lead to cell death [81, 82]. However, when Ag NPs
are aggregated, their antimicrobial activities are weakened and can be lost. Most
recent works show that Ag-GO nanocomposites overcome the limitations of bare Ag
NPs. Ag-GO nanocomposites display extraordinary antibacterial activity that results
in rapid killing [83, 84].

7 Conclusion

The type of extraction method used varies according to the type of content in the
extracts. The use of plant extracts has advantages over other biomolecules (proteins,
enzymes, peptides, and DNA) in terms of the biosynthesis of metallic NPs, because
they are inexpensive, easily producible, and accessible. They provide environmen-
tally friendly NPs with the ability for large-scale production. For these reasons, plant
extract-directed NPs can potentially be used in various bioanalytical and biomedical
applications as antioxidants, antimicrobial agents, anticancer agents, therapeutics,
diagnostic tools, and drug-vehicle agents.
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Abstract Agricultural disciplines are becoming data intensive and the agricultural
research data generation technologies are becoming sophisticated and high through-
put. On the one hand, high-throughput genotyping is generating petabytes of data; on
the other hand, high-throughput phenotyping platforms are also generating data of
similar magnitude. Under modern integrated crop breeding, scientists are working
together by integrating genomic and phenomic data sets of huge data volumes on a
routine basis. To manage such huge research data sets and use them appropriately in
decision making, Data Management Analysis & Decision Support Tools (DMASTs)
are a prerequisite. DMASTs are required for a range of operations including gener-
ating the correct breeding experiments, maintaining pedigrees, managing phenotypic
data, storing and retrieving high-throughput genotypic data, performing analytics,
including trial analysis, spatial adjustments, identifications of MTAs, predicting
Genomic Breeding Values (GEBVs), and various selection indices. DMASTs are
also a prerequisite for understanding trait dynamics, gene action, interactions,
biology, GxE, and various other factors contributing to crop improvement programs
by integrating data generated from various science streams. These tools have
simplified scientists’ lives and empowered them in terms of data storage, data
retrieval, data analytics, data visualization, and sharing with other researchers and
collaborators. This chapter focuses on availability, uses, and gaps in present-day
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1 Introduction

Good quality research experiments, precise data, appropriate data analysis, and data-
driven decision making make up the backbone of modern agricultural research and
integrated breeding. Integrated breeding exploits high-throughput phenomics and
genomics, and has opened the floodgates of data pouring into crop specialists of all
disciplines. Many international consortia and research centers are engaged in plant
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research and are generating huge amounts of sequencing/genotyping and
phenotyping data. These data sets require the appropriate capacities for processing,
analysis, management, and storage. Often it becomes very difficult to analyze these
data sets and convert them into information through conventional data-management
tools and analysis strategies. It has also been observed that researchers very fre-
quently limit the definition of data management and interpret it in terms of mere
physical data storage and access. However, the scientific data management scope is
much wider and includes a complete life cycle. Figure 1, explains a typical data-
management workflow in a breeding pipeline.

Usually databases and analytical tools are required for efficient utilization, retrieval,
analysis, and decision making at each step of the genetic gain-enhancement process.
Considering this need, experts in the area of bioinformatics, biometrics, and statistical
genomics, in collaboration with plant geneticists, have developed many software tools
and protocols for analyzing the data. Nevertheless, there is still tremendous scope for
developing more efficient and user-friendly analysis and decision making to speed up
the process of achieving higher genetic gain in crop plants.

The need for informatic intervention is required at all the steps of integrated
breeding, such as selection of the appropriate experimental design, determining the
size of the population, modern ways of data collection, use of modern databases,
BLUE/BLUP with spatial adjustments being made during phenotypic selections,
enabling sample tracking for DNA sample collections, genetic map construction,
population structure, identification of marker-trait association, background and fore-
ground selection, combining favorable alleles for complex traits using marker-assisted
recurrent selection (MARS), and estimating genomics estimated breeding values
(GEBVs) in genomic selection (GS). There are various open-source and proprietary
tools available that cater to each step discussed above. Selection of these tools varies
according to the hardware requirements, operating system, the degree of computer

Data Querying, Archiving & Sharing

Valid Interpretation & Publication of Results

Statistical Modelling & Data Analysis

Data QC / Curation Process

Data Generated / Captured & Stored Centrally

Barcodes & Electronic Field Books

Data Capture Protocols / Crop Ontologies / Scales

Design of Experiment

Data Design for Higher Genetic Gains

Breeding ProgramObjectives

Fig. 1 Data management pipeling of a successful breeding program. Traditionally, data manage-
ment has been interpreted as storing research data in online repositories and share. However, data
management has a much wider definition, which starts with designing the study and concludes with
appropriate analysis and making the data publicly available through repositories
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skills required, user-friendliness, statistical models and algorithms used for analysis,
corroboration of input data, and visualization of output results.

Development of integrated pipelines combining various useful software in one
place also played a major role in the efficient integrated breeding program. Several
such analytical pipelines are available that combine the analysis of phenotypic and
genotypic data, such as running mixed models for statistical analysis, construction of
linkage maps, mapping of quantitative traits, GWAS, and GS, etc. Nevertheless,
some important DMASTs have been developed not only for helping with integrated
breeding, but are also helpful in managing a larger set of data management for a
future breeding program. We discuss here several informatics tools, data sharing and
visualization platforms, their comparative usefulness experienced by researchers,
and their ease of use, popularity, and prospects of improvement with regard to
current technological needs and statistical methods.

We present several DMASTs in different sections, which include (a) DMASTs
for phenotypic evaluation of datasets, (b) DMASTs for molecular maker datasets,
(c) DMASTs for metabolomics and proteomics data, (d) DMASTs for molecular
breeding, (e) integrated pipelines for plant breeding data management, and
(f) DMASTs for data sharing and visualization. The last section is on breeder
requirements for enhancing genetic gain.

2 DMAST for Phenotypic Evaluation of Datasets

High-throughput phenotyping generates a large volume of different types of data
including nominal, categorical, ordinal, and ratio types of data sets. To capture
variation and make good interpretations out of generated datasets, data should be
subjected to appropriate statistical techniques. Good analysis will only be possible if
the study was designed keeping the hypothesis in mind and data were also subjected
to appropriate quality checks. The data must be cleaned, curated, and well summa-
rized before final analysis and interpretation of results.

There is a range of statistical analysis available for the analysis of agricultural
experiment data. A description of all of these is not possible in a single chapter and
also out of the scope of this book, but we recommend appropriate selection of random
and fixed factors and the use of mixed models, possibly with spatial adjustments. It is
worth mentioning that analysis should be performed by standard and well-known
statistical packages. Several commercial, open-source, and free software systems for
statistical analysis are available. Often the commercial software is expensive, whereas
the majority of the freeware has limited functions or is sometimes difficult to use.
Among the commercially available software, ASREML (https://www.vsni.co.uk),
Genstat (https://www.vsni.co.uk/software/genstat/), MINITAB, Statistical Package
for Social Sciences (SPSS; http://www.spss.co.in/), Statistical Analysis System
(SAS; https://www.sas.com), Statistica (https://software.dell.com/products/statistica/),
and STATA (www.stata.com/) are very common, relatively easy to use, and can
perform most data analyses and visualization for making breeding decisions.
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There are plenty of free and open-source tools that are also available for performing
statistical data analysis. R (https://www.r-project.org/) and Python (https://www.
python.org/) are two such environments for performing sound statistical computing
and visualization. These languages have become increasingly popular due to their
versatility and availability of sound programming environments similar to many
commercially available environments. R has a wide community support and has a
core component that implements many classical and modern statistical methods. One
can build on top of core functionality, develop their own code, and pack in R packages
to perform customize analysis. The benefit of community support is that many analyses
that are not available as part of core functions are also available to end users. R can also
be interfaced with other programming languages and GUI development tools, such as
Galaxy, Java, and Tk/Tcl. PBTools and CropStat (http://bbi.irri.org/products) are such
free applications for plant breeders. Under open-source statistical software, R has
emerged as the leader and most important software for analyzing data from all
agricultural disciplines.

Python on other hand is also gaining popularity, but it seems it will take some
more time to gain a strong place in the academic world. The advantages of Python
are an easy learning curve and good graphics and visualization capabilities. Python
has been used widely in web development and hence the development of online
web-based analytical applications is a clear advantage with Python.

3 DMAST for Molecular Maker Datasets Including
Genomics Data

To analyze genetic diversity with a moderate level of markers and genotypes,
NTSYSpc (numerical taxonomy and multivariate analysis system) [1] is one of the
most widely used programs, as is evident from the citation index. MEGA7 (Molec-
ular Evolutionary Genetic Analysis) is another highly cited and widely used pro-
gram, and was originally developed in 1993 [2]. This software can estimate the
evolutionary distance or the phylogenetic tree calculation of genetic distance, using
DNA or protein sequences data. This is a flexible and easy-to-use genetic data
analysis system, and it can import unlimited sizes of datasets from various programs.
DARwin (http://darwin.cirad.fr/) is a freely available software package developed
for diversity and phylogenetic analysis by evolutionary dissimilarities. DAMBE
(data analysis for molecular biology and evolution) is a phylogenetic analysis
software first released in 2001 and recently updated as DAMBE5, with many new
functions [3]. PAUP (phylogenetic analysis using parsimony) (http://paup.csit.fsu.
edu/) is another widely-used program for inferring and interpreting evolutionary
trees. It includes analysis of parsimony, distance matrix, invariance and maximum
likelihood methods, and other statistical analysis.

To analyze population genetics, GENEPOP is a widely used population genetics
software [4]. This software can estimate the number of tests (null allele estimates,
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exact tests, Markov chain probabilities, and test statistics), multi-locus F-statistics,
microsatellite allele sizes, RST, and rST, etc. Arlequin [5] is highly cited software for
analyzing population genetics, and this software can handle a large number of
datasets including molecular variance in the population regarding AMOVA, which
is the unique feature of this software. Power Marker [6] is a program designed for
SSR or SNP marker data for population genetic analysis, with a user-friendly graphic
interface. DnaSP v5 (DNA Sequence Polymorphism) [7] is another software pack-
age for the analysis of nucleotide polymorphism from aligned DNA sequence data.
SMOGD (Software for the Measurement of Genetic Diversity) [8] is a web-based
application for the calculation of advanced proposed genetic diversity indices G0ST
and Dest. GenAlEx 6.5 [9] is a Microsoft Excel-based software, and it offers a wide
range of population genetic analysis options for the full spectrum of genetic markers.

Genome-mapping methods such as the construction of a genetic/linkage map and
a physical map make up one of the basic steps involved in the identification of genes/
QTLs for the trait of interest in the target environment. Mapping involves some steps
such as determining recombination fractions, using a mapping function (Haldane or
Kosambi), testing for appropriate linkages (LOD scores), grouping and ordering of
markers into linkage groups, and bridging different genetic maps to develop a
consensus map. Within the toolkit available for this work, MAPMAKER [10]
open-source software released during the 1980s led the way towards computational
strategies in the construction of the genetic map. This software uses a multipoint
likelihood objective function [11] by combining the EM algorithm and the Hidden
Markov Model (HMM) method, which significantly lowers the computational time
when large datasets are used for analysis. The MAPMAKER software is still quite
popular among geneticists, as the paper from Lander et al. [10] shows, with more
than 6,000 citations in http://scholar.google.co.in/. However, due to the command
prompt interface, it is not very user-friendly, and good quality graphic representation
cannot be generated using it. JoinMap [12] is a widely used software as it has several
positive features such as the user-friendly MS-Windows interface, ability to integrate
maps from different mapping populations, continuous development, and profes-
sional support. JoinMap utilizes maximum likelihood and regression mapping
algorithms for marker order strategies. For a better graphic representation, MapChart
[13] and cMap [14] are also quite popular tools. For handling large numbers of
marker datasets, special software packages have recently been developed, such as
MadMapper [15] and MSTmap [16], for making a high-density genetic map.

Once the genetic map is made, the next step is to identify marker-trait associations
by QTL analysis. As most agronomically important traits/phenotypes are polygenic in
nature,many statistical and geneticmodels have been developed.MapMaker/QTL [17]
was one of the most widely used open-source software during the 1990s and utilizes
interval mapping (IM). As it is a command prompt-based interface and does not handle
complex statistical models such as multiple interval mapping (MIM) and composite
interval mapping (CIM), it is currently not much in use. QTL Cartographer [18] and
QGene [19] do both MIM and CIM analysis. Software IciMapping [20] has a better
QTL analysis model called inclusive composite interval mapping (ICIM). Recently, a
new software called QTLnetwork [21] is becoming quite popular among geneticists as
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it can analyze all types of genetic models such as additive QTLs, additive and epistatic
QTLs, and QTL � environment interactions [22].

To understand the germplasm, STRUCTURE (http://pritchardlab.stanford.edu/
structure.html) is the most extensively used software to detect population genetic
structure. This program generates clusters caused by admixture between populations
[23]. EIGENSOFT and Bayesian Analysis of Population Structure (BAPS) are the
two another widely used statistical packages for detection and correction of popu-
lation stratification in GWAS analysis [24, 25]. A detailed list of other available
software packages for linkage disequilibrium analysis can be found in the following
link: http://www.genes.org.uk/software/LD-software.shtml. Trait Analysis by aSSo-
ciation, Evolution, and Linkage (TASSEL) is the most common and highly cited
software for performing marker-trait association analysis in GWAS studies in plants
[26]. PLINK is another highly cited open-source whole genome association analysis
toolset, which performs a range of basic, large-scale analyses in a computationally
efficient manner [27].

4 DMAST for Metabolomics and Proteomics Data

In addition to genomics, proteomics and metabolomics hold a great perspective for
serving as pillars for crop improvement. Complex and multi-omics studies have
increased in the recent past, which integrate genomics data with metabolomics,
epigenetics, and proteomics data. It is anticipated that in the future metabolomics
will emerge as a significant part of crop improvement programs for achieving
complex breeding objectives. Therefore, metabolomics techniques will be integrated
with other “omics” technologies in order to identify and understand biochemical
mechanisms and their consequences [28]. The few commonly used
software programs available are BioCyc (http://biocyc.org), iPath (http://pathways.
embl.de), KaPPA-View (http://kpv.kazusa.or.jp/en/), KEGG (http://www.genome.
jp/kegg/pathway.html), MapMan (http://mapman.gabipd.org/web/guest/mapman),
MetabolomeExpress (https://www.metabolome-express.org/), MetaboAnalyst
(http://www.metaboanalyst.ca/faces/home.xhtml), Metscape (http://metscape.ncibi.
org), MGV (http://www.microarray-analysis.org/mayday), Paintomics (http://www.
paintomics.org), Pathos (http://motif.gla.ac.uk/Pathos/), Pathvisio (http://www.
pathvisio.org/), PRIMe (http://prime.psc.riken.jp/), ProMetra(http://www.cebitec.
uni-bielefeld.de/groups/brf/software/prometra_info/), Reactome(http://www.
reactome.org), VANTED (http://vanted.ipk-gatersleben.de), and MetPA(http://
metpa.metabolomics.ca). Most computational tools available are largely intended
for metabolite identification. However, in order to gain some biological insight, it is
necessary to have an integrated tool that can perform metabolite identification,
functional analysis, detection of associated compounds, and metabolic modeling
[28]. At the same time, there has been a swift addition of proteomics data due to
advances in proteomics technologies such as high-throughput experimental
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platforms [29]. There are a number of data repositories as well as data analysis and
visualization tools available for proteomics [30–32].

PRoteomicsIDEntifications database (PRIDE; http://www.ebi.ac.uk/pride) is a
comprehensive database of protein and peptide identifications; MSDA (https://
msda.unistra.fr/) is a proteomics suite for detailed Mass Spectrometry Data Analysis;
COMPASS (https://github.com/dbaileychess/Compass) is a suite of pre- and post-
search proteomics software tools for OMSSA; PICR (http://www.ebi.ac.uk/Tools/
picr/) or CRONOS [33] are web-based algorithms that associate names of the protein
with their corresponding gene names; Gene Ontology terms (http://www.
geneontology.org) are used to connect the protein identifier with its associated
Gene. Obtained MS/MS spectra are interpreted with Mascot (http://www.
matrixscience.com) and SEQUEST (https://omictools.com/sequest-tool) algorithms.
Some functional databases such as the “Uniprot knowledge base” (www.uniprot.
org/help/uniprotkb) and Ensembl (www.ensembl.org/) are being widely used in the
field of proteomics along with other detailed pathway databases like KEGG (www.
genome.jp/kegg/pathway.html), Reactome (http://www.reactome.org), and Ingenu-
ity Pathway Knowledge Base (https://www.qiagenbioinformatics.com/products/
ingenuity-pathway-analysis/). In addition to comprehensive resources, precise data-
bases have been established for signal transduction processes, such as PANTHER
(http://pantherdb.org/about.jsp). Information on protein interactions in complexes
are deposited in interaction databases such as BioGRID (https://thebiogrid.org/) and
IntAct (http://www.ebi.ac.uk/intact). Further, STRING (https://string-db.org/) and
Cytoscape (www.cytoscape.org/) are graphic tools for visualizing and analyzing
biological pathways. EnrichNet (www.enrichnet.org/) serves as a web-based plat-
form, integrating pathway and interaction analysis in several databases (KeGG,
Gene Ontology, Reactome, Wiki, and NCI pathways (http://www.wikipathways.
org/index.php/WikiPathways). A few other programs like Pfam (http://pfam.xfam.
org/), Interpro (https://www.ebi.ac.uk/interpro/), SMART (http://smart.embl-heidel
berg.de/), and DAVID (https://david.ncifcrf.gov/) are among the commonly used
software programs.

Therefore, in the future there is a need for an integrated tool to support the
analysis and interpretation of multi-omics data generated from different fields
consisting of large populations. Development and deployment of the DMASTs for
metabolomics and proteomics in accordance with the necessity of breeding programs
will help to achieve breeding targets efficiently and rapidly.

5 DMAST for Molecular Breeding

Once the genomic region has been identified through QTL analysis, these regions are
then introgressed/pyramided into elite cultivars through the marker-assisted
backcrossing (MABC) approach. To quickly introgress the targeted genomic
regions, strategies such as foreground selection, recombination selection, and recov-
ery of recurrent parent genome (RPG) through background selection are utilized.
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Several visualization tools have been developed in the past such as GGT (graphical
genotype) [34] and Flapjack [35], and are currently being used alone or as part of
pipelines such as iMAS (http://www.icrisat.org/bt-biomatrics-imas.htm) and ISMU
(Integrated SNP Mining and Utilization) [36]. The Marker-assisted Back-crossing
Tool (MABT) is another JAVA-based decision-making software program that
enables users to calculate the percentage of recovery of the recurrent parent at
each generation (https://www.integratedbreeding.net/ib-tools/breeding-decision/
marker-assisted-back-crossing-tool). To implement MARS in the breeding program
through accelerated genetic gain by assembling favorable alleles issued from diverse
parents, OptiMAS [37] has been developed with the following interactive graphical
interface: (a) to trace parental alleles throughout generations, (b) to select the best
plants based on estimated molecular scores, and (c) for an efficient inter-mating
strategy to recombine positive alleles in a single genetic background. Genomic
selection (GS) is a new molecular breeding approach using whole-genome profiling
with a large number of markers and offers many advantages involved with improv-
ing the rate of genetic gain in crop breeding programs. solGS [38] and ISMU2 are
two programs available for the calculation of GEBVs for the selection of individuals.

6 Integrated Pipelines for Plant Breeding Data
Management

Data management plays a major role in creating a basis for sound scientific decision
making, increased efficiency of resource use, and ultimately leads to enhanced
research quality and reliability [39]. Data management software is not just a database
but signifies appropriate experimental design, analysis, interpretation, archiving, and
sharing of data. One of the biggest challenges for effective data management in public
plant breeding is a lack of access to public data management systems to track samples,
manage and analyze breeding data, and support breeding decisions. To overcome this
hindrance, a few commercial software programs have been developed that offer
breeding management systems; however, these come with an additional cost to the
research organizations. Intensive crop improvement data demands a single integrated
platform that can be used for data management, data mining, analysis, and sharing.

Many attempts have been made from both public and private sectors to provide
advanced systems for data management. However, some of the systems have
multiple features while others have specific applications [40]. Most importantly,
the DMASTs need to evolve with the pace of volume and type of data generated in
fast-evolving genetic and breeding methodologies. For this reason, currently no
single data-management tool can be used for all the applications. Nevertheless, the
scientific community is now well aware of such a need and soon there will be a few
initiatives to work in this direction, for example, the development of the International
Crop Information System (ICIS) (www.icis.cgiar.org) by the CGIAIR and partners,
a database system for the management and integration of global information on crop
improvement and genetic resources for any crop [41].
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To efficiently manage the regular movement of data from lab to the breeder and to
integrate information from genotyping and phenotyping, comprehensive crop-
improvement data-management tools are required. To deal with the constraints in
present-day data management, the Integrated Breeding Platform (IBP) (http://www.
integratedbreeding.net), established by the CGIAR’s Generation Challenge Program
(GCP) and partners, offers a web-based frontline platform of technology and ser-
vices for managing both traditional and modern breeding activities. From
phenotyping to complex genotyping, it provides information, analytical tools, and
related services to conduct modern breeding research. The Breeding Management
System (BMS) of the IBP is an interconnected application specifically designed for
managing breeding activities through all phases of research using various types of
data management, statistical analysis, and decision support tools. Presently, the
BMS is the only publicly available data management solution that supports various
crops and has inbuilt international crop ontologies. The BMS is actively used by
many CGIAR institutes including ICRISAT, CIAT, and IITA, with many more
institutes adopting it. ICRISAT is one of the first centers to adopt it on an institu-
tional scale and to implement it on a cloud. The BMS has an advantage of hosting
several crops on one installation.

Breeding4Rice (B4R), is a breeding information management system at IRRI that
provides an integrated, user-friendly information management system, developed
using modern web technologies, and is deployed to a cloud infrastructure. The
system is being extended to various other crops and will soon be available for
maize and wheat. CassavaBase (https://www.cassavabase.org/) is an integrated
information management system for breeding programs that deals with phenotyping,
low-density marker, pedigree management, and selection decision support.
Katmandoo (http://www.katmandoo.org/) is a data management system of biosci-
ences primarily developed to be used by breeders and researchers in breeding
programs. It is mainly focused on providing single tools for dealing with both
phenotypic and genotypic data.

In addition to the above free and open-source databases, there are several commer-
cial software solutions that are also available for handling the breeding data pipeline. As
all systems are at the same stage of development, no clear-cut comparisons of these
software programs are available. However, the authors of this chapter have experience
in using a couple of them, and one major drawback that we observed is that once the
user stops paying the annual renewal fee, there is no way one can even log in to the
system and work with their past experiments. The first tool in this line is PRISM, a
plant-breeding software solution (http://www.teamcssi.com/index.html) for plant
researchers and agronomists. It provides user-friendly tools to manage breeding data.
PRISM has been used by various public and private breeding institutions and is known
for its flexible architecture. Another popular data pipeline is the PhenomeOne platform
(http://phenome-networks.com/solutions/for-plant-breeders/). This platform supports
all stages of the breeding process for field crops, horticulture crops, and ornamental
plants. It is a web-based and user-friendly system, and also supports data analytics and
integrated mobile application. Similarly, AGROBASE Generation II (http://www.
agronomix.com) is a Windows-based agronomy software system. The CORE System
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of AGROBASE Generation II offers data management and analytical tools for crop
improvement. Progeny (http://www.progeno.net/software) is a Ghent University spin-
off company that aims to empower plant breeders by providing access to breeding and
selection methods. Several other platforms include Progen software (http://www.
progeno.net/), which permits plant breeders to improve selection efficiency by incor-
porating phenotyping and genotyping data in the decision process. E-Brida (http://
www.agripartner.nl/en-us/products/plantbreedingsoftware.aspx) is a breeding infor-
mation system with several options for data recording and analysis. GeneFlow
(http://www.geneflowinc.com) is a software program that provides a comprehensive
tool for integrating pedigree, phenotype, and genotype data.

7 DMASTs for Data Sharing and Visualization

Research data are extremely valuable assets and resources, and good management of
research data is essential for research excellence. It is essential to facilitate data
sharing and ensure the sustainability and accessibility of data in the long term, and
thus, their re-use for future science. This permits new and innovative research to be
built on existing information, which is especially true for cases where public
investment in research is to be realized. With well-organized and accurate research
data we can get high quality research outputs and scientific discoveries based on
evidence, while using less resources. With good data management practices and
proper planning, researchers can benefit greatly, especially in saving cost and time.

Currently, many funding agencies ask for consideration of open data and data
sharing for all research projects they fund, and impose research data requirements
that focus on how data will be preserved and shared for public use after the project is
completed. Scientific data have very important value beyond their use for the
original research. Data sharing and visualization encourages scientific enquiry and
debate, and promotes innovation, which may lead to new collaborations between
data users and data authors, enhances the impact and visibility of research, can
provide a direct credit to the researcher as a research output, and promotes the
research that created the data and its outcomes. A critical part of making data
findable, accessible, interoperable, and reusable with long-lasting usability is to
ensure that it can be interpreted and understood by any user even in the future.

Several open-source tools are available for effective and efficient data sharing
with different capacities. Data sharing helps in the reuse of existing data for new
studies, which can result in innovations and new opportunities. There are many
open-source data management tools available that can be used at an institute or
project level. Dataverse (https://dataverse.harvard.edu/) is a research data storage
and sharing platform developed by Harvard University, Cambridge, MA, USA,
which is freely downloadable and can establish its own institutional open data
repository. This platform is well integrated with R software modules and Geospatial
map generation. Several CGIAR institutions have implementations of Dataverse and
are using it as their primary data-sharing software. Dataverse is highly configurable

Current Status and Future Prospects of Next-Generation Data Management. . . 287

http://www.progeno.net/software
http://www.progeno.net/
http://www.progeno.net/
http://www.agripartner.nl/en-us/products/plantbreedingsoftware.aspx
http://www.agripartner.nl/en-us/products/plantbreedingsoftware.aspx
http://www.geneflowinc.com
https://dataverse.harvard.edu


and can be queried through well-defined APIs. CKAN (https://ckan.org) is also an
open-source data portal and data management solution that provides a streamlined
way to make data discoverable and presentable with a rich collection of metadata,
making it a valuable and easily searchable data catalog. Researchspace (https://
www.researchspace.com) is a research management tool for Principal Investigators
(PIs) and research team members of specific groups, to observe and manage lab
workflows, capture, archive, organize, publish, and share the data. e!DAL (https://
edal.ipk-gatersleben.de/) is a lightweight software framework for publishing and
sharing research data, the main features being: version tracking, metadata manage-
ment, information retrieval, an embedded HTTP(S) server for public data access,
access to a network file system, and a scalable storage backend. DSpace (http://
www.dspace.org) is the software of choice for academic, non-profit, and commercial
organizations building open digital repositories. DSpace preserves an open access
format for all types of digital content. Usually open access repositories are used for
publishing digital content with more focus on long-term storage, access, and pres-
ervation. Fedora (http://fedorarepository.org) is a robust, modular, open-source
repository system for the management and dissemination of digital content. It is
especially suited for digital libraries and archives, for both access and preservation.

8 Breeder Requirements for Enhancing Genetic Gains

Enhancing genetic gains for crop improvement demanded several automated, inte-
grated, straightforward, and easy to use pipelines. Based on several reports and
publications, we have listed a few of the essential requirements from the breeders’
perspective, which includes: (a) a pipeline to understand associations between
phenotype and genotype, (b) high-throughput precision phenotyping, (c) a new
web-based interface with better organization, (d) a trait ontology function inference
as part of the data management pipeline, (e) better support from plant genomics,
(f) better support for data analysis, and (g) integration from “omics” information.
Based on the above requirements, the breeding pipeline should have a seamless
interconnected analytical solution for different applications in crop improvement.

8.1 Pipeline to Understand the Association Between
Phenotype and Genotype

The central challenge ofmodern datamanagement tools areweak genomics to phenomics
links. This also highlights the need for careful pipeline development and advocates for the
inclusion of a robust and straightforward platform that can correlate between phenomics
and genomics data seamlessly. For example, several CG centers (3,000 rice accessions
from IRRI, Philippines, and 3,000 chickpea accessions from ICRISAT, Hyderabad) have
generated a huge amount of genotyping/re-sequencing data. Multi-location phenotyping
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data of such lineswill providemeaningful results to the breeders if simple-to-use pipelines
are available for understanding the association between phenotype and genotype. There
exist pipelines that do part of this job and do not cycle through start to end. The current
need is to bring efficiency to these tools and to link them to each other in order to
undertake the huge phenotypic and genotypic datasets generated in breeding programs.

8.2 High-Throughput and Precision Phenotyping

The emphasis on high-throughput and precision phenotyping represents a significant
change for breeders engaged in variety development who have traditionally favored
simplicity, speed, and flexibility over sensitivity, precision, and accuracy. This is
because historically the advantages of the latter could not be translated into an eco-
nomically relevant genetic gain in a breeding context, and this is why easy, fast, and
efficient phenotyping-capturing tools are the need at present. For example,
PHENOME, Field Book, 1KK, and Coordinate are recent high-throughput
phenotyping, software programs/Android apps that allow researchers to accumulate,
categorize, and manage a large volume of phenotypic data using Android smartphones
with barcode scanners or a Personal Digital Assistant (PDA) with a built-in barcode
scanner. The collected data in the smart device could be easily transferred for data
analysis in any operating system through the appropriate DMAST.

8.3 New Web-Based Interface with Better Organization

Many of the DMASTs or data management tools are stand-alone and can only be
utilized through better infrastructure and with high IT skill manpower. Therefore, in
the near future cloud-based, simple-to-use tools are required for breeders, which could
be utilized on simple PCs. An advantage of such a web-based system will be that such
tools can be used from any place or PC through a simple login with a user ID and
password. The other major advantage of such a system is that the huge submitted
phenotypic/genotypic datasets will be safer than those saved on standalone PCs.

8.4 Trait Ontology Inference as Part of the Data Management
Pipeline

Trait ontology function should be an integral part of the data-management pipeline.
This will be useful for the selection of diverse lines, for making new crosses, or for
the development of new combinations of hybrids. This feature will be helpful for
understanding the contributions of diverse parents in breeding lines, through their
performance.

Current Status and Future Prospects of Next-Generation Data Management. . . 289



8.5 Better Support from Plant Genomics

Another important requirement from the breeders’ perspective is better support from
plant genomics scientists in the identification of trait-associated markers for complex
traits, the selection of which is difficult in field conditions. Additionally, the devel-
opment of a purity kit is important, not only for the purity of parental lines and
hybrids but also for high-yielding varieties, so that the seed purity of the lines/
varieties/hybrids can be tested in less time. Better GS prediction models with high
prediction accuracy will also be useful for breeders for enhancing genetic gains
through genomics interventions.

8.6 Better Support for Data Analysis and Investments

Meaningful and timely data analysis is the critical component of breeders’ success in
enhancing genetic gain. Most of the breeding trials and genotype-to-phenotype
correlation requires specific DMASTs, and it is sometimes difficult for the breeders
to use these tools in their breeding programs with limited infrastructure. Therefore,
breeders require professional data analysis for analyzing complex datasets with
specifically required tools. The information provided by such analysis of these
huge datasets will be useful for making critical decisions in breeding programs.
There is a need for strengthening investment in data analysis in breeding programs.

8.7 Integration from “Omics” Information

Besides genomics and phenomics, multiple studies have been conducted in other
“Omics” fields in many crop plants. These “Omics” studies include transcriptomics,
epigenomics, proteomics, and metabolomics. They will develop a better understand-
ing of traits and generate meaningful information that can be used during plant
selection in the field. Such integration of this information with DMASTs will
increase the precision of decision making in plant selection.

9 Conclusion

This chapter discusses the status and future prospects of next-generation data
management and analytical and decision support tools for crop improvement. We
have presented a critical appraisal of different DMASTs and data management tools
along with integrated pipelines. We have also presented the breeders’ future require-
ments for enhancing genetic gains in terms of new required tools and easy-to-use
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pipelines. We believe that the availability of GUI-based platforms with appropriated
DMASTs will help breeders to make the best use of these tools in their breeding
programs. Development and deployment of the right DMASTs at the right time will
usher the crop improvement programs into a modernized knowledge-based crop
improvement era towards sustainable crop production.
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