5,512 research outputs found

    Involuntary saccades and binocular coordination during visual pursuit in Parkinson's disease

    Get PDF
    Prior studies of oculomotor function in Parkinson's disease (PD) have either focused on saccades while smooth pursuit eye movements were not involved, or tested smooth pursuit without considering the effect of any involuntary saccades. The present study investigated whether these involuntary saccades could serve as a useful biomarker for PD. Ten observers with PD participated in the study along with 10 age-matched normal control (NC) and 10 young control participants (YC). Observers fixated on a central cross while a disk (target) moved toward it from either side of the screen. Once the target reached the fixation cross, observers began to pursue the moving target until the target reached to the other side. To vary the difficulty of fixation and pursuit, the moving target was presented on a blank or a moving background. The moving background consisted of uniformly distributed dots moved in either the same or the opposite direction of the target once the target reached the central fixation cross. To investigate binocular coordination, each background condition was presented under a binocular condition, in which both eyes saw the same stimulus, and under a dichoptic condition, in which one eye saw only the target and the other eye only saw the background. The results showed that in both background conditions, observers with PD made more involuntary saccades than NC and YC during both fixation and pursuit periods while YC and NC showed no difference. Moreover, the difference between left and right eye positions increased over time during the pursuit period for PD group but not for the other two groups. This suggests that individuals with PD may be impaired not only in saccade inhibition, but also in binocular coordination during pursuit. [Meeting abstract presented at VSS 2016.]Accepted manuscrip

    The Measurement of Eye Movements in Mild Traumatic Brain Injury: A Structured Review of an Emerging Area

    Get PDF
    Mild traumatic brain injury (mTBI), or concussion, occurs following a direct or indirect force to the head that causes a change in brain function. Many neurological signs and symptoms of mTBI can be subtle and transient, and some can persist beyond the usual recovery timeframe, such as balance, cognitive or sensory disturbance that may pre-dispose to further injury in the future. There is currently no accepted definition or diagnostic criteria for mTBI and therefore no single assessment has been developed or accepted as being able to identify those with an mTBI. Eye-movement assessment may be useful, as specific eye-movements and their metrics can be attributed to specific brain regions or functions, and eye-movement involves a multitude of brain regions. Recently, research has focused on quantitative eye-movement assessments using eye-tracking technology for diagnosis and monitoring symptoms of an mTBI. However, the approaches taken to objectively measure eye-movements varies with respect to instrumentation, protocols and recognition of factors that may influence results, such as cognitive function or basic visual function. This review aimed to examine previous work that has measured eye-movements within those with mTBI to inform the development of robust or standardized testing protocols. Medline/PubMed, CINAHL, PsychInfo and Scopus databases were searched. Twenty-two articles met inclusion/exclusion criteria and were reviewed, which examined saccades, smooth pursuits, fixations and nystagmus in mTBI compared to controls. Current methodologies for data collection, analysis and interpretation from eye-tracking technology in individuals following an mTBI are discussed. In brief, a wide range of eye-movement instruments and outcome measures were reported, but validity and reliability of devices and metrics were insufficiently reported across studies. Interpretation of outcomes was complicated by poor study reporting of demographics, mTBI-related features (e.g., time since injury), and few studies considered the influence that cognitive or visual functions may have on eye-movements. The reviewed evidence suggests that eye-movements are impaired in mTBI, but future research is required to accurately and robustly establish findings. Standardization and reporting of eye-movement instruments, data collection procedures, processing algorithms and analysis methods are required. Recommendations also include comprehensive reporting of demographics, mTBI-related features, and confounding variables

    Editorial: Perceiving and Acting in the real world: from neural activity to behavior

    Get PDF
    The interaction between perception and action represents one of the pillars of human evolutionary success. Our interactions with the surrounding world involve a variety of behaviors, almost always including movements of the eyes and hands. Such actions rely on neural mechanisms that must process an enormous amount of information in order to generate appropriate motor commands. Yet, compared to the great advancements in the field of perception for cognition, the neural underpinnings of how we control our movements, as well as the interactions between perception and motor control, remain elusive. With this research topic we provide a framework for: 1) the perception of real objects and shapes using visual and haptic information, 2) the reference frames for action and perception, and 3) how perceived target properties are translated into goal-directed actions and object manipulation. The studies in this special issue employ a variety of methodologies that include behavioural kinematics, neuroimaging, transcranial magnetic stimulation and patient cases. Here we provide a brief summary and commentary on the articles included in this research topic

    Bistable perception in normal aging: perceptual reversibility and its relation to cognition

    Full text link
    The effects of age on the ability to resolve perceptual ambiguity are unknown, though it depends on fronto-parietal attentional networks known to change with age. We presented the bistable Necker cube to 24 middle-aged and older adults (OA; 56–78 years) and 20 younger adults (YA; 18–24 years) under passive-viewing and volitional control conditions: Hold one cube percept and Switch between cube percepts. During passive viewing, OA had longer dominance durations (time spent on each percept) than YA. In the Hold condition, OA were less able than YA to increase dominance durations. In the Switch condition, OA and YA did not differ in performance. Dominance durations in either condition correlated with performance on tests of executive function mediated by the frontal lobes. Eye movements (fixation deviations) did not differ between groups. These results suggest that OA’s reduced ability to hold a percept may arise from reduced selective attention. The lack of correlation of performance between Hold and executive-function measures suggests at least a partial segregation of underlying mechanisms.Published versionAccepted manuscrip

    Heroin withdrawal as a possible cause of acute concomitant esotropia in adults

    Get PDF
    Aim: To report the possible effects of heroin withdrawal on binocular vision. Methods: To present a case series of patients in whom esotropia developed on cessation of heroin use. Results: In each case the esotropia was concomitant and prismatic correction restored binocular single vision. Intermittent spontaneous control occurred in one patient, the deviation resolved in one and one patient was lost to follow-up. Conclusions: Heroin withdrawal should be considered as a cause of acute concomitant esotropia. However, accurate history of other medication is needed to ensure that this is not the cause of decompensation

    Neural Representations for Sensory-Motor Control, II: Learning a Head-Centered Visuomotor Representation of 3-D Target Position

    Full text link
    A neural network model is described for how an invariant head-centered representation of 3-D target position can be autonomously learned by the brain in real time. Once learned, such a target representation may be used to control both eye and limb movements. The target representation is derived from the positions of both eyes in the head, and the locations which the target activates on the retinas of both eyes. A Vector Associative Map, or YAM, learns the many-to-one transformation from multiple combinations of eye-and-retinal position to invariant 3-D target position. Eye position is derived from outflow movement signals to the eye muscles. Two successive stages of opponent processing convert these corollary discharges into a. head-centered representation that closely approximates the azimuth, elevation, and vergence of the eyes' gaze position with respect to a cyclopean origin located between the eyes. YAM learning combines this cyclopean representation of present gaze position with binocular retinal information about target position into an invariant representation of 3-D target position with respect to the head. YAM learning can use a teaching vector that is externally derived from the positions of the eyes when they foveate the target. A YAM can also autonomously discover and learn the invariant representation, without an explicit teacher, by generating internal error signals from environmental fluctuations in which these invariant properties are implicit. YAM error signals are computed by Difference Vectors, or DVs, that are zeroed by the YAM learning process. YAMs may be organized into YAM Cascades for learning and performing both sensory-to-spatial maps and spatial-to-motor maps. These multiple uses clarify why DV-type properties are computed by cells in the parietal, frontal, and motor cortices of many mammals. YAMs are modulated by gating signals that express different aspects of the will-to-act. These signals transform a single invariant representation into movements of different speed (GO signal) and size (GRO signal), and thereby enable YAM controllers to match a planned action sequence to variable environmental conditions.National Science Foundation (IRI-87-16960, IRI-90-24877); Office of Naval Research (N00014-92-J-1309

    Effect of visual cues on the resolution of perceptual ambiguity in Parkinson’s disease and normal aging

    Get PDF
    Parkinson's disease (PD) and normal aging have been associated with changes in visual perception, including reliance on external cues to guide behavior. This raises the question of the extent to which these groups use visual cues when disambiguating information. Twenty-seven individuals with PD, 23 normal control adults (NC), and 20 younger adults (YA) were presented a Necker cube in which one face was highlighted by thickening the lines defining the face. The hypothesis was that the visual cues would help PD and NC to exert better control over bistable perception. There were three conditions, including passive viewing and two volitional-control conditions (hold one percept in front; and switch: speed up the alternation between the two). In the Hold condition, the cue was either consistent or inconsistent with task instructions. Mean dominance durations (time spent on each percept) under passive viewing were comparable in PD and NC, and shorter in YA. PD and YA increased dominance durations in the Hold cue-consistent condition relative to NC, meaning that appropriate cues helped PD but not NC hold one perceptual interpretation. By contrast, in the Switch condition, NC and YA decreased dominance durations relative to PD, meaning that the use of cues helped NC but not PD in expediting the switch between percepts. Provision of low-level cues has effects on volitional control in PD that are different from in normal aging, and only under task-specific conditions does the use of such cues facilitate the resolution of perceptual ambiguity.Published versio
    • …
    corecore