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Abstract

Sensory compensation or sensory substitution occurs when a sense organ, such as the eye, is lost 
due to trauma or disease. Individuals often experience phantom limb sensation or pain but research 
increasingly points towards some individuals developing a heightened level of functioning in their 
remaining senses, particularly in their remaining intact eye. Losing an eye at an early age can often 
result in “super functioning” in the remaining eye providing that no similar trauma or disease results. 
Cases include young children who have undergone enucleation because of diagnosed unilateral 
retinoblastoma and whose remaining eye is free from disease. 

Short Communication

Sensory Compensation in Children 
Following Vision Loss after Trauma 
and Disease

Introduction
Typically when someone loses a sense due to trauma, injury or 

disease, the loss is considered to be deprivation and the person is 
often labelled with a disability. Loss of a body part not only impacts 
functionality but it can also affect the individual cosmetically and, 
in turn, affects the individual’s psychological and psychosocial 
wellbeing. Historically, restorative measures towards the sensory 
loss has focused on the perception that it is a loss, rather than 
a change that may, in fact, leave the person with a different set of 
senses as compared with fewer senses. This has been because our 
understanding of the environment has placed great emphasis on the 
reliance of sensory feedback [1].

However, there is a growing trend towards regarding sensory 
losses as changes to lifestyle that render the person with a new growth 
and direction for life goals, termed post-traumatic growth [2], rather 
than sensory deprivation. In the research literature, there has been a 
trend towards case histories and anecdotes from practitioners’ notes, 
rather than controlled trials with significant patient numbers because 
of rarity of conditions and because of the individual differences of the 
losses and impact that these sensory losses may cause.

Recognizing sensory loss can sometimes result in the person 
functioning above average with the remaining senses. There are 
numerous anecdotes of compensatory features from the learning 
disability and autism literature [3] and in cases where children 
have not been conscious of their loss or difference until later life, 
such as being born functionally blind, or losing an eye following 
trauma (accident of disease, cancer), these children may experience 
heightened aural senses, touch, and olfactory senses [4]. 

Phantom limb pain has been well documented [5] where patients 
continue to experience pain and sensations in the amputated limb; 
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and those with prostheses often become accustomed to the loss and 
to the artificial limb [6]. Edmonds [7], suggests differences in ability 
might be termed “diffability” rather than “disability”, emphasizing 
individual differences instead regarding them as losses.

Exploration of the impact of health related disorders has 
opened the gateway not only to acceptance and support, but also to 
the mechanics behind loss. Anecdotal reports on a loss of sense or 
senses, suggests that ‘super-functioning’ may sometimes occur in a 
person who has lost a sense organ or the functionality of a sensory 
organ such as the eye or ear. Referred to as ‘sensory compensation’, 
this phenomenon is increasingly attracting interest and beginning 
to be investigated from within a number of different professional 
disciplines.

Sensory compensation has also become known as ‘sensory 
substitution’ because it can be the replacement of one sensory modality 
by another, for example, blind individuals may use touch to ‘see’ [8]. 
It involves perception but also brain plasticity. Neuroplasticity [9] 
has been accepted for some time as a process evidenced in recovering 
stroke patients whose neural brain pathways re-route or re-circuit to 
find alternative compensatory ways of functioning in the presence 
of a damaged neural pathway or when function is lost because of an 
incompletely innervated muscle fiber.

Reports of compensation by some patients with a loss in sense 
modality, suggests that a neurological function may be occurring. 
Karns et al. [10], found that the auditory cortex of individuals born 
deaf, processes other senses such as touch and vision. Similar results 
were found by Gougoux et al. [11]. Brain-imaging studies found that 
the visual cortex in blind individuals was being used for other sense 
modalities such as touch and smell. 

It is thought that the neural reorganization in the areas of the 
brain that handles sensory information allows a sensory impaired 
individual to become progressively sensitive to other sensory stimuli. 
Typically, when an area of the brain is no longer active, the brain cells 
die leading to the release of neurotransmitters. Rauschecker [12], 
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suggests that neurotransmitters reorganize sensory representations 
that form the neural basis of sensory substitution. With compensation 
not occurring in every affected individual, it is thought that some 
neural systems are not plastic and that age and experience plays a key 
role in this ability. 

Neuroplasticity has been found to occur most often in children. 
This is because our brains are malleable enough at a young age to 
rewire some circuits that process sensory information. The earlier a 
sense is lost, the more likely it will be compensated by another sense. 
Although research into early life compensation is increasing, we are 
still in an era where this ability is not yet fully understood. Due to 
the logistics of investigating this theory in humans, the majority of 
studies have been conducted on animals. 

Sensory compensation for loss of vision
Two theories exist to how blindness affects the other senses: (1) 

blindness may lead to compensation of the other senses; (2) early 
blindness may halt the development of perceptual and cognitive 
mechanisms, disallowing the other senses to compensate [13]. 

Research into cats and ferrets have indicated that early loss of 
vision is associated with improved ability to localize sounds [14-17] 
found that cats that were visually deprived for several years as a result 
of having their eyelids sutured shortly after birth showed increased 
auditory use in the visual cortex with their auditory spatial tuning 
being sharpened in the auditory cortex.

Investigating whether compensation occurs in adults, Petrus et 
al. [18], deprived adult mice of their sight. After one week, the mice 
were placed in a sound proof chamber where they were subjected 
to a series of one-note tones to test their hearing. They found that 
the mice developed more neural connections and were better able 
to discriminate among pitches and hear softer sounds. Within a few 
weeks of having their vision restored, their hearing returned back to 
normal, indicating that the brain is less hard-wired than previously 
assumed. With mice typically having poor vision but ultrasonic 
hearing, this finding may not be transferrable to humans. Nonetheless, 
behavioral and neuroimaging studies have found that blind-sighted 
humans often demonstrate enhanced auditory abilities [11]. 

By compensating for their lack of vision by using their other 
sensory modalities, blind-sighted individuals often outperform 
sighted individuals in non-visual tasks such as reading Braille [19]; 
memory retrieval [20]; unfamiliar voice recognition [21]; verbal 
memory [20]; auditory spatial discrimination [22]; and musical 
abilities [23]. Interestingly, not all studies have shown this advantage 
making the theory of neuroplasticity more enigmatic. 

Sudden and complete loss of vision results in rapid changes in 
the visual cortex which reverts back to normal following restoration 
of sight [24]. Instead of establishing new neural pathways, the visual 
cortex may be showing abilities which are normally concealed 
in sighted individuals. Evidence suggests that blind individuals 
compensate for their lack of vision by having an increased ability to 
localize sounds [25]. 

Comparing blind-sighted and sighted individuals, Lessard et al. 
[8], found that early-blind individuals have superior sound localization 

skills particularly when performing monaural localization than 
binaural localization compared to sighted individuals. This suggests 
that the visual cortex processes monaural cues more effectively than 
binaural cues in early loss of sight. 

Gougoux et al. [11], found that sighted individuals showed 
decreased cerebral blood flow in the occipital lobe where the visual 
cortex is located. Conversely, blind-sighted individuals who perform 
better on monaural cues were shown to use their occipital areas in this 
task thus enhancing this ability. Although use of the visual cortex is 
shown, it is not known if blind-sighted individuals rely on the visual 
cortex for this ability [11]. 

Whilst it is natural to assume that these findings are the result of 
specific brain areas such as the visual and auditory cortex, Striem-
Amit et al. [26], found that enhanced capabilities are a result of the 
task. Using specialized photographic and sound equipment, they 
found that blind-sighted individuals were able to see and describe 
objects regardless of sensory modality, visual experience and prior 
knowledge of the script used. Disparities between and new findings 
highlight the point that we still do not know how compensation occurs. 
Various conundrums remain around the theory of neuroplasticity. 
For example, some individuals have the ability to compensate and 
others do not; there are differences according to age and experiences; 
and we still do not have clear and consensual understanding of the 
neural processes that underlie ability. 

Vision with one eye
Research on the effects of monocular deprivation caused by 

conditions such as strabismus, amblyopia and congenital cataract 
show negative effects on vision input and functioning; for example, 
reduced spatial vision capabilities [27]. However, the visual cortex 
in those who have undergone early life enucleation following 
retinoblastoma [28]; Thompson et al. [4], has shown compensation 
for the loss of binocularity [29,30]. These differences point to 
unilateral enucleation as being a distinct form of monocular visual 
deprivation [31,32].

Unlike most forms of monocular deprivation where there is some 
form of visual input, enucleation results in complete and sudden loss 
of visual input. The age of the individual at the time of loss also plays 
an important role in outcome with the earlier loss resulting in the 
sharpening of other senses [30]. 

Losing binocularity at a young age can result in reduced visual 
functioning where motion perception is adversely affected [29,30,33] 
yet some visual spatial abilities are enhanced. These differences in 
visual functioning are said to be a result of various factors such as 
neuroplasticity; years of monocular practice following enucleation; 
and the absence of binocular interactions [30]. 

Spatial vision is the ability to discriminate spatially defined 
features. Two primary measures of spatial vision are acuity, which 
distinguishes details and shapes of objects, and contrast sensitivity 
which distinguishes an object from its background. Nicholas et al. 
[34], found that unilateral-enucleated adults had higher contrast 
sensitivity than controls viewing monocular with those having 
undergone enucleation before the age of two and performing three-
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and-a-half times better. Similarly, unilateral enucleated individuals 
performed better than normally sighted controls viewing monocular 
in acuity tests. However, when the controls viewed binocularly their 
performance equaled the experimental group [35,36].

Motion processing is the ability to judge motion in the visual 
field. Bowns et al. [37], found that early-enucleated adults and 
controls have a similar threshold for detecting motion. However, the 
control group judged the upper visual field as faster, whereas the early 
enucleated adults found it to be slow. Comparing depth perception, 
Gonzalez et al. [38], found the those with early enucleation had worse 
depth perception. 

Marotta et al. [39], observed age differences in a reach and grasp 
task suggesting that over time, unilateral enucleated individuals 
reduce forward head movements and replace them with lateral and 
vertical head movement which better placed them for estimating 
depth. This is because, with one functioning eye, the visual field is 
reduced by 25% and is not centered on the midline of our body. This 
results in the individual continually turning their head to look into 
the blind portion of their visual field [29]. 

Early-enucleated individuals seem to improve visual performance 
through learning and due to reorganization of cells responsible for 
sensory modality [40-44]. During the first few years of life, cells in 
the visual system form connections that are strengthened by the 
amount of sensory information received. These connections form 
visual functions, which can take years to mature. In young individuals 
requiring enucleation, these connections will be weak and not widely 
used, thus will atrophy. As the visual system has not reached maturity, 
reorganization of the cells often takes place to form other connections 
to our sensory modalities [29]. 

Moidell et al. [45], found that children enucleated up to four years 
of age will have neuroplasticity where cell reorganization can occur 
within hours and involves other sensory modalities [46,47].

Echolocation
Human echolocation is a functional technique used primarily 

by blind-sighted individuals to navigate and orientate to the 
environment. By sensing echoes from objects in the environment, 
blind-sighted individuals can gather spatial information regarding 
the position, size, material and shape of a sound-reflecting objects 
[48-50]. 

Using spatial processing, echolocation is an enhanced ability, 
which may partly be a result of neural reorganization though little is 
known regarding the neural basis of echolocation [51,52]. Although 
many blind-sighted individuals are able to echolocate, individual 
skills vary; with training, blindfolded sighted individuals can learn to 
echolocate, though performance is poorer when compared to blind-
sighted individuals [49,53,54]. 

Echolocation was first used by Griffin [55] to describe how 
bats can navigate in the dark to detect prey by using sound before 
being studied in other animals such as dolphins and toothed whales 
[56]. Human echolocators use self-generated sounds such as clicks 
produced by rapidly moving the tongue behind the teeth [57] or by 
mechanical means such as tapping a cane against the floor [58]. 

Echolocation requires three steps: (1) the sound made by the echo 
locator; (2) the sound and echo superimposed; (3) the echo only [59]. 
Though audible, the sounds produced contain some strong frequency 
in the upper part of the range and only last for 10ms [59-61]. 

In addition to being able to determine objects in their 
environment, blind-sighted individuals can determine their position 
in a room. Rosenblum et al. [62], and Wallmeier and Wiegrebe [50], 
found that blindfolded individuals were able to estimate the distance 
of objects echo-acoustically with an accuracy of 1m. By using yaw 
movements of their heads, blind-sighted individuals outperform 
sighted individuals in echo-acoustic distance discrimination tasks 
[63]. 

Echolocation can also help discriminate two-dimensional shapes 
[64]. Although the majority of these studies focus on a single reflector, 
Schörnich et al.  [60], found that additional reflectors can improve 
echo-acoustic distance discrimination performance. 

Case history 
Hughes [65] reported on Daniel Kish. Now 44, Daniel was 

born with bilateral retinoblastoma, having his first eye removed 
aged 7 months and his second eye removed aged 13 months. Using 
echolocation, Daniel is able to navigate through crowded streets, 
swims, cycles, travels and dances. Our understanding of echolocation 
has led to the creation of sensory substitution devices for blind-sighted 
individuals. By emitting a signal with a receiver, the distance between 
the source and reflecting object is calculated and transformed into an 
auditory signal, which increases the blind-sighted individual’s spatial 
awareness and independent mobility [65]. 

Another case history, PT, also diagnosed with retinoblastoma, 
underwent unilateral enucleation at 9 months, and with the remaining 
functional eye has exceptional above-average vision. Cases of “super-
vision” are not uncommon in those who compensate for sensory loss.

Conclusions
Research into compensation has demonstrated that the loss of 

one sensory modality can be replaced by another, particularly when 
the loss occurs at an early age [40]. Neuroplasticity can explain 
the reasons why functionality can continue despite loss of sensory 
organs, and that new neural connections are strengthened through 
experience and practice. 

Blind-sighted animals and humans have shown enhanced auditory 
skills, particularly in their ability to locate sounds [18] complete loss 
of vision in one eye can result in enhanced visual spatial skills but 
poorer motion processing skills. Whilst brain-imaging studies are 
aiding our understanding of sensory compensation in humans, we 
are still years away from fully understanding the neural processes and 
individual differences that underlie this ability. 

Knowledge in this field is providing the opportunity to develop 
practical devices for individuals with sensory loss, aiding them in an 
environment that is heavily sensory dependent.
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