13 research outputs found

    BIFURCATION IN ASYMMETRICALLY COUPLED BVP OSCILLATORS

    Get PDF
    BVP oscillator is the simplest mathematical model describing dynamical behavior of the neural activity. The large scale neural network can often be described naturally by coupled systems of BVP oscillators. However, even if two BVP oscillators are merely coupled by a linear element, the whole system exhibits complicated behavior. In this letter, we analyze a coupled BVP oscillators with asymmetrical coupling structure, besides, each oscillator has different internal resistance. The system shows a rich variety of bifurcation phenomena, and strange attractors. We calculate bifurcation diagrams in 2-parameter plane around which the chaotic attractors mainly appears and confirm relaxant phenomena in the laboratory experiments. We also briefly report a conspicuous strange attractor

    BIFURCATION ANALYSIS OF CURRENT COUPLED BVP OSCILLATORS

    Get PDF
    The Bonhöffer-van der Pol (BVP) oscillator is a simple circuit implementation describing neuronal dynamics. Lately the diffusive coupling structure of neurons attracts much attention since the existence of the gap-junctional coupling has been confirmed in the brain. Such coupling is easily realized by linear resistors for the circuit implementation, however, there are not enough investigations about diffusively coupled BVP oscillators, even a couple of BVP oscillators. We have considered several types of coupling structure between two BVP oscillators, and discussed their dynamical behavior in preceding works. In this paper, we treat a simple structure called current coupling and study their dynamical properties by the bifurcation theory. We investigate various bifurcation phenomena by computing some bifurcation diagrams in two cases, symmetrically and asymmetrically coupled systems. In symmetrically coupled systems, although all internal elements of two oscillators are the same, we obtain in-phase, anti-phase solution and some chaotic attractors. Moreover, we show that two quasi-periodic solutions are disappeared simultaneously by the homoclinic bifurcation on the Poincaré map and that a large quasi-periodic solution is generated by the coalescence of these quasi-periodic solutions, but it is disappeared by the heteroclinic bifurcation on the Poincaré map. In the other case, we confirm the existence a conspicuous chaotic attractor in the laboratory experiments

    CHAOS IN CROSS-COUPLED BVP OSCILLATORS

    Get PDF
    In this letter, we investigate the cross-coupled BVP oscillators. A single BVP oscillator has two terminals which can extract an independent state variable, so in the preceding works, several coupling systems have studied. Synchronization modes and chaos in these systems are classified as results of bifurcation problems. We revisit one of coupled oscillator, and clarified new results which have not been reported before, i.e., stable tori and its breakdown, and chaotic motions. Also classification of synchronized periodic solutions is done by a bifurcation diagram

    Incremental embodied chaotic exploration of self-organized motor behaviors with proprioceptor adaptation

    Get PDF
    This paper presents a general and fully dynamic embodied artificial neural system, which incrementally explores and learns motor behaviors through an integrated combination of chaotic search and reflex learning. The former uses adaptive bifurcation to exploit the intrinsic chaotic dynamics arising from neuro-body-environment interactions, while the latter is based around proprioceptor adaptation. The overall iterative search process formed from this combination is shown to have a close relationship to evolutionary methods. The architecture developed here allows realtime goal-directed exploration and learning of the possible motor patterns (e.g., for locomotion) of embodied systems of arbitrary morphology. Examples of its successful application to a simple biomechanical model, a simulated swimming robot, and a simulated quadruped robot are given. The tractability of the biomechanical systems allows detailed analysis of the overall dynamics of the search process. This analysis sheds light on the strong parallels with evolutionary search

    Periodic Oscillation Analysis for a Coupled FHN Network Model with Delays

    Get PDF
    The existence of periodic oscillation for a coupled FHN neural system with delays is investigated. Some criteria to determine the oscillations are given. Simple and practical criteria for selecting the parameters in this network are provided. Some examples are also presented to illustrate the result

    Noise-induced synchronization and anti-resonance in excitable systems; Implications for information processing in Parkinson's Disease and Deep Brain Stimulation

    Full text link
    We study the statistical physics of a surprising phenomenon arising in large networks of excitable elements in response to noise: while at low noise, solutions remain in the vicinity of the resting state and large-noise solutions show asynchronous activity, the network displays orderly, perfectly synchronized periodic responses at intermediate level of noise. We show that this phenomenon is fundamentally stochastic and collective in nature. Indeed, for noise and coupling within specific ranges, an asymmetry in the transition rates between a resting and an excited regime progressively builds up, leading to an increase in the fraction of excited neurons eventually triggering a chain reaction associated with a macroscopic synchronized excursion and a collective return to rest where this process starts afresh, thus yielding the observed periodic synchronized oscillations. We further uncover a novel anti-resonance phenomenon: noise-induced synchronized oscillations disappear when the system is driven by periodic stimulation with frequency within a specific range. In that anti-resonance regime, the system is optimal for measures of information capacity. This observation provides a new hypothesis accounting for the efficiency of Deep Brain Stimulation therapies in Parkinson's disease, a neurodegenerative disease characterized by an increased synchronization of brain motor circuits. We further discuss the universality of these phenomena in the class of stochastic networks of excitable elements with confining coupling, and illustrate this universality by analyzing various classical models of neuronal networks. Altogether, these results uncover some universal mechanisms supporting a regularizing impact of noise in excitable systems, reveal a novel anti-resonance phenomenon in these systems, and propose a new hypothesis for the efficiency of high-frequency stimulation in Parkinson's disease

    Dynamics of spatially extended dendrites

    Get PDF
    Dendrites are the most visually striking parts of neurons. Even so many neuron models are of point type and have no representation of space. In this thesis we will look at a range of neuronal models with the common property that we always include spatially extended dendrites. First we generalise Abbott’s “sum-over-trips” framework to include resonant currents. We also look at piece-wise linear (PWL) models and extend them to incorporate spatial structure in the form of dendrites. We look at the analytical construction of orbits for PWL models. By using both analytical and numerical Lyapunov exponent methods we explore phase space and in particular we look at mode-locked solutions. We will then construct the phase response curve (PRC) for a PWL system with compartmentally modelled dendrites. This sets us up so we can look at the effect of multiple PWL systems that are weakly coupled through gap junctions. We also attach a continuous dendrite to a PWL soma and investigate how the position of the gap junction influences network properties. After this we will present a short overview of neuronal plasticity with a special focus on the spatial effects. We also discuss attenuation of distal synaptic input and how this can be countered by dendritic democracy as this will become an integral part of our learning mechanisms. We will examine a number of different learning approaches including the tempotron and spike-time dependent plasticity. Here we will consider Poisson’s equation around a neural membrane. The membrane we focus on has Hodgkin-Huxley dynamics so we can study action potential propagation on the membrane. We present the Green’s function for the case of a one-dimensional membrane in a two-dimensional space. This will allow us to examine the action potential initiation and propagation in a multi-dimensional axon

    Dynamics of spatially extended dendrites

    Get PDF
    Dendrites are the most visually striking parts of neurons. Even so many neuron models are of point type and have no representation of space. In this thesis we will look at a range of neuronal models with the common property that we always include spatially extended dendrites. First we generalise Abbott’s “sum-over-trips” framework to include resonant currents. We also look at piece-wise linear (PWL) models and extend them to incorporate spatial structure in the form of dendrites. We look at the analytical construction of orbits for PWL models. By using both analytical and numerical Lyapunov exponent methods we explore phase space and in particular we look at mode-locked solutions. We will then construct the phase response curve (PRC) for a PWL system with compartmentally modelled dendrites. This sets us up so we can look at the effect of multiple PWL systems that are weakly coupled through gap junctions. We also attach a continuous dendrite to a PWL soma and investigate how the position of the gap junction influences network properties. After this we will present a short overview of neuronal plasticity with a special focus on the spatial effects. We also discuss attenuation of distal synaptic input and how this can be countered by dendritic democracy as this will become an integral part of our learning mechanisms. We will examine a number of different learning approaches including the tempotron and spike-time dependent plasticity. Here we will consider Poisson’s equation around a neural membrane. The membrane we focus on has Hodgkin-Huxley dynamics so we can study action potential propagation on the membrane. We present the Green’s function for the case of a one-dimensional membrane in a two-dimensional space. This will allow us to examine the action potential initiation and propagation in a multi-dimensional axon

    Dynamical Systems

    Get PDF
    Complex systems are pervasive in many areas of science integrated in our daily lives. Examples include financial markets, highway transportation networks, telecommunication networks, world and country economies, social networks, immunological systems, living organisms, computational systems and electrical and mechanical structures. Complex systems are often composed of a large number of interconnected and interacting entities, exhibiting much richer global scale dynamics than the properties and behavior of individual entities. Complex systems are studied in many areas of natural sciences, social sciences, engineering and mathematical sciences. This special issue therefore intends to contribute towards the dissemination of the multifaceted concepts in accepted use by the scientific community. We hope readers enjoy this pertinent selection of papers which represents relevant examples of the state of the art in present day research. [...
    corecore