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Abstract

BVP oscillator is the simplest mathematical model describing dynamical behavior of the
neural activity. The large scale neural network can often be described naturally by coupled
systems of BVP oscillators. However, even if two BVP oscillators are merely coupled by a
linear element, the whole system exhibits complicated behavior. In this letter, we analyze a
coupled BVP oscillators with asymmetrical coupling structure, besides, each oscillator has
different internal resistance. The system shows a rich variety of bifurcation phenomena, and
strange attractors. We calculate bifurcation diagrams in 2-parameter plane around which
the chaotic attractors mainly appears and confirm relaxant phenomena in the laboratory
experiments. We also briefly report a conspicuous strange attractor.
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1 Notation

h  Hopf bifurcation of an equilibrium

I*  period-doubling bifurcation of a limit cycle with period-k
G tangent bifurcation of a limit cycle

Pf  pitchfork bifurcation of a limit cycle

2 Introduction

At the first time, BVP (Bonhoffer van der Pol) equation has been derived as a simplified model
of Hodkin-Huxley (abbr. HH) equation by FitzHugh and Nagumo. They reduce the HH equation
(four-dimensional) to a two-dimensional system called the BVP equation or FitzHugh-Nagumo
model by extracting excitability of the dynamics of the dynamic behavior in the HH equation. The
BVP equation, as the reduced model, can be regarded as a reasonable extension of van der Pol
equation. In fact, the BVP equation can be realized by a circuitry by using simple passive elements
and one nonlinear conductor. Nowadays the BVP equation becomes one of classic nonlinear
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oscillator models and it has been studied for last 2 decades. As applications of the BVP equation
under above background, bifurcation structures and classification of synchronization phenomena
in the resistively coupled BVP oscillators have been studied[Papy et al., 1995, Papy et al., 1996,
Kitajima et al., 1998]. They focused only on the behavior of the coupled system consisting of
‘identical’ oscillators (all oscillators have same parameter values). It enables us to analyze the
system in symmetry point of view by using group theory. To investigate such coupled system,
identical oscillators are chosen as an oscillator unit since mathematical properties of symmetry
can reduce the bifurcation problem about equilibria and periodic solutions. However, in the
previous work[Ueta et al., 2001], we found out that a coupled system with ‘unbalanced’ oscillator
can behave complex, i.e., typical local bifurcations are only caused in such unbalanced coupled
situation.

In this letter, we investigate the asymmetrically coupled BVP oscillators. We focus our eyes
on ‘unbalanced’ situation in the coupled system, namely, two BVP oscillators are coupled, and
each of them has different value of the internal impedance. Then we found an odd shape of
chaotic attractor after the period-doubling bifurcation cascade. This result points out that the
coupling system of identical oscillators does not have a rich variety of nonlinear phenomena with
a reasonable parameter range.

3 Asymmetrical coupled BVP oscillators.

Figure 1 shows an asymmetrically coupled BVP oscillators. The nonlinear negative conductance
is modeled by
g(v) = —atanh bu. (1)

From physical measurement of FET, we can directly determine parameter values:
a=6.80x10"% b=0.3523.

We also fix parameters as
L =10[mH], C = 0.022[uF].

Then the natural frequency of the LC' tank is

Zo = /L/C = 674.19936[¢).

Then we have the following circuit equations:

C% = —i;—g(n)
C% = _i2_g<v2)+1+Gr1(rlil_v2)
L% = Uy—Taly



where, G = 1/R. Now we choose the following transformations:

r,/C j=1,2.
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hence we have normalized differential equations as follows:

1 = —y + tanh~vyx,

= o1 — kiya + 0kin(kiyn — x2) (3)
Ty = —yo + tanhyxy + 0n(kiy; — x2)

Yo = 2 — koyo.

Notice that § — 0 means decoupling of oscillators.
This equation has a symmetry such that

P:R' - R!
(xlay17$27y2) = (_xla_y17_x27_y2)‘

(4)

This fact directly affects the structure of the state space, namely, if there exists a periodic solution
p(t) € R, then —p(t) also forms a periodic solution. Besides the pitchfork bifurcation is possibly
caused by this symmetrical property.

To solve bifurcation problem for attractors in Eq. (3), we use Newton’s method and Poincaré
mapping. The latter reduces the continuous-time system into discrete one, and enables us to
analyze topological properties of periodic solutions. The shooting method like continuation|?]
and its improved method[Ueta, et al., 1997] are used.

4 Bifurcations in k;-ky; Plane

To show a rich variety of complex behavior in Eq.3, we firstly fix the coupling coefficient § as
Zp/1000 = 0.674 (R = 1000[Q?]). In this case, variable parameters are k; and ks (according to
variable resistances r and ). Figure 2 shows a bifurcation diagram.

Basically the limit cycle is caused by a supercritical Hopf bifurcation of the origin (not shown
this diagram). While, two unstable equilibria Ct = (21, Y1e, Z2¢, Y2c), C7 = (— 16y —Y1e, —T2e, —Y2¢)
are generated by the pitchfork bifurcation. Besides they are changed to be stable via the subcrit-
ical Hopf bifurcation A, then an unstable limit cycle is generated. These stable and unstable limit
cycles are disappeared by the tangent bifurcation curves G. Thus the whole parameter plane is
split into two parts, oscillatory (shaded) and non-oscillatory (white) areas, which are edged by G
and h. In non-oscillatory region, the orbit with any initial condition is eventually attracted by
C*orC.

The lower figure of Fig. 2 is an enlargement diagram extracted from the oscillatory region.
We explain bifurcation phenomena along points from (a) to (d), which are shown in this figure. At
point (a), there exist a stable limit cycle. Pf is the pitchfork bifurcation of a limit cycle, and then



stable two limit cycles are generated. Figure 3(c) shows one of limit cycles just after the pitchfork
bifurcation. (another stable limit cycle is obtained by using an initial state from a property Eq.
(4)). These cycles would be bifurcated by period-doubling bifurcation I. Period 2% cycles are
successively generated via period-doubling cascade along the direction of arrows in the figure.
Eventually chaotic attractor is obtained, see Fig 3(d). It is difficult show period-doubling cascade
by I* because the bifurcation process goes rapidly with slightly changed parameter values along
the arrows. The chaotic attractor forms a double scroll and finally disappeared by reaching Hopf
bifurcation h, i.e., the orbit around C* stays the point forever after this bifurcation. Note that the
limit cycle before getting pitchfork bifurcation (Fig. 3(a) and (b)) is never met period-doubling
bifurcation. Only the asymmetric limit cycle (Fig.3(c)) can be bifurcated as period-doubling,.

5 Bifurcations in /-k, Plane

We choose one of the parameters as ky = 1.05. In this parameter value, the system behave
moderate with variation of k; with fixed § mentioned above. However, the following results show
that the system motion also becomes complex in §-ky plane.

Figure 4 is a bifurcation diagram in d-ks plane. In global area, a similar bifurcation structure
described in the previous section is observed, however, inside peninsula of the tangent bifurcation
G, a clear period-doubling cascade labeled by I* can be visualized. Figures 5 (a)—(c) are corre-
sponding attractors. The pitchfork bifurcation also plays important role to generate double scroll,
namely, the limit cycle rotating about the origin is destabilized by this bifurcation. This can form
a channel between two Réssler type chaos attractors about C*. Figure 5 (d) shows a double scroll
attractor.

Figure 7 shows all Lyapunov exponent for the attractor by changing parameter § along ks =
1.05. Typical period-doubling cascade is recognized, and the positive Lyapunov exponent is an
evidence of chaotic behavior. In § ~ 1.89, the second exponent also shows small positive value,
however, under this parameter value, the chaotic attractor stays comparatively long around two
unstable equilibria C*. We have chosen x; = 0 as the Poincaré section to evaluate exponents of
a double scroll attractor fairly, but rather this choice causes unfair evaluation of exponent in this
parameter value, that is, the orbit transverses the Poncaré section very few. Thus the result near
this parameter value is not reliable, and we have to prepare another evaluation method for this
case in future.

6 Laboratory Experiments and Bursting Phenomenon

Since the model equation of the FET is sufficiently accurate for low frequency of LC' tank, all
dynamical behavior investigated above can be realized in an electrical circuitry. Figure 8 illustrates
the period-doubling cascade and chaotic behavior corresponding to Fig. 5 as R is decreased.

For other choice of parameter values, we noticed that there is a conspicuous bursting response.
Figure 9 visualize a spatio-temporal pattern of a chaotic motion, i.e., the orbit is wandering
between a double scroll and an unstable limit cycle even the circuit (2) is only a four-dimensional
system. To analyze this attractor would be a future problem.



7 Conclusions

In this letter, we analyzed a asymmetrically coupled BVP oscillators. Each oscillator has different
internal resistance, i.e., two different rhythms are coupled by a register. We showed bifurcation
diagrams of equilibria and periodic solutions and confirmed relaxant phenomena in the laboratory
experiments. The spatio-temporal (switching) behavior that the state wandering two chaotic
attractors alternatively is found.

Acknowledgement

The authors wish to thank Mrs. H. Wagi for her calculation results.

References

[Kitajima et al., 1998] Kitajima, H., Katsuta, Y., Kawakami, H. [1998] “Bifurcations of periodic
solutions in a coupled oscillator with voltage ports,” IEICE Trans. Fundamentals, E81-A,
pp-476-482, 1998.

[Papy et al., 1995] Papy, O., and Kawakami, H. [1995] “Symmetrical properties and bifurcations
of the periodic solutions for a hybridly coupled oscillator,” IEICE Trans. Fundamentals, E78-
A, 1816-1821, 1995.

[Papy et al., 1996] Papy, O., Kawakami, H. [1996] “Symmetry breaking and recovering in a system
of n hybridly coupled oscillators,” IEICE Trans. E79-A, 1581-1586, 1996.

[Ueta et al., 2001] Ueta, T., Kousaka, T., Kawakami, H. [2001] “Strange attractor in resistively
coupled BVP oscillators,” In Proc. 2001 Int. Conf. on Progress in Nonlinear Science, Nizhny
Novgorod, Russia, July 2001. (in press)

[Ueta, et al., 1997] Ueta, T., Tsueike, M., Kawakami, H., Yoshinaga, T, Katsuta, Y. [1997] “A
computation of bifurcation parameter values for limit cycles,” IEICE Trans. Fundamentals,

E80-A, 1725-1728, 1997.

g(vy)

VW
[
|
=~
~
[
|
AW

r r

=+ ==

Figure 1: Asymmetrical Coupled BVP Oscillators
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Figure 2: Bifurcation diagram of equilibria and periodic solutions of Eq. (3) in kj-ky plane. (a):
global area, (b): enlargement of (a).
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Figure 3: Phase portraits (projections into x;-z5 plane) corresponding to the points (a)—(d) marked

in Fig. 2(b). ks = 0.93. (a): ky = 0.652, (b): ky = 0.67, (c): ki = 0.69, (d): ky = 0.70,
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Figure 4: Bifurcation diagram of equilibria and periodic solutions of Eq.(3)in §-ky plane. k; =
0.653. (a): global area, (b): bifurcation structure in detail. (c): enlargement of (b).
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Figure 5: Phase portraits (projections into x;-zo plane) with ky = 1.05. (a): § = 2.10, (b):
§ = 2.00, (c): § =1.90, (d): 6 = 1.88.



Figure 6: 3D (x1-z2-y1) projection of the strange attractor. k; = 0.653, ko = 1.05, § = 1.4
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Figure 7: Lyapunov exponents. ko = 1.05.
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Figure 8: Laboratory experiments according to Fig.5, vi-vq, 2[V /dev].
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Figure 9: Bursting response. R = 1.6[KQ]. The transient state wonders around an unstable
periodic solution and a double scroll. (a): phase portrait. vi-vy. 2[V/dev]. (b): snapshot of the
time response. Upper: vy, Lower: vy. Abscissa 5 msec/dev, ordinate 5[V /dev].,
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