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Preface 

Complex systems are pervasive in many areas of science integrated in our daily lives. Examples 
include financial markets, highway transportation networks, telecommunication networks, world 
and country economies, social networks, immunological systems, living organisms, computational 
systems and electrical and mechanical structures. Complex systems are often composed of a large 
number of interconnected and interacting entities, exhibiting much richer global scale dynamics 
than the properties and behavior of individual entities. Complex systems are studied in many areas 
of natural sciences, social sciences, engineering and mathematical sciences. This special issue 
therefore intends to contribute towards the dissemination of the multifaceted concepts in accepted 
use by the scientific community. 

We hope readers enjoy this pertinent selection of papers which represents relevant examples of 
the state of the art in present day research. 

José A. Tenreiro Machado
Guest Editor
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Abstract: We are going back to the roots of the original solar neutrino problem:

the analysis of data from solar neutrino experiments. The application of standard

deviation analysis (SDA) and diffusion entropy analysis (DEA) to the Super-Kamiokande

I and II data reveals that they represent a non-Gaussian signal. The Hurst exponent

is different from the scaling exponent of the probability density function, and both

the Hurst exponent and scaling exponent of the probability density function of the

Super-Kamiokande data deviate considerably from the value of 0.5, which indicates that

the statistics of the underlying phenomenon is anomalous. To develop a road to the

possible interpretation of this finding, we utilize Mathai’s pathway model and consider

fractional reaction and fractional diffusion as possible explanations of the non-Gaussian

content of the Super-Kamiokande data.

Keywords: solar neutrinos; Super-Kamiokande; data analysis; standard deviation;

diffusion entropy; entropic pathway model, fractional reaction; fractional diffusion;

thermonuclear functions
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1. Introduction

This paper summarizes briefly a research programme, comprised of five elements: (i) standard

deviation analysis and diffusion entropy analysis of solar neutrino data [1,2]; (ii) Mathai’s entropic

pathway model [3,4]; (iii) fractional reaction and extended thermonuclear functions [5,6]; (iv)

fractional reaction and diffusion [7,8]; and (v) fractional reaction-diffusion [9–12]. Boltzmann

translated Clausius’ second law of thermodynamics “The entropy of the Universe tends to a

maximum” into a crucial quantity that links equilibrium and non-equilibrium (time dependent)

properties of physical systems and related entropy to probability, S = k log W, which, later,

Einstein called Boltzmann’s principle [13]. Based on this principle of physics, Planck found

the correct formula for black-body radiation that lead him to the discovery of the elementary

quantum of action that initiated the development of quantum theory. Extremizing the Boltzmann

entropic functional under appropriate constraints produces the exponential functional form of

the distribution for the respective physical quantity. Today, a question under intense discussion

in statistical mechanics is how to generalize Boltzmann’s entropic functional, if extremized

under appropriate constraints, to accommodate power law distribution functions observed so

frequently in nature. One of such generalizations is Tsallis statistics [14] that contains Boltzmann

statistics as a special case. Tsallis statistics is characterized by q-distributions, which seem

to occur in many situations of scientific interest and have significant consequences for the

understanding of natural phenomena. One such phenomena concerns the neutrino flux emanating

from the gravitationally stabilized solar fusion reactor [15,16]. R. Davis Jr. established

the solar neutrino problem, which was resolved by the discovery of neutrino oscillations [17,18].

A remaining question to date is still the quest for more information hidden in solar

neutrino records of numerous past and currently operating solar neutrino experiments [19].

Greatly stimulated by the question, raised long time ago, by R.H. Dicke “Is there a chronometer

hidden deep in the Sun?” [20,21], Mathai’s research programme on the analysis of the neutrino

emission of the gravitationally stabilized solar fusion reactor focused on non-locality (long-range

correlations), non-Markovian effects (memory), non-Gaussian processes (Lévy) and non-Fickian

diffusion (scaling), possibly evident in the solar neutrino records, taking also into account the results

of helio-seismology and helio-neutrino spectroscopy [22]. The original research programme, devised

by Mathai, is contained in three research monographs [23–25], and the results of this research

programme were summarized recently in [26].

2. Solar Neutrino Data

Over the past 40 years, radio-chemical and real-time solar neutrino experiments have proven to

be sensitive tools to test both astrophysical and elementary particle physics models and principles.

Solar neutrino detectors (radio-chemical: Homestake, GALLEX+ GNO, SAGE, real-time:

Super-Kamiokande, SNO, Borexino) (Oser 2012 [19]; Haxton et al. 2012 [27]) have demonstrated

that the Sun is powered by thermonuclear fusion reactions. Two distinct processes, the pp-chain

and the sub-dominant CNO-cycle, are producing solar neutrinos with different energy spectra and
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fluxes (see Figure 1). To date, only fluxes from the pp-chain have been measured: 7Be, 8B and,

indirectly, pp. Experiments with solar neutrinos and reactor anti-neutrinos (KamLAND; see [27]

have confirmed that solar neutrinos undergo flavor oscillations (the Mikheyev-Smirnov-Wolfenstein

(MSW) model; see [17]). Results from solar neutrino experiments are consistent with the

Mikheyev-Smirnov-Wolfenstein large mixing angle (MSW-LMA) model, which predicts a transition

from vacuum-dominated to matter-enhanced oscillations, resulting in an energy-dependent electron

neutrino survival probability. Non-standard neutrino interaction models derived such neutrino

survival probability curves that deviate significantly from MSW-LMA, particularly in the 1–4 MeV

transition region. The mono-energetic 1.44 MeV pepneutrinos, which belong to the pp-chain and

whose standard solar model (SSM) predicted flux has one of the smallest uncertainties, due to

the solar luminosity constraint, are an ideal probe to test these competing non-standard neutrino

interaction models in the future [28].

Figure 1. The solar neutrino spectrum for the pp-chain and the CNO-cycle and parts

of the spectrum that are detectable by the experiments based on gallium, chlorine and

Cherenkov radiation [27].

3. Standard Deviation Analysis and Diffusion Entropy Analysis

For all radio-chemical and real-time solar neutrino experiments, periodic variation in the detected

solar neutrino fluxes have been reported, based mainly on Fourier and wavelet analysis methods

(standard deviation analysis) [29–32]. Other attempts to analyze the same datasets, particularly

undertaken by the experimental collaborations of real-time solar neutrino experiments themselves,

have failed to find evidence for such variations of the solar neutrino flux over time. Periodicities in the

solar neutrino fluxes, if confirmed, could provide evidence for new solar, nuclear or neutrino physics

beyond the commonly accepted physics of vacuum-dominated and matter-enhanced oscillations of

massive neutrinos (MSW model) that is, after 40 years of solar neutrino experiment and theory,

considered to be the ultimate solution to the solar neutrino problem. Specifically, subsequent to the
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analysis made by the Super-Kamiokande collaboration [33–35], the SNO experiment collaboration

has painstakingly searched for evidence of time variability at periods ranging from 10 years down

to 10 min. SNO has found no indications for any time variability of the 8B flux at any timescale,

including in the frequency window in which g-mode oscillations of the solar core might be expected

to occur [36]. Despite large efforts to utilize helio-seismology and helio-neutrino spectroscopy, at

present time, there is no conclusive evidence in terms of physics for the time variability of the solar

neutrino fluxes from any solar neutrino experiment [17,22]. If such a variability over time would

be discovered, for example, in the Borexino experiment, a mechanism for a chronometer for solar

variability could be proposed based on relations between the properties of thermonuclear fusion

and g-modes. All the above findings encouraged the conclusion that Fourier and wavelet analysis,

which are based upon the analysis of the variance of the respective time series (standard deviation

analysis (SDA)) [37,38], should be complemented by the utilization of diffusion entropy analysis

(DEA), which measures the scaling of the probability density function (pdf) of the diffusion process

generated by the time series, thought of as the physical source of fluctuations [39,40]. For this

analysis, we have used the publicly available data of Super-Kamiokande I and Super-Kamiokande

II (see Figure 2). Such an analysis does not reveal periodic variations of the solar neutrino

fluxes but shows how the pdf scaling exponent departs in the non-Gaussian case from the Hurst

exponent. Figures 3 to 6 show the Hurst exponents (SDA) and scaling exponents (DEA) for the

Super-Kamiokande I and II data. Super-Kamiokande is sensitive mostly to neutrinos from the 8B

branch of the pp nuclear fusion chain in solar burning. Above approximately 4 MeV , the detector can

pick out the scattering of solar neutrinos off atomic electrons, which produces Cherenkov radiation

in the detector. The 8B and rarer hepneutrinos have a spectrum, which ends near 20 MeV (see

Figure 1).

Figure 2. The variation of the solar neutrino flux over time, as shown in the

Super-Kamiokande I, II and III experiments [33–35].
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Figure 3. The standard deviation analysis (SDA) of the 8B solar neutrino data from the

Super-Kamiokande I and II experiments.

Figure 4. The diffusion entropy analysis (DEA) of the 8B solar neutrino data from the

Super-Kamiokande I and II experiments.
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Figure 5. The standard deviation analysis (SDA) of the hep solar neutrino data from the

Super-Kamiokande I and II experiments.

Figure 6. The diffusion entropy analysis (DEA) of the hep solar neutrino data from the

Super-Kamiokande I and II experiments.
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Assuming that the solar neutrino signal is governed by a probability density function with scaling

given by the asymptotic time evolution of a pdf of x, obeying the property:

p(x, t) =
1

tδ
F (

x

tδ
) (1)

where δ denotes the scaling exponent of the pdf. In the variance-based methods, scaling is studied by

direct evaluation of the time behavior of the variance of the diffusion process. If the variance scales,

one would have:

σ2
x(t) ∼ t2H , (2)

where H is the Hurst exponent. To evaluate the Shannon entropy of the diffusion process at time t,

Scafetta et al. (2002; Scafetta 2010) [39,40] defined S(t) as:

S(t) = −
∫ +∞

−∞
dx p(x, t) ln p(x, t) (3)

and with the previous p(x, t), one has:

S(t) = A+ δ ln(t), A = −
∫ +∞

−∞
dyF (y) lnF (y) (4)

The scaling exponent, δ, is the slope of the entropy against the logarithmic time scale. The slope

is visible in Figures 4 and 6 for the Super-Kamiokande data measured for 8B and hep. The Hurst

exponents (SDA) are H = 0.66 and H = 0.36 for 8B and hep, respectively, shown in Figures 3 and 5.

The pdf scaling exponents (DEA) are δ = 0.88 and δ = 0.80 for 8B and hep, respectively, as

shown in Figures 4 and 6. The values for both SDA and DEA indicate a deviation from Gaussian

behavior, which would require that H = δ = 0.5. A preliminary analysis, for Super-Kamiokande

I data exclusively, was undertaken recently by [1]. A test computation for the application of SDA

and DEA to data that are known to exhibit non-Gaussian behavior have been published recently by

[2]. In this test, SDA and DEA, applied to the magnetic field strength fluctuations recorded by the

Voyager-I spacecraft in the heliosphere, clearly revealed the scaling behavior of such fluctuations, as

previously already discovered by non-extensive statistical mechanics considerations that lead to the

determination of the non-extensivity q-triplet [14].

4. Mathai’s Entropic Pathway Model

From a general point of view of fitting experimental data to mathematical functions, a model,

which moves from the generalized Type-1 beta family to the Type-2 beta family to the generalized

gamma family to the generalized Mittag-Leffler family and, eventually, to the Lévy distributions,

has been developed by Mathai [3]. All these different parametric families of functions are

connected through Mathai’s pathway parameter α > 1. To generalize Shannon’s entropy to an

entropic pathway, Mathai introduced the generalized entropy of order α that is also associated

with Shannon (Boltzmann-Gibbs), Rényi, Tsallis and Havrda-Charvat entropies [4,26]. Applying

the maximum entropy principle with normalization and energy constraints to Mathai’s entropic
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functional, the corresponding parametric families of distributions of generalized Type-1 beta, Type-2

beta, generalized gamma, generalized Mittag-Leffler and Lévy are obtained in the following form:

M2(f) =

∫ +∞
−∞ dx[f(x)]2−α − 1

α− 1
α �= 1, α < 2, (5)

f(x) = c1[1− β(1− α)xδ]1/(1−α) (6)

with α < 1 for Type-1 beta, α > 1 for Type-2 beta, α → 1 for gamma and δ = 1 for Tsallis

statistics. In principle, any entropic functional in Mathai’s pathway can be tested through the above

diffusion entropy analysis against experimental data. The deviation of the statistical properties of the

Super-Kamiokande data analyzed above from the Gaussian should be captured by Equation (6).

5. Fractional Reaction and Extended Thermonuclear Functions

Solar nuclear reactions, producing neutrinos, occur preferably between nuclei in the high-energy

tail of the energy distribution and are sensitive to deviations from the standard equilibrium thermal

energy distribution (Maxwell-Boltzmann distribution) [6,15,41]. Reaction and relaxation processes

in thermonuclear plasmas are governed by ordinary differential equations of the type:

dN(t)

dt
= c N(t) (7)

for exponential behavior. The quantity, c, is a thermonuclear function, which is governed by the

average of the Gamow penetration factor over the Maxwell-Boltzmann velocity distribution of

reacting species and has been extended to incorporate more general distributions than the normal

distribution [26]. The coefficient, c, itself can be considered to be a statistical quantity subject to

accommodating a distribution of its own [4]. To address the non-exponential properties of a reaction

or relaxation process, the first-order time derivative can be replaced formally by a derivative of

fractional order in the following way [26]:

N(t) = N0 − cν 0D
−ν
t N(t), (8)

where 0D
−ν
t denotes a Riemann-Liouville fractional integral operator, and the solution can be

represented in terms of Mittag-Leffler functions Eν by:

N(t) = N0Eν(−cνtν). (9)

Considering c to be a random variable itself, N(t) is to be taken as N(t | c) and can be written

as:

N(t | c) = N0t
μ−1Eγ+1

ν,μ (−cνtν), μ > 0, γ > 0, ν > 0, (10)

which represents a generalized Mittag-Leffler function and is a random variable having a gamma

type density:

g(c) =
ωμ

Γ(μ)
cμ−1e−ωc ω > 0, 0 < c <∞, μ > 0, (11)



9

with μ/ω being the mean value of c. The integration of N(t | c) over g(c) gives the unconditional

density, as:

N(t) =
N0

Γ(μ)
tμ−1[1 + b(α− 1)tν ]−1/(α−1), (12)

with γ + 1 = 1/(α − 1), α > 1 → γ = (α − 2)/(α − 1) and ω−ν = b(α − 1), b > 0, which

corresponds to Tsallis statistics for μ = 1, ν = 1, b = 1 and α = q > 1, physically meaning that

the common exponential behavior is replaced by a power-law behavior, including Lévy statistics.

Both the translation of the standard reaction Equation (7) to a fractional reaction Equation (8) and

the probabilistic interpretation of such equations lead to deviations from the exponential behavior to

the power law behavior expressed in terms of Mittag-Leffler functions (9) or, as can be shown for

Equation (12), to power law behavior in terms of H-functions [26]. H-functions are representable

in terms of Mellin-Barnes integrals of the product of gamma functions and are therefore suited to

represent statistics of products and quotients of independent random variables, thus providing a very

useful tool in presenting a new perspective on the statistics of random variables [42].

6. Fractional Diffusion and the Joint Action of Reaction and Diffusion

In recent time, an analytic approach to non-conventional reaction and diffusive transport by

taking into account fractional space and time derivatives has been developed [43]. The probability

density function for the above Super-Kamiokande data is non-Gaussian and exhibits stretched

power-law tails, as can be shown by further exploring Equations (6), (9) and (12). In order

to model these analytic findings, a transport model for the pdf, based on fractional diffusion,

which includes both non-local and non-Gaussian features, was proposed [26]. Reaction and

diffusion in the solar thermonuclear fusion plasma are non-linear phenomena, which may be

subject to non-Fickian transport (non-locality), non-Markovian effects (memory) and non-Gaussian

scaling (Lévy). Fractional diffusion operators are integro-differential operators that incorporate

the former three phenomena in a natural way and may, in this regard, constitute spatio-temporal

elements of the fundamental theory of physics. This issue is currently under intense research.

Continuous time random walk (CTRW) balance equations (master equations) with temporal memory,

generation/destruction terms and spatio-transport/relaxation elements yield non-linear fractional

reaction-diffusion equations, whose solutions are the focus of current research, and only very

special cases have been dealt with, so far. Equally difficult to reveal is the interplay between

fractional reaction and fractional diffusion in such non-linear equations. This difficulty is amplified

by the fact that various definitions of fractional operators exist (Riemann-Liouville, Caputo, Weyl,

Grünwald-Letnikov, Riesz-Feller, etc.). At this point of time, there is no general understanding under

which specific mathematical and physical conditions a probabilistic interpretation can be given to

unified fractional reaction-diffusion equations, and this difficulty is even further amplified by the

observation that the replacement of integer order with fractional order time derivatives changes the

fundamental concept of time and violates the principle that time evolution (change) is time translation

and that fractional order space derivatives are bridging the respective differential equation between

the case of the diffusion equation and the wave equation.
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7. Conclusions

The use of solar neutrino detection records, by analyzing the average neutrino flux of the

experiments, have led to the discovery of new elementary particle physics, the MSW effect, and, thus,

resolved the solar neutrino problem. This confirmed that the standard solar model is implementing

physical principles correctly. The quest for the variation of the solar neutrino flux over time remains

an open question. Additionally, the utilization of standard deviation analysis (scaling of the variance)

and diffusion entropy analysis (scaling of the pdf) leads to the discovery of an unknown phenomenon

related to a non-equilibrium signature in the gravitationally stabilized solar fusion reactor, as explored

by looking at Mathai’s pathway model and taking into account fractional reaction, fractional diffusion

and, possibly, a combination of both of them.
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1. Introduction

Classical Shannon entropy has been generalized in many directions [1,2]. An α-generalized

entropy, parallel to Havrda-Charvat entropy, introduced by the first author, is found to be quite useful

in deriving pathway models [3], including Tsallis statistics [4] and superstatistics [5,6]. It is also

connected to Kerride’s measure of inaccuracy [7]. For the continuous case, let f(X) be a density

function associated with a random variable X , where X could be a real or complex scalar, vector or

matrix variable. In the present paper we consider only the real cases for convenience. Let

Mα(f) =

∫
X
[f(X)]2−αdX − 1

α− 1
, α �= 1 (1.1)

Note that when α → 1,Mα(f) → S(f) = − ∫
X
f(X) ln f(X)dX where S(f) is Shannon’s

entropy [7] and in this sense (1.1) is a α-generalized entropy measure. The corresponding discrete

case is available as ∑k
i=1 p

2−α
i − 1

α− 1
, pi > 0, i = 1, ..., k, p1 + ...pk = 1, α �= 1

Characterization properties and applications of (1.1) may be seen from [7]. Note that∫
X

[f(X)]2−αdX =

∫
X

[f(X)]1−αf(X)dX = E[f(X)]1−α

Thus there is a parallelism with Kerridge’s measure of inaccuracy. The α-generalized Kerridge’s

measure of inaccuracy [9] is given by∫
x
P (x)[Q(x)]1−α − 1

α− 1
=

E[Q(x)]1−α − 1

α− 1
, α �= 1 (1.2)

When α→ 1, Equation (1.2) goes to Kerridge’s measure of inaccuracy given by

K(P,Q) = −
∫
x

P (x) lnQ(x)dx (1.3)

where x is a scalar variable, P (x) is the true density and Q(x) is a hypothesized or assigned density

for the true density P (x). Then a measure of inaccuracy in taking Q(x) for the true density P (x) is

given by Equation (1.3) and its α-generalized form is given by Equation (1.2).

Earlier works on Shannon’s measure of entropy, measure of directed divergence, measure of

inaccuracy and related items and applications in natural sciences may be seen in [7] and the references

therein. A measure of entropy, parallel to the one of Havrda-Charvat entropy was introduced by

Tsallis in 1988 [4,8,9], given by

Tα(f) =

∫
x
[f(x)]αdx− 1

1− α
, α �= 1 (1.4)

Tsallis statistics or non-extensive statistical mechanics is derived by optimizing (1.4) by putting

restrictions in an escort density associated with f(x) of Equation (1.4). Let g(x) = [f(x)]α

m
,

m =
∫
x
[f(x)]αdx < ∞. If Tα(f) is optimized over all non-negative functional f , subject to the
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conditions that f(x) is a density and the expected value in the escort density is a given quantity, that

is
∫
x
xg(x)dx = a given quantity, then the Euler equation to be considered, if we optimize by using

calculus of variations, is that

∂

∂f
[{f(x)}α − λ1f(x) + λ2x{f(x)}α] = 0

where λ1 and λ2 are Lagrangian multipliers. That is,

α[f(x)]α−1 − λ1 + λ2xα[f(x)]
α−1 = 0

Then

f(x) = c[1 + λ2x]
− 1

α−1 , c = (
λ1

α
)

1
α−1

Taking λ2 = a(α− 1) for α > 1, a > 0 we have Tsallis statistics as

f(x) = c[1 + a(α− 1)x]−
1

α−1 , α > 1, a > 0 (1.5)

For α < 1, writing α− 1 = −(1− α) the density in Equation (1.5) changes to

fx(x) = c1[1− a(1− α)x]
1

1−α , α < 1, a > 0

where 1 − a(1 − α)x > 0 and c1 can act as a normalizing constant if f1(x) is to be taken as

a statistical density. Tsallis statistics in Equation (1.5) led to the development of none-extensive

statistical mechanics. We will show later that Equation (1.5) comes directly from the entropy of

Equation (1.1) without going through any escort density. Let us optimize Equation (1.1) subject to

the conditions that f(x) is a density,
∫
x
f(x)dx = 1, and that the expected value of x in f(x) is a

given quantity, that is,
∫
x
xf(x)dx = a given quantity. Then, if we use calculus of variations, the

Euler equation is of the form

∂

∂f
[{f(x)}2−α − λ1f(x) + λ2xf(x)] = 0

where λ1 and λ2 are Lagrangian multipliers. Then we have

f1(x) = c1[1− a(1− α)x]
1

1−α , α < 1, a > 0 (1.6)

by taking λ2

λ1
= a(1 − α), a > 0, α < 1, and c1 is the corresponding normalizing constant to make

f1(x) a statistical density. Now, for α > 1, write 1−α = −(α−1), then directly from Equation (1.6),

without going through any escort density, we have

f2(x) = c2[1 + a(α− 1)x]−
1

α−1 , α > 1, a > 0 (1.7)

which is Tsallis statistics for α > 1. Thus, both the cases α < 1 and α > 1 follow directly from

Equation (1.1).

Now, let us look into optimizing (1.1) over all non-negative integrable functionals, f(x) ≥ 0 for

all x,
∫
x
f(x)dx <∞, such that two moment-type relations are imposed on f , of the form∫

x

xγ(1−α)f(x)dx = given, and

∫
x

xγ(1−α)+δf(x)dx = given (1.8)



17

Then the Euler equation becomes

∂

∂f
[{f(x)}2−α − λ1x

γ(1−α)f(x) + λ2x
γ(1−α)+δf(x)] = 0

which leads to

f ∗
1 (x) = c∗1x

γ[1− a(1− α)xδ]
1

1−α , a > 0, α < 1, δ > 0, γ > 0 (1.9)

for 1 − a(1 − α)xδ > 0, by taking λ2

λ1
= a(1 − α), a > 0, α < 1, where c∗1 can act as the

normalizing constant. Equation (1.9) is a special case of the pathway model of [3] for the real

scalar positive random variable x > 0. For γ = 0, δ = 1 in Equation (1.9) we obtain Tsallis statistics

of Equation (1.6) for the case α < 1. When α > 1 write 1 − α = −(α − 1) for α > 1 then

Equation (1.9) becomes

f∗
2 (x) = c∗2x

γ[1 + a(α− 1)xδ]−
1

α−1 , α > 1, a > 0, x > 0, δ > 0 (1.10)

When α→ 1 both f∗
1 (x) of Equation (1.9) and f ∗

2 (x) of Equation (1.10) go to

f ∗
3 (x) = c∗3x

γe−axδ

, a > 0, δ > 0, x > 0 (1.11)

Equation (1.10) for α > 1, x > 0 is superstatistics [5,6].

2. A Generalized Measure of Entropy

Let X be a scalar, a p× 1 vector of scalar random variables or a p× n, p ≥ n matrix of rank n of

scalar random variables and let f(X) be a real-valued scalar function such that f(X) ≥ 0 for all X

and
∫
X
f(X)dX = 1 where dX stands for the wedge product of the differentials in X . For example,

if X is m× n, X = (xij) then

dX =
m∏
i=1

n∏
j=1

∧dxij

where ∧ stands for the wedge product of differentials, dx ∧ dy = −dy ∧ dx ⇒ dx ∧ dx = 0. Then

f(X) is a density of X . When X is p × n, p ≥ n we have a rectangular matrix variate density. For

convenience we have taken X of full rank n ≤ p. When n = 1 we have a multivariate density and

when n = 1, p = 1 we have a univariate density. Consider the generalized entropy of Equation (1.1)

for this matrix variate density, denoted by f(X), then

Mα(f) =

∫
X
[f(X)]2−αdX − 1

α− 1
, α �= 1 (2.1)

Let n = 1. Let us consider the situation of the ellipsoid of concentration being a preassigned

quantity. Let X be p × 1 vector random variable. Let V = E[(X − E(X))(X − E(X))′] > O

(positive definite) where E denotes expected value. For convenience let us denote E(X) = μ. Then

ρ = E[(X − μ)′V −1(X − μ)] is the ellipsoid of concentration. Let us optimize (2.1) subject to the

constraint that f(X) ≥ 0 is a density and that the ellipsoid of concentration over all functional f is a
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constant, that is,
∫
X
f(X)dX = 1 and

∫
X
[(X − μ)′V −1(X − μ)]δf(X)dX = given, where δ > 0 is

a fixed parameter. If we are using calculus of variation then the Euler equation is given by

∂

∂f
[{f(X)}2−α − λ1f(X) + λ2[(X − μ)′V −1(X − μ)]δf(X)] = 0

where λ1 and λ2 are Lagrangian multipliers. Solving the above equation we have

f1(X) = C1[1− a(1− α){(X − μ)′V −1(X − μ)}δ] 1
1−α (2.2)

for α < 1, a > 0 where we have taken λ2

λ1
= a(1 − α), a > 0, α < 1 and ( λ1

2−α
)

1
1−α = C1. This C1

can act as the normalizing constant to make f(X) in Equation (2.2) a statistical density. Note that

for α > 1, we have from Equation (2.2)

f2(X) = C2[1 + a(α− 1){(X − μ)′V −1(X − μ)}δ]− 1
α−1 , α > 1, a > 0 (2.3)

and when α→ 1, f1 and f2 go to

f3(X) = C3e
−a[(X−μ)′V −1(X−μ)]δ (2.4)

Equation (2.4) for δ = 1 is the multivariate Gaussian density. If Y = V − 1
2 (X−μ), where V − 1

2 is the

positive definite square root of the positive definite matrix V −1, then dY = |V |− 1
2dX and the density

of Y , denoted by g(Y ), is given by

g(Y ) = C4 e
−a(y21+...+y2p)

δ

,−∞ < yj <∞, j = 1, ..., p, Y ′ = (y1, ..., yp) (2.5)

and C4 is the normalizing constant. This normalizing constant can be evaluated in two different ways.

One method is to use polar coordinate transformation, see Theorem 1.25 of [10]. Let

y1 = r sin θ1 sin θ2... sin θp−1

y2 = r sin θ1... sin θp−2 cos θp−1

... =
...

yp−1 = r sin θ1 cos θ1

yp = r cos θ1

where r > 0, 0 < θj ≤ π, j = 1, ..., p− 2, 0 < θp−1 ≤ 2π and the Jacobian is given by

dy1 ∧ ... ∧ dyp = rp−1{
p−1∏
j=1

| sin θj|p−j−1}dr ∧ dθ1 ∧ ... ∧ dθp−1 (2.6)

Under this transformation the exponent (y21 + ... + y2p)
δ = (r2)δ. Hence we integrate out the sine

functions. The integral over θp−1 goes from 0 to 2π and gives the value 2π, and others from 0 to π.
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These, in general, can be evaluated by using type-1 beta integrals by putting sin θ = u and u2 = v.

That is, ∫ π

0

sin θ dθ = 2

∫ π/2

0

sin θ dθ = 2

∫ 1

0

u(1− u2)−
1
2du

=

∫ 1

0

v1−1(1− v)−
1
2dv =

Γ(1)Γ(1/2)

Γ(3/2)∫ π

0

(sin θ)2dθ =
Γ(3/2)Γ(1/2)

Γ(4/2)
... =

...∫ π

0

(sin θ)p−2dθ =
Γ(p−1

2
)Γ(1/2)

Γ(p
2
)

Taking the product we have

2π
(
√
π)p−2

Γ(p
2
)

=
2πp/2

Γ(p/2)

Hence the total integral is equal to

1 = C4|V | 12 2πp/2

Γ(p/2)

∫ ∞

0

rp−1e−ar2δdr, δ > 0

Put x = ar2δ and integrate out by using a gamma integral to get

C4 =
δΓ(p

2
)a

p
2δ

|V | 12πp/2Γ( p
2σ
)

That is, the density is given by

f3(X) =
δ a

p
2δΓ(p/2)

|V |1/2πp/2Γ( p
2δ
)
e−a[(X−μ)′V −1(X−μ)]δ , δ > 0, a > 0, V > O (2.7)

From the above steps the following items are available: The density of Y = V − 1
2 (X−μ) is available

as

g(Y ) =
δ a

p
2δΓ(p

2
)

πp/2Γ( p
2δ
)
e−a(Y ′Y )δ (2.8)

The density of u = Y ′Y = y21 + ...+ y2p , denoted by g1(u), is given by

g1(u) =
δ a

p
2δ

Γ( p
2δ
)
u

p
2
−1e−auδ

, δ > 0, u > 0 (2.9)

and the density of r > 0, where r2 = u = Y ′Y , denoted by g2(r), is given by

g2(r) =
2δ a

p
2δ

Γ( p
2δ
)
rp−1e−ar2δ , r > 0, δ > 0 (2.10)
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2.1. Another Method

Another direct way of deriving the densities of X, Y = V − 1
2 (X − μ), u = Y ′Y, r =

√
u is the

following: From [3] see the transformation in Stiefel manifold where a matrix of the form n×p, n ≥ p

of rank p is transformed into S = X ′X which is a p× p matrix, where the differential elements, after

integrating out over the Stiefel manifold, are connected by the relation, see also Theorem 2.16 and

Remark 2.13 of [10],

dX =
π

np
2

Γp(
n
2
)
|S|n2− p+1

2 dS (2.11)

where |S| denotes the determinant of S and Γp(α) is the real matrix-variate gamma given by

Γp(α) = π
p(p−1)

4 Γ(α)Γ(α− 1

2
)...Γ(α− p− 1

2
),�(α) > p− 1

2
(2.12)

Applications of the above result in various disciplines may be seen from [11–14]. In our problem,

we can connect dY of Equation (2.8) to du of Equation (2.9) with the help of Equation (2.11) by

replacing n by p and p by 1 in the n× p matrix. That is, from Equation (2.11)

dY =
πp/2

Γ(p/2)
u

p
2
−1du (2.13)

The total integral of f3(X) of Equation (2.3) is given by

1 =

∫
X

f3(X)dX = C3|V |1/2 πp/2

Γ(p/2)

∫ ∞

u=0

u
p
2
−1e−auδ

du, a > 0, δ > 0

Put v = auδ and integrate out by using a gamma integral to get

C3 =
δ a

p
2δΓ(p/2)

|V |1/2πp/2Γ( p
2δ
)

and we get the same result as in (2.7), thereby the same expressions for g(Y ) in Equation (2.8), g1(u)

in Equation (2.9) and g2(r) in Equation (2.10).

3. A Generalized Model

If we optimize (2.1) over all integrable functions f(X) ≥ 0 for all X , subject to the

two moment-like restrictions E[(X − μ)′V −1(X − μ)]γ(1−α) = fixed and E[(X − μ)′V −1(X −
μ)]δ+γ(1−α) = fixed, then the corresponding Euler equation becomes

∂

∂f
[{f(X)}2−α − λ1[(X − μ)′V −1(X − μ)]γ(1−α) + λ2[(X − μ)V −1(X − μ)]δ+γ(1−α)] = 0

and the solution is available as

f(X) = C∗[(X − μ)′V −1(X − μ)]γ[1− a(1− α){(X − μ)′V −1(X − μ)}δ] 1
1−α (3.1)

for α < 1, a > 0, V > O, δ > 0, γ > 0 and for convenience we have taken λ2

λ1
= a(1 − α), a >

0, α < 1, where C∗ can act as the normalizing constant if f(X) is to be treated as a statistical density.
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Otherwise f(X) can be a very versatile model in model building situations. If C∗ is the normalizing

constant then it can be evaluated by using the following procedure: Put Y = V − 1
2 (X − μ)⇒ dY =

|V |− 1
2dX . The total integral is 1, that is,

1 =

∫
X

f(X)dX = C∗|V | 12
∫
Y

[Y ′Y ]γ[1− a(1− α)(Y ′Y )δ]
1

1−αdY

Let u = Y ′Y , then dY = πp/2

Γ(p/2)
u

p
2
−1du from Equation (2.13). Then for a > 0, α < 1, δ > 0 we

can integrate out by using a type-1 beta integral by putting z = a(1 − α)uδ for α < 1. Then the

normalizing constant, denoted by C∗
1 , is available as

C∗
1 =

δ[a(1− α)]
γ
δ
+ p

2δΓ(p/2)Γ( 1
1−α

+ 1 + γ
δ
+ p

2δ
)

|V |1/2πp/2Γ(γ
δ
+ p

2δ
)Γ(1 + 1

1−α
)

(3.2)

for δ > 0, γ + p
2
> 0. Hence the density of the p× 1 vector X is given by

f1(X) = C∗
1 [(X − μ)′V −1(X − μ)]γ[1− a(1− α)[(X − μ)′V −1(X − μ)]δ]

1
1−α (3.3)

for V > O, a > 0, δ > 0, γ + p
2
> 0, X ′ = (x1, ..., xp), μ

′ = (μ1, ..., μp), −∞ < xj < ∞,−∞ <

μj <∞, j = 1, ..., p. For α < 1 we may say that f(X) in Equation (3.3) is a generalized type-1 beta

form. Then the density of Y , denoted by g(Y ), is given by

g(Y ) = |V |1/2C∗
1(Y

′Y )γ[1− a(1− α)(Y ′Y )δ]
1

1−α

for a > 0, α < 1 and C∗
1 is defined in Equation (3.2). Note that the density of u = Y ′Y , denoted by

g1(u), is available, as

g1(u) = C̃1u
γ+ p

2
−1[1− a(1− α)uδ]

1
1−α (3.4)

where

C̃1 =
δ[a(1− α)]

γ
δ
+ p

2δΓ( 1
1−α

+ 1 + γ
δ
+ p

2δ
)

Γ(γ
δ
+ p

2δ
)Γ( 1

1−α
+ 1)

for δ > 0, γ + p
2
> 0. Note that for α > 1 in Equation (3.1) the model switches into a generalized

type-2 beta form. Write 1 − α = −(α − 1) for α > 1. Then the model in Equation (3.2) switches

into the following form:

f2(X) = C∗
2 [(X − μ)′V −1(X − μ)]γ[1 + a(α− 1)[(X − μ)′V −1(X − μ)]δ]−

1
α−1 (3.5)

for δ > 0, a > 0, V > O, α > 1. The normalizing constant C∗
2 can be computed by using the

following procedure. Put z = a(α − 1)uδ, δ > 0, α > 1. Then integrate out by using a type-2 beta

integral to get

C∗
2 =

δ[a(α− 1)]
γ
δ
+ p

2δΓ(p/2)Γ( 1
α−1

)

|V |1/2πp/2Γ(γ
δ
+ p

2δ
)Γ( 1

α−1
− γ

δ
− p

2δ
)

(3.6)

for γ + p/2 > 0, 1
α−1

− γ
δ
− p

2δ
> 0. When α → 1 then both f1(X) of Equation (3.3) and f2(X) of

Equation (3.5) go to the generalized gamma model given by

f3(X) = C∗
3 [(X − μ)′V −1(X − μ)]γe−a[(X−μ)′V −1(X−μ)]δ (3.7)
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where

C∗
3 =

δΓ(p/2)a
γ
δ
+ p

2δ

|V |1/2πp/2Γ(γ
δ
+ p

2δ
)
, δ > 0, γ +

p

2
> 0 (3.8)

It is not difficult to show that when α → 1 both C∗
1 → C∗

3 and C∗
2 → C∗

3 . This can be seen by using

Stirling’s formula

Γ(z + η) ≈
√
2πzz+η− 1

2 e−z

for|z| → ∞ and η is a bounded quantity. Observe that

lim
α→1−

1

1− α
=∞ and lim

α→1+

1

α− 1
=∞

and we can apply Stirling’s formula by taking z = 1
1−α

in one case and z = 1
α−1

in the other case.

Thus, from f1(X) we can switch to f2(X) to f3(X) or through the same model we can go to three

different families of functions through the parameter α and hence α is called the pathway parameter

and the model above belongs to the pathway model in [3].

4. Generalization to the Matrix Case

Let X be a p × n, n ≥ p rectangular matrix of full rank p. Let A > O be p × p and B > O be

n× n positive definite constant matrices. Let A1/2 and B1/2 denote the positive definite square roots

of A and B respectively. Consider the matrix

I − a(1− α)A1/2XBX ′A1/2 > O

where a > 0, α < 1. Let f(X) be a real-valued function of X such that f(X) ≥ 0 for all X and

f(X) is integrable,
∫
X
f(X)dX < ∞. If we assume that the expected value of the determinant of

the above matrix is fixed over all functional f , that is

E|I − a(1− α)A1/2XBX ′A1/2| = fixed (4.1)

then, if we optimize the entropy (2.1) under the restriction (4.1) the Euler equation is,

∂

∂f
[{f(X)}2−α − λ|I − a(1− α)A1/2XBX ′A1/2|f(X)] = 0

Equation such as the one in Equation (4.1) can be connected to the volume of a certain parallelotope

or random geometrical objects. Solving it we have

f(X) = Ĉ|I − a(1− α)A1/2XBX ′A1/2| 1
1−α (4.2)

where Ĉ is a constant. A more general form is to put a restriction of the form that the expected value

of |A1/2XBX ′A1/2|γ(1−α)|I − a(1 − α)A1/2XBX ′A1/2| is a fixed quantity over all functional f .

Then

f(X) = Ĉ1|A1/2XBA1/2|γ|I − a(1− α)A1/2XBA1/2| 1
1−α (4.3)

for α < 1, a > 0, A > O,B > O and X is p × n, n ≥ p of full rank p and a prime denotes the

transpose. The model in Equation (4.3) can switch around to three functional forms, one family for
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α < 1, a second family for α > 1 and a third family for α → 1. In fact Equation (4.3) contains all

matrix variate statistical densities in current use in physical and engineering sciences. For evaluating

the normalizing constants for all the three cases, the first step is to make the transformation

Y = A1/2XB1/2 ⇒ dY = |A|n/2|B|p/2dX (4.4)

see [10] for the Jacobian of this transformation. After this stage, all the steps in the previous sections

are applicable and we use matrix variate type-1 beta, type-2 beta, and gamma integrals to do the final

evaluation of the normalizing constants. Since the steps are parallel the details are omitted here.

5. Standard Deviation Analysis and Diffusion Entropy Analysis

Scale invariance has been found to hold for complex systems and the correct evaluation of the

scaling exponents is of fundamental importance to assess if universality classes exist. Diffusion is

typically quantified in terms of a relationship between fluctuation of a variable x and time t. A widely

used method of analysis of complexity rests on the assessment of the scaling exponent of the diffusion

process generated by a time series. According to the prescription of Peng et al. [15], the numbers of

a time series are interpreted as generating diffusion fluctuations and one shifts the attention from the

time series to the probability density function (pdf) p(x, t), where x denotes the variable collecting

the fluctuations and t is the diffusion time. In this case, if the time series is stationary, the scaling

property of the pdf of the diffusion process takes the form

p(x, t) =
1

tδ
F
( x
tδ

)
(5.1)

where δ is a scaling exponent. Diffusion may scale linearly with time, leading to ordinary diffusion,

or it may scale nonlinearly with time, leading to anomalous diffusion. Anomalous diffusion processes

can be classified as Gaussian or Lévy, depending on whether the central limit theorem (CLT) holds.

CLT entails ordinary statistical mechanics. That is, it entails a Gaussian form for F in Equation

(5.1) composing a random walk without temporal correlations (i.e., δ = 0). Due to the CLT, the

probability function p(x, t) describing the probabilities of x(t) has a finite second moment < x2 >,

and when the second moment diverges, x(t) no longer falls under the CLT and instead indicated

that the generalized central limit theorem applies. Failures of CLT mean that instead of statistical

mechanics, nonextensive statistical mechanics may be utilized [8,9].

Scafetta and Grigolini [16] established that Diffusion Entropy Analysis (DEA), a method of

statistical analysis based on the Shannon entropy (see Equation (1.1)) of the diffusion process,

determines the correct scaling exponent δ even when the statistical properties, as well as the dynamic

properties, are anomalous. The other methods usually adopted to detect scaling, for example

the Standard Deviation Analysis (SDA), are based on the numerical evaluation of the variance.

Consequently, these methods detect a power index, denoted H by Mandelbrot [17] in honor of

Hurst, which might depart from the scaling δ of Equation (5.1). These variance methods (cf. Fourier

analysis and wavelet analysis; see [18,19] produce correct results in the Gaussian case, where H = δ,

but fail to detect the correct scaling of the pdf, for example, in the case of Lévy flight, where the
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variance diverges, or in the case of Lévy walk, where δ and H do not coincide, being related by

δ = 1/(3 − 2H). The case H = δ = 0.5 is that of a completely uncorrelated random process. The

case δ = 1 is that of a completely regular process undergoing ballistic motion. Figures 1 to 4 clearly

show that the diffusion entropy development over time for solar neutrinos does neither meet the first

nor the latter case. The Shannon entropy, Equation (1.1) for the diffusion process at time t, is defined

by

S(t) = −
∫

p(x, t) ln[p(x, t)] dx (5.2)

If the scaling condition of Equation (5.1) holds true, it is easy to prove that

S(t) = A+ δ ln(t) (5.3)

where

A ≡ −
∫ ∞

−∞
dy F (y) ln[F (y)] (5.4)

and y = x/tδ. Numerically, the scaling coefficient δ can be evaluated by using fitting curves with

the form Equation (5.3) that on a linear-log scale is a straight line. Even though time series extracted

from complex environments may not show a pure scaling behavior as in Equation (5.3) but, instead,

patterns with oscillations due to periodicities, one can still observe how diffusion entropy grows

linearly with time and one can estimate the diffusion exponent with reasonable accuracy.

Figure 1. Standard Diffusion Analysis of the boron solar neutrino data from

SuperKamiokande I and II. The green line coincides with a straight line with the slope

δ = 0.5. The red line reflects the approximated straight slope of the real data with

δ = 0.65. The exact result of the SDA is shown by the blue line and indicates a change

in the diffusion entropy over time from δ > 0.5 to δ = 0.5.
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Figure 2. Diffusion Entropy Analysis of the boron solar neutrino data from

SuperKamiokande I and II. The green line coincides with a straight line with the slope

δ = 0.5. The red line reflects the approximated straight slope of the real data with

δ = 0.88. In comparison with Figure 1, the green and red lines are remarkable different

from each other and indicate strong anomalous diffusion. The exact result of the DEA is

shown by the blue line and indicates a development over time from periodic modulation

to asymptotic saturation.

Figure 3. Standard Diffusion Analysis of the hep solar neutrino data from

SuperKamiokande I and II. The green line coincides with a straight line with the slope

δ = 0.5. The red line reflects the approximated straight slope of the real data with

δ = 0.35. Note the remarkable difference between the boron analysis results δ > 0.5

and the hep analysis results shown in this Figure. with δ < 0.5. This is an indication of

superdiffusion in the first case and subdiffusion in the second case. The exact result of

the SDA is shown by the blue line and indicates a change in the diffusion entropy over

time from δ > 0.5 to δ < 0.5.
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Figures 1–4, respectively, are showing diffusion entropy as a function of time for two different

time series. Figures 1 to 4 show the numerical results of Standard Deviation Analysis and Diffusion

Entropy Analysis for solar neutrino data taken by the SuperKamiokande experiments I (SK-I,

1996–2001, 1496 days, 5.0–20.0 MeV) and II (SK-II, 2002–2005, 791 days, 8.0–20.0 MeV).

SuperKamiokande [20] is a 50 kiloton water Cherenkov detector located at the Kamioka Observatory

of the Institute for Cosmic Ray Research, University of Tokyo. It was designed to study solar neutrino

oscillations and carry out searches for the decay of the nucleon. The SuperKamiokande experiment

began in 1996 and in the ensuing decade of running has produced extremely important results in the

fields of atmospheric and solar neutrino oscillations, along with setting stringent limits on the decay

of the nucleon and the existence of dark matter and astrophysical sources of neutrinos. Perhaps

most crucially, Super-Kamiokande for the first time definitely showed that neutrinos have mass and

undergo flavor oscillations.

An additional feature of the S(t) behavior over time in Figures 2 and 4 are distinct oscillations

characteristic for processes with periodic modulation and asymptotic saturation. They appear for

large δ. At the current stage of research the origin of these oscillations is an open problem [21].

Figure 4. Diffusion Entropy Analysis of the hep solar neutrino data from

SuperKamiokande I and II. The green line coincides with a straight line with the slope

δ = 0.5. The red line reflects the approximated straight slope of the real data with δ =

0.8. In comparison with Figure 3, the green and red lines are remarkable different from

each other similar to the boron data analysis and indicate strong anomalous diffusion. The

exact result of the DEA is shown by the blue line and indicates a development over time

from periodic modulation to asymptotic saturation similar to the boron analysis results.
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6. Conclusions

An α-generalized entropy measure, parallel to Havrda-Charvat entropy and related to Tsallis

entropy, for the scalar, multivariable, and matrix case, respectively, was introduced. This entropy

measure was optimized under different types of restrictions leading to generalized type-1 beta family

of densities, generalized type-2 beta family of densities, and generalized gamma family of densities.

The pathway model, through its α parameter, established links between many entropic, distributional

and differential models utilized in the literature. The pathway model provides the ways and means

to switch from the Gaussian form of densities to heavy-tailed densities, and, through appropriate

normalizing constants, to statistical densities. The simplest case in the pathway model, Shannon

entropy, is used for the numerical treatment of diffusion entropy analysis and compared to standard

deviation analysis for solar neutrino data from SuperKamiokande. Such a procedure will be extended

to other entropy measures of the pathway model in the future. Results of evaluating the simplest

case, Shannon entropy, already shows that the solar neutrino data show non-Gaussian signature

and contain a signal of modulation with subsequent saturation. This is a clear indication of the

superiority of diffusion entropy analysis, focusing on the time development of the probability density

function, in contrast to standard deviation analysis, focusing on the time development of the variance.

Consequences of this results for so-called solar modeling will be discussed elsewhere.
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Abstract: A subject of interest in classical and quantum mechanics is the development

of the appropriate treatment of the time variable. In this paper we introduce a method

of choosing the initial time eigensurface and how this method can be used to generate

time-energy coordinates and, consequently, time-energy representations for classical and

quantum systems.
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1. Introduction

The possible existence of a time operator in Quantum Mechanics has long been a subject

of interest. This subject has been studied from different points of view and has led to several

developments in quantum theory. At the end of this paper there is a short, incomplete, list of papers

on this subject.

However, we can also study the time variable in classical systems to begin to understand how to

address time in quantum systems. In fact, we find that many of the difficulties encountered when

addressing the time variable in quantum systems are also found in classical systems.
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However, we usually only know a dynamical quantity with certainty whereas the conjugate

quantity is not well known. This is the case for the pair of conjugate variables energy and time.

In this paper, we introduce a method of generating an unknown coordinate related to a conjugate pair

of dynamical variables F and G, which may be classical or quantum. This is particularly important

in quantum systems because this is related to the understanding of time in quantum mechanics. There

are no clear methods to define time states, but in this paper, we provide a way to generate these states.

In Section 2, we discuss conjugate variables, introducing the related four vector fields that can

generate the motion of points and of functions in phase space along different directions.

In Section 3, we introduce a method for generating a coordinate system for a conjugate pair of

dynamical variables, including the best choice for the zero time curve. We illustrate the procedure

with three examples: the free particle, the harmonic oscillator, and a nonlinear oscillator.

In Section 4, we generate a time coordinate for quantum systems with discrete spectra. There are

some concluding remarks at the end of this paper.

Our point of view is that the conjugate variables F and G can be used to define an

alternative coordinate system in phase space for classical systems or alternative representations for

quantum systems.

2. Conjugate Variables

Let us consider a classical system and two conjugate functions F (z) and G(z), where z = (qi, pi),

i = 1, 2, 3, is a point in phase space. The conjugacy condition, {F,G} = 1 (the Poisson bracket

between the variables), can be expressed in several ways:

{F,G} = XG · ∇F = XF · ∇G = [XG · ∇, F ] = [XF · ∇, G] = 1 (1)

where

XF =

(
−∂F

∂pi
,
∂F

∂qi

)
= −J∇zF (2)

XG =

(
∂G

∂pi
,−∂G

∂qi

)
= J∇zG (3)

and

J =

(
03×3 I3×3

−I3×3 03×3

)
(4)

The two vector fields XF and XG can be used to generate the motion of points and functions in

phase space in two conjugate directions: along the F or the G direction. The vectors XF and

XG form a basis of a symplectic vector space of dimension two, under the skew-symmetric map

Ω(u, v) := {u, v}, with rank two [1].

Under the standard symplectic form Ω(z, z′) = p ·r′−p′ ·r, the vector fields XF and XG comply

with the fundamental relation, with different signs:

Ω(XG(z), z
′) = −z′ · ∇zG , Ω(XF (z), z

′) = z′ · ∇zF (5)
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Hereafter, we will use dimensionless units with appropriate scaling parameters. Note that the

Poisson bracket between the same dynamical variable vanishes. When applied to the G variable, this

fact may be expressed as follows:

{G,G} = ∇G · J∇G = X⊥G ·XG = 0 (6)

This equality defines a vector field X⊥G := ∇G that is normal to the constant G shell. The vector

field normal to the constant F shell is X⊥F := ∇F . Thus, the pair of vectors XG and X⊥G or XF and

X⊥F are orthogonal. We will take advantage of these properties to choose the initial time eigenstate.

We have found four vector fields indicating four directions along which we can move functions

or phase-space points. The dynamical system defined by the vector field XG (when G = H is the

Hamiltonian of a physical system),

dzG

df
= XG , i.e.,

dqGi
df

=
∂G

∂pi
,

dpGi
df

= −∂G

∂qi
(7)

has been of interest because this system describes the time evolution of phase-space points when G is

the Hamiltonian of a physical system. However, the other vector fields XF , X⊥F , and X⊥G generate

other types of symplectic and non-symplectic motions of points in phase-space:

dzF

dg
= XF i.e.,

dqFi
dg

= −∂F

∂pi

dpFi
dg

=
∂F

∂qi
(8)

dz⊥F

df
= X⊥F , i.e.,

dq⊥F
i

df
=

∂F

∂qi

dp⊥F
i

df
=

∂F

∂pi
(9)

dz⊥G

dg
= X⊥G, i.e.,

dq⊥G
i

dg
=

∂G

∂qi
,

dp⊥G
i

dg
=

∂G

∂pi
(10)

which are also useful, as we will see below, in the examples. Here, f and g are used for

parametrization of the trajectories of the points. They have the same units as F and G respectively.

When G is a Hamiltonian of a physical system, f correspond to the time variable.

As we observed in Equation (1), XF · ∇ and G, as well as XG · ∇ and F , are conjugate pairs.

Therefore, XF · ∇ and XG · ∇ can be used to translate functions in phase space along the G or F

directions as follows: [2–4]

u(z; g) := eg XF ·∇u(z), u(z; f) := ef XG·∇u(z) (11)

The derivatives of these functions are

d

dg
u(z; g) = XF · ∇u(z; g) = {F, u(z; g)} (12)

d

df
u(z; f) = XG · ∇u(z; f) = {u(z; f), G} (13)

We recognise the last equation, when G is the Hamiltonian of a physical system, as the Liouville

equation of motion. Note that, at the sites in which ∂G/∂q vanishes, the dynamical system generated

by G moves points only along the position axis.
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For the motion of functions along the directions that are normal to the constant G or F shells,

we let

u⊥G(z; g) := eg X⊥G·∇u(z) , u⊥F (z; f) := ef X⊥F ·∇u(z) (14)

with the derivatives

d

dg
u⊥G(z; g) = X⊥G · ∇u⊥G(z; g) (15)

d

df
u⊥F (z; f) = X⊥F · ∇u⊥F (z; f) (16)

With the definitions of this section, we can generate an alternative coordinate system in phase

space that is related to the conjugate variables F and G, which is the subject of the next section.

3. Eigenstates and a Method to Generate a Conjugate Coordinate System

Let us assume, as is the case for energy and time variables, that G is well defined, whereas F is

not. We can take any point on an integral line of the dynamical system generated with G as the zero

F value.

Let us consider a location qi = X where ∂G/∂qi = 0 (an extremal point of the potential function,

if G is the Hamiltonian of a mechanical system). When a phase space point is translated with the

vector field XG, the conjugate momentum pi remains unchanged at qi = X and the normal surface to

the energy shells coincides with the coordinate eigenstate at that point, the surface qi = X . Thus, we

can take as the initial time eigensurface the coordinate eigenstate at qi = X , i.e., the hyper surface

defined by the condition qi = X . Next, we propagate this hypersurface with the vector field XG

generating an F coordinate system in phase space. With this choice, we ensure that the initial F

eigensurface intersects all of the constant G shells, and this eigensurface is a simple surface that can

be generated easily.

This method is particularly convenient in quantum mechanics because we now have an easy

way to define a zero-time eigenstate and justifies the use of coordinate eigenstates as the initial

time eigenstates for other potential functions besides the free particle case [2,3,5–7]. The additional

condition to be considered is the use of a coordinate eigenstate at one of the extremal points of the G

function so that the time eigenstates have components with all of the energy eigenvalues.

Most of the functions of interest in classical physics are those that are normalisable, i.e., functions

ρ(z) such that
∫
dz ρ(z) < ∞. However, the functions that are used to obtain a representation for

abstract operators or dynamical variables may be completely unnormalisable. Let us consider a pair

of conjugate variables F and G and the eigenfunctions of these variables; let us use the eigenfunctions

of G,

νF (z; g) := δ(z − zg) (17)

where zg ∈ ΣG(g) and

ΣG(g) = {z|G(z) = g} (18)
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If we evaluate G(z) at the points on the support of this function, we will obtain the value g. Although

the value of G for this eigenfunction is well defined, equal to g, and may be defined in a finite region

of phase space, these statements will not be true for the value of F because this value will involve all

possible values of f with equal weight, and the eigenfunctions of F might extend to infinite regions

of phase space. This fact is illustrated with the examples, below.

3.1. Case F = q, G = p; the Phase Space

In this section, we show that the usual phase space coordinates comply with the results of the

previous sections.

Let us consider the phase-space with coordinates (q, p), and the dynamical variables F = q and

G = p on this space. The necessary Poisson bracket and commutators are

{q, p} = 1 ,

[
d

dq
, q

]
= 1 ,

[
d

dp
, p

]
= 1 (19)

and the related vector fields are

XF = (0, 1) , XG = (1, 0) , X⊥G = (0, 1) , X⊥F = (1, 0) (20)

The evolution equations for motion of phase space points along the coordinate and momentum

directions are

dzG

dq
= (1, 0) ,

dzF

dp
= (0, 1) (21)

dz⊥G

dq
= (0, 1) ,

dz⊥F

dp
= (1, 0) (22)

The motion of functions can be achieved with the Liouville type operators

XG · ∇ =
∂

∂q
, XF · ∇ =

∂

∂p
(23)

X⊥G · ∇ = ∇G · ∇ =
∂

∂p
, X⊥F · ∇ = ∇F · ∇ =

∂

∂q
(24)

The normal direction to the constant p surfaces coincide with the momentum axis, and as a result,

translations along the momentum direction are parallel to the momentum axis; a similar result can be

found for motion on the conjugate direction. The translated functions are

u⊥F (z; q′) := eq
′∂/∂qu(z) = u⊥F (p, q + q′) (25)

u⊥G(z; p′) := ep
′∂/∂pu(z) = u⊥G(p+ p′, q) (26)

with evolution equations

d

dq′
u⊥F (z; q′) =

[
∂

∂q
, u⊥F (z; q′)

]
(27)

d

dp′
u⊥G(z; p′) =

[
∂

∂p
, u⊥G(z; p′)

]
(28)
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In this case, ∂G/∂q = 0, and ∂F/∂p = 0, therefore, we can chose any location on the q axis as

the origin of coordinates, and the translation of these curves will cover the phase space generating

a coordinate system. The eigenfunction of Q̂ at q = 0 in phase space representation, νQ(z; 0), is a

delta function with the curve q = 0 as support

νQ(z; 0) =
1

Δp
δ(q) (29)

where Δp = p2 − p1 is the range of p values with which we are working. Other coordinate

eigenfunctions are generated by means of a shift along the coordinate direction. The coordinate

eigenfunction with an eigenvalue x is

νQ(z; x) =
1

Δp
e−x∂/∂qδ(q) =

1

Δp
δ(q − x) (30)

The shifting of these eigenfunctions, in the q direction, results in the eigenfunction with the new,

shifted, eigenvalue

e−s∂/∂qνQ(z; x) =
1

Δp
e−(x+s)∂/∂qδ(q) =

1

Δp
δ(q − x− s)

= νQ(z; x+ s) (31)

Similar properties can be found for classical momentum eigenfunctions in phase space

νP (z; p0) = δ(p− p0)/Δq.

3.2. Free Particle

Once we have defined the phase-space coordinate system, we can define additional coordinate

systems that are appropriate for studying the dynamics of particular physical systems. We start with

a simple system: the free particle.

For the free particle, we take F = t and G = H = p2/2m. The four vector fields are

XF =

(
q −X

p2
,
1

p

)
, XG = (p, 0) (32)

X⊥F =

(
1

p
,−q −X

p2

)
, X⊥G = (0, p) (33)

and the corresponding dynamical systems are

dz

df
= XG = (p, 0)

dz

dg
= XF =

(
q −X

p2
,
1

p

)
(34)

We will generate a time-energy coordinate system for the free particle on the plane with the

coordinates (q, p). The dynamical system obtained from XG indicates that we can define F values

by taking a point on the plane (with a definite value of p) generating horizontal lines by changing

the values of f , covering the plane. We might chose the f = 0 value at any place on the generated

curves. However, we can use the normal direction to the constant G curves to connect the f = 0

points on each of the integral lines.



35

The normal direction to the constant G curves is given by X⊥G = (0, p). In this case, the normal

direction to the constant G curves is the p direction. The proper coordinate system for the free particle

is obtained by propagating the origin-of-time curve, which is the q = 0 curve, in time. We can also

take any other coordinate eigencurve q = X here. As a result, we will obtain the following set

of curves

ΣT (t) = {z ∈ T ∗Q|q = X − pt} (35)

where T ∗Q stands for the phase-space. The points on one of these curves will correspond to a value

of time t. Together with the constant energy shells,

ΣH(ε) = {z ∈ T ∗Q|H(z) = ε} (36)

the time and energy curves constitute an alternative coordinate system in phase space. Note that,

motion of a phase space point requires the parameter t when using the pair of variables (q, p). When

using the pair (t, ε), time evolution for conservative systems is just a shift along the time axis, without

a change of energy values.

Thus, the proper coordinates for the free particle are obtained by setting F = (q − X)/p and

G = p2/2 (time and energy).

The Poisson bracket between F and G is

{F,G} =
∂(q −X)/p

∂q

∂p2/2

∂p
− ∂p2/2

∂q

∂(q −X)/p

∂p
=

1

p
p = 1 (37)

with the domain composed of the whole of phase space.

Usually, we select an initial point in phase space (q0, p0) and integrate the equations of motion to

obtain the time evolution of this initial condition. The initial point is chosen arbitrarily but the second

dynamical system in Equation (34) imposes some continuity on points along the time direction.

This method of generating a coordinate system for motion in phase space involves two properties:

(i) an initial surface is chosen and propagated in phase space; and (ii) the initial surface contains

all the values of the conjugate variable. These two properties are also used when generating

coordinates for quantum systems (the Heisenberg uncertainty principle applied to classical and

quantum eigenstates).

3.3. Time-Energy Coordinates for the Harmonic Oscillator

The harmonic oscillator potential has a minimum at q = 0. Because this system is periodic,

we take the upper half of the momentum axes as the initial time eigencurve. As a result (in

dimensionless units)

t = cot−1

(
p

q

)
, ε =

1

2
(q2 + p2) (38)

q =
√
2ε sin(t) , p =

√
2ε cos(t) (39)
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By keeping either t or ε fixed and changing the other value, we generate the energy or time coordinate

system in phase space. Therefore, the constant time curves are

ΣT (t) = {z ∈ T ∗Q|p = q cot(t)} (40)

and the constant energy shell is

ΣH(ε) = {z ∈ T ∗Q|H(q, p) = ε} (41)

Let F = cot−1(p/q) and G = (q2 + p2)/2. The Jacobian of this transformation evaluates to one

as is also the case of the Poisson bracket between F and G,

{F,G} =
∂F

∂q

∂G

∂p
− ∂G

∂q

∂F

∂p
=

p

q2 + p2
p+ q

q

q2 + p2
= 1 (42)

This Poisson bracket also evaluates to one when calculated in the (F,G) space. The domain of this

Poisson bracket is the phase space, i.e. F ∈ (−∞,∞) and G ∈ [0,∞).

The vector fields for motion along the conjugate F and G directions in phase space

coordinates are

XF =
1√
2G

(sin(F ), cos(F )) , XG =
√
2G(cos(F ),− sin(F )) (43)

The divergence of these vector fields is zero. Motion along the conjugate directions F and G

preserves the phase-space volume.

The Lie derivatives along these directions are

XF · ∇ =
∂

∂G
, XG · ∇ =

∂

∂F
(44)

With these derivatives, we can move functions along the G or F directions. Note that any function

of G is a steady state for evolution along the F direction, and vice versa.

The vector fields in the (F,G) representation take a simple form

XF (F,G) = (1, 0) , XG(F,G) = (0, 1) (45)

and the normal direction in phase space to the energy shells is

∇G =

(
∂G

∂q
,
∂G

∂p

)
= (q, p) (46)

i.e., the radial direction.

The equations of motion for points in phase space become equalities in (F,G) space:

dq

dt
= p ,

d

dF

√
2G sin(F ) =

√
2G cos(F ) (47)

dp

dt
= −q , d

dF

√
2G cos(F ) = −

√
2G sin(F ) (48)

For time evolution, the Liouville operator becomes ∂/∂t, and the shift in the energy is ∂/∂ε = 0;

the translation of functions along the F direction given by the following well-known relation:

u(z; f) := e−fXG·∇u(z) (49)

In this system, the time eigencurves resemble the polar coordinate system, which is the best

coordinate system to describe the dynamics of the harmonic oscillator.
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3.4. The Nonlinear Oscillator

In this section, we will be focused on the task of generating a conjugate coordinate system for

time when only one of the conjugate dynamical variables, the energy, is known.

The Hamiltonian of a nonlinear oscillator is

H(z) =
p2

2
+

k

2

(√
a2 + q2 − �

)2
(50)

where k, a and � are the parameters of the model [3,8]. The curves generated with the gradient of

the Hamiltonian,

∇H(z) =

(
kq

(
1− �√

a2 + q2

)
, p

)
(51)

are shown in Figure 1. The simplest curves are the ones located at the extremal points of the potential

function, at q = 0,±√�2 − a2, where the force vanishes. At those points, the lines are parallel to the

momentum axis, which is the coordinate eigencurve at the extremal sites.

Figure 1. Normal curves to the energy surfaces for the nonlinear oscillator, with � = 2,

k = 9.8 and a = 1. We only show the positive q axis. Any of these curves can be

used as an initial time curve, but the curves that correspond to the extremal points of the

potential function (q = 0,±√�2 − a2) are the simplest ones: straight lines parallel to the

coordinate axes.

p

q

Therefore, we can take any of the curves passing through the extremal points as an initial time

eigencurve and generate a time coordinate system with these curves. These curves will cross all the

values of energy, a necessary condition for classical and quantum time eigenstates. By taking the line

q =
√
�2 − a2 as the initial time eigenstate, we generate the time coordinate system in phase space

shown in Figure 2. The idea of using a coordinate eigencurve at an extremal point of the potential

function as the origin of time can also be used for quantum systems.
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Figure 2. A time coordinate system for the nonlinear oscillator, generated with the initial

curve q =
√
�2 − a2, with � = 2, k = 9.8 and a = 1. These curves will cover the phase

space several times because the system is periodic.
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Because time and energy are simply another set of coordinates in phase space, a probability

density will have widths along these directions. For instance, a Gaussian probability density in

energy-time space, centred at (t0, ε0) and given by

ρ(τ, ε) =
1

πσα
e−(t−t0)2/2σ2−(ε−ε0)2/2α2

(52)

where σ and α are the density’s widths in time and energy, respectively, will correspond to a

phase-space probability density that also has non-vanishing widths. This result is shown in Figure 3.

Figure 3. Density plots of the time-energy and phase-space representations of a

time-energy Gaussian probability density for the nonlinear oscillator, with � = 2, k = 9.8

and a = 1. The widths are non-zero in both representations.
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Time evolution in energy-time space is simply a shift along the time axis without a change of the

shape of the probability density. However, this action corresponds to symplectomorphisms that will

change the shape of the probability density in phase space.

4. Quantum Systems

In quantum systems, we can also use coordinate eigenfunctions as the zero-time presence

eigenstate. Let us rewrite the coordinate representation of a wave function as follows:

ψ(q; t) = 〈q|e−itĤ/�|ψ〉 (53)
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Thus, the wave function can be viewed as the projection of the ket |ψ〉 on the ket eitĤ/�|q〉. In the

coordinate representation of the wave packet, t is a parameter and the wave function has q as the

independent variable. However, we can fix the coordinate: let us say that q = X and that t is the

independent variable. We then define the time eigenstate as

|t〉 := e−itĤ/�|q = X〉 (54)

Based on the results of the previous section, we propose to use the free-particle eigenstates at the

location q = X of the extremal points of the potential function as the zero-time eigenstates. At the

extremal points, the Hamiltonian looks like the free-particle Hamiltonian.

If the zero-time value is assigned to the coordinate eigenstate |q = X〉, where X is one of the

extremal points of the potential function, the kets generated with the propagator are the time eigenkets

for other values of time. Assuming that the relationship [T̂ , Ĥ] = i� holds, we can show that the time

eigenkets generated with the propagator are eigenfunctions of the time operator:

T̂ |t〉 = T̂ e−itĤ/�|q = X〉 =
(
e−itĤ/�T̂ − i�

i

�
te−itĤ/�

)
|q = X〉 = t|t〉 (55)

where we have made use of the property that T̂ |q = X〉 = 0.

Denoting the time-reversal operator (complex conjugation and replacement t → −t) by Θ, the

time eigenstate is invariant under the following operation:

Θ|t〉 =
(
e−itĤ/�|X〉

)∗
t→−t

= |t〉 (56)

The time eigenvectors can be used to write the identity operator as

1

T

∫ T/2

−T/2

dt e−itĤ/�|X〉〈X|eitĤ/� =
∑
mn

1

T

∫ T/2

−T/2

dt eit(En−Em)/�|m〉〈m|X〉〈X|n〉〈n|

=
∑
mn

2�

T (En − Em)
sin

(
T (En − Em)

2�

)
|m〉〈m|X〉〈X|n〉〈n|

−→
T→∞

∑
n

|n〉〈n|X〉〈X|n〉〈n| = Î (57)

where we have set 〈X|n〉 = eiαn , i.e., a phase factor. This choice for 〈X|n〉 as a phase factor is fixing

the state that should be used. Below, we will identify what these phase factors are (see Equation (67)).

We are using this particular state for the generation of a time coordinate for any potential function,

just as for the classical case. Phase factors were also used by Bokes in the stroboscopic wave packet

basis [9–12], and by Hegerfeldt and coworkers [13].

A time operator is defined as

T̂ (T ) :=
1

T

∫ T/2

−T/2

dt |t〉t〈t| (58)

Because the time eigenstates are time reversal invariant, the time operator complies with the

desired property:

ΘT̂ (T )Θ = −T̂ (T ) (59)
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The energy representation of the time operator can be readily found:

T̂ (T ) :=
1

T

∫ T/2

−T/2

dt e−itĤ/�|X〉t〈X|eitĤ/� =
∑
mn

1

T

∫ T/2

−T/2

dt t eit(En−Em)/�|m〉〈m|X〉〈X|n〉〈n|

=
∑
m �=n

i�

En − Em

[
2�

T (En − Em)
sin

(
T (En − Em)

2�

)
− cos

(
T (En − Em)

2�

)]
ei(αn−αm)|m〉〈n| (60)

Thus, we have expressed the time operator in the time representation and in the energy representation.

The time operator found by Galapon is similar to our operator in the energy representation but

without the oscillating factors [14–16]. That operator complies with the commutator with the energy

relationship but in a limited domain, and it is not clear what the eigenvectors of this operator are.

Our operator emerges in a natural way and also complies with the requirements for a time operator.

It is easy to see that the time operator is self-adjoint, and a finite Fourier transform of the time

eigenvector is

1

T

∫ T/2

−T/2

dt eitEm/�|t〉 = 1

T

∫ T/2

−T/2

dt eitEm/�e−itĤ/�|X〉 =
∑
n

1

T

∫ T/2

−T/2

dt eitEm/�e−itĤ/�|n〉〈n|X〉

=
∑
n

1

T

∫ T/2

−T/2

dt eit(Em−En)/�|n〉e−iαn =
∑
n

e−iαn
2�

T (Em − En)
sin

(
T (Em − En)

2�

)
|n〉

=
∑
n

e−iαn
sin(Txn/2�)

Txn/2�
|n〉
∣∣∣∣∣
xn=Em−En

−→
T→∞

e−iαm |m〉 (61)

the corresponding energy eigenvector. The discrete inverse transform of the energy eigenvectors,

with the appropriate phases, is∑
m

e−itEm/�e−iαm |m〉 = e−itĤ/�
∑
m

〈m|X〉|m〉 = e−itĤ/�|X〉 = |t〉 (62)

Time eigenstates at the same time but generated with different zero time kets are orthogonal,

〈t;X ′|t;X〉 = 〈X ′|eitĤ/�e−itĤ/�|X〉 = 〈X ′|X〉 = δ(X ′ −X) (63)

However, there are parts of the time eigenstate with zero momentum. These components with zero

momentum will overlap for all time; as a result, the time eigenstates generated with the same initial

eigenstates will not be orthogonal:

〈t′;X|t;X〉 = 〈X|eit′Ĥ/�e−itĤ/�|X〉 = 〈X|e−i(t−t′)Ĥ/�|X〉 = 〈0;X|(t− t′);X〉 (64)

To determine the commutator between T̂ and Ĥ , let us do the following

T̂ (T )Ĥ =
1

T

∫ T/2

−T/2

dt e−itĤ/�|X〉t〈X|eitĤ/�Ĥ =
1

T

∫ T/2

−T/2

dt e−itĤ/�|X〉t〈X|
(
−i� d

dt
eitĤ/�

)

= − 1

T
e−itĤ/�|X〉t〈X|i�eitĤ/�

∣∣∣∣T/2
−T/2

+ i�
1

T

∫ T/2

−T/2

dt
d

dt

(
e−itĤ/�|X〉t〈X|

)
eitĤ/�

= − 1

T
e−itĤ/�|X〉t〈X|i�eitĤ/�

∣∣∣∣T/2
−T/2

+ i�
1

T

∫ T/2

−T/2

dt

(
− i

�

)
Ĥe−itĤ/�|X〉t〈X|eitĤ/�

+i�
1

T

∫ T/2

−T/2

dt e−itĤ/�|X〉〈X|eitĤ/� (65)
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Thus, [
T̂ (T ), Ĥ

]
= i�− i

�

T
| − t〉t〈−t|

∣∣∣T/2
−T/2

(66)

The last term will vanish for large T when applied to a wave function, assuming that the wave

function is localised in a finite region of t. This localisation is expected for L2 integrable functions.

The boundary term will also vanish for t-periodic wave functions. A state for which the boundary

term might not vanish is an eigenstate of the Hamiltonian when the potential function is not periodic.

However, eigenstates of some operators can become complicated as is the case of the momentum

eigenstates, which are not normalisable. In those cases, we might consider the use of a limited set of

eigenvalues to eliminate the boundary terms. In numerical studies we have to work in finite regions

of phase space and then the boundary terms can be safely neglected.

Now, the free-particle energy eigenstate, in coordinate representation, is

〈q|ε〉 = 〈q|p〉 = eipq/� (67)

These states are precisely what we need: a state such that 〈X|n〉 = eiαn , where αn = X
√
2En =

tnEn and tn = X
√

2/En. Thus, we can use a coordinate eigenstate placed at any point but it would

be better, however, to place the eigenstate at the locations of the extremal points of the potential

function, in accordance with the discussion of the previous section. With this choice, we ensure that

the time eigenstate will be formed with all of the energy eigenstates. A coordinate eigenstate with

origin at other points will most likely not contain all of the energy values.

Finally, we note that we can derive similar results for the cases of degeneracy of the energy

eigenfunctions and for continuous energy spectra [13].

5. Conclusions

We have introduced a change of variables to simplify the description of the time evolution of a

classical system; this method differs from a canonical transformation. Canonical transformations are

intended to preserve the form of Hamilton’s equations of motion, whereas the variables are changed;

the time variable remains a parameter. However, our transformation changes to a set of variables

in which the motion in time does not require an extra parameter. This transformation reduces the

number of variables required to follow time evolution, one of which is the time variable.

We note that in the phase-space coordinate system, the constant momentum curves encompass

all the coordinate values, and vice versa. Similarly, the constant time surfaces should cross all values

of energy, unless we are interested in a subset of the energy values. A way to ensure this property

is to follow the normal direction ∇H to the constant energy shells. These curves can become very

complicated; therefore, we have found the simplest curves, the lines parallel to the momentum axis

placed at the extremal points of the potential function. At the location in which there is no force, the

particle behaves as a free particle; the free-particle presence eigenfunctions can also be used in the

non-free case. The free-particle coordinate eigenstates have been used previously, but in this paper

we have found the best location for these surfaces.



42

Thus, we propose the use of conjugate “proper coordinates": the time-energy hypersurfaces.

These coordinates led to a simpler analysis of the motion of points and functions in phase space.

Our treatment also sheds light on the way in which we can address time in quantum systems:

to generate the time eigenfunctions by starting with the free-particle eigenfunction placed at the

zero-force location. We can also use the free-particle eigenfunctions if these functions are placed at

other sites, however, these eigenfunctions might not contain all of the energy values.

These results can be extended to more dimensions than one. In the case of more dimensions, we

fix one of the coordinates obtaining a hypersurface in phase-space, and we will end up with one less

variables to deal with.

We also mention that we can use a finite range of energy values for the time eigenstates. In

that case, the curves will be contained in a finite region of phase space, which is suitable for

numerical calculations.

These results are also applicable to the so-called Maxwell Hamiltonians, which are Hamiltonians

of the form

H(z) =
1

2m
(p− A(z))2 + V (q) (68)

where the conjugate moment p is defined by

p = mv + A(z) (69)

Our approach to the correspondence between classical and quantum mechanics is different from

earlier approaches [17,18] because we are simply using objects that are already part of these theories

but that have not yet been explored.

The phase factors attached to the energy eigenfunctions allow the placement of the initial time

eigenstate at any chosen location, and we have shown the best locations in which to place the initial

time eigenstate.
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Abstract: In this paper, we combine the two universalisms of thermodynamics and

dynamical systems theory to develop a dynamical system formalism for classical

thermodynamics. Specifically, using a compartmental dynamical system energy flow

model involving heat flow, work energy, and chemical reactions, we develop a state-space

dynamical system model that captures the key aspects of thermodynamics, including its

fundamental laws. In addition, we show that our thermodynamically consistent dynamical

system model is globally semistable with system states converging to a state of temperature

equipartition. Furthermore, in the presence of chemical reactions, we use the law of

mass-action and the notion of chemical potential to show that the dynamic system states

converge to a state of temperature equipartition and zero affinity corresponding to a state of

chemical equilibrium.

Keywords: system thermodynamics; energy flow; interconnected systems; entropy;

Helmholtz free energy; Gibbs free energy; chemical thermodynamics; mass action kinetics;

chemical potential; neuroscience and thermodynamics



46

1. Introduction

Thermodynamics is a physical branch of science that governs the thermal behavior of dynamical

systems from those as simple as refrigerators to those as complex as our expanding universe. The laws of

thermodynamics involving conservation of energy and nonconservation of entropy are, without a doubt,

two of the most useful and general laws in all sciences. The first law of thermodynamics, according to

which energy cannot be created or destroyed but is merely transformed from one form to another, and

the second law of thermodynamics, according to which the usable energy in an adiabatically isolated

dynamical system is always diminishing in spite of the fact that energy is conserved, have had an impact

far beyond science and engineering. The second law of thermodynamics is intimately connected to the

irreversibility of dynamical processes. In particular, the second law asserts that a dynamical system

undergoing a transformation from one state to another cannot be restored to its original state and at

the same time restore its environment to its original condition. That is, the status quo cannot be restored

everywhere. This gives rise to a monotonically increasing quantity known as entropy. Entropy permeates

the whole of nature, and unlike energy, which describes the state of a dynamical system, entropy is a

measure of change in the status quo of a dynamical system.

There is no doubt that thermodynamics is a theory of universal proportions whose laws reign supreme

among the laws of nature and are capable of addressing some of science’s most intriguing questions

about the origins and fabric of our universe. The laws of thermodynamics are among the most firmly

established laws of nature and play a critical role in the understanding of our expanding universe. In

addition, thermodynamics forms the underpinning of several fundamental life science and engineering

disciplines, including biological systems, physiological systems, chemical reaction systems, ecological

systems, information systems, and network systems, to cite but a few examples. While from its inception

its speculations about the universe have been grandiose, its mathematical foundation has been amazingly

obscure and imprecise [1–4]. This is largely due to the fact that classical thermodynamics is a physical

theory concerned mainly with equilibrium states and does not possess equations of motion. The absence

of a state space formalism in classical thermodynamics, and physics in general, is quite disturbing and

in our view largely responsible for the monomeric state of classical thermodynamics.

In recent research [4–6], we combined the two universalisms of thermodynamics and dynamical

systems theory under a single umbrella to develop a dynamical system formalism for classical

thermodynamics so as to harmonize it with classical mechanics. While it seems impossible to reduce

thermodynamics to a mechanistic world picture due to microscopic reversibility and Poincaré recurrence,

the system thermodynamic formulation of [4] provides a harmonization of classical thermodynamics

with classical mechanics. In particular, our dynamical system formalism captures all of the key aspects of

thermodynamics, including its fundamental laws, while providing a mathematically rigorous formulation

for thermodynamical systems out of equilibrium by unifying the theory of heat transfer with that of

classical thermodynamics. In addition, the concept of entropy for a nonequilibrium state of a dynamical

process is defined, and its global existence and uniqueness is established. This state space formalism of
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thermodynamics shows that the behavior of heat, as described by the conservation equations of thermal

transport and as described by classical thermodynamics, can be derived from the same basic principles

and is part of the same scientific discipline.

Connections between irreversibility, the second law of thermodynamics, and the entropic arrow of

time are also established in [4,6]. Specifically, we show a state irrecoverability and, hence, a state

irreversibility nature of thermodynamics. State irreversibility reflects time-reversal non-invariance,

wherein time-reversal is not meant literally; that is, we consider dynamical systems whose trajectory

reversal is or is not allowed and not a reversal of time itself. In addition, we show that for every

nonequilibrium system state and corresponding system trajectory of our thermodynamically consistent

dynamical system, there does not exist a state such that the corresponding system trajectory completely

recovers the initial system state of the dynamical system and at the same time restores the energy

supplied by the environment back to its original condition. This, along with the existence of a global

strictly increasing entropy function on every nontrivial system trajectory, establishes the existence of

a completely ordered time set having a topological structure involving a closed set homeomorphic

to the real line, thus giving a clear time-reversal asymmetry characterization of thermodynamics and

establishing an emergence of the direction of time flow.

In this paper, we reformulate and extend some of the results of [4]. In particular, unlike the framework

in [4] wherein we establish the existence and uniqueness of a global entropy function of a specific

form for our thermodynamically consistent system model, in this paper we assume the existence of

a continuously differentiable, strictly concave function that leads to an entropy inequality that can be

identified with the second law of thermodynamics as a statement about entropy increase. We then

turn our attention to stability and convergence. Specifically, using Lyapunov stability theory and the

Krasovskii–LaSalle invariance principle [7], we show that for an adiabatically isolated system, the

proposed interconnected dynamical system model is Lyapunov stable with convergent trajectories to

equilibrium states where the temperatures of all subsystems are equal. Finally, we present a state-space

dynamical system model for chemical thermodynamics. In particular, we use the law of mass-action

to obtain the dynamics of chemical reaction networks. Furthermore, using the notion of the chemical

potential [8,9], we unify our state space mass-action kinetics model with our thermodynamic dynamical

system model involving energy exchange. In addition, we show that entropy production during chemical

reactions is nonnegative and the dynamical system states of our chemical thermodynamic state space

model converge to a state of temperature equipartition and zero affinity (i.e., the difference between the

chemical potential of the reactants and the chemical potential of the products in a chemical reaction).

The central thesis of this paper is to present a state space formulation for equilibrium and

nonequilibrium thermodynamics based on a dynamical system theory combined with interconnected

nonlinear compartmental systems that ensures a consistent thermodynamic model for heat, energy, and

mass flow. In particular, the proposed approach extends the framework developed in [4] addressing

closed thermodynamic systems that exchange energy but not matter with the environment to open
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thermodynamic systems that exchange matter and energy with their environment. In addition, our results

go beyond the results of [4] by developing rigorous notions of enthalpy, Gibbs free energy, Helmholtz

free energy, and Gibbs’ chemical potential using a state space formulation of dynamics, energy and

mass conservation principles, as well as the law of mass-action kinetics and the law of superposition of

elementary reactions without invoking statistical mechanics arguments.

2. Notation, Definitions, and Mathematical Preliminaries

In this section, we establish notation, definitions, and provide some key results necessary for

developing the main results of this paper. Specifically, R denotes the set of real numbers, Z+

(respectively, Z+) denotes the set of nonnegative (respectively, positive) integers, Rq denotes the set

of q× 1 column vectors, Rn×m denotes the set of n×m real matrices, Pn (respectively, Nn) denotes the

set of positive (respectively, nonnegative) definite matrices, (·)T denotes transpose, Iq or I denotes the

q × q identity matrix, e denotes the ones vector of order q, that is, e � [1, . . . , 1]T ∈ R
q, and ei ∈ R

q

denotes a vector with unity in the ith component and zeros elsewhere. For x ∈ R
q we write x ≥≥ 0

(respectively, x >> 0) to indicate that every component of x is nonnegative (respectively, positive). In

this case, we say that x is nonnegative or positive, respectively. Furthermore, R
q

+ and R
q
+ denote the

nonnegative and positive orthants of Rq, that is, if x ∈ R
q, then x ∈ R

q

+ and x ∈ R
q
+ are equivalent,

respectively, to x ≥≥ 0 and x >> 0. Analogously, R
n×m

+ (respectively, Rn×m
+ ) denotes the set of

n ×m real matrices whose entries are nonnegative (respectively, positive). For vectors x, y ∈ R
q, with

components xi and yi, i = 1, . . . , q, we use x ◦ y to denote component-by-component multiplication,

that is, x ◦ y � [x1y1, . . . , xqyq]
T. Finally, we write ∂S ,

◦
S, and S to denote the boundary, the interior,

and the closure of the set S, respectively.

We write ‖ · ‖ for the Euclidean vector norm, V ′(x) � ∂V (x)
∂x

for the Fréchet derivative of V at x,

Bε(α), α ∈ R
q, ε > 0, for the open ball centered at α with radius ε, and x(t)→M as t→∞ to denote

that x(t) approaches the set M (that is, for every ε > 0 there exists T > 0 such that dist(x(t),M) < ε

for all t > T , where dist(p,M) � infx∈M ‖p− x‖). The notions of openness, convergence, continuity,

and compactness that we use throughout the paper refer to the topology generated on D ⊆ R
q by the

norm ‖ · ‖. A subsetN of D is relatively open in D ifN is open in the subspace topology induced on D
by the norm ‖ · ‖. A point x ∈ R

q is a subsequential limit of the sequence {xi}∞i=0 in R
q if there exists a

subsequence of {xi}∞i=0 that converges to x in the norm ‖ · ‖. Recall that every bounded sequence has at

least one subsequential limit. A divergent sequence is a sequence having no convergent subsequence.

Consider the nonlinear autonomous dynamical system

ẋ(t) = f(x(t)), x(0) = x0, t ∈ Ix0 (1)

where x(t) ∈ D ⊆ R
n, t ∈ Ix0 , is the system state vector, D is a relatively open set, f : D → R

n is

continuous on D, and Ix0 = [0, τx0), 0 ≤ τx0 ≤ ∞, is the maximal interval of existence for the solution

x(·) of Equation (1). We assume that, for every initial condition x(0) ∈ D, the differential Equation (1)
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possesses a unique right-maximally defined continuously differentiable solution which is defined on

[0,∞). Letting s(·, x) denote the right-maximally defined solution of Equation (1) that satisfies the

initial condition x(0) = x, the above assumptions imply that the map s : [0,∞)×D → D is continuous

([Theorem V.2.1] [10]), satisfies the consistency property s(0, x) = x, and possesses the semigroup
property s(t, s(τ, x)) = s(t + τ, x) for all t, τ ≥ 0 and x ∈ D. Given t ≥ 0 and x ∈ D, we denote the

map s(t, ·) : D → D by st and the map s(·, x) : [0,∞) → D by sx. For every t ∈ R, the map st is a

homeomorphism and has the inverse s−t.

The orbit Ox of a point x ∈ D is the set sx([0,∞)). A set Dc ⊆ D is positively invariant relative

to Equation (1) if st(Dc) ⊆ Dc for all t ≥ 0 or, equivalently, Dc contains the orbits of all its points.

The set Dc is invariant relative to Equation (1) if st(Dc) = Dc for all t ≥ 0. The positive limit set of

x ∈ R
q is the set ω(x) of all subsequential limits of sequences of the form {s(ti, x)}∞i=0, where {ti}∞i=0

is an increasing divergent sequence in [0,∞). ω(x) is closed and invariant, and Ox = Ox ∪ ω(x) [7].

In addition, for every x ∈ R
q that has bounded positive orbits, ω(x) is nonempty and compact, and,

for every neighborhood N of ω(x), there exists T > 0 such that st(x) ∈ N for every t > T [7].

Furthermore, xe ∈ D is an equilibrium point of Equation (1) if and only if f(xe) = 0 or, equivalently,

s(t, xe) = xe for all t ≥ 0. Finally, recall that if all solutions to Equation (1) are bounded, then it follows

from the Peano–Cauchy theorem ([7] [p. 76]) that Ix0 = R.

Definition 2.1 ([11] [pp. 9, 10] ). Let f = [f1, . . . , fn]
T : D ⊆ R

n

+ → R
n. Then f is essentially

nonnegative if fi(x) ≥ 0, for all i = 1, . . . , n, and x ∈ R
n

+ such that xi = 0, where xi denotes the ith
component of x.

Proposition 2.1 ([11] [p. 12] ). Suppose R
n

+ ⊂ D. Then R
n

+ is an invariant set with respect to
Equation (1) if and only if f : D → R

n is essentially nonnegative.

Definition 2.2 ([11] [pp. 13, 23] ). An equilibrium solution x(t) ≡ xe ∈ R
n

+ to Equation (1) is Lyapunov

stable with respect to R
n

+ if, for all ε > 0, there exists δ = δ(ε) > 0 such that if x ∈ Bδ(xe) ∩ R
n

+, then
x(t) ∈ Bε(xe) ∩ R

n

+, t ≥ 0. An equilibrium solution x(t) ≡ xe ∈ R
n

+ to Equation (1) is semistable

with respect to R
n

+ if it is Lyapunov stable with respect to R
n

+ and there exists δ > 0 such that if
x0 ∈ Bδ(xe)∩R

n

+, then limt→∞ x(t) exists and corresponds to a Lyapunov stable equilibrium point with
respect to R

n

+. The system given by Equation (1) is said to be semistable with respect to R
n

+ if every
equilibrium point of Equation (1) is semistable with respect to R

n

+. The system given by Equation (1) is
said to be globally semistable with respect to R

n

+ if Equation (1) is semistable with respect to R
n

+ and,
for every x0 ∈ R

n

+, limt→∞ x(t) exists.

Proposition 2.2 ([11] [p. 22]). Consider the nonlinear dynamical system given by Equation (1) where f
is essentially nonnegative and let x ∈ R

n

+. If the positive limit set of Equation (1) contains a Lyapunov
stable (with respect to R

n

+) equilibrium point y, then y = limt→∞ s(t, x).
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3. Interconnected Thermodynamic Systems: A State Space Energy Flow Perspective

The fundamental and unifying concept in the analysis of thermodynamic systems is the concept

of energy. The energy of a state of a dynamical system is the measure of its ability to produce

changes (motion) in its own system state as well as changes in the system states of its surroundings.

These changes occur as a direct consequence of the energy flow between different subsystems within

the dynamical system. Heat (energy) is a fundamental concept of thermodynamics involving the

capacity of hot bodies (more energetic subsystems with higher energy gradients) to produce work.

As in thermodynamic systems, dynamical systems can exhibit energy (due to friction) that becomes

unavailable to do useful work. This in turn contributes to an increase in system entropy, a measure of

the tendency of a system to lose the ability of performing useful work. In this section, we use the state

space formalism to construct a mathematical model of a thermodynamic system that is consistent with

basic thermodynamic principles.

Specifically, we consider a large-scale system model with a combination of subsystems

(compartments or parts) that is perceived as a single entity. For each subsystem (compartment) making

up the system, we postulate the existence of an energy state variable such that the knowledge of these

subsystem state variables at any given time t = t0, together with the knowledge of any inputs (heat

fluxes) to each of the subsystems for time t ≥ t0, completely determines the behavior of the system for

any given time t ≥ t0. Hence, the (energy) state of our dynamical system at time t is uniquely determined

by the state at time t0 and any external inputs for time t ≥ t0 and is independent of the state and inputs

before time t0.

More precisely, we consider a large-scale interconnected dynamical system composed of a large

number of units with aggregated (or lumped) energy variables representing homogenous groups of these

units. If all the units comprising the system are identical (that is, the system is perfectly homogeneous),

then the behavior of the dynamical system can be captured by that of a single plenipotentiary

unit. Alternatively, if every interacting system unit is distinct, then the resulting model constitutes

a microscopic system. To develop a middle-ground thermodynamic model placed between complete

aggregation (classical thermodynamics) and complete disaggregation (statistical thermodynamics), we

subdivide the large-scale dynamical system into a finite number of compartments, each formed by a large

number of homogeneous units. Each compartment represents the energy content of the different parts of

the dynamical system, and different compartments interact by exchanging heat. Thus, our compartmental

thermodynamic model utilizes subsystems or compartments with describe the energy distribution among

distinct regions in space with intercompartmental flows representing the heat transfer between these

regions. Decreasing the number of compartments results in a more aggregated or homogeneous model,

whereas increasing the number of compartments leads to a higher degree of disaggregation resulting in

a heterogeneous model.

To formulate our state space thermodynamic model, consider the interconnected dynamical

system G shown in Figure 1 involving energy exchange between q interconnected subsystems. Let
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Ei : [0,∞)→ R+ denote the energy (and hence a nonnegative quantity) of the ith subsystem, let Si :

[0,∞) → R denote the external power (heat flux) supplied to (or extracted from) the ith subsystem,

let φij : R
q

+ → R, i �= j, i, j = 1, . . . , q, denote the net instantaneous rate of energy (heat) flow from

the jth subsystem to the ith subsystem, and let σii : R
q

+ → R+, i = 1, . . . , q, denote the instantaneous

rate of energy (heat) dissipation from the ith subsystem to the environment. Here, we assume that

φij : R
q

+ → R, i �= j, i, j = 1, . . . , q, and σii : R
q

+ → R+, i = 1, . . . , q, are locally Lipschitz continuous

on R
q

+ and Si : [0,∞)→ R, i = 1, . . . , q, are bounded piecewise continuous functions of time.

Figure 1. Interconnected dynamical system G.

Si

Sj

S1

Sq σqq(E)

σjj(E)

σii(E)

σ11(E)G1

Gi

Gj

Gq

φij(E)

An energy balance for the ith subsystem yields

Ei(T ) = Ei(t0) +

[
q∑

j=1, j �=i

∫ T

t0

φij(E(t))dt

]
−
∫ T

t0

σii(E(t))dt+

∫ T

t0

Si(t)dt, T ≥ t0 (2)

or, equivalently, in vector form,

E(T ) = E(t0) +

∫ T

t0

w(E(t))dt−
∫ T

t0

d(E(t))dt+

∫ T

t0

S(t)dt, T ≥ t0 (3)

where E(t) � [E1(t), . . . , Eq(t)]
T, t ≥ t0, is the system energy state, d(E(t)) � [σ11(E(t)), . . . ,

σqq(E(t))]T, t ≥ t0, is the system dissipation, S(t) � [S1(t), . . . , Sq(t)]
T, t ≥ t0, is the system heat flux,

and w = [w1, . . . , wq]
T : R

q

+ → R
q is such that

wi(E) =

q∑
j=1, j �=i

φij(E), E ∈ R
q

+ (4)
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Since φij : R
q

+ → R, i �= j, i, j = 1, . . . , q, denotes the net instantaneous rate of energy flow from the

jth subsystem to the ith subsystem, it is clear that φij(E) = −φji(E), E ∈ R
q

+, i �= j, i, j = 1, . . . , q,

which further implies that eTw(E) = 0, E ∈ R
q

+.

Note that Equation (2) yields a conservation of energy equation and implies that the energy stored

in the ith subsystem is equal to the external energy supplied to (or extracted from) the ith subsystem

plus the energy gained by the ith subsystem from all other subsystems due to subsystem coupling minus

the energy dissipated from the ith subsystem to the environment. Equivalently, Equation (2) can be

rewritten as

Ėi(t) =

[
q∑

j=1, j �=i

φij(E(t))

]
− σii(E(t)) + Si(t), Ei(t0) = Ei0, t ≥ t0 (5)

or, in vector form,

Ė(t) = w(E(t))− d(E(t)) + S(t), E(t0) = E0, t ≥ t0 (6)

where E0 � [E10, . . . , Eq0]
T, yielding a power balance equation that characterizes energy flow between

subsystems of the interconnected dynamical system G. We assume that φij(E) ≥ 0, E ∈ R
q

+, whenever

Ei = 0, i �= j, i, j = 1, . . . , q, and σii(E) = 0, whenever Ei = 0, i = 1, . . . , q. The above constraint

implies that if the energy of the ith subsystem of G is zero, then this subsystem cannot supply any energy

to its surroundings or dissipate energy to the environment. In this case, w(E) − d(E), E ∈ R
q

+, is

essentially nonnegative [12]. Thus, if S(t) ≡ 0, then, by Proposition 2.1, the solutions to Equation (6)

are nonnegative for all nonnegative initial conditions. See [4,11,12] for further details.

Since our thermodynamic compartmental model involves intercompartmental flows representing

energy transfer between compartments, we can use graph-theoretic notions with undirected graph
topologies (i.e., bidirectional energy flows) to capture the compartmental system interconnections.

Graph theory [13,14] can be useful in the analysis of the connectivity properties of compartmental

systems. In particular, an undirected graph can be constructed to capture a compartmental model in

which the compartments are represented by nodes and the flows are represented by edges or arcs. In this

case, the environment must also be considered as an additional node.

For the interconnected dynamical system G with the power balance Equation (6), we define a

connectivity matrix C ∈ R
q×q such that for i �= j, i, j = 1, . . . , q, C(i,j) � 1 if φij(E) �≡ 0 and C(i,j) � 0

otherwise, and C(i,i) � −
∑q

k=1, k �=i C(k,i), i = 1, . . . , q. (The negative of the connectivity matrix, that is,

−C, is known as the graph Laplacian in the literature.) Recall that if rank C = q − 1, then G is strongly

connected [4] and energy exchange is possible between any two subsystems of G.

The next definition introduces a notion of entropy for the interconnected dynamical system G.

Definition 3.1. Consider the interconnected dynamical system G with the power balance Equation (6).
A continuously differentiable, strictly concave function S : R

q

+ → R is called the entropy function of G if(
∂S(E)

∂Ei

− ∂S(E)

∂Ej

)
φij(E) ≥ 0, E ∈ R

q

+, i �= j, i, j = 1, . . . , q (7)
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and ∂S(E)
∂Ei

= ∂S(E)
∂Ej

if and only if φij(E) = 0 with C(i,j) = 1, i �= j, i, j = 1, . . . , q.

It follows from Definition 3.1 that for an isolated system G, that is, S(t) ≡ 0 and d(E) ≡ 0, the

entropy function of G is a nondecreasing function of time. To see this, note that

Ṡ(E) =
∂S(E)

∂E
Ė

=

q∑
i=1

∂S(E)

∂Ei

q∑
j=1, j �=i

φij(E)

=

q∑
i=1

q∑
j=i+1

(
∂S(E)

∂Ei

− ∂S(E)

∂Ej

)
φij(E)

≥ 0, E ∈ R
q

+ (8)

where
∂S(E)
∂E

�
[
∂S(E)
∂E1

, . . . , ∂S(E)
∂Eq

]
and where we used the fact that φij(E) = −φji(E), E ∈ R

q

+, i �= j,

i, j = 1, . . . , q.

Proposition 3.1. Consider the isolated (i.e., S(t) ≡ 0 and d(E) ≡ 0) interconnected dynamical system
G with the power balance Equation (6). Assume that rank C = q − 1 and there exists an entropy
function S : R

q

+ → R of G. Then,
∑q

j=1 φij(E) = 0 for all i = 1, . . . , q if and only if ∂S(E)
∂E1

=

· · · = ∂S(E)
∂Eq

. Furthermore, the set of nonnegative equilibrium states of Equation (6) is given by E0 �{
E ∈ R

q

+ : ∂S(E)
∂E1

= · · · = ∂S(E)
∂Eq

}
.

Proof. If
∂S(E)
∂Ei

= ∂S(E)
∂Ej

, then φij(E) = 0 for all i, j = 1, . . . , q, which implies that
∑q

j=1 φij(E) = 0

for all i = 1, . . . , q. Conversely, assume that
∑q

j=1 φij(E) = 0 for all i = 1, . . . , q, and, since S is an

entropy function of G, it follows that

0 =

q∑
i=1

q∑
j=1

∂S(E)

∂Ei

φij(E)

=

q−1∑
i=1

q∑
j=i+1

(
∂S(E)

∂Ei

− ∂S(E)

∂Ej

)
φij(E)

≥ 0

where we have used the fact that φij(E) = −φji(E) for all i, j = 1, . . . , q. Hence,(
∂S(E)

∂Ei

− ∂S(E)

∂Ej

)
φij(E) = 0

for all i, j = 1, . . . , q. Now, the result follows from the fact that rank C = q − 1.

Theorem 3.1. Consider the isolated (i.e., S(t) ≡ 0 and d(E) ≡ 0) interconnected dynamical system G
with the power balance Equation (6). Assume that rank C = q − 1 and there exists an entropy function
S : R

q

+ → R of G. Then the isolated system G is globally semistable with respect to R
q

+.
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Proof. Since w(·) is essentially nonnegative, it follows from Proposition 2.1 that E(t) ∈ R
q

+, t ≥ t0,

for all E0 ∈ R
q

+. Furthermore, note that since eTw(E) = 0, E ∈ R
q

+, it follows that eTĖ(t) = 0,

t ≥ t0. In this case, eTE(t) = eTE0, t ≥ t0, which implies that E(t), t ≥ t0, is bounded for all

E0 ∈ R
q

+. Now, it follows from Equation (8) that S(E(t)), t ≥ t0, is a nondecreasing function of

time, and hence, by the Krasovskii–LaSalle theorem [7], E(t) → R � {E ∈ R
q

+ : Ṡ(E) = 0} as

t → ∞. Next, it follows from Equation (8), Definition 3.1, and the fact that rank C = q − 1, that

R =
{
E ∈ R

q

+ : ∂S(E)
∂E1

= · · · = ∂S(E)
∂Eq

}
= E0.

Now, let Ee ∈ E0 and consider the continuously differentiable function V : Rq → R defined by

V (E) � S(Ee)− S(E)− λe(e
TEe − eTE)

where λe � ∂S
∂E1

(Ee). Next, note that V (Ee) = 0, ∂V
∂E

(Ee) = − ∂S
∂E

(Ee) + λee
T = 0, and, since

S(·) is a strictly concave function, ∂2V
∂E2 (Ee) = − ∂2S

∂E2 (Ee) > 0, which implies that V (·) admits a local

minimum at Ee. Thus, V (Ee) = 0, there exists δ > 0 such that V (E) > 0, E ∈ Bδ(Ee)\{Ee}, and

V̇ (E) = −Ṡ(E) ≤ 0 for all E ∈ Bδ(Ee)\{Ee}, which shows that V (·) is a Lyapunov function for G
and Ee is a Lyapunov stable equilibrium of G. Finally, since, for every E0 ∈ R

n

+, E(t)→ E0 as t →∞
and every equilibrium point of G is Lyapunov stable, it follows from Proposition 2.2 that G is globally

semistable with respect to R
q

+.

In classical thermodynamics, the partial derivative of the system entropy with respect to the system

energy defines the reciprocal of the system temperature. Thus, for the interconnected dynamical

system G,

Ti �
(
∂S(E)

∂Ei

)−1

, i = 1, . . . , q (9)

represents the temperature of the ith subsystem. Equation (7) is a manifestation of the second law of
thermodynamics and implies that if the temperature of the jth subsystem is greater than the temperature

of the ith subsystem, then energy (heat) flows from the jth subsystem to the ith subsystem. Furthermore,
∂S(E)
∂Ei

= ∂S(E)
∂Ej

if and only if φij(E) = 0 with C(i,j) = 1, i �= j, i, j = 1, . . . , q, implies that temperature

equality is a necessary and sufficient condition for thermal equilibrium. This is a statement of the zeroth
law of thermodynamics. As a result, Theorem 3.1 shows that, for a strongly connected system G, the

subsystem energies converge to the set of equilibrium states where the temperatures of all subsystems

are equal. This phenomenon is known as equipartition of temperature [4] and is an emergent behavior

in thermodynamic systems. In particular, all the system energy is eventually transferred into heat at a

uniform temperature, and hence, all dynamical processes in G (system motions) would cease.

The following result presents a sufficient condition for energy equipartition of the system, that is, the

energies of all subsystems are equal. This state of energy equipartition is uniquely determined by the

initial energy in the system.
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Theorem 3.2. Consider the isolated (i.e., S(t) ≡ 0 and d(E) ≡ 0) interconnected dynamical system
G with the power balance Equation (6). Assume that rank C = q − 1 and there exists a continuously
differentiable, strictly concave function f : R+ → R such that the entropy function S : R

q

+ → R of G is
given by S(E) =

∑q
i=1 f(Ei). Then, the set of nonnegative equilibrium states of Equation (6) is given

by E0 = {αe : α ≥ 0} and G is semistable with respect to R
q

+. Furthermore, E(t) → 1
q
eeTE(t0) as

t→∞ and 1
q
eeTE(t0) is a semistable equilibrium state of G.

Proof. First, note that since f(·) is a continuously differentiable, strictly concave function, it follows that(
df

dEi

− df

dEj

)
(Ei − Ej) ≤ 0, E ∈ R

q

+, i, j = 1, . . . , q

which implies that Equation (7) is equivalent to

(Ei − Ej)φij(E) ≤ 0, E ∈ R
q

+, i �= j, i, j = 1, . . . , q

and Ei = Ej if and only if φij(E) = 0 with C(i,j) = 1, i �= j, i, j = 1, . . . , q. Hence,−ETE is an entropy

function of G. Next, with S(E) = −1
2
ETE, it follows from Proposition 3.1 that E0 = {αe ∈ R

q

+, α ≥
0}. Now, it follows from Theorem 3.1 that G is globally semistable with respect to R

q

+. Finally, since

eTE(t) = eTE(t0) and E(t) → M as t → ∞, it follows that E(t) → 1
q
eeTE(t0) as t → ∞. Hence,

with α = 1
q
eTE(t0), αe = 1

q
eeTE(t0) is a semistable equilibrium state of Equation (6).

If f(Ei) = loge(c + Ei), where c > 0, so that S(E) =
∑q

i=1 loge(c + Ei), then it follows from

Theorem 3.2 that E0 = {αe : α ≥ 0} and the isolated (i.e., S(t) ≡ 0 and d(E) ≡ 0) interconnected

dynamical system G with the power balance Equation (6) is semistable. In this case, the absolute

temperature of the ith compartment is given by c + Ei. Similarly, if S(E) = −1
2
ETE, then it

follows from Theorem 3.2 that E0 = {αe : α ≥ 0} and the isolated (i.e., S(t) ≡ 0 and d(E) ≡ 0)

interconnected dynamical system G with the power balance Equation (6) is semistable. In both cases,

E(t) → 1
q
eeTE(t0) as t → ∞. This shows that the steady-state energy of the isolated interconnected

dynamical system G is given by 1
q
eeTE(t0) =

1
q

∑q
i=1 Ei(t0)e, and hence is uniformly distributed over

all subsystems of G. This phenomenon is known as energy equipartition [4]. The aforementioned

forms of S(E) were extensively discussed in the recent book [4] where S(E) =
∑q

i=1 loge(c + Ei)

and −S(E) = 1
2
ETE are referred to, respectively, as the entropy and the ectropy functions of the

interconnected dynamical system G.

4. Work Energy, Gibbs Free Energy, Helmoholtz Free Energy, Enthalpy, and Entropy

In this section, we augment our thermodynamic energy flow model G with an additional

(deformation) state representing subsystem volumes in order to introduce the notion of work into

our thermodynamically consistent state space energy flow model. Specifically, we assume that each

subsystem can perform (positive) work on the environment and the environment can perform (negative)
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work on the subsystems. The rate of work done by the ith subsystem on the environment is denoted by

dwi : R
q

+ × R
q
+ → R+, i = 1, . . . , q, the rate of work done by the environment on the ith subsystem

is denoted by Swi : [0,∞) → R+, i = 1, . . . , q, and the volume of the ith subsystem is denoted by

Vi : [0,∞)→ R+, i = 1, . . . , q. The net work done by each subsystem on the environment satisfies

pi(E, V )dVi = (dwi(E, V )− Swi(t))dt (10)

where pi(E, V ), i = 1, . . . , q, denotes the pressure in the ith subsystem and V � [V1, . . . , Vq]
T.

Furthermore, in the presence of work, the energy balance Equation (5) for each subsystem can be

rewritten as

dEi = wi(E, V )dt− (dwi(E, V )− Swi(t))dt− σii(E, V )dt+ Si(t)dt (11)

where wi(E, V ) �
∑q

j=1, j �=i φij(E, V ), φij : R
q

+ × R
q
+ → R, i �= j, i, j = 1, . . . , q, denotes the net

instantaneous rate of energy (heat) flow from the jth subsystem to the ith subsystem, σii : R
q

+ × R
q
+ →

R+, i = 1, . . . , q, denotes the instantaneous rate of energy dissipation from the ith subsystem to the

environment, and, as in Section 3, Si : [0,∞)→ R, i = 1, . . . , q, denotes the external power supplied to

(or extracted from) the ith subsystem. It follows from Equations (10) and (11) that positive work done

by a subsystem on the environment leads to a decrease in the internal energy of the subsystem and an

increase in the subsystem volume, which is consistent with the first law of thermodynamics.

The definition of entropy for G in the presence of work remains the same as in Definition 3.1 with

S(E) replaced by S(E, V ) and with all other conditions in the definition holding for every V >> 0.

Next, consider the ith subsystem of G and assume that Ej and Vj , j �= i, i = 1, . . . , q, are constant. In

this case, note that

dS
dt

=
∂S
∂Ei

dEi

dt
+

∂S
∂Vi

dVi

dt
(12)

and

pi(E, V ) =

(
∂S
∂Ei

)−1(
∂S
∂Vi

)
, i = 1, . . . , q (13)

It follows from Equations (10) and (11) that, in the presence of work energy, the power balance

Equation (6) takes the new form involving energy and deformation states

Ė(t) = w(E(t), V (t))− dw(E(t), V (t)) + Sw(t)− d(E(t), V (t)) + S(t),

E(t0) = E0, t ≥ t0, (14)

V̇ (t) = D(E(t), V (t))(dw(E(t), V (t))− Sw(t)), V (t0) = V0 (15)

where w(E, V ) � [w1(E, V ), . . . , wq(E, V )]T, dw(E, V ) � [dw1(E, V ), . . . , dwq(E, V )]T, Sw(t) �
[Sw1(t), . . . , Swq(t)]

T, d(E, V ) � [σ11(E, V ), . . . , σqq(E, V )]T, S(t) � [S1(t), . . . , Sq(t)]
T, and

D(E, V ) � diag

[(
∂S
∂E1

)(
∂S
∂V1

)−1

, . . . ,

(
∂S
∂Eq

)(
∂S
∂Vq

)−1
]

(16)
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Note that (
∂S(E, V )

∂V

)
D(E, V ) =

∂S(E, V )

∂E
(17)

The power balance and deformation Equations (14) and (15) represent a statement of the first law of

thermodynamics. To see this, define the work L done by the interconnected dynamical system G over

the time interval [t1, t2] by

L �
∫ t2

t1

eT[dw(E(t), V (t))− Sw(t)]dt (18)

where [ET(t), V T(t)]T, t ≥ t0, is the solution to Equations (14) and (15). Now, premultiplying

Equation (14) by eT and using the fact that eTw(E, V ) = 0, it follows that

ΔU = −L+Q (19)

where ΔU = U(t2) − U(t1) � eTE(t2) − eTE(t1) denotes the variation in the total energy of the

interconnected system G over the time interval [t1, t2] and

Q �
∫ t2

t1

eT[S(t)− d(E(t), V (t))]dt (20)

denotes the net energy received by G in forms other than work.

This is a statement of the first law of thermodynamics for the interconnected dynamical system G
and gives a precise formulation of the equivalence between work and heat. This establishes that heat and

mechanical work are two different aspects of energy. Finally, note that Equation (15) is consistent with

the classical thermodynamic equation for the rate of work done by the system G on the environment. To

see this, note that Equation (15) can be equivalently written as

dL = eTD−1(E, V )dV (21)

which, for a single subsystem with volume V and pressure p, has the classical form

dL = pdV (22)

It follows from Definition 3.1 and Equations (14)–(17) that the time derivative of the entropy

function satisfies
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Ṡ(E, V ) =
∂S(E, V )

∂E
Ė +

∂S(E, V )

∂V
V̇

=
∂S(E, V )

∂E
w(E, V )− ∂S(E, V )

∂E
(dw(E, V )− Sw(t))

− ∂S(E, V )

∂E
(d(E, V )− S(t)) +

∂S(E, V )

∂V
D(E, V )(dw(E, V )− Sw(t))

=

q∑
i=1

∂S(E, V )

∂Ei

q∑
j=1, j �=i

φij(E, V ) +

q∑
i=1

∂S(E, V )

∂Ei

(Si(t)− di(E, V ))

=

q∑
i=1

q∑
j=i+1

(
∂S(E, V )

∂Ei

− ∂S(E, V )

∂Ej

)
φij(E, V )

+

q∑
i=1

∂S(E, V )

∂Ei

(Si(t)− di(E, V ))

≥
q∑

i=1

∂S(E, V )

∂Ei

(Si(t)− di(E, V )), (E, V ) ∈ R
q

+ × R
q
+ (23)

Noting that dQi � [Si − σii(E)]dt, i = 1, . . . , q, is the infinitesimal amount of the net heat

received or dissipated by the ith subsystem of G over the infinitesimal time interval dt, it follows from

Equation (23) that

dS(E) ≥
q∑

i=1

dQi

Ti

(24)

Inequality (24) is the classical Clausius inequality for the variation of entropy during an infinitesimal

irreversible transformation.

Note that for an adiabatically isolated interconnected dynamical system (i.e., no heat exchange with

the environment), Equation (23) yields the universal inequality

S(E(t2), V (t2)) ≥ S(E(t1), V (t1)), t2 ≥ t1 (25)

which implies that, for any dynamical change in an adiabatically isolated interconnected system G, the

entropy of the final system state can never be less than the entropy of the initial system state. In addition,

in the case where (E(t), V (t)) ∈ Me, t ≥ t0, where Me � {(E, V ) ∈ R
q

+ × R
q

+ : E = αe, α ≥
0, V ∈ R

q
+}, it follows from Definition 3.1 and Equation (23) that Inequality (25) is satisfied as a strict

inequality for all (E, V ) ∈ (R
q

+ × R
q

+)\Me. Hence, it follows from Theorem 2.15 of [4] that the

adiabatically isolated interconnected system G does not exhibit Poincaré recurrence in (R
q

+ ×R
q

+)\Me.

Next, we define the Gibbs free energy, the Helmholtz free energy, and the enthalpy functions for the

interconnected dynamical system G. For this exposition, we assume that the entropy of G is a sum of



59

individual entropies of subsystems of G, that is, S(E, V ) =
∑q

i=1 Si(Ei, Vi), (E, V ) ∈ R
q

+×R
q
+. In this

case, the Gibbs free energy of G is defined by

G(E, V ) � eTE −
q∑

i=1

(
∂S(E, V )

∂Ei

)−1

Si(Ei, Vi) +

q∑
i=1

(
∂S(E, V )

∂Ei

)−1(
∂S(E, V )

∂Vi

)
Vi

(E, V ) ∈ R
q

+ × R
q
+ (26)

the Helmholtz free energy of G is defined by

F (E, V ) � eTE −
q∑

i=1

(
∂S(E, V )

∂Ei

)−1

Si(Ei, Vi), (E, V ) ∈ R
q

+ × R
q
+ (27)

and the enthalpy of G is defined by

H(E, V ) � eTE +

q∑
i=1

(
∂S(E, V )

∂Ei

)−1(
∂S(E, V )

∂Vi

)
Vi, (E, V ) ∈ R

q

+ × R
q
+ (28)

Note that the above definitions for the Gibbs free energy, Helmholtz free energy, and enthalpy are

consistent with the classical thermodynamic definitions given by G(E, V ) = U + pV −TS, F (E, V ) =

U −TS, and H(E, V ) = U + pV , respectively. Furthermore, note that if the interconnected system G is

isothermal and isobaric, that is, the temperatures of subsystems of G are equal and remain constant with

(
∂S(E, V )

∂E1

)−1

= · · · =
(
∂S(E, V )

∂Eq

)−1

= T > 0 (29)

and the pressure pi(E, V ) in each subsystem of G remains constant, respectively, then any transformation

in G is reversible.

The time derivative of G(E, V ) along the trajectories of Equations (14) and (15) is given by

Ġ(E, V ) = eTĖ −
q∑

i=1

(
∂S(E, V )

∂Ei

)−1 [
∂S(E, V )

∂Ei

Ėi +
∂S(E, V )

∂Vi

V̇i

]

+

q∑
i=1

(
∂S(E, V )

∂Ei

)−1(
∂S(E, V )

∂Vi

)
V̇i

= 0 (30)

which is consistent with classical thermodynamics in the absence of chemical reactions.

For an isothermal interconnected dynamical system G, the time derivative of F (E, V ) along the

trajectories of Equations (14) and (15) is given by
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Ḟ (E, V ) = eTĖ −
q∑

i=1

(
∂S(E, V )

∂Ei

)−1 [
∂S(E, V )

∂Ei

Ėi +
∂S(E, V )

∂Vi

V̇i

]

= −
q∑

i=1

(
∂S(E, V )

∂Ei

)−1(
∂S(E, V )

∂Vi

)
V̇i

= −
q∑

i=1

(dwi(E, V )− Swi(t))

= −L (31)

where L is the net amount of work done by the subsystems of G on the environment. Furthermore,

note that if, in addition, the interconnected system G is isochoric, that is, the volumes of each of

the subsystems of G remain constant, then Ḟ (E, V ) = 0. As we see in the next section, in the

presence of chemical reactions the interconnected system G evolves such that the Helmholtz free energy

is minimized.

Finally, for the isolated (S(t) ≡ 0 and d(E, V ) ≡ 0) interconnected dynamical system G, the time

derivative of H(E, V ) along the trajectories of Equations (14) and (15) is given by

Ḣ(E, V ) = eTĖ +

q∑
i=1

(
∂S(E, V )

∂Ei

)−1(
∂S(E, V )

∂Vi

)
V̇i

= eTĖ +

q∑
i=1

(dwi(E, V )− Swi(t))

= eTw(E, V )

= 0 (32)

5. Chemical Equilibria, Entropy Production, Chemical Potential, and Chemical Thermodynamics

In its most general form thermodynamics can also involve reacting mixtures and combustion. When a

chemical reaction occurs, the bonds within molecules of the reactant are broken, and atoms and electrons

rearrange to form products. The thermodynamic analysis of reactive systems can be addressed as an

extension of the compartmental thermodynamic model described in Sections 3 and 4. Specifically, in

this case the compartments would qualitatively represent different quantities in the same space, and the

intercompartmental flows would represent transformation rates in addition to transfer rates. In particular,

the compartments would additionally represent quantities of different chemical substances contained

within the compartment, and the compartmental flows would additionally characterize transformation

rates of reactants into products. In this case, an additional mass balance is included for addressing

conservation of energy as well as conservation of mass. This additional mass conservation equation

would involve the law of mass-action enforcing proportionality between a particular reaction rate and
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the concentrations of the reactants, and the law of superposition of elementary reactions ensuring that

the resultant rates for a particular species is the sum of the elementary reaction rates for the species.

In this section, we consider the interconnected dynamical system G where each subsystem represents

a substance or species that can exchange energy with other substances as well as undergo chemical

reactions with other substances forming products. Thus, the reactants and products of chemical reactions

represent subsystems of G with the mechanisms of heat exchange between subsystems remaining the

same as delineated in Section 3. Here, for simplicity of exposition, we do not consider work done by the

subsystem on the environment or work done by the environment on the system. This extension can be

easily addressed using the formulation in Section 4.

To develop a dynamical systems framework for thermodynamics with chemical reaction networks,

let q be the total number of species (i.e., reactants and products), that is, the number of subsystems in G,

and let Xj , j = 1, . . . , q, denote the jth species. Consider a single chemical reaction described by

q∑
j=1

AjXj
k−→

q∑
j=1

BjXj (33)

where Aj , Bj , j = 1, . . . , q, are the stoichiometric coefficients and k denotes the reaction rate. Note that

the values of Aj corresponding to the products and the values of Bj corresponding to the reactants are

zero. For example, for the familiar reaction

2H2 +O2
k−→ 2H2O (34)

X1, X2, and X3 denote the species H2, O2, and H2O, respectively, and A1 = 2, A2 = 1, A3 = 0, B1 = 0,

B2 = 0, and B3 = 2.

In general, for a reaction network consisting of r ≥ 1 reactions, the ith reaction is written as

q∑
j=1

AijXj
ki−→

q∑
j=1

BijXj, i = 1, . . . , r (35)

where, for i = 1, . . . , r, ki > 0 is the reaction rate of the ith reaction,
∑q

j=1 AijXj is the reactant of

the ith reaction, and
∑q

j=1 BijXj is the product of the ith reaction. Each stoichiometric coefficient Aij

and Bij is a nonnegative integer. Note that each reaction in the reaction network given by Equation

(35) is represented as being irreversible. Irreversibility here refers to the fact that part of the chemical

reaction involves generation of products from the original reactants. Reversible chemical reactions that

involve generation of products from the reactants and vice versa can be modeled as two irreversible

reactions, one involving generation of products from the reactants and the other involving generation

of the original reactants from the products. Hence, reversible reactions can be modeled by including

the reverse reaction as a separate reaction. The reaction network given by Equation (35) can be written

compactly in matrix-vector form as

AX
k−→ BX (36)



62

where X = [X1, . . . , Xq]
T is a column vector of species, k = [k1, . . . , kr]

T ∈ R
r
+ is a positive vector

of reaction rates, and A ∈ R
r×q and B ∈ R

r×q are nonnegative matrices such that A(i,j) = Aij and

B(i,j) = Bij , i = 1, . . . , r, j = 1, . . . , q.

Let nj : [0,∞) → R+, j = 1, . . . , q, denote the mole number of the jth species and define n �
[n1, . . . , nq]

T. Invoking the law of mass-action [15], which states that, for an elementary reaction, that

is, a reaction in which all of the stoichiometric coefficients of the reactants are one, the rate of reaction is

proportional to the product of the concentrations of the reactants, the species quantities change according

to the dynamics [11,16]

ṅ(t) = (B − A)TKnA(t), n(0) = n0, t ≥ t0 (37)

where K � diag[k1, . . . , kr] ∈ P
r and

nA �

⎡
⎢⎣
∏q

j=1 n
A1j

j
...∏q

j=1 n
Arj

j

⎤
⎥⎦ =

⎡
⎢⎣ nA11

1 · · ·nA1q
q

...

nAr1
1 · · ·nArq

q

⎤
⎥⎦ ∈ R

r

+ (38)

For details regarding the law of mass-action and Equation (37), see [11,15–17]. Furthermore, let Mj > 0,

j = 1, . . . , q, denote the molar mass (i.e., the mass of one mole of a substance) of the jth species, let

mj : [0,∞) → R+, j = 1, . . . , q, denote the mass of the jth species so that mj(t) = Mjnj(t), t ≥ t0,

j = 1, . . . , q, and let m � [m1, . . . ,mq]
T. Then, using the transformation m(t) = Mn(t), where

M � diag[M1, . . . ,Mq] ∈ P
q, Equation (37) can be rewritten as the mass balance

ṁ(t) = M(B − A)TK̃mA(t), m(0) = m0, t ≥ t0 (39)

where K̃ � diag

[
k1

∏q
j=1 M

A1j
j

, . . . , kr
∏q

j=1 M
Arj
j

]
∈ P

r.

In the absence of nuclear reactions, the total mass of the species during each reaction in Equation (36)

is conserved. Specifically, consider the ith reaction in Equation (36) given by Equation (35) where the

mass of the reactants is
∑q

j=1 AijMj and the mass of the products is
∑q

j=1 BijMj . Hence, conservation

of mass in the ith reaction is characterized as

q∑
j=1

(Bij − Aij)Mj = 0, i = 1, . . . , r (40)

or, in general for Equation (36), as

eTM(B − A)T = 0 (41)

Note that it follows from Equations (39) and (41) that eTṁ(t) ≡ 0.

Equation (39) characterizes the change in masses of substances in the interconnected dynamical

system G due to chemical reactions. In addition to the change of mass due to chemical reactions, each
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substance can exchange energy with other substances according to the energy flow mechanism described

in Section 3; that is, energy flows from substances at a higher temperature to substances at a lower

temperature. Furthermore, in the presence of chemical reactions, the exchange of matter affects the

change of energy of each substance through the quantity known as the chemical potential.
The notion of the chemical potential was introduced by Gibbs in 1875–1878 [8,9] and goes far

beyond the scope of chemistry, affecting virtually every process in nature [18–20]. The chemical

potential has a strong connection with the second law of thermodynamics in that every process in nature
evolves from a state of higher chemical potential towards a state of lower chemical potential. It was

postulated by Gibbs [8,9] that the change in energy of a homogeneous substance is proportional to the

change in mass of this substance with the coefficient of proportionality given by the chemical potential

of the substance.

To elucidate this, assume the jth substance corresponds to the jth compartment and consider the rate

of energy change of the jth substance of G in the presence of matter exchange. In this case, it follows

from Equation (5) and Gibbs’ postulate that the rate of energy change of the jth substance is given by

Ėj(t) =

[
q∑

k=1, k �=j

φjk(E(t))

]
− σjj(E(t)) + Sj(t) + μj(E(t),m(t))ṁj(t), Ej(t0) = Ej0,

t ≥ t0 (42)

where μj : R
q

+ × R
q

+ → R, j = 1, . . . , q, is the chemical potential of the jth substance. It follows from

Equation (42) that μj(·, ·) is the chemical potential of a unit mass of the jth substance. We assume that

if Ej = 0, then μj(E,m) = 0, j = 1, . . . , q, which implies that if the energy of the jth substance is zero,

then its chemical potential is also zero.

Next, using Equations (39) and (42), the energy and mass balances for the interconnected dynamical

system G can be written as

Ė(t) = w(E(t)) + P (E(t),m(t))M(B − A)TK̃mA(t)− d(E(t)) + S(t), E(t0) = E0,

t ≥ t0, (43)

ṁ(t) = M(B − A)TK̃mA(t), m(0) = m0 (44)

where P (E,m) � diag[μ1(E,m), . . . , μq(E,m)] ∈ R
q×q and where w(·), d(·), and S(·) are defined as

in Section 3. It follows from Proposition 1 of [16] that the dynamics of Equation (44) are essentially

nonnegative and, since μj(E,m) = 0 if Ej = 0, j = 1, . . . , q, it also follows that, for the isolated

dynamical system G (i.e., S(t) ≡ 0 and d(E) ≡ 0), the dynamics of Equations (43) and (44) are

essentially nonnegative.

Note that, for the ith reaction in the reaction network given by Equation (36), the chemical

potentials of the reactants and the products are
∑q

j=1 AijMjμj(E,m) and
∑q

j=1 BijMjμj(E,m),

respectively. Thus,
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q∑
j=1

BijMjμj(E,m)−
q∑

j=1

AijMjμj(E,m) ≤ 0, (E,m) ∈ R
q

+ × R
q

+ (45)

is a restatement of the principle that a chemical reaction evolves from a state of a greater

chemical potential to that of a lower chemical potential, which is consistent with the second law of

thermodynamics. The difference between the chemical potential of the reactants and the chemical

potential of the products is called affinity [21,22] and is given by

νi(E,m) =

q∑
j=1

AijMjμj(E,m)−
q∑

j=1

BijMjμj(E,m) ≥ 0, i = 1, . . . , r (46)

Affinity is a driving force for chemical reactions and is equal to zero at the state of chemical equilibrium.

A nonzero affinity implies that the system in not in equilibrium and that chemical reactions will continue

to occur until the system reaches an equilibrium characterized by zero affinity. The next assumption

provides a general form for the inequalities (45) and (46).

Assumption 5.1. For the chemical reaction network (36) with the mass balance Equation (44), assume
that μ(E,m) >> 0 for all E �= 0 and

(B − A)Mμ(E,m) ≤≤ 0, (E,m) ∈ R
q

+ × R
q

+ (47)

or, equivalently,

ν(E,m) = (A− B)Mμ(E,m) ≥≥ 0, (E,m) ∈ R
q

+ × R
q

+ (48)

where μ(E,m) � [μ1(E,m), . . . , μq(E,m)]T is the vector of chemical potentials of the substances of
G and ν(E,m) � [ν1(E,m), . . . , νr(E,m)]T is the affinity vector for the reaction network given by
Equation (36).

Note that equality in Equation (47) or, equivalently, in Equation (48) characterizes the state

of chemical equilibrium when the chemical potentials of the products and reactants are equal or,

equivalently, when the affinity of each reaction is equal to zero. In this case, no reaction occurs and

ṁ(t) = 0, t ≥ t0.

Next, we characterize the entropy function for the interconnected dynamical system G with the

energy and mass balances given by Equations (43) and (44). The definition of entropy for G in the

presence of chemical reactions remains the same as in Definition 3.1 with S(E) replaced by S(E,m)

and with all other conditions in the definition holding for every m >> 0. Consider the jth subsystem of

G and assume that Ek and mk, k �= j, k = 1, . . . , q, are constant. In this case, note that

dS
dt

=
∂S
∂Ej

dEj

dt
+

∂S
∂mj

dmj

dt
(49)
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and recall that

∂S
∂E

P (E,m) +
∂S
∂m

= 0 (50)

Next, it follows from Equation (50) that the time derivative of the entropy function S(E,m) along

the trajectories of Equations (43) and (44) is given by

Ṡ(E,m) =
∂S(E,m)

∂E
Ė +

∂S(E,m)

∂m
ṁ

=
∂S(E,m)

∂E
w(E) +

(
∂S(E,m)

∂E
P (E,m) +

∂S(E,m)

∂m

)
M(B − A)TK̃mA

+
∂S(E,m)

∂E
S(t)− ∂S(E,m)

∂E
d(E)

=
∂S(E,m)

∂E
w(E) +

∂S(E,m)

∂E
S(t)− ∂S(E,m)

∂E
d(E)

=

q∑
i=1

q∑
j=i+1

(
∂S(E,m)

∂Ei

− ∂S(E,m)

∂Ej

)
φij(E) +

∂S(E,m)

∂E
S(t)− ∂S(E,m)

∂E
d(E),

(E,m) ∈ R
q

+ × R
q

+ (51)

For the isolated system G (i.e., S(t) ≡ 0 and d(E) ≡ 0), the entropy function of G is a nondecreasing

function of time and, using identical arguments as in the proof of Theorem 3.1, it can be shown that

(E(t),m(t)) → R �
{
(E,m) ∈ R

q

+ × R
q

+ : ∂S(E,m)
∂E1

= · · · = ∂S(E,m)
∂Eq

}
as t → ∞ for all (E0,m0) ∈

R
q

+ × R
q

+.

The entropy production in the interconnected system G due to chemical reactions is given by

dSi(E,m) =
∂S(E,m)

∂m
dm

= −∂S(E,m)

∂E
P (E,m)M(B − A)TK̃mAdt, (E,m) ∈ R

q

+ × R
q

+ (52)

If the interconnected dynamical system G is isothermal, that is, all subsystems of G are at the

same temperature (
∂S(E,m)

∂E1

)−1

= · · · =
(
∂S(E,m)

∂Eq

)−1

= T (53)

where T > 0 is the system temperature, then it follows from Assumption 5.1 that

dSi(E,m) = − 1

T
eTP (E,m)M(B − A)TK̃mAdt

= − 1

T
μT(E,m)M(B − A)TK̃mAdt

=
1

T
νT(E,m)K̃mAdt

≥ 0, (E,m) ∈ R
q

+ × R
q

+ (54)
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Note that since the affinity of a reaction is equal to zero at the state of a chemical equilibrium, it follows

that equality in Equation (54) holds if and only if ν(E,m) = 0 for some E ∈ R
q

+ and m ∈ R
q

+.

Theorem 5.1. Consider the isolated (i.e., S(t) ≡ 0 and d(E) ≡ 0) interconnected dynamical system
G with the power and mass balances given by Equations (43) and (44). Assume that rank C = q − 1,
Assumption 5.1 holds, and there exists an entropy function S : R

q

+×R
q

+ → R of G. Then (E(t),m(t))→
R as t → ∞, where (E(t),m(t)), t ≥ t0, is the solution to Equations (43) and (44) with the initial
condition (E0,m0) ∈ R

q

+ × R
q

+ and

R =

{
(E,m) ∈ R

q

+ × R
q

+ :
∂S(E,m)

∂E1

= · · · = ∂S(E,m)

∂Eq

and ν(E,m) = 0

}
(55)

where ν(·, ·) is the affinity vector of G.

Proof. Since the dynamics of the isolated system G are essentially nonnegative, it follows from

Proposition 2.1 that (E(t),m(t)) ∈ R
q

+ × R
q

+, t ≥ t0, for all (E0,m0) ∈ R
q

+ × R
q

+. Consider a

scalar function v(E,m) = eTE+ eTm, (E,m) ∈ R
q

+×R
q

+, and note that v(0, 0) = 0 and v(E,m) > 0,

(E,m) ∈ R
q

+ × R
q

+, (E,m) �= (0, 0). It follows from Equation (41), Assumption 5.1, and eTw(E) ≡ 0

that the time derivative of v(·, ·) along the trajectories of Equations (43) and (44) satisfies

v̇(E,m) = eTĖ + eTṁ

= eTP (E,m)M(B − A)TK̃mA

= μT(E,m)M(B − A)TK̃mA

= −νT(E,m)K̃mA

≤ 0, (E,m) ∈ R
q

+ × R
q

+ (56)

which implies that the solution (E(t),m(t)), t ≥ t0, to Equations (43) and (44) is bounded for all initial

conditions (E0,m0) ∈ R
q

+ × R
q

+.

Next, consider the function ṽ(E,m) = eTE+ eTm−S(E,m), (E,m) ∈ R
q

+×R
q

+. Then it follows

from Equations (51) and (56) that the time derivative of ṽ(·, ·) along the trajectories of Equations (43)

and (44) satisfies

˙̃v(E,m) = eTĖ + eTṁ− Ṡ(E,m)

= −νT(E,m)K̃mA −
q∑

i=1

q∑
j=i+1

(
∂S(E,m)

∂Ei

− ∂S(E,m)

∂Ej

)
φij(E)

≤ 0, (E,m) ∈ R
q

+ × R
q

+ (57)

which implies that ṽ(·, ·) is a nonincreasing function of time, and hence, by the Krasovskii–LaSalle

theorem [7], (E(t),m(t)) → R � {(E,m) ∈ R
q

+ × R
q

+ : ˙̃v(E,m) = 0} as t → ∞. Now, it follows

from Definition 3.1, Assumption 5.1, and the fact that rank C = q − 1 that
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R =

{
(E,m) ∈ R

q

+ × R
q

+ :
∂S(E,m)

∂E1

= · · · = ∂S(E,m)

∂Eq

}
∩{(E,m) ∈ R

q

+ × R
q

+ : ν(E,m) = 0} (58)

which proves the result.

Theorem 5.1 implies that the state of the interconnected dynamical system G converges to the state

of thermal and chemical equilibrium when the temperatures of all substances of G are equal and the

masses of all substances reach a state where all reaction affinities are zero corresponding to a halting of

all chemical reactions.

Next, we assume that the entropy of the interconnected dynamical system G is a sum of individual

entropies of subsystems of G, that is, S(E,m) =
∑q

j=1 Sj(Ej,mj), (E,m) ∈ R
q

+ × R
q

+. In this case,

the Helmholtz free energy of G is given by

F (E,m) = eTE −
q∑

j=1

(
∂S(E,m)

∂Ej

)−1

Sj(Ej,mj), (E,m) ∈ R
q

+ × R
q

+ (59)

If the interconnected dynamical system G is isothermal, then the derivative of F (·, ·) along the

trajectories of Equations (43) and (44) is given by

Ḟ (E,m) = eTĖ −
q∑

j=1

(
∂S(E,m)

∂Ej

)−1

Ṡj(Ej,mj)

= eTĖ −
q∑

j=1

(
∂S(E,m)

∂Ej

)−1 [
∂Sj(Ej,mj)

∂Ej

Ėj +
∂Sj(Ej,mj)

∂mj

ṁj

]

= μT(E,m)M(B − A)TK̃mA

= −νT(E,m)K̃mA

≤ 0, (E,m) ∈ R
q

+ × R
q

+ (60)

with equality in Equation (60) holding if and only if ν(E,m) = 0 for some E ∈ R
q

+ and m ∈ R
q

+,

which determines the state of chemical equilibrium. Hence, the Helmholtz free energy of G evolves to

a minimum when the pressure and temperature of each subsystem of G are maintained constant, which

is consistent with classical thermodynamics. A similar conclusion can be arrived at for the Gibbs free

energy if work energy considerations to and by the system are addressed. Thus, the Gibbs and Helmholtz

free energies are a measure of the tendency for a reaction to take place in the interconnected system G,

and hence, provide a measure of the work done by the interconnected system G.
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6. Conclusion and Opportunities for Future Research

In this paper, we developed a system-theoretic perspective for classical thermodynamics and

chemical reaction processes. In particular, we developed a nonlinear compartmental model involving

heat flow, work energy, and chemical reactions that captures all of the key aspects of thermodynamics,

including its fundamental laws. In addition, we showed that the interconnected compartmental model

gives rise to globally semistable equilibria involving states of temperature equipartition. Finally, using

the notion of the chemical potential, we combined our heat flow compartmental model with a state space

mass-action kinetics model to capture energy and mass exchange in interconnected large-scale systems

in the presence of chemical reactions. In this case, it was shown that the system states converge to a state

of temperature equipartition and zero affinity.

The underlying intention of this paper as well as [4–6] has been to present one of the most useful

and general physical branches of science in the language of dynamical systems theory. In particular,

our goal has been to develop a dynamical system formalism of thermodynamics using a large-scale

interconnected systems theory that bridges the gap between classical and statistical thermodynamics.

The laws of thermodynamics are among the most firmly established laws of nature, and it is hoped

that this work will help to stimulate increased interaction between physicists and dynamical systems

and control theorists. Besides the fact that irreversible thermodynamics plays a critical role in the

understanding of our physical universe, it forms the underpinning of several fundamental life science and

engineering disciplines, including biological systems, physiological systems, neuroscience, chemical

reaction systems, ecological systems, demographic systems, transportation systems, network systems,

and power systems, to cite but a few examples.

An important area of science where the dynamical system framework of thermodynamics can prove

invaluable is in neuroscience. Advances in neuroscience have been closely linked to mathematical

modeling beginning with the integrate-and-fire model of Lapicque [23] and proceeding through the

modeling of the action potential by Hodgkin and Huxley [24] to the current era of mathematical

neuroscience; see [25,26] and the numerous references therein. Neuroscience has always had models to

interpret experimental results from a high-level complex systems perspective; however, expressing these

models with dynamic equations rather than words fosters precision, completeness, and self-consistency.

Nonlinear dynamical system theory, and in particular system thermodynamics, is ideally suited for

rigorously describing the behavior of large-scale networks of neurons.

Merging the two universalisms of thermodynamics and dynamical systems theory with neuroscience

can provide the theoretical foundation for understanding the network properties of the brain by

rigorously addressing large-scale interconnected biological neuronal network models that govern the

neuroelectronic behavior of biological excitatory and inhibitory neuronal networks [27]. As in

thermodynamics, neuroscience is a theory of large-scale systems wherein graph theory can be used

in capturing the connectivity properties of system interconnections, with neurons represented by nodes,

synapses represented by edges or arcs, and synaptic efficacy captured by edge weighting giving rise to a
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weighted adjacency matrix governing the underlying directed graph network topology. However, unlike

thermodynamics, wherein energy spontaneously flows from a state of higher temperature to a state of

lower temperature, neuron membrane potential variations occur due to ion species exchanges which

evolve from regions of higher concentrations to regions of lower concentrations. And this evolution does

not occur spontaneously but rather requires the opening and closing of specific gates within specific

ion channels.

A particularly interesting application of nonlinear dynamical systems theory to the neurosciences is

to study phenomena of the central nervous system that exhibit nearly discontinuous transitions between

macroscopic states. A very challenging and clinically important problem exhibiting this phenomenon is

the induction of general anesthesia [28–32]. In any specific patient, the transition from consciousness

to unconsciousness as the concentration of anesthetic drugs increases is very sharp, resembling a

thermodynamic phase transition. In current clinical practice of general anesthesia, potent drugs are

administered which profoundly influence levels of consciousness and vital respiratory (ventilation and

oxygenation) and cardiovascular (heart rate, blood pressure, and cardiac output) functions. These

variation patterns of the physiologic parameters (i.e., ventilation, oxygenation, heart rate, blood pressure,

and cardiac output) and their alteration with levels of consciousness can provide scale-invariant fractal

temporal structures to characterize the degree of consciousness in sedated patients.

In particular, the degree of consciousness reflects the adaptability of the central nervous system and

is proportional to the maximum work output under a fully conscious state divided by the work output of

a given anesthetized state. A reduction in maximum work output (and oxygen consumption) or elevation

in the anesthetized work output (or oxygen consumption) will thus reduce the degree of consciousness.

Hence, the fractal nature (i.e., complexity) of conscious variability is a self-organizing emergent property

of the large-scale interconnected biological neuronal network since it enables the central nervous system

to maximize entropy production and optimally dissipate energy gradients. In physiologic terms, a fully

conscious healthy patient would exhibit rich fractal patterns in space (e.g., fractal vasculature) and time

(e.g., cardiopulmonary variability) that optimize the ability for oxygenation and ventilation. Within

the context of aging and complexity in acute illnesses, variation of physiologic parameters and their

relationship to system complexity, fractal variability, and system thermodynamics have been explored

in [33–38].

Merging system thermodynamics with neuroscience can provide the theoretical foundation for

understanding the mechanisms of action of general anesthesia using the network properties of the brain.

Even though simplified mean field models have been extensively used in the mathematical neuroscience

literature to describe large neural populations [26], complex large-scale interconnected systems are

essential in identifying the mechanisms of action for general anesthesia [27]. Unconsciousness is

associated with reduced physiologic parameter variability, which reflects the inability of the central

nervous system to adopt, and thus, decomplexifying physiologic work cycles and decreasing

energy consumption (ischemia, hypoxia) leading to a decrease in entropy production. The degree of



70

consciousness is a function of the numerous coupling of the network properties in the brain that form a

complex large-scale, interconnected system. Complexity here refers to the quality of a system wherein

interacting subsystems self-organize to form hierarchical evolving structures exhibiting emergent system

properties; hence, a complex dynamical system is a system that is greater than the sum of its subsystems

or parts. This complex system—involving numerous nonlinear dynamical subsystem interactions

making up the system—has inherent emergent properties that depend on the integrity of the entire

dynamical system and not merely on a mean field simplified reduced-order model.

Developing a dynamical system framework for neuroscience [27] and merging it with system

thermodynamics [4–6] by embedding thermodynamic state notions (i.e., entropy, energy, free energy,

chemical potential, etc.) will allow us to directly address the otherwise mathematically complex and

computationally prohibitive large-scale dynamical models that have been developed in the literature. In

particular, a thermodynamically consistent neuroscience model would emulate the clinically observed

self-organizing spatio-temporal fractal structures that optimally dissipate energy and optimize entropy

production in thalamocortical circuits of fully conscious patients. This thermodynamically consistent

neuroscience framework can provide the necessary tools involving semistability, synaptic drive

equipartitioning (i.e., synchronization across time scales), energy dispersal, and entropy production for

connecting biophysical findings to psychophysical phenomena for general anesthesia.

In particular, we conjecture that as the model dynamics transition to an aesthetic state the system will

involve a reduction in system complexity—defined as a reduction in the degree of irregularity across time

scales—exhibiting semistability and synchronization of neural oscillators (i.e., thermodynamic energy

equipartitioning). In other words, unconsciousness will be characterized by system decomplexification.

In addition, connections between thermodynamics, neuroscience, and the arrow of time [4–6] can be

explored by developing an understanding of how the arrow of time is built into the very fabric of our

conscious brain. Connections between thermodynamics and neuroscience is not limited to the study

of consciousness in general anesthesia and can be seen in biochemical systems, ecosystems, gene

regulation and cell replication, as well as numerous medical conditions (e.g., seizures, schizophrenia,

hallucinations, etc.), which are obviously of great clinical importance but have been lacking rigorous

theoretical frameworks. This is a subject of current research.
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Abstract: What is information? What role does information entropy play in this

information exploding age, especially in understanding emergent behaviors of complex

systems? To answer these questions, we discuss the origin of information entropy,

the difference between information entropy and thermodynamic entropy, the role of

information entropy in complexity theories, including chaos theory and fractal theory,

and speculate new fields in which information entropy may play important roles.
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1. Introduction

What are complex systems? What are emergent behaviors? What role does information entropy

play for quantitatively studying them? These are the important questions a thinking person will

naturally ask when s/he comes across the terms, complex systems and emergent behaviors.

A complex system is often defined as a system composed of a large number of interconnected

parts that, as a whole, exhibit one or more properties that are not obvious from the properties of

the individual parts. Some researchers are aware of the caveat of requiring a complex system
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to be a large system with many interconnected parts, realizing that a small system, such as a

pendulum, may also exhibit complex chaotic behavior. However, many other researchers favor

an even more elaborated definition, following the thought-provoking attributes of Earth identified

by Kastens et al. [1]: nonlinear interactions, multiple stable states, fractal and chaotic behavior,

self-organized criticality and non-Gaussian distributions of outputs. While complex systems cannot

readily be studied with a reductionist paradigm, in principle, it does not matter much whether one

wishes to adopt a simpler or more complicated definition for complex systems, so long as one

gives oneself a proper setting to study interesting universal behaviors of complex systems, besides

researching specific features of a system.

It is generally accepted that an emergent behavior is a non-trivial or complex collective behavior

when many simple entities (or agents) operate in an environment. Nature, as well as life are full of

emergent behaviors. On the very large scale, we have the famous example of a spiral galaxy, whose

formation may be explained by the density wave theory of Lin and Xu [2]. On a smaller, but still

a gigantic, scale, we have another fascinating example—the great red spot of Jupiter [3], which is

a high pressure, anti-cyclonic storm akin to a hurricane on Earth, with a period of about six days

and a size of three Earths. It has persisted for more than 400 years. Of course, a hurricane (also

called a typhoon or a tropical cyclone) is certainly a well-known example of emergent behavior.

Other often cited examples of emergence include phase transitions and critical phenomena [4], bird

flocking [5,6], fish schooling [7–10] and sand dunes [11]. Note that nonlinearity is an indispensable

condition for observing emergent behaviors, but hierarchy is not. To appreciate the latter, it suffices

to note that simple models prescribing local interactions can simulate bird flocking and fish schooling

quite well [5–10].

It must have been aeons since mankind was first fascinated by emergent behaviors in complex

systems. It is only in recent decades that researchers have attempted to quantitatively and

systematically study them. As a result, a few powerful new theories have been created, including

chaos theory and fractal theory. They are collectively called complexity theories, and information

entropy has been playing an essential role in these theories.

To better solve emerging scientific, technological and environmental problems, it is necessary to

discuss the origin of information entropy, identify key differences between information entropy and

thermodynamic entropy, understand the role of information entropy in the complexity theories and

anticipate new fields in which information entropy may play critical roles. These will be the main

themes of this essay. In order for the presentation to be readily accessible by a layman, we shall

focus on conceptual discussions. However, we will not shun mathematical discussions, in order for

the material to also be useful for experienced researchers.

2. The Origin of Information Entropy

Information entropy was originally created by Claude Shannon as a theoretical model of

communication, i.e., the transmission of information of various kinds [12]. There are two technical

issues in communications: (1) How may the information at the source be quantified and represented?
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(2) What is the capacity of the system—i.e., how much information can the system transmit or

process in a given time?

In communications, the first critical observation is that messages have to be treated as random,

i.e., unknown by the receiver before the messages are received. Indeed, a conversation becomes

meaningless if the listener always knows exactly what the speaker may say next. This observation

naturally leads to the following scheme for communication: (i) collect all the potential messages

to be sent over a communication channel as a set of random events, (A1, A2, · · · , An); (ii) assign a

probability, pi ≥ 0, where
∑n

i=1 pi = 1, to the i-th message, which measures the likelihood of the

occurrence of the i-th message.

In probability theory, (A1, A2, · · · , An) is called a complete system of events [13]. They

correspond to (1, 2, 3, 4, 5, 6), when throwing a die, or (head, tail), when tossing a coin. If the

die or the coin is unbiased, then {pi = 1/6, i = 1, · · · , 6} for die throwing, and {pi = 1/2, i = 1, 2}
for coin tossing. When the die or coin is biased, however, the probabilities will take different values.

In communications, the coin tossing may be associated with binary questions: yes or no, black or

white, red or blue, and so on. The average amount of information one obtains from the scheme:

A =

(
A1 A2 · · · An

p1 p2 · · · pn

)

when one of the messages is received is given by the information entropy defined by:

H = −
n∑

i=1

pi log pi (1)

By convention, pj log pj = 0 if pj = 0. While Equation (1) has many desired properties, the

logarithm, in particular, provides a convenient unit for quantifying the amount of information. This

unit is called bit when the base of the logarithm is two—when a binary problem, yes or no, true of

false, with equal probability of 1/2, is considered, the information is one bit, whenever an answer is

given. Bit is the unit of data stored and processed in any computing machine.

Note that if there is only one of pi’s that is one, while all others are 0, then H = 0. In this case,

we have a deterministic scheme and gain no knowledge at all by reading the messages sent by a

communication devise. At the other extreme, when the events occur with equal probability of 1/n,

H attains the maximum value of log n. A DNA sequence, consisting of four nucleotides, A-adenine,

T-thymine, C-cytosine and G-guanine, is close to the uniform distribution case and, thus, on average,

contains close to two bits of information for each base [14].

Using the idea of redundancy, decades of hard work have lead to many excellent error-correcting

codes to efficiently represent messages to be transmitted over communication channels. This paves

the way for the wide-spread use of computers to deal with everything in life. In particular, among

the most important schemes developed is the Lempel-Ziv (LZ) complexity [15,16], which is the

foundation of a commonly used compression scheme, gzip (more discussions on LZ complexity will

be presented in Section 7.1). Therefore, the first problem, how may the information at the source be

quantified and represented, has been fully solved. (Peter Shor, an eminent mathematician at MIT, has



77

extended the redundancy idea in an ingenious way to quantum computation and developed a quantum

error correction scheme [17].)

The answer to the second question, what is the capacity, C, of a channel, is also given by Shannon

in his epic paper. The precise answer, formulated using mutual information, which is a natural

extension of the concept of information entropy, is given by:

C = B log2(1 + S/N) (2)

where B is the bandwidth of the channel in Hertz and S/N is the signal-to-noise ratio. Mutual

information essentially measures how the messages received compare with messages sent over a

communication channel.

Albeit not a suitable place to prove Equation (2), we partially justify the theorem to enhance

the understanding of communications. Given a signal and noise power of S and N , the total power

is P = S + N . In the case of an analog signal, we may partition the signal waveform into many

bins, with each bin representing one of the messages. Here, one has to consider the worst case for

the channel—all messages are equally likely, so that the channel is continuously transmitting new

information. The largest number of bins possible is given by

2b =
√

P/N =
√

1 + S/N

In this case, each message may be represented by b bits. If we make M measurements of the b-bit

level in a time, T , then the total number of bits of information collected will be

M · b = M log2(1 + S/N)1/2

and the information transmission rate, I , in unit of bits per unit time, is

I =
M

T
log2(1 + S/N)1/2

Recognizing that the largest M
T

possible is the highest practical sampling rate, 2B, Equation (2)

naturally follows.

It is important to note that as B →∞, the capacity, C, does not become infinite. This is because

noise power, N , is also proportional to B. Denoting N = ηB, where η is the noise power per unit

bandwidth, and utilizing

lim
x→0

(1 + x)1/x → e

we have

C(B →∞) =
S

η
log2 e = 1.44

S

η

3. Entropy in Classical Thermodynamics

The word entropy apparently arose first in classical thermodynamics, which treats state variables

that pertain to the whole system, such as pressure, volume and the temperature of a gas. A

mathematical equation that arises constantly in classical thermodynamics is:

dH = dQ/T (3)
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where dQ is the quantity of heat transfer at temperature T and dH is the change in entropy. The

second law of thermodynamics asserts that dH cannot decrease in a closed system. Classical

thermodynamics makes no assumptions of the detailed micro-structure of the materials involved.

Classical statistical mechanics, in contrast, tries to model the detailed structure of the materials

and from the model to predict the rules of classical thermodynamics. For example, the pressure of

the gas can be explained as gas molecules, treated as little, hard, perfectly elastic balls, in constant

motion against the walls. Even a small amount of gas will have an enormous number, N , of particles.

In fact, as a crude order of magnitude, N may be taken as the Avogadro constant, NA = 6.022×1023.

If we imagine a phase space, whose coordinates are the position and velocity of each particle, then

the phase space for the gas particles is a subregion of a 6N -dimensional space. Assuming that for a

fixed energy, every small region in the phase space has the same probability as any other, Boltzmann

found that the following quantity plays the role of entropy:

H = k
B
ln

1

P
(4)

where P is the probability associated with any one of the equally likely small regions in the phase

space with the given energy, and k
B

is the Boltzmann constant.

Gibbs, in trying to deal with systems that did not have a fixed energy, introduced the “grand

canonical ensemble”, which is, in essence, an ensemble of the phase spaces of different energies of

Boltzmann. Gibbs deduced an entropy of the form:

H =
∑
i

p(i) ln
1

p(i)
(5)

where p(i) are the probabilities of the phase space ensembles. Expression-wise, this is identical to

Equation (1). It is thus no wonder that some researchers would consider information entropy to be a

redundant term.

However, identity in mathematical form does not imply identify of meaning, as Richard Hamming

emphasized in his interesting book, The art of probability [18]. The most fundamental difference

between information entropy and thermodynamic entropy is that information entropy works with a

set of events with arbitrary probabilities, while in thermodynamics, it is always assumed that gas

particles occupy any region of a container with equal probability. Therefore, information entropy is

a broader concept than thermodynamic entropy. To further help understand this, it is beneficial to

note that Myron Tribus was able to derive all the basic laws of thermodynamics from information

entropy [19]. More importantly, while thermodynamic entropy may not be very relevant to the

description of genomic and proteomic sequences and many emerging complex behaviors, information

entropy is an essential building block of complexity theory [20] and can naturally quantify the amount

of information in biological sequences [14,21].

4. Entropy Maximizing Probability Distributions

One of the most important applications of entropy is to determine initial distributions relevant

to many phenomena in science and engineering by maximizing entropy. Uniform distribution
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is one such distribution. However, it is not the only one. Depending on constraints, there are

other distributions that can maximize entropy. To facilitate this discussion, we first need to extend

information entropy based on discrete probabilities to that based on the probability density function

(PDF). This is given by the differential entropy, defined by:

H = −
∫

f(x) log f(x)dx (6)

For simplicity, here, we only list two elementary distributions that maximize entropy under

appropriate constraints. This discussion will be resumed briefly in the next section.

(1) Exponential distribution, with PDF given by:

f(x) = λe−λx, x ≥ 0 (7)

maximizes entropy under the constraint that the mean of the random variable, X , which is 1/λ,

is fixed.

This entropy maximization property is perhaps one of the main reasons why we encounter

exponential distributions so frequently in mathematics and physics. For example, a Poisson

process is defined through exponential temporal or spatial intervals, while the sojourn times

of Markov processes are exponentially distributed [20]. Exponential distribution is also very

relevant to ergodic chaotic systems, as recurrence times of chaotic systems follow exponential

distributions [22,23]. Exponential laws play an even more fundamental role in physics, since

the basic laws in statistical mechanics and quantum mechanics are expressed as exponential

distributions, while finite spin glass systems are equivalent to Markov chains.

(2) When mean, μ, and variance, σ2, are given, the distribution that maximizes entropy is the

normal distribution with mean, μ, and variance, σ2, N(μ, σ2).

The fundamental reason that normal distributions maximize entropy is the Central Limit

theorem—a normal distribution may be considered an attractor, since the sample mean of a

sufficiently large number of independent random variables, each with finite mean and variance,

will be approximately normally distributed.

5. Entropy and Complexity

Broadly speaking, any behavior that is neither completely regular (or dumb) nor fully random

may be called an emerging complex behavior. Representative complex behaviors include chaotic

motions and fractal behaviors. The latter include random processes with long-range correlations,

which is a subclass of the fascinating 1/f phenomena [24,25].

To facilitate the following discussions, we first note different forms of motions, in increasing order

of complexity: fixed point solutions, periodic motions, quasi-periodic motions, chaotic motions,

turbulence and random motions. Interestingly, a similar sequence is observed in solid materials:

crystal, quasicrystal, fractal and aperiodic random form. In particular, Dan Shechtman won the Nobel

Prize in Chemistry in 2011 for discovering quasicrystals. One would have anticipated the existence
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of quasicrystals by the similarity between these two sequences, noticing that quasi-periodic motions

have been known in the dynamics community for a long time. In terms of abundance, quasicrystals

are much fewer than fractal shapes.

A. Fractal: Euclidean geometry is about lines, planes, triangles, squares, cones, spheres, etc.

The common feature of these different objects is regularity: none of them is irregular. Now,

let us ask a question: are clouds spheres, mountains cones and islands circles? The answer is

obviously, no. In pursuing answers to such questions, Mandelbrot has created a new branch of

science—fractal geometry [26–29].

For now, we shall be satisfied with an intuitive definition of a fractal: a set that shows irregular,

but self-similar, features on many or all scales. Self-similarity means that part of an object is similar

to other parts or to the whole. That is, if we view an irregular object with a microscope, whether we

enlarge the object by 10 times or by 100 times or even by 1,000 times, we always find similar objects.

To understand this better, let us imagine that we were observing a patch of white cloud drifting away

in the sky. Our eyes were rather motionless: we were staring more or less in the same direction. After

a while, the part of the cloud we saw drifted away, and we were viewing a different part of the cloud.

Nevertheless, our feeling remained more or less the same.

Mathematically, self-similarity or a fractal is characterized by a power-law relation, which

translates into a linear relation in the log-log scale. To understand how power-law underlies the

perception of self-similarity, let us imagine a very large number of balls flying around in the sky,

where the size of the balls follows a heavy-tailed power-law distribution:

p(r) ∼ r−α (8)

See Figure 1.

Figure 1. Random fractal of discs with a Pareto-distributed size: P [X ≥ x] = (1.8/x)1.8.

Being human, we will instinctively focus on balls whose size is comfortable for our eyes—balls

that are too small cannot be seen, while balls that are too large block our vision. Now, let us assume

that we are most comfortable with the scale, r0. Of course, our eyes are not sharp enough to tell the
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differences between scales r0 and r0+dr, |dr| � r0. Nevertheless, we are quite capable of identifying

scales, such as 2r0, r0/2, etc. Which aspect of the flying balls may determine our perception? This

is essentially given by the relevant abundance of the balls of sizes 2r0, r0 and r0/2:

p(2r0)/p(r0) = p(r0)/p(r0/2) = 2−α

Note that the above ratio is independent of r0. Now, suppose we view the balls through a microscope,

which magnifies all the balls by a scale of 100. Now, our eyes will be focusing on scales, such as

2r0/100, r0/100 and r0/200, and our perception will be determined by the relative abundance of the

balls at those scales. Because of the power-law distribution, the relative abundance will remain the

same—so does our perception.

B. Tsallis non-extensive entropy and powerlaw behavior: One attractive means of explaining the

ubiquity of power-laws and fractal behaviors is through maximization of Tsallis entropy, named

after a brilliant Brazilian physicist, Tsallis [30,31]. To explain the idea, we first extend Shannon’s

information entropy to the Renyi entropy, defined by:

HR
q =

1

1− q
log
( m∑

i=1

pi
q
)

(9)

The purpose of introducing a spectrum of q in Renyi entropy is to amplify larger or smaller

probabilities. For example, when q � 0 or q � 0, large or small probabilities dominate the right

side of Equation (9), respectively. Tsallis entropy, defined by:

HT
q =

1

q − 1

(
1−

m∑
i=1

pi
q
)

(10)

is related to the Renyi and Shannon entropies through simple relations:

HR
q =

ln
[
1 + (1− q)HT

q

]
1− q

, lim
q→1

HR
q = lim

q→1
HT

q = −
m∑
i=1

pi ln pi

However, Tsallis entropy has a different focus—it aims to find a specific q, often different than one,

that best characterizes a phenomenon that is neither regular nor fully chaotic/random. Tsallis entropy

is non-extensive in the sense that for a compound system comprising two independent subsystems,

Tsallis entropy is not the summation of Tsallis entropies for the two subsystems. So far, a number of

workshops and conferences have been organized to discuss Tsallis non-extensive statistics.

By maximizing the form of Tsallis entropy for continuous PDFs, one can obtain Tsallis

distribution [32]:

p(x) =
1

Zq

[1 + β(q − 1)x2]1/(1−q), 1 < q < 3 (11)

where Zq is a normalization constant and β is related to the second moment. When 5/3 < q < 3,

the distribution is a heavy-tailed power-law described by Equation (8). In particular, when q = 2,

the distribution reduces to the Cauchy distribution, which is a stable distribution with infinite
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variance [20]. As an application to the analysis of real world data, we have shown in Figure 2

the analysis of sea clutter radar return data. As one may expect, q is distinctly different from one.

Figure 2. Representative results of using Tsallis distribution to fit the sea clutter radar

return data. Here, (q, β) are (1.34, 43.14) and (1.51, 147.06), respectively (adaptive

from [32]).
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C. Chaos: Fractal behaviors are not limited to geometric objects. They can also manifest themselves

as temporal variations, such as stock market price variations and chaotic motions. While the meaning

of chaos is consistent with intuitive understanding, here, we shall confine ourselves to its strict

mathematical meaning, i.e., exponential divergence,

d(t) ∼ d(0)eλ1t (12)

where d(0) denotes a small separation between two arbitrary trajectories at time 0, d(t) is the average

separation between them at time t and λ1 > 0 is the largest positive Lyapunov exponent. This

property is called sensitive dependence to initial conditions and is the origin of the fascinating

butterfly effect: sunny weather in New York could be replaced by rainy weather sometime in the

near future after a butterfly flaps its wings in Boston. This property is vividly shown in Figure 3:

initially close by points in the chaotic Lorenz attractor rapidly diverge and, soon, are everywhere on

the attractor.

To better appreciate the concept of sensitive dependence to initial conditions, let us consider the

map on a circle:

xn+1 = 2xn mod 1 (13)
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where x is positive and mod 1 means that only the fractional part of 2xn will be retained as xn+1.

This map can also be viewed as a Bernoulli shift or a binary shift. Suppose that we represent an

initial condition, x0, in binary:

x0 = 0.a1a2a3 · · · =
∞∑
j=1

2−jaj (14)

where each of the digits, aj , is either one or zero. Then,

x1 = 0.a2a3a4 · · ·

x2 = 0.a3a4a5 · · ·
and so on. Thus, a digit that is initially far to the right of the decimal point, say the 40th digit

(corresponding to 2−40 ≈ 10−12), and, hence, has only a very minor role in determining the initial

value of x0, eventually becomes the first and the most important digit.

Figure 3. Ensemble forecasting in the chaotic Lorenz system: 2,500 ensemble members,

initially represented by the pink color, evolve to those represented by the red, green and

blue colors at t = 2, 4 and 6 units.
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A chaotic motion is generally characterized as a strange attractor. By strange, we mean the

exponential divergence. By attractor, we have finiteness in motion. This incessant stretching and

folding back in phase space often leads to a fractal structure for the underlying attractor. The fractal

or capacity dimension of this attractor may be determined as follows: Partition the phase space

containing the attractor into many cells of linear size, ε. Denote the number of nonempty cells by

n(ε). Then,

n(ε) ∼ ε−D0 , ε→ 0

where D0 is called the box-counting dimension.

The concept of the box-counting dimension can be generalized to obtain a sequence of

dimensions, called the generalized dimension spectrum. This is obtained by assigning a probability,
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pi, to the i-th nonempty cell. One simple way to calculate pi is by using ni/N , where ni is the number

of points within the i-th cell and N is the total number of points on the attractor. Let the number of

nonempty cells be n. Then:

Dq =
1

q − 1
lim
ε→0

(
log
∑n

i=1 p
q
i

log ε

)
(15)

where q is real. In general, Dq is a non-increasing function of q. D0 is simply the box-counting or

capacity dimension, since
∑n

i=1 p
q
i = n. D1 gives the information dimension, DI :

DI = lim
ε→0

∑n
i=1 pi log pi
log ε

(16)

The above consideration can be extended to monitor the detailed temporal evolutions of a chaotic

attractor. Again, all we need to do is to partition the phase space into small boxes of size ε, compute

the probability, pi, that box i is visited by the trajectory and calculate Shannon entropy. For many

systems, when ε→ 0, information linearly increases with time [33]:

I(ε, t) = I0 +Kt (17)

where I0 is the initial entropy, which may be taken as zero for simplicity, and K is the Kolmogorov-
Sinai (KS) entropy.

To deepen our understanding, let us consider three cases of dynamical systems: (i) deterministic,

non-chaotic; (ii) deterministic, chaotic; and (iii) random. For case (i), during the time evolution of

the system, phase trajectories remain close together. After a time, T , nearby phase points are still

close to each other and can be grouped into some other small region of the phase space. Therefore,

there is no change in information. For case (ii), due to exponential divergence, the number of phase

space regions available to the system after a time, T , is N ∝ e(
∑

λ+)T , where λ+ are positive

Lyapunov exponents. Assuming that all of these regions are equally likely, then pi(T ) ∼ 1/N ,

and the information function becomes:

I(T ) = −
N∑
i=1

pi(T ) ln pi(T ) = (
∑

λ+)T (18)

Therefore, K =
∑

λ+. More generally, if these phase space regions are not visited with equal

probability, then:

K ≤
∑

λ+ (19)

Grassberger and Procaccia [34], however, suggest that equality usually holds. Finally, for case (iii),

we can easily envision that after a short time, the entire phase space may be visited. Therefore,

I ∼ lnN . When N →∞, we have K =∞.

The above discussions make it clear that, albeit thermodynamic entropy may not be very relevant

for describing fractal and chaotic behavior, Shannon’s information entropy is always a basic building

block. As one can easily perceive, a precise definition for the KS entropy will again be based on

Shannon’s information entropy, by replacing pi(T ) in Equation (18), to be the joint probability that

the trajectory is in boxes, i1, · · · , id, at d subsequent times. In order not to overwhelm readers with

mathematical equations, we will not go into the details here.
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D. Distinguishing chaos from noise: For a long time, a finite Kolmogorov entropy has often been

thought to indicate deterministic chaos. This practice is still being followed in many applications.

This aspect of chaos research may be summarized by the following analogy: many researchers were

chasing the beast of chaos on a wild beach. One was yelling, “Here is a footprint”. Another was

echoing, “Here is another” · · · . After a long while, some careful minds pointed out that those may just

be their own footprints. Among the most convincing counter-examples are the 1/f random processes,

which have fractal dimensions and finite Kolmogorov entropies and, thus, may be misinterpreted as

deterministic chaos [35,36].

If one can think a little deeper, one can readily realize that it is impossible to obtain an infinite

Kolmogorov entropy with a finite amount of random data. This is why the issue of distinguishing

chaos from noise has been considered a classic and difficult one [37–39]. To fundamentally solve the

problem, one has no choice but to resort to multiscale approaches. One of the most viable approaches

to tackle this issue is the scale-dependent Lyapunov exponent (SDLE). SDLE is a function of the scale

parameter and, thus, is entirely different from the conventional concept, the Lyapunov exponent,

which is a number. Among the multiscale complexity measures, SDLE has the richest scaling

laws. For example, for chaotic motions, SDLE is a constant, indicating truly exponential divergence.

However, SDLE is a power-law for 1/f processes. Therefore, distinguishing chaos from noise is

no longer a problem. Moreover, through an ensemble forecasting approach, SDLE can tie together

many different types of entropies in dynamical systems. For more details, we refer to [40–42].

E. Statistical complexity: Finally, we note that information entropy is a deterministic complexity

measure, since it quantifies the degree of randomness. Sometimes this is considered not ideal for

characterizing a type of behavior that is neither regular nor completely random. An alternative,

statistical complexity, has been proposed that can be maximized for neither high nor low

randomness [43,44]. Interestingly, information entropy still is a significant building blocking in this

actively evolving field [45,46].

F. Multiscale analysis: Albeit chaotic dynamics have fractal properties, there is an important subset

of fractal behaviors, random fractal behaviors, that are entirely different from deterministic chaotic

dynamics. Recognizing that the foundations of random fractal behaviors are random and many non-

chaotic, but random behaviors may be modeled by random fractals, Gao et al. [20] have advocated

to: (1) use chaos and random fractal theories synergistically to solve a broad range of problems of

real world impact and (2) use multiscale approaches to simultaneously characterize the behaviors of

complex signals on a wide range of scales.

There exist a number of multiscale approaches. Among them is the random fractal theory,

whose key element is scale-invariance, i.e., the statistical behavior of the signal is independent

of a spatial or temporal interval length. With scale-invariance, only one or a few parameters are

sufficient to describe the complexity of the signal across a wide range of scales where the fractal

scaling laws hold. Because of the small number of parameters, fractal analyses are among the

most parsimonious multiscale approaches [20]. Other multiscale methods include SDLE, which

has been briefly discussed earlier, the finite-size Lyapunov exponent [47–49], (ε, τ) entropy [50] and



86

multiscale entropy [51]. For analysis and modeling of a single time series data, these approaches

may be considered to often be adequate. What are significantly lacking are the tools for studying the

detailed interactions between two or more systems, i.e., involving two or more time series data.

6. Time’s Arrow

Although the basic laws of physics are time reversible (i.e., that if time t in all equations were

substituted with −t, the relations would still hold), time irreversible processes are ubiquitous. From

the mixing of cold and warm water, to the burning of a match and the breaking of glass, common

real-world experience tells us that regardless of the mathematical formulation of basic physical laws,

time’s arrow only points in one direction.

To resolve this paradox, Ludwig Boltzmann developed the concept of Boltzmann entropy and

the H-theorem. As we have discussed, Boltzmann entropy is the logarithm of the number of all

possible microscopic states (or phase space volume). The H-theorem governs the time evolution of

the (negative) entropy, and implies that entropy has to be constant or increase in time. Taken together,

the two concepts provide a constraint upon the directionality of time.

Boltzmann’s scheme, albeit very successful, has been controversial [52,53]. Historically, a

decisive objection was made by Ernst Zermelo, who pointed out that on the basis of the Poincare

recurrence theorem, a closed dynamical system must eventually come back arbitrarily close to its

initial state. Thus, eventually, every system will be “reversible”, and entropy cannot always increase.

Intuitively, the Poincare recurrence time for a closed system to return to its initial state must be

inconceivably long. Richard Feynman asserted, “It would never happen in a million years” [54].

Vladimir Arnold thought it may be longer than the age of the solar system [55]. Boltzmann himself

reportedly replied:“You should wait that long!” [56]. A quantitative estimate of the length of this

time recently has been given by Gao as [22]:

T (r) ∼ τ · r−(DI−1) (20)

where τ is the sampling time, r is the size of a subregion in the phase space to be re-visited and

DI is the information dimension already discussed. For fully random gaseous motions, as we have

discussed, DI may be taken as on the same order of 6NA, where NA is the Avogadro constant.

Therefore, the recurrence time is on the order of 1036×1023τ , if we take r ∼ 1/10. This time is too

long to be relevant to reality!

While objection to Boltzmann’s scheme is not quite relevant to reality, research on the opposite

line is more productive—Cédric Villani, a genial French mathematician and a Fields medalist of

2010, is able to compute entropy production from the Boltzmann equation and find the rate of

convergence to equilibrium [57].

It was unfortunate that Boltzmann committed suicide. However, a sober great mind, Willard

Gibbs, who was a contemporary of Boltzmann, would not attach himself too much to the depressing

meaning of the second law of thermodynamics. Gibbs serenely concluded that recurrence time had

to be very long. However, there might be a chance to observe processes that would violate the

second law of thermodynamics. Indeed, such violations can be readily observed in small, nanoscale
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systems over short time scales [58]. This possibility, in fact, has much to do with Equation (20)—the

exponent is DI − 1, not DI . When DI is large, essentially, there is no difference between DI and

DI − 1. However, when a system is small, DI − 1 instead of DI will make the recurrence time

much shorter.

While in closed physical systems, violations of the second law of thermodynamics may not be

easy to observe, negative entropy flow is a rule rather than an exception in life—life feeds on negative

entropy, as asserted by Erwin Schrödinger [59]. Lila Gatlin argues that entropy reduction within

living systems occurs whenever information is stored [21]. More precisely, we may say that life

functions when genetic codes are executed precisely and external stimuli are properly processed by

neurons. The source of this negative entropy is the Sun, as discussed by the eminent mathematician

and theoretical physicist, Roger Penrose, in his best selling popular science book, The Emperor’s
New Mind [60].

7. Entropy in an Inter-Connected World: Examples of Applications and Future Perspectives

As expected, information entropy has found interesting applications in almost every field of

science and engineering. In this closing section, we explain how entropy can be applied to analyze

complex data and speculate on the frontiers where information entropy may play critical roles.

7.1. Estimating Entropy from Complex Data: The Use of the Lempel-Ziv Complexity

When the probability distribution for a complex system is known, using Equation (1), information

entropy can easily be computed. If all that is known is time series data, how can entropy be computed?

The answer lies in the Lempel-Ziv (LZ) complexity [15,16].

The LZ complexity and its derivatives, being easily implementable, very fast and closely related

to the Kolmogorov complexity [61,62], have found numerous applications in characterizing the

randomness of complex data.

To compute the LZ complexity, a numerical sequence has to be first transformed into a symbolic

sequence. The most popular approach is to convert the signal into a 0–1 sequence by comparing

the signal with a threshold value, Sd [63]. That is, whenever the signal is larger than Sd, one maps

the signal to one, otherwise, to zero. One good choice of Sd is the median of the signal [64]. When

multiple threshold values are used, one may map the numerical sequence to a multi-symbol sequence.

Note that if the original numerical sequence is a nonstationary random-walk type process, one should

analyze the stationary differenced data instead of the original nonstationary data.

After the symbolic sequence is obtained, it can then be parsed to obtain distinct words and the

words be encoded. Let L(n) denote the length of the encoded sequence for those words. The LZ

complexity can be defined as:

CLZ =
L(n)

n
(21)

Note, this is very much in the spirit of the Kolmogorov complexity [61,62].
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There exist many different methods to perform parsing. One popular scheme is proposed by the

original authors of the LZ complexity [15,16]. For convenience, we call this Scheme 1. Another

attractive method is described by Cover and Thomas [65], which we shall call Scheme 2. For

convenience, we describe them under the context of binary sequences.

• Scheme 1: Let S = s1s2 · · · sn denote a finite length, 0–1 symbolic sequence; S(i, j)

denote a substring of S that starts at position i and ends at position j, that is, when i ≤ j,

S(i, j) = sisi+1 · · · sj and when i > j, S(i, j) = {}, the null set. Let V (S) denote the

vocabulary of a sequence, S. It is the set of all substrings, or words, S(i, j) of S, (i.e., S(i, j)

for i = 1, 2, · · · , n; j ≥ i). For example, let S = 001, we then have V (S) = {0, 1, 00, 01, 001}.
The parsing procedure involves a left-to-right scan of the sequence, S. A substring, S(i, j),

is compared to the vocabulary that is comprised of all substrings of S up to j − 1, that is,

V (S(1, j − 1)). If S(i, j) is present in V (S(1, j − 1)), then update S(i, j) and V (S(1, j − 1))

to S(i, j + 1) and V (S(1, j)), respectively, and the process repeats. If the substring is not

present, then place a dot after S(j) to indicate the end of a new component, update S(i, j) and

V (S(1, j − 1)) to S(j + 1, j + 1) (the single symbol in the j + 1 position) and V (S(1, j)),

respectively, and the process continues. This parsing operation begins with S(1, 1) and

continues until j = n, where n is the length of the symbolic sequence. For example, the

sequence, 1011010100010, is parsed as 1 ·0 ·11 ·010 ·100 ·010·. By convention, a dot is placed

after the last element of the symbolic sequence. In this example, the number of distinct words

is six.

• Scheme 2: The sequence, S = s1s2 · · · , is sequentially scanned and rewritten as a

concatenation, w1w2 · · · , of words, wk, chosen in such a way that w1 = s1 and wk+1 is the

shortest word that has not appeared previously. In other words, wk+1 is the extension of some

word, wj , in the list, wk+1 = wjs, where 0 ≤ j ≤ k and s is either zero or one. The above

example sequence, 1011010100010, is parsed as 1 · 0 · 11 · 01 · 010 · 00 · 10·. Therefore, a total

of seven distinct words are obtained. This number is larger than the six of Scheme 1 by one.

The words obtained by Scheme 2 can be readily encoded. One simple way is as follows [65].

Let c(n) denote the number of words in the parsing of the source sequence. For each word, we

use log2 c(n) bits to describe the location of the prefix to the word and one bit to describe the

last bit. For our example, let 000 describe an empty prefix, then the sequence can be described

as (000, 1)(000, 0)(001, 1)(010, 1)(100, 0)(010, 0)(001, 0). The total length of the encoded sequence

is L(n) = c(n)[log2 c(n) + 1]. Equation (21) then becomes:

CLZ = c(n)[log2 c(n) + 1]/n (22)

When n is very large, c(n) ≤ n/ log2 n [15,65]. Replacing c(n) in Equation (22) by n/ log2 n,

one obtains:

CLZ =
c(n)

n/ log2 n
(23)

The commonly used definition of CLZ takes the same functional form as Equation (23), except

that c(n) is obtained by Scheme 1. Typically, c(n) obtained by Scheme 1 is smaller than that by
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Scheme 2. However, encoding the words obtained by Scheme 1 needs more bits than that by Scheme

2. We surmise that the complexity defined by Equation (21) is similar for both schemes. Indeed,

numerically, we have observed that the functional dependence of CLZ on n (based on Equations (22)

and (23)) is similar for both schemes.

Figure 4. The variation of (a1,a2), the Lempel-Ziv (LZ) complexity, (b1,b2), the

normalized LZ complexity, (c1,c2), the correlation entropy, and (d1,d2), the correlation

dimension with time for the EEG signal of a patient. (a1–d1) are obtained by partitioning

the EEG signals into short windows of length, W = 500 points; (a2–d2) are obtained

using W = 2, 000. The vertical dashed lines in (a1,a2) indicate seizure occurrence times

determined by medical experts.
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For infinite length sequences, the LZ complexity is equivalent to the Shannon entropy. In

particular, the LZ complexity is zero for periodic sequences with infinite length. However, when the

length of a periodic sequence is finite, the LZ complexity is larger than zero. In most applications,

a signal is of finite length. It is therefore important to find a suitable way to ensure that the LZ

complexity is zero for a finite periodic sequence and one for a fully random sequence. This issue was
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first considered by Rapp et al. [66]. It is taken on again by Hu et al. [67], recently, using an analytic

approach. Specifically, they have derived formulas for the LZ complexity for random equiprobable

sequences, as well as periodic sequences with an arbitrary period, m, and proposed a simple formula

to perform normalization. An application to the analysis of electroencephalography (EEG) data for

epileptic seizure detection is shown in Figure 4. We observe that the LZ complexity, albeit simple, is

as effective as the correlation entropy and the correlation dimension from chaos theory for detecting

seizures. For more details, we refer to [67]. Furthermore, for a deep understanding of the connections

among different complexity measures for EEG analysis, we refer to [68].

7.2. Future Perspectives

Where will information entropy be most indispensable? We believe those fields that must

interface with human behavior. In those situations, as with the first step, the use of information

theory is not so much about providing a formula to quantify the amount of uncertainty. Rather, it

helps researchers to comprehensively understand a significant problem, i.e., to define a complete

system of events needed for applying information entropy. Comprehensiveness is the guiding

principle for data-driven multiscale analysis of complex data [20] and is the prerequisite for making

long-lasting impacts.

Before we make speculations, we note that, as science advances, what is currently uncertain or

unknown may become partially or fully known in the future, and then, information entropy will

decrease. The situation is similar to what Professor Yuch-Ning Shieh of Purdue University has

contemplated during our personal conversation: “The amount of dark matter may decrease when

some explicit form of dark matter is found in the future”. To understand this aspect better, we may

take the case of estimating information entropy from DNA sequences as a concrete example. While

entropy is close to two bits, based on the distribution of nucleotide bases [14], it becomes significantly

lower than two bits when sequential correlations are taken into account [69] (for recent studies on

DNA sequences, we refer to [70–75]).

A more complicated situation is provided by the use of information theory in psychology. After

an initial fad of information theory in psychology during the 1950s and 1960s, it no longer was

much of a factor, due to increasingly deeper understanding of information processing by neurons

[76]. However, recently, there has been a resurgence of interest in information theory in psychology,

for the purpose of better understanding uncertainty-related anxiety [77]. This new model focuses

on the weighted distribution of potential actions and perceptions as subjectively experienced by a

human being and assigns lower entropy to stronger goals. In essence, this model is hierarchical,

with neural science working at the bottom layer and subjective decision making involving multiple

layers. A hierarchical model, in essence, is what “order based on order”, using Erwin Schrödinger’s

words [59].

Let us now consider the potential use of information theory in environmental science and

engineering. For concreteness, let us start with the widespread PM2.5 pollution in China. First,

let us consider the physics of PM2.5 pollution. It is known that PM2.5 sulfates reside 3–5 days in

the atmosphere. With an average wind speed, say, 5 m/s, the residence time of several days yields a
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“long range transport” and a more uniform spatial pattern. On the average, PM2.5 particles can be

transported as far as 1,000 or more km from the source of their precursor gases. This is the main

mechanism responsible for Hong Kong’s PM2.5 pollution in winter [78]. Therefore, physics-wise,

it would be interesting to study PM2.5 pollution systematically, including the rate of generation in

the sources, the variation of the PM2.5 level with wind speed, atmospheric transportation, and so on,

to determine what should be done to limit PM2.5 pollution to a certain range. There will be many

uncertainties in such an effort. Information entropy, and even thermodynamic entropy, should be able

to play some important roles.

Next, let us consider the consequences of severe PM2.5 pollution. The first may be the adverse

health effects, which have been widely discussed in the media. Published medical studies on the

effects of PM2.5 pollution only considered moderately high concentrations of PM2.5 particles. Since,

in many cities of China, PM2.5 concentration is simply off the scale for many consecutive days,

one clearly has to ask whether the adverse effects of PM2.5 particles on health depend linearly or

non-linearly on the concentration of PM2.5 particles. If nonlinear, then some kind of bifurcation,

i.e., dramatically increased health problems when PM2.5 concentration exceeds a certain level,

may occur. Then comes the question of medical costs on such pollution-induced health problems.

Furthermore, one may ask how much PM2.5 pollution may harm outdoor animals, especially birds,

since they do not have any means to protect themselves against harmful PM2.5 particles constantly

present in a huge spatial range.

This cost does not simply stop at the medical level. Severe pollution makes foggy and hazy

weather appear more frequently. Foggy and hazy weather decreases visibility, forces the closure of

roads, worsens traffic congestion, causes more traffic accidents and casualties, discourages shopping,

forces cancellation of thousands of flights, and so on. Clearly, this “messiness” can be associated

with dramatic increase in entropy. Such considerations will be critical for convincing responsible

governmental agencies to take decisive actions to reduce PM2.5 pollution.

Next, let us discuss the relationship between economic development and entropy production.

While many countries have made significant progress in GDP, it is important to note that, so far, little

attention has been paid to the notion of entropy when developing economic growth models. This

includes Marx’s economic theory [79] and the economics Nobel prize-winning model, the Solow-

Swan neo-classical growth model [80,81]. With our living environment so gravely endangered, it is

the very time to seriously address the critical issue of sustainable growth.

At this point, we should discuss what entropy really means in economics. A general interpretation

is to associate entropy with some distributions of economic data [82]. Indeed, entropy for the

distribution of negative incomes can predict economic downturns remarkably well, including the

recent gigantic financial crisis [83]. In the emerging new field, econophysics, which tries to develop

a thermodynamic analogy for the economy, energy and entropy are associated with capital and

production function, respectively [84]. Such a view is too rigid, however, since a fixed amount

of money, when used differently, can lead to entirely different consequences. For example, in 2012,

the ex-wife of the billionaire golfer, Tiger woods, ordered her newly bought mansion, in $12 million,

to be torn down and re-built, for the reason that the mansion was too small for her. Again in
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2012, right after the super hurricane Sandy in New York, some poor people in New York city were

struggling for survival, due to lack of food. Yet, some rich people were struggling for a different

purpose—busy consuming wines costing $1,000 per bottle, due to the flooding of their basements by

Sandy. Our view is, to aptly discuss entropy in economics, one has to comprehensively evaluate all

the possibilities and their positive and negative consequences. Waste and disruptive consequences of

certain growth processes ought to be associated with a large increase in entropy.

This is an information exploding age. The key here is to aptly use big data—as estimated by

Mckinsey [85], if US healthcare were to use big data creatively and effectively to drive efficiency

and quality, the sector could create more than $300 billion in value every year. In the developed

economies of Europe, government administrators could save more than $149 billion in operational

efficiency improvements alone by using big data, not including using big data to reduce fraud

and errors and to boost the collection of tax revenues. Additionally, users of services enabled by

personal-location data could capture $600 billion in consumer surplus. It is critical to maximally

utilize the available information from big data for the general well-being of mankind.
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1. Introduction

The motivation for studying discrete mappings comes in the last century from a seminal

investigation by May [1], and since then a wide range of applications appeared involving different

areas, including biology, physics, chemistry, mathematics, engineering and many others [2–10].

Comprehensive discussions on maps can also be found in [11–16].

In this paper, we revisit two well known maps namely the logistic map and the cubic map. The

nonlinearity of the logistic map is quadratic while for the cubic map, and as the name suggests,

is cubic. The two models experience a set of bifurcations reaching the chaos via period-doubling

bifurcation and following normal Feingenbaum scaling [17,18]. Before reaching that, the logistic

map experiences a transcritical bifurcation where an exchange of stability between fixed points

happens and the cubic map experiences a pitchfork bifurcation with a fixed point losing stability,

while a twin period one fixed point is born. Our main goal in this paper is to investigate the relaxation

to the fixed point around these two bifurcations. We then use a set of numerical simulations and a

theoretical investigation to show that, at the bifurcation, a convergence to the fixed point is given by

a power law [19] with different exponents for the two bifurcation, while after the bifurcation, the

convergence to the fixed point is exponential and with a relaxation time given by a power law with

the same exponent for both bifurcations.

The paper is organized as follows. In Section 2 we discuss the mappings considered in this paper

and the results obtained. Numerical simulations supporting theoretical findings are given in this

Section too. Conclusions are drawn in Section 3.

2. The Mappings and Relaxation to the Fixed Points Investigation

We consider in this section the behavior of the relaxation to the fixed points for two mappings,

namely the logistic map given by the expression

xn+1 = Rlxn −Rlx
2
n (1)

and for the cubic map given by

xn+1 = Rcxn − x3
n (2)

where both Rl and Rc are control parameters. For our investigations in this paper we consider the

ranges Rl ∈ [0, 4] and Rc ∈ [0, 3]. For either Rl > 4 and Rc > 3 yields the dynamics to go to

−∞ and is without interest for us. Figure 1 shows the orbit diagram for the two mappings given by

Equations (1) and (2).

As is well known in the literature, the logistic map has two fixed points for Rl ∈ [0, 3] namely

xl
1 = 0 (3)

xl
2 =

Rl − 1

Rl

(4)

where, according to stability analysis, xl
1 is asymptotically stable for Rl ∈ [0, 1) while xl

2 is

asymptotically stable for Rl ∈ (1, 3) for any initial conditions lying x0 ∈ (0, 1). At Rl = 1, the
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system experiences a transcritical bifurcation and fixed point xl
1 changes stability with xl

2. For Rl = 3

the system exhibits a first period-doubling bifurcation following in a sequence of period-doubling

until reaches chaotic behavior. At the bifurcations, the Lyapunov exponents are null given the

eigenvalues at the bifurcation points are 1 or −1. The sequence of period-doubling follows a

Feingenbaum scaling [17,18].

Figure 1. Bifurcation diagrams for: (a) logistic map and; (b) cubic map (for two different

initial conditions). The names of some bifurcations are indicated in the figures.

For the cubic map, there is a fixed point xc
1 = 0 and two period one fixed points xc

2 =
√
Rc − 1

and xc
3 = −√Rc − 1 both are born at Rc = 1. At Rc = 1 the system experiences a pitchfork

bifurcation when xc
1 loses stability and there is a birth of the xc

2,3 fixed points. Each one of them evolve

independently suffering period-doubling bifurcations until reach the chaos. Again the sequences of

period-doubling are described by the Feingenbaum scaling [17,18]. The two separate chaotic bands

are merged only due to a merging chaotic attractors crisis [13,14].

The two regions we are interested in to discuss along this paper correspond to: (i) the region of

the transcritical bifurcation in the logistic map and; (ii) the region of the pitchfork bifurcation in the

cubic map. Indeed we are seeking to understand and describe how is the relaxation of orbits starting

close to the fixed point near both bifurcations. We are then looking to describe the behavior of x

approaching to x∗ denoting the fixed points at Rl = 1 and Rc = 1. Exactly like any other variable, x
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is a function of two entities, i.e., n which is the number of iterations and μ = Rl − 1 for the logistic

map and μ = Rc − 1 for cubic for both Rl,c ≥ 1.

Following previous results in the literature [19,20], we start with two hypotheses:

• For μ = 0 it implies there is an algebraic decay in x so that

x(n, μ = 0) ∝ nβ (5)

where β is a critical exponent and depends on the type of bifurcation.

• For the parameter μ �= 0, we assume the orbit relaxes to the equilibrium exponentially

according to

x(n, μ) ∝ e−
n
τ (6)

where the relaxation time τ has the following form

τ ∝ μz (7)

where z is also a critical exponent.

Before showing some theoretical approaches to describe the critical exponents, let us first check

what a numerical simulation provides. Figure 2 shows a plot of the convergence to the fixed point

considering the logistic map for: (a) μ = 0 and (b) μ �= 0.

Figure 2. Convergence to the fixed point for the logistic map considering: (a) μ = 0

where a power law fit furnishes β = −0.99997(5) ∼= −1 and; (b) μ �= 0 with a slope of

z = −0.994(1) ∼= −1.
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After doing power law fittings for the two plots of Figure 2 we obtain that β = −0.99997(5) ∼=
−1 and z = −0.994(1) ∼= −1.

On the other hand the convergence to the fixed point for the cubic map is shown in Figure 3 for:

(a) μ = 0 leading to a slope of decay given by β = −0.497(2) ∼= −1/2 and; (b) μ �= 0 yielding in a

slope of z = −0.9927(6) ∼= −1.

Figure 3. Convergence to the fixed point for the cubic map considering: (a) μ = 0

where a power law fit furnishes β = −0.497(2) ∼= −1/2 and; (b) μ �= 0 with a slope of

z = −0.9927(6) ∼= −1.

Given the numerical results are now known, we can go ahead with the theoretical argumentation

on the characterization of the relaxations. Let us start with the logistic map as example and

considering the transcritical bifurcation, i.e., Rl = 1. In this case the mapping is written as

xn+1 = xn − x2
n (8)

Equation (8) can be rewritten in a more convenient way as

xn+1 − xn =
xn+1 − xn

(n+ 1)− n
∼= dx

dn
(9)
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that leads to the following approximation

dx

dn
= −x2 (10)

The approach used in Equation (10) is only valid in the limit of x(n) very close to the fixed

point. In such a limit, the discrete variables can be treated like a continuous variable, making the

derivative possible.

Integrating Equation (10) from both sides leads to∫ x

x0

1

x′2dx
′ =
∫ n

0

dn′ (11)

After doing the integration and rearranging the terms properly we end up with

x(n) =
1

n+ 1
x0

(12)

As soon as n grows attending to the condition n� 1/x0 we obtain

x(n) ∝ n−1 (13)

After a comparison with Equation (5) we see that for the logistic map at Rl = 1 the critical exponent

β = −1, in well agreement to the numerical results presented in Figure 2.

The investigation for Rl > 1 is quite similar to the previous case with a minimal detail of

subtracting from both sides of Equation (1) a term xn, that leads to

xn+1 − xn =
xn+1 − xn

(n+ 1)− n
∼= dx

dn
(14)

yielding at the end with an expression of the type

dx

dn
= x(Rl − 1)−Rlx

2 (15)

When x is sufficiently close to the fixed point, the second term of Equation (15) which is a quadratic

term, becomes rather small as compared to the first one becoming then negligible. Because of this it

indeed can be disregarded. Quoting the definition of μ we can rewrite Equation (15) as

dx

dn
= xμ (16)

which in terms of integral is given as ∫ x

x0

dx′

x′ = μ

∫ n

0

dn′ (17)

Doing the integral properly we obtain that

x(n) = x0e
μn (18)
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A comparison with Equation (6) leads us to conclude that the critical exponent z = −1, again is in

well agreement with the simulation, as confirmed in Figure 2.

Let us now continue the investigation but considering this time the cubic map for Rc = 1. Doing

similar procedure as made in Equation (9) we obtain

dx

dn
= −x3 (19)

After doing the integration and organize the terms properly we obtain that

x(n) =

√
1

2n+ 1
x2
0

∼= 1√
2
n− 1

2 (20)

for the limit of 2n� 1/x2
0. Comparing the result obtained from Equation (20) with the one presented

in Equation (5) we find β = −1/2 which is confirmed by the numerical simulations shown in

Figure 3.

Considering the case of Rc > 1 but still close to 1, we end up with an expression of the type

dx

dn
= xμ− x3 (21)

Using similar arguments as used for the logistic map, the cubic term in Equation (21) can be

disregarded leading to an identical expression as given by Equation (18). Therefore we conclude that

the critical exponent is given by z = −1 as indeed confirmed by numerical simulations presented in

Figure 3.

The two mappings present a bifurcation in Rl,c = 1. At the bifurcation point, both maps exhibit

algebraic relaxation to the fixed point but with different critical exponents. For the logistic map

β = −1 while for the cubic map it is given by β = −1/2. On the other hand, after the bifurcation

takes place, the relaxation for the fixed point is given by the same law and with the same critical

exponent z = −1.

Let us now discuss shortly on the behavior of the entropy for the bifurcations observed at Rl,c = 1.

To define a K-entropy, we follow same general discussion as made in [21]. The procedure starts from

the evolution in time of a single initial condition converging towards an attractor. The region defining

the attractor is therefore covered by a set of discrete cells. An initial condition is started along such

cells and its trajectory is followed and marked in the phase space saying what cell is visit at stage n,

as for example x(0) → x(1) → x(2) → x(3) . . .. A second initial condition is started very close to

the first one and that may lead to a different sequence of visits. The process continue to a very large

number of initial conditions such that an ensemble average on the initial conditions can be made.

From the average, a relative number of times a specific sequence of N cells is visited can be defined.

Then the entropy SN is given as

SN =<
∑
i

p(i) ln(p(i)) > (22)
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where p(i) gives the relative number for the ith sequence and with the summation taken over all

possible sequences starting with x(0). From this, the K-entropy is then defined as

K = lim
N→∞

1

N
(Sn − S0) (23)

Because the convergence to the attractor at Rl,c = 1 is indeed an evolution towards an attracting

fixed point, the dynamics is regular. Therefore all sequences starting from the same sufficiently small

cell are the same, all orbits follow each other as time passes. This leads to SN = 0 for all the

ensemble of N . For a large enough N produces a K = 0 because there is no change in S. This is

only observed because the dynamics is regular and no chaos is present for Rl,c = 1.

3. Conclusions

We have considered in this paper the convergence to the fixed point by using two different

mappings with different nonlinearities, namely the logistic map with a quadratic nonlinearity and

the cubic map, whose nonlinearity is cubic. Both mappings are characterized by a control parameter

that induces bifurcations in the system. For the logistic, the convergence to the fixed point at a

transcritical bifurcation is given by a power law with exponent β = −1. In the cubic map at a

pitchfork bifurcation, the decay to the fixed point is also algebraic with slope β = −1/2. After

bifurcation the two systems show an exponential decay to the fixed point whose relaxation time is

given by a power law with the same exponent for both maps, namely z = −1.
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Abstract: The aim of this short note is to compute the topological entropy for a family

of skew-product maps, whose base is a subshift of finite type, and the fiber maps are

homeomorphisms defined in one dimensional spaces. We show that the skew-product

map does not increase the topological entropy of the subshift.

Keywords: topological entropy; non-autonomous discrete systems; skew-product;

Bowen’s inequalities

1. Introduction

Let Σ = {0, 1, ..., k − 1}, and let ΣZ = {(sn) : sn ∈ Σ}. Consider the shift map, σ : ΣZ → ΣZ,

given by σ(sn) = (sn+1). Let A = (aij) be a k × k matrix, where the a′ijs are 0′s or 1′s for any

i, j ∈ {1, ..., k}. A subshift of finite type (SFT in short) is the restriction of σ to the set,A = {(sn) ∈
ΣZ : asnsn+1 = 1}. Note that A is compact and metrizable and σ(A) = A, that is, A is invariant

by σ.

Let X be a metric space and consider continuous maps, f0, f1, ..., fk−1 : X → X . Let ϕ :

A×X → A×X be the skew-product map given by:

ϕ((sn), x) = (σ(sn), fs0(x)), for all ((sn), x) ∈ A×X (1)

Recently, this class of skew-product maps has been studied by several authors (see [1–5]). The

interest for studying systems that are generated by alternative iterations of a finite number of maps

comes from several fields, like population dynamics (see, e.g., [6,7]) and economic dynamics (see,

e.g., [8,9]), where the systems are generated by SFT with many finite elements. For SFT with
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infinitely many elements, the term crazy dynamics was introduced in [1]. Let us also point out

that this kind of skew-product has been useful for analyzing difference inclusions used in discrete

control systems (see, e.g., [10]).

Recently, in [2], the topological entropy of ϕ was analyzed when k = 2 and A = {0, 1}Z,

proving that when f0 and f1 belong to a family of contractive homeomorphisms on the real line, the

topological entropy of some invariant set agrees with that of the full shift, σ : {0, 1}Z → {0, 1}Z.

Additionally, in [3], they extend their results to homeomorphisms on higher dimension spaces. The

aim of this paper is to analyze the same question under different conditions. Let h(f) and ent(g)

denote the topological entropy and a variant valid for non-compact spaces introduced in Section 2.

The main aim of this paper is to state the following results.

Theorem 1. Let f0, f1 : X → X be homeomorphisms on X = S1, [0, 1] or R. Let ϕ : A × X →
A×X , A ⊆ {0, 1}Z be the skew-product map defined in Equation (1). Then:

(a) If X = S1 or [0, 1], then h(ϕ) = h(σ).
(b) If X = R, then ent(ϕ) ≤ h(σ). If there exists a compact subset, K ⊂ R, such that ϕ(A×K) ⊆

A×K, then ent(ϕ) = h(σ).

Note that homeomorphisms on the circle, the compact interval and the real line have zero

topological entropy, and therefore, one might wonder whether the above result remains true for simple

maps, that is, for zero entropy maps. The next result, in the spirit of the dynamic Parrondo paradox

(see, e.g., [11–14]), shows that this is not true in general.

Theorem 2. Let ϕ : A × [0, 1] → A × [0, 1], A ⊆ {0, 1}Z be the skew-product map defined in
Equation (1). Then, there are zero topological entropy continuous maps, f0, f1 : [0, 1]→ [0, 1], such
that h(ϕ) > h(σ).

The maps used in the proof of Theorem 2 are constructed by gluing different continuous interval

maps, which usually do not appear in discrete models from natural or social sciences. The next result

shows that a similar result holds for a well-known one-parameter family of interval maps.

Theorem 3. Let ga(x) = ax(1−x), a ∈ [3, 4] and x ∈ [0, 1]. Fix a, b ∈ [3, 4], and let ϕ : A×[0, 1]→
A× [0, 1], A ⊆ {0, 1}Z be the skew-product map defined in Equation (1) with f0 = ga and f1 = gb.
Then, there are parameter values, a0, a1 ∈ [3, 4], such that h(ga) = h(gb) = 0 and h(ϕ) > h(σ) for
a suitable SFT.

Let us remark that there are a wide ranges of parameters, a ∈ [3, 4], satisfying Theorem 3.

However, we can give some positive results if we strengthen our hypothesis. Recall that a continuous

interval map is piecewise monotone if there are 0 = x0 < x1 < ... < xn = 1, such that f |(xi,xi+1) is

monotone for i = 0, ..., n− 1. Recall that two maps, f0 and f1, commute if f0 ◦ f1 = f1 ◦ f0. Then,

we can prove the following result, which gives a partial positive answer to our previous question.

Theorem 4. Let f0, f1 : [0, 1] → [0, 1] be commuting continuous piecewise monotone with zero
topological entropy. Let ϕ : A× [0, 1] → A× [0, 1], A ⊆ {0, 1}Z be the skew-product map defined
in Equation (1). Then, h(ϕ) = h(σ).
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Remark 1. Theorem 4 is not true in general if both maps, f0 and f1, are not piecewise monotone.
Namely, in [15], two commuting maps, f0 and f1, with zero topological entropy are constructed, such
that h(f0 ◦ f1) > 0, and so, following the proof of Theorem 3, we can conclude that h(σ) < h(ϕ).

The paper is organized as follows. The next section is devoted to introduce basic notation and

useful definitions. Then, we give a proof of Theorem 1. The last section is devoted to proving

Theorems 2–4.

2. Basic Definitions

Firstly, we will introduce Bowen’s definition of topological entropy (see [16]). Let X be a

compact metric space with metric d, and let f : X → X be a continuous map. Let K be a compact

subset of X , and fix n ∈ N and ε > 0. A subset, S ⊂ K, is said to be (n, ε,K)-separated if for any

x, y ∈ S, x �= y, there is k ∈ {0, 1, ..., n− 1}, such that d(fk(x), fk(y)) > ε. Denote by sepn(ε,K)

the cardinality of an (n, ε,K)-separated set with maximal cardinality. The topological entropy is

defined as:

h(f) = lim
ε→0

lim sup
n→∞

1

n
log sepn(ε,X)

We say that a continuous map, f , is topologically chaotic if h(f) > 0. In particular, topologically

chaotic maps are chaotic in the sense of Li and Yorke (see [17,18]), which is one of the most

accepted notions of chaos. In addition, the topological entropy of the skew-product map, ϕ, defined

in Equation (1), satisfies the following Bowen’s inequalities:

max

{
h(σ), sup

(sn)∈A
h(ϕ,X, (sn))

}
≤ h(ϕ) ≤ h(σ) + sup

(sn)∈A
h(ϕ,X, (sn)) (2)

where for any (sn) ∈ A:

h(ϕ,X, (sn)) = lim
ε→0

lim sup
n→∞

1

n
log sepn(ε, {(sn)} ×X)

which can be meant as the topological entropy of the non-autonomous discrete system given by the

sequence of maps, (fs0 , fs1 , ...) (see [19] for the definition).

When X is not compact, the above definition of topological entropy makes sense when f is

uniformly continuous. Then, we need to add a new limit in the definition as follows:

hd(f) = sup
K

lim
ε→0

lim sup
n→∞

1

n
log sepn(ε,K)

We stress the metric, d, now, because this definition is metric-dependent. However, it is known (see,

e.g., [20]) that, although the dynamics of the map, f(x) = 2x, x ∈ R, is simple, we have that

hd(f) = log 2 for the standard Euclidean metric on R. To solve this problem, in [21], a notion of

topological entropy for non-compact spaces has been introduced, such that it can be computed for

any continuous map and keeps the above property, that positive entropy maps have a complicated



109

dynamic behavior. Denote by K(X, f) the family of compact subsets, K of X , such that f(K) ⊆ K,

and define:

ent(f) = sup
K∈K(X,f)

lim
ε→0

lim sup
n→∞

1

n
log sepn(ε,K)

Note that, clearly, ent(f) ≤ hd(f), and for f(x) = 2x, we easily see that ent(f) = 0, because the

only invariant compact subset is {0}. Additionally, ent(f) = 0 when K(X, f) = ∅.
Now, we concentrate our efforts in proving our main results.

3. Proof of Theorem 1

Proof of case (a). Let fn : X → X be a sequence of homeomorphisms with X = S1 or [0, 1]. It

can be seen in [19] that if we denote by f1,∞ the sequence of maps, (f1, f2, ....), then h(f1,∞) = 0.

To finish the proof, we apply Bowen’s inequality (2) to conclude that, since:

sup
(sn)∈A

h(ϕ,X, (sn)) = 0

we have that h(ϕ) = h(σ).

When X = R, we cannot apply Bowen’s inequality, and therefore, the proof requires extra work.

Proof of case (b). Note that R = (−∞,+∞). We add two symbols to R and construct

the compact space, [−∞,+∞], which is homeomorphic to a compact interval. Since f0 and f1

are homeomorphisms, we can extend them continuously and construct maps, f ∗
i : [−∞,+∞] →

[−∞,+∞], such that f∗
i (±∞) ∈ {±∞}, i = 0, 1. Note that f∗

0 and f ∗
1 are homeomorphisms, as

well, and therefore:

h(f∗
s0
, f ∗

s1
, ...) = 0

for all (sn) ∈ A.

On the other hand, we consider the continuous extension of ϕ:

ϕ∗ : A× [−∞,+∞]→ A× [−∞,+∞]

given by:

ϕ∗((sn), x) = (σ(sn), f
∗
s0
(x)), for all ((sn), x) ∈ A× [−∞,+∞]

Since any compact subset of A × (−∞,+∞) is a compact subset of A × [−∞,+∞], we

conclude that:

ent(ϕ) ≤ ent(ϕ∗) = h(ϕ∗)

Applying Bowen’s inequality to ϕ∗, we conclude that:

h(ϕ∗) ≤ h(σ) + sup
(sn)∈A

h(ϕ∗, [−∞,+∞], (sn))

and since:

h(ϕ∗, [−∞,+∞], (sn)) = h(f ∗
s0
, f ∗

s1
, ...) = 0

we conclude that:

ent(ϕ) ≤ h(ϕ∗) = h(σ)
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Now, we assume that there exists a compact set, K ⊂ R, such that ϕ(A×K) ⊆ A ×K. Applying

Bowen’s inequality to ϕ|A×K , we conclude that:

h(σ) ≤ h(ϕ|A×K) ≤ ent(ϕ)

which concludes the proof.

Remark 2. The existence of compact subsets, K, holding the conditions of Theorem 1 (b) can be
seen in [2,10]. The following example shows that the equality, h(σ) = ent(ϕ), is not true in general
when such compact subsets do not exist. We just consider the real maps, fi(x) = x+ i+ 1, i = 0, 1,
and construct the map, ϕ. Clearly K(ΣZ × R, ϕ) = ∅, which implies that ent(ϕ) = 0. If we take as
a base map, σ : A → A, with positive topological entropy, then we find that h(σ) > h(ϕ) = 0.

4. Proof of Theorems 2–4

Proof of Theorem 2. Let A = {0, 1}Z, and define the maps, f0 and f1, as follows:

f0(x) =

{
(g2 ◦ t2 ◦ g−1

1 )(x) if x ∈ [0, 1/2]

1/2 if x ∈ [1/2, 1]

and:

f1(x) =

{
1/2 if x ∈ [0, 1/2]

(g1 ◦ φ ◦ t2 ◦ φ ◦ g−1
2 )(x) if x ∈ [1/2, 1]

where g1(x) = x/2, g2(x) = (x + 1)/2 and φ(x) = 1 − x, x ∈ R, and t is the standard tent map,

t(x) = 1 − |2x − 1|, x ∈ [0, 1], which holds that h(t2) = log 4. Figure 1 shows the graph of f0 and

f1 on the interval, [0, 1].

Figure 1. We show the graphic on [0, 1] of maps f0 (left), f1 (center) and f1 ◦ f0 (right),

defined in the proof of Theorem 2.

Note that f 2
i ([0, 1]) = 1/2, i = 1, 2, and thus, h(f0) = h(f1) = 0. Let (0, 1, 0, 1, ...) ∈ A, and

note that, by [19]:

h(ϕ, [0, 1], (0, 1, 0, 1...)) = h(f0, f1, f0, f1, ...) =
1

2
h(f1 ◦ f0)
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On the other hand, we have that:

(f1 ◦ f0)(x) =
{

(g1 ◦ φ ◦ t4 ◦ φ ◦ g−1
1 )(x) if x ∈ [0, 1/2]

1/2 if x ∈ [1/2, 1]

whose graphic can be seen in Figure 1. By [22], h(f1 ◦ f0) = log 16. By Bowen’s inequalities:

h(ϕ) ≥ h(ϕ, [0, 1], (0, 1, 0, 1...)) = log 4 > log 2 = h(σ)

and the proof concludes.

Proof of Theorem 3. Let fa(x) = ax(1 − x), a ∈ [3, 4] and x ∈ [0, 1]. It is well-known

that h(fa) increases when a increases (see, e.g., [23]), and it is positive for a > 3.5699... Figure

2 shows the computation of h(fa) with accuracy 10−4 by using an algorithm from [24]. However,

for fa ◦ fb, a, b ∈ [3, 4], the computation of topological entropy with prescribed accuracy is more

complicated. For doing it, we use the recently developed algorithm from [25]. Figure 3 shows the

entropy computations with prescribed accuracy, 10−4. From the shown computations, we may find

parameter values, a and b, a bit smaller than 3.6 with zero topological entropy for maps fa and fb,

such that h(fa ◦ fb) is positive (for instance, a = 3.56 and 3.086 ≤ b ≤ 3.267 gives positive values

of h(fa ◦ fb)).

Figure 2. We compute the topological entropy (ent in the figure) for a ∈ [3.5, 4] with

accuracy, 10−4. We note that the first parameter value providing positive topological

entropy is 3.569945 . . .

Now, we consider the matrix:

A =

(
0 1

1 0

)
and notice that the SFT, σ : A → A, generated by A is composed of two periodic sequences,

(0, 1, 0, 1, ..) and (1, 0, 1, 0, ...), which implies that h(σ) = 0. On the other hand, if f0 = fa and

f1 = fb, notice that:

h(ϕ,X, (0, 1, 0, 1, ...)) = h(f0, f1, f0, f1, ...) =
1

2
h(f1 ◦ f0)

h(ϕ,X, (1, 0, 1, 0, ...)) = h(f1, f0, f1, f0, ...) =
1

2
h(f0 ◦ f1)
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It is easy to check that:

h(ϕ) =
1

2
h(f0 ◦ f1) = 1

2
h(f1 ◦ f0) > 0 = h(σ)

which concludes the proof.

Figure 3. We compute the topological entropy (ent in the figure) for a ∈ [3.55, 3.57] and

b ∈ [2.8, 3.6] with accuracy, 10−4. The darker region represents those parameter values

providing zero topological entropy.

Proof of Theorem 4. Let c(f) denote the number of monotonicity pieces of a piecewise

monotone map, f . By the Misiurewicz-Szlenk (see [22]) formula:

h(f) = lim
n→∞

1

n
log c(fn)

Fix (sn) ∈ A and note that:

c(fsn−1 ◦ fsn−2 ◦ ... ◦ fs0) = c(fkn
1 ◦ fn−kn

0 ) ≤ c(fkn
1 )c(fn−kn

0 )

where kn = #{i ∈ {0, 1, ..., n−1} : si = 1}. Since the sequence, (fs0 , fs1 , ...), contains two maps, it

is equicontinuous, and then, the Misiurewicz-Szlenk formula is valid in this setting (see [26]). Thus:

h(fs0 , fs1 , ...) = lim sup
n→∞

1

n
log c(fsn−1 ◦ fsn−2 ◦ ... ◦ fs0)

≤ lim sup
n→∞

kn
n

1

kn
log c(fkn

1 ) + lim sup
n→∞

n− kn
n

1

n− kn
log c(fn−kn

0 )

≤ h(f1) lim sup
n→∞

kn
n

+ h(f0) lim sup
n→∞

n− kn
n

and since h(f0) = h(f1) = 0, we find that for any (sn) ∈ A, we have that h(fs0 , fs1 , ...) = 0. By

Bowen’s inequality:

h(ϕ) ≤ h(σ) + sup
(sn)∈A

h(fs0 , fs1 , ...) = h(σ)

Since the inequality, h(σ) ≤ h(ϕ), also holds, we conclude the proof.
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5. Conclusions

We prove that skew-product maps with the form of Equation (1), such that the fiber maps are

homeomorphisms on one dimensional spaces, do not increase the topological entropy of its base map,

and then, the behavior of the space, X , is not dynamically complicated, generalizing a result from [2].

On the other hand, we also prove that a similar situation does not hold when zero topological entropy

continuous interval maps are considered. Still, the question remains open of whether our results can

be extended to homeomorphisms defined on topological spaces with dimensions greater than one.
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1. Introduction

A subject related to the concept of entropy is time. Evolution equations for mechanical systems

are reversible, but the entropy of the system sets a specific time direction, eliminating the reversibility

of the equations of motion. Time in Quantum Mechanics is an old subject of research and has lead

to many interesting developments. At the end of this paper, there is a small, incomplete, list of

references on this subject [1–72]. In a previous paper, we have proposed the use of coordinate

eigenstates located at the extremal points of the potential function as a zero time eigenstate for the

generation of a time coordinate system in classical and in quantum systems [73]. However, that

proposal does not work for a potential function without extremal points, as is the case of the linear

potential. Therefore, in this paper, we address the issue of constructing a time coordinate for that

type of potential function. With these results, we will be able to generate a time coordinate system

for any potential function for classical and quantum systems.
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Let us consider a one-dimensional Hamiltonian for a physical system of the form:

H =
p2

2m
+ V (q) (1)

If we want to use the energy shells as a coordinate in phase-space, a good choice for a second

coordinate is the surfaces that cross all of the energy shells. The normal direction to the constant

energy shells is given by the vector:

X⊥H = ∇H =

(
∂H

∂q
,
∂H

∂p

)
=
(
−F (q),

p

m

)
(2)

There are two cases for which one of the components of this vector vanishes: when the force vanishes

and when p = 0. The case of vanishing force was treated in [73]. In that work, there was given

a justification for the use of coordinate eigenstates, placed at the zero force places, as zero-time

eigenstates for the generation of a time coordinate in classical phase space and in quantum systems.

In this paper, we consider the second case, the use of momentum eigenstates at p = 0 as the zero-time

eigenstate. This curve is easy to generate in Classical and also in Quantum Mechanics, so that is a

good choice for an initial time eigenstate, especially for potential functions with no extremal points,

as is the case of the linear potential. We will use the harmonic and linear potential to illustrate the

concepts developed here.

2. Time Eigenstates for Classical Systems

Let us consider the task of generating a time coordinate system for classical systems. To generate

a time coordinate system, we start with the momentum eigencurve with p = 0 as the zero-time

eigencurve, i.e.,

γT (0) := {z | p = 0} (3)

where z = (q, p) is a point in phase-space. This curve is normal to the constant energy shells and,

then, it crosses all of that shells. The remaining time eigencurves, γ(t), are generated by the time

propagation of the zero time eigencurve, γ(0). These curves are then given as:

γT (t) = {z(t) | p(0) = 0} (4)

where z(t) is the phase-space point obtained from (q, p = 0) after evolution for a time, t.

The time eigenfunction is a Dirac’s delta function with the time eigencurve as support:

νT (z; t) := δ(z − zt), zt ∈ γT (t) (5)

The evaluation of the time variable on any point of the support of this function results in the value, t.

With these and the energy eigencurves, γ(E), and eigenfunctions, νE(z;E):

γH(E) = {z | H(z) = E}. νE(z;E) := δ(z − zE), zE ∈ γH(E) (6)
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we have a pair of variables and functions that can be used as an alternative to the usual phase-space

coordinates (q, p) and its eigenfunctions.

For instance, for the harmonic oscillator, the time eigencurve is:

γT (t) =
√
2ε(cos(t), sin(t)) (7)

and, then, to each point in phase-space, there is a defined value of energy and time, given by:

t = tan−1

(
p

q

)
, ε =

1

2
(q2 + p2) (8)

which is just the polar coordinate system. Since energy and time is now another coordinate system

equivalent to the phase space coordinates, a phase-space function, f(z), can also be written in terms

of the energy time variables, (E, t). For instance, an energy-time Gaussian probability density:

ρ(E, t) =
1

πσEσT

e−(E−E0)2/(2σ2
E)−t2/(2σ2

T ) (9)

will have another shape and other widths in phase space. In Figure 1, we show plots of the time

function, t(z), for one period, and density plots of the unnormalized energy-time Gaussian probability

density in energy-time space and in phase space for the harmonic oscillator. In that calculation,

E0 = 1.5, σE = 0.5 and σT = 1.

Figure 1. Time-energy coordinates for the classical Harmonic oscillator. (a) Values of

the time function, t(z), in phase-space; (b) Density plots of an energy-time Gaussian

probability density in energy-time space; (c) Density plots of an energy-time Gaussian

probability density in phase-space. Here, E0 = 1.5, σE = 0.5 and σt = 1, in

dimensionless units.
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Let us now consider the linear potential V (q) = aq, where a is a real constant. The time

eigencurve for the this potential is given by:

γT (t) = {z|p = −at} (10)

The time variable depends only upon p and a plot of this variable and of the time-energy Gaussian

of Equation (9), in time-energy and in phase-space, is shown in Figure 2.

Figure 2. Time-energy coordinates for the classical linear potential. (a) Values of the

time function, t(z); (b) Density plots of an energy-time Gaussian probability density in

energy-time space; (c) Density plots of an energy-time Gaussian probability density in

phase-space. Here, E0 = 1.5, σE = 0.5 and σT = 1 in dimensionless units.

We have defined a time coordinate system for classical systems. The method used for that can

also be used in quantum systems, as we show below. The advantages of this choice are that the

momentum eigenstate at p = 0 is easy to generate and that it will be formed with all of the energy

eigenstates.

In the next section, we will deal with quantum systems, and we will consider both cases, the

continuous and the discrete energy spectrum cases. We will also use the linear potential to illustrate

the method.

3. Quantum Systems: Continuous Spectrum

Let us consider a one-dimensional quantum system and proceed to obtain time eigenstates, with

the linear potential as an illustration of the method.
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3.1. Derivation of Time Eigenstates

We will derive time eigenstates for a continuous energy spectrum by the rewriting of the identity

operator and by making use of the integral representation of Dirac’s delta function. The main

assumption here is that there is a state |t = 0〉, such that 〈E|t = 0〉 = eiα, the same value of α

for all the energy eigenstates, |E〉. We will apply the following results to the linear potential.

We start with the expansion of the identity operator in terms of energy eigenstates:

Î =

∫
dE|E〉〈E| =

∫
dE′dE|E′〉δ(E − E′)〈E| =

∫
dE′dE|E′〉 1

2π�

∫
dt eit(E−E′)/�〈E|

=
1

2π�

∫
dt

∫
dE′dE e−itĤ/�|E′〉〈E′|t = 0〉〈t = 0|E〉〈E|eitĤ/�

=
1

2π�

∫
dt e−itĤ/�|t = 0〉〈t = 0|eitĤ/�

=

∫
dt |t〉〈t| (11)

where we have made use of 1 = eiαe−iα = 〈E ′|t = 0〉〈t = 0|E〉 and where we have defined time

eigenstates as:

|t〉 := 1√
2π�

e−itĤ/�|t = 0〉 = 1√
2π�

∫
dEe−itE/�〈E|t = 0〉|E〉 = eiα√

2π�

∫
dEe−itE/�|E〉 (12)

Note that we have written the identity operator in terms of time eigenstates |t〉.
The Hamiltonian is written in terms of time eigenstates as follows:

Ĥ =

∫
dE′dE|E′〉〈E′|Ĥ|E〉〈E|

=

∫
dE′dE E δ(E′ − E)|E′〉〈E′|t = 0〉〈t = 0|E〉〈E|

=

∫
dE′dE E

1

2π�

∫
dt eit(E−E′)/�|E′〉〈E′|t = 0〉〈t = 0|E〉〈E|

=
1

2π�

∫
dt

∫
dE′dE E e−itĤ/�|E′〉〈E′|t = 0〉〈t = 0|E〉〈E|eitĤ/�

=
1

2π�

∫
dt

∫
dE e−itĤ/�|t = 0〉〈t = 0|E〉〈E|

(
−i� ∂

∂t

)
eitE/�

=

∫
dt|t〉

(
−i� ∂

∂t

)
〈t| (13)



120

We now form a time operator as:

T̂ =

∫
dt |t〉t〈t|

=

∫
dE′dE

1

2π�

∫
dt e−itE′/�|E′〉〈E′|t = 0〉t〈t = 0|E〉〈E|eitE/�

=

∫
dE′dE

1

2π�

∫
dt e−itE′/�〈E′|t = 0〉〈t = 0|E〉|E′〉〈E|

(
−i� ∂

∂E
eitE/�

)
= −

∫
dE′dE〈E′|t = 0〉〈t = 0|E〉|E′〉〈E|i� ∂

∂E

1

2π�

∫
dt eit(E−E′)/�

= −
∫

dE′dE〈E′|t = 0〉〈t = 0|E〉|E′〉〈E|i� ∂

∂E
δ(E − E′)

= −i�
∫

dE′〈E′|t = 0〉〈t = 0|E〉|E′〉〈E|δ(E − E′)
∣∣∣
boundary

+i�

∫
dE′dEδ(E′ − E)

∂

∂E
〈E′|t = 0〉〈t = 0|E〉|E′〉〈E|

= −i�|E〉〈E|
∣∣∣
boundary

+ i�

∫
dE′dEδ(E′ − E)

∂

∂E
〈E′|t = 0〉〈t = 0|E〉|E′〉〈E|

=

∫
dE|E〉

(
i�

∂

∂E

)
〈E|+ b.t. (14)

where we have made use of integration by parts and b.t. stands for the boundary terms. For the

linear potential, the boundary term vanishes if the wave packet has components in a finite interval of

momentum values. With this, we have time and energy representations of the time operator.

When boundary terms can be neglected, the n-th power of T̂ can be written as the integral of

|t〉tn〈t| as:

T̂ n =

∫
dE ′ . . . dE|E ′〉

(
i�

∂

∂E ′

)
〈E ′| . . . |E〉

(
i�

∂

∂E

)
〈E| =

∫
dE|E〉

(
i�

∂

∂E

)n

〈E|

=

∫
dE ′dEδ(E ′ − E)|E ′〉

(
i�

∂

∂E

)n

〈E|

= i�

∫
dE ′δ(E ′ − E)|E ′〉

(
i�

∂

∂E

)n−1

〈E|
∣∣∣
E boundary

+

∫
dE ′dE

(
−i�∂δ(E

′ − E)

∂E

)
|E ′〉
(
i�

∂

∂E

)n−1

〈E|

=

∫
dE ′dE|E ′〉〈E|

(
−i� ∂

∂E

)n

δ(E ′ − E) + b.t.

=

∫
dE ′dE|E ′〉〈E|

(
−i� ∂

∂E

)n
1

2π�

∫
dt eit(E−E′)/�

=
1

2π�

∫
dtdE ′dE|E ′〉〈E|tneit(E−E′)/�

=
1

2π�

∫
dtdE ′dE e−itĤ/�|E ′〉〈E ′|t = 0〉tn〈t = 0|E〉〈E|eitĤ/�

=

∫
dt|t〉tn〈t| (15)



121

The time eigenstates Equation (12) are indeed the eigenstates of the time operator Equation (14):

T̂ |t〉 =

∫
dE|E〉

(
i�

∂

∂E

)
〈E| 1√

2π�

∫
dE ′e−itE′/�〈E ′|t = 0〉|E ′〉

=
1√
2π�

∫
dE|E〉

(
i�

∂

∂E

)∫
dE ′e−itE′/�〈E ′|t = 0〉〈E|E ′〉

=
1√
2π�

∫
dE|E〉

(
i�

∂

∂E

)
e−itE/�eiα =

1√
2π�

∫
dE|E〉t e−itE/�eiα

= t|t〉 (16)

Now, let us see the result of the commutator between the time and Hamiltonian operators. For

one of the components of the identity operator, we have that:

i�
d

dt
|t〉〈t| =

i�

2π�

d

dt
e−itĤ/�|t = 0〉〈t = 0|eitĤ/�

=
i�

2π�

(
− i

�
Ĥ

)
e−itĤ/�|t = 0〉〈t = 0|eitĤ/� +

i�

2π�
e−itĤ/�|t = 0〉〈t = 0|

(
i

�
Ĥ

)
eitĤ/�

= Ĥ|t〉〈t| − |t〉〈t|Ĥ
= [Ĥ, |t〉〈t|] (17)

Thus:

[Î , Ĥ] =

∫
dt [|t〉〈t|, Ĥ] = −

∫
dt i�

d

dt
|t〉〈t| = −i�|t〉〈t|

∣∣∣∞
t=−∞

(18)

and:

[T̂ , Ĥ] =

∫
dt [|t〉t〈t|, Ĥ] = −

∫
dt ti�

d

dt
|t〉〈t| = −i�t|t〉〈t|

∣∣∣∞
t=−∞

+ i�

∫
dt |t〉〈t|dt

dt

= i�Î − i�t|t〉〈t|
∣∣∣∞
t=−∞

(19)

Since the Hilbert space is composed of L2 functions, we expect that in energy-time space, the wave

function will also be of an integrable square type and, then, the boundary terms will vanish. This

leads to the conclusion that Î and T̂ have the desired commutator with Ĥ .

3.2. Equalities Involving Powers of Time

We can write down an expression for any power of t:[∫
dt tn+1|t〉〈t|, Ĥ

]
= −i�

∫
dt tn+1 d

dt
|t〉〈t| = −i�tn+1|t〉〈t|

∣∣∣∞
−∞

+ i�

∫
dt

dtn+1

dt
|t〉〈t| (20)

i.e., we have that: [
T̂ n+1, Ĥ

]
= i�(n+ 1)T̂ n (21)

where T̂ n :=
∫
dt tn|t〉〈t|. This equality is consistent with the constant commutator being

a derivation.
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From the above equality, it is easy to show, by the induction method, that:

[
. . .
[
T̂ n, Ĥ

]
, . . . , Ĥ

]
︸ ︷︷ ︸

n

= n!(i�)n

(22)

3.3. Change of Representation

We can obtain the energy eigenvector from the time eigenvectors as follows:∫
dt eiEt/�〈E|t = 0〉∗|t〉 =

1

2π�

∫
dt eiEt/�〈E|t = 0〉∗e−itĤ/�

∫
dE ′〈E ′|t = 0〉|E ′〉

=

∫
dE ′ 〈E|t = 0〉∗

2π�

∫
dt ei(E−E′)t/�〈E ′|t = 0〉|E ′〉

=

∫
dE ′〈E|t = 0〉∗δ(E − E ′)〈E ′|t = 0〉|E ′〉

= |E〉 (23)

and vice-versa, from the definition, we can see that the appropriate sum of energy eigenstates results

in the time eigenstate:

∫
dE

e−itE/�

√
2π�

〈E|t = 0〉|E〉 = e−itĤ/�

√
2π�

∫
dE〈E|t = 0〉|E〉 = |t〉 (24)

3.4. Orthogonality between Time Eigenstates

The time eigenstates are not orthogonal for the same zero time state:

〈t′|t〉 =
1

2π�
〈t = 0|eit′Ĥ/�e−itĤ/�|t = 0〉 = 1

2π�
〈t = 0|e−i(t−t′)Ĥ/�|t = 0〉 = 〈t = 0|t− t′〉(25)

However, assuming that there is a set of zero-time eigenstates that are orthogonal, these states are

indeed orthogonal when t is the same and the zero time states are different:

〈t = 0; τ ′|t = 0; τ〉 =

∫
dE ′dE〈E ′|〈t = 0; τ ′|E ′〉e

itĤ/�e−itĤ/�

2π�
〈E|t = 0; τ〉|E〉

=
1

2π�

∫
dE ′dE〈t = 0; τ ′|E ′〉〈E ′|E〉〈E|t = 0; τ〉

=
1

2π�

∫
dE〈t = 0; τ ′|E〉〈E|t = 0; τ〉

=
1

2π�
δ(τ ′ − τ) (26)

where τ is a parameter that distinguishes between the different zero time eigenstates.
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4. Quantum Systems: Discrete Spectrum

We need to consider a discrete version of the above results, so that we can handle the cases of

discrete spectrum and discretized versions of a continuous spectrum model system. In this section,

we introduce time eigenstates for systems with a discrete spectrum.

4.1. Derivation of Time Eigenstates

Again, to obtain time eigenstates, we rewrite the identity operator, written as an energy eigenstates

expansion, using an approximation to Kronecker’s delta with sin(x)/x, and later, we use the integral

representation of this function.

For some large T ∈ R, and denoting by |n〉 the eigenvectors of the Hamiltonian operator, we

have that:

Î(T ) =
∑
n

|n〉〈n| =
∑
m,n

|m〉δmn〈n| ≈
∑
m,n

|m〉 2�

T (En − Em)
sin

(
T (En − Em)

2�

)
〈n|

=
∑
m,n

|m〉 1
T

∫ T/2

−T/2

dt eit(En−Em)/�〈n| = 1

T

∫ T/2

−T/2

dt
∑
m,n

e−itĤ/�|m〉〈n|eitĤ/�

=
1

T

∫ T/2

−T/2

dt |t〉〈t| (27)

This defines time eigenstates of the form:

|t〉 = e−itĤ/�|t = 0〉, |t = 0〉 =
∑
m

|m〉 (28)

Note that if there is a state |t = 0〉, such that 〈n|t = 0〉 = eiα, we can take it as a zero time eigenstate,

and then, we can additionally do the following:

Î(T ) =
1

T

∫ T/2

−T/2

dt
∑
m,n

e−itĤ/�|m〉〈m|t = 0〉〈t = 0|n〉〈n|eitĤ/�

=
1

T

∫ T/2

−T/2

dt |t〉〈t| (29)

where we now have defined time eigenstates as:

|t〉 := e−itĤ/�|t = 0〉 =
∑
m

e−itEm/�〈m|t = 0〉|m〉 (30)

The advantage of this definition is that the time eigenstate can be more specific than just the sum of

all of the energy eigenstates. The following properties hold for the second type of time eigenstate.

We form a T -dependent time operator as:
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T̂ (T ) =
1

T

∫ T/2

−T/2

dt |t〉t〈t| =
∑
m,n

1

T

∫ T/2

−T/2

dt e−itEm/�|m〉〈m|t = 0〉t〈t = 0|n〉〈n|eitEn/�

=
∑
m,n

1

T

∫ T/2

−T/2

dt t eit(En−Em)/�〈m|t = 0〉〈t = 0|n〉|m〉〈n|

=
∑
m �=n

i�

En − Em

[
2�

T (En − Em)
sin

(
T (En − Em)

2�

)
− cos

(
T (En − Em)

2�

)]
|m〉〈n|(31)

The domain of this operator is the Hilbert space. With this equality, we have time and energy

representations of the time operator. This time operator is similar to the operator used by

Galapon [74] and later analyzed by Arai et al. [75,76]. However, Galapon’s operator does not

make use of the oscillating factors; they do not give expressions for the time eigenvectors, and their

operator is valid only in a limited domain.

The above defined operators have the expected commutators with Ĥ , for wave functions with a

finite support in time. The time derivative of one component is:

i�
d

dt
|t〉〈t| = −i� i

�
Ĥ|t〉〈t|+ i�|t〉〈t| i

�
Ĥ = [Ĥ, |t〉〈t|] (32)

This equality allows us to find what the commutator between Î(T ) and Ĥ is:

[Î(T ), Ĥ] =
1

T

∫ T/2

−T/2

dt[|t〉〈t|, Ĥ] = − 1

T

∫ T/2

−T/2

dt i�
d

dt
|t〉〈t| = −i� 1

T
|t〉〈t|

∣∣∣∞
t=−∞

(33)

and:

[T̂ (T ), Ĥ] =
1

T

∫ T/2

−T/2

dt[|t〉t〈t|, Ĥ] = − 1

T

∫ T/2

−T/2

dt t i�
d

dt
|t〉〈t|

= −i� t

T
|t〉〈t|

∣∣∣∞
t=−∞

+
1

T

∫ T/2

−T/2

dt |t〉〈t| i�dt
dt

= −i� 1
T
|t〉〈t|

∣∣∣∞
t=−∞

+ i�Î(T ) (34)

It is easy to see that the time operator, T̂ (T ), is self adjoint and that the eigenoperator of the

commutator, [T̂ , •], is the propagator, i.e.,

[T̂ , e−iτĤ/�] = τ e−iτĤ/� (35)

Based on the last equality, we can show that the time eigenstate Equation (30) is indeed an eigenstate

of the time operator Equation (31).

t|t〉 = t e−itĤ/�|t = 0〉 = [T̂ , e−itĤ/�]|t = 0〉 = T̂ e−itĤ/�|t = 0〉 − e−itĤ/�T̂ |t = 0〉 = T̂ |t〉(36)

where we have made use of the fact that |t = 0〉 is the time eigenstate with eigenvalue zero.
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For the Hamiltonian, we have that:

Ĥ =
∑
m,n

|m〉〈m|Ĥ|n〉〈n| =
∑
mn

Enδmn|m〉〈m|t = 0〉〈t = 0|n〉〈n|

≈
∑
mn

En
2�

T (En − Em)
sin

(
T (En − Em)

2�

)
|m〉〈m|t = 0〉〈t = 0|n〉〈n|

=
∑
mn

En

T

∫ T/2

−T/2

dt eit(En−Em)/�|m〉〈m|t = 0〉〈t = 0|n〉〈n|

=
∑
mn

1

T

∫ T/2

−T/2

dt e−itEm/�|m〉〈m|t = 0〉
(
−i� ∂

∂t

)
〈t = 0|n〉〈n|eitEn/�

=
1

T

∫ T/2

−T/2

dt |t〉
(
−i� ∂

∂t

)
〈t| (37)

as expected.

The discrete version of the time operator has the same properties as the continuous counterpart.

Some of them follow.

4.2. Change of Representation

We can obtain the energy eigenvector from the time eigenvectors as follows:

1

T

∫ T/2

−T/2

dt eiEnt/�〈n|t = 0〉∗|t〉 =
1

T

∫ T/2

−T/2

dt eiEnt/�〈n|t = 0〉∗e−itĤ/�
∑
m

〈m|t = 0〉|m〉

=
∑
m

1

T

∫ T/2

−T/2

dt ei(En−Em)t/�〈n|t = 0〉∗〈m|t = 0〉|m〉

=
∑
m

2�

T (En − Em)
sin

(
T (En − Em)

2�

)
|m〉

−→
T→∞

|n〉 (38)

and vice-versa, from the definition, we can see that the appropriate sum of energy eigenstates results

in the time eigenstate:

∑
n

e−itEn/�〈n|t = 0〉|n〉 = e−itĤ/�
∑
n

〈n|t = 0〉|n〉 = |t〉 (39)

4.3. Orthogonality between Time Eigenstates

The time eigenstates are not orthogonal for the same zero time eigenstate:

〈t′|t〉 = 〈t = 0|eit′Ĥ/�e−itĤ/�|t = 0〉
= 〈t = 0|e−i(t−t′)Ĥ/�|t = 0〉 = 〈t = 0|t− t′〉 (40)
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However, the time eigenstates are indeed orthogonal between two eigenstates when t is the same and

the zero time states are different:

〈t = 0; τ ′|t = 0; τ〉 =
∑
mn

〈m|〈t = 0; τ ′|m〉eitĤ/�e−itĤ/�〈n|t = 0; τ〉|n〉

=
∑
mn

〈t = 0; τ ′|m〉〈m|n〉〈n|t = 0; τ〉 =
∑
n

〈t = 0; τ ′|n〉〈n|t = 0; τ〉

= δ(τ ′ − τ) (41)

where τ is a parameter that differentiates the |t = 0〉 states and where we have assumed that they

are orthonormal.

5. Matrix Elements of Operators

A calculation that can be used to verify our results is the matrix elements of operators. It is also

interesting, by itself, to find the matrix elements of the time operator. Therefore, in this section, we

calculate these matrix elements in coordinate space. These matrix elements are easy to calculate

once we have the energy eigenstates at our disposal, since identity, Hamiltonian and time operators

have been written in terms of them. What we need is the energy eigenstates in coordinate and

momentum representations.

We calculate the matrix elements of quantum operators for the linear potential with a = 1

and Hamiltonian:

Ĥ =
1

2m
P̂ 2 + aQ̂ (42)

For numerical calculations, we will use a discretized version of the spectrum, and we will work in

the energy interval, E ∈ (−40, 40). The unnormalized energy eigenfunction for the linear potential,

in the momentum representation, is:

φE(p) = e−iEp/a�+ip3/6am� (43)

This function complies with the requirement of 〈E|p〉 = eiα when p = 0, as is needed for the results

of this paper. Thus, this is our zero-time eigenstate.

By using the results of Section 4, we have made density plots of the squared magnitude of the

coordinate matrix elements of operators, which are shown in Figure 3. The matrix representation of

these operators is diagonal or near diagonal for the time operator. The Hamiltonian and time matrix

elements oscillate, and the time operator has higher values for large negative values of q.
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Figure 3. (a) Density plots of the squared magnitude of the coordinate matrix elements

of the Hamiltonian ; (b) time operators for the linear potential V (q) = aq with a = 1.

The squared magnitude of the matrix elements of operators in the momentum representation is

shown in Figure 4. We notice that the values of the squared magnitude of the matrix elements of the

time operator increases with the increase of the magnitude of the momentum.

Figure 4. (a) Density plots of the squared magnitude of the momentum matrix elements

of the Hamiltonian; (b) time operators for the linear potential V (q) = aq with a = 1.

In Figure 5, there are density plots of the squared magnitude of coordinate matrix elements

of operators for the harmonic oscillator. When the value T = π is used, we obtain the matrix

representation of the operators for positive coordinate, but if we use the value T = 2π, we obtain

the matrix elements for all values of q. As always, the matrix elements for the identity and for

the Hamiltonian are diagonal in the coordinate representation and around the diagonal for the

time operator.
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Figure 5. Density plots of the squared magnitude of the coordinate matrix elements of

some operators for the harmonic oscillator. On left, the Hamiltonian operator, and on

right, the time operator. We have used T = π. The matrix elements extend to negative

coordinates when T = 2π. We have used 50 energy eigenfunctions for these plots.

6. Remarks

We have shown how to define a time coordinate system in phase space for classical systems.

Any hypersurface that crosses the energy shells can be used as a zero time surface, but the surfaces

introduced in [73] and in this paper are easy to use for any potential function with the additional

advantage that the same process can be used for quantum systems.

Our operator and states comply with the desired properties for a time operator and its eigenstates.

The time eigenstates are similar to coordinate and momentum eigenstates in that they are not

normalizable at all, and therefore, are not part of the Hilbert space, but the domain of the time

operator is indeed the Hilbert space. In a similar way as the coordinate and momentum eigenstates,

the time eigenstates can be used as an alternative coordinate for classical and quantum systems. Thus,

we can adopt the point of view that energy and time are an alternative coordinate system similar to

coordinate and momentum variables.

The coordinate matrix elements of the identity, Hamiltonian and time operators, in the time

eigenstates basis, support our results. They also have the expected properties.

For systems with higher dimension than one, the zero-time eigencurve is a hypersurface with one

of the components of the momentum equal to zero. The evolution of that curve generates the time

coordinate system in phase space.

With these results, we are starting to solve a series of old puzzles in Quantum Mechanics, puzzles

that are also present in Classical Mechanics.
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Abstract: The relation between the complexity of a time-switched dynamics and the

complexity of its control sequence depends critically on the concept of a non-autonomous

pullback attractor. For instance, the switched dynamics associated with scalar dissipative

affine maps has a pullback attractor consisting of singleton component sets. This entails

that the complexity of the control sequence and switched dynamics, as quantified by

the topological entropy, coincide. In this paper we extend the previous framework to

pullback attractors with nontrivial components sets in order to gain further insights in

that relation. This calls, in particular, for distinguishing two distinct contributions to the

complexity of the switched dynamics. One proceeds from trajectory segments connecting

different component sets of the attractor; the other contribution proceeds from trajectory

segments within the component sets. We call them “macroscopic” and “microscopic”

complexity, respectively, because only the first one can be measured by our analytical

tools. As a result of this picture, we obtain sufficient conditions for a switching system

to be more complex than its unswitched subsystems, i.e., a complexity analogue of

Parrondo’s paradox.

Keywords: non-autonomous dynamical systems; switching systems; set-valued pullback

attractors; topological entropy; complexity
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1. Introduction

The time-switched dynamics of two one-dimensional, dissipative affine maps,

f±(x) = θ±x ± 1 0 < θ−, θ+ < 1, θ− �= θ+ (1)

was studied by the authors in [1], where they showed that the topological entropy of the resulting

non-autonomous dynamical system coincides with the topological entropy of the autonomous

dynamical system generating the switching (or control) sequence. In other words, the switched

dynamics cannot be more complex than the switching sequence generator.

The situation envisaged in [1] is special in several regards.

(i) The state space is R.

(ii) Both the forward and backward dynamics are amenable to detailed analysis.

(iii) The non-autonomous pullback attractor consists of singleton component sets.

In this follow-up paper we continue studying this question in an extended setting, namely,

we consider this time switching between difference equations (called constituent maps) that have

pullback attractors with nontrivial component sets. Our scope is to separate the particular results

from the general ones, and so better understand the intricacies of switching and non-autonomous

dynamics [2–4]. Specifically, in this paper:

(i’) The state space is Rd or a proper subset of it.

(ii’) The constituent maps are not specified, except for the fact that they are supposed to have

attractors.

(iii’) The component sets of the pullback attractor of the systems under switching are supposed to

be uniformly bounded.

Both from an instrumental and a conceptual point of view, the main challenge is introduced

by the generalization (iii’). To begin with, working with attractors with nontrivial component sets

instead of point-valued components sets requires using the Hausdorff distance. Contrarily to what

happens in the latter case, the Hausdorff distance between component sets of a set-valued attractor

is not continuous, in general, but only upper-continuous when a control sequence converges to

another one [2]. This technical shortcoming is behind Assumption 1 in Section 3 (“Results using

measurability”), and Assumption 3 in Section 5 (“Results using continuity”). Also the generality of

(ii’) will be limited in different ways (injectivity of a certain map Φ in Section 3, or Assumption 2 in

Section 4) in order to derive sharper results.

On the conceptual side, new features related to the extended geometry of set-valued attractors

manifest themselves. Indeed, the observable complexity is going to be the result of two contributions.

One, the “macroscopic” complexity, comes from the trajectory segments connecting different

component sets of the pullback attractor (think that each component set has been lumped to a

point). The other one, the “microscopic” complexity, comes from trajectory segments within the

component sets. No geometrical meaning should be attached to this denomination since the (in
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general, uncountably many) component sets might be packed in a state space region of a size

comparable to the attractor itself. The rationale for distinguishing two sorts of complexity is rather

that our analytical tools will only be able to resolve the trajectories up to the precision set by the

component sets. An offshoot of this picture is that the entropy of the coarse-grained dynamics (or

“macroscopic entropy”) is a lower bound of the entropy of the switched dynamics. This fact will

again allow us to relate the entropy of trajectories and control sequences, once we have shown that

the latter coincide with the macroscopic entropy.

Thus, the main purpose of the present paper is the study of the macroscopic complexity in

switched dynamics, as measured by the macroscopic topological entropy. In Sections 3 and 5 we

prove that, under certain provisos, the macroscopic topological entropy coincides with the topological

entropy of the switching sequence generator. In this case, the complexity of the switched dynamics

(a mixture of macroscopic and microscopic complexities) is certainly greater than the complexity of

the switching sequence. This result can be brought in connection with Parrondo’s paradox, i.e., the

emergence of new properties via switching [5–8]. Indeed, it suffices that the entropy of the switching

sequence generator is higher than the entropies of the constituent maps for the switched dynamics to

be more complex than the constituent dynamics.

This paper is organized as follows. Section 2 sets the mathematical framework (switching

systems, Hausdorff distance and pullback attractors) of the paper. Additional materials on

the Hausdorff distance have been collected in the Appendix for the reader’s convenience.

A few results for further reference, but also interesting on their own, are proved as

well in this section and in the Appendix. The main theoretical results of the paper

are derived in Section 3 (Theorem 3) and Section 5 (Theorem 4) depending on whether

the switched dynamics complies with Assumption 1 (Section 3), or with Assumption 3

(Section 5). In between, Section 4 scrutinizes a property needed in Theorem 3 and reformulates

it as Assumption 2 to be used in the proof of Theorem 4. Some numerical simulations illustrating

our theoretical results make up Section 6. The highlights of all these sections are summarized in the

Conclusion, followed by the references and the Appendix.

2. Preliminaries

This section introduces the background on switching and non-autonomous dynamical systems

needed to make this paper self-contained. The interested readers are referred to the books [2,3], the

review [4], and the papers [9–13].

2.1. Switching Systems

Let s = (. . . , s−2, s−1, s0, s1, s2, . . .) ∈ S := {−1, 1}Z be the collection of all switching controls,

which is a compact metric space with the metric

distS(s, s′) =
∑
n∈Z

2−|n| |sn − s′n| (2)
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In calculations though, the following, equivalent distance might be more convenient.

distS(s, s′) =

⎧⎨
⎩

0 if sn = s′n for all n ∈ Z,

2−N if sn = s′n for |n| < N , while sN �= s′N and/or s−N �= s′−N

(3)

The metric space (S, distS) is compact; see, e.g., [14] (p. 207).

Consider the left shift operator σ defined on S ,

σ : (· · · , sn, sn+1, · · · ) �→ (· · · , sn+1, sn+2, · · · )
Then σ is continuous with respect to the product topology on S, i.e., generates an autonomous

dynamical system (group under composition) on S .

We consider discrete time dynamical systems generated by switching between two continuous

mappings f±1 : Rd → R
d, where the autonomous dynamical systems generated by each mapping

are dissipative and have global attractors A±. In other words, the (time) switched dynamics (or

switching system) we are going to study in the following is described by the non-autonomous

difference equation

xn+1 = fsn(xn) (4)

in R
d for different sequences s= (sn)n∈Z ∈ S . Sometimes one says that f±1 are the constituent maps

of the switching system (4). For brevity, we shorten f±1 to f±, x±1 to x±, etc.

As an important example, let f±1 be affine maps,

f±(x) = M±x+ b± (5)

where M± are d × d-matrices, and x, b± are column vectors. Linear systems correspond to b± = 0.

Then

xn+k =
∏k−1

i=0
Msn+i

xn +
∏k−1

i=1
Msn+i

bsn +
∏k−1

i=2
Msn+i

bsn+1 (6)

· · ·+Msn+k−1
bsn+k−2

+ bsn+k−1

for k ≥ 1. The order in the matrix products
∏k−1

i=0 Msn+i
, etc., is right to left as the index i increases,

i.e., ∏k−1

i=0
Msn+i

= Msn+k−1
· · ·Msn+1Msn (7)

Likewise if the matrices M± are invertible, then from

xn−1 = f−1
sn−1

(xn) = M−1
sn−1

(xn − bsn−1) (8)

we get

xn−k =
∏k

i=1
M−1

sn−i
xn −

∏k

i=1
M−1

sn−i
bsn−1 −

∏k

i=2
M−1

sn−i
bsn−2 (9)

· · · −M−1
sn−k

bsn−k

The same rule as in Equation (7) applies here to the products of inverse matrices.

As usual, let |x| denote the norm of x ∈ R
d and ‖M‖ a compatible norm of the d× d matrix M .
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Proposition 1. Consider the affine switched dynamics Equations (4) and (5). Furthermore, suppose
that μ := max{‖M−‖ , ‖M+‖} < 1, and β := max{|b+| , |b−|}. Then

lim sup
n→∞

|xn| ≤ β

1− μ
(10)

for any x0 ∈ R.

Proof. From Equation (6), we have

|xn+k| ≤ μk |xn|+ (μk−1 + μk−2 + · · ·+ μ+ 1)β

= μk |xn|+ 1− μk

1− μ
β

where μ < 1. Let now k →∞. �

Linear systems with ‖M−‖ , ‖M+‖ < 1 are globally dissipative. The origin is a fixed point and,

according to Equation (10) with β = 0, all other orbits converge to it for each s ∈ S .

2.2. Hausdorff Metric and Sequences of Compact Subsets

Let K be the space of nonempty compact subsets of Rd, which is a complete metric space with

the Hausdorff metric

distH(A,B) := max{ρ(A,B), ρ(B,A)} (11)

where ρ(A,B) is the Hausdorff semi-distance defined by

ρ(A,B) := max
a∈A

dist(a,B) dist(a,B) := min
b∈B

|a− b|

At variance with distH(A,B), ρ(A,B) is not a metric because it is not always symmetric, and

ρ(A,B) = 0 only implies A ⊂ B. Intuitively speaking, for the distance between A and B to be

small, both sets have to almost overlap, i.e., the difference set AΔB = A\B ∪ B\A has to be

“small”. Further results on the Hausdorff metric can be found in the Appendix.

Let BR(a) and B̄R(a) be the open and closed balls of radius R ≥ 0 and center a ∈ R
d,

respectively. Define KR = K ∩ B̄R(0), i.e., the family of nonempty compact subsets of R
d that

are contained in B̄R(0). Then, (KR, distH) is a compact metric space.

The next proposition will be needed in Section 5. It is a particular case of Lemma A2, stated and

proved in the Appendix.

Proposition 2. Let f : B̄R(0)→ R
d be continuous, and A,B ∈ KR. Then

distH (f(A), f(B)) ≤ ω( distH (A,B)), (12)

where ω(·) is a continuous function with ω(0) = 0.
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In order to apply Proposition 2 to our constituent maps f±, whose definition domain is in principle

all Rd, it suffices to consider their restrictions to B̄R(0).

Further, we define a metric on the space KR : = KR
Z of bi-infinite sequences A := (An)n∈Z of

nonempty compact subsets of Rd in B̄R(0) by

distKR
(A,A′) :=

∑
n∈Z

2−|n|distH(An, A
′
n) (13)

for A = (An)n∈Z, and A′ = (A′
n)n∈Z.

2.3. Skew Product Flows and Pullback Attractors

Define ϕ : N0 × S × R
d → R

d by ϕ(0, s, x0) = x0 and

ϕ(n, s, x0) := fsn−1 ◦ · · · ◦ fs1 ◦ fs0(x0) n ≥ 1

Then ϕ is a continuous cocycle mapping with respect to σ, i.e.,

ϕ(n+ k, s, x0) = ϕ(n, σks, ϕ(k, s, x0)) (14)

for all n, k ≥ 0, and (σ, ϕ) is a discrete time skew product flow (non-autonomous dynamical system)

on S × R
d.

An entire solution of a discrete time skew product flow (σ, ϕ) is a mapping χ : S → R
d such that

χ(σns) = ϕ(n− k, σks, χ(σks)) (15)

for all s ∈ S and n, k ∈ Z with k ≤ n. In particular,

χ(σns) = ϕ(n, s, χ(s)) for all n ≥ 0 (16)

A pullback attractor is a family of nonempty compact subsets, A = {A(s), s ∈ S} ⊂ K which is

ϕ-invariant, i.e.,

ϕ(n, s, A(s)) = A(σns) n ≥ 0 (17)

and pullback attracts, i.e.,

distH
(
ϕ(n, σ−ns, D), A(s)

)→ 0 for n→∞ (18)

for every nonempty bounded subset D ⊂ R
d. The A(s) are called the component sets of the

attractor A.

We will assume that the switched dynamics (4) has a pullback attractor A = {A(s) : s ∈ S}
such that the A(s) are nonempty, uniformly bounded compact subsets of Rd. This means that there

is R > 0 such that A(s) ⊂ B̄R(0) for every s ∈ S . If the constituent maps are both affine, then it

is inferred from Proposition 1 that one may choose R = β
1−μ

. A sufficient condition ensuring the

existence of such a pullback attractor is that the two unswitched systems have a common bounded,

positively invariant absorbing set.
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Proposition 3. [2](Theorem 3.34) The set-valued mapping s �→ A(s) is upper semi-continuous in
(KR, distH), i.e.,

ρ (A(s), A(s∗))→ 0 as distS(s, s∗)→ 0

Counterexamples show that, in general, we cannot replace the Hausdorff semi-distance here by

the Hausdorff metric, but in special cases we can do that, e.g., when the pullback attractor consists of

singleton sets as in [1] (see Example 1 below), since then obviously

ρ (A(s), A(s∗)) = distH (A(s), A(s∗)) = |A(s)− A(s∗)|

See Case 2 of the numerical simulations (Section 4.2) for other example.

A general, sufficient condition for the continuity of the map s �→ A(s) in (KR, distH) is provided

by the following result.

Proposition 4. Suppose that distH (ϕ(n, σ−ns, D), A(s)) → 0 uniformly in s for some nonempty,
bounded set D ⊂ R

d. Then the map s �→ A(s) is continuous in (KR, distH), i.e.,

distH (A(s), A(s∗))→ 0 as distS(s, s∗)→ 0

Proof. By the property (18) of pullback attractors, for all ε > 0 there exists an N such that

distH
(
ϕ(n, σ−ns, D), A(s)

)
<

ε

2
distH

(
ϕ(n, σ−ns∗, D

)
, A(s∗)) <

ε

2
(19)

for all n ≥ N , where D ⊂ R
d is bounded and fixed for the time being. By hypothesis, N depends on

ε but not on either s or s∗. The triangle inequality then yields

distH(A(s), A(s
∗)) ≤ distH

(
A(s), ϕ(N, σ−Ns, D)

)
+ distH

(
ϕ(N, σ−Ns, D), ϕ(N, σ−Ns∗, D

)
+ distH

(
ϕ(N, σ−Ns∗, D

)
, A(s∗))

< ε+ distH
(
ϕ(N, σ−Ns, D), ϕ(N, σ−Ns∗, D

)
(20)

where

ϕ(N, σ−Ns, D) = fs−1 ◦ · · · ◦ fs−N+1
◦ fs−N

(D)

ϕ(N, σ−Ns∗, D) = fs∗−1
◦ · · · ◦ fs∗−N+1

◦ fs∗−N
(D)

Take now distS(s, s∗) < 2−(N+1) so as sk = s∗k for 0 ≤ |k| ≤ N , hence ϕ(N, σ−Ns, D) =

ϕ(N, σ−Ns∗, D), and

distH
(
ϕ(N, σ−Ns, D), ϕ(N, σ−Ns∗, D

)
= 0

We conclude from Equation (20) that if distS(s, s∗) < 2−(N+1) [where N = N(ε) is such that

Equation(19) holds], then

distH(A(s), A(s
∗) < ε

for all ε > 0. �
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Remark 1. It follows from Proposition 3 that the pullback attractor is also a forward attractor,
i.e., with

distH (ϕ(n, s, D), A(σns)→ 0 as n→∞

3. Results Using Measurability

Remember that KR = KR
Z is endowed with the metric (13). Let Φ : S → KR be the map defined

by Φ(s) = (A(σns))n∈Z. We show first that Φ is Borel measurable.

By definition the Borel sigma-algebras of the product spaces S and KR are generated by the

corresponding cylinder sets or just cylinders. If p, q ∈ Z, p ≤ q, the cylinders of S = {−1,+1}Z
have the form

[ap, ..., aq]
q
p = {(sn)n∈Z ∈ S : sn = an for p ≤ l ≤ q}

where ap, ..., aq ∈ {−1,+1}, and the cylinders of KR have the form

[Kp, ..., Kq]
q
p = {(An)n∈Z ∈ KR : An = Kn for p ≤ n ≤ q}

where Kp, ...Kq ∈ KR. If p = q, then we simplify the notation to [ap]p or [a]p, and analogously for

the cylinders of KR.

If, as before, σ is the (left) shift on S, and Σ is the shift on KR, then σn [ap, ..., aq]
q
p =

[ap, ..., aq]
q−n
p−n and, similarly, Σn [Kp, ..., Kq]

q
p = [Kp, ..., Kq]

q−n
p−n for all n ∈ Z.

Lemma 1. Φ : S → KR is Borel measurable.

Proof. Since the cylinder sets build a semi-algebra of the product sigma-algebras they generate,

it suffices to prove that Φ−1[Kp, ..., Kq]
q
p is Borel measurable for every p, q ∈ Z, p ≤ q, and

every Kp, ...Kq ∈ KR (see Theorem 1.1 in [15]). Note that Φ−1[Kp, ..., Kq]
q
p = ∅ unless

[see Equation (17)] Kp = A(s) for some s ∈ S , and Kp+n = A(σns) = ϕ(n, s, Kp) for

n = 1, ..., q − p. In any case,

Φ−1[Kp, ..., Kq]
q
p = Φ−1([Kp]p ∩ [Kp+1]p+1 ∩ ... ∩ [Kq]q)

= Φ−1[Kp]p ∩ Φ−1[Kp+1]p+1 ∩ .... ∩ Φ−1[Kq]q

Since the map s �→ A(s) is upper semi-continuous (hence Borel measurable), the sets Φ−1[Kp+n]p+n,

0 ≤ n ≤ q − p, are Borel measurable and so is their intersection as well. �
Suppose now that Φ is one-to-one and let us explore when Φ−1 is also Borel measurable, resulting

in a Borel bimeasurable mapping. For p, q ∈ Z, p ≤ q,

Φ[ap, ..., aq]
q
p = (A(σn[ap, ..., aq]

q
p))n∈Z (21)

where

A(σn[ap, ..., aq]
q
p) = {A(s) : s ∈ σn[ap, ..., aq]

q
p}

= {A(s) : s ∈ [ap, ..., aq]
q−n
p−n}

= {A(s) : s ∈ [ap]p−n ∩ [ap+1]p−n+1 ∩ ... ∩ [aq]q−n}
= {A(s) : s ∈ [ap]p−n} ∩ ... ∩ {A(s) : s ∈ [aq]q−n}
= A([ap]p−n) ∩ ... ∩ A([aq]q−n) (22)
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Note that

A([a]p) = {A(s) : sp = a}
is an uncountable union of compact sets.

Assumption 1. The sets A([+1]p) and A([−1]p) are Borel measurable for every p ∈ Z.

Continuity or closedness of the mapping s �→ A(s) are obvious sufficient conditions for

Assumption 1 to hold. (As a matter of fact, by the closed map lemma, if s �→ A(s) is continuous then

it is closed because S is compact andKR is a Hausdorff topological space.) For example, in the affine,

one-dimensional case studied in [1] A(s) is a singleton, i.e., A(s) = {χ(s)}, for all s ∈ S . That all

the sets A([a]p) are compact (hence Borel measurable) follows in this case from the continuity of

s �→ χ(s). In Section 5 we will study with more detail the consequences of assuming the mapping

s �→ A(s) continuous.

Lemma 2. If Φ : s �→ (A(σns))n∈Z is one-to-one and Assumption 1 holds, then Φ is Borel
bimeasurable.

Proof. We only need to prove that Φ transforms cylinders into Borel measurable sets. In

view of Equation (21) this boils down to showing that A(σn[ap, ..., aq]
q
p) is Borel measurable for

every p, q ∈ Z, p ≤ q.

From Equation (22) and Assumption 1, it follows that A(σn[ap, ..., aq]
q
p) is a finite intersection of

Borel measurable sets, hence it is Borel measurable. �

Consider the diagram

S σ→ S
Φ ↓ ↓ Φ
KR

Σ→ KR

(23)

then it is straightforward to check that this diagram commutes, i.e., Φ ◦ σ = Σ ◦Φ. In order to derive

that h(σ) = h(Σ|Φ(S)), it suffices that Φ : S → Φ(S) is a bimeasurable bijection (see Corollary

8.6.1 (iv) in [15]). This being the case, Lemma 3.2 yields the following result.

Theorem 2. Let Φ : S → Φ(S) be a bijection and suppose that Assumption 1 holds. Then
h(σ) = h(Σ|Φ(S)).

Other conditions leading also to h(σ) = h(Σ|Φ(S)) will be discussed in Section 5.

Notice that h(Σ|Φ(S)) corresponds to what we called macroscopic entropy in the Introduction.

Indeed, since (i) Φ(s) is a trajectory in A, a set whose “points” are the component sets A(s) of A; and

(ii) χ(s) ∈ A(s) implies χ(σns) ∈ A(σns) for all n ∈ Z, it holds that h(Σ|Φ(S)) measures the

complexity of the trajectories (χ(σns))n∈Z up to the precision set by the distinct component sets

A(σns). To relate the macroscopic entropy, hmacro ≡ h(Σ|Φ(S)), to the entropy of the switched

dynamics (referred to as microscopic entropy in the Introduction), hmicro, let E ⊂ KR be the set of

entire orbits, and consider the commutative diagram
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E
Σ→ E

i ↓ ↓ i
Φ(S) Σ→ Φ(S)

(24)

where i is the inclusion (χ(σns))n∈Z ↪→ (A(σns))n∈Z. Thus Σ|Φ(S) is a factor of (or semi-conjugate

to) Σ|E on account of i being measure-preserving (i−1B = B for all measurable B ⊂ Φ(S)) and

onto. It follows that h(Σ|E) ≥ h(Σ|Φ(S)) ≡ hmacro, i.e., hmacro is a lower bound of the topological

entropy of the switched dynamics hmicro ≡ h(Σ|E). To keep with the physical identification of

entropies, set h(σ) ≡ hcontrol for the topological entropy (or complexity) of the control sequence

generator. From

hmacro ≤ hmicro (25)

and Theorem 2,

hcontrol = hmacro, (26)

we conclude the following result on the relation between the topological entropies of the control

sequence generator, h(σ), and the ensuing switched dynamics, hmicro.

Theorem 3. Under the hypotheses of Theorem 2, hcontrol ≤ hmicro.

This theorem provides sufficient conditions for a complexity version of Parrondo’s paradox.

Indeed, it suffices that h(f+), h(f−) < h(σ) (along with the assumptions of Theorem 2), where

h(f±) is the topological entropy of f±, for the complexity of the switched dynamics to exceed the

complexity of the constituent maps.

In the special case of pullback attractors consisting of singletons, like in [1], the inclusion i in the

diagram (24) becomes the identity, a trivial isomorphism, and hmacro = hmicro.

4. Conditions for the Injectivity of Φ

According to Theorem 2, the injectivity of Φ (along with Assumption 1) is instrumental for h(σ)

and h(Σ) to coincide. We explore next sufficient conditions for the injectivity of Φ.

If Φ is not injective, then there are control sequences s �= s∗ such that Φ(s) = Φ(s∗), i.e.,

A(σns) = A(σns∗) for all n ∈ Z. Then

fsn(A(σ
ns)) = A(σn+1s) = A(σn+1s∗) = fs∗n(A(σ

ns∗)) = fs∗n(A(σ
ns))

and, similarly,

fs∗n(A(σ
ns∗)) = fsn(A(σ

ns∗))

for all n ∈ Z. It follows that

f+(A(σ
ns) = f−(A(σns), f+(A(σ

ns∗) = f−(A(σns∗) (27)

for those n ∈ Z such that sn �= s∗n (a nonempty set by hypothesis). This being the case, there are

several conditions that prevent Equation (27) from occurring, thus guaranteeing the injectivity of Φ.
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Assumption 2. There is no A(s) ∈ A such that f+(A(s)) = f−(A(s)) or, equivalently, f+(A(s)) �=
f−(A(s)) for all A(s) ∈ A.

This condition can be reworded as follows: f+ and f− distinguish all pullback attractors of the

switching dynamics.

Example 1. Let d = 1, and f± as in Equation (1). In this case, the pullback attractor A = {A(s), s ∈
S} consists of singleton sets, i.e., A(s) = {χ(s)}, with χ(s) ∈ [ −1

1−θ−
, 1
1−θ+

] = A (see [1]). Let us
check whether Assumption 2 holds:

f+(χ(s)) = f−(χ(s)) ⇔ θ− �= θ+ and χ(s) =
2

θ− − θ+

but 2
θ−−θ+

/∈ [ −1
1−θ−

, 1
1−θ+

] because θ− + θ+ < 2. Since Assumption 2 holds, Φ is injective.

Example 2. Let A± be the attractors of f±, i.e., A+ = A((+1)n∈Z), and A− = A((−1)n∈Z). If
A+ = A−, then Assumption 2 does not hold since f+(A

+) = A+, and f−(A−) = A−. Think, for
instance, of two linear dynamics f±(x) = M±x having only 0 as a fixed point. Therefore, in this case
the topological entropy of the switched dynamics may be different from the topological entropy of the
control sequence.

Now suppose that at least one of the maps f± is invertible and define g := f−1
+ ◦ f− if f+ is

invertible, or g := f−1
− ◦ f+ otherwise; if both maps are invertible, then either choice is the inverse of

the other one. Then

f+(A(s)) = f−(A(s)) ⇔ A(s) = g(A(s)).

Therefore, Assumption 2 can be particularized in the following way.

Assumption 2 for Invertible Mappings. In case that one of the maps f± is invertible, there is no

g-invariant A(s) ∈ A.

Example 3. Suppose that M± are two d× d-matrices, with M+ being invertible, and f±(x) = M±x,
so that g(x) = Gx with G = M−1

+ M−. Thus, when applying Assumption 2 for invertible
mappings, we are asking about the existence of invariant sets of known linear maps. Linear maps
can be decomposed as actions of scalings (expansion/contraction, projection, reflection) and/or
rotations. Therefore, the existence of G-invariant pullback attractors A(s) boils down to well-known
geometrical facts.

• The only invariant set of an (in general anisotropic) expansion/contraction is {0}.
• If a linear map is a projection onto a subspace V , then any set contained in V is invariant.

• If a linear map is a reflection, then any set symmetric under reflections (like a star-like shaped
object) is invariant.

• If a linear map is a rotation by an angle α, then any set symmetric under that rotation is
invariant, in particular any ball centered at the origin of radius r ≥ 0 and dimension n or
0 ≤ n ≤ d− 1 if contained in the orthogonal complement of the rotation axis.
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Since the origin is invariant in any case, it might happen that A(s) = {0} for some s ∈ S (for
example, for (+1)n∈Z or (−1)n∈Z, since {0} ⊂ A+, A−, where A± are the attractors of f±). In this
case, the version of Assumption 2 for invertible mappings would not hold.

From the preceding discussion we conclude the following result.

Lemma 3. Suppose that the maps f± are such that Assumption 2 holds. Then the map Φ : S → KR

defined by Φ(s) := (A(σns))n∈Z is one-to-one.

5. Results Using Continuity

The main technical difference between the setting of [1] and the present general setting is that the

map s �→ A(s) is not necessarily continuous (Proposition 3). It is, however, worth following the same

path as in [1] to see how far we can go and under which conditions. The first condition is obvious.

Assumption 3. The set-valued mapping s �→ A(s) is continuous in (KR, distH), i.e.,

distH (A(s), A(s∗))→ 0 as distS(s, s∗)→ 0 (28)

Proposition 4 provides a sufficient condition for Assumption 3 to hold.

We are going to show in this section that if Assumptions 2 (Section 4) and 3 are fulfilled, then

Φ|Φ(S) is a homeomorphism.

Lemma 4. Under Assumption 3, the map Φ : S → KR defined by Φ(s) = (A(σns))n∈Z is
uniformly continuous.

Proof. We have to show that for any ε > 0, there exists N ∈ N such that

distKR
((A(σns))n∈Z, (A(σns∗))n∈Z) < ε

whenever distS (s, s∗) < 2−(N+1) (i.e., whenever sn = s∗n for |n| ≤ N ). The uniformity follows then

from the compactness of S .

Consider first the second term in the decomposition

distKR
((A(σns))n∈Z, (A(σns∗))n∈Z (29)

=
∑
|n|≤N

distH (A(σns), A(σns∗))
2|n|

+
∑

|n|≥N +1

distH (A(σns), A(σns∗))
2|n|

Since A(σns), A(σns∗) ⊂ B̄R(0) for any n ∈ Z, we have

distH (A(σns), A(σns∗)) ≤ 2R,

hence ∑
|n|≥N +1

distH (A(σns), A(σns∗))
2|n|

≤ 4
∞∑

n=N+1

1

2n−1
=

4

2N−1
<

ε

2
(30)

if N ≥ NII :=
⌊
log(8/ε)
log 2

⌋
+ 2
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We use next Assumption 1 to show that the first term in Equation (29) with N = NII can also

be made smaller than ε/2. Indeed, for each n with |n| ≤ NII there exist by Equation (28) Nn ∈ N

such that

distS(σns, σns∗) < 2−(Nn +1) ⇒ distH (A(σns), A(σns∗)) <
ε

6
Set NI := max{Nn : |n| ≤ NII}. Then

distS(s, s∗) < 2−(NI+NII+1) ⇒ distS(σns, σns∗) < 2−(Nn+1)

for |n| ≤ NII since

(σns)k = (σns∗)k for |k| ≤ Nn ⇔ sk+n = s∗k+n for |k| ≤ Nn

where |n| ≤ NII and |k| ≤ Nn ≤ NI . Therefore if distS(s, s∗) < 2−(NI+NII+1), then∑
|n|≤NII

distH (A(σns), A(σns∗))
2|n|

<
ε

6

∑
|n|≤NII

1

2|n|
<

ε

2
(31)

All in all, we conclude from Equations (29), (31) and (30) with N = NII that if

distS (s, s∗) < 2−(NI+NII+1), then distKR
((A(σns))n∈Z, (A(σns∗))n∈Z) < ε. �

Remark. The above proof exploits the special structure of the model and provides insight into it.

The result, in fact, follows from the continuity of the mapping Φ and the compactness of the metric

space (S, distS).
If the correspondence s �→ Φ(s) := (A(σns))n∈Z is invertible, then given a sequence (An)n∈Z ∈

Φ(S) there exists a unique control sequence s = (sn)n∈Z such that An+1 = fsn(An) for every n.

Therefore, sn can be determined from the knowledge of An and An+1.

Lemma 5. Suppose that Assumption 2 holds so that the mapping Φ is one-to-one. Then, Φ−1 :

Φ(S)→ S is continuous.

Proof. Given N > 0, we have to prove that there exists δ > 0 such that

distKR
((An)n∈Z, (A∗

n)n∈Z) < δ ⇒ distS (s, s∗) < 2−N

where (An)n∈Z, (A∗
n)n∈Z∈ Φ(S), and s = Φ−1((An)n∈Z), s∗ = Φ−1((A∗

n)n∈Z).
From

distKR
((An)n∈Z, (A∗

n)n∈Z) =
∑
|n|≤N

distH (An, A
∗
n)

2|n|
+
∑
|n|>N

distH (An, A
∗
n)

2|n|
< δ

it follows

distH (An, A
∗
n) < 2Nδ for |n| ≤ N (32)

Consider now two neighboring sequences in Φ(S),

...A−N , A−N+1, ..., A0, ..., AN−1, AN , ...,

...A∗
−N , A

∗
−N+1, ..., A

∗
0, ..., A

∗
N−1, A

∗
N , ...,
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of distance δ apart. From these sequences we determine the corresponding switching sequence

under Φ−1:

...s−N , s−N+1, ..., s0, ..., sN−1, ...,

...s∗−N , s
∗
−N+1, ..., s

∗
0, ..., s

∗
N−1, ....

Note that An = A(σns), where s = (sn)n∈Z, and similarly A∗
n = A(σns∗), where s∗ = (s∗n)n∈Z.

Now suppose that, contrarily to what we need to prove, there is an n, −N ≤ n ≤ N − 1, such

that s∗n = −sn. For brevity assume sn = +1, i.e.,

An+1 = f+(An), and A∗
n+1 = f−(A∗

n). (33)

Then, by the triangle inequality,

distH (f+(A
∗
n), f−(A

∗
n)) ≤ distH (f+(A

∗
n), f+(An)) + distH (f+(An), f−(A∗

n)). (34)

We claim that the right hand side of Equation (34) can be made arbitrarily small by choosing δ in

Equation (32) sufficiently small.

First of all, by Proposition 2 and Equation (32)

distH (f+(A
∗
n), f+(An)) < ω(distH (A∗

n, An))

where ω(·) is continuous and ω(0) = 0. As for the second term on the right hand side of

Equation (34), use Equations (33) and (32) to derive

distH (f+(An), f−(A∗
n)) = distH (An+1, A

∗
n+1) < 2Nδ

Therefore,

distH (f+(A
∗
n), f−(A

∗
n)) < ω(distH (A∗

n, An)) + 2Nδ (35)

where

ω( distH (A∗
n, An))→ 0 when δ → 0 (36)

This proves our claim.

It follows from Equations (35) and (36) that f+(A
∗
n) = f−(A∗

n), in contradiction to Assumption 2.

Hence we conclude that s∗n = sn for −N ≤ n ≤ N − 1, i.e., that distS (s, s∗) < 2−N ,

where s = Φ−1((An)n∈Z), and s∗ = Φ−1((A∗
n)n∈Z). �

Notice that we did not assume Φ to be continuous in Lemma 5. With Lemmas 4 and 5 we derive

a different version of Theorem 2.

Theorem 4. Suppose that Assumptions 2 and 3 hold. Then the mapping Φ : S → Φ(S) defined as
s �→ (A(σns))n∈Z is a homeomorphism, hence h(σ) = h(Σ|Φ(S)), i.e., hcontrol = hmacro ≤ hmicro.
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6. Numerical Simulations

In this section we illustrate the previous theoretical results with a few numerical simulations.

As in [1] we resort to two-state Markov processes with transition probability matrices

P =

(
p 1− p

q 1− q

)
(37)

to generate the control sequences. We recall that if the transition probability matrix is irreducible,

then the process is ergodic (and even there is a unique invariant measure whose metric entropy

coincides with the topological entropy of the corresponding topological Markov chain).

6.1. Case 1

Consider f± : R2 → R
2 with

f+(x, y) = (0.25x, 0.75y) (38)

and the Hénon map

f−(x, y) = (1− 1.4x2 + 0.3y, x) (39)

A common bounded, positively invariant absorbing set for Equations (38) and (39) is the quadrilateral

with vertices [16] (p. 614).

P1 = (−1.33, 0.42), P2 = (1.32, 0.133), P3 = (1.245,−0.14), P4 = (−1.06,−0.5) (40)

Therefore, the switching system defined by Equations (38) and (39) has a pullback attractor, which is

also a forward attractor (Remark 1). We take advantage of this fact in the estimation of the topological

entropy by taking a sample of long forward trajectories and deleting the first 100 points.

The topological entropy of these two maps in bits per iteration (i.e., taking logarithms to base 2)

are

h(f+) = 0, h(f−) = 0.67072± 0.00004 (41)

(h(f−) taken from [17]). Table 1 summarizes the numerical results. hcontrol ≡ h(σ) (= log λ,

where λ is the largest positive eigenvalue of the admissibility matrix [1,15] denotes the topological

entropy of the switching sequence. As above, hmicro denotes the topological entropy of the switched

dynamics. Conditioned on the assumptions of Theorem 3 or 4, the inequality hcontrol ≤ hmicro holds.

Figure 1 shows the extrapolation technique we used based on entropy rates of order 3 ≤ L ≤ 7

(see [1] for more details). A total of 40 orbits were generated for each choice of the probabilities

(p, q) = (0.7, 0.2), (0.25, 1), and (0, 1), with random initial conditions within the trapping region

(40). Note that h(f+), h(f−) < hcontrol for (p, q) = (0.7, 0.2), (0.25, 1).
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Table 1. Numerical results of Case 1 (hcontrol ≤ hmicro).

(p, q) hcontrol (bit/iter) hmicro ± s.d. (bit/iter)

(0.7, 0.2) 1 1.237± 0.002

(0.25, 1) 0.694 0.702± 0.013

(0, 1) 0 0.000± 0.000

Figure 1. This plot illustrates the extrapolation technique used to estimate the values of

hmicro in Table 1.
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It turns out that, except for the periodic switching (p, q) = (0, 1), the complexity of the switched

dynamics is higher than the complexity of the control switching sequence, and also higher than the

entropies of the constituent maps, see Equation (41). This provides an instance of Parrondo’s paradox

with regard to the complexity as measured by the topological entropy.

6.2. Case 2

Consider the constituent affine maps

f±(x) = M±x+ b± (42)

where x = (x1, x2) ∈ R
2,

M+ =
1

4

(
5 −4
2 −1

)
M− =

1

4

(
5 −6
3 −4

)

and

b+ =

(
3

2

)
b− =

(
−3
−2

)
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A special feature of the matrices M± is that they are simultaneous diagonalizable. Indeed, in the

common eigenvector base

v1 =

(
2

1

)
v2 =

(
1

1

)
(43)

the constituent maps are transformed to (we keep the notation x = (x1, x2) for the coordinates in the

new base)

f+(x1, x2) =
1

4

(
3 0

0 1

)⎛⎝ x1

x2

⎞
⎠+

⎛
⎝ 1

1

⎞
⎠ =

⎛
⎝ 3

4
x1 + 1

1
4
x2 + 1

⎞
⎠ ,

f−(x1, x2) =
1

4

(
2 0

0 −1

)⎛⎝ x1

x2

⎞
⎠+

⎛
⎝ −1
−1

⎞
⎠ =

⎛
⎝ 1

2
x1 − 1

−1
4
x2 − 1

⎞
⎠ ,

Therefore, the two-dimensional switched dynamics (42) decomposes in the base (43) into two

uncoupled, one-dimensional switched dynamics whose constituent maps are of the type (1) studied

in [1]. Here the pullback attractors are singleton sets (hence the macroscopic and microscopic

complexities coincide), Assumptions 2 and 3 are fulfilled, and hmicro = hmacro = hcontrol, the latter

equality holding by Theorem 4. Furthermore, h(f+) = h(f−) = 0, thus h(f+), h(f−) < hcontrol

for (p, q) = (0.7, 0.2), (0.25, 1), as in Case 1. Table 2 shows numerical evidence of this statement.

Figure 2 shows the extrapolation technique based on entropy rates of orders 3 ≤ L ≤ 7.

Table 2. Numerical results of Case 2 (hcontrol = hmicro).

(p, q) hcontrol (bit/iter) hmicro ± s.d. (bit/iter)

(0.7, 0.2) 1 1.002± 0.003

(0.25, 1) 0.694 0.687± 0.007

(0, 1) 0 0.000± 0.000

Figure 2. This plot illustrates the extrapolation technique used to estimate the values of

hmicro in Table 2.
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7. Conclusions

Consider the time-switched dynamics associated with two maps f± : Rd → R
d having global

attractors A±. In this paper we studied the relation between the topological entropy of the control

sequence generator and the topological entropy of the switched dynamics. Compared with the

previous paper [1], we found some new technical obstacles.

First of all, we had to circumvent the shortcoming that the map s �→ A(s) is not necessarily

continuous in (KR, distH); here s is a control sequence and A(s) is the corresponding component

set of the pullback attractor, A = {A(s), s ∈ S}. To this end we assumed in Section 3 (“Results

using measurability”), (i) the measurability of certain unions of component sets (Assumption 1);

and (ii) the injectivity of Φ : s �→ (A(σns))n∈Z. It follows then, Theorem 2, that Φ is a

topological conjugacy between the shift on the control sequences, ({+1,−1}Z, σ), and the shift

on the trajectories of the switched dynamics up to the precision set by the component sets,

(KR,Σ). Being the entropy of coarse-grained trajectories, h(Σ) is a lower bound of hmicro,

the topological entropy of the switched dynamics. We call h(Σ) the macroscopic entropy

and write hmacro. Likewise, h(σ) is the entropy of the control sequence generator, thus we

write hcontrol. In sum, hcontrol = hmacro ≤ hmicro [Equations (25) and (26)] under the

hypotheses (i) and (ii).

In Section 4 we surveyed sufficient conditions for the injectivity of Φ postulated in Section 3. We

formulated our conclusions as Assumption 2, both in a general version, and in a special version when

one of the maps f± is invertible.

In Section 5 (“Results using continuity”) we hypothesized from the outset that the mapping s �→
A(s) is continuous (Assumption 3) and paralleled the approach of [1]. In Theorem 4 we proved that

Φ is a homeomorphism (or topological conjugacy), Assumptions 2 and 3 granted. Once again we

concluded that hcontrol = hmacro ≤ hmicro.

The main results of this paper, Theorems 3 and 4, are in line with what we call the complexity

version of Parrondo’s paradox, namely, that the complexity of a switched dynamics may be higher

than the complexity of its constituent maps. Moreover, they provide sufficient conditions as well, to

wit: h(f+), h(f−) < hcontrol.

Finally, both possibilities hcontrol < hmicro (Case 1) and hcontrol = hmicro (Case 2) have been

numerically illustrated in Section 6.
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Appendix

Recall that the Hausdorff semi-distance and Hausdorff distance between two nonempty subsets

X and Y of a metric space (M, dist) are denoted by ρ(X, Y ) and distH(X, Y ), respectively, while

diamX = sup
x,x′∈X

dist(x, x′) (44)

is called the diameter of a set X .

Let

Bε(x) = {z ∈M : dist(z, x) < ε} , B̄ε(x) = {z ∈M : dist(z, x) ≤ ε}
be the open and closed balls in (M, dist) with center at x and radius ε > 0, respectively. The set of

all points within a distance ε of X , i.e.,

Eε(X) =
⋃
z∈X

B̄ε(z)

is called the ε-inflation (or ε-expansion) of X . It follows trivially from this definition that

X ⊂ Eε(Y ) and Y ⊂ Eε(X) ⇒ distH(X, Y ) ≤ ε (45)

The converse of Equation (45) is in general false, except when X and Y are compact.

Proposition A1. Let X and Y be compact subsets of (M, dist). Then

distH(X, Y ) = ε ⇒ X ⊂ Eε(Y ) and Y ⊂ Eε(X)

Proof. If distH(X, Y ) = ε, then ρ(X, Y ) ≤ ε and ρ(Y,X) ≤ ε. This amounts to

max
x∈X

dist(x, Y ) ≤ ε, where dist(x, Y ) := min
y∈Y

dist(x, y) (46)

and

max
y∈Y

dist(y,X) ≤ ε, where dist(y,X) := min
x∈X

dist(x, y) (47)

respectively. Therefore, see Equation (46), for every x ∈ X , there exists y ∈ Y such that x ∈ B̄ε(y),

and, see Equation (47), for every y ∈ Y , there exists x ∈ X such that y ∈ B̄ε(x). �

It follows from Proposition A1 that

distH(X, Y ) ≤ ε ⇒ X ⊂ Eε(Y ) and Y ⊂ Eε(X) (48)

when X and Y are compact.

Among the different properties of the Hausdorff distance, we mention here only two of them. Let

K(M) be the set of all nonempty compact subsets of M .
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1. If (M, dist) is complete, then (K(M), distH) is also a complete.

2. If (M, dist) is compact, then (K(M), distH) is also a compact.

In Section 2.2 we consider the metric space M = R
d endowed with the Euclidean distance |·|, as

well as the complete, compact metric space (KR, distH), where KR = K(Rd) ∩ B̄R(0).

Lemma A2. Let (M1, dist1) be a compact metric space and (M2, dist2) a complete metric space. If
f : M1 → M2 is a continuous map, then there exists a real-valued function ω : [0,∞) → [0,∞)

with ω(0) = 0 such that, for any X, Y ∈ K(M1),

dist2,H (f(X), f(Y )) ≤ ω( dist1,H (X, Y )) (49)

where dist1,H (resp. dist2,H) is the Hausdorff distance in K(M1) (resp. K(M2)).

The function ω here is called a modulus of continuity. Moduli of continuity are used to express in

a convenient way both the continuity at a point and the uniform continuity of maps between metric

spaces as, for instance, in Equation (49).

Proof of Lemma A2. Let X and Y be compact subsets of (M1, dist1,H) such that dist1,H (A,B) ≤ δ.

By Equation (48),

X ⊂
m⋃
i=0

B̄δ(yi) and Y ⊂
n⋃

j=0

B̄δ(xj)

where xj ∈ X and yi ∈ Y . Thus,

f(X) ⊂
m⋃
i=0

f(B̄δ(yi)) and f(Y ) ⊂
n⋃

j=0

f(B̄δ(xj))

In turn, f(B̄δ(yi)) and f(B̄δ(xj)) are compact in M2 because f : M1 → M2 is continuous. This

being the case,

f(B̄δ(yi)) ⊂ B̄ri(f(yi)) and f(B̄δ(xj)) ⊂ B̄sj(f(xj))

where [see Equation (44)]

ri ≤ diam f(B̄δ(yi)) and sj ≤ diam f(B̄δ(xj))

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. In sum,

f(X) ⊂
m⋃
i=0

B̄ri(f(yi)) and f(Y ) ⊂
n⋃

j=0

B̄sj(f(xj)) (50)

Let ωf : [0,+∞]→ [0,+∞] be the modulus of continuity of the uniformly continuous map f of

M1 into M2, i.e.,

dist2(f(z), f(z
′)) < ωf (dist1(z, z

′))

where

lim
t→0

ωf (t) = ωf (0) = 0 (51)
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Without loss of generality, ωf may be assumed to be continuous and even differentiable. Then

ri ≤ diam f(B̄δ(yi)) = max{dist2(f(z), f(z′)) : z, z′ ∈ B̄δ(yi)}

≤ max{ωf (dist1(z, z
′)) : z, z′ ∈ B̄δ(yi)}

for 1 ≤ i ≤ m, and, analogously,

sj ≤ max{ωf (dist1(z, z
′)) : z, z′ ∈ B̄δ(xj)}

for 1 ≤ j ≤ n. From Equation (51) we conclude that ri and sj can be made arbitrarily small by

choosing δ sufficiently small.

All in all, given ε > 0 and X, Y ⊂ M1 compact such that distH (A,B) < δ, we can choose δ

sufficiently small so that ri, sj ≤ ε for 1 ≤ i ≤ m, and 1 ≤ j ≤ n. From Equation (50) we obtain

f(X) ⊂
m⋃
i=0

B̄ε(f(yi)) ⊂ Eε(f(Y )) and f(Y ) ⊂
n⋃

j=0

B̄ε(f(xj)) ⊂ Eε(f(X))

hence dist2,H (f(X), f(Y )) ≤ ε by Equation (45).

This, in fact, proves the uniform continuity (since K(M1) is compact) of the set-valued map

K(M1) � A �→ f(A) ∈ K(M2). Equation (49) is just an equivalent formulation of this fact. �
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Abstract: First, this paper recalls a recently introduced method of adaptive monitoring 
of dynamical systems and presents the most recent extension with a multiscale-enhanced 
approach. Then, it is shown that this concept of real-time data monitoring establishes a 
novel non-Shannon and non-probabilistic concept of novelty quantification, i.e., 
Entropy of Learning, or in short the Learning Entropy. This novel cognitive measure 
can be used for evaluation of each newly measured sample of data, or even of whole 
intervals. The Learning Entropy is quantified in respect to the inconsistency of data to 
the temporary governing law of system behavior that is incrementally learned by 
adaptive models such as linear or polynomial adaptive filters or neural networks. The 
paper presents this novel concept on the example of gradient descent learning technique 
with normalized learning rate. 

Keywords: incremental learning; adaptation plot; multiscale; learning entropy; 
individual sample learning entropy; approximate learning entropy; order of learning 
entropy; learning entropy of a model; non-Shannon entropy; novelty detection; chaos; 
time series; HRV; ECG 

 

Nomenclature 

LE Learning Entropy 
ALE Approximate Learning Entropy 
ISLE Individual Sample Learning Entropy 
AISLE Approximate Individual Sample Learning Entropy 
OLE Order of Learning Entropy 
LEM Learning Entropy of a Model 
ApEn Approximate Entropy (by Pincus) 
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SampEn Sample Entropy (by Pincus) 
AP Adaptation Plot 
GD Gradient Descent 

1. Introduction 

Prediction and novelty detection of dynamical system behavior is a vital topic today. Time 
series are common representatives of observed behavior of complex dynamical systems and the  
non-stationarity and perturbations are the real-world drawbacks. Such variously caused novelties of 
newly measured samples of data affect the prediction accuracy and thus they can affect, e.g.,  
control, diagnostics, medical treatment accuracy, and can interfere with many other signal  
processing objectives. 

It has been shown more recently in [1,2] that novelty of individual samples of time series or 
even intervals of behavior of complex, high-dimensional and nonlinear dynamical systems can be 
efficiently monitored by relatively simple adaptive models (i.e., low-dimensional neural network 
architectures). By real-time adaptation of such short-term predictors and by observing also the 
behavior of adapted parameters (neural weights), we are able to cognitively monitor and evaluate 
every new measured sample or even whole intervals of behavior with varying complexity (e.g., 
varying levels of chaos, noise, perturbations). Therefore, in this approach every new measured 
sample of data is evaluated with respect to its consistency to temporary governing law (dynamics) 
of a system, which is different from common statistical measures and furthermore, different from 
entropy based approaches that do not consider consistency of data with the governing law of 
behavior of data. Moreover, the cognitive approach presented in this paper is also different from 
existing methods of novelty detection that use learning systems, because this approach does not 
operate with residuals of the learning system. The terms adaptation, learning and incremental 
learning can be understood to be equal for clarity of explanations in this paper. However, the 
learning process of a learning system is generally understood to be a more complex cognitive 
process than just a parameter adaptation technique [3,4]. The novel concept of entropy in this paper 
is not limited only to the supervised adaptation, but the principal is applicable to any learning 
systems in general. 

In literature, two fundamental streams of evaluating the entropy of data in dynamical systems in 
the sense of information contents (novelty) that is carried by measured samples of data can be 
tracked down, i.e., the probability based approaches, e.g., [5] and the learning system based 
approaches, e.g., [6]. 

The first (probabilistic) stream is represented by the statistical approaches of novelty measures 
and by probabilistic approaches for evaluation of entropy. The Sample Entropy (SampEn) and the 
Approximate Entropy (ApEn) are the very typical and relevant examples [7,8]. These approaches 
are closely related to the multi-scale evaluation of fractal measures as discussed in [9–12] and thus 
to the power-law [13] concept, which is also the partial inspiration for the presented matter in this 
paper. The usefulness of multi-scale approach is also apparent from the coarse-graining based 
multi-scale extensions to SampEn in [14,15] and its further and very recent extension in [16]. Some 
more case studies utilizing SampEn, ApEn, and Multiscale Entropy (MSE) can be found in [17,18]. 
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Another probabilistic approach to the evaluation of entropy as the conditional mutual information 
between present and past states is proposed as the Compensated Transfer Entropy in [19].  
Work [20] can be referenced for the fault detection using a probabilistic entropy approach, and a 
probabilistic entropy approach to the concept shift (sometimes the concept drift) detection in 
sensory data is reported in [21]. 

The second stream is represented by the utilization of learning systems such as neural networks 
and fuzzy-neural systems, and this is also the main area relevant to the presented work in this 
paper. During the last three decades of 20th century, the works that were in focus regarding 
learning systems are [22–25], and for incremental learning approach can be referenced for example 
also the work [26]. Then, a particularly focused approach toward the utilization of learning systems 
has been rising with works [27–29], where nonlinear estimators and learning algorithm were 
utilized for the fault detection via the proposed utilization of a fault function that evaluates 
behavior of residuals of a learning system. Currently, significant research that shall be referenced is 
adaptive concept drift detectors proposed in [30–32] and the cognitive fault diagnosis system for 
sensory data published in [33]. Some readers might also see some analogies of the proposed 
approach in this paper to the Adaptive Resonance Theory [34]. Because, the proposed approach in 
this paper utilizes a memory of data behavior, which is represented by the online learning 
parameters of a learning system, and the unusual behavior of incrementally learning parameters is 
quantified and introduced as the novel entropy concept in this paper. 

Up to the best of my knowledge, I am not aware of any works by other authors on  
non-probabilistic approaches for evaluation of entropy which are, in their very principal, free from 
any use of output residuals of a learning model; so that only the behavior of incrementally learning 
parameters of even imprecise learning models would serve for novelty evaluation in sense of 
information contents quantification (entropy). 

This paper introduces novel concept of entropy and its calculation that neither is based on 
statistical approaches nor is it based on evaluation of error residual. This new approach operates 
only on parameter space of incrementally learning systems. The presented principle is purely based 
on evaluation of unusual behavior of incrementally learning parameters of a pre-trained model, 
regardless the error residual, i.e., in principle regardless the prediction error itself or its behavior in 
time. This paper demonstrates the novel approach on Gradient Descent (GD) adaptation that is one 
of the most comprehensible incremental learning techniques. The very original and funding 
principals and some related results with Adaptation Plot (AP) have been published in [1,2,38,39] 
and the first multi-scale extension was proposed in [40]; those are the funding concepts of Learning 
Entropy (LE) and the Approximate Individual Sample Learning Entropy (AISLE) that are 
introduced in this paper.  

The paper is organized as follows: the second section recalls two fundamental principles 
(techniques) that are necessary for evaluating the LE, i.e., GD—a comprehensible example of an 
incrementally learning technique, and the technique of visualization of learning energy, i.e., the 
AP. The third section derives the calculation of the novel measure of learning activity, i.e., the 
measure of learning energy that an incrementally learning model displays for each newly measured 
sample of data and, thus, the principle of the Individual Sample Learning Entropy (ISLE). Then, a 
practical cumulative-sum technique for estimation of ISLE is introduced as the Approximate 
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Individual Sample Learning Entropy. Consequently, the concept of the Order of Learning Entropy 
is introduced according to the order of the estimated time derivative of neural weights that serve to 
calculate the LE. 

The fourth section shows experimental demonstrations including real-world data application of 
AISLE. The fifth section discusses results, furthermore, theoretical and practical aspects of LE, and 
it also discusses the fact that LE is not necessarily correlated to the magnitude of prediction error. 

In terms of mathematical notation, variables are denoted as follows: small caps as “x” for a 
scalar, bold “x” for a vector and, bold capital “X” for a matrix. Lower indexes as in “xi” or “wi”, 
indicate the element position in a vector. If a discrete time index is necessary to be shown, it comes 
as “k” in round brackets such as x(k), y denotes measured time series and  stands for a predictor 
output. Further notation, as such w, represents a vector that contains all adaptable parameters, i.e., 
weights of a predictor and, �w is a vector of all adaptive weight increments that are the cornerstone 
quantities for evaluation of LE by incrementally learning models. The meaning of other symbols is 
given at their first appearance throughout the text. Time series of constant sampling are considered. 

2. Funding Principles 

This section reviews two fundamental principles for the latter introduced LE concept.  
The very fundamental principle is the supervised incremental learning of predictive models, i.e., 
sample-by-sample adaptation of adaptive parameters (neural weights) to the evaluated signal. As 
the very cornerstone approach, the GD (incremental) learning is recalled such as for linear or 
polynomial predictors and neural networks. The second fundamental principle is the binary-marker 
visualization of how much must the (initially pre-trained) predictor adapt its weights to each 
sample of data to capture contemporary governing law, i.e., this is the technique of the AP [1–2]. 

2.1. Predictive Models and Adaptive Learning 

Though not limited to, the GD adaptation algorithm is the most fundamental technique for the 
evaluation of LE. Moreover, GD learning is very efficient especially when used with linear filters 
or low-dimensional neural network architectures (predictors). The use of GD is recalled 
particularly for linear predictors (filters) and for polynomial predictors (also called Higher-Order 
Neural Units HONUs [1,35–37]) in this subsection.  

As for time series, let us consider the representation of a general prediction scheme as follows; 

 (1)

where  denotes predicted value at prediction horizon of h samples; f(.) is a general 
differentiable function (linear or polynomial predictor or a neural network) mapping the input vector 
x(k) to the predicted output; vector w contains all adaptable parameters (weights) of a predictor. 

To unify the terminology about general predictors (1) that are used for the purpose of LE, the 
following lemmas are given: 

L1. Predictor (1) is a static model that performs direct prediction if input vector x(k) contains 
only the recent history of measured data. 

y�
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L2. Predictor (1) is a dynamical (recurrent) model that performs indirect prediction if input 
vector x(k) contains also step-delayed values of . 

L3. Dimensionality of predictor (1) corresponds to the state space dimension for which the 
mapping f(.) is defined (for Equation (1) this relates to the numbers of inputs in x including  
step-delayed feedbacks of  if a predictor is dynamical one). 

L4. Dimensionality of a real data corresponds to the order of dynamics of real-data-generating 
system and it is further extended by other real inputs (that further increase dimensionality of 
behavior of real data). 

L5. A low-dimensional predictor of time series is such predictor that is considerably  
less-dimensional than the embedding dimension of the time series itself. 

Sample-by-sample GD adaptation scheme of predictor (1) can be defined using prediction error 
e, which is given as: 

 (2)

so the individually adapted weight increments are calculated in order to decrease the square error 
criteria as follows: 

 (3)

where, is an adaptive weight increment of ith weight, � is the learning rate, and k is the 
discrete index of time that also denotes the reference time, i.e.,  is currently measured error, 

 is predicted value h samples ahead. For completeness, the updates of all weights at each 
sample time k can be in its simplest form (no momentum or regularization term) as follows: 

 (4)

Recall, stability of the reviewed GD algorithm (2–4) can be practically improved by proper 
scaling input and output variables (e.g., z-score) and by various approaches for rescaling the 
learning rate � (e.g., [41,42]). 

In case the predictor is a dynamic model, i.e., lemma L2, we may alternatively refer to GD as to 
Real Time Recurrent Learning (RTRL) technique [43] if the above GD scheme (1–4) is applied 
with recurrently calculated derivatives for feedback elements in input vector x. 

Equation (1) gives only a general form of a predictor for LE. The particular form of the mapping 
f(.) and configuration of inputs and feedbacks in input vector x as in Equation (1), as well as the 
proper sampling period, are all case specific. 

Nevertheless, it can be reasonable to start with linear adaptive filters as they are simplest and 
computationally efficient especially when vector x should contain relatively higher number of 
inputs (~ > 20). In case of linear filters, the predictor (1) yields the vector multiplication form of 
row vector w and column vector x as follows: 

 (5)

The weight updates are directly calculated for a linear model as follows: 

 (6)

y�

y�

( ) ( ) ( )k k ke y y� � �

2( ) ( ) ( )1
( )

2
( , )k k k h

ki
i i i

e y fw e e
w w w

� � � �
� �

� � �
�� � � � � � � �

� � �
x w�

( )kiw�
( )ke

( )k hy ��

( 1) ( ) ( )k k k� � ��w w w

( ) ( ) ( )k h k ky � ��w x�

( ) ( ) ( )Tk k ke�� � ��w x



160 

 

where, T denotes vector transposition and where recurrently calculated partial derivatives (as if 
according to RTRL) are neglected, i.e. , . 

As regards selection of learning rate �, the first technique that should be considered is the 
learning rate normalization that practically improves the stability of the weight update system (4, 6), 
so the weight updates can be actually calculated at every sample time as follows: 

 (7)

where “|| ||” denotes a vector norm—more on techniques for learning rate normalization and 
adaptation of a regularization term (the unit in the denominator) can be found, e.g., in [41,42]. 

For evaluation of LE of nonlinear time series, polynomial adaptive predictors such as  
Higher-Order Neural Units can be recommended [1,35–37]; HONUs are attractive adaptive models 
because their mapping is customable as nonlinear while they are linear in parameters => 
optimization of HONUs is of a linear nature, so HONUs do not suffer from local minima problem 
in the way as conventional neural networks do when GD learning technique is used. 

Of course, because of various systems and according to various user experience, other types of 
predictors such as perceptron neural networks or any other kind of adaptive models, suitable for 
GD (but not limited to GD) adaptation, can be used as a cognitive (here the supervised), 
incrementally learning tool, for evaluation of LE. This subsection recalls the GD rule as a 
straightforward example of incremental learning technique, that is a comprehensible option for AP 
and latter for calculation of LE. 

2.2. Adaptation Plot (AP) 

The variability of weight increments �w in (3) resp. (7) reflects the novelty of data that 
corresponds to the difficulty with which an adaptive model learns to every new sample of data. 
Therefore, the AP was introduced for GD and adaptive models (HONUs) in [1] and further  
in [2,38,39] as a visualization tool of adaptation activity (or novelty in data) of adaptive predictors.  

AP is based on evaluation and visualization of unusual weight increments of sample-by-sample 
GD adapted models. It was shown through [1,2,38–40] that low-dimensional predictors can capture 
and evaluate important signal attributes. As such, unusual samples, very decent perturbations, 
unusual appearance or variations of level of chaos or noise, incoming inter-attractor transitions of 
hyper-chaotic systems, also hidden repeating patterns can be revealed and intervals of a similar 
level of chaos can be revealed in otherwise seemingly, similarly complicated signals. 

To clarify the principle of AP, the sensitivity parameter � for marker detection of AP has to be 
recalled. A governing law variability marker (a dot) in AP (Figure 1) is drawn at every sampling 
time k, if the corresponding weight increment exceeds its contemporary, usual magnitude, which 
can be in principle sketched by the following rule: 

 (8)

where, � is the detection sensitivity parameter, and  is a floating average of absolute 

values of recent m neural increments of ith neural weight as follows: 
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 (9)

Figure 1. Adaptation Plot (AP) is a tool for universal evaluation of information hidden 
in adapted neural weights via transformation into a binary space (time series is 
cognitively transformed to patterns of binary features AP markers (the dots)), for 
more on functionality of AP please see [1,2]. 

 

The mutually alternative explanations of the sensitivity � are as follows:  

• The larger value of �, the larger magnitudes of weight increments (i.e., |�w|) are considered 
to be unusual. 

• The larger �, the more unusual data samples in signal are detected and visualized in AP. 
• The larger �, the less sensitive AP is to data that do not correspond to the contemporary 

dynamics learned by a model. 
• The larger �, the lower density of markers in AP. 

The major single-scale weakness of AP is the need for manual tuning of the sensitivity 
parameter �, so the first multi-scale solution to AP has been proposed in [40] without connotations 
to any entropy concept.  

In the next section, it is proposed that the multi-scale solution to novelty detection via AP and 
over a whole range of sensitivity detection establishes a novel entropy concept of LE.  
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3. Learning Entropy (LE) 

In this section, the concept of Learning Entropy (LE) is introduced for supervised incremental 
learning. This novel entropy concept can utilize sample-by-sample adaptation of low-dimensional 
predictors [1,2,36–39] and uses the technique of the AP. Notice, the GD with normalized learning 
rate (e.g., [41,42]) is used in this paper for its clarity and for its good performance; however, LE is 
not principally limited to only GD technique, nor to supervised techniques in general. 

In fact, LE is a cognitive entropy measure concept because the cognitively obtained knowledge 
about variation of temporary governing laws of the evaluated data is utilized. 

Important distinction of this concept is that if a system behavior is very complex from statistical 
point of view, but it is deterministic from the point of view of its governing law, the information 
content (complexity, entropy) of the data is lower, the more deterministic the behavior is 
(deterministic chaos, forced nonlinear (chaotic) oscillator).  

For example, if a predictive model can adapt fully to a governing law of deterministically 
chaotic time series, then the further data of time series have no new information to us (the new data 
are redundant because we know a governing law). However, if a deterministic (chaotic) time series 
becomes perturbed, the perturbed data (samples or intervals) have new information, i.e., novel data 
have entropy that can be adaptively (cognitively) detected (e.g., by supervised GD learning). 

3.1. Individual Sample Learning Entropy (ISLE) 

In this subsection, LE is approached via GD (supervised learning) and it is demonstrated on the 
example of deterministically chaotic time series obtained from Mackey-Glass equation [44] in 
chaotic mode as particularly given in Equation (10): 

	 
 110( )
( ) 1 ( ) ( )

t
t t t

dy b y y g y
dt

� �
�

� � � �� �� �  (10)

where t denotes the continuous index of time, and the chaotic behavior results from the setup of;  
b = 0.2, g = 0.1, and the lag � = 17. The time series was generated by Equation (10) and data  
were sampled with period �t = 1 [time unit] as {y(k); k = 0,1,…,700} where k denotes the discrete 
time index. 

Lets introduce 1% perturbation at sample k = 500 as follows: 

 (11)

The time series with the detail of the perturbed sample at k = 500 is shown in Figure 2. First 200 
samples is used to pre-train a low-dimensional predictive model (given random initial weights w) 
by GD in 300 epochs. Then, the adaptive model runs adaptation only once on further data  
k = 200…700. 

As a nonlinear and low-dimensional predictive model, static quadratic neural unit  
(QNU, [1,35,36]) is chosen for its good quality of nonlinear approximation and in-parameter 
linearity that theoretically avoids problem of local minima for adaptation [37]. QNU can be 
expressed in a long-vector multiplication form as follows: 

 (12)
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where, the length of recent history of time series in input vector x is chosen as n = 4 as follows:  

 (13)

where, T stands for vector transposition and colx is the long column vector representation of 
quadratic multiplicative terms that are pre-calculated from x as follows: 

 (14)

Furthermore, w is a row weight vector of the same length as colx. 
The sample-by-sample updates of w, can then be calculated by the GD according to (1–6)  

as follows: 

 (15)

In regards to selection of the learning rate �, a variation of the learning rate normalization  
(e.g., [41]) practically improves the stability of the weight update system (6), so the weight updates 
Equation (15) can be actually calculated at every sample time as follows: 

 (16)

where � = 1 is used in following experiments for initial pre-training, and � = 0.1 is used for 
adaptive detection online. 

Figure 2. Mackey-Glass time series in chaotic mode (10) with the detail of perturbation 
(11) at k = 500. 
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For the time series shown above and for the given setup, the QNU has 15 neural weights and the 
corresponding AP is shown in Figure 3. The AP in the bottom axis of Figure 3, shows that the six 
weight increments �w9 and �w11-15 of adaptive model were unusually large for the sensitivity � = 5.5, 
i.e., the pre-trained adaptive model (12) captured the perturbed sample at k = 500, while the 
prediction error e(k = 500:503) was of even a smaller than usual magnitude. Therefore, the markers 
in AP, visualize, activity in which the model learns to each newly measured sample, even when the 
adaptive model is not absolutely accurate (for another example please see Figure 13 in [40]).  

Figure 3. The bottom axis is the AP with manually tuned � for perturbed time series in 
Figure 2. The six AP markers for weights w9 and w11…15 at k = 503 correspond to the 
perturbed sample at k = 500 (11) (while the above magnitudes of prediction error and 
the adaptation weight increments do not indicate anything at first sight). 
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The particular time series in top axes in Figure 3 has a significant frequency component of about 
60 samples and the most of the signal events chaotically recur within this interval. Therefore, 
parameter m that calculates recently usual magnitudes of weight increments Equation (9) is 
pragmatically set to m = 60 for this time series in this paper. More discussion on choice of 
parameter m follows in Section 5 of this paper. 

The most critical parameter to obtain a meaningful and useful result with the AP (such as in 
Figure 3) is the detection sensitivity �. To overcome this single-scale weakness of AP, i.e., the 
dependence on proper selection of �, a multi-scale approach can be adopted. Naturally, the markers 
in AP appear according to �, and the more sensitive detection is (i.e., the smaller �), the more 
markers appear for more unusual samples of data [40], i.e., for samples of higher LE. The 
dependence of AP markers is demonstrated in Figure 4. 

Figure 4. The APs of the chaotic time series (Figure 2) with perturbed sample at  
k = 500 for increasing detection sensitivity (i.e., decreasing � = 6.08, 6.01, 5, 2); the 
number of AP markers N(�) related to perturbed sample at k = 500 tends to increase 
with increasing sensitivity more rapidly than for usual (not novel) samples. 

 

For � = 6.08 in Figure 4, there are three AP markers that indicate some unusually large learning 
activity at k = 311,503,678. However, for constant �, the detection must be made more sensitive to 
reveal the perturbed sample (k = 500) in contrary to the other seemingly novel points, which is 
manually made in Figure 4 by redrawing AP for � = 6.01 and � = 5. For � = 2, the detection 
becomes too sensitive and the AP is not useful anymore. 
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To become independent of single-scale issue of manual selection of �, the multi-scale approach 
was proposed in [40]. It is further recalled in this section for the example of the above time series, 
and it is newly related to the concept of LE. 

In order to enable us to perform multi-scale analysis of AP markers, we may consider the 
power-law concept, e.g., [13]. For AP markers at instant time k as a function of sensitivity 
parameter �, where the detection sensitivity is increasing with decreasing �, i.e., we can assume 
theoretical power-law approximation as follows: 

 (17)

where, the exponent H characterizes the nonlinear change of quantity of AP markers along the 
varying sensitivity of detection �, and N is the quantity of AP markers (here the vertical sum at 
instant k as in Figure 4) for the given sensitivity of detection �. 

Similarly to common fractal measure approaches, the change of quantity of AP markers along 
the increasing sensitivity parameter �, can be quantified by estimation of characterizing exponent 
H as the slope of log-log plot as: 

 (18)

where, �max is a specific (theoretical) value of detection sensitivity for which the very first AP 
marker would appear for evaluated samples k. Thus, �max can be loosely defined as follows: 

 (19)

For any ��arbitrarily close to��max, H becomes large if a measured sample of data is novel, i.e., if 
data is inconsistent with the governing law that has been temporarily learned by a predictor. For a 
particularly used predictor (1), the theoretical maximum H =  could be obtained correctly only 
for those samples of data where all AP markers vertically appear instantly, i.e., if  
where and where n is the number of all adaptable weights used for the AP. 

If we introduce a new variable E to normalize H as follows: 


( ) ( )
2 arctan( ) 0 ,1k kE H E
�

� �    (20)

then, we have arrived in Equation (20) to the normalized entropy measure E that quantifies learning 
activity of a sample-by-sample adaptive models (1–4). Thus, the variable E in Equation (20) is a 
novel non-Shannon and non-probabilistic measure for evaluation of novelty of each single sample 
of data in respect to it’s consistency to the temporary governing law learned by a predictor. Thus, E 
in Equation (20) can be called the Individual Sample Learning Entropy (ISLE). 

ISLE can be evaluated for all samples in a window of AP and consequently even only for a 
custom selection of particular samples. For example, Table 1 and Figure 5 shows comparison  
of ISLE for three specific samples of data for which AP markers appeared as the very first for  
�max  6.08 in Figure 4, but where only k = 503 has AP markers due to the novelty in data. We 
can see in Figure 6 that sample at k = 503 has much larger E than the other two data samples. 
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Table 1. The number of AP markers N(�) increases fastest for k = 503 because the 
incremental learning attempts to adapt the weights to the perturbation at k = 500  
(Figure 2), �max  6.08. 

� 6.08 6 5 4 3 2 1 
N(�), k = 311 1 1 1 1 1 2 4 
N(�), k = 503 1 3 7 12 14 14 15 
N(�), k = 678 1 1 1 1 1 2 3 

Figure 5. The limit slope H (18) for Table 1 is largest when an adaptive model starts 
learning a new governing law (here the perturbation at k = 500) that causes unusually 
large weight increments (here calculated with normalized learning rate by Equation (16)). 

 

Figure 6. AISLE calculated as EA by Equation (21) for the signal in Figure 2 and for 
sensitivities � = 3*[ 1.17, 1.16, 1.15], m = 60, �0 = 1, � = 0.1; the perturbation at k = 500 
is followed by the rapid increase of LE. 
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Naturally, if an adaptive model is familiar with a temporary governing law of behavior of data, 
and if the measured samples of data are consistent with the governing law, then the adaptive model 
does not need to unusually adapt its parameters (weights) and E is low. 

Importantly, evaluation of LE is not conditioned by the fact that the predictor must be precise 
and perfectly pre-trained. Inversely, if E = 0 is only achieved for all samples in an AP window, it 
does not necessarily imply that a predictor is precisely pre-trained and has zero prediction errors.  
E = 0 would just imply that the adaptive predictor (1) is familiar with data regardless its prediction 
error in Equation (2). E = 0 would mean that weights are constant (rounded to a decimal digit) 
during adaptation for all k even though the prediction error is not zero; this practically happens 
often with GD for not too large learning rate � (this can be practically verified on pre-training data). 

In particular, this section demonstrated the calculation of the LE via the sample-by-sample 
adaptation and it is applicable to every new sample measured and it can detect novelty of 
individual samples. Therefore, this particular technique by Equations (1–20) results in evaluation 
of the novelty measure that can be called the Individual Sample Learning Entropy (ISLE). 

However, the above estimation of ISLE via E by Equation (20) is rather a theoretical and 
explanatory matter, because proper estimation of slope H (18) depends on finding of �max. The next 
subsection resolves this issue. 

3.2. Approximate Individual Sample Learning Entropy (AISLE) 

A practical technique to approximate E as a normalized measure of ISLE for every newly 
measured sample y is introduced in this subsection. This approximate technique does not require 
discovering of proper �max complying strictly with (19). E can be approximated by EA for every 
sample of data y(k) as follows: 

�� (21)�

which is a sum of markers over a range of sensitivities � that is normalized by the number of 
weights n and by the number of selected sensitivity parameters n�'(�thus 1/(n�·n�
�is a normalization 
term to achieve , i.e., n markers can appear n���times for a sample of data y(k).  

For every individual sample, the measure EA in Equation (21) approximates E in (20), because 
larger values of EA, corresponds to a steeper slope H (Figure 5). Thus EA can be called the 
Approximate Individual Sample Learning Entropy (AISLE).  

Also similarly to E in (20), EA introduced in Equation (21) is also a normalized measure and it’s 
possible maximum value EA = max = 1 can be obtained if all AP markers for a sample y(k) appear 
for all detection sensitivities in �. The possible minimum value of EA of a sample y(k) is zero if no 
markers appear [similarly as to E in Equation (20)]. 

For the example given in Table 1, the setup for calculation of EA is n = 15, n� =7, 
�����)'*+(�)(�,(�-(�.(�/(�0�(�for which EA results as follows: EA(k = 311) = 0.105, EA(k = 503) = 0.629, 
EA(k = 678) = 0.095 (see corresponding slopes H in Figure 5). However, to better approximate the 
limit slope H, the elements of ��shall be selected closer to the approximate neighborhood of �max, 
i.e., around �max � 6 while �� = 2 is already too far from �max , as it is shown in Figure 4. Thus, EA 
can be estimated for � that is reduced to the neighborhood of  and both cases are thus 
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compared by Figure 5 and 6. Even though that the result in Figure 6 is dependent on selection of 
�(�it clearly reveals perturbation of sample y(k = 500). 

In Figure 6, we can see that other samples of data show also some smaller LE (AISLE in 
particular). Those data are not perturbed and they are fully consistent with governing law (10), yet 
they display nonzero LE. The reason for this is that the predictor (12–16) is a low-dimensional one 
and so it is not able to fully learn the governing law. However, it clearly detects and evaluates an 
inconsistent (here the perturbed) sample. In the next subsection, the further extension to the above 
introduced definition and calculation of LE that improves its evaluation accuracy is proposed. 

3.3. Orders of Learning Entropy (OLEs) 

When weights of a learning system are adapted by an incremental learning, the weights fluctuate 
in the weight state space with energy that the weight-update system has. 

The weight update system receives its (learning) energy, from the measured data, i.e., from the 
input vector x(k) and the target y(k) in case of supervised learning. The more inconsistent newly 
measured samples y(k) to the current knowledge of the learning system, i.e., the higher LE of the 
samples, the more energy the weight increments �w receives. 

In other words, the weight update system resembles an engine, with its fuel being the input data. 
Then, the LE is the actual (time-varying) octane number of the fuel. 

Weight increments �w are the key variables for LE. During incremental learning, each weight 
 behaves with energy of various orders that can be defined for the AP and thus for evaluation of 

the LE as follows: 

1 Order learning energy of weight wi corresponds to exceeding the floating average of its m 

recent magnitudes , 

1 1st Order learning energy of wi corresponds to exceeding the floating average of its m recent 

first derivative magnitudes  (this is the case of rule (8) ), 

1 2nd Order learning energy of wi corresponds to exceeding the floating average of its m 

recent second order derivative magnitudes , see (22),  

and similarly, 

1 3rd Order learning energy of wi relates to 3
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From the above point of view, the originally introduced rule of AP (8) can be extended for the 
second order LE as follows: 
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 (22)

where, the recently usual second derivative (acceleration) of weights is as:  

 (23)

Similarly, for the 3rd order LE it would be as follows: 

 (24)

and so on for higher orders. 
To distinguish among the above modifications in which the LE is calculated via adaptation plot 

rule as shown in Equation (8) or Equation (22), the Order of Learning Entropy (OLE) is introduced 
in this section and its most common cases are summarized in Table 2, where the details of the 
formulas has been indicated above in this section. 

Table 2. Orders of LE (OLE) and Corresponding Detection Rules, see Equations (8,9,22–24). 

OLE Notation Detection Rule for AP Markers 

0   

1   

2   

3   

4   

Figure 7 and Figure 8 show the results of AISLE for the above first five Orders of Learning 
Entropy estimates for data in time series (10), this time with two perturbations as follows: 

 (25) 

Figure 7 demonstrates the impact of various LE orders as they can significantly improve 
detection of inconsistent samples of data. Moreover, Figure 7 and Figure 8 also demonstrates that 
Zero-Order Learning Entropy, which deals just with weights themselves, does not have the 
cognitive capability to evaluate the learning effort of the predictor, i.e.,  does not detect the 

unusual samples at k = 475,500, nor the AP (bottom Figure 8) reflects inconsistent data. 
This subsection introduced Orders of LE as they relate to the time derivatives orders of 

adaptable parameters wi. It was demonstrated that useful LE Orders are especially starting from 1st 
Order and higher (Figure 7) which is consistent to the results of experiments that were made 
through recent years with the AP [1,2,38–40]. 
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Figure 7. AISLE of Orders of time series (10) with two perturbations of magnitude 
0.05 at k = 475 and k = 500, � = [15, 14, …, 1], m = 60, �0 = 1, � = 0.1; the zero order 
AISLE shown in top axes is not capable to capture the inconsistent data at k = 475, 500 
(see the  in Figure 8), the higher orders can improve novelty detection 

significantly. 

 

Figure 8. (Top)  calculated for � = {1.01[15, 14, … 1,]} that is closer to corresponding 
 of zero order ISLE and (bottom) the AP for � = 1.01; Zero-Order learning entropy 

 does not capture the inconsistent data (signal and other setup as in Figure 7). 
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4. Experimental Analysis 

4.1. A Hyper-Chaotic Time Series 

Another theoretical example of time series where the AISLE can be clearly demonstrated is the 
time series obtained from hyper-chaotic coupled Chua’s circuit [45] (with some more details and 
results on AP in [2]). The dimension of the used coupled Chua’s circuit in continuous time domain 
is 6 and its embedding dimension shall be at least 2 × 6 + 1 = 13 according to the Taken’s theorem. 
Let’s choose the static QNU of lower dimension (embedding n = 6) as the learning model in sense 
of Equation (1) and in particularly according to Equations (12–14). Its proper pre-training by  
GD (16) for the first only 100 samples of the time series is shown in Figure 9; the sum of square 
errors (SSE) approaches 1E-5 after last epoch of pre-training. 

Figure 9. Pre-training of low-dimensional QNU (12–16), on first 100 samples of 
hyper-chaotic time series in 10,000 epochs; � = 1; n = 6 => 28 weights; quality of pre-
training (SSE) affects LE (Figure 10 vs. Figure 11). 

 

Let us now introduce a slight perturbation in two samples as follows: 

 (26)

Then, the evaluation of AISLE for the less properly and more properly pre-trained learning 
model (Figure 9) is given in Figure 10 and Figure 11, respectively. 

( 475) ( 475) .02 and ( 500) ( 500) 0.02k k k ky y y y� � � � � � ��
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Figure 10. AISLE for the less properly pre-trained model; only 200 epochs of  
pre-training (Figure 9) naturally result in that the LE appears larger for more samples 
than just the perturbed ones at k = 457, 500 Equation (26), see also Figure 11. 

 

Figure 11. AISLE for more properly pre-trained learning model than in Figure 10. 
(here 1E + 4 epochs, Figure 9); two slight perturbations at k = 457, 500 Equation (26) 
are followed by larger AISLE (esp. of 4th order). 

 

However, the design of a proper learning model and its correct pre-training are crucial and  
non-trivial tasks for correct evaluation of LE and it may require an expert in adaptive (learning) 
systems or in neural networks. Nevertheless, from our experiments with AP and HONU [1,2,36–40] 
it appears that the very precise pre-training of the learning model is practically not always too 
crucial and that the structure of a learning model can be designed quite universally, e.g., with 
HONUs as they are nonlinear mapping predictors that are naturally linear in parameters. A 
practical rule of thumb for the above introduced HONU and GD can be to keep pre-training as long 
as the error criteria keep decreasing, i.e., until the learning model learns what it can in respect to its 
quality of approximation vs. the complexity of the data. The effect of more proper pre-training can 
be demonstrated by comparison of Figure 10 with Figure 11, where we can see that more proper 
pre-training naturally filters out the inconsistent samples at k = 475, 500, from all the other samples 
that are naturally generated by the hyper-chaotic behavior. 
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This subsection demonstrated the calculation of the LE on a theoretical hyper-chaotic time 
series and it demonstrated the influence of the quality of pre-training on its evaluation. Two  
real-world data examples are given in the next subsection. 

4.2. Real Time Series 

Heart beat tachograms (R-R diagrams) and ECG signals are complex and non-stationary time 
series that are generated by a multidimensional and multilevel feedback control system (the 
cardiovascular system) with frequent external and internal perturbations of various kind. First,  
this subsection demonstrates potentials for real-world use of LE on real-time novelty detection of 
heart beat samples in R-R diagram retrieved from [46] using static QNU and GD learning via 
Equations (12–16).  

Figure 12. AISLE for R-R diagram [46]; the learning model is static QNU, n = 5,  
pre-training samples = 200, epochs = 100, � = 0.001; the peaks of AISLE correspond or 
directly follow the inconsistent sample at k = 652. 
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The results and the pre-training setup is given in Figure 12, which shows that the new pattern  
of heart rate behavior starting at k = 652 has been detected. Second, demonstration of potentials of 
LE is shown on real-time sample-by-sample monitoring of ECG with algorithm modification for 
quasi-periodic signals. LE is shown for a real-time sample-by-sample monitoring of ECG time 
series with spontaneous onset of ventricular tachycardia (233 Hz, data courtesy of [47]) using 
Linear Neural Unit (LNU) with normalized GD, i.e., adaptive linear filter (5–7), (13). The 
dimensionality of the used LNU is n = 80 Equation (13), so the calculation of AISLE for also a 
higher dimensional predictor is demonstrated below in Figures 13, 14 and A1.  

Figure 13. Capturing the onset of spontaneous ventricular tachycardia in animal ECG 
by the AISLE of static Linear Neural Unit (LNU, n = 80, pre-training epochs = 500, 
pre-training samples k = 0.500, full data in Figure 16), data courtesy of [47]. 

 

Because ECG is a quasi-periodical signal and the used LNU is not able to fully learn the 
governing law that drives the ECG, the evaluation of LE can be modified to compare neural weight 
increments with respect to the prevailing periodicity of the signal. The floating average of absolute 
values of recent m neural increments of ith neural weight (originally given in (9)), can be modified 
as follows: 

 (27)
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where, the actual time range of averaging �w is located into the neighborhood of maximum 
autocorrelation of ECG signal (here for the lag of 80 samples). 

Figure 14. The typical feature of LE: while prediction error and weight increments 
reach seemingly regular magnitudes or even smaller ones, the LE can be correctly high 
regardless the actual error of the learning model (see Figures 13 and 15). 

 

5. Discussion 

The straightforward difference of the introduced LE from statistical entropy approaches is that 
behavior of a system may be statistically complex, but if the behavior is deterministic (e.g., 
deterministic chaos) and newly measured samples are consistent with the governing law, then these 
data does not carry any novel information. Due to the incremental learning (adaptation) during 
detection, the LE approach is potentially suitable for real time non-stationary systems. 

The weights in w and especially their higher-order time derivatives (estimated via weight 
increments �w) correspond to the (learning) energy of an incrementally learning system, and it 
appears that higher orders of AISLE shall be generally considered. Naturally, higher orders of 
AISLE appear more reliable for novelty detection than the Zero-Order AISLE; however, higher 
orders AISLE appeared one sample delayed behind the first order AISLE (Figure 12).  

The LE is a relative measure, that is related to the data to which it is applied as well as, it is 
related to the learning model and to its capability to extract the governing law from training data. 
Obtaining a useful LE can be a non-trivial task that requires a suitable (though not perfect) learning 
model (e.g., a low-dimensional model) that is capable to approximate a temporary governing law  
in data. 
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It is generally difficult to provide readers with the pragmatic rule of thumb that can be suggested 
for selection and pre-training of a model for LE, because the possible consequences of the 
insufficient training or the overtraining vary from case to case and may depend on used type of 
learning model and applied learning algorithm and on setup parameters, so the user’s experience 
might be necessary. Nevertheless, linear filters or relatively simple polynomial predictors that are 
linear in parameters can be a good option to start with experiments on the LE. 

Regarding supervised learning (i.e., predictors), it was demonstrated already in [40] on chaotic 
logistic equation that the actual prediction error is not necessary correlated to the inconsistency of 
data that is adaptively monitored. Details of adaptive predictor output, prediction error, and the 
magnitude of weight increments during incremental learning of ECG signal for Figure 13 are given 
in detail in Figure 14. By comparison of the two figures, we see that the onset of ventricular 
tachycardia does not introduce larger prediction error (Figure 14); however, the LE of the starting 
arrhythmia is high (Figures 13 and 15) for the learning model used.  

Figure 15. Profile of LE of 4th order and the Learning Entropy of a Model (LEM) 
evaluated at k = 700 for QNU and for the time series from Figure 12. 

 

While this papers resolves the single-scale issue of sensitivity detection parameter � via the 
multiscale approach, another point of discussion is selection of parameter m in formula (9) for a 
particular signal. A pragmatic rule for setting m according to the lowest frequency component of 
chaotic signals with quasi-periodic nature was indicated in subsection 3.1. Then an interval 
modification for choosing m for a quasi-periodical signal with significantly distinct intervals of 
behavior (e.g., the ECG signal) was demonstrated in Equation (27), where formula (9) was 
customized to calculate average increment magnitudes within the lag corresponding to the first 
maximum of autocorrelation function. For chaotic signals where the periodicity and maximum lag 
of autocorrelation function is not clear (e.g., discrete time chaos of the logistic equation or R-R 
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diagrams), the choice of parameter m can be a case dependant and future research is to be carried. 
Also, a possible multi–scale approach for m for LE can be considered for future research. 
Nevertheless, the author has observed that calculation of LE is practically much more robust to the 
selection of parameter m than to the sensitivity detection �. 3herefore, the multi–scale approach for 
� and not for m is primarily introduced for LE in this paper. 

The LE is also a promising concept for development and research of new measures that would 
evaluate particular learning models and data. While this paper introduces individual sample 
focused LE, i.e., ISLE and AISLE, there is strong potential for interval-based measures of LE. For 
example, by introducing the accumulated plot of LE, i.e., the cumulative sum of AISLE, as follows: 

	 
 	 

1

( ) ( )
k

A A
i

AccSum E k E i
�

��  (28)

one may obtain the LE profile of a particular adaptive model and of particular data. When 
evaluated for the whole time series, AccSum(EA) would summarize the signal and might be possibly 
used to distinguish between different models or adaptation techniques. Then the very last point of 
the profile, i.e., AccSum(EA(k = max)), could be interpreted as the Learning Entropy of a Model 
(LEM), see Figure 15. 

In other words, the LEM quantifies the familiarity of an adaptive model with data. Practically, 
the familiarity of a learning model with data corresponds to the generalization ability of the model. 
Adopting the fact that the best learning model shall have the best generalization ability  
(LEM = min) and the lowest prediction error, a general function of the convolution of Learning 
Entropy and the prediction error appears be a promising direction for continuing research that, 
however, exceeds the scope of this paper. 

There are certainly many other issues that should be discussed regarding evaluation of LE and 
the further introduced concepts. The proper evaluation of LE depends on a number of factors where 
users experience with learning systems and signal processing is important. However, the objective 
of this paper is to introduce the LE as a new non-probabilistic concept of online novelty detection 
via evaluation of data sample inconsistency with contemporary governing law that is incrementally 
learned by a learning system. 

6. Conclusions  

This paper is the first work that introduces the concept of LE as a non-probabilistic online 
measure for relative quantification of novelty of individual data samples in time series. This 
normalized and multi-scale measure evaluates the inconsistency of individual samples of data as an 
unusual learning activity of an incrementally learning model over all adaptable parameters. It is a 
multi-scale measure because the learning activity is evaluated over the whole range of detection 
sensitivity parameter � that is the key parameter for online visualization of unusual learning 
activity (in AP). Evaluation of unusual learning activity was proposed for estimation of various 
orders of time derivatives of weights that reflects the learning energy of an incrementally learning 
model, thus Orders of LE were introduced. 
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A particular technique for calculation of Approximated Individual Sample Learning Entropy 
was introduced. AISLE represents a loose analogy to approximate sample entropy in sense of using 
cumulative sums instead of approximation of the slope in a log-log coordinates. The whole 
explanation and the technique of calculation of AISLE is demonstrated on a straightforward 
example of supervised incremental learning, i.e., on GD in this paper. As learning models, static 
linear and polynomial neural units (quadratic polynomials) were demonstrated in this paper as they 
are good to start with LE for their comprehensibility and in-parameter-linearity which is a good 
feature for GD learning. Examples of calculating the AISLE for theoretical chaotic time series as 
well as for two bio-signals were presented. 

The major objective of this paper was a comprehensible introduction of the LE and its 
calculation rather then competition to conventional entropy approaches. The LE is introduced as a 
missing concept among probabilistic entropy approaches that usually do not consider a governing 
law in otherwise statistically complex data. In principle, the concept of LE is not only limited to 
supervised learning. There are strong potentials for LE for neural networks, signal processing, 
adaptive control, fault and concept drift detection, and big data applications. The evaluation of 
Learning Entropy will depend on many factors including users experience with adaptive systems 
and the detailed summary exceeds the introductory focus of a single paper. 
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Appendix 

Figure A1. Full data for Figure 13 (excluding first 500 of pre-training samples), 
arrhythmia spontaneously starts around k = 2200), data courtesy of [47]. 
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Abstract: In this paper, the spatiotemporal dynamics of a diffusive Leslie-Gower 
predator-prey model with prey refuge are investigated analytically and numerically. 
Mathematical theoretical works have considered the existence of global solutions, 
population permanence and the stability of equilibrium points, which depict the 
threshold expressions of some critical parameters. Numerical simulations are performed 
to explore the pattern formation of species. These results show that the prey refuge has 
a profound effect on predator-prey interactions and they have the potential to be useful 
for the study of the entropy theory of bioinformatics. 

Keywords: diffusive predator-prey system; Leslie-Gower; Holling type III schemes; 
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1. Introduction 

The dynamic relationship between predators and their prey has fascinated mathematical biologists 
for a long time. A variety of mathematical models are devoted to exploring the predator-prey 
interaction [1–4]. To understand well the population dynamics, many biological factors are included 
such as time delay, impulsive effect, seasonal perturbation [5–9]. Recently, many authors [10,11] 
have focused on the dynamics of a class of the semi-ratio-dependent predator-prey models, in 
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which one of the salient features is that the carrying capacity of predator is proportional to the 
number of prey and such models were initially introduced by Leslie and Gower [12,13]. In 2003, 
Aziz-Alaoui and Okiye [14] analyzed the dynamics of the following model: 
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where u  and w  represent the densities of prey and predator, respectively. Furthermore, it is 
assumed that the prey grows logistically with the limited factor k  of considering realistic 
surroundings and innate growth rate r . In Equation (1),  is the average saturation rate, which 
indicates the quality of the food that provides prey to predator, 2k  indicates the quality of the 
alternative that provides the environment, s  is the intrinsic growth rate of predator, e  is the 
maximum reduction of prey due to predation and h  measures the ration of prey to support one 
predator. Here the functional response of predator is Holling type II schemes, which usually depicts 
the uptake of substrate by the microorganisms in microbial kinetics [15]. Oftentimes Holling type 
III schemes is used to describe the dynamical behavior of the invertebrate feeding on the prey and 
this functional response of predator has been widely included in mathematic ecological  
models [16–19]. In fact, if the predator is the invertebrate, Holling type III functional response  
can fit better [20]. On the other hand, the effect of a constant proportion of prey refuge on  
predator-prey models has become a pretty hot issue in mathematical ecology in the recent years.  
By investigating the theoretical models, most of theoretical conclusions show that the prey refuge 
has a stabilizing effect on predator-prey systems, but the dynamics of the Kolmogorov type  
model incorporating a constant proportion of prey refuge is qualitatively equivalent to the original 
system [21–26]. Thus, we consider the following system: 
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where ))1,0[(  mm  is a constant and um)1( �  reflects the prey available to the predator, a  is 
the half-saturation constant for the predator and b  indicates the quality of the alternative that 
provides the environment. 

On the other hand, all living beings live in a spatial world, which can cause that the spatial 
component of ecological interactions exhibits ranging from individual behavior to species 
abundance, diversity and population dynamics. Therefore, the spatial factor is one of the most 
important elements in ecosystem. Lately, Camera [27] has specified the spatiotemporal dynamics 
of Equation (1) with diffusion of species. Meanwhile, a large amount of literatures mainly study 
this theme in reaction-diffusion systems since Turing [28] pointed out that this kind of system 
could yield many complex patterns, which are usually consistent with a wide variety of phenomena 
that have been observed in chemistry, physics and biology [29–31]. Thus, Equation (2) with the 
spatial factor can be described as following: 

1k
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where ),( xtu  and ),( xtw  denote the densities of prey and predator at time t  and position x , 
respectively. �  is the Laplacian operator, 1d  and 2d  are the diffusion coefficients of prey  

and predator, and 
n�
�  is differentiation in the direction of the outward unit normal to :� .  

In Equation (3), all the parameters are assumed to be positive. 
The rests of the paper are structured as follows: in Section 2, the existence of the global 

solutions and the population permanence of Equation (3) are proved. In Section 3, the local 
stability of the equilibrium points and the global stability of the interior equilibrium point are 
investigated. Furthermore, the Turing instability and the conditions of its occurrence are analyzed. 
In Section 4, under the condition of Turing instability, numerical simulations are illustrated to show 
how the prey refuge affects spatiotemporal dynamics of Equation (3). In the end, some discussions 
are given. 

2. Existence of Global Solutions and Permanence 

2.1. Existence of Global Solutions 

Theorem 1. For 0)(0 $xu , 0)(0 $xw , there is a unique global solution of Equation (3) such that 
0),( �xtu , 0),( �xtw  for 0�t  and : x . 

Proof: Equation (3) is mixed quasi-monotone since: 
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in }0,0{2 $$�� wuR . 
Consider that )ˆ,ˆ( wu  is the unique solution of: 
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where )(sup 0
* xuu :� , )(sup 0

* xww :� . 
Let )0,0()),(),,(( �xtwxtu  and )ˆ,ˆ()),(),,(( wuxtwxtu � . There exist: 
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Clearly, the boundary conditions are satisfied. Then )),(),,(( xtwxtu  and )),(),,(( xtwxtu  are 
the lower-solution and upper-solution of Equation (3), respectively. Thus, Equation (3) has a 
unique global solution, which can satisfy )(ˆ),(0 tuxtu ## , )(ˆ),(0 twxtw ##  for 0$t . 

2.2. Permanence 

Definition 1. Equation (3) is said to be permanence if for any solution with nonnegative initial 
functions )(0 xu  and )(0 xw )0)(,0)(( 00 ;; xwxu , there exist positive constants im  and iM  (

2,1�i ) such that: 
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Theorem 2. For any solution )),(),,(( xtwxtu of Equation (3): 
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Proof: Suppose that )),(),,(( xtwxtu  is any solution of Equation (3), then there is:  
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Furthermore, it is assumed that )(tU
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Consider that )(tW
�

 is any solution of: 
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Theorem 3. Assume that ))1(()1( 2 mkbkmehr ���� , then:  
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Proof: Assume that ),( wu  is any solution of Equation (3) with 0)(0 $xu and 0)(0 $xw  
)0)(,0)(( 00 ;; xwxu . Meanwhile, there is 0),( $xtu  for all 0$t . Then there is 
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By Theorems 1 and 2, there exists 02 �T  such that: 
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. This completes the proof. 

Remark 1. From Theorem 2 and Theorem 3, it is clear that Equation (3) is permanent. 
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3. Stability Analysis of Equilibrium Points and Turing Instability 

3.1. Stability 

It is clear that Equation (3) has the following equilibrium points: (a) )0,0(0 �E  (total 

extinction), (b) )0,(1 kE �  (extinction of the predator), (c) ),0(2 h
bE �  (extinction of the prey), 

(d) ),( *** wuE �  (coexistence of prey and predator), where ),( ** wu  is the positive solution of 
0),( �9 wu , 0),( �8 wu . 

In order to investigate the linear stability of equilibrium solutions 2,1,0)( �iiE  and *E  of 

Equation (3), we consider the corresponding eigenvalue problem of the linearized operator around 
every equilibrium point. 

Substituting )),(),,((),()),(),,(( 21 xtzxtzExtExtwxtu ��>��  into Equation (3) and picking 
up all the terms which are linear in > , there is: 
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Proposition 1. 0E  is unstable. 

Proof: From above, the linearized result of Equation (3) around 0E  is: 
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then it needs to consider the largest eigenvalue of:  
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Assume that ?  is an eigenvalue of Equation (22) with the eigenfunction ),( 21 zz  and 01 ;z , 
then ?  is an eigenvalue of rd ��1  with homogeneous Neumann boundary condition. 
Furthermore, it follows that ?  must be real. In the same way, ?  is also real provided that 02 ;z . 
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Then all eigenvalues of Equation (22) must be real. Let max? denote the largest eigenvalue. 

Consider the principal eigenvalue ?̂  of: 
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then it shows that its principal eigenvalue ?̂  is positive and the associated eigenfunction 01̂ �z .  

Let us substitute )0,ˆ(),( 121 zzz �  into Equation (22), then it satisfies Equation (22) with ?? ˆ� . 
Thus, it is clear that 0ˆ �?  is an eigenvalue of Equation (22), and there is 0ˆ

max �$ ?? . This exhibits 
that 0E  is unstable. 

Proposition 2. 1E  is unstable. 

Proof: From Equation (20), the linearized result of Equation (3) around 1E  is: 
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As the previous case, all eigenvalues of Equation (25) are real. Assume that max? is the largest 

eigenvalue of Equation (25). Consider the principal eigenvalue ?̂  of: 
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then it shows that its principal eigenvalue ?̂  is positive and the associated eigenfunction 0ˆ2 �z . 
Furthermore, assume that 1̂z  which is positive, is the solution of: 
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then )ˆ,ˆ( 21 zz  satisfies Equation (25) with 0ˆ �� ?? . Thus there is 0ˆ
max �$ ?? . This exhibits that 

1E  is unstable. 
Similarly, it can be concluded that E2 is unstable. 

Proposition 3. Assume that 1
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Furthermore, the linearized result of Equation (3) around *E  is:  

A>��>�
�
>� D
t

 (29)

where ),( 21 dddiagD �  and 

��
�

�
��
�

�
�

�
�
�
�

�

�

�
�
�
�

�

�

�
�

��
�

�
��
�

��
�A

RQ
BA

s
h

ms
uma

ume
uma

wumae
k
ur

)1(
)1(

)1(
))1((

)1(2)21( 2
*

2

2
*

2

22
*

2
**

2
*

 

Let )()(),(
0

xtxtZ i
i

i 9B�
%

�

� , 2)( Rti  B substitute into Equation (29). Equaling the 

coefficient of iC , there is )()( t
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D� , where Dii ?�A�D . Thus, 3E  is locally 

asymptotically stable for Equation (3) if and only if each )(tiB  decays to zero as �%"t . Then, it 
follows that each iD  has two eigenvalues with negative real parts, which are determined by: 
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Since 0$i? , 0@B  and 0�Q , it is clear that 0)( @Ditr  and 0)det( �D i  if 0@A . Taking 
into account the assumption in Theorem, 0@A  holds. This completes the proof. 

For purpose of proving the global stability of *E , let us introduce the following lemmas from [32]. 

Lemma 1. Let c  and d  be positive constants. Assume that ],[, 1 %� ccgf , 0$f and g  is 
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Lemma 2. Consider the following equation: 
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(the total differential of if ) such that H� #: )(,2c
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Assume that ),( wu  is the unique positive solution of Equation (3). By Theorem 1, there is a 
constant I , which does not depend on x  and t , such that I#),( xtu , I#),( xtw  for 0$t . 

By Lemma 2, there exists 0�J  such that:  
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Proof: Consider the Lyapunov function: 
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Then, there is 0@�aN . Clearly, V  is bounded below for all 0�t . The orbital derivative of 
V  along the solutions of Equation (3) is: 
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Using the result of Theorem 2, there exist 01 �E  and 02 �E  such that: 
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Applying Lemma 1, there is: 
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From Equations (39) and (41), it result in:  

*uu " , *ww " , as �%"t  (42)

From Inequality (34), there exists a subsequence of }{ mt  which is also denoted }{ mt , and 
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Combined with (42), we obtain: 
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This above result and the local stability conditions can yield that 2E  is globally asymptotically stable. 

3.2. Turing Instability 

In order to investigate the transition of the equilibrium state, we consider small space- and  
time-dependent perturbations for any solution of Equation (3): 
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where < , �  are small enough, k  is the wave number. Substituting Equation (44) into  
Equation (3), we linearize the system around *E  and further obtain its characteristic equation: 
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where: 
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12
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From Equation (45), the dispersion relation of Equation (3) is: 
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Turing instability requires that the stable interior equilibrium point is driven unstable by the 
local dynamics and diffusion of species. The conditions for the homogeneous state of Equation (2) 
to be stable is 00 @�� RAtr , 00 ���� BQAR . It is clear that 0trtrk @ . Then the stability of the 
homogeneous state simultaneously changes the sign of k� . From Equation (46), it easily finds that 
there is 0@� k  for 2

2
22

1 TT @@ k ,where: 
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If 2
2,1T  have positive values, we can obtain the range of instability for a local stable 

equilibrium, which is called as the Turing space. In order to show the Turing space, the dispersion 
relation is plotted corresponding to several values of the bifurcation parameter m  while in  
Figure 1 the other parameters are fixed as: 

12,25.0,02.0,55.0,75.0,2.0,3.0,5.0,7.1 21 ��������� kddhebasr  (49)

It should be stressed from Figure 1 that the available Turing modes are further reduced when the 
value of prey refuge m  is increasing. Nonetheless, it is interesting to notice that Equation (3) will 
occur the Turing instability when the value of m  less than 2512032.0 . 

Figure 1. Variation of dispersion relation of Equation (3) around the interior equilibrium 
point. The red line corresponds to 08.0�m , the green is 25.0�m  and the blue is 

35.0�m . 

 

4. Turing Pattern Formation 

To better investigate how the prey refuge affects the spatiotemporal dynamics of Equation (3), 
the spatial distribution diagrams are obtained as change of m . All numerical simulations are 
carried out in a discrete two-dimensional domain with 200200F  lattice sites. The step between 
each lattice point is defined as 25.0�U . The time evolution of Equation (3) is resorted to the 
forward Euler integration with a step 01.0�V . The initial value of Equation (3) is placed in the 
stationary state ),( ** wu  and the perturbation for this value is 0005.0  space units per time unit. As 
the initial perturbation propagates, Equation (3) under the condition of Turing instability evolves a 
steady state, which is stationary in time and oscillatory in space. Moreover, it should be stressed 
that the spatial patterns of predator and prey under the condition of Turing instability are always 
the same type, this is because that it is assumed that the carrying capacity of predator is 
proportional to the number of prey, and the steady state of predator is equal to this carrying 
capacity. Thus, only the spatial patterns of prey are shown. 

It is interesting to note from Figure 2 that some snapshots have been taken of numerical 
simulations when the value of m  increases from 0  to 35.0 . It should be pointed out that in these 
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snapshots the enclosed color bars denote the range of the changing densities of prey, where higher 
values correspond to higher prey densities. Figure 1 clearly shows that Equation (3) leads to the 
Turing instability for 2512032.0@m . The snapshots for 0�m , 08.0�m , 15.0�m and 22.0�m  
are chosen to report the spatial (oscillatory) and temporal ( stationary) dynamics of Equation (3) 
around the interior equilibrium point, but the snapshots for 27.0�m and 35.0�m  stand for the 
stable spatiotemporal behavior. By comparing the first four diagrams, it can be observed that the 
spatiotemporal dynamical behaviors of Equation (3) are very rich and complex. When the value of 
m  is 0 , the spatial distribution of prey is mainly some interconnected strips and nonuniform, 
which shows that the habits of prey are the main type of community survival, so it is easy to evade 
predator-capturing. When the values of m  are 08.0  and 15.0 , the collective survival population 
expands gradually and the spatial distribution of prey tends to be uniform. When the value of m  is 

22.0 , the spatial distribution of prey is almost uniform and the prey can survive in any space. On 
the other hand, from Figure 2 the maximum values on color bars exhibit decreasing states as the 
effect of prey refuge is strengthened. Inversely, the interior equilibrium density value of prey will 
increase as the increase of . In order to relieve the crowed space, the competitive pressure 
between individuals of prey is intensified. From the biological point of view, the effect of prey 
refuge may be to help prey relieve the pressure of predation during diffusion. Thus, the patches of 
high density prey diffuse into the low. Finally, the distributions of prey tend to be uniform as the 
effect of prey refuge increases. However, when the value of m  is more than 2512032.0 , the prey 
and the predator will be involved into a stable state, so the prey can live in any space, which can be 
shown in behind two diagrams of Figure 2. These results show that the prey refuge not only 
promotes an increase in the number of prey, but also is conducive to their living space extension. 

For further analysis of the effect of prey refuge on the dynamical behavior of one population, 
the spatiotemporal evolutions of prey have been obtained at 100�x , which correspond to Figure 
2. It should be stressed from Figure 3 that these results are consistent with Figure 2, which show 
the accuracy and effectiveness of numerical simulations. Moreover, the comparison of the first four 
diagrams in Figure 3 suggests that when the value of m  gradually increases and is close to 

2512032.0 , oscillations in space diminish gradually. These results show that a suitable prey refuge 
has a positive effect on predator-prey interactions. It is easy to see that if the effect of prey refuge is 
strengthened in living surroundings, predation risk is relatively reduced in the habitat and 
consequently the density of prey is bound to increase. And the densities of predator and prey will 
obtain the new balance. 

Based on the above analysis, it can be seen that a suitable prey refuge can enhance the specie 
biomass level and promote the uniformness of the population distribution, which agree with some 
results of the real world. Furthermore, it is interesting to point out that the lower value of prey 
refuge can come into rich spatiotemporal dynamics. Moreover, the use of mathematical model with 
a prey refuge and diffusion is considered to explore some biological problems, and the numerical 
simulation can provide an approximation of the real biological behaviors. Hence, these results can 
promote the study of ecological patterns.  

m
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Figure 2. Spatial distributions of prey obtained with Equation (3) for (a) 0�m ,  
(b) 08.0�m , (c) 15.0�m , (d) 22.0�m , (e) 27.0�m , (f) 35.0�m . Other 
parameters are fixed as Equation (49). 
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Figure 3. The spatiotemporal evolutions of prey obtained with Equation (3) at . 
(a) 0�m , (b) 08.0�m , (c) 15.0�m , (d) 22.0�m , (e) 27.0�m , (f) 35.0�m . 
Other parameters are fixed as Equation (49).  

 

 

 

5. Conclusions 

In this paper, a diffusive predator-prey system with Holling type III scheme has been studied 
analytically and numerically. Mathematical theoretical works have considered the existence of 
global solutions and the stability of equilibrium points and population permanence. On the basis of 
these results, we obtain the threshold expressions of some critical parameters which in turn provide 
a theoretical basis for the numerical simulation. Numerical simulations indicate that the prey refuge 
has a strong and positive effect on the spatiotemporal dynamics according to the spatial patterns 
and spatiotemporal evolution of prey. Furthermore, it should be stressed that the spatial pattern 
diagrams show that the prey refuge has a profound effect on predator-prey interactions. Using the 
spatiotemporal evolution of prey, the spatial distribution of prey and the accuracy effectiveness of 
numerical simulation can be further confirmed. All these results are expected to be of significance 
in the exploration of the entropy theory of bioinformatics. 

100�x
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Abstract: Solute transport through homogeneous media has long been assumed to

be scale-independent and can be quantified by the second-order advection-dispersion

equation (ADE). This study, however, observed the opposite in the laboratory, where

transport of CuSO4 through relatively homogeneous silica-sand columns exhibits

sub-diffusion growing with the spatial scale. Only at a very small travel distance

(approximately 10 cm) and a relatively short temporal scale can the transport be

approximated by normal diffusion. This is also the only spatiotemporal scale where

the fundamental concept of the “representative element volume” (which defines the

scale of homogeneous cells used by the ADE-based hydrologic models) is valid.

The failure of the standard ADE motivated us to apply a tempered-stable, fractional

advection-dispersion equation (TS-FADE) to capture the transient anomalous dispersion

with exponentially truncated power-law late-time tails in CuSO4 breakthrough curves.

Results show that the tempering parameter in the TS-FADE model generally decreases

with an increase of the column length (probably due to the higher probability of long

retention processes), while the time index (which is a non-local parameter) remains stable

for the uniformly packed columns. Transport in sand columns filled with relatively
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homogeneous silica sand, therefore, is scale-dependent, and the resultant transient

sub-diffusion can be quantified by the TS-FADE model.

Keywords: fractional dynamics; fractional-derivative models; scale; homogeneous

1. Introduction

Fractional-derivative models have been increasingly used in the last two decades to quantify

anomalous diffusion in disordered systems [1,2]. The entropy theory was also combined with

fractional calculus in analyzing fractional dynamics with a power-law memory [3]. For example,

El-Wakil and Zahran [4] applied the maximum entropy principle to reveal the structure of the

probability distribution function of waiting times underlying the fractional Fokker-Planck equation.

Machado [5] analyzed multi-particle systems with fractional order behavior. Ubriaco [3] applied

Fisher’s information theory based on his new definition of fractional entropy [6] to derive

mathematical models for anomalous diffusion. Machado [7] found a power law evolution of

the system energy and the entropy measures in fractional dynamical systems filled with colliding

particles. Here, we focus on fractional porous media equations, which may also be related to the

entropy solution theory [8].

Porous media focused on by the hydrologic community are known as complex dynamic

systems containing multi-scale heterogeneity, but the application of the fractional engine is

limited [9], due to probably two reasons. First, the second-order advection-dispersion equation

(ADE) is believed by the hydrologic community to be valid. Most hydrologic numerical models

are grid-based, where each grid is homogeneous. Transport within the grid is assumed to

be scale-independent normal diffusion, which can be quantified by the ADE. The available,

detailed subsurface heterogeneity can then be embedded in the model using a combination of

millions of grids. Therefore, although contaminant transport through heterogeneous porous media

from pore to regional scales has been well documented to be non-Fickian (as characterized by

heavy tails in tracer breakthrough curves (BTC) [10,11]), the second-order ADE model with

a certain resolution of velocity remains the routine modeling tool in the field of hydrology.

For readers interested in this topic, we refer to the most recent comments and replies on the feasibility

of the ADE-based models [12–15]. Second, the fractional-derivative models do describe anomalous

diffusion more efficiently than the standard ADE [9], but they also introduce additional parameters

(such as the fractional order), whose linkage with medium properties may remain obscure.

Critical questions however remain for hydrologic numerical models that have been used

for decades. First, does the transport through typical homogeneous porous media remain as

scale-independent normal diffusion? If not, then the classical ADE-based modeling tool is

questionable. This leads to the subsequent question: could the fractional-derivative model be the

appropriate alternative to the ADE for transport in the deceptively simple homogeneous media?

In other words, does the diffusion through homogeneous media exhibit fractional dynamics with
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a power-law memory in either space or time or both? Finally, for practical applications, what are the

main factors affecting the fractional-derivative model parameters? These critical questions motivated

this study.

The rest of the paper is organized as follows. In Section 2, we introduce the systematic laboratory

transport experiments focusing on the dynamics of nonreactive tracers moving through sand columns

of various lengths. Relatively uniform silica sand was used to fill the columns, forming an ideal

porous medium that is much more homogeneous than the natural geological medium. In Section 3,

we quantify the observed dynamics using both the classical ADE and different fractional-derivative

models. The questions raised above are then discussed in Section 4. Finally, conclusions are drawn

in Section 5.

Table 1. Parameters used in the models. R denotes the median grain size. v and

DADE are the velocity and dispersion coefficient used in the advection-dispersion (ADE)

model in Equation (1), respectively. γ is the order of the time fractional derivative in the

fractional-derivative models in Equations (3) and (5). λ is the tempering parameter, r is

the scale factor and DFADE is the dispersion coefficient in the tempered-stable, fractional

advection-dispersion (TS-FADE) model in Equation (5).

Column length R Porosity v DADE γ λ r DFADE

cm mm [-] cm/min cm2/min [-] min−1 minγ−1 cm2/min

10 0.73 0.37 0.91 0.59 0.91 0.12 0.88 0.23

10 0.35 0.38 1.00 0.45 0.91 0.25 0.97 0.25

10 0.21 0.38 0.91 0.82 0.91 0.08 0.88 0.23

20 0.73 0.36 0.87 0.52 0.91 0.09 0.86 0.17

20 0.35 0.36 1.00 0.45 0.91 0.24 0.99 0.20

20 0.21 0.38 0.95 0.56 0.91 0.12 0.94 0.19

40 0.73 0.35 1.11 1.67 0.91 0.04 0.83 0.13

40 0.35 0.35 1.18 0.71 0.91 0.125 0.92 0.18

40 0.21 0.39 1.14 1.03 0.91 0.095 0.89 0.17

2. Laboratory Experiments of Tracer Transport in Sand Columns

2.1. Experimental Setup

We packed glass tubes (with an inner diameter of 25 mm) using silica sand with a relatively

uniform size. The corresponding median grain size packed in each tube was 0.73 mm (i.e., coarse

sand), 0.35 mm (medium sand), and 0.21 mm (fine sand), respectively. The silica sand was soaked

in nitric acid for 24 h, and then washed with tap water and deionized (DI) water. After drying in

an oven, the sand is ready for packing. Finally, the glass columns were packed using the wet sand

loading method (which can minimize the air bubbles [16]), and the resultant porosity was measured
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(Table 1). To test the scale effect, we built sand columns with three different lengths of 10 cm, 20 cm

and 40 cm.

The transport experiment involved three main steps. First, DI water with a pH of 2.0 was run

through the column (oriented vertically) for a period of ten pore volumes, and then, the background

solution (i.e., tap water, in this case) was run through for another five pore volumes to build the flow

domain and remove the background (concentration) effect. The vertical flow is from top to bottom.

A peristaltic pump (BT100-1F, LongerPump) was used to regulate the downward flow at a specific

discharge around ∼1 mL/min. Second, the CuSO4 solution was added into the column continuously

for 40 min at a concentration of 0.5 mmol/L, followed by three pore volumes of water for flushing.

Third, discrete samples were collected from the outlet using a fraction collector (BS-100A, PuYang

Scientific Instrument Research Institute, Nanjing, China).

Figure 1. The CuSO4 breakthrough curves (BTC) along a 10 cm-long sand column:

the measurements (symbols) versus the best-fit solutions using the ADE model in

Equation (1) (grey lines), the time-fractional advection-dispersion equation (tFADE)

model in Equation (3) (the dashed line) and the TS-FADE model in Equation (5) (black

lines). In the legend, “R” denotes the median grain size.
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Finally, we measured the sample concentration by: (1) adding 100 uL nitric acid; (2) diluting the

solution to a volume of 5 mL using DI water; (3) passing the solution through a 0.45 μm moisture

film; (4) measuring the absorbance using an atomic absorption spectrophotometer (Z-2000, Hitachi,

Tokyo, Japan); and (5) converting the absorbance to the concentration.

2.2. Experimental Results

The measured CuSO4 BTCs are shown in Figures 1–3, for the travel distance of 10 cm, 20 cm and

40 cm, respectively. The early time tails of all BTCs (representing the early arrivals of solute) are as

steep as exponential, implying that there is no fast movement along preferential flow paths. This is

expected, since super-diffusive transport typically requires a heterogeneous medium with a hydraulic

conductivity field exhibiting large correlation length and variance [9]. The late-time tails of BTCs,

however, become relatively heavier with an increase of the travel distance. In the next section, we

conduct numerical analysis to reveal whether the observed transport is actually scale-dependent.

Figure 2. The CuSO4 BTC along a 20 cm-long sand column: the measurements

(symbols) versus the best-fit solutions using the ADE model in Equation (1) (grey lines),

the tFADE model in Equation (3) [the dashed lines in (a) and (d)] and the TS-FADE

model in Equation (5) (black lines).
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Figure 3. The CuSO4 BTC along a 40 cm-long sand column: the measurements

(symbols) versus the best-fit solutions using the ADE model in Equation (1) (grey lines),

the tFADE model in Equation (3) (the dashed lines in (a) and (d)) and the TS-FADE

model in Equation (5) (black lines).
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3. Quantifying the Observed Transport

We first apply the local transport model (i.e., the standard ADE model) to simulate the observed

CuSO4 BTCs. If the ADE fails, we will then apply the non-local transport models (i.e., the

fractional-derivative models) and compare them with the ADE model.

3.1. The ADE Model

The second-order ADE model takes the form:

∂C(x, t)

∂t
= −v∂C(x, t)

∂x
+DADE

∂2C(x, t)

∂x2
+ s(x, t) (1)
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where C [ML−3] is the solute concentration, v [LT−1] is the mean flow velocity, DADE [LT−2] is the

macroscopic dispersion coefficient used by the ADE model (which is not necessarily the same as the

other dispersion coefficients used below) and s [ML−3T−1] is the source/sink term.

The ADE in Equation (1) can be solved analytically [17]. Here, we also apply the well-known

Lagrangian solver (see [18,19], among many others) to solve Equation (1). The Lagrangian solver

is selected here, since it can be extended conveniently to approximate all the fractional-derivative

models used below. The space and time Markov processes underlying in Equation (1) are:

Xi+1 = Xi + v dti + ω
√
2DADE dti (2a)

Ti+1 = Ti + dti (2b)

where Xi [L] denotes the particle position at time Ti, dti [T ] is the operational time used by the

i-th jump and ω (dimensionless) is a normally distributed random variable with zero mean and unit

variance. Here, the physical/clock time increases linearly with the operational time.

The above Lagrangian scheme was validated extensively against analytical solutions (for

simplicity, they are not shown here). Solutions of the ADE model in Equation (1) fit generally well

with the measured BTCs for the shortest sand column (Figure 1), but underestimate significantly the

late-time tail of the other BTCs (Figures 2 and 3).

3.2. The Time-Fractional Advection-Dispersion Equation (tFADE) Model

The time-fractional advection-dispersion equation model can capture the heavy tail of tracer

BTCs [9], since it describes the heavy tailed memory in time. Using the subordination tool [20],

the time-fractional advection-dispersion equation (tFADE) model can be written as [21]:

∂C(x, t)

∂t
= − ∂1−γ

∂t1−γ

[
v

r

∂C(x, t)

∂x
+

DFADE

r

∂2C(x, t)

∂x2

]
+ s(x, t) (3)

where the fractional time derivative of the order of γ (0 < γ < 1) (dimensionless) (i.e., the scale

index) and the scale factor, r [tγ−1], describe an inverse stable distribution of clock times between

jump events. Here, the dispersion coefficient, DFADE, can be different from (i.e., smaller than) DADE

in Equation (1), since the tFADE model in Equation (3) accounts for the variation of transport velocity

using the fractional-time derivative. The Caputo fractional derivative for time is used in this study.

Similar to Equation (2), the Lagrangian solver for the tFADE model in Equation (3) contains the

following two Markov processes, after using the extended Langevin approach [22]:

Xi+1 = Xi + (v/r) dti + ω
√
2(DFADE/r) dti (4a)

Ti+1 = Ti +
[
cos
(πγ

2

)
dti

]1/γ
dLγ(β = +1, σ = 1, μ = 0) (4b)

where dLγ (dimensionless) represents a stable random variable with the maximum skewness

(β = +1), unit scale (σ = 1) and zero mean shift (μ = 0). Note that the operational time, dti,

is now different from the clock time.
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The above Lagrangian solver in Equation (4) is validated, with several examples shown in

Figure 4, where the Lagrangian solutions generally match the fast Fourier transform solutions (see,

also [20]) of Equation (3).

Further applications, however, show that, as opposed to the ADE model in Equation (1),

the tFADE model in Equation (3) overestimates significantly the late-time tail of the BTCs (see

Figures 1a, 2a and 3a). The tFADE model assumes a power-law distribution for the particle clock

time, which leads to a late-time BTC tail heavier than the measurement.

Figure 4. The Lagrangian solutions (symbols, denoted as “RW” (representing Random

Walk) in the legend) of the tFADE model in Equation (3) versus the the fast Fourier

transform (FFT) solutions (lines). (b) is the log-log plot of (a). An instantaneous point

source is injected at x = 0. The velocity v = 1, dispersion coefficient D = 0 and the

control plane is located at x = 10. In the legend, CR denotes the resident concentration

and CF denotes the flux concentration [23].
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3.3. The Tempered-Stable, Fractional Advection-Dispersion Equation (TS-FADE) Model

Truncated stable Lévy flights were first proposed by Mantegna and Stanley [24] to

censor arbitrarily large jumps and capture the natural cutoff present in real physical systems.

Exponentially-tempered stable processes were proposed by various researchers [25–28] as a

smoother alternative, without a sharp cutoff. The tempered stable density may describe the

distribution of the random clock time between jump events.

To capture the truncated power-law decline of the late-time BTC, we apply the following

tempered-stable, fractional advection-dispersion equation (TS-FADE):

∂C(x, t)

∂t
= − ∂1−γ,λ

∂t1−γ,λ

[
v

r

∂C(x, t)

∂x
+

DFADE

r

∂2C(x, t)

∂x2

]
+ s(x, t) (5)

where λ [T−1] is the tempering parameter. The operator, ∂γ,λ/∂tγ,λ, denotes [29]:

∂γ,λ F (t)

∂tγ,λ
= e−λt ∂

γ[eλt F (t)]

∂tγ
− λγF (t) (6)

The Lagrangian solver developed for the tFADE model in Equation (3) can be used for the

TS-FADE model in Equation (5), where the only change is the stable random variable, dLγ , in

Equation (4) replaced by a tempered stable random variable, dLγ,λ.
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Applications show that the TS-FADE model in Equation (5) can capture the observed BTCs for all

cases (Figures 1–3). The best-fit model parameters are shown in Table 1. The linear-linear scale of

Figures 1–3 shows that some solutions of the ADE model in Equation (1) are almost identical to

those of the TS-FADE in Equation (5), while the discrepancy in the simulated BTC tails between the

two models is amplified by the logarithmic scale. This is not a surprise, given that the mass in the

late-time BTC tail (such as Figure 2a) represents only a small fraction (0.78%) of the total mass.

In the next section, we discuss the possible underlying mechanism and the main controlling

factors for the observed transport dynamics.

4. Discussion

4.1. Short-Duration of Normal Diffusion in Relatively Homogeneous Porous Media

The above laboratory and numerical tests reveal that normal diffusion may only exist for a short

travel distance (i.e., ∼10 cm) in the relatively homogeneous sand columns. The short-duration of

normal diffusion may be due to two reasons. First, there may be small-scale variations in the packing

of the sands, which leads to micro-structure (such as aggregates) in the macroscopic homogeneous

medium. The silica sand used in our experiments is not perfectly uniform, but has a relatively narrow

size distribution, which also helps to build internal structures. Solute particles diffusing into the

sand matrix or a dead-end water zone may be delayed and, therefore, build the late-time tail of the

BTC. If the transport is a non-dissipative process, the microscopic scale heterogeneity may control

the macroscopic dynamics [30]. With an increase of the spatial scale, more (and perhaps larger)

aggregates may be formed, and the solute transport is delayed further, resulting in scale-dependent

sub-diffusion. It is well-known that the solute particle jumps can be regarded as instantaneous [1],

and hence, the clock time [expressed, for example, by Equation (4b)] between jump events represents

the random waiting time for random-walking particles. At a small scale in both space and time,

most particles have not experienced large retention periods yet, and the transport exhibits initial

behavior similar to normal diffusion. Normal diffusion, therefore, may only be an approximation of

real-world anomalous diffusion at a small spatiotemporal scale where the anomaly has not apparently

developed yet.

Another explanation is the fractal geometry of silica sand (see, for example, [31,32], among

others), which tends to generate anomalous diffusion. This explanation, however, is difficult to

validate directly. Some researchers also argued that the fractal properties of soil might not be so

obvious [30]. The qualitative link between fractal properties of sand (such as texture and surface

area) and fractional dynamics remains to be shown [33]. In addition, a recent study [34] found that

uniform glass beads (which may contain aggregates or relatively immobile flow zones when they are

packed in glass tubes) without any multi-fractality can also lead to sub-diffusion.

It is noteworthy that the limited duration of normal diffusion may be even shorter in natural

geological formations with intrinsic multi-scale heterogeneity. Mixing and structured sands in

the field can enhance (i.e., super-diffusion) or decelerate (i.e., sub-diffusion) the motion of solute

particles, which can appear much earlier than those in the laboratory sand columns.
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The short-duration of normal diffusion challenges the ADE-based hydrologic modeling, with one

example discussed blow.

4.2. Challenge on the Definition of the Representative Element Volume

The scale-limited normal diffusion constrains seriously the size of the representative elementary

volume (REV) [35]. The conventional local ADE is believed to be applicable at the scale of REV,

so that the heterogeneity of a large-scale medium must be adequately represented at the REV scale.

For a regional scale (i.e., kilometers) model, the size of each homogeneous cell is usually larger than

one meter, which is at least one order of magnitude larger than the valid scale of normal diffusion

revealed by this study. A finer resolution with a small REV, however, can lead to a prohibitive

computational burden.

Several recent studies also identified a very small REV or even could not find the scale for REV.

For example, Yoon and McKenna [36] found that the REV may exist at the length of 0.25 cm,

while local-heterogeneity features below the REV should still be quantified in numerical modeling.

Klise et al. [37] conducted an unprecedented laboratory experiment by taking a thin slab of Massillon

sandstone and exhaustively sampling the permeability (k) via air permeability sampling. The

30.5× 30.5 × 2.1 cm slab was measured for k every 0.33 cm, yielding 17,328 measurements. Each

sample support volume was on the order of 0.45 cm3. The finely discretized ADE, however, could

not capture the observed early or late time tails of the tracer BTC [37]. Major et al. [38] further found

that sub-grid dispersion (below the support volume) is non-Fickian, and the non-local transport model

is needed to capture the observed transport.

4.3. Fractional Dynamics for Tracer Transport in Relatively Homogeneous Sand Columns

The underlying dynamics for tracer transport in relatively homogeneous sand columns is transient

sub-diffusion, due to probably the physical and chemical properties in the transport process. The

finite retention capacity of sand matrix, probably due to the limited thickness of matrix and the

non-negligible diffusive displacement of solute [39], acts as an upper bound for tracer particle waiting

times. This is similar to what we observed in solute retention in alluvial aquifers [39]. Fractional

dynamics in porous media therefore may depend on both the physical properties of the media and the

chemical properties of the tracer.

The waiting time for solute particles between jump events exhibits multi-fractal scaling, which

evolves in space. Numerical fitting in Section 3.3 shows that the particle waiting time distribution at a

given spatial scale is a power-law function transferring gradually to become exponential. According

to [40], multi-fractality can arise from a linear, additive process, whose increments have power-law

tails with a variable truncation. Note that, here, the multi-fractal waiting times also grow in space,

since the tempering parameter, λ (which defines the rate of exponential tempering of the power-law

tail), changes with the travel distance.
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4.4. Factors Affecting Sub-Diffusion in Relatively Homogeneous Sand Columns

In our experiments, the spatial scale affects the tempering parameter, λ, but the time fractional

order, γ (which is also the BTC or waiting-time tail index), remains stable in these uniformly packed

sand columns. For a given tracer, the index, γ, is a non-local parameter characterizing the overall

retention capacity of the medium. In general, a stationary medium with strong immobile regions may

be characterized by a small, constant γ [9]. The tempering parameter, λ, on the other hand, records

the extreme retention event, which, therefore, may change with the local variation of immobile

zone properties.

In addition, the sand size also significantly affects the tailing behavior of transport, which can also

be captured by adjusting the tempering parameter in the TS-FADE model in Equation (5). For coarse

and medium sand, λ decreases with an increase of the travel distance (see Table 1). For fine sand,

however, λ fluctuates with the spatial scale, where the relative amplitude of fluctuation is smaller

than that for the coarser sand. The discrepancy might imply that the immobile zones formed by fine

sand have relatively less variability (such as properties of segregates) than that for coarser sands. This

hypothesis needs further experimental and numerical tests in a future study.

It is noteworthy that, for a short travel distance in relatively homogeneous media, the parameters

in the TS-FADE model in Equation (5) may not be unique when fitting the measured BTC. This is

because the late-time tailing of transport cannot fully develop in a limited time; see, for example,

Figure 1c. Even if the observation time is long enough to capture the full range behavior of late-time

tailing, the measured BTC may still remain incomplete, due to the concentration detection limit of

tracers. Caution is therefore needed when quantifying a small-scale transport using the TS-FADE

model in Equation (5).

4.5. Possible Influence of the Small Diameter of the Sand Columns on Anomalous Diffusion

The repacked sand columns in this study have a relatively small diameter (25 mm), which may

affect solute transport in three ways. First, a narrower column may force sand to be packed tightly,

resulting in more dead zones for flow that can enhance the trapping of solutes. Second, solute

particles may be trapped between the narrow glass tube and the filled sands, and solutes may also

sorb on to the glass tube. Third, a narrower sand column provides less spatial inter-connectivity that

is necessary for super-diffusion. The first two impacts tend to enhance sub-diffusion, while the last

one may constrain the generation of super-diffusion.

Further analysis, however, shows that the above possible impacts might be minimized in this

study. For example, for a short column (Figure 1), the classical ADE model captures the observed

BTCs, showing that the narrow sand column with a short length does not necessarily cause

sub-diffusion. In addition, although none of the observed BTCs exhibit heavy early-time tails (the

BTC with a power-law early-time tail is one of the typical characteristics of super-diffusion), this

does not mean that the sand column with a small diameter must constrain super-diffusion. Previous

studies, such as Herrick et al. [41] and Kohlbecker et al. [42], showed that the heavy-tailed and

long-range-dependent hydraulic conductivity (K) field is needed to generate heavy-tailed solute
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displacement. In this study, the repacked silica-sand columns do not contain such a heterogeneous K

field. Indeed, to the best of our knowledge, no previous studies showed that the column experiments

packed with relatively homogeneous sand can build heavy-tailed super-diffusive transport. Therefore,

the small diameter of the sand columns may have limited impact on the anomalous transport

observed in this study. We will check this hypothesis in a future study, by using glass tubes with

various inner diameters. Additional factors, such as variable-density flow and undisturbed soils may

also be considered to explore the possible influence of the lateral dimension of sand columns on

tracer transport.

It is also noteworthy that glass tubes with a centimeter-scale inner diameter have also been used to

study various aspects of transport, especially in the last two years. For example, Ngueleu et al. [43]

used a glass column with an inner diameter of 24 mm (and a length of 150 mm) to minimize the

sorption of lindane onto the equipment. Sagee et al. [44] conducted column experiments for silver

nanoparticle transport in closed, cylindrical columns with an inner diameter of 31 mm (and a length

of 100 mm). Gouet-Kaplan et al. [45] packed sands in an acrylic vertical column with an internal

diameter of 30 mm (to a height of 150 mm) to study the mixture of water. Zhang et al. [34] measured

bromide transport through a horizontal glass tube with internal dimensions of 15.9 mm (diameter)

(and 150 mm in length). Historic and well-known column experiments also used columns with

similar sizes. For example, Gramling et al. [46] monitored bimolecular reactions through a thin glass

chamber with the smallest thickness being 18 mm. Raje and Kapoor [47] measured reactive kinetics

across a glass column with a diameter of 45 mm (and a length of 180 mm). We also emphasize that

the focus of the above column experiments differs from this study.

4.6. Reason to Select the Fractional Models with Temporal Derivatives

The introduction of the time-fractional derivative in Equations (3) and (5) is motivated by the

observed late time tailing of BTCs. Other time-nonlocal transport models can also capture the

delayed transport, including the well-known multi-rate mass transport (MRMT) model [48] and

the continuous time random walk (CTRW) framework [10], which have been used widely by the

hydrologic community. The time-fractional derivative models in Equations (3) and (5), which can

describe the time nonlocal transport processes, such as sub-diffusion, are specific and simplified

MRMT models with power-law distributed mass exchange rates. Model in Equation (5) may also

be functionally equivalent to the CTRW framework with a truncated power-law memory function

in Equation [10], and model in Equation (5) requires fewer parameters (e.g., only the tempering

parameter, λ) to capture the nuance of an exponentially truncated power-law tail in the BTC.

Discrepancy between fractional models and the other time-nonlocal models is not the main focus

of this study. We leave this discussion for future work.

The transport process observed in this study is not super-diffusive, but sub-diffusive, since the late

time tailing of BTC suggests a retardation process (a typical behavior of sub-diffusion), and there is

no sign of fast displacement for CuSO4. This process might not be related obviously to the small

diameter of the sand columns, since the sand column with a much larger diameter (i.e., 300 mm)
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can also lead to sub-diffusion (see, for example, [49]), and the above discussion implies the minimal

impact of column diameter on transport.

It is noteworthy that we did not use the fractional models with spatial derivatives, since

they describe processes different from our observations. Particularly, the space fractional

advection-dispersion equation with maximally positive skewness captures super-diffusion with heavy

power-law early-time tails in BTCs [9], which is not observed in our column experiments. The

space fractional advection-dispersion equation with maximally negative skewness does capture

sub-diffusion, but the solute particles must travel backward and reach the upstream boundary [9].

This power-law backward movement is not apparent, if not impossible, in our laboratory tests.

5. Conclusions

This study evaluates the dynamics of nonreactive tracer transport in relatively homogeneous

media. The fundamental assumption in typical hydrologic models is that normal diffusion in

homogeneous cells is scale-independent. To check this assumption, we conducted laboratory

transport experiments and explored whether the dynamics of CuSO4 transport through silica sand

columns varies with the travel distance. The measured BTCs were then interpreted using both the

standard ADE model and the fractional-derivative models. The combined study of laboratory tests

and stochastic analysis leads to the following three major conclusions.

(1) Normal diffusion and the representative element volume are only valid at small scales.

(2) The TS-FADE model can capture the scale-dependent sub-diffusive transport through

relatively homogeneous media.

(3) The tempering parameter in the TS-FADE model generally decreases with an increase of the

column length (due probably to the higher probability of long retention precesses), while the time

index (which is a non-local parameter) remains stable.
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of a spherical inclusion  and a matrix  being in perfect 
thermal contact at  is considered. The heat conduction in each region is 
described by the time-fractional heat conduction equation with the Caputo derivative of 
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1. Introduction 

The standard heat conduction (diffusion) equation for temperature T 

 (1)

is obtained from the balance equation for energy 

 (2)
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where � is the mass density, C is the specific heat capacity, q is the heat flux vector, and the 
classical Fourier law which states the linear dependence between the heat flux vector q and the 
temperature gradient 

 (3)

with k being the thermal conductivity. In the heat conduction Equation (1) is the heat 
diffusivity coefficient.  

To describe heat conduction in media with complex internal structure, the standard parabolic 
Equation (1) is no longer accurate enough. In nonclassical theories, the Fourier law Equation (3) 
and the parabolic heat conduction Equation (1) are replaced by more general equations (see [1–6]). 
The time-nonlocal dependence between the heat flux vector q and the temperature gradient [7,8]  

 (4)

results in the heat conduction with memory [7,8] 

 (5)

Several particular cases of choice of the memory kernel were analyzed in [9–12]. The 
time-nonlocal dependence between the heat flux vector q and the temperature gradient with the 
long-tail power kernel [9–12]  

 (6)

 (7)

where � is the gamma function, can be interpreted in terms of fractional calculus: 

 (8)

 (9)

where  and  are the Riemann–Liouville fractional integral and derivative of the order 
 respectively [13–16]: 

 (10)

 (11)

The balance Equation (2) and the constitutive Equations (8) and (9) yield the  
time-fractional equation  
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 (12)

with the Caputo fractional derivative 

 (13)

The details of obtaining the time-fractional heat conduction Equation (12) from the balance 
Equation (2) and the constitutive Equations (8) and (9) can be found in [17]. 

Equations with fractional derivatives, in particular the time-fractional heat conduction equation 
(diffusion-wave equation), describe many important physical phenomena in different media  
(see [9,18–32], among many others). Fractional calculus plays a significant part in studies of 
entropy [33–38]. It should be noted that entropy is also used in analysis of anomalous diffusion 
processes and fractional diffusion equation [39–45]. 

Different kinds of boundary conditions for Equation (12) in a bounded domain were analyzed  
in [46,47]. It should be emphasized that due to the generalized constitutive equations for the heat 
flux (8) and (9) the boundary conditions for the time-fractional heat conduction equation have their 
traits in comparison with those for the standard heat conduction equation. The Dirichlet boundary 
condition specifies the temperature over the surface of a body 

 (14)

For time-fractional heat conduction Equation (12) two types of Neumann boundary condition 
can be considered: the mathematical condition with the prescribed boundary value of the normal 
derivative of temperature 

 (15)

and the physical condition with the prescribed boundary value of the heat flux 

 (16)

 (17)

Here is the outer unit normal the boundary surface. Similarly, the mathematical Robin boundary 
condition is a specification of a linear combination of the values of temperature and the values of 
its normal derivative at the boundary of the domain 

 (18)

with some nonzero constants and , while the physical Robin boundary condition specifies a 
linear combination of the values of temperature and the values of the heat flux at the boundary of 
the domain. For example, the Newton condition of convective heat exchange between a body and 
the environment with the temperature  
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 (19)

where h is the convective heat transfer coefficient, leads to 

 (20)

 (21)

If the surfaces of two solids are in perfect thermal contact, the temperatures on the contact surface 
and the heat fluxes through the contact surface are the same for both solids, and the boundary 
conditions of the fourth kind are obtained: 

 (22)

 (23)

where subscripts 1 and 2 refer to the first and second solid, respectively, and  is the common 
unit normal at the contact surface. In fractional calculus, where integrals and derivatives of 
arbitrary (not only integer) order are considered, there is no sharp boundary between integration 
and differentiation. For this reason, some authors [15,25] do not use a separate notation for the 
fractional integral . The fractional integral of the order  is denoted as . In 
the equation of perfect thermal contact (23)  and  are 
understood in this sense.  

Starting from the pioneering papers [48–52], considerable interest has been shown in solutions 
to time-fractional heat conduction equation. In the literature, there are only a few papers in which 
the fractional heat conduction equation (fractional diffusion-wave equation) is studied in composite 
medium [47,53,54]. In the present paper, the problem of fractional heat conduction in a composite 
medium consisting of a spherical inclusion  and a matrix  being in perfect 
thermal contact at  is considered. The heat conduction in each region is described by the 
time-fractional heat conduction equation with the Caputo derivative of fractional order 

 and  respectively.   

2. Statement of the Problem 

Consider the time-fractional heat conduction equations in a spherical inclusion 
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and in a matrix 

 (25)
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 (26)

 (27)

 (28)

 (29)

and the boundary condition of perfect thermal contact  

 (30)

 (31)

The boundedness condition at the origin and the zero condition at infinity are also assumed:  

 (32)

The limitations on  and  in Equations (26–29) express the fact that if  or 
then the additional condition on the first time derivative should be also imposed. 

In what follows we restrict ourselves to the particular case when a sphere  is at initial 
uniform temperature  and the matrix  is at initial zero temperature  

 (33)

 (34)

 (35)

 (36)

The Laplace transform with respect to time  applied to Equations (24) and (25) leads to two 
ordinary differential equations 

 (37)

 (38)

having the solutions 

 (39)

 (40)

It follows from conditions at the origin and at infinity Equation (32) that 
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 (41)

The integration constants  and  are obtained from the perfect thermal contact boundary 
conditions Equations (30) and (31)  

Hence, the solution is written as 

 (44)

Now we will investigate the approximate solution of the considered problem for small values of 
time. In the case of classical heat conduction this method was described in [55,56]. Based on 
Tauberian theorems for the Laplace transform (see, for example [57]), for small values of time  
(the large values of the transform variable ) we can neglect the exponential term in comparison 
with 1, 

 (46)

thus obtaining 

 (47)
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 (48)

In the following particular cases   the 
denominator in Equations (47) and (48) can be treated as a cubic equation and the decomposition 
into the sum of partial fractions can be obtained similar to that used in [58].  

Now we will consider another particular case when  
To invert the Laplace transform the following formula will be used [14–16] 

 (49)

where  is the generalized Mittag-Leffler function in two parameters 

 (50)

Additionally [51,52,59–61] 

 (51)

 (52)

 (53)

Here  is the Wright function [1,51,52,62] 

 (54)

whereas  is the Mainardi function [15,51,52] 

 (55)

From Equations (47) and (48) we get: 

 

 

(56)

	 

	 


.

11

exp1

exp

2
2

1
1

22
02

2

0*
2

Y
Y
�

�

Z
Z
�

�

�
�
�

�
�
�
�

�
���

�
�

�
�
�
�

�
�

Y
Y
�

�

Z
Z
�

�
���

�
�

�
�
�
�

�
�

�
Y
Y
�

�

Z
Z
�

�
��2

�

a
sRk

a
sRskrs

Rr
a
s

a
sRRTk

Rr
a
s

rs
RTT

N�
�N

NN

N

;3/4,3/2 �� N� ;2,1 �� N� 1,2 �� N�

.N� �

	 
 ,,
11 �

N�
N

�

N�

ctEt
cs

sL ��
\
]
^

5
6
7

�
�

�
�

	 
zE N� ,

	 
 	 
 .,0,0,
0

, Cz
k
zzE

k

k

 ��
�X

� �
%

�

N�
N�N�

	 
� � 	 
 ,0,10,;exp 1
1 �@@�� �

�
� ?_?__?? _

_
_ tM

t
sL

	 
� � 	 
 ,0,10,;1exp11 �@@�� ��� ?_?_? _
_

__ tM
t

ssL

	 
� � 	 
 .0,10,;,exp 11 �@@���� ���� ?_?N_? _N_N tWtssL

	 
zW ;,N_

	 
 	 
 ,,1,
!

;,
0

Cz
kk

zzW
k

k
 ��

�X
� �

%

�

_
N_

N_

	 
zM ;_

	 
 	 
 	 

	 
 .,10,

1!
1;1,;

0
Cz

kk
zzWzM

k

kk

 @@
���X

�
����� �

%

�

_
__

___

	 
 	 
 Y
Y
�

�

Z
Z
�

�

�
�
�

�
�
�
�

� �
����

�
�

�
�
�
�

� �
��

�
�2

2/
1

2/
112

20
01 ;1,

2
;1,

2
,

��

��
ta

rRW
ta

rRW
rkk

kRT
TtrT

	 
 	 
� � ,;
2

;
2

2/
2/,2/2/

1
2/

10
2/

12/
0 ��

�
�

�
�

�
� �

�����

�

dtbE
a

rRM
a

rRMt
r

CRT t

��
Y
Y
�

�

Z
Z
�

�

�
�
�

�
�
�
�

� �
��
�
�

�
�
�
�

� ��
� K

�



224 

 

 

 

(57)

where  

 (58)

It should be emphasized that the solution is expressed in terms of the Mainardi function 
 and the Wright function . The limitation  in Equations (51–

53) means that  in Equations (56) and (57).  

4. Conclusions 

We have obtained the approximate solution to the time-fractional heat conduction equations in a 
composite body consisting of a matrix and spherical inclusion with different thermophysical 
properties. The conditions of perfect thermal contact have been assumed: the temperatures at the 
boundary surface are equal and the heat fluxes through the contact surface are the same. The 
Laplace integral transform allows us to obtain the ordinary differential equations for temperatures. 
Inversion of the Laplace transform has been carried out analytically for small values of time. 
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Abstract: In this paper, we investigate adaptive switched generalized function projective

synchronization between two new different hyperchaotic systems with unknown param-

eters, which is an extension of the switched modified function projective synchronization

scheme. Based on the Lyapunov stability theory, corresponding adaptive controllers

with appropriate parameter update laws are constructed to achieve adaptive switched

generalized function projective synchronization between two different hyperchaotic

systems. A numerical simulation is conducted to illustrate the validity and feasibility

of the proposed synchronization scheme.

Keywords: generalized function projective synchronization; switched state; hyper-

chaotic system; stability

1. Introduction

Hyperchaos, which was first introduced by Rössler [1], is usually characterized as a chaotic

attractor with more than one positive Lyapunov exponent. The degree of chaos of a system
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can be measured by a generalization of the concept of entropy for state space dynamics [2,3].

It is a highly desired property to ensure security in a chaos encryption scheme that the larger

the entropy, the larger the unpredictability of the system [4]. After the hyperchaotic Rössler

system, many other hyperchaotic systems have been reported, including the hyperchaotic Lorenz

system [5], hyperchaotic Chen system [6], hyperchaotic Lü system [7]. In [8], the positive topological

entropy was calculated, which indicated that the system from two coupled Wien-bridge oscillators

was hyperchaotic.

Since the concept of synchronizing two identical chaotic systems from different initial conditions

was introduced by Pecora and Carroll in 1990 [9], synchronization in chaotic systems has been

extensively investigated over the last two decades. Many synchronization schemes have been

proposed, which include complete synchronization [10,11], lag synchronization [12], generalized

synchronization [13], phase synchronization [14], anti-synchronization [15,16], partial synchro-

nization [17,18], Q-S synchronization [19,20], projective synchronization [21–32], anticipating

synchronization [33], inverse lag synchronization [34] and inverse π-lag synchronization [35,36].

Among the above-mentioned synchronization phenomena, projective synchronization has been

investigated with increasing interest in recent years due to the fact that it can obtain faster

communication with its proportional feature [23–26]. The concept of projective synchronization was

first introduced by Mainieri and Rehacek in 1999 [27], in which the drive and response systems could

be synchronized up to a constant scaling factor. Later on, Li [28] proposed a new synchronization

scheme called modified projective synchronization (MPS), where the drive and response dynamical

states synchronize up to a constant scaling matrix. Afterwards, Chen et al. [29] extended the

modified projective synchronization and proposed function projective synchronization (FPS), where

the drive and response dynamical states synchronize up to a scaling function matrix, but not a

constant one. Recently, Du et al. [30] discussed a new type of synchronization phenomenon,

modified function projective synchronization (MFPS), in which the drive and response systems could

be synchronized up to a desired scaling function matrix. Many of these synchronization schemes

have been applied to investigate chaotic or fractional chaotic systems [37–44]. More recently,

Yu and Li [31] have proposed a new synchronization scheme by choosing a more generalized

scaling function matrix, called generalized function projective synchronization (GFPS), which is

an extension of all the aforementioned projective synchronization schemes. Lately, Sudheer and

Sabir [32] reported switched modified function projective synchronization (SMFPS) in hyperchaotic

Qi system using adaptive control method, in which a state variable of the drive system synchronize

with a different state variable of the response system up to a desired scaling function matrix.

Inspired by the previous works, in this paper, we propose the switched generalized function

projective synchronization (SGFPS) between two different hyperchaotic systems using adaptive

control method by extending the GFPS and SMFPS schemes, in which a state variable of the drive

system synchronizes with a different state variable of the response system up to a more generalized

scaling function matrix. Due to the unpredictability of the switched states and scaling function

matrix, this synchronization scheme can provide additional security in secure communication.
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The rest of this paper is organized as follows. Section 2 gives a brief description of the SGFPS

scheme and two new hyperchaotic systems. In Section 3, we propose appropriate adaptive controllers

and parameter update laws for the adaptive switched generalized function projective synchronization

of two different hyperchaotic systems. Section 4 presents a numerical example to illustrate the

effectiveness of the proposed method. Finally, conclusions are given in Section 5.

2. Description of the Switched Generalized Function Projective Synchronization and Two New
Hyperchaotic Systems

Consider the following drive and response systems:{
ẋ = f(x)

ẏ = g(y) + u(t, x, y)
(1)

where x, y ∈ Rn are the state vectors, f(x), g(x) : Rn → Rn are differentiable vector functions, and

u(t, x, y) is the controller vector to be designed.

The error states between the drive and response systems are defined as

ei = yi − φi(x)xj, (i, j = 1, 2, ..., n, i �= j) (2)

where φi(x) : R
n → R(i = 1, 2, ..., n) are scaling function factors, and are continuous differentiable

bounded , which compose the scaling function matrix φ(x), φ(x) = diag{φ1(x), φ2(x), ..., φn(x)}.
Definition 1. For the two systems described in Equation (1), we say that they are switched

generalized function projective synchronous with respect to the scaling function matrix φ(x) if there

exists a controller vector u(t, x, y) such that

lim
t→∞

‖ei‖ = lim
t→∞

‖yi − φi(x)xj‖ = 0, (i, j = 1, 2, ..., n, i �= j) (3)

which implies that the error dynamic system (2) between the drive and response systems is globally

asymptotically stable.

Remark 1. For the SGFPS, we define i �= j in the above Equation (3). If i = j, the SGFPS

degenerates to the GFPS [25].

Recently, Li et al. [45] proposed a new hyperchaotic Lorenz-type system described by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ = a(y − x)

ẏ = bx− xz − cy + w

ż = xy − dz

ẇ = −ky − rw

(4)

where a, b, c, d, k and r are positive constant system parameters. When a = 12, b = 23, c = 1,

d = 2.1, k = 6 and r = 0.2, and with the initial condition [1, 2, 3, 4]T , system (4) is hyperchaotic and

its attractor is shown in Figure 1.

Lately, Dadras et al. [46] reported the following four-wing hyperchaotic system, which has only

one unstable equilibrium
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ = ax− yz + w

ẏ = xz − by

ż = xy − cz + xw

ẇ = −y

(5)

where a, b and c are positive constant system parameters. When a = 8, b = 40 and r = 14.9, and with

the initial condition [10, 1, 10, 1]T , system (5) is hyperchaotic and its attractor is shown in Figure 2.

Figure 1. Hyperchaotic attractor of system (4) with a = 12, b = 23, c = 1, d = 2.1, k =

6 and r = 0.2: (a) x− y − z space; (b) x− y plane; (c) x− z plane; (d) x− w plane.
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Figure 2. Hyperchaotic attractor of system (5) with a = 8, b = 40 and r = 14.9:

(a) x− y − z space; (b) x− y plane; (c) x− z plane; (d) y − w plane.
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For more information on the dynamical behaviors of these two systems, please refer to [45,46].
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3. Switched Generalized Function Projective Synchronization between Two Hyperchaotic
Systems

In this section, we investigate the adaptive SGFPS between systems (4) and (5) with fully

unknown parameters.

Suppose that system (4) is the drive system whose four variables are denoted by subscript 1 and

system (5) is the response system whose variables are denoted by subscript 2. Then the drive and

response systems are described by the following equations, respectively,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ1 = a1(y1 − x1)

ẏ1 = b1x1 − x1z1 − c1y1 + w1

ż1 = x1y1 − d1z1

ẇ1 = −k1y1 − r1w1

(6)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ2 = a2x2 − y2z2 + w2 + u1

ẏ2 = x2z2 − b2y2 + u2

ż2 = x2y2 − c2z2 + x2w2 + u3

ẇ2 = −y2 + u4

(7)

where a1, b1, c1, d1, k1, r1, a2, b2 and c2 are unknown parameters to be identified, and ui(i = 1, 2, 3, 4)

are controllers to be determined such that the two hyperchaotic systems can achieve SGFPS, in the

sense that ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

lim
t→∞

‖e1‖ = lim
t→∞

‖x2 − φ1(x)z1‖ = 0

lim
t→∞

‖e2‖ = lim
t→∞

‖y2 − φ2(x)w1‖ = 0

lim
t→∞

‖e3‖ = lim
t→∞

‖z2 − φ3(x)x1‖ = 0

lim
t→∞

‖e4‖ = lim
t→∞

‖w2 − φ4(x)y1‖ = 0

(8)

where φi(x)(i = 1, 2, 3, 4) are scaling functions.

So the SGFPS error dynamical system is determined as follows

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ė1 = a2x2 − y2z2 + w2 − φ̇1(x)z1 − φ1(x)(x1y1 − d1z1) + u1

ė2 = x2z2 − b2y2 − φ̇2(x)w1 − φ2(x)(−k1y1 − r1w1) + u2

ė3 = x2y2 − c2z2 + x2w2 − φ̇3(x)x1 − φ3(x)a1(y1 − x1) + u3

ė4 = −y2 − φ̇4(x)y1 − φ4(x)(b1x1 − x1z1 − c1y1 + w1) + u4

(9)

Without loss of generality, the scaling functions can be chosen as φ1(x) = m11x1+m12, φ2(x) =

m21y1+m22, φ3(x) = m31z1+m32 and φ4(x) = m41w1+m42, where mij(i = 1, 2, 3, 4; j = 1, 2) are

constant numbers. And substituting systems (6) and (7) into system (9), yields the following form:
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ė1 = a2x2 − y2z2 + w2 −m11a1(y1 − x1)z1 − φ1(x)(x1y1 − d1z1) + u1

ė2 = x2z2 − b2y2 −m21(b1x1 − x1z1 − c1y1 + w1)w1 − φ2(x)(−k1y1 − r1w1) + u2

ė3 = x2y2 − c2z2 + x2w2 −m31(x1y1 − d1z1)x1 − φ3(x)a1(y1 − x1) + u3

ė4 = −y2 −m41(−k1y1 − r1w1)y1 − φ4(x)(b1x1 − x1z1 − c1y1 + w1) + u4

(10)

Our goal is to find the appropriate controllers ui(i = 1, 2, 3, 4) to stabilize the error variables of

system (10) at the origin. For this purpose, we propose the following controllers for system (10)⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1 = −ā2x2 + y2z2 − w2 +m11ā1(y1 − x1)z1 + φ1(x)(x1y1 − d̄1z1)− l1e1

u2 = −x2z2 + b̄2y2 +m21(b̄1x1 − x1z1 − c̄1y1 + w1)w1 + φ2(x)(−k̄1y1 − r̄1w1)− l2e2

u3 = −x2y2 + c̄2z2 − x2w2 +m31(x1y1 − d̄1z1)x1 − φ3(x)ā1(y1 − x1)− l3e3

u4 = y2 +m41(−k̄1y1 − r̄1w1)y1 + φ4(x)(b̄1x1 − x1z1 − c̄1y1 + w1)− l4e4

(11)

where L = diag(l1, l2, l3, l4) is a positive gain matrix for each state controller. In practical

applications the synchronization process can be sped up by increasing the gain matrix L.

The update laws for the unknown parameters a1, b1, c1, d1, k1, r1, a2, b2 and c2 are given as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̄a1 = −m11(y1 − x1)z1e1 − φ3(x)(y1 − x1)e3 + (a1 − ā1)

˙̄b1 = −m21x1w1e2 − φ4(x)x1e4 + (b1 − b̄1)

˙̄c1 = φ4(x)y1e4 +m21y1w1e2 + (c1 − c̄1)

˙̄d1 = φ1(x)z1e1 +m31z1x1e3 + (d1 − d̄1)

˙̄k1 = φ2(x)y1e2 +m41y
2
1e4 + (k1 − k̄1)

˙̄r1 = φ2(x)w1e2 +m41w1y1e4 + (r1 − r̄1)

˙̄a2 = x2e1 + (a2 − ā2)

˙̄b2 = −y2e2 + (b2 − b̄2)

˙̄c2 = −z2e3 + (c2 − c̄2)

(12)

where ā1, b̄1, c̄1, d̄1, k̄1, r̄1, ā2, b̄2 and c̄2 are the estimate values for these unknown parameters,

respectively. Then, we have the following main result.

Theorem 1. For a given continuous differential scaling function matrix φ(x) =

diag{φ1(x), φ2(x), φ3(x), φ4(x)}, and any initial values, the SGFPS between systems (6) and (7)

can be achieved by the adaptive controllers (11) and the parameter update laws (12).

Proof. Choose the following Lyapunov function,

V =
1

2
(e21 + e22 + e23 + e24 + (ā2 − a2)

2 + (b̄2 − b2)
2 + (c̄2 − c2)

2)

+
1

2
((ā1 − a1)

2 + (b̄1 − b1)
2 + (c̄1 − c1)

2 + (d̄1 − d1)
2 + (k̄1 − k1)

2 + (r̄1 − r1)
2)

(13)
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Taking the time derivative of V along the trajectory of the error dynamical system (10) yields

V̇ =ė1e1 + ė2e2 + ė3e3 + ė4e4 + (ā2 − a2) ˙̄a2 + (b̄2 − b2)
˙̄b2 + (c̄2 − c2) ˙̄c2

+ (ā1 − a1) ˙̄a1 + (b̄1 − b1)
˙̄b1 + (c̄1 − c1) ˙̄c1 + (d̄1 − d1)

˙̄d1 + (k̄1 − k1)
˙̄k1 + (r̄1 − r1) ˙̄r1

=e1(a2x2 − y2z2 + w2 −m11a1(y1 − x1)z1 − φ1(x)(x1y1 − d1z1) + u1)

+ e2(x2z2 − b2y2 −m21(b1x1 − x1z1 − c1y1 + w1)w1 − φ2(x)(−k1y1 − r1w1) + u2)

+ e3(x2y2 − c2z2 + x2w2 −m31(x1y1 − d1z1)x1 − φ3(x)a1(y1 − x1) + u3)

+ e4(−y2 −m41(−k1y1 − r1w1)y1 − φ4(x)(b1x1 − x1z1 − c1y1 + w1) + u4)

+ (ā2 − a2) ˙̄a2 + (b̄2 − b2)
˙̄b2 + (c̄2 − c2) ˙̄c2

+ (ā1 − a1) ˙̄a1 + (b̄1 − b1)
˙̄b1 + (c̄1 − c1) ˙̄c1 + (d̄1 − d1)

˙̄d1 + (k̄1 − k1)
˙̄k1 + (r̄1 − r1) ˙̄r1

(14)

Substituting Equation (11) into Equation (14) yields

V̇ =− l1e
2
1 − l2e

2
2 − l3e

2
3 − l4e

2
4

− (ā1 − a1)
2 − (b̄1 − b1)

2 − (c̄1 − c1)
2 − (d̄1 − d1)

2 − (k̄1 − k1)
2 − (r̄1 − r1)

2

− (ā2 − a2)
2 − (b̄2 − b2)

2 − (c̄2 − c2)
2

<0

(15)

Since the Lyapunov function V is positive definite and its derivative V̇ is negative definite in

the neighborhood of the zero solution for system (10). According to the Lyapunov stability theory,

the error dynamical system (10) can converge to the origin asymptotically. Therefore, the SGFPS

between the two hyperchaotic systems (6) and (7) is achieved with the adaptive controllers (11) and

the parameter update laws (12).

This completes the proof.

4. Numerical Simulation

In this section, to verify and demonstrate the effectiveness of the proposed method we consider

a numerical example. In the numerical simulations, the fourth-order Runge-Kutta method is used

to solve the systems with time step size 0.001. The true values of the “unknown” parameters of

systems (6) and (7) are chosen as a1 = 12, b1 = 23, c1 = 1, d1 = 2.1, k1 = 6, r1 = 0.2, a2 = 8,

b2 = 40, c2 = 14.9, so that the two systems exhibit hyperchaotic behavior, respectively. The

initial values for the drive and response systems are x1(0) = 8.3, y1(0) = 10.8, z1(0) = 17.4,

w1(0) = −11.1, x2(0) = −0.2, y2(0) = −0.1, z2(0) = 16.9 and w2(0) = −0.7, and the estimated

parameters have initial conditions 0.1. Given that the function factors are φ1(x) = 2x1 − 0.3,

φ2(x) = 2y1 + 0.5, φ3(x) = 0.5z1 + 0.03, φ4(x) = −0.5w1 + 0.03, and the gain matrix L is given

as diag{10, 10, 10, 10}. The simulation results are shown in Figures 3–5. Figure 3 demonstrates the

SGFPS errors of the drive system (6) and response system (7). From this figure, it can be seen that

the SGFPS errors converge to zero, i.e., these two systems achieved SGFPS. And Figures 4 and 5

show that the unknown system parameters approach the true values.
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Figure 3. The time evolution of SGFPS errors for the drive system (6) and response

system (7) with controllers (11) and parameter update laws (12), where e1 = x2− (2x1−
0.3)z1, e2 = y2−(2y1+0.5)w1, e3 = z2−(0.5z1+0.03)x1, e4 = w2−(−0.5w1+0.03)y1.
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Figure 4. The time evolution of the estimated unknown parameters of system (6).
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Figure 5. The time evolution of the estimated unknown parameters of system (7).
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5. Conclusions

In this paper, we have investigated switched generalized function projective synchronization

between two new different hyperchaotic systems with fully unknown parameters, which extended

the switched modified function projective synchronization scheme. In this synchronization scheme,

a state variable of the drive system synchronizes with a different state variable of the response

system up to a generalized scaling function matrix. Due to the unpredictability of the switched

states and scaling function matrix, this synchronization scheme can provide additional security in

secure communication. By applying the adaptive control theory and Lyapunov stability theory, the

appropriate adaptive controllers with parameter update laws are proposed to achieve SGFPS between

two different hyperchaotic systems. A numerical simulation was conducted to illustrate the validity

and feasibility of the proposed synchronization scheme.
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Abstract: In this paper, we investigate the finite-time synchronization problem of

a novel hyperchaotic complex-variable system which generates 2-, 3- and 4-scroll

attractors. Based on the finite-time stability theory, two control strategies are proposed to

realize synchronization of the novel hyperchaotic complex-variable system in finite time.

Finally, two numerical examples have been provided to illustrate the effectiveness of the

theoretical analysis.

Keywords: synchronization; finite-time stability; hyperchaotic system; complex

variable; n-scroll attractor

1. Introduction

Hyperchaos [1] is generally characterized as a chaotic attractor with more than one positive

Lyapunov exponent and has richer dynamical behaviors than chaos. Over the past three

decades, hyperchaotic systems with real variables have been investigated extensively [2–5]. Since

Fowler et al. [6] generalized the real Lorenz model to a complex Lorenz model, which can be used to

describe and simulate the physics of a detuned laser and the thermal convection of liquid flows [7,8],

complex chaotic and hyperchaotic systems have been intensively studied. After the complex Lorenz
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model, many other chaotic and hyperchaotic complex-variable systems have been reported, including

the complex Chen and complex Lü systems [9], complex detuned laser system [10], complex

modified hyperchaotic Lü system [11], and a novel hyperchaotic complex-variable system [12] which

generates 2-, 3- and 4-scroll attractors.

In recent years, chaos synchronization has attracted increasing attention among scientists due

to its potential applications in the fields of secure communications, optical, chemical, physical

and biological systems, neural networks, etc. [13–16]. When applying the complex-variable

systems in communications, the complex variables will double the number of variables and can

increase the content and security of the transmitted information. Therefore, synchronization in

chaotic or hyperchaotic complex-variable systems has been extensively investigated. In [17], the

authors investigated hybrid projective synchronization of a chaotic complex nonlinear system via

linear feedback control method. Liu et al. [18] studied adaptive anti-synchronization of a class

of chaotic complex nonlinear systems. Based on the passive theory, the authors studied the

projective synchronization of hyperchaotic complex nonlinear systems and its application in secure

communications [19]. The robust adaptive full state hybrid projective synchronization for a class of

chaotic complex-variable systems with uncertain parameters and external disturbances was achieved

in [20].

As time goes by, more and more researchers have begun to realize the importance of

synchronization time and proposed the finite-time synchronization scheme [21,22]. Finite-time

synchronization means optimization in convergence time. Moreover, the finite-time control

techniques have demonstrated better robustness and disturbance rejection properties [23].

Up until now, to the best of our knowledge, there are no published results about finite-time

synchronization for chaotic or hyperchaotic systems with complex variables. In this paper, we

investigate the finite-time synchronization of a novel hyperchaotic complex-variable system [12]

which generates 2-, 3- and 4-scroll attractors. Based on the finite-time stability theorem, two

control strategies are proposed to realize the finite-time synchronization of the hyperchaotic

complex-variable system.

2. Basic Conception of Finite-Time Stability Theory and System Description

Finite-time stability means that the state of the dynamic system converges to a desired target in a

finite time.

Definition 1 [23]. Consider the nonlinear dynamical system modeled by

ẋ = f(x) (1)

where the state variable x ∈ Rn. If there exists a constant T > 0 ( T > 0 may depend on the initial

state x(0)) such that

lim
t→T

‖ x(t) ‖= 0 (2)

and ||x(t)|| ≡ 0, if t ≥ T , then system in Equation (1) is finite-time stable.
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Lemma 1 [23]. Suppose there exists a continuous function V : D → R such that the following

conditions hold:

(i) V is positive definite.

(ii) There exist real numbers c > 0 and α ∈ (0, 1) and an open neighborhood V ⊆ D of the origin

such that

V̇ (x) + c(V (x))α ≤ 0, x ∈ V \ {0} (3)

then the origin is a finite-time stable equilibrium of system in Equation (1), and the settling time,

depending on the initial state x(0) = x0, satisfies

T (x0) ≤ V 1−α(x0)

c(1− α)
(4)

In addition, if D = R
n and V (x) is also radially unbounded (i.e., V (x) → +∞ as ‖x‖ → +∞) the

origin is a globally finite-time stable equilibrium of system (1).

Lemma 2 [24]. For any real number αi, i = 1, 2, ..., k and 0 < r < 1, the following

inequality holds:

(|α1|+ |α2|+ · · ·+ |αk|)r ≤ |α1|r + |α2|r + · · ·+ |αk|r (5)

Lately, a novel hyperchaotic complex-variable system, which generates 2-, 3- and 4-scroll

attractors has introduced and is described by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = y − ax+ byz

ẏ = cy − xz + z

ż =
d

2
(x̄y + xȳ)− hz

(6)

where a, b, c, d, and h are positive parameters, x = v1 + iv2 and y = v3 + iv4 are complex variables,

i =
√−1; vk (k = 1, 2, 3, 4) and z = v5 are real variables. Dots represent derivatives with respect to

time, and an overbar represents complex conjugation. This system’s hyperchaotic attractors exist for

large ranges of system parameters. For detailed information about this system, please refer to [12].

3. Finite-Time Synchronization of a Novel Hyperchaotic Complex-Variable System

The drive system is described by the Equation (6), and the response system can be described

as follows ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ′ = y′ − ax′ + by′z′ + μ1 + iμ2

ẏ′ = cy′ − x′z′ + z′ + μ3 + iμ4

ż′ =
d

2
(x̄′y′ + x′ȳ′)− hz′ + μ5

(7)

where a, b, c, d, and h are positive parameters, x′ = u1+ iu2 and y′ = u3+ iu4 are complex variables,

uk (k = 1, 2, 3, 4) and z′ = u5 are real variables. And μk(k = 1, 2, 3, 4, 5) are controllers to be
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determined. With these controllers, the drive system in Equation (6) and the response system in

Equation (7) can achieve synchronization in finite time.

Next,the error states are defined as ⎧⎪⎪⎨
⎪⎪⎩

e1 + ie2 = x′ − x

e3 + ie4 = y′ − y

e5 = z′ − z

(8)

then the error system can be obtained by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ė1 + iė2 = y′ − ax′ + by′z′ − (y − ax+ byz) + μ1 + iμ2

ė3 + iė4 = cy′ − x′z′ + z′ − (cy − xz + z) + μ3 + iμ4

ė5 =
d

2
(x̄′y′ + x′ȳ′)− hz′ − [

d

2
(x̄y + xȳ)− hz] + μ5

(9)

Separating the real and imaginary parts of Equation (9) yields⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ė1 = e3 − ae1 + b(u3u5 − v3v5) + μ1

ė2 = e4 − ae2 + b(u4u5 − v4v5) + μ2

ė3 = ce3 + e5 − u1u5 + v1v5 + μ3

ė4 = ce4 − u2u5 + v2v5 + μ4

ė5 = d(u1u3 + u2u4)− d(v1v3 + v2v4)− he5 + μ5

(10)

Our aim is to design controllers that can achieve finite-time synchronization between the drive

system in Equation (6) and the response system in Equation (7). This problem can be converted

to design controllers to attain finite-time stable of the error system in Equation (10). Two control

strategies are proposed to fulfill this goal.

Control strategy 1:

Theorem 1. If the controllers are designed as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ1 = −e3 − b(u3u5 − v3v5)− ek1

μ2 = −e4 − b(u4u5 − v4v5)− ek2

μ3 = −L1e3 − e5 + u1u5 − v1v5 − ek3

μ4 = −L2e4 + u2u5 − v2v5 − ek4

μ5 = −d(u1u3 + u2u4) + d(v1v3 + v2v4)− ek5

(11)

where k = q/p is a proper rational number, p and q are positive odd integers and p > q, L1 ≥ c and

L2 ≥ c. Then the trajectories of the error system converge to zero in finite time.

Proof. Construct the following Lyapunov function

V =
1

2
(e21 + e22 + e23 + e24 + e25) (12)
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By differentiating the function V along the trajectories of the error dynamical system in

Equation (10), we have

V̇ =e1ė1 + e2ė2 + e3ė3 + e4ė4 + e5ė5

=e1[e3 − ae1 + b(u3u5 − v3v5) + μ1] + e2[e4 − ae2 + b(u4u5 − v4v5) + μ2]

+ e3(ce3 + e5 − u1u5 + v1v5 + μ3) + e4(ce4 − u2u5 + v2v5 + μ4)

+ e5[d(u1u3 + u2u4)− d(v1v3 + v2v4)− he5 + μ5]

(13)

Substituting the controllers given in Equation (11) into Equation (13), yields

V̇ =e1[e3 − ae1 + b(u3u5 − v3v5)− e3 − b(u3u5 − v3v5)− ek1]

+ e2[e4 − ae2 + b(u4u5 − v4v5)− e4 − b(u4u5 − v4v5)− ek2]

+ e3[ce3 + e5 − u1u5 + v1v5 + (c− L1)e3 − e5 + u1u5 − v1v5 − ek3]

+ e4[ce4 − u2u5 + v2v5 + (c− L2)e4 + u2u5 − v2v5 − ek4]

+ e5[d(u1u3 + u2u4)− d(v1v3 + v2v4)− he5 − d(u1u3 + u2u4) + d(v1v3 + v2v4)− ek5]

=e1(−ae1 − ek1) + e2(−ae2 − ek2) + e3[(c− L1)e3 − ek3] + e4[(c− L2)e4 − ek4] + e5(−he5 − ek5)

≤− ek+1
1 − ek+1

2 − ek+1
3 − ek+1

4 − ek+1
5

=− (
1

2
)−

k+1
2 [(

1

2
e21)

k+1
2 + (

1

2
e22)

k+1
2 + (

1

2
e23)

k+1
2 + (

1

2
e24)

k+1
2 + (

1

2
e25)

k+1
2 ]

(14)

In light of Lemma 2, we have

V̇ ≤− (
1

2
)−

k+1
2 (

1

2
e21 +

1

2
e22 +

1

2
e23 +

1

2
e24 +

1

2
e25)

k+1
2

=− (
1

2
)−

k+1
2 (

V

2
)
k+1
2

(15)

then from Lemma 1, the error dynamical system in Equation (10) is finite-time stable. This implies

there exists a T > 0 such that e ≡ 0 if t ≥ T .

Control strategy 2:

Theorem 2. If the controllers are designed as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ1 = −e3 − b(u3u5 − v3v5)− ek1

μ2 = −e4 − b(u4u5 − v4v5)− ek2

μ3 = −L3e3 − e5 + v1e5 − ek3

μ4 = −L4e4 + v2e5 − ek4

μ4 = −dv1e3 − dv2e4 − ek5

(16)

where k = q/p is a proper rational number, p and q are positive odd integers and p > q, L3 ≥ c and

L4 ≥ c, then the trajectories of the error dynamical system converge to zero in finite time.

Proof. The design procedure is divided into two steps.
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Step 1. Substituting the controllers μ1 and μ2 into the first two parts of Equation (10) yields

ė1 = e3 − ae1 + b(u3u5 − v3v5)− e3 − b(u3u5 − v3v5)− ek1 = −ae1 − ek1

ė2 = e4 − ae2 + b(u4u5 − v4v5)− e4 − b(u4u5 − v4v5)− ek2 = −ae2 − ek2
(17)

Choose the following candidate Lyapunov function:

V1 =
1

2
(e21 + e22) (18)

The derivative of V1 along the trajectory of Equation (17) is

V̇1 = e1ė1 + e2ė2

= e1(−ae1 − ek1) + e2(−ae2 − ek2)

≤ −ek+1
1 − ek+1

2

= −(1
2
)−

k+1
2 [(

1

2
e21)

k+1
2 + (

1

2
e22)

k+1
2 ]

≤ −(1
2
)−

k+1
2 (

1

2
e21 +

1

2
e22)

k+1
2

= −(1
2
)−

k+1
2 V

k+1
2

1

(19)

From Lemma 1, the system in Equation (17) is finite-time stable. That means there is a T1 > 0

such that e1 ≡ 0 and e2 ≡ 0 for any t ≥ T1.

When t > T1 , the last three equations of system in Equation (10) become:⎧⎪⎪⎨
⎪⎪⎩

ė3 = ce3 + e5 − v1e5 + μ3

ė4 = ce4 − v2e5 + μ4

ė5 = dv1e3 + dv2e4 − he5 + μ5

(20)

A candidate Lyapunov function for system in Equation (20) is chosen as follows

V2 =
1

2
(e23 + e24 + e25) (21)

The derivative of V2 along the trajectory of Equation (20) is

V̇2 = e3ė3 + e4ė4 + e5ė5

= e3(ce3 + e5 − v1e5 + μ3) + e4(ce4 − v2e5 + μ4) + e5(dv1e3 + dv2e4 − he5 + μ5)
(22)

Substituting the controllers μ3, μ4, μ5 in Equation (16) into the above equation, yields

V̇2 =e3(ce3 + e5 − v1e5 − L3e3 − e5 + v1e5 − ek3)

+ e4(ce4 − v2e5 − L4e4 + v2e5 − ek4)

+ e5(dv1e3 + dv2e4 − he5 − dv1e3 − dv2e4 − ek5)

=(c− L3)e
2
3 − ek+1

3 + (c− L4)e
2
4 − ek+1

4 − he25 − ek+1
5

≤− ek+1
3 − ek+1

4 − ek+1
5

=− (
1

2
)−

k+1
2 [(

1

2
e23)

k+1
2 + (

1

2
e24)

k+1
2 + (

1

2
e25)

k+1
2 ]

≤− (
1

2
)−

k+1
2 (

1

2
e23 +

1

2
e24 +

1

2
e25)

k+1
2

=− (
1

2
)−

k+1
2 V

k+1
2

2

(23)
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Then from Lemma 1, the error states e3, e4 and e5 will converge to zero at a finite time T2. After

T2, the error states of error dynamical system in Equation (10) will stay at zero, i.e., the trajectories

of the error dynamical system converge to zero in finite time.

4. Numerical Simulations

In this section, two numerical examples are presented to illustrate the theoretical analysis.

In the following numerical simulations the fourth-order Runge-kutta method is employed with

time step size 0.001. The system parameters are selected as a = 3.5, b = 0.6, c = 3, d = 2, and

h = 9, so that the complex nonlinear hyperchaotic system in Equation (1) exhibits hyperchaotic

behavior. The initial conditions of the drive system and response system are always adopted as

(x(0), y(0), z(0)) = (5 + 2i,−1 + i,−4) and (x′(0), y′(0), z′(0)) = (−5− 2i, 1− i, 4) respectively.

Example 1. Consider strategy 1 with the controllers given by Equation (11). We choose

L1 = 3, L2 = 3 and k = 7/9, Figures 1 and 2 show the results of numerical simulation. From

Figure 1, we can see that the states of the drive system from Equation (6) and the response system

from Equation (7) quickly synchronize. Figure 2 shows the state errors e1, e2, e3, e4, e5 are rapidly

stabilize at zero. So the system given by Equations (6) and (7) achieves finite-time synchronization.

Figure 1. The states of the drive system in Equation (6) and the response system in

Equation (7) with controllers given by Equation (11).
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Figure 2. The time response of error states with controllers as in Equation (11).
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Example 2. Consider strategy 2 with the controllers given in Equation (16). We choose

L3 = 3, L4 = 3 and k = 7/9, Figures 3 and 4 show that systems in Equations (6) and (7)

achieve finite-time synchronization. From Figures 2 and 4, we can see the synchronized time of

error dynamical system in Figure 4 is longer than that in Figure 2.

Figure 3. The states of the drive system in Equation (6) and the response system in

Equation (7) with controllers given by Equation (16).
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Figure 4. The time response of error states with controllers as in Equation (16).

0 2 4 6 8 10
−10

−5

0

5

t

e 1

0 2 4 6 8 10
−4

−2

0

2

t

e 2

0 2 4 6 8 10
−2

0

2

4

t

e 3

0 2 4 6 8 10
−2

−1

0

1

t

e 4

0 2 4 6 8 10
−5

0

5

10

t

e 5

5. Conclusions

When applying complex-variable systems in communications, the complex variables double the

number of variables and can increase the content and security of the transmitted information. In this

paper, a novel hyperchaotic complex-variable system which generates 2-, 3- and 4-scroll attractors

has been considered and the fast synchronization problem of such a system has been investigated.

Based on the finite-time stability theory, two kinds of simple and effective controllers for the

novel hyperchaotic complex-variable system have been proposed to guarantee the global exponential

stability of the resulting error systems. Finally, two numerical examples have been provided to

illustrate the effectiveness of the theoretical analysis.
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Abstract: In this paper, we investigate the combination synchronization of three

nonlinear complex hyperchaotic systems: the complex hyperchaotic Lorenz system, the

complex hyperchaotic Chen system and the complex hyperchaotic Lü system. Based

on the Lyapunov stability theory, corresponding controllers to achieve combination

synchronization among three identical or different nonlinear complex hyperchaotic

systems are derived, respectively. Numerical simulations are presented to demonstrate

the validity and feasibility of the theoretical analysis.

Keywords: combination synchronization; Lyapunov stability theory; complex

hyperchaotic Lorenz system; complex hyperchaotic Chen system; complex hyperchaotic

Lü system

1. Introduction

Since Fowler et al. [1], introduced a complex Lorenz model to generalize the real Lorenz model

in 1982, complex chaotic and hyperchaotic systems have attracted increasing attention, due to the fact

that systems with complex variables can be used to describe the physics of a detuned laser, rotating

fluids, disk dynamos, electronic circuits and particle beam dynamics in high energy accelerators [2].

When applying complex systems in communications, the complex variables will double the number

of variables and can increase the content and security of the transmitted information. Many complex

chaotic and hyperchaotic systems have been proposed ever since the 1980s. In [3], the authors studied
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the chaotic unstable limit cycles of complex Van der Pol oscillators. The rich dynamics behaviors

of the complex Chen and complex Lü systems were investigated in [4]. By adding state feedback

controllers to their complex chaotic systems, complex hyperchaotic Chen, Lorenz and Lü systems

were introduced and studied in [5–7], respectively. The authors [8] constructed a complex nonlinear

hyperchaotic system by adding a cross-product nonlinear term to the complex Lorenz system. A

complex modified hyperchaotic Lü system [9] was proposed by introducing complex variables to its

real counterpart.

In 1990 [10], Pecora and Carroll proposed the drive-response concept for constructing the

synchronization of coupled chaotic systems. Over the last two decades, synchronization in chaotic

systems has been extensively investigated, due to its potential applications in various fields, such as

chemical reactions, biological systems and secure communication. Mahmoud et al. [11] designed

an adaptive control scheme to study the complete synchronization of chaotic complex nonlinear

systems with uncertain parameters. The authors achieved phase synchronization and antiphase

synchronization of two identical hyperchaotic complex nonlinear systems via an active control

technique in [12]. Based on passive theory, the authors studied the projective synchronization of

hyperchaotic complex nonlinear systems and its application in secure communications [13]. Liu et
al. [14] investigated the modified function projective synchronization of general chaotic complex

systems described by a unified mathematical expression.

The aforementioned synchronization schemes are based on the usual drive-response

synchronization mode, which has one drive system and one response system. Recently, Luo [15]

proposed a combination synchronization scheme, which has two drive systems and one response

system. This synchronization scheme has advantages over the usual drive-response synchronization,

such as being able to provide greater security in secure communication. In secure communication,

the transmitted signals can be split into several parts, each part loaded in different drive systems,

or can divide time into different intervals, the signals in different intervals being loaded in different

drive systems. Thus, the transmitted signals can have stronger anti-attack ability and anti-translated

capability than those transmitted by the usual transmission model.

Motivated by the above discussions, this paper aims to study the combination synchronization

of three identical or different nonlinear complex hyperchaotic systems. The rest of this paper is

organized as follows. Section 2 introduces the scheme of combination synchronization. In Section

3 and Section 4, we investigate combination synchronization among three identical and different

complex nonlinear hyperchaotic systems, respectively. Finally, conclusions are given in Section 5.

2. The Scheme of Combination Synchronization

Suppose that there are three nonlinear dynamical systems, two drive systems and one response

system. The drive systems are given by:

ẋ = f(x), (1)

and

ẏ = g(y). (2)
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The response system is described by:

ż = h(z) + U(x, y, z), (3)

where x = (x1, x2, ..., xn)
T , y = (y1, y2, ..., yn)

T , z = (z1, z2, ..., zn)
T are the state vectors

of systems (1), (2) and (3), respectively, f(·), g(·), h(·) : Rn → Rn are three continuous vector

functions and U(·) : Rn ×Rn ×Rn → Rn is a controller vector, which will be designed.

Definition 1 [15]. For drive systems (1) and (2) and response system (3), they are said to be in

combination synchronization if there exists three constant matrices, A, B, C ∈ Rn and C �= 0,

such that:

lim
t→+∞

‖ Ax+ By − Cz ‖= 0, (4)

where ‖ · ‖ represents the matrix norm.

3. Combination Synchronization among Identical Nonlinear Complex Hyperchaotic Systems

In this section, we take the complex hyperchaotic Lorenz system [6] as an example to investigate

the combination synchronization among three identical systems.

The first drive system is given by:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ11 = α(x21 − x11) + x41,

ẋ21 = γx11 − x21 − x11x31,

ẋ31 =
1

2
(x̄11x21 + x11x̄21)− βx31 + x41,

ẋ41 =
1

2
(x̄11x21 + x11x̄21)− σx41,

(5)

and the second drive system is described as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ12 = α(x22 − x12) + x42,

ẋ22 = γx12 − x22 − x12x32,

ẋ32 =
1

2
(x̄12x22 + x12x̄22)− βx32 + x42,

ẋ42 =
1

2
(x̄12x22 + x12x̄22)− σx42.

(6)

The response system takes the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ13 = α(x23 − x13) + x43 + U1 + iU2,

ẋ23 = γx13 − x23 − x13x33 + U3 + iU4,

ẋ33 =
1

2
(x̄13x23 + x13x̄2)− βx33 + x43 + U5,

ẋ43 =
1

2
(x̄13x23 + x13x̄23)− σx43 + U6,

(7)

where α, β, γ and σ are positive parameters, x11 = u1 + iu2, x21 = u3 + iu4, x12 = v1 + iv2, x22 =

v3 + iv4, x13 = w1 + iw2, x23 = w3 + iw4 are complex variables and i =
√−1; ui, vi, wi (i =
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1, 2, 3, 4), x31 = u5, x41 = u6, x32 = v5, x42 = v6, x33 = w5, x43 = w6 are real variables. The

overbar represents a complex conjugate function. U1, U2, U3, U4, U5 and U6 are real controllers to

be determined.

For the convenience of our discussions, we assume A = diag(l1, l2, l3, l4), B =

diag(m1,m2,m3,m4), C = diag(k1, k2, k3, k4) in our synchronization scheme.

We define error states between systems (5), (6) and (7) as:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e1 + ie2 = k1x13 − l1x11 −m1x12,

e3 + ie4 = k2x23 − l2x21 −m2x22,

e5 = k3x33 − l3x31 −m3x32,

e6 = k4x43 − l4x41 −m4x42,

(8)

such that: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

lim
t→∞

‖ k1x13 − l1x11 −m1x12 ‖= 0,

lim
t→∞

‖ k2x23 − l2x21 −m2x22 ‖= 0,

lim
t→∞

‖ k3x33 − l3x31 −m3x32 ‖= 0,

lim
t→∞

‖ k4x43 − l4x41 −m4x42 ‖= 0.

(9)

Thus, we have the following error dynamical system:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ė1 + iė2 = k1ẋ13 − l1ẋ11 −m1ẋ12,

ė3 + iė4 = k2ẋ23 − l2ẋ21 −m2ẋ22,

ė5 = k3ẋ33 − l3ẋ31 −m3ẋ32,

ė6 = k4ẋ43 − l4ẋ41 −m4ẋ42.

(10)

Substituting Equations (5)–(7) in Equation (10) and separating the real and imaginary parts yields:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1 = k1[α(w3 − w1) + w6]− l1[α(u3 − u1) + u6]−m1[α(v3 − v1) + v6] + k1U1,

ė2 = k1α(w4 − w2)− l1α(u4 − u2)−m1α(v4 − v2) + k1U2,

ė3 = k2(γw1 − w3 − w1w5)− l2(γu1 − u3 − u1u5)−m2(γv1 − v3 − v1v5) + k2U3,

ė4 = k2(γw2 − w4 − w2w5)− l2(γu2 − u4 − u2u5)−m2(γv2 − v4 − v2v5) + k2U4,

ė5 = k3(w1w3 + w2w4 − βw5 + w6)− l3(u1u3 + u2u4 − βu5 + u6)

−m3(v1v3 + v2v4 − βv5 + v6) + k3U5,

ė6 = k4(w1w3 + w2w4 − σw6)− l4(u1u3 + u2u4 − σu6)−m4(v1v3 + v2v4 − σv6) + k4U6.
(11)

Then, we obtain the following results.
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Theorem 1. If the controllers are chosen as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 =− 1

k1
{(k1w1 − l1u1 −m1v1) + [k1α(w3 − w1) + k1w6 − l1α(u3 − u1)− l1u6

−m1α(v3 − v1)−m1v6]− α(k1w2 − l1u2 −m1v2)},
U2 =− 1

k1
{(k1w2 − l1u2 −m1v2) + [k1α(w4 − w2)− l1α(u4 − u2)−m1α(v4 − v2)]

+ α(k1w1 − l1u1 −m1v1)− γ(k2w3 − l2u3 −m2v3)},
U3 =− 1

k2
{(k2w3 − l2u3 −m2v3) + [k2(γw1 − w3 − w1w5)− l2(γu1 − u3 − u1u5)

−m2(γv1 − v3 − v1v5)] + γ(k1w2 − l1u2 −m1v2)− β(k2w4 − l2u4 −m2v4)},
U4 =− 1

k2
{(k2w4 − l2u4 −m2v4) + [k2(γw2 − w4 − w2w5)− l2(γu2 − u4 − u2u5)

−m2(γv2 − v4 − v2v5)] + β(k2w3 − l2u3 −m2v3)− σ(k3w5 − l3u5 −m3v5)},
U5 =− 1

k3
{(k3w5 − l3u5 −m3v5) + [k3(w1w3 + w2w4 − βw5 + w6)− l3(u1u3 + u2u4 − βu5 + u6)

−m3(v1v3 + v2v4 − βv5 + v6)] + σ(k2w4 − l2u4 −m2v4)− α(k4w6 − l4u6 −m4v6)},
U6 =− 1

k4
{(k4w6 − l4u6 −m4v6) + [k4(w1w3 + w2w4 − σw6)− l4(u1u3 + u2u4 − σu6)

−m4(v1v3 + v2v4 − σv6)] + α(k3w5 − l3u5 −m3v5)},
(12)

then driven systems (5) and (6) will achieve combination synchronization with response system (7).

Proof. Construct the following Lyapunov function:

V =
1

2
(e21 + e22 + e23 + e24 + e25 + e26). (13)

Taking the time derivative of V along the trajectory of error dynamical system (11) yields:

V̇ =e1ė1 + e2ė2 + e3ė3 + e4ė4 + e5ė5 + e6ė6

=e1{k1[α(w3 − w1) + w6]− l1[α(u3 − u1) + u6]−m1[α(v3 − v1) + v6] + k1U1}
+ e2[k1α(w4 − w2)− l1α(u4 − u2)−m1α(v4 − v2) + k1U2]

+ e3[k2(γw1 − w3 − w1w5)− l2(γu1 − u3 − u1u5)−m2(γv1 − v3 − v1v5) + k2U3]

+ e4[k2(γw2 − w4 − w2w5)− l2(γu2 − u4 − u2u5)−m2(γv2 − v4 − v2v5) + k2U4]

+ e5[k3(w1w3 + w2w4 − βw5 + w6)− l3(u1u3 + u2u4 − βu5 + u6)−m3(v1v3 + v2v4 − βv5 + v6) + k3U5]

+ e6[k4(w1w3 + w2w4 − σw6)− l4(u1u3 + u2u4 − σu6)−m4(v1v3 + v2v4 − σv6) + k4U6].
(14)
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Substituting Equation (12) into Equation (14), then:

V̇ =e1{k1[α(w3 − w1) + w6]− l1[α(u3 − u1) + u6]−m1[α(v3 − v1) + v6]− [k1w1 − l1u1 −m1v1

+ k1α(w3 − w1) + k1w6 − l1α(u3 − u1)− l1u6 −m1α(v3 − v1)−m1v6 − α(k1w2 − l1u2 −m1v2)]}
+ e2{k1α(w4 − w2)− l1α(u4 − u2)−m1α(v4 − v2)− [k1w2 − l1u2 −m1v2

+ k1α(w4 − w2)− l1α(u4 − u2)−m1α(v4 − v2) + α(k1w1 − l1u1 −m1v1)− γ(k2w3 − l2u3 −m2v3)]}
+ e3{k2(γw1 − w3 − w1w5)− l2(γu1 − u3 − u1u5)−m2(γv1 − v3 − v1v5)− [k2w3 − l2u3 −m2v3

+ k2(γw1 − w3 − w1w5)− l2(γu1 − u3 − u1u5)−m2(γv1 − v3 − v1v5)

+ γ(k1w2 − l1u2 −m1v2)− β(k2w4 − l2u4 −m2v4)]}
+ e4{k2(γw2 − w4 − w2w5)− l2(γu2 − u4 − u2u5)−m2(γv2 − v4 − v2v5)− [k2w4 − l2u4 −m2v4

+ k2(γw2 − w4 − w2w5)− l2(γu2 − u4 − u2u5)−m2(γv2 − v4 − v2v5)

+ β(k2w3 − l2u3 −m2v3)− σ(k3w5 − l3u5 −m3v5)]}+ e5{k3(w1w3 + w2w4 − βw5 + w6)

− l3(u1u3 + u2u4 − βu5 + u6)−m3(v1v3 + v2v4 − βv5 + v6)− [k3w5 − l3u5 −m3v5

+ k3(w1w3 + w2w4 − βw5 + w6)− l3(u1u3 + u2u4 − βu5 + u6)−m3(v1v3 + v2v4 − βv5 + v6)

+ σ(k2w4 − l2u4 −m2v4)− α(k4w6 − l4u6 −m4v6)]}+ e6{k4(w1w3 + w2w4 − σw6)

− l4(u1u3 + u2u4 − σu6)−m4(v1v3 + v2v4 − σv6)− [k4w6 − l4u6 −m4v6 + k4(w1w3 + w2w4 − σw6)

− l4(u1u3 + u2u4 − σu6)−m4(v1v3 + v2v4 − σv6) + α(k3w5 − l3u5 −m3v5)]}
=e1(−e1 + αe2) + e2(−e2 − αe1 + γe3) + e3(−e3 − γe2 + βe4) + e4(−e4 − βe3 + σe5)

+ e5(−e5 − σe4 + αe6) + e6(−e6 − αe5)

=− e21 − e22 − e23 − e24 − e25 − e26.
(15)

Since V̇ ≤ 0 as t → ∞, according to the Lyapunov stability theory, we know ei → 0(i =

1, 2, 3, 4, 5, 6), i.e., limt→∞ ‖ e ‖= 0. Therefore, drive systems (5) and (6) will achieve combination

synchronization with the response system (7).

This completes the proof.

The following corollaries can be easily obtained from Theorem 1.

Corollary 1. (i) Suppose that l1 = l2 = l3 = l4 = 0 and k1 = k2 = k3 = k4 = 1, and if the

controllers are chosen as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 =− {(w1 −m1v1) + [α(w3 − w1) + w6 −m1α(v3 − v1)−m1v6]− α(w2 −m1v2)},
U2 =− {(w2 −m1v2) + [α(w4 − w2)−m1α(v4 − v2)] + α(w1 −m1v1)− γ(w3 −m2v3)}},
U3 =− {(w3 −m2v3) + [(γw1 − w3 − w1w5)−m2(γv1 − v3 − v1v5)] + γ(w2 −m1v2)− β(w4 −m2v4)},
U4 =− {(w4 −m2v4) + [(γw2 − w4 − w2w5)−m2(γv2 − v4 − v2v5)] + β(w3 −m2v3)− σ(w5 −m3v5)},
U5 =− {(w5 −m3v5) + [(w1w3 + w2w4 − βw5 + w6)−m3(v1v3 + v2v4 − βv5 + v6)]

+ σ(w4 −m2v4)− α(w6 −m4v6)},
U6 =− {(w6 −m4v6) + [(w1w3 + w2w4 − σw6)−m4(v1v3 + v2v4 − σv6)] + α(w5 −m3v5)},

(16)

then drive system (6) will achieve projective synchronization with response system (7).
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(ii) Suppose that m1 = m2 = m3 = m4 = 0 and k1 = k2 = k3 = k4 = 1, and if the controllers

are chosen as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 =− {(w1 − l1u1) + [α(w3 − w1) + w6 − l1α(u3 − u1)− l1u6]− α(w2 − l1u2)},
U2 =− {(w2 − l1u2) + [α(w4 − w2)− l1α(u4 − u2)] + α(w1 − l1u1)− γ(w3 − l2u3)},
U3 =− {(w3 − l2u3) + [(γw1 − w3 − w1w5)− l2(γu1 − u3 − u1u5)] + γ(w2 − l1u2)− β(w4 − l2u4)},
U4 =− {(w4 − l2u4) + [(γw2 − w4 − w2w5)− l2(γu2 − u4 − u2u5)] + β(w3 − l2u3)− σ(w5 − l3u5)},
U5 =− {(w5 − l3u5) + [(w1w3 + w2w4 − βw5 + w6)− l3(u1u3 + u2u4 − βu5 + u6)]

+ σ(w4 − l2u4)− α(w6 − l4u6)},
U6 =− {(w6 − l4u6) + [(w1w3 + w2w4 − σw6)− l4(u1u3 + u2u4 − σu6)] + α(w5 − l3u5)},

(17)

then drive system (5) will achieve projective synchronization with response system (7).

Corollary 2. Suppose that l1 = l2 = l3 = l4 = 0,m1 = m2 = m3 = m4 = 0 and k1 = k2 =

k3 = k4 = 1, and if the controllers are chosen as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 = −[w1 + α(w3 − w1) + w6 − αw2],

U2 = −[w2 + α(w4 − w2) + αw1 − γw3],

U3 = −(w3 + γw1 − w3 − w1w5 + γw2 − βw4),

U4 = −(w4 + γw2 − w4 − w2w5 + βw3 − σw5),

U5 = −(w5 + w1w3 + w2w4 − βw5 + w6 + σw4 − αw6),

U6 = −(w6 + w1w3 + w2w4 − σw6 + αw5),

(18)

then system (7) is stabilized to the equilibrium, O(0, 0, 0, 0, 0, 0).

Remark 1: The proofs of Corollary 1 and Corollary 2 are similar to those of theorem 1, so we

omitted them.

In the following, numerical experiments are given to demonstrate our results. The fourth-order

Runge-Kutta method is used with a time step size of 0.001. The system parameters are given as

α = 8, β = 5, γ = 50 and σ = 15, so that the complex Lorenz system exhibits hyperchaotic

behavior. We assume k1 = k2 = k3 = k4 = 1, l1 = l2 = l3 = l4 = 1 and m1 = m2 = m3 = m4 = 1,

and the initial states for drive systems (5) and (6) and response system (7) are arbitrarily given by

(x11(0), x21(0), x31(0), x41(0)) = (4 − 0.3i, 2.2 − 0.8i, 4.9, 1.1), (x12(0), x22(0), x32(0), x42(0)) =

(4.4 − 0.6i, 3.3 − 1.4i, 5.3, 1.4) and (x13(0), x23(0), x33(0), x43(0)) = (4.6 − 1.8i, 1.6 −
1.9i, 2.5, 2), i.e., (u1(0), u2(0), u3(0), u4(0), u5(0), u6(0)) = (4,−0.3, 2.2,−0.8, 4.9, 1.1),
(v1(0), v2(0), v3(0), v4(0), v5(0), v6(0)) = (4.4,−0.6, 3.3,−1.4, 5.3, 1.4) and

(w1(0), w2(0), w3(0), w4(0), w5(0), w6(0)) = (4.6,−1.8, 1.6,−1.9, 2.5, 2), respectively. The

corresponding numerical results are shown in Figures 1 and 2. Figure 1 displays the time response

of the combination synchronization errors, e1, e2, e3, e4, e5ande6. The errors converge to zero,

which implies that systems (5), (6) and (7) have achieved combination synchronization. Figures 2

depicts the time responses of the states, u1 + v1 versus w1, u2 + v2 versus w2, u3 + v3 versus w3,

u4 + v4 versus w4, u5 + v5 versus w5 and u6 + v6 versus w6, respectively. Next, suppose that
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k1 = k2 = k3 = k4 = 1, l1 = l2 = l3 = l4 = 0 and m1 = m2 = m3 = m4 = 0. The time evolution

of the states, w1, w2, w3, w4, w5, w6, of system (7) with controller (18) are displayed in Figure 3,

which illustrates that system (7) is stabilized to the equilibrium, O(0, 0, 0, 0, 0, 0).

Figure 1. Combination synchronization errors, e1, e2, e3, e4, e5 and e6, between drive

systems (5) and (6) and response system (7).
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Figure 2. Time responses for states ui + vi versus wi, i = 1, 2, ..., 6, respectively.
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Figure 3. Time evolution of the states for system (7).
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4. Combination Synchronization among Different Nonlinear Complex Hyperchaotic Systems

In this section, we investigate the combination synchronization among three different nonlinear

complex hyperchaotic systems. The hyperchaotic complex Lorenz system [6] and the hyperchaotic

complex Chen system [5], respectively, describe the drive systems:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = α1(x2 − x1) + x4,

ẋ2 = γ1x1 − x2 − x1x3,

ẋ3 =
1

2
(x̄1x2 + x1x̄2)− β1x3 + x4,

ẋ4 =
1

2
(x̄1x2 + x1x̄2)− σ1x4,

(19)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẏ1 = α2(y2 − y1),

ẏ2 = (γ2 − α2)y1 − y1y3 + γ2y2 + y4,

ẏ3 =
1

2
(ȳ1y2 + y1ȳ2)− β2y3 + y4,

ẏ4 =
1

2
(ȳ1y2 + y1ȳ2)− d2y4,

(20)

and the hyperchaotic complex Lü system system [7] is the response system given by:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ż1 = ρ3(z2 − z1) + z4 + U1 + iU2,

ż2 = ν3z2 − z1z3 + z4 + U3 + iU4,

ż3 =
1

2
(z̄1z2 + z1z̄2)− μ3z3 + U5,

ż4 =
1

2
(z̄1z2 + z1z̄2)− σ3z4 + U6,

(21)
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where α1, β1, γ1, σ1, α2, β2, γ2, d2, ρ3, ν3, μ3 and σ3 are positive parameters, x1 = u1 + iu2, x2 =

u3 + iu4, y1 = v1 + iv2, y2 = v3 + iv4, z1 = w1 + iw2, z2 = w3 + iw4 are complex variables and

i =
√−1; ui, vi, wi(i = 1, 2, 3, 4), x3 = u5, x4 = u6, y3 = v5, y4 = v6, z3 = w5 and z4 = w6 are

real variables. The overbar represents the complex conjugate function. U1, U2, U3, U4, U5 and U6

are real control functions to be determined.

For the convenience of the following discussions, we assume A = diag(l1, l2, l3, l4), B =

diag(m1,m2,m3,m4) and C = diag(k1, k2, k3, k4) in our synchronization scheme.

We define error states between drive systems (19)–(20) and response system (21) as:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e1 + ie2 = k1z1 − l1x1 −m1y1,

e3 + ie4 = k2z2 − l2x2 −m2y2,

e4 = k3z3 − l3x3 −m3y3,

e5 = k4z4 − l4x4 −m4y4,

(22)

such that: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

lim
t→∞

‖ k1z1 − l1x1 −m1y1 ‖= 0,

lim
t→∞

‖ k2z2 − l2x2 −m2y2 ‖= 0,

lim
t→∞

‖ k3z3 − l3x3 −m3y3 ‖= 0,

lim
t→∞

‖ k4z4 − l4x4 −m4y4 ‖= 0.

(23)

Separating the real and imagery parts of Equation (22) gets the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 = (k1w1 − l1u1 −m1v1),

e2 = (k1w2 − l1u2 −m1v2),

e3 = (k2w3 − l2u3 −m2v3),

e4 = (k2w4 − l2u4 −m2v4),

e5 = (k3w5 − l3u5 −m3v5),

e6 = (k4w6 − l4u6 −m4v6).

(24)

Thus, we have the following error dynamical system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1 = k1[ρ3(w3 − w1) + w6]− l1[α1(u3 − u1) + u6]−m1α2(v3 − v1) + k1U1,

ė2 = k1ρ3(w4 − w2)− l1α1(u4 − u2)−m1α2(v4 − v2) + k1U2,

ė3 = k2(−w1w5 + ν3w3 + w6)− l2(γ1u1 − u3 − u1u5)−m2[(γ2 − α2)v1 − v1v5 + γ2v3 + v6] + k2U3,

ė4 = k2(−w2w5 + ν3w4)− l2(γ1u2 − u4 − u2u5)−m2[(γ2 − α2)v2 − v2v5 + γ2v4] + k2U4,

ė5 = k3(w1w3 + w2w4 − μ3w5)− l3(u1u3 + u2u4 − β1u5 + u6)−m3(v1v3 + v2v4 − β2v5 + v6) + k3U5,

ė6 = k4(w1w3 + w2w4 − σ3w6)− l4(u1u3 + u2u4 − σ1u6)−m4(v1v3 + v2v4 − d2v6) + k4U6.
(25)

Similar to Section 3, we have the following results.
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Theorem 2. If the controllers are chosen as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 =− 1

k1
{(k1w1 − l1u1 −m1v1) + [k1ρ3(w3 − w1) + k1w6 − l1α1(u3 − u1)− l1u6 −m1α2(v3 − v1)]

− α1(k1w2 − l1u2 −m1v2)},
U2 =− 1

k1
{(k1w2 − l1u2 −m1v2) + [k1ρ3(w4 − w2)− l1α1(u4 − u2)−m1α2(v4 − v2)]

+ α1(k1w1 − l1u1 −m1v1)− α2(k2w3 − l2u3 −m2v3)},
U3 =− 1

k2
{(k2w3 − l2u3 −m2v3) + [k2(−w1w5 + ν3w3 + w6)− l2(γ1u1 − u3 − u1u5)−m2(γ2 − α2)v1

+m2v1v5 −m2γ2v3 −m2v6] + α2(k1w2 − l1u2 −m1v2)− β1(k2w4 − l2u4 −m2v4)},
U4 =− 1

k2
{(k2w4 − l2u4 −m2v4) + [k2(−w2w5 + ν3w4)− l2(γ1u2 − u4 − u2u5)−m2(γ2 − α2)v2

+m2v2v5 −m2γ2v4] + β1(k2w3 − l2u3 −m2v3)− β2(k3w5 − l3u5 −m3v5)},
U5 =− 1

k3
{(k3w5 − l3u5 −m3v5) + [k3(w1w3 + w2w4 − μ3w5)− l3(u1u3 + u2u4 − β1u5 + u6)

−m3(v1v3 + v2v4 − β2v5 + v6)] + β2(k2w4 − l2u4 −m2v4)− γ1(k4w6 − l4u6 −m4v6)},
U6 =− 1

k4
{(k4w6 − l4u6 −m4v6) + [k4(w1w3 + w2w4 − σ3w6)− l4(u1u3 + u2u4 − σ1u6)

−m4(v1v3 + v2v4 − d2v6)] + γ1(k3w5 − l3u5 −m3v5)},
(26)

then drive systems (19) and (20) will achieve combination synchronization with response

system (21).

Corollary 3. (i) Suppose that l1 = l2 = l3 = l4 = 0 and k1 = k2 = k3 = k4 = 1, and if the

controllers are chosen as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 =− {(w1 −m1v1) + [ρ3(w3 − w1) + w6 −m1α2(v3 − v1)]− α1(w2 −m1v2)},
U2 =− {(w2 −m1v2) + [ρ3(w4 − w2)−m1α2(v4 − v2)] + α1(w1 −m1v1)− α2(w3 −m2v3)},
U3 =− {(w3 −m2v3) + [(−w1w5 + ν3w3 + w6)−m2(γ2 − α2)v1 +m2v1v5 −m2γ2v3 −m2v6]

+ α2(w2 −m1v2)− β1(w4 −m2v4)},
U4 =− {(w4 −m2v4) + [(−w2w5 + ν3w4)−m2(γ2 − α2)v2 +m2v2v5 −m2γ2v4]

+ β1(w3 −m2v3)− β2(w5 −m3v5)},
U5 =− {(w5 −m3v5) + [(w1w3 + w2w4 − μ3w5)−m3(v1v3 + v2v4 − β2v5 + v6)]

+ β2(w4 −m2v4)− γ1(w6 −m4v6)},
U6 =− {(w6 −m4v6) + [(w1w3 + w2w4 − σ3w6)−m4(v1v3 + v2v4 − d2v6)] + γ1(w5 −m3v5)},

(27)

then drive system (20) will achieve projective synchronization with response system (21).
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(ii) Suppose that m1 = m2 = m3 = m4 = 0 and k1 = k2 = k3 = k4 = 1, and if the controllers

are chosen as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 =− {(w1 − l1u1) + [ρ3(w3 − w1) + w6 − l1α1(u3 − u1)− l1u6]− α1(w2 − l1u2)},
U2 =− {(w2 − l1u2) + [ρ3(w4 − w2)− l1α1(u4 − u2)] + α1(w1 − l1u1)− α2(w3 − l2u3)},
U3 =− {(w3 − l2u3) + [(−w1w5 + ν3w3 + w6)− l2(γ1u1 − u3 − u1u5)] + α2(w2 − l1u2)

− β1(w4 − l2u4)},
U4 =− {(w4 − l2u4) + [(−w2w5 + ν3w4)− l2(γ1u2 − u4 − u2u5)] + β1(w3 − l2u3)− β2(w5 − l3u5)},
U5 =− {(w5 − l3u5) + [(w1w3 + w2w4 − μ3w5)− l3(u1u3 + u2u4 − β1u5 + u6)] + β2(w4 − l2u4)

− γ1(w6 − l4u6)},
U6 =− {(w6 − l4u6) + [(w1w3 + w2w4 − σ3w6)− l4(u1u3 + u2u4 − σ1u6)] + γ1(w5 − l3u5)},

(28)

then drive system (19) will achieve projective synchronization with response system (21).

Corollary 4. Suppose that l1 = l2 = l3 = l4 = 0, m1 = m2 = m3 = m4 = 0 and k1 = k2 =

k3 = k4 = 1, and if the controllers are chosen as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 = −{w1 + [ρ3(w3 − w1) + w6]− α1w2},
U2 = −[w2 + ρ3(w4 − w2) + α1w1 − α2w3],

U3 = −[w3 + (−w1w5 + ν3w3 + w6) + α2w2 − β1w4],

U4 = −[w4 + (−w2w5 + ν3w4) + β1w3 − β2w5],

U5 = −[w5 + (w1w3 + w2w4 − μ3w5) + β2w4 − γ1w6],

U6 = −[w6 + (w1w3 + w2w4 − σ3w6) + γ1w5],

(29)

then system (21) is stabilized to the equilibrium, O(0, 0, 0, 0, 0, 0).

In what follows, numerical experiments are given to demonstrate our results. The fourth-order

Runge-Kutta method is used with a time step size of 0.001. The system parameters are given as

α1 = 8, β1 = 5, γ1 = 50, σ1 = 15, α2 = 36, β2 = 4, γ2 = 25, d2 = 5, ρ3 = 42, ν3 = 25, μ3 = 6 and

σ3 = 5, so that the three complex nonlinear hyperchaotic systems exhibit hyperchaotic behaviors,

respectively.

First, we assume k1 = k2 = k3 = k4 = 1, l1 = l2 = l3 = l4 = 1 and

m1 = m2 = m3 = m4 = 1, and the initial states for the drive systems and response

systems are arbitrarily given by (x1(0), x2(0), x3(0), x4(0)) = (2.0 −
i, 5.8 − 2i − 12,−16), (y1(0), y2(0), y3(0), y4(0)) = (1.7 + 2.3i, 0.1 −
14i,−16,−18) and (z1(0), z2(0), z3(0), z4(0)) = (3.6 − 0.6i, 0.9 − i, 13, 15),

i.e., (u1(0), u2(0), u3(0), u4(0), u5(0), u6(0)) = (2.0,−1, 5.8,−2,−12,−16),
(v1(0), v2(0), v3(0), v4(0), v5(0), v6(0)) = (1.7, 2.3, 0.1,−14,−16,−18) and

(w1(0), w2(0), w3(0), w4(0), w5(0), w6(0)) = (3.6,−0.6, 0.9,−1, 13, 15), respectively. The

corresponding numerical results are shown in Figures 4 and 5. Figure 4 displays the time response

of the combination synchronization errors, e1, e2, e3, e4, e5ande6. The errors converge to zero,

which implies that systems (19), (20) and (21) have achieved combination synchronization. Figure 5



263

depicts the time responses of the states, u1+v1 versus w1, u2+v2 versus w2,u3+v3 versus w3,u4+v4

versus w4,u5 + v5 versus w5 and u6 + v6 versus w6, respectively. When k1 = k2 = k3 = k4 = 1,

l1 = l2 = l3 = l4 = 0 and m1 = m2 = m3 = m4 = 0, the time evolution of the states,

w1, w2, w3, w4, w5, w6, of system (21) with controller (29) are displayed in Figure 6, which means

that system (21) is stabilized to the equilibrium, O(0, 0, 0, 0, 0, 0).

Figure 4. Combination synchronization errors, e1, e2, e3, e4, e5 and e6, between drive

systems (19), (20) and response system (21).
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Figure 5. Time responses for states ui + vi versus wi, i = 1, 2, ..., 6, respectively.
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Figure 6. Time evolution of the states for system (21).
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5. Conclusions

This paper investigates the combination synchronization of three nonlinear complex hyperchaotic

systems: the complex hyperchaotic Lorenz system, the complex hyperchaotic Chen system and

the complex hyperchaotic Lü system. Based on the Lyapunov stability theory, corresponding

controllers to achieve combination synchronization among three identical or different nonlinear

complex hyperchaotic systems are derived, respectively. Numerical simulations are conducted to

illustrate the validity and feasibility of the theoretical analysis. When applying the complex systems

in communications, the complex variables will double the number of variables and can increase

the content and security of the transmitted information. Furthermore, combination synchronization

between two drive systems and one response system has obvious advantages over synchronization

between one drive system and one response system. Thus combination synchronization of complex

nonlinear systems can find better applications in security communication. However, in practical

chaotic synchronization, mismatched parameters exist, and the external disturbances are always

unavoidable [17]. In our future work, we will investigate robust combination synchronization in

the existence of mismatched parameters and external disturbances.
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Abstract: In this paper, the problem of stabilizing a class of fractional-order chaotic 
systems with sector and dead-zone nonlinear inputs is investigated. The effects of 
model uncertainties and external disturbances are fully taken into account. Moreover, 
the bounds of both model uncertainties and external disturbances are assumed to be 
unknown in advance. To deal with the system’s nonlinear items and unknown bounded 
uncertainties, an adaptive fractional-order sliding mode (AFSM) controller is designed. 
Then, Lyapunov’s stability theory is used to prove the stability of the designed control 
scheme. Finally, two simulation examples are given to verify the effectiveness and 
robustness of the proposed control approach.  

Keywords: fractional-order chaotic system; adaptive sliding mode control; input 
nonlinearity; unknown bounded uncertainties 

PACS Codes: 05.45 
 

1. Introduction 

Although fractional calculus is a mathematical topic with more than 300 years of history, its 
application to physics and engineering has attracted lots of attentions only in the recent years. It has 
been found that with the help of fractional calculus, many systems in interdisciplinary fields can  
be described more accurately, such as viscoelastic systems [1], dielectric polarization [2], 
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electrode-electrolyte polarization [3], finance systems and electromagnetic waves [4]. That is to 
say, fractional calculus provides a superb instrument for the description of the memory and 
hereditary properties of various materials and processes.  

Chaotic systems are a well-known class of complex nonlinear systems, which have several 
special properties, such as extraordinary sensitivity to system initial conditions, chaotic attractors, 
and fractal motions. Meanwhile, it has been proven that some fractional-order differential systems 
can behave chaotically, e.g., the fractional-order Duffing system [5], fractional-order Chen-Lee 
system [6], fractional-order Lorenz system [7], fractional-order hyperchaotic Chen system [8], 
fractional-order Qi system [9], and so on. The research of chaotic systems has attracted 
considerable attentions, for example, Gyorgyi [10] calculated the entropy in chaotic systems.  
Steeb et al. [11] applied the maximum entropy formalism into the study of chaotic systems. 
Aghababa [12] used the finite-time theory to realize finite-time synchronization of chaotic systems. 
Lu [13] developed a nonlinear observer to synchronize the chaotic systems. Chen et al. [14,15] 
researched the synchronization of fractional-order chaotic neural networks. With the development 
of sliding mode control (SMC) technique, SMC approach has became a universal method to realize 
the stabilization or synchronization of chaotic systems [16–20]. It is well known that the system on 
the sliding manifold has desired properties such as good stability, disturbance rejection ability, and 
tracking capability. 

In this paper, the following class of fractional-order chaotic systems are considered: 
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where 10 @@ iq , 3,2,1�i . TzyxX ],,[� , and zyx ,, are pseudo state variables of the system. 
)(�f , )(�g , )(�h , and )(�8  are nonlinear items of the system, each of the four functions is 

assumed to be continuous and satisfies the Lipschitz condition to guarantee the existence and 
uniqueness of solutions of initial value problems. r,�  are given non-negative constants. 

The fractional-order system (1) was introduced by [20], and it should be noted that many chaotic 
systems can be modeled in this form, such as the Chen, Lorenz, Liu, and Lu systems, etc. Some 
control techniques have been reported for stabilizing this type of system. For example,  
Sadras et al. [21] introduced a sliding mode controller to stabilize a special case of system (1).  
Chen et al. [22] developed a fractional-order sliding surface to guarantee asymptotic stability of  
the system in the presence of uncertainties. Inspired by [22], Yin et al. [23] provided an adaptive 
fractional-order sliding mode technique to realize the robust stabilization of this system with 
unknown bounded uncertainties. It is worth noting that there is a drawback in abovementioned 
literatures, that is, the stability of the sliding mode dynamics is not researched. Recently,  
Faieghi et al. [24] firstly applied the fractional Lyapunov stability theory to demonstrate global 
stability of the sliding mode dynamics. Yuan et al. [25] employed the continuous frequency 
distributed model of fractional integrator to analyze asymptotic stability of this kind of sliding 
mode dynamics. However, in [24,25], the nonlinear items of the controlled system were required to 
be directly eliminated, resulting in a complex controller unsuitable for practical realization. On the 
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other hand, all approaches in the aforementioned works are only focused on the linear and direct 
application of control inputs. In practice, input nonlinearity is often encountered in various chaotic 
systems and can be a cause of instability. Thus, it is obvious that the effects of input nonlinearity 
must be taken into account when analyzing and implementing a control scheme. Recently, 
Aghababa [26–28] considered the impacts of nonlinear inputs in the stabilization and 
synchronization of integer-order chaotic systems. However, to the best of our knowledge, there is 
little information available in the literature about the stabilization of fractional-order chaotic 
systems with nonlinear inputs. 

Motivated by the above discussions, the problem of stabilizing a class of uncertain  
fractional-order chaotic systems with nonlinear inputs is addressed in this paper. Two kinds of 
nonlinear inputs including sector nonlinear inputs and dead-zone nonlinear inputs are researched, 
respectively. In order to stabilize system (1), an adaptive fractional-order sliding mode (AFSM) 
controller is proposed, which is associate with time-varying feedback gains, can deal with the 
nonlinear items of the controlled system. After that, the Lyapunov’s stability theory is used to 
demonstrate the stability of the proposed control scheme. 

To sum up, our approach makes the following contributions: (i) it researches the stabilization of 
a class of fractional-order chaotic systems with unknown bounded model uncertainties and external 
disturbances; (ii) two kinds of control input nonlinearities including sector and dead-zone 
nonlinearities are considered; (iii) based on a fractional-order integral type sliding surface, adaptive 
sliding mode input control and some adaptation laws, a novel sliding mode control scheme  
is proposed. 

The remainder of this paper is organized as follows: in Section 2, the relevant definitions, 
lemmas and numerical methods for solving the fractional-order differential equations are given. 
Main results are presented in Section 3. Some numerical simulations are provided in Section 4 to 
show the effectiveness of the proposed method. Finally, conclusions are put forth in Section 5. 

2. Preliminaries 

2.1. Definitions and Lemma  

The most frequently used definitions for the general fractional calculus are Riemann-Liouville 
definition, Caputo definition and Grunwald-Letnikov definition.  

Definition 1. The �-th-order Riemann-Liouville fractional integration is given by: 
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where )(�X  is the Gamma function. 

Definition 2. For nn #@� �1 , Rn , the Riemann-Liouville fractional derivative definition of 
order �  is defined as: 
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Definition 3. The Caputo fractional derivative definition of order �  is described as: 
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where m  is the smallest integer number, larger than � . 

Definition 4. The Grunwald-Letnikov fractional derivative definition of order �  is written as: 
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Lemma 1. (Barbalat’s Lemma [29]) If RR":<  is a uniformly continuous function for 0$t , 

and if the limit of the integral ��< d
t

t K%" 0
)(lim  exist and is finite, then 0)(lim �

%"
t

t
< . 

2.2. Numerical Method for Solving Fractional Differential Equations 

The PC (Predictor, Corrector) method which was proposed by Diethelm et al. in [30] is 
generally used to solve fractional differential equations (FDE). Consider the following fractional 
differential equation: 

0)0(,0),,( XXTtXtFXD �##��  (6)

which is equivalent to the Volterra integral equation: 
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During the process of numerical computation, the trapezoidal quadrature product is used to 
replace the integral, and the nodes )1...,,2,1,0( �� njt j  are taken with respect to the weight 

function 1
1 )( �
� �� �

nt , that is to say: 
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where 1
~

�nG  is the piecewise linear interpolation for G  with nodes and knots chosen at jt , 
1....,,1,0 �� nj . On the basis of quadrature theory, the integral on the right side of Equation (8) 

can be described as: 
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Let NTh /� , nhtn � , Nn ...,,1,0� , and )( nh tX  be approximation for )( ntX . If )( jh tX  
is calculated, then )( 1�nh tX  can be computed by means of the following formula: 
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To calculate the values of )( 1tX p
h  and )( 1�n

p
h tX , we should use the predictor formula, the 

following numerical approximation formula is applied: 
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where: 
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Hence, for approximating the Equation (7), the predictor formula is given by: 

4
4

5

4
4

6

7

�Y
�

�
Z
�

�
����

�X
�

�
�X

�

�

�
�

�

0,))(,())()1((
)1(

0)),(,(
)1(

)(

0
0

000

1

ntXtFjnjnhX

ntXtFhX
tX

jhj

n

j

h

n
p

h
��

�

�

�

�  
(12)

In this method, the error is: 
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 (13)

Thus, with the help of the aforementioned method, we can obtain the numerical solution of a 
fractional differential equation. 

3. Main Results 

Consider system (1) is perturbed by model uncertainty and external disturbance, and a nonlinear 
control input is added to the second equation of system (1), then the proposed fractional-order 
chaotic system can be rewritten as: 
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where ),,( zyxg�  and )(td  represent the model uncertainty and external disturbance, 
respectively, )(tu  is the single control law to be designed later, and ))(( tuh  is a nonlinear 
function of control input satisfying either Equations (15) or (16). If the nonlinear function ))(( tuh  
is continuous inside a sector ],[ 21 JJ , 01 �J , i.e.,: 

)())(()()( 2
2

2
1 tutuhtutu JJ ##  (15)

Then the presented nonlinear function of input in Equation (15) is called sector nonlinear input. 
A typical sector nonlinear function is shown in Figure 1. 
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Figure 1. Sector nonlinear function ))(( tuh  for the input )(tu . 
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The dead-zone nonlinear function is described as follows: 
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where )(��h  and )(��h  are nonlinear functions of )(tu , �u  and �u  are given constants. 
Besides, outside of the dead-band, the nonlinear input ))(( tuh  has gain reduction tolerances 2�N , 

1�N , 1�N  and 2�N , which satisfy the following property: 
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where 2�N , 1�N , 1�N , 2�N  are positive constants. A sample dead-zone nonlinear function is 
displayed in Figure 2. 

Figure 2. Dead-zone nonlinear function ))(( tuh  for the input )(tu . 
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Before introducing our approach, we firstly give an assumption. 
Assumption 1. The model uncertainty and external disturbance are assumed to be bounded by: 

CI ##� )(),,( tdzyxg  (18)

where I , C  are unknown in advance. 
Letting )(ˆ tI  and )(ˆ tC  be estimations for I  andC , respectively, which are updated by the 

following adaptive laws: 
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st
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 (19)

where 1H , 2H  are positive constants, and s  is the sliding surface to be designed later. 
Generally, the design procedure of an AFSM controller involves two steps. The first step is to 

establish an appropriate sliding surface with the desired properties. The second step is to design a  
robust control law to ensure the occurrence of sliding motion. In this paper, we select the following 
fractional-order integral type sliding surface: 

� �K ������ � tq dyzyxhzzyxfxyDs
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where =  is an arbitrary positive constant. Taking time derivative of Equation (20), we get: 

� �yzyxhzzyxfxyDs q =������ ),,(),,(2�  (21)

When the system (14) operates in the sliding mode, the following equalities are satisfied: 

0,0 �� ss �  (22)

that is, we can get the desired sliding mode dynamics: 
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Theorem 1. Consider the sliding mode dynamics (23), the system is asymptotically stable. 

Proof: According to the continuous frequency distributed model of fractional integrator [31–33], 
the fractional-order sliding mode dynamics (23) is exactly equivalent to the following infinite 
dimensional ordinary differential equations: 
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where 	 
 0))(sin()( �� � iq
ii q U��U� , 3,2,1�i . In above model, ),(1 tz U , ),(2 tz U , ),(3 tz U  

are the true state variables, while )(tx , )(ty , )(tz  are the pseudo state variables. Then, 
Lyapunov’s stability theory in [34] can be applied to prove the asymptotic stability of the above 
system. Selecting a positive definite Lyapunov function: 
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Taking the derivative of )(1 tV  with respect to time, it yields: 
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Since 0)( �U�i , � , r  are non-negative constants, and =  is a positive constant, so according 
to the analysis results of Reference [34], we have 0)(1 @tV� , which implies that the fractional-order 
sliding mode dynamics (23) is asymptotically stable. Therefore, the proof is completed. 

Once a proper sliding surface has been designed, it is followed by designing an adaptive control 
law to force the state trajectories of system (14) onto the sliding surface and stay on it forever. The 
control law for the nonlinearities defined in Equations (15) and (16) are given by Equations (27) 
and (28), respectively: 
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where ||)(||)(||)()()( 3210 ztkytkxtktktK ���� , and )(tki , 3,2,1,0�i  are updated by the 

following adaptive rules: 
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where i? , 3,2,1,0�i  are the gains of adaptation, it is obvious that 0)( �tK  for all 0�t . 

Theorem 2. Consider the fractional-order chaotic system (14) with unknown bounded uncertainties 
and sector nonlinear input, then the closed-loop system consisting of uncertain system (14) and 
controller (27) will converge to the sliding surface 0�s . 

Proof: Selecting a positive Lyapunov function for system (14): 
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where *
ik , 3,2,1,0�i  are positive constants, and satisfy CI ˆˆ|),,(|*
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Taking the time derivative of both sides of Equation (30), one obtains: 
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Inserting s�  from Equation (21) into (31), and according to the second state equation of 
Equation (14), we have: 
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It is clear that: 
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According to Equations (15) and (27), we known that: 

)(sgn)())(()sgn()())(()( 222
1 stKtuhstKtuhtu _J_ $��  (34)

One can conclude from Equation (34) that: 

)(sgn)())(()sgn( 2 stKtuhs $�  (35)

Multiplying both sides of Equation (35) by || s , and using sss �)sgn(||  with 1)(sgn2 �s ,  
we get: 
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Substituting Equation (36), the adaptive laws (19) and (29) into (33), and using Assumption 1,  
one has: 
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where 0|||)),,(|(||)(|||)),,(|()ˆˆ|),,(|()( *
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0 ������������ zzyxhkykxzyzfkzyxgktQ =BCI . 

It is easy to demonstrate that: 
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Integrating (38) from zero to t , it yields: 
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Since 0)(2 #tV� , 0)()0( 22 $� tVV  is positive and finite, then we can obtain that 
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Owing to the fact 0)( �tQ , Equation (40) implies that 0"s  as %"t . Therefore, the state 
trajectories of the controlled system (14) can be forced onto the predefined sliding surface. Hence, 
the proof is completed. On the basis of Theorem 2, if system (14) subject to dead-zone nonlinear 
input, then we have the following theorem. 

Theorem 3. Consider the fractional-order chaotic system (14) with unknown bounded uncertainties 
and dead-zone nonlinear input. Then the closed-loop system consisting of uncertain system (14) 
and controller (28) will converge to the sliding surface 0�s . 

Proof: In a similar way as in the Proof of Theorem 2, we get: 
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(41)

According to Equations (16), (17), and (28), when 0@s , it is apparent that �� utu )( , and: 
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From Equation (42), since 01 �� �N_ , 0)( �tK , then one has: 
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Multiplying both sides of Equation (43) by || s , and using sss �)sgn(||  with 1)(sgn2 �s ,  
it yields: 

||)())(( stKtush �#  (44)

When 0�s , through the similar operations, the inequality (44) still holds. Substituting (44), the 
adaptive laws (19) and (29) into (41), in the same way to the case of Equation (37), we can obtain 

0)(2 #tV� . By Barbalat’s lemma, we have 0lim �
%"

s
t

. Thus, the proof is completed. 

4. Simulation Results 

In this section, two illustrative examples are presented to verify the feasibility and effectiveness 
of the propose control scheme.  

4.1. Numerical Simulation Considering Sector Nonlinear Input  

Consider an uncertain fractional-order Chen system with sector nonlinear input, which is 
described by: 
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where the model uncertainty, external disturbance and sector nonlinear input are given by: 
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It is obvious that �1 = 0.4, 25�_ . In this simulation, set the control parameters as 
153210 ���� ???? , 1�= , 1.01 �H , 2.02 �H , let 01.0�h , )94.0,92.0,9.0(),,( 321 �qqq , 

)28,3,35(),,( �cba , 0)0(ˆ)0(ˆ ��CI , 2.0)0()0()0()0( 3210 ���� kkkk . According to the 

initialization method in [35], the initial conditions for fractional differential equations with order 
between 0 and 1 are constant function of time, so the initial conditions for system (45) can be 
chosen randomly as:  
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for 0##%� t . 
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With the above fractional orders and initial conditions, system (45) possesses a chaotic behavior, 
as shown in Figure 3.  

To observe the control effect of AFSM controller, the state trajectories of Equation (45) without 
control are firstly given in Figure 4. 

When the controller is activated at st 5� , we can obtain the desired time responses of  
system (45), shown in Figure 5. It is not difficult to see that all state trajectories converge to zero 
asymptotically, which implies that a class of uncertain fractional-order chaotic systems (14) with 
sector nonlinear input can be stabilized. 

Figure 3. Chaotic attractors of fractional-order Chen system. 

 

The time evolutions of feedback gains )(tki , 3,2,1,0�i  and the estimations )(ˆ tI , )(ˆ tC  are 

presented in Figures 6 and 7, respectively. From Figures 6 and 7, it is clear that all time-varying 
feedback gains )(tki , 3,2,1,0�i  and the estimations )(ˆ tI , )(ˆ tC  converge to some fixed 

values, which verify the feasibility of the introduced method. 

Figure 4. State trajectories of system (45) without control. 
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Figure 5. State trajectories of system (45) with controller activated at st 5� . 

 

Figure 6. Time evolutions of feedback gains )(tki with controller activated at st 5� . 

 
Figure 7. Time evolutions of )(ˆ tI  and )(ˆ tC  with controller activated at st 5� . 
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4.2. Numerical Simulation Considering Dead-Zone Nonlinear Input 

In this simulation, we consider the uncertain fractional-order Liu system with dead-zone 
nonlinear input, which is written as: 
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 (48)

where the model uncertainty, external disturbance and dead-zone nonlinear input are given by: 
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It is obvious that 7.01 ��N , 3.01 ��N , 310�_ . In this simulation, set the control parameters as 
103210 ���� ???? , 1�= , 5.01 �H , 12 �H , let 01.0�h , )98.0,98.0,98.0(),,( 321 �qqq , 

)1,4,4,5,5.2,1(),,,,,( �emkcba , 0)0(ˆ)0(ˆ ��CI , 1.0)0()0()0()0( 3210 ���� kkkk . The 

initial conditions for systems (48) can be chosen randomly as: 
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for 0##%� t . 
The chaotic behaviors of system (48) are displayed in Figures 8 and 9. 

Figure 8. Chaotic attractors of fractional-order Liu system. 

 

When the controller is activated at st 5� , we get the desired state trajectories of (48), shown in 
Figure 10. 
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Figure 9. State trajectories of system (48) without control. 

 

Figure 10. State trajectories of system (48) with controller activated at st 5� . 

 

From Figure 10 we can observe that system (48) is stabilized by the proposed sliding mode 
control approach, and all state trajectories tend to zero asymptotically. Time evolutions of feedback 
gains )(tki , 3,2,1,0�i  and the estimations )(ˆ tI , )(ˆ tC  are illustrated in Figures 11 and 12, 

respectively. All these simulation results demonstrate that our method is strongly robust to 
unknown model uncertainties and external disturbances. Therefore, the proposed approach is 
effective and feasible. 

Figure 11. Time evolutions of feedback gains )(tki with controller activated at st 5� . 
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Figure 12. Time evolutions of )(ˆ tI  and )(ˆ tC  with controller activated at st 5� . 

 

5. Conclusions 

In this paper, an adaptive fractional-order sliding mode controller is designed to stabilize a class 
of uncertain fractional-order chaotic systems with nonlinear inputs. The bounds of model 
uncertainties and external disturbances are assumed to be unknown in advance. Techniques for 
stabilizing this type of systems are demonstrated in detail. On the basis of the Lyapunov stability 
theorem, some sufficient conditions are given to guarantee the stabilization. Finally, two simulation 
examples are presented to verify the effectiveness and robustness of the proposed control scheme. 

Acknowledgments 

The author would like to thank the editors and referees for their constructive comments and 
suggestions. This work is supported by the National Natural Science Foundation of China 
(61273119) and the National Nature Science Foundation of China (61374038). 

Conflicts of Interest 

The authors declare no conflict of interest. 

References  

1. Bagley, R.L.; Calico, R.A. Fractional order state equations for the control of viscoelastically 
damped structure. J. Guidance Control Dyn. 1991, 14, 304–311.  

2. Sun, H.H.; Abdelwahad, A.A.; Oharal, B. Linear approximation of transfer function with a 
pole of fractional power. IEEE Trans. Autom. Control 1984, 29, 441–444. 

3. Ichise, M.; Nagayanagi, Y.; Kojima, T. An analog simulation of non-integer order transfer 
functions for analysis of electrode process. J. Electroanal. Chem. Interfacial Electrochem. 
1971, 33, 253–265. 

4. Heaviside, O. Electromagnetic Theory; Chelsea: New York, NY, USA, 1971.  
5. Gao, X.; Yu, J. Chaos in the fractional order periodically forced complex Duffing’s oscillators. 

Chaos Solitons Fractals 2005, 26, 1125–1133. 



282 

 

6. Chen, C.M.; Chen, H.K. Chaos and hybrid projective synchronization of commensurate and 
incommensurate fractional order Chen-Lee systems. Nonlinear Dyn. 2010, 62, 851–858.  

7. Grigorenko, I.; Grigorenko, E. Chaotic dynamics of the fractional Lorenz system.  
Phys. Rev. Lett. 2003, 91, 034101. 

8. Wu, X.J.; Lu, Y. Generalized projective synchronization of the fractional-order Chen 
hyperchaotic system. Nonlinear Dyn. 2009, 57, 25–35.  

9. Zhang, R.X.; Yang, S.P. Robust chaos synchronization of fractional-order chaotic systems with 
unknown parameters and uncertain perturbations. Nonlinear Dyn. 2012, 69, 983–992.  

10. Gyorgyi, G.; Szepfalusy, P. Calculation of the entropy in chaotic systems. Phys. Rev. A 1985, 
31, 3477–3479. 

11. Steeb, W.H.; Solms, F.; Stoop, R. Chaotic systems and maximum entropy formalism. J. Phys. 
Math. Gen. 1994, 27, 399–402. 

12. Aghababa, M.P. Finite-time chaos control and synchronization of fractional-order 
nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding 
mode technique. Nonlinear Dyn. 2012, 69, 247–267. 

13. Lu, J.G. Nonlinear observer design to synchronize fractional-order chaotic system via a scalar 
transmitted signal. Phys. A 2006, 359, 107–118. 

14. Chen, L.P.; Qu, J.F.; Chai, Y.; Wu, R.C.; Qi, G.Y. Synchronization of a class of fractional-order 
chaotic neural networks. Entropy 2013, 15, 3265–3276. 

15. Chen, L.P.; Chai, Y.; Wu, R.C.; Sun, J.; Ma, T.D. Cluster synchronization in fractional-order 
complex dynamical networks. Phys. Lett. A 2012, 376, 2381–2388. 

16. Yang, C.C; Qu, C.J. Adaptive terminal sliding mode control subject to input nonlinearity for 
synchronization of chaotic gyros. Commun. Nonlinear Sci. Numer. Simul. 2012, 18, 682–691. 

17. Yang, C.C. Synchronization of rotating pendulum via self-learning terminal sliding-mode 
control subject to input nonlinearity. Nonlinear Dyn. 2013, 72, 695–705. 

18. Abooee, A.; Haeri, M. Stabilisation of commensurate fractional-order polytopic non-linear 
differential inclusion subject to input non-linearity and unknown disturbances. IET Control 
Theory Appl. 2013, 7, 1624–1633.  

19. Pisano, A.; Rapaic, M.R.; Jelicic, Z.D.; Usai, E. Sliding mode control approaches to the robust 
regulation of linear multivariable fractional-order dynamics. Int. J. Robust Nonlinear Control 
2010, 20, 2045–2056. 

20. Yin, C.; Zhou, S.M.; Chen, W.F. Design of sliding mode controller for a class of fractional-order 
chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 356–366. 

21. Dadras, S.; Momeni, H.R. Control of a fractional-order economical system via sliding mode. 
Phys. A 2010, 389, 2434–2442.  

22. Chen, D.Y.; Liu, Y.; Ma, X.; Zhang, R. Control of a class of fractional-order chaotic systems 
via sliding mode. Nonlinear Dyn. 2011, 67, 893–901. 

23. Yin, C.; Dadras, S.; Zhong, S.M.; Chen, Y.Q. Control of a novel class of fractional-order 
chaotic systems via adaptive sliding mode control approach. Appl. Math. Model. 2013, 37, 
2469–2483.  

24. Faieghi, M.R.; Delavari, H.; Baleanu, D. A note on stability of sliding mode dynamics in 
suppression of fractional-order chaotic systems. Comput. Math. Appl. 2013, 66, 832–837.  



283 

 

25. Yuan, J.; Shi, B.; Ji, W.Q. Adaptive sliding mode control of a novel class of fractional chaotic 
systems. Adv. Math. Phys. 2013, 2013, 576709. 

26. Aghababa, M.P. Adaptive control for electromechanical systems considering dead-zone 
phenomenon. Nonlinear Dyn. 2014, 75, 157–174. 

27. Aghababa, M.P.; Aghababa, H.P. Robust synchronization of a chaotic mechanical system with 
nonlinearities in control inputs. Nonlinear Dyn. 2013, 73, 363–376. 

28. Aghababa, M.P.; Heydari, A. Chaos synchronization between two different chaotic systems 
with uncertainties, external disturbances, unknown parameters and input nonlinearities.  
Appl. Math. Model. 2012, 36, 1639–1652. 

29. Khalil, H.K. Nonlinear Systems; Prentice Hall: Upper Saddle River, NJ, USA, 2002. 
30. Diethelm, K.; Ford, N. A predictor-corrector approach for the numerical solution of fractional 

differential equations. Nonlinear Dyn. 2002, 29, 3–22.  
31. Trigeassou, J.C.; Maamri, N.; Sabatier, J.; Oustaloup, A. State variables and transients of 

fractional order differential systems. Comput. Math. Appl. 2012, 64, 3117–3140. 
32. Trigeassou, J.C; Maamri, N.; Sabatier, J.; Oustaloup, A. Transients of fractional-order 

integrator and andderivatives signal. Image Video Process. 2012, 6, 359–372. 
33. Trigeassou, J.C.; Maamri, N. Initial conditions and initialization of linear fractional differential 

equations. Signal Process. 2011, 91, 427–436. 
34. Trigeassou, J.C.; Maamri, N.; Sabatier J.; Oustaloup A. A Lyapunov approach to the stability 

of fractional differential equations. Signal Process. 2011, 91, 437–445. 
35. Sabatier, J.; Agrawal, O.P.; Tenreiro Machado, J.A., Eds. Advances in Fractional Calculus: 

Theoretical Developments and Applications in Physics and Engineering; Springer: Heidelberg, 
Germany, 2007. 

 
 



284

Reprinted from Entropy. Cite as: Zhao, M.; Wang, J. Outer Synchronization between

Fractional-Order Complex Networks: A Non-Fragile Observer-based Control Scheme. Entropy
2013, 15, 1357–1374.

Article

Outer Synchronization between Fractional-Order Complex
Networks: A Non-Fragile Observer-based Control Scheme
Meichun Zhao 1 and Junwei Wang 2,*

1 Department of Applied Mathematics, Guangdong University of Finance, Guangzhou 510521,

China; E-Mail: zhaomeichungz@tom.com
2 Cisco School of Informatics, Guangdong University of Foreign Studies,

Guangzhou 510006, China

* Author to whom correspondence should be addressed; E-Mail: wangjunweilj@yahoo.com.cn;

Tel.: +86-20-39328577; Fax: +86-20-39328032.

Received: 25 February 2013; in revised form: 4 April 2013 / Accepted: 8 April 2013 /
Published: 15 April 2013

Abstract: This paper addresses the global outer synchronization problem between

two fractional-order complex networks coupled in a drive-response configuration. In

particular, for a given fractional-order complex network composed of Lur’e systems,

an observer-type response network with non-fragile output feedback controllers is

constructed. Both additive and multiplicative uncertainties that perturb the control gain

matrices are considered. Then, using the stability theory of fractional-order systems and

eigenvalue distribution of the Kronecker sum of matrices, we establish some sufficient

conditions for global outer synchronization. Interestingly, the developed results are cast

in the format of linear matrix inequalities (LMIs), which can be efficiently solved via

the MATLAB LMI Control Toolbox. Finally, numerical simulations on fractional-order

networks with nearest-neighbor and small-world topologies are given to support the

theoretical analysis.

Keywords: outer synchronization; fractional-order derivative; complex network;

observer control; LMI
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1. Introduction

Most real systems in nature, society and engineering can be properly described by models

of complex networks of interacting dynamical units with diverse topologies [1]. In complex

networks, various collective behaviors can emerge through the interaction of the units, among

which synchronization represents one of the most interesting ones. Since the first observation

of synchronization phenomenon of two pendulum clocks by Huygens in 1665, this phenomenon

has been discovered in many biological and physical systems, such as pacemaker cells in the

heart and nervous systems, synchronously flashing fireflies, networks of neurons in the circadian

pacemaker [2,3]. Another topic that is closely related to the synchronization of complex networks is

the consensus of multi-agent systems, which means that a team of agents reaches an agreement on

certain quantities of interest through local communication. The study of consensus problem not only

helps us understand natural phenomena (e.g., schooling of fish, flocking of birds and swarming of

bees), but also has a variety of engineering applications (e.g., cooperative control of unmanned aerial

vehicles, rendezvous of mobile robots and communication among sensor networks) [4]. Recently,

the relation between synchronization of complex networks and consensus of multi-agent systems

has been discussed [5,6]. The past few years have witnessed dramatic advances concerned with

synchronization of complex networks and consensus of multi-agent systems (for more details,

see [7–17] and references therein).

Notwithstanding the vast technical literature on synchronization, the great majority of research

efforts has focused on complex networks of coupled integer-order systems, whose dynamics are

described by integer-order differential equations. However, it has been recognized that many

physical systems are more suitable to be modeled by fractional-order differential equations (i.e.,

differential equations involving fractional-order derivatives) rather than the classic integer-order

ones [18,19]. Fractional-order derivatives provide an excellent instrument for the description of

memory and hereditary properties of various materials and processes. Moreover, they include

traditional integer-order derivatives as a special case. In addition, many natural collective behaviors

can be explained by the complex networks with fractional-order dynamics: for example, the

synchronized motion of agents in fractional circumstances, such as macromolecule fluids and porous

media [20], CaoY2010, ShenJ2012. Therefore, it is meaningful to study synchronization problem

in complex networks of coupled fractional-order systems. For convenience, we here call networks

composed of integer-order and fractional-order systems “integer-order complex networks (ICNs)”

and “fractional-order complex networks (FCNs)”, respectively.

In recent years, synchronization in FCNs has begun to receive research attention within the

scientific community [23–28], with the first systematic studies on synchronization of FCNs emerging

in [29]. A common underlying assumption in the above mentioned literature is that they describe the

synchronization behavior inside a single network, which has been termed “inner synchronization".

For this case, it has been shown that stability of the synchronized state depends on the details of the

underlying network topology. The route to inner synchronization differs from the synchronization

taking place between two coupled networks. In the latter case, also known as “outer synchronization",
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the corresponding nodes of two coupled networks will achieve synchronization [30]. In the real

world, there are a great many examples about relationships between different networks, such as the

original spreading of infectious diseases between two communities, the balance of beneficial bacteria

and pathogenic bacteria in our digestive systems, predator-prey interactions in ecological systems.

This shows the great importance and challenge to study the dynamics between two coupled networks.

Despite the fact that some advances have been made for outer synchronization [31–38], these

literatures almost exclusively report outer synchronization between coupled ICNs. For outer

synchronization between two FCNs, the related research work is just beginning and the only two

attempts is the work in [39,40]. In [39], the authors treated outer synchronization problem between

two different bidirectionally coupled FCNs. However, the stability condition in that work depends

on the eigenvalues of a large system matrix. From the viewpoint of computational complexity, the

eigenvalue computation of such large size matrix is difficult and even prohibitive. Another work

in [40] considered the robust outer synchronization in a setup consisting of two FCNs coupled

unidirectionally by way of an open-plus-closed-loop scheme. Although their approach avoids the

need to compute eigenvalues of a large system matrix, the outer synchronization behavior is achieved

in the “local” sense, not in the “global” sense. When initial conditions of two FCNs lie far away from

each other, the two FCNs in [40] would fail to achieve outer synchronization. Therefore, whether

outer synchronization behavior between two FCNs can be achieved globally still remains an open

problem, which motivates the research of this work. Another motivation comes from concerns on

controller gain variations. In practical applications, uncertainties or inaccuracies do occur in the

controller implementation stage due to finite word length, round-off errors in numerical computations

and finite resolution measuring instruments [41]. Consequently, even though the designed controllers

are robust with respect to system uncertainties, they may be very fragile to their own uncertainties.

This brings the so-called non-fragile controller design problem, i.e., how to design a controller such

that the controller is insensitive (or resilient) to some uncertainties in its coefficients. To the best

of authors’ knowledge, the non-fragile control problem for global outer synchronization in coupled

FCNs has never been reported in the literature. The above situation is exactly what concerns and

interests us.

The aim of this paper is to discuss the global outer synchronization problem between coupled

FCNs by designing appropriate non-fragile controllers. We will first construct two drive-response

coupled FCNs from the viewpoint of observer theory. Then, using the stability theory of

fractional-order systems and the characteristics of the eigenvalue distribution of Kronecker sum of

two matrices, we present a basic theorem for outer synchronization. Based on this basic theorem,

two sufficient conditions for outer synchronization in the LMI format are derived for the additive and

multiplicative controller gain perturbations, respectively. Finally, the effectiveness and feasibility of

the designed control strategy for outer synchronization are demonstrated by numerical simulations

on chaotic drive-response FCNs with nearest-neighbor or small-world topologies.

The organization of this work is as follows. In Section 2, the preliminaries and problem statement

are introduced. The outer synchronization analysis for two designed coupled FCNs is studied and
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synchronization criteria are proposed in Section 3. In Section 4, corresponding numerical simulations

are presented. Finally, conclusions are drawn in Section 5.

Notations. In the sequel, if not explicitly stated, matrices are assumed to have compatible

dimensions for algebraic operations. R
n denotes the n-dimensional Euclidean space, Rm×n is the

set of all m× n real matrices; In represents the n× n identity matrix, I means an identity matrix of

appropriate order; the shorthand diag{· · · } represents a block diagonal matrix; and the superscript

“T " stands for matrix transposition. λmin(A) and λmax(A) denote the smallest and the largest

eigenvalues of a real symmetric matrix A, respectively. The operator Sym(A) denotes A+AT . The

notation P > 0 (≥ 0, < 0, ≤ 0) means that P is positive (semi-positive, negative, semi-negative)

definite, and the symbol � denotes the elements below the main diagonal of a symmetric block matrix.

For A ∈ R
m×n and B ∈ R

p×q, A⊗B ∈ R
mn×pq denotes the Kronecker product of the two matrices.

2. Preliminaries and Network Model

2.1. Basic Concepts and Lemmas

In this section, we first recall some definitions related to fractional-order derivatives that will

be used throughout this paper. Note that there are different definitions for fractional derivatives,

such as Grünwald–Letnikov, Riemann–Liouville, and Caputo definitions [18]. Here we make use of

the following Caputo fractional derivative, because its Laplace transform allows utilization of initial

conditions of classical integer-order derivative that has known physical interpretations.

Definition 2.1. Let m− 1 < α ≤ m, with m ∈ N, the Caputo fractional derivative is defined as

Dα
t h(t) = Jm−α

t Dm
t h(t) =

⎧⎪⎨
⎪⎩

1

Γ(m− α)

∫ t

0

(t− τ)m−α−1h(m)(τ)dτ, α �= m

h(m)(t), α = m

where h(m)(t) = dmh(t)
dtm

is the ordinary derivative of integer order m.

To prove the main results in the next section, we need the following lemmas.

Lemma 2.2 ([42]). For the linear fractional-order system

Dα
t x(t) = Ax(t),with x(0) = x0 (1)

where 0 < α < 1, x ∈ R
n and A ∈ R

n×n. System (1) is asymptotically stable if and only if

|arg(spec(A))| > απ

2
(2)

where spec(A) is the spectrum of system matrix A.

Lemma 2.3 ([43]). Let A ∈ R
n×n have eigenvalues λi (1 ≤ i ≤ n), and let B ∈ R

m×m have

eigenvalues μi (1 ≤ i ≤ m). Then the Kronecker sum A⊕B � (Im ⊗A) + (B ⊗ In) ∈ R
mn×mn

has mn eigenvalues

λ1 + μ1, · · · , λ1 + μm, λ2 + μ1, · · · , λ2 + μm, · · · , λn + μ1, · · · , λn + μm
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Lemma 2.4 ([44]). Let A ∈ R
n×n and 0 < α < 1. The fractional-order system Dα

∗x(t) = Ax(t)

is asymptotically stable if and only if there exist two real symmetric positive definite matrices

Pk1 ∈ R
n×n (k = 1, 2), and two skew-symmetric matrices Pk2 ∈ R

n×n (k = 1, 2), such that

2∑
i=1

2∑
j=1

Sym{Θij ⊗ (APij)} < 0 (3)

[
P11 P12

−P12 P11

]
> 0,

[
P21 P22

−P22 P21

]
> 0 (4)

where

Θ11 =

[
sinθ −cosθ

cosθ sinθ

]
, Θ12 =

[
cosθ sinθ

−sinθ cosθ

]

Θ21 =

[
sinθ cosθ

−cosθ sinθ

]
, Θ22 =

[
−cosθ sinθ

−sinθ −cosθ

]
, θ =

qπ

2

Lemma 2.5 ([45]). For matrices X and Y with appropriate dimensions, the following inequality

holds for ε > 0

XTY + Y TX < εXTX +
1

ε
Y TY (5)

Lemma 2.6 ([46]). For a given symmetric matrix S = ST , the following assertions are equivalent

(1) S =

[
S11 S12

S21 S22

]
< 0;

(2) S11 < 0, S22 − ST
12S

−1
11 S12 < 0;

(3) S22 < 0, S11 − S12S
−1
22 S

T
12 < 0.

2.2. Network Model

In this paper, we will focus on the outer synchronization problem of two coupled fractional-order

complex networks with the drive-response (or master-slave, unidirectional) coupling structure, in

which the drive network does not receive any information from the response network.

The drive network with each node being a n-dimensional fractional-order differential system in

the form of Lur’e type is described as

Dα
t xi =Axi + f(Hxi, t) +

N∑
j=1

cijxj

yi =Hxi, i = 1, 2, · · · , N
(6)

where 0 < α < 1 is the fractional commensurate order, xi ∈ R
n and yi ∈ R denote the state and

scalar output vectors of the i-th node, respectively. The nonlinear vector-valued function f(·, ·) :

R × R −→ R
n is continuously differentiable. The constant matrix A ∈ R

n×n combing with f(·, ·)
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describes the dynamics of individual nodes. H ∈ R
1×n is the observer matrix. The matrix C =

(cij) ∈ R
N×N is the outer coupling matrix of the drive network, which denotes the network topology,

and is defined as follows: if there is a connection between node i and node j (i �= j), then cij =

cji > 0; otherwise, cij = cji = 0 (j �= i), and the diagonal elements of matrix C are defined by

cii = −∑N
j=1
j �=i

cij, i = 1, 2, · · · , N . It is noted that the configuration matrix C is symmetric with

non-positive real eigenvalues and not necessarily irreducible.

Based on the design idea of observer in the control theory, the response network is described as a

nonlinear observer

Dα
t x̂i =Ax̂i + f(yi, t) +

N∑
j=1

cijx̂j +Ui(yi, ŷi)

ŷi =Hx̂i, i = 1, 2, · · · , N
(7)

where x̂i ∈ R
n and ŷi ∈ R denote the state and scalar output vectors of node i of the response

network, respectively. A, f(·, ·), H and C are the same as in system Equation (6). Ui(·, ·) :

R× R −→ R
n is the control input to be designed.

Considering the control gain perturbations, the actual implemented control input is assumed to be

Ui(yi, ŷi) = (L+ΔL(t))(yi − ŷi) (8)

where L ∈ R
n is the nominal control gain matrix and the term ΔL(t) represents the control gain

variations. In this paper, the following two classes of the control gain variations are considered:

Type 1: ΔL(t) is with the norm-bounded additive form:

ΔL(t) = Δ1(t) = M1F1(t)N1 (9)

Type 2: ΔL(t) is with the norm-bounded multiplicative form:

ΔL(t) = Δ2(t) = M2F2(t)N2L (10)

where M1, N1, M2 and N2 are known matrices with appropriate dimensions, F1(t) and F2(t) are

unknown time-varying matrices satisfying the relation

F1(t)F
T
1 (t) ≤ I, F2(t)F

T
2 (t) ≤ I (11)

Let us define the errors of outer synchronization ei = xi− x̂i, then the following error dynamics

of the outer synchronization can be obtained from Equations (6) and (7):

Dα
t ei = (A− (L+ΔL)H)ei +

N∑
j=1

cijej, i = 1, 2, · · · , N (12)

In this paper, we aim at establishing computable criteria in the LMI format to find the control

gain L such that the coupled fractional-order complex networks Equations (6) and (7) achieve global

outer synchronization in the following sense

lim
t→∞

‖ei(t)‖ = lim
t→∞

‖xi(t)− x̂i(t)‖ = 0, i = 1, 2, · · · , N (13)
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for any initial conditions xi(0) and x̂i(0), where ‖ · ‖ refers to the Euclidean norm.

Using the Kronecker product, the error system Equation (12) can be compactly rewritten

equivalently as

Dα
t e = (IN ⊗AL +C ⊗ In) e(t) (14)

where e =
(
eT
1 , e

T
2 , · · · , eT

N

)T ∈ RnN and AL = A − (L + ΔL)H . It is implied from the above

representation that the global outer synchronization problem between the FCNs Equations (6) and

(7) is converted into an equivalent global asymptotical stability problem of the linear error system

Equation (14).

3. Global Outer Synchronization Analysis

From Lemma 2.2, the error system Equation (14) is asymptotically stable if the spectrum of

system matrix IN ⊗AL +C ⊗ In satisfy the inequality (2). It can been seen that the system matrix

IN ⊗AL +C ⊗ In is the Kronecker sum of AL and C, then its eigenvalues can be expressed by the

sum of eigenvalues of AL and eigenvalues of C using Lemma 2.3. Hence, we obtain the following

basic theorem.

Theorem 3.1. The fractional-order complex networks Equations (6) and (7) with the designed

non-fragile controllers (8) will achieve outer synchronization behavior globally, if the following

condition is satisfied

|arg(spec(AL))| > απ

2
(15)

where spec(AL) is the spectrum of system matrix AL = A− (L+ΔL)H .

Remark 3.2. The importance of this theorem lies in the fact that it converts the outer synchronization

problem between coupled FCNs Equations (6) and (7) into the eigenvalue distribution of the

uncertain matrix AL with the same dimension as a single node, thereby significantly reducing

the computational complexity. In addition, it should be noted that in previous work [40] on

outer synchronization of FCNs, the linear error systems are often derived through a suitable

linearization of the system’s nonlinear functions. This approach often implies “local” stability of

the outer synchronization manifold. However, in many applications, global stability of the outer

synchronization manifold is very desirable but difficult to achieve. To circumvent this difficulty,

here an observer-based design procedure is performed instead of linearizing approximation of the

nonlinear function f(·, ·) in Equations (6) and (7). Thus the above proposed condition theoretically

guarantees the “global” outer synchronization between FCNs Equations (6) and (7).

Remark 3.3. For a given pair (H , A), whether the observer-type response network Equation (7)

synchronizes the drive network Equation (6) globally depends on whether the spectrum of system

matrix AL satisfies the inequality (15). In case when the control gain L is deterministic without

uncertainty, i.e., ΔL = 0, the control gain L ∈ R
n may be chosen such that the inequality (15)

is satisfied. As is known from the control theory [47], if the pair (H , A) is observable, i.e., if

rank[HT ,ATHT , · · · , (AT )n−1HT ] = n, then there exists L providing the matrix AL = A−LH

with any given eigenvalues. Particularly, all eigenvalues of AL can be designed to locate the region

defined by inequality (15). For other general pair (H , A), the control gain L is usually determined
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through a considerable amount of trial and error. However, with control gain uncertainties (9) or (10),

the condition (15) is not easy to be checked because there is infinite number of eigenvalues [48]. To

effectively avoid this difficulty, in the following we will develop an LMI-based design method.

Now we are in a position to present an LMI-type solvability condition for the outer

synchronization problem of coupled FCNs (6) and (7) with the control gain perturbations (9) or (10).

Theorem 3.4. Consider the fractional-order complex networks (6) and (7) with the control gain

perturbation Δ1(t) in Equation (9). Then the outer synchronization between networks (6) and (7)

will be achieved globally, if there exist a constant ε > 0, a symmetric positive definite matrix P > 0

and a matrix Q, satisfying the following LMI:[
Ψ I2 ⊗ (N1HP )T

� −1
2
εI

]
< 0 (16)

where

Ψ =
2∑

i=1

Sym {Θi ⊗ (AP −Q)}+ 2ε
(
I2 ⊗M1M

T
1

)
with

Θ1 =

[
sinθ −cosθ

cosθ sinθ

]
, Θ2 =

[
sinθ cosθ

−cosθ sinθ

]
, θ =

απ

2

Moreover, the non-fragile control gain L is given by

L = QP−1HT
(
HHT

)−1
(17)

Proof. Setting P11 = P21 = P , P12 = P22 = 0 in Lemma 2.4, we have that if there exists real

symmetric positive definite matrix P such that

2∑
i=1

Sym{Θi ⊗ (ALP )} < 0 (18)

then |arg(spec(AL))| > απ
2

, where spec(AL) is the spectrum of system matrix AL.

With AL = A− (L+ΔL)H , the left hand side of Equation (18) can be rewritten as

2∑
i=1

Sym{Θi ⊗ (ALP )} =
2∑

i=1

Sym{Θi ⊗ (AP −LHP −ΔLHP )}

=
2∑

i=1

Sym{Θi ⊗ (AP −LHP )}+
2∑

i=1

Sym{Θi ⊗ (−M1F1(t)N1HP )}

(19)

From Equation (11), one has

(I2 ⊗ F1)(I2 ⊗ F1)
T = (I2 ⊗ F1)(I2 ⊗ F T

1 )

= I2 ⊗ (F1F
T
1 ) ≤ I

(20)
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By Equation (20) and Θi1Θ
T
i1 = I2, it directly follows from Lemma 2.5 that for any real scalar ε > 0

2∑
i=1

Sym{Θi ⊗ (−M1F1(t)N1HP )}

=
2∑

i=1

Sym{−(Θi ⊗M1)(I2 ⊗ F1)(I2 ⊗ (N1HP ))}

≤
2∑

i=1

{
ε(Θi ⊗M1)(I2 ⊗ F1)(I2 ⊗ F1)

T (Θi ⊗M1)
T +

1

ε
(I2 ⊗N1HP )T (I2 ⊗N1HP )

}

≤2ε (I2 ⊗M1M
T
1

)
+

2

ε
(I2 ⊗N1HP )T (I2 ⊗N1HP )

(21)

Substituting Equation (21) into Equation (19), one has

2∑
i=1

Sym {Θi ⊗ (ALP )} =
2∑

i=1

Sym {Θi ⊗ (AP −LHP −ΔLHP )}

≤
2∑

i=1

Sym {Θi ⊗ (AP −LHP )}

+ 2ε
(
I2 ⊗M1M

T
1

)
+

2

ε
(I2 ⊗N1HP )T (I2 ⊗N1HP )

(22)

Let

Q = LHP (23)

and following from Equation (22), the inequality Equation (18) holds if

2∑
i=1

Sym {Θi ⊗ (AP −Q)}+ 2ε
(
I2 ⊗M1M

T
1

)
+

2

ε
(I2 ⊗N1HP )T (I2 ⊗N1HP ) < 0 (24)

Using Lemma 2.6, it is easily seen that Equation (24) is in turn equivalent to the linear matrix

inequality Equation (16), which is the condition stated in the theorem. Therefore, |arg(spec(AL))| >
απ
2

, which implies that outer synchronization between the fractional-order networks (6) and (7) will

occur globally by using Theorem 3.1. This completes the proof.

For the FCNs (6) and (7) with the control gain perturbation defined in Equation (10), we have the

following results.

Theorem 3.5. Consider the fractional-order complex networks (6) and (7) with the control gain

perturbation Δ2(t) in Equation (10). Then the outer synchronization between networks (6) and (7)

will be achieved globally, if there exist a constant ε > 0, a symmetric positive definite matrix P > 0

and a matrix Q, satisfying the following LMI:[
Ψ I2 ⊗ (N2Q)T

� −1
2
εI

]
< 0 (25)

where

Ψ =
2∑

i=1

Sym {Θi ⊗ (AP −Q)}+ 2ε
(
I2 ⊗M2M

T
2

)
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with

Θ1 =

[
sinθ −cosθ

cosθ sinθ

]
, Θ2 =

[
sinθ cosθ

−cosθ sinθ

]
, θ =

απ

2

Moreover, the non-fragile control gain L is given by

L = QP−1HT
(
HHT

)−1
(26)

Proof. It is similar to that of Theorem 3.4, the details are then omitted.

A particular case of Theorems 3.4 and 3.5 is ΔL = 0. In such a case, we can still provide a

sufficient condition for global outer synchronization.

Corollary 3.6. Consider the fractional-order complex networks (6) and (7) without the control gain

perturbation (i.e., ΔL = 0). Then the outer synchronization between networks (6) and (7) will be

achieved globally, if there exist a symmetric positive definite matrix P > 0 and a matrix Q, satisfying

the following LMI:

Θ1 ⊗ (AP −Q) + ΘT
1 ⊗ (AP −Q)T +Θ2 ⊗ (AP −Q) + ΘT

2 ⊗ (AP −Q)T < 0 (27)

where

Θ1 =

[
sinθ −cosθ

cosθ sinθ

]
,Θ2 =

[
sinθ cosθ

−cosθ sinθ

]
, θ =

απ

2

Moreover, the non-fragile control gain L is given by

L = QP−1HT
(
HHT

)−1
(28)

Proof. It follows directly from Theorems 3.4 and 3.5, and the details are therefore omitted here.

Remark 3.7. The above theorems and corollary present sufficient conditions for the solvability of

non-fragile outer synchronization problem for coupled fractional-order complex networks, which are

related to the solutions to LMIs. In this case, these LMIs can be solved efficiently by resorting to

some standard numerical algorithms [46].

4. Numerical Simulations

In this section, numerical examples are given to verify the effectiveness of the above design

scheme. For the control gain perturbations in additive form, the coupled fractional-order jerk model

based on nearest-neighbor topology is first utilized to demonstrate the main results of Theorem 3.4.

Then, a small-world complex network consisted of fractional-order Duffing oscillators is introduced

to illustrate the correctness of Theorem 3.5 for the control gain perturbations in multiplicative form.

4.1. Outer Synchronization between Two FCNs with Nearest-Neighbor Network Topology

This subsection considers two coupled FCNs with N = 10 nodes each and nearest-neighbor

network topology. The dynamics of the nodes in two networks is determined by the following

fractional-order jerk model [49]:
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⎧⎪⎪⎨
⎪⎪⎩

Dα
t x1 = x2

Dα
t x2 = x3

Dα
t x3 = −x2 − ρx3 + ϕ(x1)

(29)

with nonlinear characteristic

ϕ(x1) = −1.2x1 + 2sgn(x1)

and the measured output

y(t) = x1(t)

where x1, x2 and x3 are, respectively, the position, velocity, and acceleration of the object, ρ > 0 is

the control parameter. This model in its integer-order version (i.e., α = 1) is used to determine the

time derivative of acceleration of an object and is known to give chaos for ρ = 0.6. For system (29),

we show that the chaotic behavior is preserved in the fractional-order case, as shown in Figure 1 for

α = 0.95. In Lur’e form, the fractional-order jerk model (29) can be represented with

A =

⎛
⎜⎝ 0 1 0

0 0 1

0 −1 −ρ

⎞
⎟⎠ , f(y) =

⎛
⎜⎝ 0

0

ϕ(y)

⎞
⎟⎠ , H = (1, 0, 0) (30)

Figure 1. Chaotic behavior of the fractional-order jerk model (29). The fractional orders

are: (a) α = 1 and (b) α = 0.95.
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The additive control gain perturbations ΔL(t) can be described by (9) with

M1 =

⎛
⎜⎝ 0.05 −0.13 0.1

−0.24 0.54 0.2

−0.15 −0.2 0.16

⎞
⎟⎠ , F1(t) =

⎛
⎜⎝ cos(3t) 0 0

0 cos(0.1t) 0

0 0 sin(2t)

⎞
⎟⎠ , N1 =

⎛
⎜⎝ 0.1

0.2

0.15

⎞
⎟⎠

(31)

For the nearest-neighbor coupling structure, the coupling matrix is given by

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

−2k k 0 · · · 0 k

k −2k k 0 · · · 0
. . .

. . .
. . .

0 · · · 0 k −2k k

k 0 · · · 0 k −2k

⎞
⎟⎟⎟⎟⎟⎟⎠ (32)

where k > 0 denotes the coupling strength of the whole network.

Since the above ΔL(t) is in the form of Type 1, Theorem 3.4 is used to design a non-fragile

observer-based control (8). Using the MATLAB LMI Control Toolbox, we find that the LMI (16) in

Theorem 3.4 is feasible. A feasible solution is presented as follows:

ε = 85.0407, P =

⎛
⎜⎝ 41.2019 −0.0000 0.0000

−0.0000 53.1504 −0.0000
0.0000 −0.0000 53.1504

⎞
⎟⎠ , Q = 103×

⎛
⎜⎝ 0.0146 2.9380 −0.0124
−2.8902 0.0299 −0.4075
0.0154 0.4040 −0.0148

⎞
⎟⎠

Figure 2. Synchronization errors between the FCNs (6) and (7), where each node is a

chaotic fractional-order jerk model (29). (a) The time evolutions of ei1(t) = xi1(t) −
x̂i1(t); (b) the time evolutions of ei2(t) = xi2(t) − x̂i2(t); (c) the time evolutions of

ei3(t) = xi3(t)− x̂i3(t) (i = 1, 2, · · · , 10).
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Therefore, based on the Equation (17) in Theorem 3.4, the nominal control gain is given by:

L = QP−1HT
(
HHT

)−1
=

⎛
⎜⎝ 0.3539

−70.1471
0.3734

⎞
⎟⎠ (33)

With the aforementioned control gain matrix and k = 1, the simulation results for synchronization

errors eij (i = 1, 2, · · · , 10, j = 1, 2, 3) of networks (6) and (7) are given in Figure 2, where

the initial conditions xi(0) and x̂i(0) are randomly chosen. As seen in Figure 2, the trajectories

of the synchronization errors approach zero, which imply outer synchronization between complex

networks (6) and (7) with fractional-order jerk models as nodes’ dynamics.

4.2. Outer Synchronization between Two FCNs with Small-World Network Topology

In this simulation, two small-world FCNs of N = 100 Duffing oscillators are constructed. A

single fractional-order Duffing oscillator [50] is described by:{
Dα

t x1 = x2

Dα
t x2 = −p1x2 − p2x1 − p3x

3
1 + qcos(ωt)

(34)

with the measured output

y(t) = Hx(t) = (1, 0)(x1(t), x2(t))
T (35)

where p1, p2, p3 and q are system parameters. The system can be represented in Lur’e form with

A =

(
0 1

−p2 −p1

)
, f(y, t) =

(
0

−p3y3 + qcos(ωt)

)
(36)

For the parameters p1 = 1/25, p2 = −1/5, p3 = 8/15, q = 2/5 and ω = 0.2, the fractional-order

Duffing oscillator (34) exhibits chaotic behavior for α = 0.98 (see Figure 3).

The additive controller uncertainties in Equation (10) are considered through

M2 =

(
−0.5 −0.24
0.1 −0.35

)
, F2(t) =

(
sin(0.1t) 0

0 cos(5t)

)
, N2 =

(
0.2 0.16

−0.05 0.32

)
(37)

Since the control gain perturbations ΔL(t) is in the form of Type 2, Theorem 3.5 is used to

design the non-fragile observer-based control (8). Using the MATLAB LMI Control Toolbox, a

feasible solution to the LMI (25) in Theorem 3.5 is given by

ε = 71.6499, P =

(
40.9209 −1.7321
−1.7321 31.6650

)
, Q = 103 ×

(
0.0212 −7.5497
7.5921 0.0151

)

Therefore, based on the Equation (26) in Theorem 3.5, the nominal control gain is given by:

L = QP−1HT
(
HHT

)−1
=

(
−9.5952
185.9816

)
(38)
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Figure 3. Chaotic behavior of the fractional-order Duffing oscillator (34). The fractional

orders are: (a) α = 1 and (b) α = 0.98.
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The zero-row-sum coupling matrix C is generated from the known Watts–Strogatz small-world

network model [51] with N = 100, m = 3 and p = 0.1 . According to Theorem 3.5, the outer

synchronization between two fractional-order complex networks of coupled Duffing oscillators with

small-world topology will be achieved globally. Figure 4 shows the changes in synchronization

errors eij (i = 1, 2, · · · , 100, j = 1, 2), respectively. From these simulation results, it can be seen the

designed drive-response networks achieve outer synchronization globally and the effectiveness of the

theoretical analysis is demonstrated.

Figure 4. Synchronization errors between the FCNs (6) and (7), where each node is

a chaotic fractional-order Duffing oscillator (34). (a) The time evolutions of ei1(t) =

xi1(t)− x̂i1(t); (b) the time evolutions of ei2(t) = xi2(t)− x̂i2(t) (i = 1, 2, · · · , 100).
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5. Conclusions

In this paper, we have proposed a novel observer-based control scheme for outer synchronization

between two complex networks with fractional-order derivatives. The designed controllers have

the following two features: (i) they use only scalar output signals to couple two FCNs in a

drive-response manner; (ii) they are non-fragile for both additive and multiplicative control gain

perturbations. Therefore, this is more practical and economical for real network applications,

such as communication networks. Taking advantage of the eigenvalue distribution of Kronecker

sum of two matrices, we presented a basic theorem for outer synchronization of coupled FCNs.

Then, two sufficient conditions in the form of LMI for outer synchronization of FCNs are further

provided. Compared with previous results, the proposed conditions can not only ensure outer

synchronization to be achieved in the “global” sense but also facilitate it with the help of MATLAB

LMI Control Toolbox.
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Abstract: The synchronization problem is studied in this paper for a class of

fractional-order chaotic neural networks. By using the Mittag-Leffler function,

M-matrix and linear feedback control, a sufficient condition is developed ensuring

the synchronization of such neural models with the Caputo fractional derivatives.

The synchronization condition is easy to verify, implement and only relies on

system structure. Furthermore, the theoretical results are applied to a typical

fractional-order chaotic Hopfield neural network, and numerical simulation demonstrates

the effectiveness and feasibility of the proposed method.

Keywords: synchronization; fractional-order; chaotic neural networks; linear

feedback control

1. Introduction

Fractional calculus has been a 300-year-old topic. Although it has a long mathematical history,

the applications of fractional calculus to physics and engineering are only a recent focus of

interest. Recent monographs and symposia proceedings have highlighted the application of fractional

calculus in physics, continuum mechanics, signal processing, bioengineering, diffusion wave and
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electromagnetics [1–4]. The major advantage of the fractional-order derivatives is that they provide

an excellent instrument for the description of memory and hereditary properties of various materials

and processes. As such, some researchers introduced fractional calculus to neural networks to

form fractional-order neural networks, which can better describe the dynamical behavior of the

neurons, such as “memory". It was pointed out that fractional derivatives provide neurons with a

fundamental and general computation ability that can contribute to efficient information processing,

stimulus anticipation and frequency-independent phase shifts of oscillatory neuronal firing [5]. It is

suggested that the oculomotor integrator, which converts eye velocity into eye position commands,

may be of a fractional order [6]. It was demonstrated that neural network approximation taken at the

fractional level resulted in higher rates of approximation [7]. Furthermore, note that fractional-order

recurrent neural networks might be expected to play an important role in parameter estimation.

Therefore, the incorporation of memory terms (a fractional derivative or integral operator) into neural

network models is an important improvement [8], and it will be of important significance to study

fractional-order neural networks.

Chaos has been a focus of intensive discussion in numerous fields during the last four decades.

Moreover, it has been verified that some neural networks can exhibit chaotic dynamics. For

example, experimental and theoretical studies have revealed that a mammalian brain not only

can display in its dynamical behavior strange attractors and other transient characteristics for its

associative memories, but also can modulate oscillatory neuronal synchronization by selective

visual attention optimization problems [9,10]. In recent years, the study on synchronization of

chaotic neural networks has attracted considerable attention, due to the potential applications

in many fields, including secure communication, parallel image processing, biological systems,

information science, etc. As we know, there are many synchronization results about integer-order

neural networks; see [11–13] and references therein. On the other hand, since bifurcations and

chaos of fractional-order neural networks were investigated firstly in [14,15], some important

and interesting results about fractional-order neural networks have been obtained. For instance,

in [16], a fractional-order Hopfield neural model was proposed, and its stability was investigated

by an energy-like function. Chaos and hyperchaos in fractional-order cellular neural networks was

discussed in [17]. Yu et al. [18] investigated α-stability and α-synchronization for fractional-order

neural networks. Several recent results concerning chaotic synchronization in fractional-order neural

networks have been reported in [19–22].

Due to the complexity of fractional-order systems, to the best of our knowledge, there are few

theoretical results on the synchronization of fractional-order neural networks; most of the existing

results are only numerical simulation [19–22]. Although there have been many synchronization

results about integer-order neural networks in the past few decades, these results and methods

could not be extended and applied easily to the fractional-order case. Therefore, to establish some

theoretical sufficient criteria for the synchronization of fractional-order neural networks is very

necessary and challenging. Motivated by the above discussions, by using the Mittag-Leffler function,

some properties of fractional calculus and linear feedback control, a simple and efficient criterion in
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terms of the M-matrix for synchronization of such neural network is derived. Numerical simulations

also demonstrate the effectiveness and feasibility of the proposed technique.

The rest of the paper is organized as follows. Some necessary definitions and lemmas are given,

and the fractional-order network model is introduced in Section 2. A sufficient criterion ensuring the

synchronization of such neural networks is presented in Section 3. An example and simulation are

obtained in Section 4. Finally, the paper is concluded in Section 5.

2. Preliminaries and System Description

In this section, some definitions of fractional calculation are recalled and some useful lemmas

are introduced.

Definition 1[1]. The fractional integral (Riemann-Liouville integral), D−α
t0,t, with fractional order,

α ∈ R+, of function x(t) is defined as:

D−α
t0,t

x(t) =
1

Γ(α)

∫ t

t0

(t− τ)α−1x(τ)dτ (1)

where Γ(·) is the gamma function, Γ(τ) =
∫∞
0

tτ−1e−tdt.

Definition 2[1]. The Riemann-Liouville derivative of fractional order α of function x(t) is given

as:

RLD
α
t0,t

x(t) =
dn

dtn
D

−(n−α)
t0,t x(t) =

dn

dtn
1

Γ(n− α)

∫ t

t0

(t− τ)n−α−1x(τ)dτ (2)

where n− 1 < α < n ∈ Z+.

Definition 3[1]. The Caputo derivative of fractional order α of function x(t) is defined as follows:

CD
α
t0,t

x(t) = D
−(n−α)
t0,t

dn

dtn
x(t) =

1

Γ(n− α)

∫ t

t0

(t− τ)n−α−1x(n)(τ)dτ (3)

where n− 1 < α < n ∈ Z+.

Note from Equations (2) and (3) that the fractional derivative is related to all the history

information of a function, while the integer one is only related to its nearby points. That is, the

next state of a system not only depends upon its current state, but also upon its historical states

starting from the initial time. As a result, a model described by fractional-order derivatives possesses

memory and inheritance and will be more precise to describe the states of neurons. In the following,

the notation, Dα, is chosen as the Caputo derivative, Dα
0,t. For x ∈ Rn, the norm is defined by

‖x‖ =∑n
i=1 |xi|.

Definition 4[1]. The Mittag-Leffler function with two parameters appearing is defined as:

Eα,β(z) =
∞∑
k=0

zk

Γ(kα + β)
(4)

where α > 0, β > 0, and z ∈ C. When β = 1, one has Eα(z) = Eα,1(z), further, E1,1(z) = ez.

Lemma 1. Let V (t) be a continuous function on [0,+∞) and satisfy:

DαV (t) ≤ −λV (t) (5)
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Then:

V (t) ≤ V (t0)Eα(−λ(t− t0)
α) (6)

where α ∈ (0, 1) and λ are positive constant.

Proof. It follows from Equation (5) that there exists a nonnegative function, M(t), such that:

DαV (t) + λV (t) +M(t) = 0 (7)

Taking the Laplace transform on Equation (7), then one has:

sαV (s)− sα−1V (t0) + λV (s) +M(s) = 0 (8)

where V (s) = L{V (t)},M(s) = L{M(t)}. It then follows that:

V (s) =
sα−1V (t0)−M(s)

sα + λ
(9)

Taking the inverse Laplace transform in Equation (9), one obtains:

V (t) = V (t0)Eα(−λ(t− t0)
α)−M(t) ∗ [(t− t0)

α−1Eα,α(−λ(t− t0)
α)] (10)

Note that both (t− t0)
α and Eα,α(−λ(t− t0)

α) are nonnegative functions; it follows that:

V (t) ≤ V (t0)Eα(−λ(t− t0)
α) (11)

Lemma 2[1]. If α < 2, β is an arbitrary real number, μ is such that πα/2 < μ < min{π, πα}
and C is a real constant, then:

|Eα,β(z)| ≤ C

1 + |z| , (μ ≤ | arg(z)| ≤ π), |z| > 0 (12)

Definition 4[23]. A real n × n matrix, A = (aij), is said to be a M -matrix if aij ≤ 0, i, j =

1, 2, · · ·n, i �= j, and all successive principal minors of A are positive.

Lemma 3[23]. Let A = (aij) be an n× n matrix with non-positive off-diagonal elements. Then,

the following statements are equivalent:

(1) A is a nonsingular M -matrix;

(2) there exists a vector, ξ, such that Aξ > 0;

(3) there exists a vector, ξ, such that ξTA > 0.

The dynamic behavior of a continuous fractional-order cellular neural networks can be described

by the following system:

Dαxi(t) = −cixi(t) +
n∑

j=1

aijfj(xj(t)) + Ii (13)

which can also be written in the following compact form:

Dαx(t) = −Cx(t) + Af(x(t)) + I (14)
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where i ∈ N = {1, 2, · · · , n}, t ≥ 0, 0 < α < 1, n is the number of units in a neural

network, x(t) = (x1(t), · · · , xn(t))
T ∈ Rn corresponds to the state vector at time t, f(x(t)) =

(f1(x1(t), · · · , fn(xn(t))
T denotes the activation function of the neurons and C =diag(c1, · · · , cn)

represents the rate with which the ith unit will reset its potential to the resting state in isolation when

disconnected from the network and external inputs. The weight matrix, A = (aij)n×n, is referred to

as the connection of the jth neuron to the ith neuron at time t; I = (I1, I2, · · · , In)T is an external

bias vector.

Here, in order to obtain the main results, the following assumption is presented firstly.

A1. The neuron activation functions, fj , are Lipschitz continuous, that is, there exist positive

constants, Lj (j = 1, 2, · · · , n), such that:

|fj(uj)− fj(vj)| ≤ Lj|uj − vj|, ∀uj, vj ∈ R (15)

3. Main Results

In this section, a sufficient condition for synchronization of fractional-order neural networks

is derived.

Based on the drive-response concept, we refer to system Equation (13) as the drive cellular neural

network and consider a response network characterized as follows:

Dαyi(t) = −ciyi(t) +
n∑

j=1

aijfj(yj(t)) + Ii + ui(t) (16)

or, equivalently:

Dαy(t) = −Cy(t) + Af(y(t)) + I + u(t) (17)

where y(t) = (y1(t), · · · , yn(t))T ∈ Rn is the state vector of the slave system, C,A and f(·) are the

same as Equation (13) and u(t) = (u1(t), · · · , un(t))
T is the external control input to be designed

later.

Defining the synchronization error signal as ei(t) = yi(t)−xi(t), the error dynamics between the

master system Equation (14) and the slave system Equation (17) can be expressed by:

Dαe(t) = −Ce(t) + A[f(y(t))− f(x(t))] + u(t) (18)

where e(t) = (e1(t), · · · , en(t))T ; therefore, synchronization between master system Equation (13)

and slave Equation (16) is equivalent to the asymptotic stability of error system Equation (18) with

the suitable control law, u(t). To this end, the external control input, u(t), can be defined as u(t) =

Ke(t), where K=diag(ki, · · · , kn) is the controller gain matrix. Then, error system Equation (18)

can be rewritten as:

Dαei(t) = −(ci − ki)e(t) +
n∑

j=1

aij(fj(yj(t))− fj(xj(t))) (19)
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or can be described by the following compact form:

Dαe(t) = −(C −K)e(t) + A(f(y(t))− f(x(t))) (20)

Theorem 1. For the master-slave fractional-order chaotic neural networks Equations (14)

and (17), which satisfy Assumption 1, if the controller gain matrix, K, satisfies (C − K) − |A|L
as a M matrix(L=diag(L1, · · · , Ln)), then the synchronization between systems Equations (14) and

(17) is achieved.

Proof. If ei(t) = 0, then Dα|ei(t)| = 0. If ei(t) > 0, then:

Dα|ei(t)| = 1

Γ(1− α)

∫ t

0

|ei(s)|′
(t− s)α

ds =
1

Γ(1− α)

∫ t

0

e
′
i(s)

(t− s)α
ds = Dαei(t) (21)

Similarly, if ei(t) < 0, then:

Dα|ei(t)| = 1

Γ(1− α)

∫ t

0

|ei(s)|′
(t− s)α

ds = − 1

Γ(1− α)

∫ t

0

e
′
i(s)

(t− s)α
ds = −Dαei(t) (22)

Therefore, it follows that:

Dα|ei(t)| = sgn(ei(t))D
αei(t) (23)

Due to (C − K) − |A|L being an M matrix, it follows from Lemma 3 that there are a set of

positive constants, ξi, such that:

−(ci − ki)ξi +
n∑

j=1

ξj|aji|Li < 0, i ∈ N (24)

Define functions:

Fi(θ) = −(ci − ki − θ)ξi +
n∑

j=1

ξj|aji|Li, i ∈ N (25)

Obviously:

Fi(0) = −(ci − ki)ξi +
n∑

j=1

ξj|aji|Li < 0, i ∈ N (26)

Therefore, there exists a constant, λ > 0, such that:

−(ci − ki − λ)ξi +
n∑

j=1

ξj|aji|Li ≤ 0, i ∈ N (27)

Consider an auxiliary function defined by V (t) =
n∑

i=1

ξi|ei(t)|, where ξi(i ∈ N are chosen as

those in Equation (27). The Caputo derivative of V (t) along the solution of system Equation (19) is:
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DαV (t) =
n∑

i=1

ξiD
α|ei(t)|

=
n∑

i=1

ξisign(ei(t)){−(ci − ki)ei(t) +
n∑

j=1

aij(fj(xj(t))− fj(yj(t)))}

≤
n∑

i=1

ξi{−(ci − ki)|ei(t)|+
n∑

j=1

|aij|Lj|ej(t)|}

=
n∑

i=1

{−ξi(ci − ki) +
n∑

j=1

ξj|aji|Li}|ei(t)|

≤ −λV (t) (28)

One can see that:

V (t0) =
n∑

i=1

ξi|ei(t0))| ≤ max
1≤i≤n

{ξi}||e(t0)|| (29)

V (t) =
n∑

i=1

ξi|ei(t))| ≥ min
1≤i≤n

{ξi}||e(t)|| (30)

Based on Lemma 1, it yields:

min
1≤i≤n

{ξi}||e(t)|| ≤ max
1≤i≤n

{ξi}||e(t0)||Eα(−λ(t− t0)
α) (31)

That is:

||e(t)|| ≤ max1≤i≤n{ξi}
min1≤i≤n{ξi} ||e(t0)||Eα(−λ(t− t0)

α) (32)

Let z = −λ(t − t0)
α in Lemma 2, |arg(z)| = π; it follows from Lemma 2 that there exists a real

constant C, such that:

||e(t)|| ≤ max1≤i≤n{ξi}
min1≤i≤n{ξi} ||e(t0)||

C

1 + |λ(t− t0)α| (33)

which implies that ||e(t)|| converges asymptotically to zero as t tends to infinity, namely, the

fractional-order chaotic neural network Equation (14) is globally synchronized with Equation (17).

�
Remark 1. Up to now, with the help of the traditional Lyapunov direct theory, there are many

results about synchronization of integer-order chaotic neural networks, but the method and these

results are not suitable for fractional-order chaotic neural networks.

Remark 2. [19–22] discussed chaos and synchronization of the fractional-order neural networks,

but these are only numerical simulations. Here, theoretical proof is proposed.

Remark 3. [18] considered α-synchronization for fractional-order neural networks;

unfortunately, the obtained results are not correct [24].
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4. Numerical Example

An illustrative example is given to demonstrate the validity of the proposed controller.

Consider a fractional-order Hopfield neural chaotic network with neurons as follows [25]:

Dαx(t) = −Cx(t) + Af(x(t)) (34)

where x(t) = (x1(t), x2(t), x3(t))
T , C =diag(1, 1, 1), f(x(t)) = (tanh(x1(t)), tanh(x2(t)),

tanh(x3(t)))
T , and A =

⎡
⎢⎣ 2 −1.2 0

2 1.71 1.15

−4.75 0 1.1

⎤
⎥⎦. The system satisfies Assumption 1 with L1 =

L2 = L3 = 1. As is shown in Figure 1, the fractional-order Hopfield neural network possesses a

chaotic behavior when α = 0.95.

Figure 1. Chaotic behaviors of fractional-order Hopfield neural network Equation (34)

with fractional-order, α = 0.95.
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The controlled response fractional Hopfield neural network is designed as follows:

Dαy(t) = −Cy(t) + Af(y(t)) + u(t) (35)
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The controller gain matrix, u(t), is chosen as K= diag(−6,−5,−2), and it can be easily verified

that (C − K) − |A|L =

⎡
⎢⎣ 5 −1.2 0

−2 4.29 −1.15
−4.75 0 1.9

⎤
⎥⎦ is an M matrix. According to Theorem 1, the

synchronization between Equations (34) and (35) can be achieved. In the numerical simulations,

the initial states of the drive and response systems are taken as x(0) = (0.1, 0.4, 0.2)T and

y(0) = (0.8, 0.1, 0.7)T , respectively. Figure 2 shows the state synchronization trajectory of the drive

and response systems; the synchronization error response is depicted in Figure 3.

Figure 2. State synchronization trajectories of drive system Equation (34) and response

system Equation (35).
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Figure 3. Synchronization error time response of drive system Equation (34) and

response system Equation (35).
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Figure 3. Cont.
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5. Conclusions

In this paper, the synchronization problem has been studied theoretically for a class of

fractional-order chaotic neural networks, which is more difficult and challenging than the

integer-order chaotic neural networks. Based on the Mittag-Leffler function and linear feedback

control, a sufficient condition in the form of the M-matrix has been derived. Finally, a simulation

example has been given to illustrate the effectiveness of the developed approach.
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Abstract: In this work, we introduce a generalization of the differential polynomial 
neural network utilizing fractional calculus. Fractional calculus is taken in the sense of 
the Caputo differential operator. It approximates a multi-parametric function with 
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patterns. This method can be employed on data to describe modelling of complex 
systems. Furthermore, the total information is calculated by using the fractional  
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1. Introduction 

The Polynomial Neural Network (PNN) algorithm is one of the most important methods for 
extracting knowledge from experimental data and to locate its best mathematical characterization. 
The proposed algorithm can be utilized to analyze complex data sets with the objective to conclude 
internal data relationships and to impose knowledge about these relationships in the form of 
mathematical formulations (polynomial regressions). One of the most common types of PNN is the 
Group Method of Data Handling (GMDH) polynomial neural network created in 1968 by Professor 
Ivakhnenko at the Institute of Cybernetics in Kyiv (Ukraine). 

Based on GMDH, Zjavka developed a new type of neural network called Differential 
Polynomial Neural Network (D-PNN) [1–4]. It organizes and designs some special partial 
differential equations, performing a complex system model of dependent variables. It makes a sum 
of fractional polynomial formulas, determining partial mutual derivative alterations of input 
variable combinations. This kind of retreatment is based on learning generalized data connections. 
Furthermore, it offers dynamic system models a standard time-series prediction, as the character of 
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relative data allow it to employ a wider range of input interval values than defined by the trained 
data. In addition, the advantages of differential equation solutions facilitate a major variety of 
model styles. The principle of this type is similar to the artificial neural network (ANN) 
construction [5,6]. 

Fractional calculus is a section of mathematical analysis that deals with considering real number 
powers or complex number powers of the differentiation and integration operators. The integrals 
are of convoluted form and exhibit power-law type kernels. It can be viewed as an experimenter for 
special functions and integral transforms [7–12]. It is well known that the physical interview of the 
fractional derivative is an open problem today. In [13], the author utilized fractional operators, in 
the sense of the Caputo differential operator, to define and study the stability of recurrent neural 
network (NN). In [14], Gardner employed a discrete fractional calculus to study Artificial Neural 
Network Augmentation. In [15], Almarashi used neural networks with a radial basis function 
method to solve a class of initial boundary values of fractional partial differential equations. 
Recently, Jalab et al., applied the neural network method for finding the numerical solution for 
some special fractional differential equations [16]. Zhou et al. propoced a fractional time-domain 
identification algorithm based on a genetic algorithm [17], while Chen et al. studied the 
synchronization problem for a class of fractional-order chaotic neural networks [18]. 

Here, our aim is to introduce a generalization of the differential polynomial neural network 
utilizing fractional calculus. The fractional calculus is assumed in the sense of the Caputo 
differential operator. It approximates a multi-parametric function with particular polynomials 
characterizing its functional output as a generalization of input patterns. This method can be 
employed on data to describe modelling of complex systems [19]. 

2. Preliminaries 

This section concerns with some basic preliminaries and notations regarding the fractional 
calculus. One of the most considerably utilized instruments in the theory of fractional calculus is 
provided by the Caputo differential operator. 

Definition 2.1 The fractional (arbitrary) order integral of the function � of order � � � is 
defined by:  

����	
� � �� 	
 � ������	�� �	���� (1)

When � � ��  we write ����	
� � �	
� � ��	
��  where 	��  denoted the convolution product  

(see [7]), ��	
� � �����	�� � 
 � �  and ��	
� � �� 
 � �  and �� � �	
�  as � � �  where �	
�  is 

the delta function. 
Definition 2.2 The Riemann-Liouville fractional derivative of the function � of order � � �  ! 

is defined by: 

"��#	
� � ��
�� 	
 � �����	! � �� #	���� � ��
 �����#	
� (2)

Remark 2.1 [7] 
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"�
$ � �	% & !��	% � � & !� 
$��� % � �!' �  �  ! (3)

and: 

��
$ � �	% & !��	% & � & !� 
$(�� % � �!' � � � (4)

The Leibniz rule is: 

"��)*	
�+	
�, � -./01 2
�
3 4"���/*	
�"�/+	
�

� -./01 2
�
3 4"���/+	
�"�/*	
�

 (5)

Definition 2.3. The Caputo fractional derivative fractional derivative of order �>0 is defined, 
for a smooth function f by: 

 (6)

The local fractional Taylor formula has been generalized by many authors [20–22]. This 
generalization admits the following formula: 

*	5 & 65� � *	5� & 	65���	� & !� & *	5� 	65�7��	8� & !� & 9& *	5� 	65�:��	;� & !� (7)

where c
xDN is the Caputo differential operator and: 

...c n c c c
x x x x

n times

D D D DN N N N

�

�
	

�

�  (8)

3. Results 

3.1. Proposed Method 

The fractional differential polynomial neural network (FD-PNN) is based on an equation of  
the form: 

� &-<:
=0� >= ?

�@?5=� &-<:
=0� -<:

A0� B=A ?
�@?5=� ?

�@?5A� &-
:
=0� -

:
A0� -

:
/0� �=A/ ?

�@?5=� ?
�@?5A� ?

�@?5/� &C C C � � (9)

where @D� *	5�� 57� C C C � 5:� is a function of all input variables, �� >=� B=A� �=A/ are the polynomial 
coefficients. Solutions of fractional differential equations can be expressed in term of the  
Mittag-Leffler function: 
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EF	G� � -.:01 G:�	! & ;H� (10)

Recently, numerical routines for Mittag-Leffler functions have been developed, e.g., by  
Freed et al. [23], Gorenflo et al. [24] (with MATHEMATICA), Podlubny [25] (with MATLAB), 
Seybold and Hilfer [26]. 

We proceed to form sum derivative terms changing the fractional partial differential  
equation (9) by applying different math techniques, e.g. fractional wave series, [27]: 

I=� � 	�1 & ��5� & �757&C C C &�:5: & �:(�5�57&C C C �J(�:>1 & >�5�&C C C� ?J�*	5�� 57� C C C � 5:�?5�� ?57�C C C ?5J�
 (11)

where ; refers to the combined degree of ; �input variable polynomial of numerator; while K 
indicates to the combined degree of denominator L�—weights of terms and I=�  is the output 
neuron. Note that when � � !�  Equation (11) reduces to Equation (4) in [4]. The fractional 
polynomials of fractional power (11), determining relations of ; -input variables, appear 
summation derivative terms (neurons) of a fractional differential equation. The numerator of 
Equation (11) is a complete ;-variable polynomial, which recognizes a new partial function @ of 
Equation (9). The denominator of Equation (11) is a fractional derivative part, which implies a 
fractional partial change of some input variables combination. Equation (11) indicates a aingle 
output for fixed fractional power. Each layer of the FD-PNN contains blocks. These blocks stress 
fractional derivative neurons. For each fractional polynomial of fractional order formulates the 
fractional partial derivative depending on the change of some input variables. Each block 
implicates a unique fractional polynomial which forms its output access into the next hidden layer 
(Figure 1). For example of a system of the form : input layer, first hidden layer, second hidden 
layer and output layer; we may use y1

1/4 to perform its output to the first layer; y2
1/2 to execute its 

output to the second hidden layer and y3
3/4 to carry out the last y of the system in the output layer. 

Figure 1. GMDH-PNN. 
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Let there be a network with two inputs, formulating one functional output value I�� then, for 
special values of �� the sum derivative terms is: 

I� � L� �1 & ��5� & �757 & �M5�57>1 & >�5� & L7 �1 & ��5� & �757 & �M5�57>1 & >�57 � 	NOO<)P,�
IMQR � L� 	�1 & ��5� & �757 & �M5�57�SQT>1 & >�5� & L7 	�1 & ��5� & �757 & �M5�57�SQT>1 & >�57I�Q7 � L� 	�1 & ��5� & �757 & �M5�57�MQR>1 & >�5� & L7 	�1 & ��5� & �757 & �M5�57�MQR>1 & >�57I�QR � L� 	�1 & ��5� & �757 & �M5�57�UQT>1 & >�5� & L7 	�1 & ��5� & �757 & �M5�57�UQT>1 & >�57

 (12)

we realize that I�  includes only one block of two neurons, terms of both fractional derivative 
variables 5�  and 57C Table 1 shows approximation errors (y-axis) of the trained network, i.e. 
differences of the true and estimated function, to random input vectors with dependent variables. 

Table 1. Approximation values of *	5�� 57� � 5� & 57. 

Data Actual Value Approximate Value Absolute Error 

(1,0) 1 I� � IMQR � VP 0.25 

  I�Q7 � I�QR � VP 0.25 

(0,1) 1 I� � IMQR � VP 0.25 

  I�Q7 � I�QR � VP 0.25 

(1,1) 1 I� � !CW 0.5 
  IMQR � !CV 0.3 
  I�Q7 � !C! 0.1 
  I�QR � �CXX 0.01 

(1/2,1/2) 1 I� � !CYY 0.66 
  IMQR � !CY 0.6 
  I�Q7 � !CWZ 0.57 
  I�QR � !CWV 0.53 
  I1C� � !CP 0.4 

The 3-variable FD-PNN (Table 2) for linear true function approximation (e.g., *	5�� 57� 5M� �5� & 57 & 5M  ) may involve one block of six neurons, FDE terms of all 1 and 2-combination 
derivative variables of the complete FDE, e.g.,: 

I�� � L� 	�1 & ��5� & �757 & �M5M & �R5�57 & �U5�5M & �[575M & �S5�575M�7QM>1 & >�5� � 	NOO<)P,�
I�MQR � L� 	�1 & ��5� & �757 & �M5M & �R5�57 & �U5�5M & �[575M & �S5�575M�SQ�7>1 & >�5�I��Q7 � L� 	�1 & ��5� & �757 & �M5M & �R5�57 & �U5�5M & �[575M & �S5�575M��Q7>1 & >�5�I��QR � L� 	�1 & ��5� & �757 & �M5M & �R5�57 & �U5�5M & �[575M & �S5�575M�UQ�7>1 & >�5�

(13)



319 

 

and: 

IR� � L7 �1 & ��5� & �757 & �M5M & �R5�57 & �U5�5M & �[575M & �S5�575M>1 & >�5� & >757 & >M5�57 � 	NOO<)P,�
IRMQR � L7 	�1 & ��5� & �757 & �M5M & �R5�57 & �U5�5M & �[575M & �S5�575M���Q�7>1 & >�5� & >757 & >M5�57IR�Q7 � L7 	�1 & ��5� & �757 & �M5M & �R5�57 & �U5�5M & �[575M & �S5�575M�UQ[>1 & >�5� & >757 & >M5�57IR�QR � L7 	�1 & ��5� & �757 & �M5M & �R5�57 & �U5�5M & �[575M & �S5�575M�MQR>1 & >�5� & >757 & >M5�57

 (14)

Table 2. Approximation values of *	5�� 57� 5M� � 5� & 57 & 5M. 

Data 
Actual 
Value 

Approximate Value Absolute Error 

(1,0,0) 1 IR� � IRMQR � !8 0.5 

  IR�Q7 � IR�QR � !8 0.5 

(0,1,0) 1 IR� � IRMQR � !8 0.5 

  IR�Q7 � IR�QR � !8 0.5 

(0,0,1) 1 IR� � IRMQR � ! 0 
  IR�Q7 � IR�QR � ! 

(1,1,0) 1 IR� � !C!8W 0.125 
  IRMQR=1.025 0.025 
  IR�Q7 � !C\ZV 0.12 
  IR�QR � �CXVY 0.063 

(1,0,1) 1 IR� � !CW 0.5 
  IRMQR=1.368 0.368 
  IR�Q7 � !C8PX 0.249 
  IR�QR � !C! 0.1 

(1,1,1) 1 IR� � !CY 0.6 
  IRMQR=1.488 0.488 
  IR�Q7 � !C8Y 0.26 
  IR�QR � !C�ZWW 0.0755 

We proceed to compute approximations for non-linear functions. We let @D� *	5�� 57� be a 
function with square power variables, then we have: 

]	5�� 57� @� ?�@?5�� � ?
�@?57� � ?

7�@?5�7� � ?
7�@?577� � ?

7�@?5�� ?57�� � � (15)

For example, for � � !� we get [4]: 
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I�1� � L�1 �1 & ��5� & �757 & �M5�7 & �R577 & �U5�57>1 & >�5� & >75�7� ?7*	5�� 57�?5�7I1�� � L1� �1 & ��5� & �757 & �M5�7 & �R577 & �U5�57>1 & >�57 & >7577� ?7*	5�� 57�?577
 (16)

In general, for fractional power �� we have:  

I�1� � L�1 	�1 & ��5� & �757 & �M5�7 & �R577 & �U5�57��(�7>1 & >�5� & >75�7� ?7�*	5�� 57�?5�7�
I1�� � L1� 	�1 & ��5� & �757 & �M5�7 & �R577 & �U5�57��(�7>1 & >�57 & >7577� ?7�*	5�� 57�?577�

 (17)

For example: 

I�1MQR � L�1 	�1 & ��5� & �757 & �M5�7 & �R577 & �U5�57�ST>1 & >�5� & >75�7
I�1�Q7 � L�1 	�1 & ��5� & �757 & �M5�7 & �R577 & �U5�57�MR>1 & >�5� & >75�7
I�1�QR � L�1 	�1 & ��5� & �757 & �M5�7 & �R577 & �U5�57�UT>1 & >�5� & >75�7

 (18)

3.2. Modified Information Theory 

In this section, we try to measure the learning of the neuron of the system in Figure 1. We wish 
to improve a applicable measure of the information we get from observing the appearance of an 
event having probability p. The approach depends on the probability of extinction, which describes 
by the fractional Poisson process as follows [28]: 

�̂ 	_� I� � < 	`I�a_b - 	; & _�b;b.
:01

	�`I��:�	�	; & _� & !� (19)

where  c R is a physical coefficient, � c (0,1]. Let N be the number of neurons, I be the average 
information and further that the source emits the symbols with probabilities P1, P2, ..., PN, 
respectively such that Pi = P� (i,y). Thus we may compute the total information as follows: 

� �-	_ =̂ � def g !̂=h
a
=0�  (20)
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The last assertion is modified work due to Shannon [29]. For example, to compute the average 
information of the system with N=3, for the last fractional derivative in Table 3, we have: 

� �-	_ =̂<<� def g !̂=h � V �̂ def g !̂�h & V 7̂< def g !̂7h & V M̂
M
=0� def g !̂Mh< i �C8P�\ � �C�X � �C�W! � �C�W! 

(21)

where Pi converged to a hypergeometric function, which computed with the help of Maple. 

Table 3. The approximation errors for *	5�� 57� � 	5� & 57�7. 
Data Actual Value Approximate Value Absolute Error 
(1,0) 2 I�1� � 8 0 

  I�1MQR � !C\VP 0.166 
  I�1�Q7 � !CY\! 0.319 
  I�1�QR � !CWP88 0.4577 

(0,1) 2 I�1� � 8 0 
  I�1MQR � !C\VP 0.166 
  I�1�Q7 � !CY\! 0.319 
  I�1�QR � !CWP88 0.4577 

(1,1) 2 I�1� � 8CPX 0.49 
  I�1MQR � 8C�P 0.04 
  I�1�Q7 � !CYYW 0.335 
  I�1�QR � !CVVY 0.633 

4. Discussion 

The presented 2-variable FD-PNN (Table 1) is able to approximate any linear function, e.g., the 
simple sum *	5�� 57� � 5� & 57C The comparison processes with respect to D-PNN (normal case) 
showed that the proposed method converged to the exact values rapidly. For example, the case 
(1,1) implied ABE=0.01 at I�QRC In this experiment, we let >1 � !�L� � L7 � !C Figure 2 shows 
the approximation of the fractional derivative for the function *	5�� 57� � 5� & 57C The x-axis 
represents to the values when 5� � 57C  It is clear that the interval of convergence is )�C8�!,C  
The endowed 3-variable FD-PNN (Table 2) is qualified to approximate any linear function e.g., 
simple sum *	5�� 57� 5M� � 5� & 57 & 5MC  The comparison procedure with respect to D-PNN 
displayed that the proposed method, of 3-variables, is converged swiftly to the exact values. For 
example, the case (1,1,0), with L7 � VQ8 and (1,1,1), with L7 � ! yield ABE=0.063 and 0.0755 
respectively at I�QRC Furthermore, Figure 3 shows the interval of convergence at )�CV�!,C Here, we 
let x1 = x2 = x3. Comparable argument can be concluded from the non-linear case, where Table 3 
computes approximation values, by utilizing FD-PNN. For example, the data (1,1) give the best 
approximation at IMQR  when L�1 � !CWC  In Figure 4, the x-axis performs to the value when 5� � 57C Obviously, the interval of convergence is [0.4,2]. 
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Figure 2. Selected fractional approximation derivative of f(x1,x2) = x1 + x2. 

 

Figure 3. The fractional approximation y4 of the function f(x1,x2,x3) = x1 + x2 + x3. 

 

Figure 4.The fractional approximation y10 of the function f(x1,x2) = (x1 + x2)2. 
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5. Conclusions  

Based on GMDH-PNN (Figure 1) and modifying the work described in [4], we suggested a 
generalized D-PNN, called FD-PNN. The experimental results showed that the proposed method 
satisfies a quick approximation to the exact value comparison with the normal method. The 
generalization depended on the Riemann-Liouville differential operator. This method can be 
employed on data to describe modelling of complex systems. Next step, our aim is to modify this 
work by utilizing mixed D-PNN and FD-PNN, e.g. one can consider a function of the form: 

]	5�� 57� @� ?@?5� � ?@?57 � C C C ?�@?5�� � ?
�@?57� � ?

7�@?5�7� � ?
7�@?577� � ?

7�@?5�� ?57� � C C C � � � (22)
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Abstract: The purpose of this paper is to present a new kind of analytical method, the  
so-called residual power series, to predict and represent the multiplicity of solutions to 
nonlinear boundary value problems of fractional order. The present method is capable 
of calculating all branches of solutions simultaneously, even if these multiple solutions 
are very close and thus rather difficult to distinguish even by numerical techniques. To 
verify the computational efficiency of the designed proposed technique, two nonlinear 
models are performed, one of them arises in mixed convection flows and the other one 
arises in heat transfer, which both admits multiple solutions. Graphical results and 
tabulate data are presented and discussed quantitatively to illustrate the multiple 
solutions. The results reveal that the method is very effective, straightforward, and 
powerful for formulating these multiple solutions. 
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1. Introduction 

Multiple or dual solutions of nonlinear boundary value problems (BVPs) of fractional order are 
an interesting subject in the area of mathematics, physics, and engineering. In fact, it is more 
consequential not to lose any solution of nonlinear BVPs of fractional order due to their wide 
application in scientific and engineering research. Based on this important fact, the present paper is 
going to present an analytical method, the so-called residual power series (RPS), that enables us to 
predict the multiplicity of solutions which nonlinear BVP of fractional order admits and 
furthermore to calculate the multiple solutions analytically at the same time. 

BVPs of fractional order have received considerable attention in the recent years due to their 
wide applications in the areas of physics and engineering. Many important phenomena in 
electromagnetics, acoustics, viscoelasticity, electrochemistry, and material science are well 
described by fractional BVP [1–4]. It is well known that the fractional order differential and 
integral operators are non-local operators. This is main reason why differential operators of 
fractional order provide an excellent instrument for description of memory and hereditary 
properties of various physical and engineering processes. For example, half-order derivatives and 
integrals proved to be more useful for the formulation of certain electrochemical problems than the 
classical models [5–9]. Indeed, for example, applying fractional calculus theory to entropy theory 
has become a significant part and a hotspot research domain [10–19], since the fractional entropy 
could be used in the formulation of algorithms for image segmentation where traditional Shannon 
entropy has presented limitations [13] and in the analysis of anomalous diffusion processes and 
fractional diffusion equations [14–19]. 

In general, most BVPs of fractional order do not have exact solutions. Particularly, there is no 
known method for solving these types of equations in closed form solution. As a result, numerical 
and analytical techniques have been used to study such problems. The reader is referred to [20–27] 
in order to know more details about the fractional BVPs, including their history and kinds, their 
existence and uniqueness of solution, their applications and methods of solutions, etc. 

Series expansions are a very important aid in numerical calculations, especially for quick 
estimates made in hand calculations, for example, in evaluating functions, integrals, or derivatives. 
Solutions to differential equations can often be expressed in terms of series expansions. Since, the 
advent of computers, it has, however, become more common to treat differential equations directly, 
using different approximation method instead of series expansions, but in connection with the 
development of automatic methods for formula manipulation, one can anticipate renewed interest 
in series methods. These methods have some advantages, especially in multidimensional and 
multiple solutions for BVPs of fractional order. 

The RPS method was developed by the first author [28] as an efficient method for determining 
values of coefficients of the power series solution for first and the second-order fuzzy differential 
equations. It has been successfully applied in the numerical solution of the generalized  
Lane-Emden equation, which is a highly nonlinear singular differential equation [29] and in the 
numerical solution of higher-order regular differential equations [30]. The RPS method is an 
effective and easy to construct power series solution for strongly linear and nonlinear equations 
without linearization, perturbation, or discretization [28–30]. Different from the classical power 
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series method, the RPS method does not need to compare the coefficients of the corresponding 
terms and a recursion relation is not required. This method computes the coefficients of the power 
series by a chain of equations of one or more variables. In fact, the RPS method is an alternative 
procedure for obtaining analytic solutions for BVPs of fractional order that admits multiple 
solutions. By using the residual error concept, we get a series solution, in practice a truncated series 
solution. Moreover, the multiple solutions and all their fractional derivatives are applicable for each 
arbitrary point in the given interval. On the other aspect as well, the RPS method does not require 
any conversion while switching from the low-order to the higher-order; as a result the method can 
be applied directly to a given problem by choosing an appropriate initial guess approximation. 

In the present paper, the RPS method will investigate how to construct new algorithms for 
predicting and finding multiple solutions for those nonlinear BVPs of fractional order that admit 
multiple solutions. Furthermore, we will adapt a new generalization of Taylor’s series formula that 
involves Caputo fractional derivatives in order to apply the RPS method. 

The results dealing with multiple solutions of BVPs of fractional order are relatively scarce. 
Recently, many authors have discussed the multiple solutions to some problems using some of the 
well-known methods. However, the reader is referred to [31–35] in order to know more details 
about these methods, including their types and history, their motivation for use, their 
characteristics, and their applications. On the other hand, the numerical solvability of other version 
of differential equations and other related equations can be found in [36–43] and references therein. 

The outline of the paper is as follows: in the next section, we utilize some necessary definitions 
and results from fractional calculus theory. In Section 3, the general form of generalized Taylor’s 
formula is mentioned and proved. In Section 4, basic idea of the RPS method is presented in order 
to construct and predict multiple solutions for BVPs of fractional order. In Section 5, two nonlinear 
models are performed in order to illustrate the capability and simplicity of proposed method. 
Finally, conclusions are presented in Section 6. 

2. Review of Fractional Calculus Theory 

In this section, we present some necessary definitions and essentials results from fractional 
calculus theory. There are various definitions of fractional integration and differentiation, such as 
Grunwald-Letnikov’s definition and Riemann-Liouville’s definition [5,6,8]. The Riemann-Liouville 
derivative has certain disadvantages when trying to model real-world phenomena with fractional 
differential equations (FDEs). Therefore, we shall introduce a modified fractional differential 
operator "jF proposed by Caputo in his work on the theory of viscoelasticity [4]. Throughout this 
paper,<k the set of integer numbers, l the set of real numbers, and m is the Gamma function. 

Definition 2.1: A real function *	5�� 5 � � is said to be in the space n$� % o l if there exists a 
real number p � % such that *	5� � 5q*�	5�, where *�	5� o n)��r�, and it is said to be in the 
space n$: if *	:�	5� o n$� ; o k. 

Definition 2.2: The Riemann-Liouville fractional integral operator of order H s � of * o n$, % s �! is defined as: 
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tjF*	5� � u !m	H� 	5 � 
�F��v
j *	
��
� 5 � 
 � N s �� H � �*	5�� H � �  (1)

Definition 2.3: The Caputo fractional derivative of order H � � of * o n��: � ; o k is defined as: 

"jF*	5� � utj:�F*	:�	5�� 5 � N s �� ; � !  H  ;�:*	5��5: � H � ;  (2)

On the one hand, for some certain properties of the operator "jF , it is obvious that when  w � �!� 5 � N s �, and n o l, we have "jF	5 � N�x � y	x(��y	x(��F� 	5 � N�x�F and "jFn � �. On 

the other hand, properties of the operator tjF  can be summarized shortly in the form of the 
following: for * o n$� % s �!, H� � s �, n o l, and w s �!, we have tjFn � zy	F(�� 	5 � N�F , tjFtj�*	5� � tjF(�*	5� � tj�tjF*	5�, and tjF	5 � N�x � y	x(��y	F(x(�� 	5 � N�F(x. 

Theorem 2.1: If ; � !  H � ; , * o n$: , ; o k, and % s �!, then "jFtjF*	5� � *	5�  and tjF"jF*	5� � *	5� � { *	A�	N(� 	v�j�|Ab:��A01 , where 5 � N s �. 

3. General Form of Generalized Taylor’s Formula 

In this section, we will introduce general form of generalized Taylor’s formula that contains the 
Caputo definition for fractional derivatives. In fact, we need this generalization in the application 
of the RPS method in order to predict and find the multiplicity of solutions. 

We will begin with the following definition which is needed throughout this work, especially, in 
the two succeeding sections. After that, we present a new and a fundamental theorem called general 
form of generalized Taylor’s formula, which can formulate any function with certain properties in 
term of its fractional power series (FPS) representation. 

Definition 3.1: A power series of the form 

-- B:/	
 � 
1� /(:FJ��
/01

.
:01 � � � K � !  H � K � 
 s 
1 (3)

is called FPS about 
1, where<
 is a variable and B:/’s are constants called the coefficients of  
the series.  

As a special case, when 
1 � � , the expansion { { B:/
</(:FJ��/01.:01  is called a fractional 
Maclaurin series. Notice that in writing out the term corresponding to ; � �  and 3 � �  in 
Equation (3) we have adopted the convention that 	
 � 
1�1 � ! even when 
 � 
1. Also, when 
 � 
1 each of terms of Equation (3) are vanished for ; } �~3 } � and so. On the other hand, 
the FPS representation of Equation (3) always converges when <
 � 
1. In the next lemma by "��:F 
we mean that "��F � "��F � � � "��F  (;-times). 

Lemma 3.1: Suppose that *	
� o n)
1� 
1 & ��  and "��AF*	
� o n	
1� 
1 & ��  for  � � �� !� 8� � � ; & ! where � � K � !  H � K. Then we have: 
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t��	:(��F"��	:(��F*	
� � �"��	:(��F*�	��m�	; & !�H & !� 	
 � 
1�	:(��F (4)

with 
1 � � � 
  
1 & �. 

Proof: From the definition of the operator t��F  and by using the second mean value theorem for 
fractional integrals, one can find: 

t��	:(��F"��	:(��F*	
� � !m�	; & !�H� 	
 � ��	:(��F��"��	:(��F*	����
�

��
 

<<<<<<<<<<<<<<<<<<<� < �"��	:(��F*�	��m�	; & !�H� 	
 � ��	:(��F�����
��

 

<<<<<<<<<<<<� < �"��	:(��F*�	��m�	; & !�H & !� 	
 � 
1�	:(��F 

(5)

Theorem 3.1: Suppose that<*	
� o n)
1� 
1 & ��, "��AF*	
� o n	
1� 
1 & ��, and "��AF*	
� can be 
differentiated 	K � !�-times on 	
1� 
1 & �� for � � ��!�8� � � ; & !, where � � K � !  H � K. 
Then: 

*	
� �-- �"/"��AF*�	
1�m	�H & 3 & !�J��
/01 	
 � 
1�/(AF:

A01 & �"��	:(��F*�	��m�	; & !�H & !� 	
 � 
1�	:(��F (6)

with 
1 � � � 
 � 
1 & �. 

Proof: From the certain properties of the operator t��F , we have: t��	:(��F"��	:(��F*	
� � t��:F ��t��F "��F �"��:F*	
�� � t��:F ��t��J"��J�"��:F*	
�� <<<
� t��:F �"��:F*	
� � - g �/�
/ "��:F*h 	
1(�3bJ��

/01 	
 � 
1�/�
� t��:F"��:F*	
� � t��:F 2- �"/"��:F*�	
1�3bJ��

/01 	
 � 
1�/4
� t��	:���F ��t��J"��J�"��	:���F*	
��
� - �"/"��:F*�	
1�m	;H & 3 & !� 	
 � 
1�/(:FJ��

/01 <<<<<<<<<
� t��	:���F �"��	:���F*	
� � - �"/"��	:���F*�	
1�3bJ��

/01 	
 � 
1�/�
� - �"/"��:F*�	
1�m	;H & 3 & !� 	
 � 
1�/(:FJ�<�

/01  

(7)

On the other direction, if we keep the repeating of this process, then after ; -times of 
computations, we will obtain: 
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t��	:(��F"��	:(��F*	
� � <*	
� �-- �"/"��AF*�	
1�m	�H & 3 & !�J��
/01 	
 � 
1�/(AF:

A01 � 
1 � 
 � 
1 & � (8)

Thus, by using Lemma 3.1, the proof of the theorem will be complete. 

Remark 3.1: We mention here that, if we fixed K � !, then the series representation of * in 
Theorem 3.1 will leads to the following expansion of * about 
1: 

*	
� �- "��AF*	
1�m	�H & !�:
A01 	
 � 
1�AF & �"��	:(��F*�	��m�	; & !�H & !� 	
 � 
1�	:(��F (9)

with 
1 � � � 
  
1 & � , which is the same as of Generalized Taylor’s series that obtained  
in [44] for �  H � !.  

As with any convergent series, this means that *	
� is the limit of the sequence of partial sums.  
In the case of general form of generalized Taylor’s series, the partial sums are given as  �:	
� � { { ������|���	���y	AF(/(��J��/01 	
 � 
1�/(AF:A01 . In general, *	
� is the sum of its general form of 

generalized Taylor’s series if *	
� � d��:�. �:	
�. But on the other aspect as well, if we set  �:	
� � *	
� � �:	
�, then �:	
� is the remainder of general form of generalized Taylor’s series. 

That is, �:	
� � ����	�������	��y�	:(��F(�� 	
 � 
1�	:(��F� 
1 � � � 
  
1 & �. 

Corollary 3.1: If �"��	:(��F*	
�� � � on 
1 � 
 � �, where K  H � K � !, then the reminder �:	
� of general form of generalized Taylor’s series satisfies the inequality: 

��:	
�� � �m		; & !�H & !� 	
 � 
1�	:(��F� 
1 � 
 � � (10)

4. RPS Method for BVPs of Fractional Order 

In this section, we predict and find multiple solutions for BVPs of fractional order that admit 
multiple solutions by substituting a FPS expansion with undetermined coefficients through the 
given equation. From the FDE a recursion formula for the computation of the coefficients was 
derived. On the other hand, the coefficients in the FPS expansion can be computed recursively by 
differentiating the FDEs. 

For convenience, the reader is referred to [28–30] in order to know more details about the 
classical RPS methods, including their construction, their motivation for use, their characteristics 
compared to the conventional method, and their applications for solving different categories of 
linear and nonlinear differential equations of different types and orders. 

In fact, the main goal of our work is to predict and find out multiple series solutions for 
nonlinear BVPs of fractional order. To illustrate the basic idea of the RPS method for solving 
fractional BVPs analytically, we first consider the following nonlinear fractional functional equation: "��F @	�� � �)@	��,� � o ��K � !  H � K (11)

subject to the boundary conditions: 
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�  @	��� ¡@	��¡; ¢ � �� � o £ (12)

where "��F  is a Caputo fractional derivative of order ¤, � is general nonlinear operator has Caputo 
fractional derivative term, � is boundary operator, and £ is the boundary of the domain �. 

The crucial step of the RPS method for solving Equations (11) and (12) analytically is based on 
the fact that the boundary conditions of Equation (12) should be transcribed into equivalent form, 
so that, the new version conditions involves an unknown parameter so-called prescribed parameter ¥ and are split to: 

��  @	��� ¥� ¡@	��¡; ¢ � �� � o £� @	H� � � (13)

where @	H� � � is the forcing condition that comes from original conditions of Equation (12) and ��  is the remainder boundary operator which contains the prescribed parameter ¥ . Now, we 
investigate and apply the RPS method on the following problem: "��F @	�� � �)@	��,� � o ��K � !  H � K (14)

subject to the split conditions: 

��  @	��� ¥� ¡@	��¡; ¢ � �� � o £ (15)

In order to apply the RPS method in the fractional sense, we assume firstly that we can apply the 
operator "��=F"��A � � � �� !� � �K � !� ¦ � �� !� � on the term of �)@	��, in Equation (14) and 
also we suppose that all solutions @	�� that satisfy Equations (14) and (15) can be expanded by 
FPS representation as follows: 

@	�� �-- B=A	� � �1�A(=FJ��
A01

.
=01 � � s �1 (16)

where B=A are coefficients to be determined and �1 is the initial value of the independent variable 
of Equations (14) and (15). 

Assume that Equation (14) satisfies the initial conditions @	=�	�1� � ¥=� ¦ � �� !� 8� � �K � !, 
with ¥= as a prescribed parameters, where the unknown parameters ¥= can be determined later by 
substituting @	H� � � and/or any other constraint conditions into the obtained solution form. It is 
worth noting that some of ¥= may be known from the given initial conditions in Equation (15). As 
the first step in the prediction of multiple solutions, we set @1�1  be as an initial guess 
approximation of exact function solution @	�� of Equation (14). On the other hand, @1�1 will be 
of the form @1�1 � @1�1	�' ¥1� ¥�� � � ¥J���  which satisfies the known initial conditions in 
Equation (15) automatically. It was proved in [28–30] that the coefficients B1A in Equation (16) 

will take the form B1A � §|Ab � � � �� !� 8� � �K � !. Therefore, we can consider the expansion formula: 

@1�1	�� � - ¥A�b 	� � �1�AJ��
=01 � � s �1 (17)
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as an initial guess approximation for solution of Equations (14) and (15). But on the other aspect as 
well, depending on Equations (16) and (17), we can write: 

@	�� � - ¥A�b 	� � �1�AJ��
A01 &-- B=A	� � �1�A(=FJ��

A01
.
=0� � � s �1 (18)

Again, as the second step in the prediction of multiple solutions, we will let the double 	3� ¨� to 
denote the 	3� ¨�-truncated series approximation of @	��. That is: 

@/�©	�� � - ¥A�b 	� � �1�AJ��
A01 &--B=A	� � �1�A(=F©

A01
/
=0� � � s �1 (19)

where the indices counter ¨  and 3  whenever used mean that 3 � !� 8� V� �  and ¨ � �� !� 8� � �K � !. 
Prior to applying the RPS technique for finding the values of coefficients B=A in the series 

expansion of Equation (19), we must define the residual function concept for the main nonlinear 
fractional functional Equation (14) as ª«¬	�� � "��F @	�� ��)@	��,� � s �1 and the following 
truncated 	3� ¨�-resudial function: ª«¬	/�©�	�� � "��F @/�©	�� ��@/�©	��®� � s �1 (20)

As in [28–30], it is clear that ª«¬	�� � � for each � o )�1� �1 & ��, where � is the radius  
of convergence of Equation (18). In fact, this shows that "��	=���F"��A ª«¬	�� � �  for each ¦ � !� 8� V� � � 3 and � � �� !� 8� � � ¨ , since the fractional derivative of a constant function in  
the Caputo sense is zero. In the mean time, the fractional derivatives "��	=���F"��A  for each ¦ � !� 8� V� � � 3  and � � �� !� 8� � � ¨  of ª«¬	��  and ª«¬	=�A�	�� are matching at � � �1 ; it is 
obvious that: "��	=���F"��A ª«¬	�1� � "��	=���F"��A ª«¬	=�A�	�1� � �� ¦ � !� 8� V� � � 3� � � �� !� 8� � � ¨ (21)

To obtain the value of coefficients B¯°  in Equation (19) for ± � !� 8� V� � � 3  and  L � �� !� 8� � � ¨ , we apply the following subroutine: substitute 	±� L� -truncated series 
approximation of @	��  into Equation (20), find the fractional derivative formula "��	¯���F"��°  
of ª«¬	¯�°�	��  at � � �1 , and then finally solve the obtained algebraic equation to get the  
required coefficients. 

To summarize the computation process of RPS method in numerical values, we apply the 
following: fixed ¦ � !  and run the counter � � �� !� 8� � � ¨  to find 	!� �� -truncated series 
expansion of suggested solution, next fixed<¦ � 8 and run the counter � � �� !� 8� � � ¨ to obtain 
the 	8� �� -truncated series, and so on. In fact, to get 	!��� -truncated series expansion for  
Equations (14) and (15), we use Equation (19) and write: @��1	�� � ¥1 & ¥�	� � �1� & 9& ¥J��	� � �1�	J��� & B�1	� � �1�� (22)

On the other hand, to determine the value of first unknown coefficient, B��1, in Equation (22), 
we should substitute Equation (22) into both sides of the 	!���-residual function that obtained 
from Equation (20), to get the following result: 
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<<<<<<<<ª«¬	��1�	�� � B��1m	H & !� <<<<<<<<<<<<<<<<<<<<<��¥1 & ¥�	� � �1� & 9& ¥J��	� � �1�	J��� & B�1	� � �1��®< (23)

Now, depending on the result of Equation (21) for 	¦� �� � 	!��� , Equation (23) gives B�1 � �)§�,y	F(��. Hence, using the 	!���-truncated series expansion of Equation (22), the 	!���-RPS 

approximation for Equations (14) and (15) can be expressed as: 

@��1	�� � ¥1 & ¥�	� � �1� & 9& ¥J��	� � �1�	J��� & �)²1,m	H & !� 	� � �1�� (24)

Similarly, to find 	!�!�-truncated series expansion for Equations (14) and (15), we use  
Equation (19) and write: @���	�� � ¥1 & ¥�	� � �1� & 9& ¥J��	� � �1�	J��� & �)²1,m	H & !� 	� � �1��& B��	� � �1��(� 

(25)

Again, to find out the value of second unknown coefficient, c11 in Equation (25), we must find 
and formulate 	!�!�-residual function based on Equation (20) and then substitute the form of @���	�� in Equation (25) to find new discretized form of this residual function as follows: 

ª«¬	����	�� � "��F @���	�� ��@���	��®� B�1m	H & !� & B��m	H & 8�	� � �1��� ³¥1 & ¥�	� � �1� & 9& ¥J��	� � �1�	J��� & �)²1,m	H & !� 	� � �1��& B��	� � �1��(�´< (26)

while, on the other hand, by considering Equation (20) for 	¦� �� � 	!�!� and applying the operator "�� to the both side of Equation (26), we get: "��ª«¬	����	�1�� B���m	H & 8�� "��� ³¥1 & ¥�	� � �1� & 9& ¥J��	� � �1�	J���
& �)²1,m	H & !� 	� � �1�� & B��	� � �1��(�´�0�� 

(27)

Now, using the fact that "��ª«¬	����	�1� � �, we can easily obtain: 

B�� � !m	H & 8�"��� ³¥1 & ¥�	� � �1� & 9& ¥J��	� � �1�	J���
& �)²1,m	H & !� 	� � �1�� & B��	� � �1��(�´�0�� (28)

Hence, using the 	!�!� -truncated series expansion of Equation (25), the 	!�!� -RPS 
approximation for Equations (14) and (15) can be expressed as: 
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@���	�� � - ¥A�b 	� � �1�AJ��
A01 & _)¥1,m	H & !� 	� � �1�F

& !m	H & 8�"��� ³¥1 & ¥�	� � �1� & 9& ¥J��	� � �1�	J���
& �)²1,m	H & !� 	� � �1�� & B��	� � �1��(�´�0�� 	� � �1��(F� � s �1<

(29)

This procedure can be repeated till the arbitrary order coefficients of FPS solution for  
Equations (14) and (15) are obtained. Moreover, higher accuracy can be achieved by evaluating 
more components.  

Remark 4.1: It is worth indicating that there are still unknown prescribed parameters ¥= in the 
series expansion of Equation (19) (and simply in Equation (29)) that should be determined. It is 
essential that the existence of a unique or multiple solutions in terms of Equation (19) (and simply 
in Equation (29)) for the original BVP which is covered by Equations (11) and (12) depends on the 
fact that whether the forcing condition @	H<� � �  and/or any other constraint condition in 
Equation (13) admits a unique or multiple values for the formally introduced prescribed parameters ¥=. This stage is called rule of multiplicity of solutions that is a criterion in order to know how 
many solutions the BVP in Equations (11) and (12) admits.  

Anyhow, as the final step in the construction, if we substitute @	H� � �  and/or any other 
constraint conditions into the obtained solution form of Equation (19) (and simply in Equation 
(29)), then we obtain a system of nonlinear algebraic equations in the prescribed variables ¥1� ¥�� ¥7� � � ¥J�� (here, we must recall that some of ¥=� ¦ � �� !� � �K � ! may be known from 
Equation (15)) which can be easy solved using symbolic computation software such as MAPLE !V 
or MATHEMATICA ZC�. In fact, if we substitute these values of prescribed parameters in the 
obtained solution form of Equation (19) (and simply in Equation (29)), then discretized form  
of the 	3� ¨�-truncated series approximation of @	�� of Equations (11) and (12) (and simply 	!�!�-truncated series approximation of @	�� as given by Equation (26)) will be obtained. 

5. Applications and Numerical Discussions 

The application problems are carried out using the proposed RPS method, which is one of the 
modern analytical techniques because of its iterative nature; it can handle any kind of boundary 
conditions and other constraints. The RPS method doesn’t have mathematical requirements about 
the multiple solutions of fractional BVPs to be solved; the RPS method is also very effective in 
identifying global predicted solutions, and provides a great flexibility in choosing the initial guess 
approximations. However, in order to verify the computational efficiency of the designed RPS 
method, two nonlinear models are performed, one of them arises in mixed convection flows and the 
other one arises in heat transfer, which both admit multiple solutions. In the process of 
computation, all the symbolic and numerical computations were performed by using the 
MATHEMATICA ZC� software package. 

Throughout this section, we will try to give the results of the two applications; however, in some 
cases we will switch between the results obtained for the applications in order not to increase the 
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length of the paper without the loss of generality for the remaining application and results. However, 
by easy calculations we can collect further results and discussion for the desire application. 

Application 5.1: The aim of this application is to apply the RPS method to analyze a kind of model 
in mixed convection flows namely, combined forced and free flow in the fully developed region of 
a vertical channel with isothermal walls kept at the same temperature. In this model, the fluid 
properties are assumed to be constant and the viscous dissipation effect is taken into account. The 
set of governing balance equations for the velocity field is reduced to the following [45,46]: "1F@	I� � µ!Y �@	I��I ¢7 � V  H � P� � � I � ! (30)

subject to boundary conditions: 

@¶	�� � @¶¶¶	�� � @	!� � ��@	I��
1 �I � ! (31)

where @ and I are dimensionless velocity and transversal coordinate, respectively, and also @ � ··¸ , I � ¹º , »O � Rº¼�½¾ , ^� � $½¾/ , �O � Rº·¸¯ , and µ � ¿«ÀÁª«  in which Â�ÂJ� Ã� Ä� +� �� Bq� %� 3� ±� ¿«� ÀÁ, and ª« are mean 5-component of the fluid velocity, fluid 
velocity, channel half-width, acceleration due to gravity, coefficient of thermal expansion, specific 
heat at constant pressure, dynamic viscosity, thermal conductivity, kinematic viscosity, Gebhart 
number, Prandtl number, and Reynolds number, respectively.<

Next, we will show how one can find out the existence of multiple solutions for Equations (30) and 
(31) in aforesaid range for <� � I � !. To do so, we consider firstly Equations (30) and (31) and 
suppose that @	�� � ¥1 and @¶¶	�� � ¥7. So, Equations (30) and (31) can be modified into the 
following form: 

"1F@	I� � µ!Y �@	I��I ¢7 � V  H � P� � � I � ! (32)

subject to the split conditions: @	�� � ¥1� @¶	�� � �� @¶¶	�� � ¥7� @¶¶¶	�� � � (33)

where @	!� � �  is the additional forcing condition and Å @	I��1 �I � !  is the additional  
constraint condition. 

Now, we apply the RPS method on Equations (32) and (33), where prescribed parameters ¥1 
and ¥7 which are played an important and fundamental role to realize about multiplicity of 
solutions, will be obtained later by substituting the additional forcing condition and the additional 
constraint condition in resulting expansion formula that approximate Equations (32) and (33). 

According to Equation (18), we assume that the series solution of Equations (32) and (33) can 
be written as: 

@	I� �-¥A�b IAM
A01 &--B=AIA(=FM

A01
.
=0�  (34)
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where ¥� � @¶	�� � � and ¥M � @¶¶¶	�� � � which are hold from the conditions of Equation (33). 
Therefore, the initial guess approximation can be constructing as @1�1	I� � ¥1 & ÆÇ7 I7 . Next, 

according to Equations (19) and (20) the 	3� ¨�-truncated series approximation of @	I� and the  	3� ¨�-residual function of Equation (32) can be defined and thus constructed, respectively, as: 

ª«¬	/�©�	I� � "1F@/�©	I� � µ!Y �@/�©	I��I ¢7 (35)

@/�©	I� � ¥1 & ¥78 I7 &--B=AIA(=F©
A01

/
=0� (36)

However, to determine the value of coefficient B�1 , we find out (1,0)-truncated series 
approximation of @	I�  as @��1	I� � ¥1 & §Ç7 I7 & B�1IF  and (1,0)-residual function as ª«¬	��1�	I� � B��1m	H & !� � È�[ 	¥7I & HB�1IF���7 . On the other aspect as well, by using 

Equation (21) for 	¦� �� � 	!��� and substituting I � �, we obtain B�1 � �. 
Similarly, to find the value of coefficient B��, we evaluate 	!�!�-truncated series approximation 

of @	I�  as @���	I� � ¥1 & ÆÇ7 I7 & B��I�(F  and 	!�!� -residual function as ª«¬	����	I� �B���m	H & 8�I  �  È�[ 	¥7I & 	! & H�B��IF�7 . Thus, for 	¦� �� � 	!�!� , we conclude that "1ª«¬	����	I� � B��m	H & 8�  �  ÈT 	¥7 & H	! & H�B��IF���	¥7I & 	! & H�B��IF� , while the 

substitution of I � � leads to B�� � �. 
To evaluate the value of coefficient B�7, we need to write @��7	I� � ¥1 & ÆÇ7 I7 & B�7I7(F and ª«¬	��7�	I� � B�7 y	F(M�7 I7 � È�[ 	¥7I & B�7	8 & H�I�(F�7. However, by considering the fact that "17ª«¬	��7�	�� � � , we can easily find B�7 � ÈÆÇÇTy	M(F� . Similarly, the continuation in the same 

manner will leads also to B�M � �. According to the initial guess approximation and the form of 
terms in Equation (32) taking into account the form of Equations (35) and (36), we can  
conclude that B=A � � for � � ��!�V. Therefore, according to Equation (34) the FPS solution of 
Equations (32) and (33) can be written in the form of the following expansion: 

@	I� � ¥1 & ¥78 I7 & µ¥77\m	V & H� I7(F &-B=7I7(=F.
=07  (37)

and hence the 	3� 8�-truncated series approximation of @	I� can reformulated as: 

@/�7	I� � ¥1 & ¥78 I7 & µ¥77\m	V & H� I7(F &-B=7I7(=F/
=07  (38)

Again, to determine the value of coefficient B77, we need solve the equation "1F"17ª«¬	7�7�	�� � � 

which gives B77 � 	7(F�ÈÇÆÇÉ[Ry	M(7F� . Similarly, we have BM7 � 	8 & H�µM¥7R	Pm	V & H�7 & PHm	V &H8&8mV&8H&HmV&8H�Q!�8PmV&H8mV&VH, and so on. Consequently, based on the structure of 
Equation (38) the 	V�8�-truncated series approximation of @	I� generated from the RPS method 
can be written as: 
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@M�7	I�� ¥1 & ¥78 I7 & µ¥77\m	V & H� I7(F & 	8 & H�µ7¥7MYPm	V & 8H� I7(7F& 	8 & H�µM¥7R�Pm	V & H�7 & PHm	V & H�7 & 8m	V & 8H� & Hm	V & 8H��!�8Pm	V & H�7m	V & VH� I7(MF (39)

It is clear that, Equation (39) contain two unknown certain parameters which are ¥1 and ¥7. To 
determine their introductory values substituting the forcing condition @	!� � � and the constraint 
condition Å @	I��1 �I � !, and finally selecting some numerical values of µ. 

Now, to be specific, we consider two cases according to Equation (39) which consist of 
� � �8� and � � 8�. On the other hand, we generate and obtain the 	!Z�8�-truncated series 
approximation of @	I� using the same procedure. However, various values of ¥1 and ¥7 have 
been calculated and listed in Tables 1 and 2 when H � VCX and when H � P, respectively. For 
simplicity and not to conflict, we will let @/�©� 	I� to denote the first approximate solution of @	I� 
and @/�©7 	I� to denote the second approximate solution of @	I�. 

Consequently, we conclude that the RPS method furnishes multiple solutions for Equations (30) 
and (31). It is worth mentioning here that when H � VCX, Table 1 indicates the existence of two 
solutions at � � �8�, so that, @	�� � !CP\X\WVPYZ��P, @¶¶	�� � �8CX�\!8YPZ\P�P for the 
first branch solution and @	�� � �!VCZ!W�\!!8P8V, @¶¶	�� � !P\CVYWPPZP8XW for the second 
branch solution. In fact, these results answer the question how many solutions the nonlinear BVP in  
Equations (30) and (31) admits? The same procedure has been done at the case � � 8� .  
As we see from Table 1, there exist multiple solutions namely @	�� � !CW!!8�WWW!\8�� @¶¶	�� �  �VC!�!XZY!�P�ZV  for the first branch solution and @	�� � !WC8X8YYZX�\YW� @¶¶	�� � �!VXCZYPYP8W!VW for the second branch solution. Similar conclusion can be achieved 
when H � P as shown in Table 2. 

Table 1. The approximate numerical values of ¥1/  and ¥7/ , 3 � !�8 at � � �8� 
and � � 8� when H � VCX for @�S�7	I�. Ê ËÌÍ � ÎÍÏ�ÐÍ 	Ì�Ê� ËÐÍ � �ÎÍÏ�ÐÍ �¶¶	Ì�Ê� ËÌÐ � ÎÍÏ�ÐÐ 	Ì�Ê� ËÐÐ � �ÎÍÏ�ÐÐ �¶¶	Ì�Ê� �8� !CP\X\WVPYZ��P �8CX�\!8YPZ\P�P �!VCZ!W�\!!8P8V !P\CVYWPPZP8XW 8� !CW!!8�WWW!\8� �VC!�!XZY!�P�ZV !WC8X8YYZX�\YW �!VXCZYPYP8W!VW 

Table 2. The approximate numerical values of ¥1/  and ¥7/ , 3 � !�8 at � � �8� 
and � � 8� when H � P for @�S�7	I�. Ê ËÌÍ � ÎÍÏ�ÐÍ 	Ì�Ê� ËÐÍ � �ÎÍÏ�ÐÍ �¶¶	Ì�Ê� ËÌÐ � ÎÍÏ�ÐÐ 	Ì�Ê� ËÐÐ � �ÎÍÏ�ÐÐ �¶¶	Ì�Ê� �8� !CPX!P8X�8ZY!X< �8CX8V��VX\W!X! �!YC8PVYYPVXP!8 !Z�C�VX!\PY8�8 8� !CW�XV8Z!X�!\W �VC�\P!�ZYZYP8V !ZC\!YWV��!W\Y �!Y!CZ8W\88\Y!� 

The RPS technique has an advantage that it is possible to pick any point in the interval of 
integration and as well the approximate multiple solutions and all their fractional derivatives will 
be applicable. In other words, continuous approximate solutions can be obtained. Our next goal, is 
to show the mathematical behavior of the obtained multiple solutions geometrically. To do so, we 
plot the first and the second solutions obtained from the 	!Z�8�-truncated series approximation of 
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@	I� at µ � �8� and µ � 8� when<H � VCX in Figure 1, while in Figure 2 we depict the first 
and the second approximate solutions at the same values when H � P. 

The effective calculations of the two approximate branches solutions for Equations (30) and 
(31) with respect to some certain specific values of µ on @	�� and @¶¶	�� is explored next in 
which the obtained results are generated from the 	!Z�8�-truncated series approximation of @	I�. 
Table 3 gives the effect of the numeric value of µ when H � VCX, while Table 4 gives the effect 
of the numeric value of µ when H � P. The numeric value of µ lie within the range )�\��\�, 
in step of 8�. It is to be noted that, when the values of µ increasing gradually within mentioned 
range, the value of @¶¶	�� decreasing as well as the value of @	�� increasing for both branch 
solutions and for both order of derivatives. 

We mention here that, the case of µ � � correspond either to a very small viscous dissipation 
heating or to negligible buoyancy effects. However, Equations (30) and (31) are easily solved and 
admit the unique solution @	I� � M7 	! � I7�  for both H � VCX  and H � P . On the other 

direction, from the last tables, it can be seen that our results of the RPS method agree best with 
method of [34] when H � VCX and method of [35] when H � P.  

Figure 1. Multiple solutions of Equations (30) and (31) when H � VCX: @�S�7� 	I�: red 
color, @�S�77 	I�: blue color at (a) µ � �8� and (b) µ � 8�. 

(a) (b) 

Figure 2. Multiple solutions of Equations (30) and (31) when H � P: @�S�7� 	I�: red 
color, @�S�77 	I�: blue color at (a) µ � �8� and (b) µ � 8�. 

(a) (b) 
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Table 3. The effect values of µ on ¥1/ and ¥7/, 3 � !� 8 for the first and the second 
branch solutions when H � VCX. 

� ËÌÍ � ÎÍÏ�ÐÍ 	Ì�Ê� ËÐÍ � �ÎÍÏ�ÐÍ �¶¶	Ì�Ê� ËÌÐ � ÎÍÏ�ÐÐ 	Ì�Ê� ËÐÐ � �ÎÍÏ�ÐÐ �¶¶	Ì�Ê��\� !CPYP!\\VZ8VXW �8CYZZX��WZP!�V �8C\�P!88V\!�\X VXCX\X\XZ�YP8Y �Y� !CPZ8�YX8�\�PW �8CZP\8PYY8!PV1 �PC�8!VYZ8WXZ\V W8C�\�WXZZ\8WY �P� !CP\�W\\Y�8!WP �8C\8PYPW\VPPXW �YCPP\Z\W8PZ\Z8 ZYC!X!P�V8VW�\ �8� !CP\X\WVPYZ��P �8CX�\!8YPZ\P�P �!VCZ!W�\!!8P8V !P\CVYWPPZP8XW � !CW �V !CW �V 8� !CW!!8�WWW!\8� �VC!�!XZY!�P�ZV !WC8X8YYZX�\Y5 �!VXCZYPYP8W!VW P� !CW8VZ�Z8WZW!8 �VC8!YVPVW!VZPX \C�8V!8YZ�8YV8 �YZCWWXWXVV!VP� Y� !CWVZ\V8Z!V�VX �VCVPY8YZZZX!VY WCWX��\\W8WVY8 �PVCVXW�Y\WPX8Y \� !CWWP�WVW\Z�\X �VCPXYV!8�YWXYP PCVYPP\V\Z�PVY �V!C88PP�VWV\Y! 

Table 4. The effect values of µ on ¥1/ and ¥7/, 3 � !�8 for the first and the second 
branch solutions when H � P. 

� ËÌÍ � ÎÍÏ�ÐÍ 	Ì�Ê� ËÐÍ � �ÎÍÏ�ÐÍ �¶¶	Ì�Ê� ËÌÐ � ÎÍÏ�ÐÐ 	Ì�Ê� ËÐÐ � �ÎÍÏ�ÐÐ �¶¶	Ì�Ê� �\� !CPYX8Y!YYV�XW �8CZ8W8ZZXY\XWP �VCPP8YX8�YZ�PV PWCVWVP\PPVZYV �Y� !CPZY!VX�!YW!Y �8CZ\YVXV8!8P8W �PC\YXVPX�VY�V\ WXC8PXVPYWYY8� �P� !CP\VW�PW8�XY8 �8C\W8�Z\!P\\Z\ �ZCZ!YP�Y�!88X\ \YCX\�P!PYX�XV �8� !CPX!P8X�8ZY!X< �8CX8V��VX\W!X1 �!YC8PVYYPVXP!8 !Z�C�VX!\PY8�8 � !CW �V !CW �V 8� !CW�XV8Z!X�!\W �VC�\P!�ZYZYP8V !ZC\!YWV��!W\Y �!Y!CZ8W\88\Y!� P� !CW!XWW�XX!\P8 �VC!ZYYY�VXZ\VX XC8\YXYYZ�!��8 �Z\CYPWVVY8\W�V Y� !CWV�\WW!Y�!P8 �VC8ZXP�P\Y8�YV YCPVWXY!YY!W�\ �W�C\ZZ�WX!WY�Y \� !CWPVP\YXXW!!\ �VCVXPYXV\8V�Z\ WC��VWVZ�PY8!Z �VYCX8Y\!PV�\ZZ 

To measure the accuracy and the efficiency of the proposed RPS method for predicting and 
finding the multiple solutions for Equations (30) and (31), we report the residual error function at 
� � �8� and � � 8� when H � VCX and when H � P in Tables 5 and 6, respectively, in which 
the obtained results are generated from the 	!Z�8�-truncated series approximation of @	I�. The 
residual error function is defined using Equation (35) in which the grid points are building as I= � ��1 ¦, ¦ � �� !� 8� � � !�. For simplicity and not to conflict, we will let ª«¬	/�©�� 	I�<to denote the 
residual error function of the first approximate solution @/�©� 	I� of @	I� and ª«¬	/�©�7 	I� to 
denote the residual error function of the second approximate solution @/�©7 	I� of @	I�. 

In fact, the residual errors measure the extent of agreement between the 	!Z�8� th-order 
approximate RPS solutions and unknowns closed form solutions which are inapplicable in general 
for such nonlinear equations. However, from the tables, it can be seen that the RPS technique 
provides us with the accurate approximate solutions and explicates the rapid convergence in 
approximating the multiple solutions for Equations (30) and (31). 
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Table 5. The values of absolute residual error function ª«¬	�S�7�Ñ 	I� , 3 � !�8  at 
� � �8� and � � 8� of @�S�7	I� when H � VCX. 

ÒÓ ÔÕÖ×	ÍÏ�Ð�Í 	Ò�Ê � �ÐÌ�Ô ÔÕÖ×	ÍÏ�Ð�Í 	Ò�Ê � ÐÌ�Ô ÔÕÖ×	Ø�Ù�Ð 	Ò�Ê � �ÐÌ�Ô ÔÕÖ×	Ø�Ù�Ð 	Ò�Ê � ÐÌ�Ô � 0 0 0 0 �C! !CXP8\X�8X Ú !���[ !CXP8\\ZW� Ú !���[ VCXZ\YYXZX Ú !���M VCYXW!\Y88 Ú !���M �C8 YCYY!VVZZY Ú !���[ YCYY!!Z�ZV Ú !���[ !CVY!ZZVY8 Ú !���7 !C8W8W8\WW Ú !���7 �CV !C88!8PV8P Ú !���U !CVV8�\8PP Ú !���U 8C8VPZ!WPP Ú !���7 8C8\Y!!ZWP Ú !���7 �CP 8C88�P!!!V Ú !���U !CXXZVY�X8 Ú !���U PC!ZZX!!YV Ú !���7 VCW\88W!�8 Ú !���7 �CW 8CYYP88PYX Ú !���U 8CYY�P8YPV Ú !���U \CW\VPWPY\ Ú !���7 YCXV�8P8XV Ú !���7 �CY VCXXPXWVY8 Ú !���U VCWVXPZVV� Ú !���U WCPVZ!!WYZ Ú !���1 VCPW�!X8V\ Ú !���1 �CZ PCPV8WW!W! Ú !���U VCW!W���Y� Ú !���U !CYY\�Y\PY Ú !��S PCYZZ88!YY Ú !��T �C\ YC!\YWX\VV Ú !���U WC88XX�V\Y Ú !���U !CY��W!\P! Ú !��M WC8�8PWW\\ Ú !��R �CX WC8VV!8\XP Ú !���U WC�\VVWZX� Ú !���U PCP\Z!PVZ\ !CPYY�Z!V8 ! YC\PPZ�W!! Ú !���U YCWV!YW\PZ Ú !���U W8W8C!!\!\ !Z8WC8\�PW 

Table 6. The values of absolute residual error function ª«¬	�S�7�Ñ 	I� , 3 � !�8  at 
� � �8� and � � 8� of @�S�7	I� when H � P. ÒÓ ÔÕÖ×	ÍÏ�Ð�Í 	Ò�Ê � �ÐÌ�Ô ÔÕÖ×	ÍÏ�Ð�Í 	Ò�Ê � ÐÌ�Ô ÔÕÖ×	Ø�Ù�Ð 	Ò�Ê � �ÐÌ�Ô ÔÕÖ×	Ø�Ù�Ð 	Ò�Ê � ÐÌ�Ô � 0 0 0 0 �C! !CZZYVWY\P Ú !���S 8C88�P!\8X Ú !��77 8CX!�V\V�W Ú !���S 8CV8\P88\P Ú !��7R �C8 ZC!�WP8ZW� Ú !���S !CP8�\�!8W Ú !��71 !C\Y8YPW!\ Ú !���U VC\!ZZPP!P Ú !��71 �CV !CWX\Z8!XZ Ú !���[ !CY!Z�YY�8 Ú !���Û 8C!8!YZV\8 Ú !���R !C!!\�XWVX Ú !���S �CP 8C\P8!\WP\ Ú !���[ XC�YW\V!WW Ú !���Û !C!X8!ZZ�P Ú !���M YCV8ZXWVVV Ú !���[ �CW PCPP!�8ZVY Ú !���[ VCPP8V!WPV Ú !���T PCWW8PXYVP Ú !���M !CPY8ZZ�!Z Ú !���R �CY YCVXWZ8�VW Ú !���[ !C�!X!WPWX Ú !���S !CZV�VZP!8 Ú !���7 VCV!�ZZ8W� Ú !���M �CZ \CZ�\�VX!8 Ú !���[ 8CWVVYVW\� Ú !���S !CYW8ZY\Z\ Ú !��T YCP�XY�X\Y Ú !��Û �C\ !C!V\VVV�� Ú !���U WCW8�\VWPP Ú !���S !CZYPP�Z�X Ú !��R YC\YV!Z!VY Ú !��U �CX !CPPVW\ZZ� Ú !���U !C�\88YY!V Ú !���[ �CY!�WVZ�Z �C8V\V\X\� ! !CZ\XZXP!Z Ú !���U !CXV\WW8P! Ú !���[ \YVC\8��\P VV\CZWVVZ5 

In Tables 7 and 8 we tabulate the values of the approximate multiple solutions at the final grid 
node I � ! that generated from the 	!Z�8�-truncated series approximation of @	I� at � � 8� 
and � � �8� when H � VCX and when H � P. In fact, we do this to facilitate the calculations in 
order to show the validity and accuracy of the proposed RPS method in predicting and finding the 
multiple approximate solutions. In these tables, we can find that the values of @�S�7/ 	!�, 3 � !� 8 
agree nicely and completely the forcing condition @	!� � �  and the constraint condition Å @�S�7/ 	I��1 , 3 � !� 8. 

Table 7. The approximate value of forcing condition @�S�7/ 	!� and constraint condition Å @�S�7/ 	I��1 �I, 3 � !�8 at � � �8� and � � 8� when H � VCX. 

� ÎÍÏ�ÐÍ 	Í� ÎÍÏ�ÐÐ 	Í� Å ÎÍÏ�ÐÍ 	Ò�ÍÌ   Å ÎÍÏ�ÐÐ 	Ò�ÍÌ   �8� �!C!�XZY�W! Ú !���S !CYV8�8Z\W Ú !���R ! ! 8�< 8CZXZ!\Y8\ Ú !���[ �!CVVW�PV!X Ú !���R ! ! 
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Table 8. The approximate value of forcing condition @�S�7/ 	!� and constraint condition Å @�S�7/ 	I��1 �I, 3 � !�8 at � � �8� and � � 8� when H � P. 

� ÎÍÏ�ÐÍ 	Í� ÎÍÏ�ÐÐ 	Í� Å ÎÍÏ�ÐÍ 	Ò�ÍÌ   Å ÎÍÏ�ÐÐ 	Ò�ÍÌ   �8� �ZC\W8ZZ8!W Ú !���S !CYZX8!8V8 Ú !���U ! ! 8�< !CZZPP�ZZ\ Ú !���S VC�8WVWZZP Ú !���U ! ! 

In order to study the behavior of multiple approximate solutions in a better view, we plot the 
normalized of the two branch approximate solutions of Equations (30) and (31) with respect to @�S�7/ 	��, 3 � !�8 at some specific values of � and H in which the obtained results are generated 
from the 	!Z�8�-truncated series approximation of @	I�. However, Figure 3 shows the normalized 

function Ü�Ý�Ç� 	Þ�Ü�Ý�Ç� 	1� , 3 � !�8  at � � �8�  and � � 8�  when H � VCX , while Figure 4 shows the 

normalized function Ü�Ý�Ç� 	Þ�Ü�Ý�Ç� 	1�, 3 � !�8 at � � �8� and � � 8� when H � P. In these figures, we 

can see the almost similarity in the behavior of the two branches approximate solutions at the two 
mentioned specific value of � when H � VCX and when H � P. 

Figure 3. Multiple solutions of Equations (30) and (31) via dimensionless transversal 
coordinate I when H � VCX: Ü�Ý�Ç� 	Þ�Ü�Ý�Ç� 	1�: red color, Ü�Ý�ÇÇ 	Þ�Ü�Ý�ÇÇ 	1�: blue color at (a) µ � �8� 

and (b) µ � 8�. 

 
(a) (b) 

Figure 4. Multiple solutions of Equations (30) and (31) via dimensionless transversal 
coordinate I when H � P: Ü�Ý�Ç� 	Þ�Ü�Ý�Ç� 	1�: red color, Ü�Ý�ÇÇ 	Þ�Ü�Ý�ÇÇ 	1�: blue color at (a) µ � �8� 

and (b) µ � 8�. 

 
(a) (b) 
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Application 5.2: Fins are extensively used to enhance the heat transfer between a solid surface and 
its convective, radiative, or convective radiative surface. Finned surfaces are widely used, for 
instance, for cooling electric transformers, the cylinders of aircraft engines, and other heat transfer 
equipment. The temperature distribution of a straight rectangular fin with a power-law temperature 
dependent surface heat flux can be determined by the solutions of a one-dimensional steady state 
heat conduction equation which, in dimensionless form, is given as follows [47,48]: "1Fß	5�ßM	5� � R7U � !  H � 8� � � 5 � ! (40)

subject to the boundary conditions: ß¶	�� � �� ß	!� � ! (41)

The prediction and construction of multiple solutions for BVPs of fractional order is the 
fundamental target of this paper. Next, we will show in brief steps and calculations how we can 
predict and find out existence of multiple solutions for Equations (40) and (41). To do so, we 
consider firstly, Equations (40) and (41) and suppose that ß	�� � ¥1. So, a new discretized form 
of Equations (40) and (41) can be obtained as follows: "1Fß	5�ßM	5� � P8W � !  H � 8� � � 5 � ! (42)

subject to the split conditions: ß	�� � ¥1� ß¶	�� � � (43)

where ß	!� � ! is the additional forcing condition. Here, ¥1 denotes temperature of the fin tip 
and will be determined later by the rule of multiplicity of solutions from the process of 
computations thought the RPS technique. 

Similar to the previous procedure and discussions that used in Application 5.1, the FPS solution 
and the residual function for Equations (42) and (43) will take, respectively, the following form: 

ß	5� � ¥1 &--B=A5A(=F�
A01

.
=0� (44)

ª«¬	5� � "1Fß	5�ßM	5� � P8W (45)

while the 	3� ¨�-truncated series approximation of ß	5� and the 	3� ¨�-resudial function that are 
derived from Equations (44) and (45) can be formulated, respectively, in form of: 

ß/�©	5� � ¥1 &--B=A5A(=F©
A01

/
=0�  (46)

ª«¬	/�©�	5� � "1Fß/�©	5�ß/�©M 	5� � P8W (47)

It is to be noted that the 	!���-truncated series solution of Equations (42) and (43) is ß�1	5� �¥1 & B�15F  and the 	!��� -residual function is ª«¬	��1�	5� � B�1m	H & !�	¥1 & B�15F�M � R7U . 

Thus, using Equation (21) for 	¦� �� � 	!���, we get B�1 � R7UÆ�Éy	F(��. Similarly, the 	!�!�-truncated 

series solution is ß���	5� � ¥1 & R7UÆ�Éy	F(�� 5F & B��5�(F and the 	!�!�-residual function is: 
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ª«¬	����	5� �  !8B��8W¥1 & !8B��m	8 & H�8W¥1m	! & H�¢ 5�(F &  !8B��78W¥17 & 8PB��7 m	8 & H�8W¥17m	! & H�¢ 57(7F 

<<<<<<<<<<<<<<<<<<<<<<<<<<<&   PB��M8W¥1M & !8B��M m	8 & H�8W¥1Mm	! & H�¢ 5M(MF & 8WYVX�Y8W¥1�7m	! & H�M 5MF& !X8!WY8W¥1Tm	! & H�7 57F&   !X8B��!WY8W¥1Ûm	! & H�7 & YPB��m	8 & H�!WY8W¥1Ûm	! & H�M¢ 5�(MF& P\Y8W¥1Rm	! & H� 5F&   XYB��Y8W¥1Um	! & H� & P\B��m	8 & H�Y8W¥1Um	! & H�7¢ 5�(7F&   P\B��7Y8W¥1[m	! & H� & P\B��7 m	8 & H�Y8W¥1[m	! & H�7¢ 57(MF & ¥1MB��m	8 & H�5& V¥17B��7 m	8 & H�57(F & V¥1B��M m	8 & H�5M(7F& B��R m	8 & H�5R(MF 

(48)

More precisely, according to Equation (21) the solution of equation "1ª«¬	����	�� � � will 
gives B�� � �. Thus, based on the initial guess approximation and the form of terms of Equation 
(42) taking into account the form of Equations (46) and (47), it easy to see that B=� � � ,  ¦ � !� 8� V� �. Therefore, according to Equation (44) a new discretized form of FPS solution for 
Equations (42) and (43) can be obtained and expressed as: 

ß	5� � ¥1 &-B=15=F.
=0�  (49)

and hence the 	3� ��-truncated series approximation of ß	5� can formulated as: 

ß/�1	5� � ¥1 & P8W¥1Mm	H & !� 5F &-B=15=F/
=07  (50)

In the shape of shapes by continuing in this procedure and using Equations (46) and (47) taking 
into account Equation (21), we can easily obtained that B71 � � RT[7UÆÝy	�(7F� , BM1 � �Û7	My	�(F�Ç(7y	�(7F���U[7UÆ���y	�(F�Çy	�(MF�, and so on. Consequently, based on Equation (50) the 	V���-truncated 

series approximation of ß	5� generated from the RPS method can be written as: 

ßM�1	5� � ¥1 & P8W¥1Mm	! & H� 5F � P\Y8W¥1Sm	! & 8H� 57F& !X8�Vm	! & H�7 & 8m	! & 8H��!WY8W¥1��m	! & H�7m	! & VH� 5MF 
(51)

It is clear that, all the terms in Equation (51) contain an unknown certain parameter ¥1 and to 
determine its introductory values we must substitute the boundary condition ß	!� �1 back into 
Equation (51) to obtain a nonlinear algebraic equation in one variable, which can be easy solved 
using symbolic computation software. But on the other aspect as well, if we generate and obtain  
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	V�����-truncated series approximation of ß	5� by using the same procedure discussed, then two 
various values of ¥1 have been calculated and listed in Table 9 when H � !CX and when H � 8. 

Table 9. The approximate numerical values of ¥1/, 3 � !�8 when H � !CX and when H � 8 for ßM11�1	5�. ËÌÍ � àáÌÌ�ÌÍ 	Ì� â � ÍC ã� ËÌÐ � àáÌÌ�ÌÐ 	Ì� â � ÍC ã� ËÌÍ � àáÌÌ�ÌÍ 	Ì� â � Ð� ËÌÐ � àáÌÌ�ÌÐ 	Ì� â � Ð� �C\\!�PPZY8WXW �CPWX8!V\XW\WY �C\XPP8Z!X�X!! �CPPZ8!VWXWPPY
It is clear from the table that two ¥-plateaus can be identified and consequently we conclude 

that the RPS method furnishes multiple solutions to Equations (40) and (41). It is worth mentioning 
here that Equation (46) (and simply Equation (51)) indicates existence of two solutions. On the  
other hand, the existence of a unique or multiple solutions in terms of Equation (46) (and simply 
Equation (51)) for the original BVP which is covered by Equations (40) and (41) depends on the 
fact that whether the forcing condition ß	!� � ! admits a unique or multiple values for the 
formally introduced prescribed parameters ¥1. 

Finally, in Figure 5 we plot the first and the second approximate multiple solutions of  
Equations (40) and (41) that obtained from the 	V�����-truncated series approximation of ß	5� 
when<H � !CX and when H � 8. In fact, we do this for the same reasons that mentioned in the 
Application 5.1, where the same conclusion can be obtained too. On the other direction, as in the 
previous application, we can see that the sketch of the two branches approximate RPS solutions 
that the problem admitted are agree best and nicely with method of [34] when H � !CX and 
method of [35] H � 8.  

Figure 5. Multiple solutions of Equations (30) and (31): ßM11�1� 	5� : red color, ßM11�17 	5�: blue color when (a) H � !CX and (b) H � 8. 

 
(a) (b) 

6. Conclusions 

It is very important not to lose any solution of nonlinear FDEs with boundary conditions in 
engineering and physical sciences. In this regard, the present paper has introduced a new 
methodology namely the RPS method to prevent this, so that the presented method is not only able 
to predict the existence of multiple solutions, but also to calculate all branches of solutions 
effectively at the same time by using an appropriate initial guess approximation. We also noted that 
the RPS solutions were computed via a simple algorithm without any need for perturbation 
techniques, special transformations, or discretization. The validity of this method has been checked 
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by two nonlinear models, one of them arises in mixed convection flows and the other one arises in 
heat transfer, which both admit multiple or dual solutions. 
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Abstract: In this paper, some theorems of the classical power series are generalized for 
the fractional power series. Some of these theorems are constructed by using Caputo 
fractional derivatives. Under some constraints, we proved that the Caputo fractional 
derivative can be expressed in terms of the ordinary derivative. New construction of the 
generalized Taylor’s power series is obtained. Some applications including 
approximation of fractional derivatives and integrals of functions and solutions of linear 
and nonlinear fractional differential equations are also given. In the nonlinear case, the 
new and simple technique is used to find out the recurrence relation that determines the 
coefficients of the fractional power series. 

Keywords: Fractional power series; Caputo fractional derivative; Fractional 
differential equations 

AMS Subject Classification: 26A33; 32A05; 41A58 
 

1. Introduction 

Fractional calculus theory is a mathematical analysis tool applied to the study of integrals and 
derivatives of arbitrary order, which unifies and generalizes the notions of integer-order 
differentiation and ;-fold integration [1–4]. Commonly these fractional integrals and derivatives 
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were not known to many scientists and up until recent years, they have been only used in a purely 
mathematical context, but during these last few decades these integrals and derivatives have been 
applied in many science contexts due to their frequent appearance in various applications in the 
fields of fluid mechanics, viscoelasticity, biology, physics, image processing, entropy theory, and 
engineering [5–14]. 

It is well known that the fractional order differential and integral operators are non-local 
operators. This is one reason why fractional calculus theory provides an excellent instrument for 
description of memory and hereditary properties of various physical processes. For example, half-
order derivatives and integrals proved to be more useful for the formulation of certain 
electrochemical problems than the classical models [1–4]. Applying fractional calculus theory to 
entropy theory has also become a significant tool and a hotspot research domain [15–24] since the 
fractional entropy could be used in the formulation of algorithms for image segmentation where 
traditional Shannon entropy has presented limitations [18] and in the analysis of anomalous 
diffusion processes and fractional diffusion equations [19–24]. Therefore, the application of 
fractional calculus theory has become a focus of international academic research. Excellent 
accounts of the study of fractional calculus theory and its applications can be found in [25,26]. 

Power series have become a fundamental tool in the study of elementary functions and also 
other not so elementary ones as can be checked in any book of analysis. They have been widely 
used in computational science for easily obtaining an approximation of functions [27]. In physics, 
chemistry, and many other sciences this power expansion has allowed scientist to make an 
approximate study of many systems, neglecting higher order terms around the equilibrium point. 
This is a fundamental tool to linearize a problem, which guarantees easy analysis [28–35]. 

The study of fractional derivatives presents great difficulty due to their complex integro-differential 
definition, which makes a simple manipulation with standard integer operators a complex operation 
that should be done carefully. The solution of fractional differential equations (FDEs), in most 
methods, appears as a series solution of fractional power series (FPS) [36–42]. Consequently, many 
authors suggest a general form of power series, specifically Taylor’s series, including fractional 
ones. To mention a few, Riemann [43] has been written a formal version of the generalized Taylor 
series formula as: 

*	5 & �� � - �J(�m	K & � & !� 	tjJ(�*�	5�.
J0�.  (1)

where tjJ(�  is the Riemann-Liouville fractional integral of order K & �. Watanabe in [44] has 
been obtained the following relation:  

*	5� � - 	5 � 51�F(Jm	H &K & !�:��
J0�/ �"äjF(J*�	5� & �:�/	5�� 3  H� N � 51  5 (2)

where �:�/	5� � �tjF(:"äjF(:*�	5� & �y	�F�/� Å 	5 � 
��F�/���"äjF�/��*�	
��
v�1  and "äjF(: is the 

Riemann-Liouville fractional derivative of order H & ;. Trujillo et al. [45] have been introduced 
the generalized Taylor's formula as: 
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*	5� � - m	H�	5 � 51�JFm�	K & !�H�
:

J01 �"äjJF*�	51(� & �:	5� 51�� �  H � !� N � 51  5 (3)

where �:	5� 51� � 	v�v��	�����y�	:(��F(�� �"äj	:(��F*�	å�� 51 � å � 5. Recently, Odibat and Shawagfeh [46] 

have been represented a new generalized Taylor's formula which as follows: 

*	5� � - "v�JF*	51�m	KH & !� 	5 � 51�JF:
J01 & �:F	5�� �  H � !� 51  5 � >< (4)

where �:F	5� � �æ�	������	ç�y�	:(��F(�� 	5 � 51�	:(��F�  51 � å � <5  and "v�JF  is the Caputo fractional 

derivative of order KH. For H � !, the generalized Taylor's formula reduces to the classical 
Taylor’s formula. Throughout this paper<k the set of natural numbers, l the set of real numbers, 
and m is the Gamma function. 

In this work, we dealt with FPS in general which is a generalization to the classical power series 
(CPS). Important theorems that related to the CPS have been generalized to the FPS. Some of these 
theorems are constructed by using Caputo fractional derivatives. These theorems have been used to 
approximate the fractional derivatives and integrals of functions. FPS solutions have been 
constructed for linear and nonlinear FDEs and a new technique is used to find out the coefficients 
of the FPS. Under certain conditions, we proved that the Caputo fractional derivative can be 
expressed in terms of the ordinary derivative. Also, the generalized Taylor's formula in  
Equation (4) has been derived using new approach for � � K � !  H � K�K o k.  

The organization of this paper is as follows: in the next section, we present some necessary 
definitions and preliminary results that will be used in our work. In Section 3, theorems that 
represent the objective of the paper are mentioned and proved. In Section 4, some applications, 
including approximation of fractional derivatives and integrals of functions are given. In Section 5, 
series solutions of linear and nonlinear FDEs are produced using the FPS technique. The 
conclusions are given in the final part, Section 6. 

2. Notations on Fractional Calculus Theory 

In this section, we present some necessary definitions and essential results from fractional  
calculus theory. There are various definitions of fractional integration and differentiation, such as  
Grunwald-Letnikov’s definition and Riemann-Liouville's definition [1–4]. The Riemann-Liouville 
derivative has certain disadvantages when trying to model real-world phenomena with FDEs. 
Therefore, we shall introduce a modified fractional differential operator "jF proposed by Caputo in 
his work on the theory of viscoelasticity [8]. 

Definition 2.1: A real function *	5�� 5 � � is said to be in the space n$� % o l if there exists a 
real number p � % such that *	5� � 5q*�	5�, where *�	5� o n)��r�, and it is said to be in the 
space n$: if *	:�	5� o n$� ; o k. 

Definition 2.2: The Riemann-Liouville fractional integral operator of order H s � of a function *	5� o n$, % s �! is defined as: 
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tjF*	5� � u !m	H� 	5 � 
�F��v
j *	
��
� 5 � 
 � N s �� H � �*	5�� H � �  (5)

Properties of the operator tjF can be found in [1–4], we mention here only the following: for * o n$� % s �! , H� � s � , n o l , and w s �! , we have tjFtj�*	5� � tjF(�*	5� � tj�tjF*	5� , tjFn � zy	F(�� 	5 � N�F, and tjF	5 � N�x � y	x(��y	F(x(�� 	5 � N�F(x. 

Definition 2.3: The Riemann-Liouville fractional derivative of order H � � of * o n��: � ; o k is 
defined as: 

"äjF*	5� � è �
:�5: t:�F*	5�� ; � !  H  ;�:�5: *	5�� H � ;  (6)

In the next definition we shall introduce a modified fractional differential operator "jF.  

Definition 2.4: The Caputo fractional derivative of order H � � of * o n��: � ; o k is defined as: 

"jF*	5� � utj:�F*	:�	5�� 5 � N s �� ; � !  H  ;�:*	5��5: � H � ;  (7)

For some certain properties of the operator "jF, it is obvious that when w � �!� 5 � N s �, and n o l, we have "jF	5 � N�x � y	x(��y	x(��F� 	5 � N�x�F and "jFn � �. 

Lemma 2.1: If ; � !  H � ; , * o n$: , ; o k , and % s �! , then "jFtjF*	5� � *	5�  and tjF"jF*	5� � *	5� � { *	A�	N(� 	v�j�|Ab:��A01 , where 5 � N s �. 

3. Fractional Power Series Representation 

In this section, we will generalize some important definitions and theorems related with the CPS 
into the fractional case in the sense of the Caputo definition. New results related to the convergent 
of the series { B:
:F.:01  are also presented. After that, some results which focus on the radii of 
convergence for the FPS are utilized. 

The following definition is needed throughout this work, especially, in the following two 
sections regarding the approximating of the fractional derivatives, fractional integrals, and solution 
of FDEs.  

Definition 3.1: A power series representation of the form 

-B:	
 � 
1�<:F.
:01 � B1 & B�	
 � 
1�F & B7	
 � 
1�7F & 9< (8)

where � � K � !  H � K and 
 s 
1 is called a FPS about 
1, where 
 is a variable and B:’s 
are constants called the coefficients of the series. 

As a special case, when 
1 � �  the expansion { B:
:F.:01  is called a fractional Maclaurin 
series. Notice that in writing out the term corresponding to ; � � in Equation (8) we have adopted 
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the convention that 	
 � 
1�1 � ! even when 
 � 
1 . Also, when <
 � 
1  each of the terms of 
Equation (8) vanishes for ; s !  and so. On the other hand, the FPS (8) always converges 
when<
 � 
1. For the sake of simplicity of our notation, we shall treat only the case where 
1 � � 
in the first four theorems. This is not a loss of the generality, since the translation 
¶ � 
 � 
1 reduces 
the FPS about 
1 to the FPS about �. 

Theorem 3.1: We have the following two cases for the FPS { B:
:F.:01 � 
 s �: 

(1) If the FPS { B:
:F.:01  converges when<
 � > � �, then it converges whenever � � 
  >, 
(2) If the FPS { B:
:F.:01  diverges when<
 � � � �, then it diverges whenever 
 � �. 

Proof: For the first part, suppose that {B:>:F  converges. Then, we have d��:�. B:>:F � �. 
According to the definition of limit of sequences with é � !, there is a positive integer<_ such that �B:>:F�  ! whenever ; s _. Thus, for ; s _, we have �B:
:F� � �½�ê�����ê�� � � �B:>:F� ��ê�:F  ��ê�:F. Again, if � � 
  >, then ��ê�F  !, so { ��ê�:F is a convergent geometric series. Therefore, 

by the comparison test, the series { �B:
:F�.:0a  is convergent. Thus the series {B:
:F  is 
absolutely convergent and therefore convergent. To prove the remaining part, suppose that {B:�:F diverges. Now, if 
 is any number such that 
 � � � �, then {B:
:F cannot converge 
because, by Case 1, the convergence of {B:
:F  would imply the convergence of {B:�:F . 
Therefore, {B:�:F diverges whenever 
 � �. This completes the proof. 
Theorem 3.2: For the FPS { B:
:F.:01 � 
 s �, there are only three possibilities: 

(1) The series converges only when<
 � �, 
(2) The series converges for each 
 s �, 
(3) There is a positive real number �<such that the series converges whenever � � 
  � and 

diverges whenever 
 � �. 

Proof: Suppose that neither Case 1 nor Case 2 is true. Then, there are nonzero numbers > and � 
such that {B:
:F converges for 
 � > and diverges for 
 � �C Therefore, the set ë � ì
�{ B:
:F 
converges<í is not empty. By the preceding theorem, the series diverges if 
 � �, so<� � 
 � � for 
each 
 o ë. This says that � is an upper bound for ë. Thus, by the completeness axiom, ë has a 
least upper bound �. If 
 � �, then 
 î ë, so {B:
:F diverges. If � � 
  �, then 
 is not an 
upper bound for ë and so there exists > o ë such that > � 
. Since > o ë and {B:
:F converges, 
so by the preceding theorem {B:
:F converges, so the proof of the theorem is complete. 
Remark 3.1: The number � in Case 3 of Theorem 3.2 is called the radius of convergence of the 
FPS. By convention, the radius of convergence is<� � � in Case 1 and � � r in Case 2. 
Theorem 3.3: The CPS { B:
:.:01 � �r  
  r has radius of convergence<� if and only if the 
FPS { B:
:F.:01 � 
 s � has radius of convergence<��QF. 
Proof: If we make the change of variable 
 � 5F� 5 s ��  then the CPS { B:
:.:01  becomes { B:5:F.:01 . This series converges for � � 5F  � , that is for � � 5  ��QF , and so the FPS { B:5:F.:01  has radius of convergence <��QF . Conversely, if we make the change of variable 
 � 5�QF� 5 s � , then the FPS { B:
:F.:01  becomes { B:5:.:01 � 5 s � . In fact, this series 
converges for � � 5�QF  ��QF that is for � � 5  �. Since the two series { B:5:.:01 � 5 s � and 
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{ B:5:.:01 � �r  5  r have the same radius of convergence � � d��:�. � ½�½����, the radius of 

convergence for the CPS { B:5:.:01 � �r  5  r is �, so the proof of the theorem is complete. 
Theorem 3.4: Suppose that the FPS { B:
:F.:01  has radius of convergence<� � �. If *	
� is a 
function defined by *	
� � { B:
:F.:01  on � � 
  � , then for � � K � !  H � K  and � � 
  �, we have: 

"1F*	
� � -B: m	;H & !�m�	; � !�H & !� 
	:���F
.
:0�  (9)

t1F*	
� � -B: m	;H & !�m�	; & !�H & !� 
	:(��F
.
:01  (10)

Proof: Define +	5� � { B:5:.:01  for � � 5  �F, where �F is the radius of convergence. Then: 

<<<<<<<<<"1F+	5� � !m	K � H� 	5 � ��J�F��v
1 +	J�	���� 

<<<<<<<<<<<<<<<<<<<<<<<<<� !m	K � H� 	5 � ��J�F��v
1 2 �J��J-B:�:.

:01 4�� 
<<<<<<<<<<<<<<<<<<<<<<<<<� !m	K � H� 	5 � ��J�F��v

1 2-B: �J��J �:.
:01 4 �� 

<<<<<<<<<<<<<<<<<<<<<<<<<� -B:.
:01   !m	K � H� 	5 � ��J�F��v

1 g �J��J �:h ��¢ � -B:"1F.
:01 	5:� 

(11)

where � � �  5  �F. On the other hand, if we make the change of variable 5 � 
F� 
 s � into 
Equation (11) and use the properties of the operator "1F, we obtain: 

<<<<<<<<<<<<<<<<<<<<<<<<< <<<<"1F*	
� � "1F+	
F� � -B:"1F.
:01 	
:F�� � � 
F  �F 

<<<<<<<<<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<� -B: m	;H & !�m�	; � !�H & !� 
	:���F
.
:0� � � � 
  � 

(12)

For the remaining part, considering the definition of +	5� above one can conclude that: 

t1F+	5� � !m	H� 	5 � ��F��v
1 +	���� � !m	H� 	5 � ��F��v

1 2-B:�:.
:01 4��< 

<<<<<<<<<<<<<<<<<<<<<<<<< � -B:.
:01   !m	H� 	5 � ��F��v

1 	�:���¢ � -B:t1F.
:01 	5:� (13)

where � � �  5  �F< . Similarly, if we make the change of variable 5 � 
F� 
 s �  into  
Equation (13), we can conclude that: 

<<<<<<<<<<<<<<<<<<<<<<< <<<<<<t1F*	
� � t1F+	
F� � -B:t1F.
:01 	
:F�� � � 
F  �F< 

<<<<<<<<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<� -B: m	;H & !�m�	; & !�H & !� 
	:(��F
.
:01 � � � 
  � 

(14)
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So the proof of the theorem is complete. 
Theorem 3.5: Suppose that * has a FPS representation at 
1 of the form: 

*	
� � -B:	
 � 
1�:F.
:01 � � � K � !  H � K� 
1 � 
  
1 & � (15)

If *	
� o n)
1� 
1 & �� and<"��:F*	
� o n	
1� 
1 & �� for ; � ��!�8� �, then the coefficients B: in 

Equation (15) will take the form B: � ������	���y	:F(�� , where "��:F � "��F ï "��F ï � ï "��F  (;-times). 

Proof: Assume that * is an arbitrary function that can be represented by a FPS expansion. First of 
all, notice that if we put 
 � 
1 into Equation (15), then each term after the first vanishes and thus 
we get B1 � *	
1�. On the other aspect as well, by using Equation (9), we have: 

"��F *	
� � B�m	H & !� & B7 m	8H & !�m	H & !� 	
 � 
1�F & BM m	VH & !�m	8H & !� 	
 � 
1�7F &9 (16)

where 
1 � 
  
1 & � . The substitution of 
 � 
1  into Equation (16) leads to B� � ���� �	���y	F(�� . 

Again, by applying Equation (9) on the series representation in Equation (16), one can obtain that: 

"17F*	
� � B7m	8H & !� & BM m	VH & !�m	H & !� 	
 � 
1�F & BR m	PH & !�m	8H & !� 	
 � 
1�7F & 9 (17)

Where<
1 � 
  
1 & �. Here, if we put 
 � 
1 into Equation (17), then the obtained result will be B7 � ���Ç��	���y	7F(��. By now we can see the pattern and discover the general formula for B:. However, if 

we continue to operate "��F 	ï� ;-times and substitute<
 � 
1, we can get B: � ������	���y	:F(�� � ; � ��!�8��. 

This completes the proof. 

We mention here that the substituting of B: � ������	���y	:F(�� � ; � ��!�8��  back into the series 

representation of Equation (15) will leads to the following expansion for * about 
1: 

*	
� � - "��:F*	
1�m	;H & !� 	
 � 
1�:F.
:01 � � � K � !  H � K� 
1 � 
  
1 & � (18)

which is the same of the Generalized Taylor’s series that obtained in [46] for �  H � !. 
Theorem 3.6: Suppose that * has a Generalized Taylor's series representation at 
1 of the form: 

*	
� � - "��:F*	
1�m	;H & !� 	
 � 
1�:F.
:01 � � � K � !  H � K� 
1 � 
  
1 & � (19)

If "��:F*	
� o n	
1� 
1 & ��  for ; � ��!�8���  then "��:F*	
1� � y	:F(��:b +	:�	
1��  where  +	
� � *�	
 � 
1��QF & 
1�, 
1 � 
  
1 & �F. 
Proof: If we make the change of variable 
 � 	5 � 
1��QF & 
1 , 
1 � 5  
1 & �F  into  
Equation (19), then we obtain: 

+	5� � *�	5 � 
1��QF & 
1� � - "��:F*	
1�m	;H & !� 	5 � 
1�:.
:01 � 
1 � 5  
1 & �F (20)

But since, the CPS representation of +	5� about 
1 takes the form: 
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+	5� � -+	:�	
1�;b 	5 � 
1�:.
:01 � 
1 � 5  
1 & �F (21)

Then the two power series expansion in Equations (20) and (21) converge to the same 
function <+	5� . Therefore, the corresponding coefficients must be equal and thus "��:F*	
1� �y	:F(��:b +	:�	
1�. This completes the proof. 

As with any convergent series, this means that *	
� is the limit of the sequence of partial sums. 

In the case of the Generalized Taylor's series, the partial sums are �:	
� � { ���|��	���y	AF(�� 	
 � 
1�AF:A01 . 

In general, *	
� is the sum of its Generalized Taylor's series if *	
� � d��:�. �:	
�. On the other 
aspect as well, if we let �:	
� � *	
� � �:	
�, then �:	
� is the remainder of the Generalized 
Taylor’s series. 
Theorem 3.7: Suppose that *	
� o n)
1� 
1 & ��  and "��AF*	
� o n	
1� 
1 & ��  for  � � ��!�8�� � ; & !, where �  H � !. Then * could be represented by: 

*	
� �-�"��AF*�	
1�m	�H & !� 	
 � 
1�AF:
A01 & t��	:(��F"��	:(��F*	
�� 
1 � 
 � 
1 & � (22)

Proof: From the certain properties of the operator t�F and Lemma 2.1, one can find that: <<<<<t��	:(��F"��	:(��F*	
� � t��:F ��t��F "��F �"��:F*	
�� � t��:F ��t��"���"��:F*	
�� <<<<<<<<<<<<<<<<<<<<<<<<<<<<<� t��:F �"��:F*	
� � "��:F*	
1�� � t��:F"��:F*	
� � t��:F �"��:F*	
1�� <<<<<<<<<<<<<<<<<<<<<<<<<<<<<� t��	:���F ��t��"���"��	:���F*	
�� �  �"��:F*�	
1�m	;H & !� 	
 � 
1�:F¢ 

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<� t��	:���F�"��	:���F*	
� � "��	:���F*	
1�� �  �"��:F*�	
1�m	;H & !� 	
 � 
1�:F¢ 

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<� t��	:�7�F ��t��"���"��	:�7�F*	
�� � � �"��	:���F*�	
1�m�	; � !�H & !� 	
 � 
1�	:���F� 

<<< <<<<<<<<<<<<<<<<<<<<<<<< �  �"��:F*�	
1�m	;H & !� 	
 � 
1�:F¢ 

(23)

If we keep repeating of this process, then after ; -times of computations, we can find that t��	:(��F"��	:(��F*	
� � *	
� � { ����|���	���y	AF(�� 	
 � 
1�AF:A01 � 
1 � 
 � 
1 & � , so the proof of the 

theorem is complete. 
Theorem 3.8: If �"��	:(��F*	
�� � � on 
1 � 
 � �, where �  H � !, then the reminder �:	
� 
of the Generalized Taylor's series will satisfies the inequality: 

��:	
�� � �m		; & !�H & !� 	
 � 
1�	:(��F� 
1 � 
 � � (24)

Proof: First of all, assume that "��AF*	
� exist for � � ��!�8� � � ; & ! and that: 

�"��	:(��F*	
�� � �� 
1 � 
 � � (25)
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From the definition of the reminder �:	
� � *	
� � { ���|��	���y	AF(�� 	
 � 
1�AF:A01  one can obtain �:	
1� <� "��F �:	
1� � "��7F�:	
1� � 9 � "��:F�:	
1� � �  and "��	:(��F�:	
� � "��	:(��F*	
�� 
1 � 
 � �C It follows from Equation (25) that �"��	:(��F*	
�� � �. 

Hence, �� � "��	:(��F*	
� � �� 
1 � 
 � �. On the other hand, we have: t��	:(��F	��� � t��	:(��F"��	:(��F*	
� � t��	:(��F	�� (26)

But since from Theorem 3.7, we get t��	:(��F"��	:(��F*	
� � �:	
� . Thus, by performing the 
operations in Equation (26), we can find the inequality �� 	�����	�����y�	:(��F(�� � �:	
� � � 	�����	�����y�	:(��F(�� � 
1 � 
 � �  which is equivalent to ��:	
�� �ðy		:(��F(�� 	
 � 
1�	:(��F� 
1 � 
 � �, so the proof of the theorem is complete. 

Theorem 3.9: Suppose that * has a FPS representation at 
1 of the form 

*	
� � -B:	
 � 
1�:F.
:01 � � � K � !  H � K� 
1 � 
  
1 & � (27)

where<� is the radius of convergence. Then * is analytic in 	
1� 
1 & ��C 
Proof: Let +	
� � { B:
:.:01 � �
�  �F  and �	
� � 	
 � 
1�F� 
1 � 
  
1 & �� � � K � !  H � K. Then +	
� and �	
� are analytic functions and thus the composition 	+ ñ ��	
� � *	
� is 
analytic in 	
1� 
1 & ��. This completes the proof. 

4. Application I: Approximation Fractional Derivatives and Integrals of Functions 

In order to illustrate the performance of the presented results in approximating the fractional 
derivatives and integrals of functions at a given point we consider two examples. On the other 
hand, we use Theorems 3.4, 3.6, and the generalized Taylor's series (18) in the approximation step. 
However, results obtained are found to be in good agreement with each other. In the computation 
process all the symbolic and numerical computations were performed using the Mathematica Z 
software packages. 
Application 4.1: Consider the following non-elementary function: 

*	
� � !! � 
F � H � �� � � 
 (28)

The fractional Maclaurin series representation of *	
�  about 
 � �  is { �����	1�y	:F(�� 
:F.:01 �<H � �� 
 s � . According to Theorem 3.6, we can conclude that "1:F*	�� � y	:F(��:b +	:�	��<�<<<<H � �� 
 s � , where +	
� � *�
�QF� � ����  and +	:�	�� � ;b . In other words, the fractional 

Maclaurin series of *	
� can be written as { 
:F.:01 � H � �� 
 s �. In fact, this is a convergent 
geometric series with ratio 
F. Thus, the series is convergent for each � � 
F  ! and then for 
each � � 
  ! . Therefore *	
�� � � 
  !  is the sum of its fractional Maclaurin series 
representation. Note that, this result can be used to approximate the functions "1F*	
� and t1F*	
� 
on � � 
  !. However, according to Equation (9), the function "1F*	
� can be approximated by 
the 3ò#-partial sum of its expansion as follows: 
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"1F*	
� ó - m	;H & !�m�	; � !�H & !� 
	:���F
/
:0� � H � �� � � 
  ! (29)

Our next goal is to approximate the function "1F*	
� in numerical values. To do so, Table 1 
shows approximate values of "1F*	
� for different values of 
 and H on � � 
  ! in step of �C! 
when 3 � !� . It is to be noted that in order to improve the results, we can compute more 
approximation terms for different values of 
 and H. 

Similarly, we can use Equation (10) to approximate the function t1F*	
� in numerical values by 
the 3ò#-partial sum of its expansion as: 

t1F*	
� ó - m	;H & !�m�	; & !�H & !� 
	:(��F
/
:01 � H � �� � � 
  ! (30)

Table 2 shows approximate values of t1F*	
� for different values of 
 and H on � � 
  ! in 
step of �C! when 3 � !�. As in the previous table and results, it should to be noted that computing 
more terms of the series representation will increase the accuracy of the approximations and thus a 
good approximation can be obtained. 

Table 1. The approximate values of "1F*	
� when 3 � !� for Application 4.1. 
 ô  â � ÌC õ  â � ÌC Ïõ  â � ÍC õ  â � Ð 

0  �C\\Y88Z  �CX!X�YV  !CV8XVP�  8 
0.1  !CPP\ZZ�  !C8WVY!Z  !CP\!8W�  8C!8V�WZ 
0.2  !CX!\�ZV  !CY!XW�Z  !C\!P�\X  8CWV!\8X 
0.3  8CPXXW8W  8C!!VWWX  8CV\WYZ�  VCVZ�Y!\ 
0.4  VC8Y!V8X  8C\8WPP\  VCVZ!!YP  PCXXP�WW 
0.5  PC8ZZY�Z  VC\XXP8X  WC!ZXP�!  \C8XWYZ� 
0.6  WCYVWW!!  WCWYX!P8  \C\PVW\8  !WC\VXZ!!  
0.7  ZCPVZWX�  \C8�!YPY  !ZC8�VXZX   VYCVZ�X!V  
0.8  XC\�V!88  !8CVWVPV8  V\CV\XV8\  !�PCPP!\!V  
0.9  !8C\YX�X!  !\C\VXXZ!  XWCP\YZPP  VYWCXZY!WY  

 

Table 2. The approximate values of t1F*	
� when 3 � !� for Application 4.1. 
 ô  â � ÌC õ  â � ÌC Ïõ  â � ÍC õ  â � Ð �  �  �  �  � �C!  �C!8!ZPY   �C�8W8XY  �C���88W  �C�����\  �C8  �C8\XPY�  �C�\�VY!   �C��!\WX  �C���!VY �CV  �CW�X!8�   �C!YWXZW  �C��YWW!  �C���Z�� �CP  �CZXWVY\  �C8\XVX\   �C�!YVXX   �C��88\V  �CW  !C!YX\WV   �CPYVWZ�  �C�VP8\W  �C��W\!8 �CY  !CYY88Y�  �CZ�XXYP  �C�YPP\Z  �C�!8ZPW  �CZ  8CV!!ZPV  !C�YVY8Y  �C!!P�8\   �C�8WPVZ �C\  VC!Y\WP�  !CW\�X\Z  �C!XWXYW  �C�P\�PW �CX  PC8XWYXW  8CVW!8\P  �CVV\!\Y  �C�\X!PV 

Application 4.2: Consider the following Mittag-Leffler function: 
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EF	
� � - !m	;H & !� 
:.
:01 � H � ���r  
  r (31)

The Mittag-Leffler function [47] plays a very important role in the solution of linear FDEs [3,8]. 
In fact, the solutions of such FDEs are obtained in terms of EF	
F�. Note that "1:F�EF	
F�� on	��r� for ; o k and H � �. In [46] the authors have approximated the function EF	
F� for 
different values of 
  when �  H � ! by !�-th partial sum of its expansion. However, using 
Equations (9) and (10) both functions "1F�EF	
F��  and t1F�EF	
F��  can be approximated, 
respectively, by the following 3ò#-partial sums: 

"1F�EF	
F�� ó - !m	;H & !� 
:F/
:01 � H � �� � � 
 

t1F�EF	
F�� ó - !m�	; & !�H & !� 
	:(��F
/
:01 � H � �� � � 
 (32)

Again, to show the validity of our FPS representation in approximating the Mittag-Leffler 
function, Tables 3 and 4 will tabulate the approximate results of "1F�EF	
F�� and t�EF	
F�� for 
different values of 
 and H on � � 
 � P in step of �CP when 3 � !�. 

Table 3. The approximate values of "1F�EF	
F�� when 3 � !� for Application 4.2. ô â � ÌC õ â � ÌC Ïõ â � ÍC õ â � Ð � ! ! ! !�CP 8CPV��!V !C\��PWY !C8�!8\\ !C�\!�Z8 �C\ VCXX!8YZ 8C\!YYY8 !CYV�XZX !CVVZPVW !C8 YC88�\YP PC8X\�WZ 8CV8PZ�� !C\!�YWY !CY XCPW!�VY YCP\XPYP VCV\XP!Y 8CWZZPYP 8C� !PC�XZ8VP XCZPV8�P PCXXYYPZ VCZY8!XY 8CP 8�CY\V!VY !PCWZV��X ZCP�Z!8! WCWWYXPZ 8C\ 8XC\WZ��Z 8!CZ8!XZY !!C�!8!ZZ \C8W8Z8\ VC8 P8CP�Y!V8 V8C8W�YY� !YCVXYXV\ !8C8\YYPY VCY WXC8Z�WVW PZCYPXWPV 8PCPVW�ZV !\CV!8ZZX PC� \!CWWYVP� YXCX\���! VYCPV�V\8 8ZCV�\8V8 

Table 4. The approximate values of t1F�EF	
F�� when 3 � !� for Application 4.2. ô â � ÌC õ â � ÌC Ïõ â � ÍC õ â � Ð � � � � � �CP !CPV��VY �C\��PWY �C8�!8\\ �C�\!�Z8 �C\ 8CXX88\Y !C\!YYYP �CYV�XZX �CVVZPVW !C8 WC8V�VVV VC8X\!88 !CV8PZ�! �C\!�YWY !CY \CPXZ!�\ WCPX�!YV 8CV\XP!Y !CWZZPYP 8C� !VC8WPPV! \CZPZY!� VCXXYYPZ 8CZY8!XY 8CP 8�C!!!Y8Z !VCWX8\VP YCP�Z!8! PCWWYXPZ 8C\ 8XC\WZVW8 8�CZX8YXW !�C�!8!ZZ ZC8W8Z8\ VC8 PVCPX!!8X V!CPYVPY� !WCVXYXP! !!C8\YYPY  VCY Y8C8WWY\8 PZC8!!\WY 8VCPVW�X! !ZCV!8ZZX PC� \ZCYZ�8\W Z�CV8!!W8 VWCPV�P\8 8YCV�\8V8 
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5. Application II: Series Solutions of Fractional Differential Equations 

In this section, we use the FPS technique to solve the FDEs subject to given initial conditions. 
This method is not new, but it is a powerful application on the theorems in this work. Moreover, a 
new technique is applied on the nonlinear FDEs to find out the recurrence relation which gives the 
value of coefficients of the FPS solution as we will see in Applications (5.3) and (5.4). 

Application 5.1: Consider the following linear fractional equation [48]: "17FI	
� � �ö7I� �  H � !� � � 
 (33)

subject to the initial conditions: I	�� � I1� "1FI	�� � p1 (34)

where ÷, I1� and p1 are real finite constants. 

The FPS technique consists in expressing the solution of Equations (33) and (34) as a FPS 
expansion about the initial point 
 � �. To achieve our goal, we suppose that this solution takes the 
form of Equation (8) which is: 

I	
� � -B: 
:F.
:01 (35)

From formula (9), we can obtain "1FI	
� � { ½�y	:F(��y�	:���F(�� 
	:���F.:0� . On the other hand, it easy to 

see that: 

"17FI	
� � -B: m	;H & !�m�	; � 8�H & !� 
	:�7�F
.
:07 � -B:(7 m		; & 8�H & !�m	;H & !� 
:F.

:01 < (36)

In order to approximate the solution of Equations (33) and (34) substitute the expansion 
formulas of Equations (35) and (36) into Equation (33), yields that: 

-B:(7 m		; & 8�H & !�m	;H & !� 
:F.
:01 & ö7-B: 
:F.

:01 � � (37)

The equating of the coefficients of 
:F  to zero in both sides of Equation (37) leads to the 
following: B:(7 � �øÇy	:F(��y		:(7�F(�� B:� ; � ��!�8�� . Considering the initial conditions (34) one can 

obtain B1 � I1 and B� � q�y	F(��. In fact, based on these results the remaining coefficients of 
:F 

can be divided into two categories. The even index terms and the odd index terms, where the even 
index terms take the form B7 � � øÇy	7F(�� I1� BR � øùy	RF(�� I1� �� and so on, and the odd index 

term which are BM � � øÇy	MF(�� p1� BU � øùy	UF(�� p1� �� and so on. Therefore, we can obtain the 

following series expansion solution: 

I	
� � I1- 	�!�:ö7:m	8;H & !�<
7:F.
:01 & p1- 	�!�:ö7:m�	8; & !�H & !� 
	7:(��F

.
:01  (38)

On the other aspect as well, the exact solution of Equations (33) and (34) in term of the  
Mittag-Leffler function has the general form which are coinciding with the exact solution: 
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I	
� � I1E7F	�ö7
7F� & p1- 	�!�:ö7:m�	8; & !�H & !� 
	7:(��F
.
:01  (39)

Application 5.2: Consider the following composite linear fractional equation [39]: "17I	
� & "1�Q7I	
� & I	
� � \� � � 
 (40)

subject to the initial conditions: I	�� � I¶	�� � � (41)

Using FPS technique and considering formula (8), the solution I	
� of Equations (40) and (41) 
can be written as: 

I	
� � -B:
:7.
:01  (42)

In order to complete the formulation of the FPS technique, we must compute the functions "1�Q7I	
�, "1�I	
�, and "17I	
�. However, the forms of these functions are giving, respectively,  
as follows: 

"1�Q7I	
� � -B:(� m �; & !8 & !�m �;8 & !� 
:7.
:01

"1�I	
� � B�
��7 & B7 &-B: ;8 
:�77.
:0M  

"17I	
� � �!8 B�
�M7 & VP BM
�M7 &-B: ;8 �;8 � !� 
:�R7.
:0R  

(43)

But since ì
�
 s �í is the domain of solution, then the values of the coefficients B� and BM 
must be zeros. On the other aspect as well, the substituting of the initial conditions (41) into 
Equation (42) and into "1�I	
�  in Equation (43) gives B1 � �  and B7 � � . Therefore, the 
discretized form of the functions I	
�, "1�Q7I	
�, and "17I	
� is obtained. The resulting new 
form will be as follows: 

I	
� � -B:
:7.
:0R  

"1�Q7I	
� � BR 8m �W8� 

M7 &-B:(� m �; & !8 & !�m �;8 & !� 
:7.

:0R  

"17I	
� � 8BR & !WP BU
�7 & YB[
 & VWP BS
M7 &-B:(R ; & P8 g; & P8 � !h 
:7.
:0R  

(44)

Now, substituting Equation (44) back into Equation (40), equating the coefficients of 
:Q7 to 
zero in the resulting equation, and finally identifying the coefficients, we then will obtain 
recursively the following results: BR � P�  BU � ��  B[ � ��  BS � � �7T�1Uúû , and 
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B:(R � � R	:(7�	:(R�  B: & B:(� ����Ç (��y��Ç(�� ¢ � ; s PC So, the !Wth-truncated series approximation of 

I	
� is: 

< <I�U	
� � P
7 � !8\!�Wúü 
S7 � !V 
R & !!W 
U 

<<<<<<<<<<<<<<<<<<<<<& !�8P!�VXWúü 
��7 & !X� 
[ � !�8P!VW!VWúü 
�M7 � !8!� 
S � 8�P\YZWYZWúü 
�U7  
(45)

The FPS technique has an advantage that it is possible to pick any point in the interval  
of integration and as well the approximate solution and all its derivatives will be applicable. In 
other words a continuous approximate solution will be obtained. Anyway, Tables 5 shows the  
15th-approximate values of I	
� , "1�Q7I	
� , and "17I	
�  and the residual error function for 
different values of 
 on � � 
 � ! in step of �C8, where the residual error function is defined as  ª«¬	
� � �"17I	
� &"1�Q7I	
�&I	
� � \�. 

Table 5: The 15th-approximate values of I	
�, "1�Q7I	
�, and "17I	
� and ª«¬	
� for 
Application 5.2. ô Ò	ô� ýÌÍQÐÒ	ô� ýÌÐÒ	ô� ÕÖ×	ô� �C� � � � � �C8 �C!WZ�VZ �CW8W8XY ZCV!ZYY\ YC8!!P\! Ú !��S �CP �CY�PYXW  !CP!V8!V WCX\8�V� YC!YZY!Z Ú !��U �CY !C8X�PW8  8CP8�!8� PC8\\W�Y XC8!Z�VW Ú !��R �C\ 8C!PZ88\ VCP�XP8Y 8CPVZ�!\ YCV8ZYYY Ú !��M !C� VC!�!W�! PC8\8!ZZ �CW\ZX\Z 8C\VVPZ8 Ú !��7 

 

From the table above, it can be seen that the FPS technique provides us with the accurate 
approximate solution for Equations (40) and (41). Also, we can note that the approximate solution 
more accurate at the beginning values of the independent interval. 
Application 5.3: Consider the following nonlinear fractional equation [40]: "1FI	
� � I7	
� & !�K � !  H � K� � � 
 (46)

subject to the initial conditions: I	=�	�� � �� ¦ � ��!� � �K � ! (47)

where K is a positive integer number. 

Similar to the previous discussions, the FPS solution takes the form I	
� � { B:
:F.:01 .  
On the other hand, according to the initial conditions (47), the coefficient B1 must be equal to  
zero. Therefore: 

I	
� � -B:
:F.
:0�  (48)

It is known that in the nonlinear FDEs case the finding of recurrence relation that corresponding 
to the FPS representation and then discovering the values of the coefficients is not easy in general. 
Therefore, a new technique will be used in this application in order to find out the value of the 
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coefficients of the FPS solution. To achieve our goal, we define the so-called H3 th-order 
differential equation as follows: "1F/<	"1FI	
� � I7	
� � !� � �� 3 � ��!�8��C (49)

It is obvious that when 3 � ��  Equation (49) is the same as Equation (46). So, the FPS 
representation in Equation (48) is a solution for the<H3th-order differential Equation (49); that is: 

"1F	/(�� 2-B:
:F.
:0� 4 � "1F/ 2-B:
:F.

:0� 47 � "1F/	!� � �� 3 � ��!�8� �C< (50)

According to Equation (9) a new discretized version of Equation (50) will be obtained and is 
given as: 

< - B: m	;H & !�m�	; � 3 � !�H & !� 
	:�/���F
.

:0/(� �-�-BA:
A01 B:�A�.

:0/  

<<<<< <<<<<<<<<<<<<<<<<<<<Ú m	;H & !�m�	; � 3�H & !� 
	:�/�F � �/ 

(51)

where �/ � ! if 3 � � and �/ � � if 3 s !. From Theorems 3.2 and 3.4, the H3th-derivative of 
the FPS representation, Equation (48), is convergent at least at 
 � �, for 3 � ��!�8��. Therefore, 
the substituting 
 � � into Equation (51) gives the following recurrence relation which determine 
the values of the coefficients B: of 
:F: B1 � �, B� � �y	F(��<, and B/(� � y	/F(��y�	�(/�F(�� { BA/A01 B/�A 
for 3 � !�8� �. If we collect and substitute these value of the coefficients back into Equation (48), 
then the exact solution of Equations (46) and (47) has the general form which is coinciding with the  
general expansion: 

<<<<<<<<<<<<<<<<<<<<<<< <<<<<<I	
� � !m	H & !� 
F & m	8H & !��m	H & !��7m	VH & !� 
MF 

<<<<<<<<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<&8 m	8H & !�m	PH & !��m	H & !��Mm	VH & !�m	WH & !� 
UF & 9 
(52)

In fact, these coefficients are the same as coefficients of the series solution that obtained by  
the Adomian decomposition method [40]. Moreover, if H � ! , then the series solution for 
Equations (46) and (47) will be: 

I	
� <� <
 & 
MV & 8
U!W & !Z
SV!W & Y8
Û8\VW & !V\8
��!WWX8W &9 � òþ� 
 (53)

which agrees well with the exact solution of Equations (46) and (47) in the ordinary sense. 
Table 6 shows the 15th-approximate values of I	
�  and the residual error function for  

different values of 
  and H  on � � 
 � ! in step of �C8, where the residual error function is 
defined as ª«¬	
� � �"1FI	
� � I7	
� � !�. However, the computational results below provide a 
numerical estimate for the convergence of the FPS technique. It is also clear that the accuracy 
obtained using the present technique is advanced by using only a few approximation terms. In 
addition, we can conclude that higher accuracy can be achieved by evaluating more components of 
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the solution. In fact, the results reported in this table confirm the effectiveness and good accuracy 
of the technique. 
Application 5.4: Consider the following composite nonlinear fractional equation [40]: "17FI	
� � �"1FI	
��7 & !� �7  H � !� � � 
 (54)

subject to the initial conditions: I	�� � B1� "1FI	�� � B� (55)

where B1 and B� are real finite constants. 

Table 6: The 15th-approximate values of I	
� and ª«¬	
� for Application 5.3. 
 ô Ò	ô' â � ÍC õ� <ÕÖ×	ô'� � ÍC õ� Ò	ô' â � ÐC õ� ÕÖ×	ô' â � ÐC õ� �C�  � � � � �C8  �C�YZVV� 8C�VPPVZ Ú !���S  �C��WV\V VC!�X�WW Ú !���[ �CP  �C!X!VY8 PCVZ�VY! Ú !���S  �C�V�PW� !C8W8WX! Ú !���U  �CY �CVWY8V\ 8C\W�\!W Ú !���M  �C�\VX8W ZC8ZWWPV Ú !���[ �C\ �CWYV��Z 8C\XZZ!Z Ú !���1 �C!Z8VX! !C�88Z�� Ú !���U  !C� �C\88W!! YCVP!VX! Ú !��T   �CV�!YZY !CXX\�8Y Ú !���[  

Again, using FPS expansion, we assume that the solution I	
� of Equations (54) and (55) can 
be expanded in the form of I	
� � { B:
:F.:01 . Thus, the so-called H3 th-order differential 
equation of Equations (54) and (55) is: 

"1/F �2"17F- B:
:F.
:01 4 � 2"1F-B:
:F.

:01 47 � !� � �� 3 � ��!�8� �C< (56)

According to Equation (9) and the Cauchy product for infinite series, the discretized form of 
Equation (56) is obtained as follows: 

<<<<<<<"1/F �-B: m	;H & !�m�	; � 8�H & !� 
	:�7�F
.
:07  

<�-�-BA(�:
A01 B:�A(� m�	� & !�H & !�m	�H & !� m�	; � � & !�H & !�m�	; � ��H & !� � 
:F.

:01 � !� � � 
(57)

In fact, Equation (57) can be easily reduces depending on Equation (9) once more into the 
equivalent form as: 

- B: m	;H & !�m�	; � 3 � 8�H & !� 
	:�/�7�F
.

:0/(7
�-�-BA(�:

A01 B:�A(� m�	� & !�H & !�m	�H & !� m�	; � � & !�H & !�m�	; � ��H & !� �.
:0/Ú m	;H & !�m�	; � 3�H & !� 
	:�/�F � �/ 

(58)
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where �/ � !  if 3 � �  and �/ � �  if 3 s ! . However, the substituting of 
 � �  into  
Equation (58) gives the following recurrence relation which determines the values of  

the coefficients B:  of 
:F : B1  and B�  are arbitrary, B7 � �(½�Ç�y	F(���Çy	7F(�� �  and B/(7 � y	/F(��y�	7(/�F(�� { BA(�/A01 B/�A(� y�	A(��F(��y	AF(�� y�	/�A(��F(��y�	/�A�F(��  for 3 � !�8� � . Therefore, by easy 

calculations we can obtain that the general solution of Equations (54) and (55) agree well with the 
following expansion: << I	
� � B1 & B�
F 

<<<<<<<<<<<<<<<<<<<<<<<& ! & B�7�m	H & !��7m	8H & !� 
7F & 8B�m	! & H�	! & B�7�m	! & H��7�m)! & VH, 
MF &9 
(59)

For easy calculations and new generalization, one can assigns some specific values for the two 
constant B1 and B� in the set of real or complex numbers. 

6. Conclusions 

The fundamental goal of this work has been to generalize the main theorems of the CPS into the 
FPS. The goal has been achieved successfully, whereby the Caputo fractional derivatives definition 
has been used to construct some of these theorems and relations. A Generalized Taylor's formula 
derived by some authors for �  H � !  can now be circulated for K � !  H � K�K o k . 
Fractional derivatives are written in terms of ordinary derivatives under some constraints and we 
hope that in the future, this result can be achieved without any constraints. The theorems which 
have been proved in this paper are used to approximate the fractional derivatives and integrals of 
functions that can be written as a FPS representation. These theorems may simplify and modify 
some of the methods used to solve FDEs and fractional integro-differential equations such as 
differential transform method, homotopy analysis method, Adomian decomposition method,  
and others. 
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Abstract: As it results from many research works, the majority of real dynamical 
objects are fractional-order systems, although in some types of systems the order is 
very close to integer order. Application of fractional-order models is more adequate for 
the description and analysis of real dynamical systems than integer-order models, 
because their total entropy is greater than in integer-order models with the same number 
of parameters. A great deal of modern methods for investigation, monitoring and 
control of the dynamical processes in different areas utilize approaches based upon 
modeling of these processes using not only mathematical models, but also physical 
models. This paper is devoted to the design and analogue electronic realization of the 
fractional-order model of a fractional-order system, e.g., of the controlled object and/or 
controller, whose mathematical model is a fractional-order differential equation. The 
electronic realization is based on fractional-order differentiator and integrator where 
operational amplifiers are connected with appropriate impedance, with so called 
Fractional Order Element or Constant Phase Element. Presented network model 
approximates quite well the properties of the ideal fractional-order system compared 
with e.g., domino ladder networks. Along with the mathematical description, circuit 
diagrams and design procedure, simulation and measured results are also presented. 
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1. Introduction 

The standard dynamical systems and also standard control systems used until recently were all 
considered as integer-order (IO) systems, regardless of the reality. In their analysis and design, the 
Laplace transform was used heavily for simplicity. The appropriate mathematical methods for such 
type of systems were fully developed in former times. As it results from recent research works, the 
majority of real objects in general are in fact fractional-order (FO) systems or arbitrary real order 
systems including integer order. Because of the higher complexity and the absence of adequate 
mathematical tools, fractional-order dynamical systems were only treated marginally in the theory 
and practice of control systems, e.g., [1,2]. Their analysis requires familiarity with FO derivatives 
and integrals [3–5]. Although the FO calculus is an about 300 year old topic, the theory of FO 
derivatives was developed mainly in the 19th century. In the last decades there has been, besides 
the theoretical research of FO derivatives and integrals [6–9], a growing number of applications of 
FO calculus in many different areas such as, for example, long electrical lines, electrochemical 
processes, dielectric polarization, modeling and identification of thermal systems [10–13], colored 
noise, chaos, viscoelastic materials, signal processing [14,15], information theory [16], applied 
information theory, dynamical systems identification [17–19] and of course in control theory as 
well [4,20–25]. This is a confirmation of the statement that real objects are generally FO, however, 
for many of them the fractionality is very low, like e.g., electronic systems composed of quality 
electronic elements. 

Fractional-order models are more adequate for the description of dynamical systems than 
integer-order models, because their total entropy is greater than in integer-order models with the 
same number of parameters [26]. The concepts of the FO calculus and entropy allow one to 
improve the analysis of system dynamics [27]. The paper [28] also analyzed IO and FO dynamical 
systems through the entropy measure and demonstrated that the concepts are simple, straightforward 
to apply and therefore future research and analysis of more complex systems is required. With such 
models it is possible to consider also the real order of the dynamical systems and consider more 
quality criterion while designing the FO controllers with more degrees of freedom compared to 
their IO counterparts [29–33], but appropriate methods for the analytical or numerical calculations 
of fractional-order differential equations (FODE) are needed in such cases [6–9,20]. 

A great deal of modern methods for investigation, monitoring and control of processes in 
different areas utilize approaches based upon modeling of these processes using not only 
mathematical models but also physical models based on FO differentiators and integrators with 
appropriate FO impedance. One of the major areas of application of the analog models is the study 
of the FO dynamical systems, FO controllers (FOC), FO filters, FO oscillators, etc. Early work  
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on the realization of fractional-order differentiators started with the works of Carlson, Halijak and 
Roy [34,35]. The authors of [34] attempted to create a “fractional capacitor” having a transfer 
function of 1/s1/n where n is a positive real number. The author in [35] introduced the method for 
realization of an immittance of order �, whose argument is nearly constant at �	/2, |�| < 1, over an 
extended frequency range. This fractional order element (FOE) or constant phase element (CPE) 
was realized through cross RC ladder network, which is the model of infinite-length power 
transmission line. In [36] the authors also introduced the concept of a fractional-order integrator 
using a single-component FOE. A single component FOE is a capacitive-type probe coated with a 
porous film of poly-methyl methacrylate dipped in a polarisable medium. The fractional exponent 
can be varied between 0 and 1. The work [37], inspired by the work described in [38], and also the 
work [39], etc., described a quite simple model of the FOE. Theoretical focus on the design of FOE 
is discussed also in [40,41]. Electronic realizations of fractional-order integrator and controllers were 
attempted and presented in our earlier works [42–44] and also in many other works like e.g., [45–48]. 

In this paper, except for the principle of electronic realization of the FO integrator and FOE, we 
will concentrate also on the electronic realization of the FO controlled object and FO controller, 
whose mathematical model is FODE. The electronic realization is based on a FO differentiator and 
integrator where operational amplifiers are connected with appropriate impedances or in our 
realization, with the so-called FOE or CPE. The presented network model, in spite of its simplicity, 
approximates quite well the properties of the ideal FO system compared with e.g., domino ladder 
networks. Along with the mathematical description, circuit diagrams of the designed FO dynamical 
systems, and design procedure of the FO elements, also simulation and measured results, are presented. 

2. Definition of the Fractional Order Control System and Its Model 

For the definition of the FO control system we consider the simple unity feedback control 
system shown in Figure 1 where FS(s) denotes the transfer function of the controlled system which 
is either IO type or more generally FO type and FC(s) is the transfer function of the controller, also 
either IO type or FO type. Y(s) denotes the output of the controlled system and U(s) its input. W(s) 
is the desired value of the output of the system and E(s) is the error or deviation between W(s) and 
Y(s). We could consider also disturbances at the input or output of the system. 

Figure 1. Simple unity feedback control system. 

 

Two basic mathematical models of the FO regulated systems and FO controllers are FO 
differential equations and FO Laplace transfer functions. 
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2.1. Fractional-Order Differential Equation  

In the time domain we can describe FO system by an FODE or by a system of FO differential 
equations. Very frequently used, as a model of the controlled system in control theory, is the 
following three-term FODE [8,9,20]: 
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where �, � are generally real numbers, a2, a1, a0 are arbitrary constants, u(t) is the input signal into 
the dynamical system and y(t) is the output of the system defined by FODE (1) with zero initial 
conditions. For one kind of our final desired FO controlled object [20] they have the following 
values � = 2.2, � = 0.9, a2 = 0.8, a1 = 0.5, a0 = 1. In the case of a2 = 0 we have two-term FODE. 
The analytical solution [8,9] of FODEs is rather complicated. More convenient are numerical 
solutions [20,25].  

Similarly the FO PI�D� controller can be described by the FO integro-differential equation [8]:  
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where K is a proportional constant, Ti is an integration constant, Td is a derivation constant, � is an 
integral order and � is a derivation order. For our final desired FO controller they have the 
following values K = 20.5, Ti = 0, Td = 3.7343, � = 0, � = 1.15 [20]. 

2.2. Fractional-Order Laplace Transfer Function 

To the FODE of the controlled object (1) there corresponds, in the s domain, the following FO 
Laplace transfer function: 
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and to the FO integro-differential equation of the controller (2) there corresponds, in the s domain, 
the following FO Laplace transfer function: 
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With different FO systems notions such as weak or strong integrator or differentiator, weak or 
strong fractional-type pole, or zero arise, with interesting contributions to the dynamics of the 
system (stability, phase shift etc.), as some properties are emphasized, others are eliminated. An FO 
system combines some characteristics of systems of the order N and (N +1). By changing the order 
as a real and not only an integer value we have more possibilities for an adjustment of the roots of 
the characteristic equation according to special requirements. 

3. Principles of Electronic Realization of the FO Dynamical System 

The basic concept of all techniques of electronic realization of an FO dynamical system is 
realization of the FO integrator or differentiator and consequently realization of the analogue 
electronic circuit with the equivalent mathematical model as FO dynamical system � controlled 
object and/or controller. 
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3.1. Principles of Electronic Realization of the FO Integrator and Differentiator  

The FO integro-differential operator can be designed and built on the principle clearly visible  
in Figure 2. The basic element of this circuit is the appropriate feedback element in the first  
stage—the so called fractance or FOE or CPE—which along with resistance Ri defines the order of 
the FO integrator or differentiator (exchange Ri and FOE). The function of the second stage is to 
determine the desired gain of the whole FO operator and to invert the output signal. 

Figure 2. Diagram of the electronic realization of the FO operator. 

 

The impedance of an ideal fractional-order element is defined as:  

.)( �DssZ �  (5)

For s = j
 will then be: 
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where 9 = �	/2 is the argument of the impedance in radians or 9 = 90� for 9 in degrees.  
The exponent � decides the character of the impedance Z(s) and denotes the order of integration 

or differentiation in the electronic realization of the FO operator (Figure 2). If � = +1, it is a 
classical inductive reactance, � = 0 means a real resistance or conductance, � = �1 represents a 
classical capacitive reactance. The values 0<�<1 correspond to an FO inductor, the values �1 < � < 0 
to an FO capacitor. 

3.2. Principles of Electronic Realization of the FO Controlled System and Controller 

The electronic realization of the FO controlled system and controller in our earlier work [42], 
based on sequential integration of FODE (1), is rather complicated and requires a number of active 
elements. The method in this contribution is based on the equivalent Laplace transfer function (7) 
of the electronic circuit shown in Figure 3 to the FO Laplace transfer function (3) and to the  
FODE (1): 
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For the considered fractional-order controlled object (3) with � = 2.2, � = 0.9, a2 = 0.8, a1 = 0.5,  
a0 = 1 we can choose e.g., �1 = �1, the first stage is then the classical IO integrator with D1 = 1/C1, 
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then �2 = �0.3, �3 = �0.9 and the values D2, D3 depend on realization of FOE2, FOE3, see next 
part, R1 = R4. It results from equations (3) and (7) that a0 = R1/R4 = 1, � = `�3` = 0.9 and  
� = `�1+�2+�3` = 2.2 as required. 

Figure 3. Diagram of the electronic realization of the FO controlled system (1), (3). 

 

Similarly, the equivalent Laplace transfer function to the transfer function (8) of the PD� 
controller [20] has the electronic circuit depicted in Figure 4: 

�sTKsF dC ��)(  (8)

Figure 4. Diagram of the electronic realization of the PD� controller. 

 

3.3. Design Procedure of the Fractional-Order Element 

The impedance of an ideal FOE or CPE in s and U domain is defined by equations (5) and (6). 
The modulus of impedance )( UjZ

�
 depends on frequency U according to the magnitude of �. Its 

value in decibels varies with 20� decibels per decade of frequency and in correspondence with the 
sign of �, the modulus increases or decreases. At U = 1 the modulus equals D, independent of �. 
Argument 9 of the impedance is constant and frequency independent for an ideal FOE. The 



374 

 

properties of ideal FOE cannot be realized with classical electrical networks containing a finite 
number of discrete R, C components. The task is to build a network that sufficient accurately 
approximates the FOE in a desired frequency range. The basic structure of the electronic model of 
the FOE [37,38] is shown in Figure 5.  

Figure 5. The network model of the FOE. 

 

The resistances and capacitances in parallel branches k = 1, 2,… m form a geometric sequence: 
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The values of R1, C1 are chosen according to the time constant �1 = R1C1 which determines 
together with the number of branches m the low and high frequencies: 
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The desired amplitude �9 of oscillations [37] (ripple) of argument (phase) around its average 
value are defined by values of parameters a, b: 
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For the chosen and calculated values of components R, C we can calculate the input admittance 
of the FOE as follows: 
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The obtained value of D will generally differ from the required Dr. Therefore, all values of 
resistances in sections Rk and Rp have to be multiplied by ratio Dr / D and also all capacitances 
divided by the same ratio [37]. 
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4. Design of the FOE for the Considered Control System 

For the considered FO controlled object (3), ��= 2.2, N�= 0.9, a2 = 0.8, a1 = 0.5, a0 = 1 and 
choosing �0�= �1, D0�= 1/C0, �/�= �0.3, �.�= �0.9 in section 3.2, the values of the Rk and Ck of all 
FOEs, according to section 3.3, can be determined. For example, for FOE2 the chosen value of �/ 
is �/�= �0.3 and the corresponding argument according to (6) is 9�/�= �27°. The resulting values of 
Rk, Ck for m = 4, �� = 0.5° are R0 = 220k, R/ = 127k, R. = 73.27k, R- = 42.28k, Rp = 161k,  
C0 = 10μ, C/ = 2.77μ, C. = 769n, C- = 213n, Cp = 81.76n. In Figure 6 are depicted the Bode 
plots—amplitude and phase—obtained from the simulations in Micro-Cap 9. 

Figure 6. Bode plots of the FOE2. 

 

The modulus of impedance decreases by 6 decibels per decade and the phase is �27° according 
to �2 = �0.3 as desired. It is evident from Figure 6 that the properties of the ideal FOE cannot be 
precisely realized with classical electrical networks containing a finite number of discrete R, C 
components. At both ends of the frequency range the normal operating conditions are not satisfied 
since the necessary sections are missing. In the proposed model the accuracy was increased by 
substituting the missing sections with approximating resistor Rp and capacitor Cp. The phase is 
virtually constant over the frequency range covering nearly three decades. The model contains only 
five resistors and five capacitors. Moreover, the frequency band can be easily extended by adding 
further sections and recalculating the capacitance Cp. For practical applications, however, the 
number of parallel branches m must be chosen as a compromise between the model accuracy and 
simplicity. By using a similar technique we can design also other FOEs for the controlled object 
and for the controller as well, and the values of Rk, Ck are noted in Figure 7. The complete 
diagrams of the electronic realization of the FO PD� controller and FO controlled system are 
depicted in Figure 7. 

The diagrams of the electronic realization of the FO PD� controller and FO controlled  
system [20] depicted in Figure 7 are based on the electronic circuits shown in Figures 3 and 4 
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which together with the designed FOEs have desired Laplace transfer functions (7), (8) and also (3) 
and (4). In Figure Figure 8 are the photos of the analogue realization of the control system from 
Figure 7. Because the calculated component values differ from the values delivered in standard 
series they were obtained by serial/parallel connection of several components (two or three) to 
approximate the calculated values. 

Figure 7. Circuit diagram of the controller and controlled system. 

 

Figure 8. Photos of the analogue realization of the FO control system. 
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5. Verification of the Analogue Realization of the FO Control System 

The verification of the designed analogue realization of the FO system was performed firstly by 
comparing the step responses of the controlled system obtained by simulation in Micro-Cap 9 
software (MC9) of the circuit depicted in Figure 7 with simulation results obtained by simulation of 
the corresponding mathematical model in Matlab. Afterwards, qualitative comparisons of the 
simulated and measured step responses of the FO feedback control system have been made. At the 
end the actual parameters of the realized FO controlled system were obtained by identification 
using measured data. 

The step response [Figure 9(a)—MC9] of the electronic realization of our well-known FO 
controlled object for � = 2.2, � = 0.9, a2 = 0.8, a1 = 0.5, a0 = 1 whose circuit diagram is depicted in 
Figure 7 is in a good agreement with the step response of its model (1), (3) computed in Matlab and 
shown in Figure 9b.  

Figure 9. Step responses of the controlled object. 

 

The step responses of the feedback control system (Figure 1) computed in MC9 software and in 
Matlab are depicted in Figure 10. We can see the good agreement of the step response of the whole 
feedback control system (Figures 1 and 7) computed in MC9 (Figure 10a) with the step response of 
the corresponding mathematical model of such feedback control system (13) computed in Matlab 
(Figure 10b): 
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The slight differences are mainly at the beginning of the responses, especially in the magnitude 
of the first maximum of the step response. The measured step response of the electronic realization 
of the feedback control system (Figures 7 and 8) is depicted in Figure 11. We can see again the 
qualitatively good equivalence of the measured response with the both computed step responses 
depicted in Figure 10. As mentioned above the values of calculated components Rk, Ck differ from 
the values delivered in standard series. Therefore they were approximated by serial/parallel 
connection of several components. As a result, the parameters of the realized FO controlled object 
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differ from the desired values. Because of this, there are differences between measured and 
simulated results. Moreover, for practical applications the number of parallel branches m for all 
FOEs must be chosen as a compromise between the model accuracy and its simplicity. Therefore 
amplitude and phase Bode plots have satisfactory behavior only over the limited frequency range. 
This influences also the accuracy of the whole feedback control system. 

Figure 10. Step responses of the feedback control system. 

 

Figure 11. Measured step response of the feedback control system. 

 

As we can see from the Nyquist diagram (Figure 12) of the open control loop (14) the feedback 
control loop (13) is stable. 
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Figure 12. Nyquist diagram of the open control loop. 

 

The measured data of the step response were used for identification [19] of the real parameters 
of the controlled system. We have used the criterion of the sum of squares (15) of the vertical 
deviations of the experimental (ye,i) and theoretical/modeled (ym,i) outputs of the system, as it is 
used in the classical least squares method: 
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Considering the controlled system as a three-member differential equation (1), using criterion 
(15) and using the optimization method for nonlinear function minimization fmincon from Matlab, 
the following parameters of the controlled object were obtained � = 2.2043, � = 0.9528,  
a2 = 0.8254, a1 = 0.5091, a0 = 1.0346 and the value of the criterion (15) was 0.2826. From the 
comparison with the desired values ��= 2.2, N = 0.9, a2 = 0.8, a1 = 0.5, a0 = 1 it can be seen that the 
corresponding absolute errors are 0.2%, 5.8%, 3.2%, 1.8% and 3.5%. Higher accuracy can be 
achieved by more precise approximation of the calculated components Rk, Ck and also considering 
more parallel branches m for designed FO elements. 

6. Conclusions 

In this article we have described the design and the electronic realization of the fractional-order 
controller and controlled system which is based on equivalence of the Laplace transfer function of 
the corresponding electronic circuit to the Laplace transfer function of the original FO systems. The 
electronic realization utilizing the fractional-order differentiator and integrator where operational 
amplifiers are connected with appropriate impedance, so called Fractional Order Element or 
Constant Phase Element. This method provides a simpler circuit in comparison with our previous 
works. Also, our presented method for the design of FOE based on passive components—resistors 
and capacitors—is very simple and gives satisfactory results. It is possible to simulate the 
properties of ideal FOE in a desired frequency range with good accuracy and the method works for 
arbitrary orders of the FO operator. Presented network model is simple and approximates quite well 
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the properties of the ideal FO system compared with e.g., domino ladder networks. Qualitatively, 
comparison of the simulation results with measured results gives good agreement. Because the 
calculated component values differ from the values delivered in standard series they were obtained 
by serial/parallel connection of several components to approximate the calculated values. As a 
result, the parameters of the realized FO system differ from the desired values. Because of this, 
there are slight quantitative differences between measured and simulated results. Higher accuracy 
can be achieved by more precise approximation of the calculated components Rk, Ck. Moreover, for 
practical applications the number of parallel branches m for all FOEs must be chosen as a 
compromise between the model accuracy and its simplicity. Therefore amplitude and phase Bode 
plots have satisfactory behavior only over the limited frequency range. This influences also the 
accuracy of the whole feedback control system. The accuracy and the performance of the 
implementation can be improved also considering more parallel branches m for designed 
fractional-order elements. Our future research will focus on designing a selectable fractional-order 
differentiator as a first step for creating a fractional-order PI�D� controller where the gain of the 
proportional controller, the gains and fractional orders of the derivative and integrative controller, 
or the number of branches can be done automatically by a microcontroller. 
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Abstract: Seismic data is difficult to analyze and classical mathematical tools reveal 
strong limitations in exposing hidden relationships between earthquakes. In this paper, 
we study earthquake phenomena in the perspective of complex systems. Global seismic 
data, covering the period from 1962 up to 2011 is analyzed. The events, characterized 
by their magnitude, geographic location and time of occurrence, are divided into 
groups, either according to the Flinn-Engdahl (F-E) seismic regions of Earth or using a 
rectangular grid based in latitude and longitude coordinates. Two methods of analysis 
are considered and compared in this study. In a first method, the distributions of 
magnitudes are approximated by Gutenberg-Richter (G-R) distributions and the 
parameters used to reveal the relationships among regions. In the second method, the 
mutual information is calculated and adopted as a measure of similarity between 
regions. In both cases, using clustering analysis, visualization maps are generated, 
providing an intuitive and useful representation of the complex relationships that are 
present among seismic data. Such relationships might not be perceived on classical 
geographic maps. Therefore, the generated charts are a valid alternative to other 
visualization tools, for understanding the global behavior of earthquakes. 
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1. Introduction 

Earthquakes are caused by a sudden release of elastic strain energy accumulated between the 
surfaces of tectonic plates. Big earthquakes often manifest by ground shaking and can trigger 
tsunamis, landslides and volcanic activity. When affecting urban areas, earthquakes usually cause 
destruction and casualties [1–4]. Better understanding earthquake behavior can help to delineate 
pre-disaster policies, saving human lives and mitigating the economic efforts involved in 
assembling emergency teams, gathering medical and food supplies and rebuilding the affected 
areas [5–8]. 

Earthquakes reveal self-similarity and absence of characteristic length-scale in magnitude, space 
and time, caused by the complex dynamics of Earth’s tectonic plates [9,10]. The plates meet each 
other at fault zones, exhibiting friction and stick-slip behavior when moving along the fault 
surfaces [11,12]. The irregularities on the fault surfaces resemble rigid body fractals sliding over 
each other, originating the fractal scaling behavior observed in earthquakes [13]. The tectonic 
plates form a complex system due to interactions among faults, where motion and strain 
accumulation processes interact on different scales ranging from a few millimeters to thousands of 
kilometers [14–16]. Moreover, loading rates are not uniform in time. Earthquakes are likely to 
come in clusters, meaning that a cluster is most probable to occur shortly after another cluster and a 
cluster of clusters soon after another cluster of clusters [17]. Earthquakes unveil long range 
correlations and long memory characteristics [18], which are typical of fractional order  
systems [19,20]. Some authors also suggest that Self-Organized Criticality (SOC) is relevant for 
understanding earthquakes as a relaxation mechanism that organizes the terrestrial crust at both 
spatial and temporal levels [21]. Other researchers [22,23] emphasize the relationships between 
complex systems, fractals and fractional calculus [24–27]. 

In this paper, we analyze seismic data in the perspective of complex systems. Such data is 
difficult to analyze using classical mathematical tools, which reveal strong limitations in exposing 
hidden relationships between earthquakes. In our approach global data is collected from the 
Bulletin of the International Seismological Centre [28] and the period from 1962 up to 2011 is 
considered. The events, characterized by their magnitude, geographic location and time, are 
divided into groups, either according to the Flinn-Engdahl (F-E) seismic regions of Earth or using a 
rectangular grid based on latitude and longitude coordinates. We develop and compare two 
alternative approaches. In a first methodology, the distributions of magnitudes are approximated by 
Gutenberg-Richter (G-R) distributions and the corresponding parameters are used to reveal the 
relationships among regions. In the second approach, the mutual information is adopted as a 
measure of similarity between events in the distinct regions. In both cases, clustering analysis and 
visualization maps are adopted as an intuitive and useful representation of the complex 
relationships among seismic events. The generated maps are evidenced as a valid alternative to 
standard visualization tools, for understanding the global behavior of earthquakes. 

Bearing these ideas in mind, this paper is organized as follows: in Section 2, we give a brief 
review of the techniques used. Section 3 analyses earthquakes’ data and discusses results, adopting 
F-E seismic regions. Section 4 extends the analysis to an alternative seismic regionalization of 
Earth. Finally, Section 5 outlines the main conclusions. 
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2. Mathematical Tools 

This section presents the main mathematical tools adopted in this study, namely G-R 
distributions, mutual information and clustering analysis. The G-R distribution is a two-parameter 
power-law (PL) that establishes a relationship between frequency and magnitude of  
earthquakes [29–31]. 

The concepts of entropy and mutual information [32–35], taken from the information theory, 
have been a common approach to the analysis of complex systems [36]. In particular, mutual 
information is adopted as a general measure of correlation between two systems. Mutual 
information, as well as entropy, have found significance in various applications in diverse fields, 
such as in analyzing experimental time series [37–39], in characterizing symbol sequences such as 
DNA sequences [40–42] and in providing a theoretical basis for the notion of complexity [43–47], 
just to name a few. 

Clustering analysis consists on grouping objects in such a way that objects that are, in some  
sense, similar to each other are placed in the same group (cluster). Clustering is a common 
technique for statistical data analysis, used in many fields, such as data mining, machine learning, 
pattern recognition, image analysis, information retrieval and bioinformatics [48–50]. 

2.1. Gutenberg-Richter Law 

The G-R law is given by: 

bMaN ��10log  (10)

where N   N is the number of earthquakes of magnitude greater than or equal to M   R, occurred 
in a specified region and period of time. Parameters (a, b)   R represent the activity level and the 
scaling exponent, respectively. The former is a measure of the level of seismicity, being related to 
the number of occurrences. The later has regional variation, being in the range b   [0.8, 1.06] and  
b   [1.23, 1.54] for small and big earthquakes, respectively [30]. 

2.2. Mutual Information 

Mutual information measures the statistical dependence between two random variables. In other 
words, it gives the amount of information that one variable “contains” about the other. Let X and Y 
represent two discrete random variables with alphabet X and Y, respectively. The mutual 
information between X and Y, I(X, Y), is given by [51]: 
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where p(x, y) is the joint probability distribution function of (X, Y), and p(x) and p(y) are the 
marginal probability distribution functions of X and Y, respectively. Mutual information is always 
symmetrical (i.e., I(X, Y) = I(Y, X)). If the two variables are independent, the mutual information is 
zero. 
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2.3. K-means Clustering 

K-means is a popular non-hierarchical clustering method, extensively used in machine learning  
and data mining. K-means starts with a collection of N objects XN ={x1, x2, …, xN}, where each  
object xn (1 # n < N) is a point in D-dimensional space (xn   RD), and a user specified number of 
clusters, K. The K-means method aims to partition the N objects into K � N clusters, CK = {c1, 
c2,…, cK}, so as to minimize the sum of distances, J, between the points and the centers of their 
clusters, MK = {μ1, μ2, …, μK}: 
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� �
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knnk xrJ

1 1

2�  (12)

where rnk   {0, 1} is a parameter denoting whether object xn belongs to cluster k [52]. The result 
can be seen as partitioning the data space into K Voronoi cells. 

The exact optimization of the K-means objective function, J, is NP-hard. Several efficient 
heuristic algorithms are commonly used, aiming to converge quickly to local minima. Among 
others [53] Lloyd’s algorithm, described in the sequel, is one of the most popular. It initializes 
computing the cluster centers MK = {μ1, μ2,…, μK}. This can is done randomly choosing the 
centers, adopting K objects as the cluster centers, or using other heuristics. After initialization, the 
algorithm iterates assigning each object to its closest cluster center: 

}minarg:{ 2
kn

k
k xknc ����  (13)

where ck represents the set of objects closest to μk. 
New cluster centers, �k, are then calculated using: 
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and Equations (4) and (5) are repeated until some criterion is met (e.g., cluster centers do not 
change in space anymore). 

One way to select the appropriate number of clusters, K, for the K-means algorithm is plotting 
the K-means objective, J, versus K, and looking at the “elbow” of the curve. The “optimum” value 
for K corresponds to the point of maximum curvature. 

2.4. Hierarchical Clustering 

Hierarchical clustering aims to build a hierarchy of clusters [54–57]. In agglomerative clustering 
each object starts in its own singleton cluster and, at each step, the two most similar (in some 
sense) clusters are greedily merged. The algorithm iterates until there is a single cluster containing 
all objects. In divisive clustering, all objects start in one single cluster. At each step, the algorithm 
removes the “outsiders” from the least cohesive cluster, stopping when each object is in its  
own singleton cluster. The results of hierarchical clustering are usually presented in the form  
of a dendrogram. 

The clusters are combined (for agglomerative), or split (for divisive) based on a measure of 
dissimilarity between clusters. This is often achieved by using an appropriate metric (a measure of 
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the distance between pairs of objects) and a linkage criterion, which defines the dissimilarity 
between clusters as a function of the pairwise distances between objects. The chosen metric will 
influence the composition of the clusters, as some elements may be closer to one another, 
according to one metric, and farther away, according to another. 

Given two clusters, R and S, any metric can be used to measure the distance, d(xR, xS), between 
objects (xR, xS). The Euclidean and Manhattan distances are often adopted. Based on these metrics,  
the maximum, minimum and average linkages are commonly used, being, respectively: 
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While non-hierarchical clustering produces a single partitioning of K clusters, hierarchical 
clustering can give different partitioning spaces, depending on the chosen distance threshold. 

3. Analysis Global Seismic Data 

The Bulletin of the International Seismological Centre (ISC) [28] is adopted in what follows. 
The ISC Bulletin contains seismic events since 1904, contributed by more than 17,000 seismic 
stations located worldwide. Each data record contains information about magnitude, geographic 
location and time. Occurrences with magnitude in the interval M   [–2.1, 9.2], expressed in a 
logarithm scale consistent with the local magnitude or Richter scale, are available [28]. In the first 
period of registers (about half a century) the number of records is remarkable smaller and lower 
magnitude events are scarce, when compared to the most recent fifty years. This may be justified 
by the technological constraints associated to the instrumentation available in the early decades of 
the last century. Therefore, to prevent misleading results, we study the fifty-year period from 1962 
up to 2011. The events are divided into the fifty groups corresponding to the Flinn-Engdahl (F-E) 
regions of Earth [58,59], which correspond to seismic zones usually used by seismologists for 
localizing earthquakes (Table 1). 

Table 1. Flinn-Engdahl regions of Earth and characterization of the seismic data. 

Region 
number 

Region name 
Number 
of events 

Minimum 
Magnitude 

Maximum 
Magnitude 

Average 
Magnitude 

1 Alaska-Aleutan arc 38,976 0.9 8.0 3.7 
2 Southeastern Alaska to Washington 19,389 0.3 7.1 2.6 
3 Oregon, California and Nevada 26,188 0.0 7.6 2.9 
4 Baja California and Gulf of California 7,621 1.1 7.2 2.7 
5 Mexico-Guatemala area 29,991 1.9 7.9 3.9 
6 Central America 20,524 0.0 7.5 3.8 
7 Caribbean loop 48,592 0.7 7.3 3.0 
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Table 1. Cont. 

Region 
number 

Region name 
Number of 

events 
Minimum 
Magnitude 

Maximum 
Magnitude 

Average 
Magnitude 

8 Andean South America 81,209 1.2 8.5 3.5 
9 Extreme South America 2,544 0.0 6.3 3.2 

10 Southern Antilles 6,102 0.3 7.5 4.4 
11 New Zealand region 58,270 �0.1 8.1 3.2 
12 Kermadec-Tonga-Samoa Basin area 50,129 1.7 8.1 4.1 
13 Fiji Islands area 23,723 1.0 7.2 4.0 
14 Vanuatu Islands 29,062 �1.4 7.9 4.1 
15 Bismarck and Solomon Islands 29,600 �1.4 8.0 4.0 
16 New Guinea 24,991 �0.2 7.8 4.0 
17 Caroline Islands area 5,016 0.0 7.0 4.1 
18 Guam to Japan 33,998 1.2 7.5 3.7 
19 Japan-Kuril Islands-Kamchatka Peninsula 865,579 0.0 8.3 1.6 
20 Southwestern Japan and Ryukyu Islands 583,992 0.1 7.4 1.1 
21 Taiwan area 285,357 �0.8 7.9 2.2 
22 Philippine Islands 31,277 0.0 8.4 3.9 
23 Borneo-Sulawesi 34,279 0.0 7.5 4.0 
24 Sunda arc 46,430 0.0 8.4 4.0 
25 Myanmar and Southeast Asia 7,853 0.0 7.4 3.1 
26 India-Xizang-Sichuan-Yunnan 29,361 �0.6 8.0 2.7 
27 Southern Xinjiang to Gansu 15,464 0.0 8.0 2.9 
28 Lake Issyk-Kul to Lake Baykal 32,330 1.3 7.4 2.6 
29 Western Asia 21,621 0.0 8.1 3.2 
30 Middle East-Crimea-Eastern Balkans 220,607 3.1 8.4 2.7 
31 Western Mediterranean area 194,094 �0.5 7.2 1.9 
32 Atlantic Ocean 37,502 �0.3 7.0 2.8 
33 Indian Ocean 12,848 0.0 7.7 4.1 
34 Eastern North America 15,104 �2.1 7.3 2.7 
35 Eastern South America 67 0.0 5.7 4.3 
36 Northwestern Europe 91,190 0.0 5.9 1.6 
37 Africa 49,370 0.0 7.4 2.5 
38 Australia 7,759 2.2 6.5 2.5 
39 Pacific Basin 3,003 2.3 7.0 2.9 
40 Arctic zone 18,786 2.1 6.9 2.4 
41 Eastern Asia 13,790 1.6 7.8 2.6 
42 Northeast. Asia, North. Alaska to Greenland 6,823 1.8 7.6 3.1 
43 Southeastern and Antarctic Pacific Ocean 6,943 0.0 7.1 4.3 
44 Galápagos Islands area 2,351 �0.6 6.4 4.2 
45 Macquarie loop 1,743 2.2 7.8 4.3 
46 Andaman Islands to Sumatera 20,762 0.9 9.2 4.0 
47 Baluchistan 4,101 0.3 7.6 3.9 
48 Hindu Kush and Pamir area 39,669 0.0 7.3 3.0 
49 Northern Eurasia 60,082 1.1 5.9 1.4 
50 Antarctica 64 1.9 5.5 4.0 
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3.1. K-means Analysis Based on G-R Law Parameters 

In this subsection the data is analyzed in a per region basis. Events with magnitude M $ 4.5 are 
considered [60]. Above this threshold the cumulative number of earthquakes obeys the G-R law.  
The corresponding (a, b) parameters, as well as the coefficients of determination of each fit, R, are 
shown in Table 2. 

Table 2. G-R law parameters corresponding to the data of each F-E region. The time 
period of analysis is 1962–2011. Events with magnitude M $ 4.5 are considered. 

Region number a b R 
1 8.7 1.08 0.99 
2 6.5 0.88 0.99 
3 7.0 0.89 0.99 
4 7.5 1.06 0.99 
5 8.4 1.10 0.98 
6 8.4 1.12 0.99 
7 8.6 1.19 0.99 
8 8.9 1.08 0.99 
9 7.4 1.08 0.97 
10 8.3 1.07 0.92 
11 7.6 0.97 0.99 
12 9.4 1.15 0.97 
13 9.3 1.24 0.97 
14 8.5 1.02 0.98 
15 8.5 1.02 0.98 
16 8.6 1.05 0.96 
17 8.3 1.16 0.97 
18 9.5 1.27 0.98 
19 9.0 1.06 0.99 
20 8.0 1.05 0.99 
21 7.6 0.95 0.99 
22 8.9 1.11 0.98 
23 9.3 1.18 0.96 
24 9.2 1.14 0.98 
25 7.4 0.99 0.99 
26 8.1 1.07 0.99 
27 7.3 0.97 0.99 
28 7.2 0.96 0.99 
29 8.3 1.12 0.98 
30 8.4 1.12 0.97 
31 8.3 1.18 0.98 
32 9.1 1.21 0.99 
33 8.8 1.16 0.98 
34 7.4 1.10 0.96 
35 6.9 1.24 0.97 
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Table 2. Cont. 

Region number a b R 
36 8.1 1.35 0.98 
37 8.3 1.14 0.99 
38 7.6 1.15 0.97 
39 7.6 1.07 0.98 
40 7.9 1.11 0.98 
41 7.1 0.94 0.99 
42 6.8 0.96 0.98 
43 8.4 1.10 0.96 
44 8.9 1.32 0.98 
45 7.1 0.94 0.91 
46 8.0 1.00 0.99 
47 7.5 1.05 0.99 
48 8.7 1.19 0.99 
49 6.1 0.97 0.94 
50 6.0 1.09 0.98 

The (a, b) parameters are analyzed using the non-hierarchical clustering technique K-means.  
We adopt K = 9 clusters as a compromise between a reliable interpretation of the maps and how  
well-separated the resulting clusters are. The obtained partition is depicted in Figure 1, where the 
axes values are normalized by the corresponding maximum values. Figure 2 shows the silhouette 
diagram. The silhouette value, for each object, is a measure of how well each object lies within its 
cluster [61]. Silhouette values vary in the interval S = �1 to S = +1 and are computed as 

)}(),(max{
)()()(
nanb

nanbnS �
�  (18)

where a(n) is the average dissimilarity between object n and all other objects in the cluster to which 
the object n belongs, ck.  On the other hand, b(n) represents the average dissimilarity between 
object n and the objects in the cluster closest to ck. Silhouette values closer to S = +1 correspond to 
objects that are very distant from neighboring clusters and, therefore, they are assigned to the right 
cluster. For S = 0 the objects could be assigned to another cluster. When S = –1 the objects are 
assigned to the wrong cluster. 

From Figure 1, we obtain the K = 9 clusters: A = {4, 9, 34, 38, 39, 40, 47}, B = {36, 44},  
C = {10, 14, 15, 16, 20, 26, 46}, D = {2, 3, 11, 21, 25, 27, 28, 41, 42, 45}, E = {49, 50},  
F = {1, 8, 19, 22, 24}, G = {5, 6, 7, 17, 29, 30, 31, 33, 37, 43, 48}, H = {12, 13, 18, 23, 32},  
I = {35}. Adopting the same colour map used in Figure 1, we depict the F-E regions in the 
geographical map of Figure 3. It can be noted that the obtained clusters correspond quite well to 
large contiguous regions. 
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Figure 1. K-means clustering of all F-E regions and Voronoi cells. Analysis based on 
the (a, b) parameters of the G-R law. The time period of analysis is 1962–2011. Events 
with magnitude M $ 4.5 are considered. 

 

Figure 2. Silhouette corresponding to the K-means clustering of all F-E regions. 
Analysis based on the (a, b) parameters of the G-R law. The time period of analysis is 
1962–2011. Events with magnitude M $ 4.5 are considered. 
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Figure 3. Geographical map of the F-E regions adopting the same colour map used in 
Figure 1 (green lines correspond to tectonic faults). 

 

3.2. Analysis by Means of Mutual Information 

In this subsection we take the magnitude of the events as random variable and adopt the mutual 
information as a measurement of similarities between regions i and j (i, j = 1, …, 50). To avoid the 
systematic bias that occurs when estimating the mutual information from finite data samples we 
use the expression [62]: 

)2ln(2
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where m   N is the number of data samples, (Nx, Ny) represent number of bins, [Dx(r), Dy(s)]  
denote the ratios of points belonging to the (rth, sth) bins and Dxy(r, s) is the ratio of points in  
the intersection of the (rth, sth) bins of the random variables. This means that probability density  
functions p(x), p(y) and p(x, y) are estimated via a histogram method, where p(x) = Dx(r)��x(r)�1,  
p(y) = Dy(s)��y(s)�1, p(x, y) = Dxy(r, s)��x(r)�1��y(s)�1, and [�x(r), �y(s)] represent the size of the (rth, 
sth) bins. Parameters (Bx, By) represent the number of bins, where [Dx(r) ; 0, Dy(s) ; 0] and Bxy is 
the number of bins where Dxy(r, s) ; 0. In this study we adopt Nx = Ny = 94. 

Based on the mutual information, a 50 × 50 symmetric matrix, IXY, is computed and hierarchical 
clustering analysis is adopted to reveal the relationships between the F-E regions under analysis.  

Figure 4a depicts the mutual information as a contour map. As can be seen, the mutual 
information between F-E regions #35, #49 and #50 and the rest is remarkable higher, hiding the 
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relationships among most regions. We removed F-E regions #35, #49 and #50 and plotted the 
corresponding mutual information contour map in Figure 4b. 

Figure 4. Mutual information represented as a contour map. (a) all F-E regions are 
considered; (b) F-E regions #35, #49 and #50 were deleted. The time period of analysis 
is 1962–2011. 

 
(a) 

 
(b) 

As the graphs in Figure 4 are difficult to analyze, a hierarchical clustering algorithm is adopted 
for comparing results (Section 2.4.). We used the phylogenetic analysis open source software 
PHYLIP [63].  

The corresponding circular phylograms are generated by successive (agglomerative) clustering  
and represented in Figure 5a (for all F-E regions) and 5b (for all F-E regions except #35, #49 and 
#50). The leaves of the phylograms represent F-E regions. An average-linkage method was used to 
generate the trees. 
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Figure 5. Circular phylogram, based on mutual information, used to compare F-E 
regions. (a) all F-E regions are considered. (b) F-E regions #35, #49 and #50 were 
deleted. The time period of analysis is 1962–2011. 

 
(a) 

 
(b) 

Regarding Figure 5a, cluster {35, 49, 50} is clearly different from the rest, as expected.  
Moreover, clusters {9, 34, 36, 38}, {11, 28, 42}, {26, 39, 47} and {2, 4, 7, 45} can be identified.  
A larger cluster contains all the rest. Additionally, in Figure 5b, the clusters {3, 27, 29, 31, 40} and  
{8, 12, 13, 14, 15, 30}, for example, are easily noted, as well as the main larger cluster composed 
by the remaining F-E regions. Comparing the results coming from the analysis by means of G-R 
law parameters and mutual information, namely Figure 1 and Figure 5, we can see that the latter is 
easier to interpret. However, deciding for one or another approach necessitates a more detailed 
analysis based on specific evidences and practical knowledge in the field. In conclusion, the 
proposed analysis, based in seismic data catalogues, can help in understanding the overall complex 
dynamics of earthquakes. 

4. Analysis of Rectangular Grid-Based Regions 

In this section, instead of F-E regions, an alternative seismic regionalization is considered.  
The mathematical tools presented in Section 3 are also adopted. We propose dividing Earth into  
14 F 14 rectangular cells and, as previously, analyzing data in a per region basis. Events with 
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magnitude M $ 4.5 and time period 1962–2011 are considered. The G-R law parameters (a, b) are 
computed for each region and the results are depicted in Figures 6 and 7, respectively. 

Figure 6. Regional variation of G-R parameter a. A 14 F 14 rectangular grid is  
adopted and events with magnitude M $ 4.5 are considered. The time period of analysis 
is 1962–2011. 

 

Figure 7. Regional variation of G-R parameter b. A 14 F 14 rectangular grid is adopted  
and events with magnitude M $ 4.5 are considered. The time period of analysis is 
1962–2011. 

 

It can be seen that the activity level parameter, a, assumes larger values in areas of larger 
seismicity that develop closer to tectonic faults. The scaling exponent, b, reveals identical behavior, 
being remarkable higher in Scandinavia, Northern Atlantic, Arabic Peninsula, Russian Far East, 
Brazilian Northeast and Fiji/Tonga/Samoa region. Alternatively, the mutual information is computed 
and a phylogram is generated to facilitate visualization for the 14 F 14 grid (Figures 8 and 9). 
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Figure 8. Contour plot representing the mutual information. A 14 F 14 rectangular grid 
is adopted and events with magnitude M $ 4.5 are considered. The time period of 
analysis is 1962–2011. 

 

Figure 9. Circular phylogram based on mutual information. A 14 F 14 rectangular grid  
is adopted and events with magnitude M $ 4.5 are considered. The time period of 
analysis is 1962–2011. 
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We observe that the analysis based on the Cartesian grid leads to a more comprehensive 
visualization of the information than the Flinn-Engdahl regions. Therefore, this approach should be 
considered as an important alternative to classical definitions of geographical layouts for studying 
the mutual influence of earthquake and geological data. 

5. Conclusions 

Based on the magnitudes of the seismic events available in the ISC global catalogue, two 
schemes were proposed to compare the seismic activity between Earth’s regions. A first method 
consisted in approximating the data by R-G law and analyzing the parameters that define the 
distributions shape. The second method used the mutual information as a measure of similarity 
between regions. In both cases clustering analysis was adopted to visualize the relationships 
between the data. Different measures lead to distinct results. The mutual information based measure 
gives results easier to interpret. Both measures can help in understanding the overall complex 
dynamics of earthquake phenomena. 
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Abstract: Fractional calculus has become an increasingly popular tool for modeling the 
complex behaviors of physical systems from diverse domains. One of the key issues to 
apply fractional calculus to engineering problems is to achieve the parameter 
identification of fractional-order systems. A time-domain identification algorithm based 
on a genetic algorithm (GA) is proposed in this paper. The multi-variable parameter 
identification is converted into a parameter optimization by applying GA to the 
identification of fractional-order systems. To evaluate the identification accuracy and 
stability, the time-domain output error considering the condition variation is designed 
as the fitness function for parameter optimization. The identification process is 
established under various noise levels and excitation levels. The effects of external 
excitation and the noise level on the identification accuracy are analyzed in detail. The 
simulation results show that the proposed method could identify the parameters of both 
commensurate rate and non-commensurate rate fractional-order systems from the data 
with noise. It is also observed that excitation signal is an important factor influencing 
the identification accuracy of fractional-order systems.  

Keywords: fractional-order systems; parameter identification; genetic algorithm; 
output error; noise; excitation 

PACS Codes: 05.45.-a, 02.30.Zz, 02.60.Cb, 02.60.Pn 
 



403 

 

1. Introduction 

Fractional calculus [1–4] is the general expression of differential calculus. In recent years, 
researchers and engineers have increasingly used fractional-order dynamic models to model real 
physical systems that have independent frequency-domain and long memory transients [5–13]. 
Some systems may have fractional-order dynamic characteristics, even if each unit has  
integer-order dynamic characteristics [14]. What’s more, applying fractional calculus to entropy 
theory has become a hotspot research domain [15–20]; the fractional entropy could be used in  
the formulation of algorithms for image segmentation where traditional Shannon entropy has 
presented limitations [16]. In an analysis of the past ten years of trends and results in the fractional 
calculus application to dynamic problems of solid mechanics, the method of mechanical system 
dynamics analysis based on fractional calculus has gradually become one of main methods in the 
dynamics analysis of engineering [21]. Fractional calculus has been introduced into the various 
engineering and science domains [22,23], including image processing [24–26], thermal  
systems identification [27,28], biological tissues identification [29–31], control theory and 
application [32–36], signal processing [37,38], path planning [39] and path tracking [40,41], 
robotics [42,43], mechanical damping [10,44], battery [45,46], mechanics [47,48], diffusion [49,50], 
chaos [51,52], and others. Therefore, the application of fractional calculus has become a focus of 
international academic research. 

Fractional-order system identification is a basic issue of application of fractional calculus [53–58]. 
Several researchers have reported their work on identifying the fractional-order model in the  
time-domain and frequency-domain. Poinot and Trigeassou [53] proposed a time-domain method 
using the state-space equation, successfully obtaining the dynamical model of a heat transfer 
system. Cois et al. [54] modeled non-integer systems using the non-integer state-space 
representation, the modal coefficients, the eigenvalue, the differentiation order, and Marquardt 
algorithm. Lin et al. [55] used the least squares method to investigate the frequency response 
identi�cation technique. Valério and Costa [56] demonstrated the fractional transfer function 
approximation based on phase characteristics in the frequency domain. Through the detailed 
analysis of these studies, it could be observed that the time domain identification proposed by 
Poinot and Trigeassou [53] and Cois et al. [54] could approximate most system parameters 
including the fractional order, but the solution of the derivation and inverse matrix is difficult and 
requires heavy computation. In comparison to the time-domain method, the identification methods 
derived by Lin et al. [55] and Valério and Costa [56] required simple calculation, but the fractional 
order could not be solved directly.  

This paper presents an identification algorithm based on GA in the time domain. The 
identification process of the method is the process of parameter optimization, and the matrix 
inversion and differential coefficient are not needed in the method. Firstly, the effective fitness 
function based on output-error is put forward in the time domain, and then the multivariable 
parameters identification is converted into parameters optimization using GA. Secondly, the 
excitation signals used in parameter identification are demonstrated to indicate their effect on 
identification accuracy. In addition, to testify the effectiveness of the proposed methods, the 
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identified data used in this paper adopted the real output of benchmark model coupled with various 
noise levels. 

The organization of this paper is as follows: In Section 2, the fractional calculus, fractional-order 
systems and problem statement are introduced. In Section 3, the identification method based on GA 
is proposed. And corresponding numerical simulations and analysis are provided in Section 4. 
Finally, conclusions are made in Section 5. 

2. Fractional-Order System Model 

2.1. The Definition of Fractional Calculus 

There are several commonly used definitions for the general fractional differentiation and 
integration, such as the Grunwald-Letnikov��  (GL) definition, the Riemann–Liouville (RL) definition 
and Caputo definition [3,21]. The GL fractional derivative of continuous function f(t) is given by 
Grunwald��  [57]:  
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where h is the sampling period and )(�X  is the Gamma function and ][ h
at�  represents a truncation. 

�
ta D  denotes fractional-order differential operator. 

2.2. Fractional-Order Systems 

The fractional-order system is a more general expression than the integer order system; and the 
fractional-order system is a mathematical model based on fractional calculus. Due to the 
continuous order, fractional-order systems have independent frequency-domain and long memory 
transients [2,5–13,59], which can describe complex physical system more accurately. 

The single-input-single-output linear fractional-order differential equation is shown by  
Equation (3): 
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In the zero initial condition, transfer function expression in the s domain of Equation (3) is 
obtained as follows: 
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Equation (5) is the commensurate rate fractional-order system which is the common fractional-
order system studied at this stage, and its expression is shown as follows: 
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2.3. Common Parameter Identification Methods 

Commonly used methods of parameter estimation include least square method, maximum 
likelihood, correlation identification and others [60]. Taking Equation (5) as an example, this 
article deduces an identification method based on least square method. The fractional-order 
differential equation of Equation (5) is given by: 

)()()()()()( m10n1 tuDbtuDbtubtyDatyDaty mn ���� �������������  (6) 

Selecting h as the sampling period, we may solve the order through using the step-by-step 
method, and ],[ 0 L���  and L+1 is total calculation number of times. Each step is

LL /)( 0��� ��� , ��� ��� kk 0 , then a group of optimal coefficients are produced; we can 

calculate the optimal order and coefficients by using the error function J. 
The least square equation is realized by the following expression: 
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Parameter vector is defined as: 
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Then, the linear equation is gotten in Equation (12): 
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The least square principle is introduced and its expression is shown in Equation (13): 
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where e(k) is equation error and its expression is shown as follows: 
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The residual standard is introduced by Equation (15): 
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The partial derivative of J is deduced in Equation (16): 
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where: 
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The estimated value of the parameters based on the least square method is obtained: 

YTT
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The above method may figure out the coefficients and fractional order of Equation (5), however, 
Equation (18) could be solved only if DDT  is a nonsingular matrix. This might result in limitation 
of its application to some issues. Moreover, the above algorithm could not identify the fractional 
order directly, and the accuracy of identification result largely relies on step length �� . Therefore, 
this paper introduces another identification method based on genetic algorithm in the next section. 

3. Fractional-Order System Identification Based on GA  

3.1. Fractional-Order Benchmark Model 

Transforming from s domain to the z domain is the discrete process of continuous transfer 
function, where different methods perform differently. This paper introduces first-order backwards 
finite difference formula [65] used as the discrete method and expands into 1,000-item truncated 
MacLaurin series, in order to approach the true fractional-order model. 

First-order backwards finite difference formula is shown as follows: 
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whose MacLaurin series is given in Equation (20). 
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where T is the sampling period, v is the fractional order, and N is power series of expansion 
equation. This formula is equivalent to Grunwald-Letnikov�� . 

The classical fractional model [53,58] is taken as the benchmark model (21) for identification in 
Sections 4.2 and 4.3, as follows:  
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where a = 1, b = 1, v = 0.7. 
Continuous transfer function of the benchmark model in the s domain is described as: 
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It is obvious that â , b̂ , v̂  in Equation (22) are parameters to be identified, and the Equation (22) 
is transformed into differential equation as follows: 
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Then the expression of Equation (22) in the time domain is obtained as: 
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where N is the memory length of the Equation (24). 
It is assumption that i is the memory length of the Equation (24) (the maximum of i is 1,000 for 

this study), which is consistent with the number of simulation data. The total time t is iT. Therefore, 
we use yi expresses y(t), yi-k expresses y(t-kT), ui expresses u(t), the Equation (24) can be turned 
into the final expression (26): 
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3.2. Fitness Function of Optimization 

Fitness function plays a key role in the accuracy of results. This paper takes the weighted value 
of output-error as the fitness function in the time domain. Therefore, parameters identification is 
converted into parameters optimization.  

The fitness function is defined as: 
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where N is the number of data. *
iy  is the real output of benchmark model under different 

excitation signals and noise level, iy  is the estimated output without any noise. * 2

1
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i i
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could be considered as the 2-norm of an N-dimensional error vector. *
iy

R  is the standard deviation of 
*
iy . To eliminate the influence of the excitation signal’s waveform, the error pseudo distance is divided 

by *
iy

R . 

3.3. Evaluation Index of Fitness Function 

A series of results are obtained through the simulation and identification, the average of 
parameters may be regarded as net result to clear up accidental factors. Standard deviations of 
results can be used as the criterion of the algorithm’s stability, where standard deviation is smaller 
usually means the algorithm is more stable. 
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However, because of coupling among parameters, there will be plenty of similar identification 
results that have the same accuracy but relevant parameter among results does not have the same 
value, when accuracy is not particularly high. For instance, fractional-order model (21) based on 
the parameters (a = 0.986, b = 0.995, v = 0.697) nearly has the same dynamic characteristics with 
that based on another parameters (a = 1.006, b = 0.9998, v = 0.701), although the error of each 
parameter (true value: a = 1, b = 1, v = 0.7) of first ones is larger than that of the latter. Therefore, it 
is not enough to only use each parameter’s precision to evaluate the results. This paper separately 
takes Magnitude (dB) and Phase (degree) in the frequency domain and approximation fit in the 
time domain as evaluation indices to evaluate identification results.  

The larger fit is, the more precise identification results are. The definition is provided as follows: 

	 
2 2
max(1 ,0) 100% max(1 ,0) 100%y efit J N y y y mean y� � F F � � � � F  (28)

where y is the real output of benchmark model without any noise. ye is the estimated output based 
on relevant final identification results without any noise. In order to evaluate identification results 
in unified standard, both y and ye are the output under the same frequency signal (VFS) excitation. 

3.4. The Identification Process Based on Genetic Algorithm 

GA [60–64] is an optimization method that models natural selection mechanism in the 
biological evolution process, and it has been investigated by John Holland and his students in 1975. 
This algorithm has global and parallel search ability and is appropriate for solving complex nonlinear 
problems. 

In a genetic algorithm, a population of certain solutions (called individuals) to an optimization 
problem is evolved toward better solutions. Each potential solution has a lot of properties  
(its chromosomes or genotype) which can be varied and altered. Traditionally, solutions are 
represented in binary, but other encodings such as decimal, octal and other codes are also possible.  

The evolution commonly begins with a population of randomly generated individuals and is an 
iterative process, with the population in each iteration called a generation. In every generation, the 
fitness of every individual in the population is evaluated, the more fit individuals are stochastically 
selected from the current population, and each individual's genome is modified (recombined and 
possibly randomly mutated) to form the population of next generation. This new population is then 
used in the next iteration of the algorithm. Usually, the algorithm would terminate when either a 
maximum number of generations has been produced, or other conditions have reached our request. A 
typical genetic algorithm requires: a genetic representation of the solution domain and an efficient 
fitness function to evaluate the solution domain.  

Basic operation procedure of GA: 

Step 1: Initialization: Set the counter of evolution t = 0, the maximum number of generation T,  
an initial population P(0), and set other termination conditions. 
Step 2: Individual evaluation: Calculate the fitness value of each individual in population P(t). 
Step 3: Selection operation: Apply the selection operation to P(t) based on the fitness value. 
Step 4: Crossover operation: Apply the crossover operation to P(t). 
Step 5: Mutation operation: Apply the mutation operation to P(t). 
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After Step 3, Step 4, Step 5, next generation population P(t + 1) will be gotten. 
Step 6: Termination condition judgment: If t = T or meet other termination conditions, the 
individual which has the most suitable fitness value in the processing will be selected as the 
optimal solution. Otherwise, back to Step 2. 

In this paper, the identification process is illustrated in Figure 1 based on the preceding analysis 
and basic operation process of GA. It can be seen from Figure 1 that the individual of population is 
composed of parameters to be identified. In the identification process, the binary encoding type and 
the initial population of 120 are selected. The optimization process will be stopped if one of three 
terminal conditions, which are 1,800 consecutive generations, 1,000 seconds runtime and 0.000001 
fitness value, is satisfied. 

Figure 1. Flow chart of fractional-order systems identification based on genetic algorithm. 

 Y  N

 

4. Numerical Simulation and Results 

4.1. Excitation Signals 

The input signal is vital to system identification because it controls the output characteristics of 
the model [60,66]. Taken in this sense, it also determines the accuracy of identification results and 
whether the system is cognizable. Different systems need different optimal excitation signals to get 
more built-in features. Several input signals are selected to simulate the fractional-order system, 
including pseudo-random binary sequence (PRBS), sawtooth wave signal, sin-swept signal, and 
variable frequency signal (VFS). In this paper, PRBS and VFS are a periodic square wave signals; 
the frequency of sawtooth wave signal is 0.05 Hz; the sin-swept signal’s frequency increases from 
0 to 200 Hz in one second linearly. The signals are generated by using signal functions in 
MATLAB. In addition, the amplitude of all the excitation signals is 1.00 and the length of data of 
each signal is 1,000. In engineering practice, the obtained data are contaminated by noise more or 
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less because of the sensor precision and interference factors. To approach the actual situation, the 
output is joined by Gaussian white noise, and the input data have no noise. 

Signal to Noise Ratio (SNR) is defined with the most commonly used method, as follows: 

NW
YWSNR 10log10�

 
(29) 

where YW, NW express the powers of signal and noise respectively.  

Figure 2. VFS excitation based on different noise levels of model (21). 

 

4.2. The Effect of Noise Level 

It is well known that the noise often influences the accuracy of different identification methods. 
To estimate the sensitive extent of the proposed method, various noise levels of output signal is 
obtained by adding the Gaussian white noise, where the system input excitation is VFS without 
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noise. The numerical simulations are carried out in the different noise level conditions. The 
external excitation and system response output with different SNR of model (21), and estimated 
output based on relevant final identification results are indicated in Figure 2 which includes output 
data with no noise, 28.4, 20, 16, 14 and 12 dB.  

In order to reduce the stochastic error of each identification process, the mean and standard 
deviation of optimized parameters are adopted to evaluate the identification results. The 
identification result of each run is different. Therefore, in order to eliminate random error, the 
number of runs (five) was selected to calculate the statistical characteristics, such as the mean and 
standard deviation. The parameters listed in the paper are statistical values of multiple runs. For 
example, a, b, v are means of result of five times identifications; aR , bR , vR  are standard 
deviations of parameters. At the same time, the estimation index fit is introduced to evaluate the 
identification results fairly under different conditions. It can be viewed from Table 1 that, in case of 
on noise, the identified parameters are consistent with the true values and the fit is very close to 
100% and the error could be ignored. In case of 20 dB noise level, the identification result 
presented in Table 1 shows that the means of identified parameters a, b, v are 0.976071, 0.988563 
and 0.696444, respectively. In this condition, the maximum standard deviation is 2.33917 × 10�5 
and the identification accuracy is 99.35%. While the SNR is 28.4 dB, the maximum standard 
deviation is 2.725825 × 10�5 and the parameter fit could reach to 99.58%. When the SNR is 16 dB, 
the fit is 99.18%. Even if the SNR is equal to 14 dB, the identification accuracy keeps 98.76% and 
its maximum standard deviation is 0.695666 × 10�5. However, when the noise continues to 
increase, the identification accuracy will become worse. The parameter fit is only 97.09% in case 
of 12 dB. 

Figure 3. Identification results under different noise levels of model (21). 
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Figure 3 shows the Bode diagram of benchmark model (Equation (21), a = 1, b = 1, v = 0.7) and 
identified models under various noise levels, and Table 2 shows maximum errors of Magnitude and 
Phase between benchmark model and identified models in Figure 3. It can be seen from Figure 3 
that estimated models have almost the same dynamic characteristics compared to the true one. In 
details, in case of on noise, the maximum errors of Magnitude and Phase are 5.8848 × 10�5 (dB) 
and 4.3329 × 10�4 (degree) orderly, and the error could be ignored. When the SNR is 28.4 dB, the 
maximum errors of Magnitude and Phase are merely �0.0205 and 0.0793 in turn. While the SNR is 
between 20 dB and 14 dB, the errors are closed to each other. The maximum errors of Magnitude 
and Phase are 0.1131, 0.3190 in case of 20 dB, 0.1376 and 0.3404 in case of 16 dB, 0.1269 and 
0.3416 in case of 14 dB. However, when the SNR is 12 dB, the errors increase apparently, and they 
are 2.0961 dB and 3.3482 degrees. Therefore, from the above simulation and analysis results, it is 
obvious that the proposed method is insensitive to noise above 14 dB. 

Table 1. Identification results based on different SNR of model (21). 

Excitation A aR /10
5 b bR /10
5 v vR /10
5 fit 
True 1  1  0.7   

No noise 1.000034 0.960063 1.000018 0.869508 0.700011 0.508406 99.9997% 
28.4 dB 1.006228 2.725825 0.999772 1.416844 0.701493 0.806250 99.58% 
20 dB 0.976071 2.339170 0.988563 1.339580 0.696444 0.713023 99.35% 
16 dB 0.972494 2.847766 0.988270 1.71262 0.696197 0.711188 99.18% 
14 dB 0.958144 0.695666 0.972546 0.305697 0.696120 0.478331 98.76% 
12 dB 1.007271 3.584513 1.016610 1.986676 0.667246 1.086456 97.09% 

Table 2. Errors in frequency domain based on different SNR of model (21). 

Error types No noise 28.4 dB 20 dB 16 dB 14 dB 12 dB 
Maximum error of 

Magnitude(dB) 
5.8848 × 10�5 �0.0205 0.1131 0.1376 0.1269 2.0961 

Maximum error of 
Phase(degree) 

4.3329 × 10�4 0.0793 0.3190 0.3404 0.3416 3.3482 

Figure 4. PRBS excitation output with SNR = 28.4dB of model (21).  
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4.3. The Effect of Excitation Signals 

In the system identification, the external excitation is also an important factor to affect the 
identification accuracy. For the purpose of investigating the effect of excitation on identifying 
fractional-order system, this work designs various excitation signals, which include PRBS, VFS, 
sawtooth wave signal, and sin-swept signal. Meanwhile, the condition of numerical simulation is 
selected as system response with 28.4 dB noise level in order to keep the simulation conformable to 
reality. Different excitations and response outputs for the benchmark model (21), and estimated 
output based on relevant final identification results are indicated in Figure 2, Figure 4, Figure 5 and 
Figure 6. It is obvious that Figure 2 shows the system input and output under VFS excitation. 
Figure 4 describes the PRBS excitation. The system responses under sawtooth wave excitation and 
sin-swept signal excitation are exhibited in Figure 5 and Figure 6, respectively.  

Figure 5. Sawtooth excitation output with SNR = 28.4 dB of model (21). 

 

Figure 6. Sin-sweep excitation output with SNR = 28.4 dB of model (21). 
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The identification results using the proposed method are listed in Table 3. It can be seen that the 
higher identification accuracy is obtained using PRBS and VFS excitation. The maximum accuracy 
reaches to 99.58% and its corresponding estimated parameters is 1.006228, 0.99538 and 0.701493. 
While adopting sawtooth wave excitation, the estimated values of a, b, v is 0.996426, 0992339 and 
0.711274 and the fit is 98.67%. The worse results are obtained by using sin-swept signal excitation. 
In this case, the identification accuracy is 81.59% and its corresponding estimated parameters are 
1.999999, 1.427971 and 0.817042. Figure 7 shows the Bode diagram of benchmark model and 
identified models under various excitations (SNR = 28.4 dB), and Table 4 shows the maximum 
errors of Magnitude and Phase between benchmark model and identified models in Figure 7. It can 
be seen from Figure 7 that estimated models under VFS and PRBS have almost the same dynamic 
characteristics compared to the true one. In addition, the maximum errors of Magnitude and Phase 
under VFS (�0.0205 dB, 0.0793 degree) are close to sawtooth wave excitation (0.0232 dB, 0.1052 
degree), and are smaller than PRBS (0.1669 dB, 0.3146 degree). However, the errors are very big 
under sin-swept signal excitation, which are 0.9075 dB and 9.2118 degrees. Therefore, there is 
large difference between benchmark model and estimated model under sin-sweep excitation, which 
confirms the results in Table 3 and Table 4.  

Figure 7. Identification results based on different excitations of model (21). 

 

Table 3. Identification results based on different excitations of model (21). 

Excitation a aR /10
5 b bR /10
5 v vR /10
5 fit 

True 1  1  0.7   
PRBS 0.985850 5.757508 0.995380 2.927489 0.696537 1.187264 99.51% 
VFS 1.006228 2.725825 0.999772 1.416844 0.701493 0.806250 99.58% 

Sawtooth 0.996426 1.329199 0.992339 1.266606 0.711274 0.222961 98.67% 
Sin-sweep 1.999999 0.000415 1.427971 0.042450 0.817042 0.008724 81.59% 
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Table 4. Errors in frequency domain based on different excitations of model (21). 

Error types PRBS VFS Sawtooth Sin-sweep 
Maximum error of Magnitude(dB) 0.1669 �0.0205 0.0232 0.9075 
Maximum error of Phase(degree) 0.3146 0.0793 0.1052 9.2118 

In this paper, identification results of the benchmark model (21) are more accurate based on 
square wave excitations such as PRBS and VFS excitation than sin-swept signal excitation. 
Therefore, it can be viewed that the external excitation plays a significant role in parameter 
identification of fractional-order systems. Because optimal excitation signal might arouse the most 
characters of the system, different systems need different optimal excitation signals to embody 
more features.  

4.4. Identification of General Non-Commensurate Rate Fractional-Order System 

In order to verify that the proposed method is effective for general model, the general  
non-commensurate rate fractional-order model (model (30)) is used as benchmark model for 
identification, as follows: 

1�v

q

s
s  (30) 

where q = 0.5, v = 0.7. 
The external excitation (VFS) and system response output [model (30)] with different SNR 

which includes output data with 28.4 dB and 16 dB, and estimated output based on relevant final 
identification results are indicated in Figure 8.  

Figure 8. VFS excitation with different noise levels of model (30). 
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The Bode diagrams of benchmark model and estimated models are shown in Figure 9. When the 
SNR is 28.4 dB, the fit is 99.62%, and maximum errors of Magnitude and Phase are 0.0337 dB and 
0.3844 degree orderly. Estimated q is 0.503864 and v is 0.703319, and relevant standard deviations 
are 0.237492 × 10�5 and 0.319154 × 10�5. In case of 16 dB, estimated q is 0.497678 and v is 
0.691340, and relevant standard deviations are 0.545049 × 10�5 and 0.716980 × 10�5. The fit is 
99.26%, and maximum errors of Magnitude and Phase are 0.3775 dB and 0.6656 degree. The 
identified results prove that the proposed method is also suitable for general fractional-order systems. 

Figure 9. Identification results of model (30). 

 

5. Conclusions 

This paper proposes an identification algorithm based on GA in the time domain with the 
weighted value of output error for fractional-order systems. The results verify that this algorithm 
can precisely identify the coefficients and fractional-order, even when the output mixed with noise. 
Taking the effective fitness function, GA can do the global search and solve the parameter 
identification issue for fractional-order systems. In addition, it is not enough to only use each 
parameter’s precision to evaluate the results on account of coupling among parameters. Taking 
errors between benchmark mode and estimated model both in the frequency domain and in the time 
domain as evaluation indices might be a good choice.  

Excitation signal is of great importance for fractional-order systems identification; the best 
result might be found if the input is the optimal excitation signal of the system. However, it is very 
difficult to find the best signal, so it is important to select an input signal in accordance with 
specific conditions, which may base on antecedent analysis and experiences. What’s more, the 
results demonstrate that this method could identify the parameters of both commensurate rate and  
non-commensurate rate fractional-order systems from the data with noise. Exploring the application 
fractional-order systems identification to engineering practice is the further work in the future. 
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Abstract: Multi-objective particle swarm optimization (MOPSO) is a search algorithm

based on social behavior. Most of the existing multi-objective particle swarm

optimization schemes are based on Pareto optimality and aim to obtain a representative

non-dominated Pareto front for a given problem. Several approaches have been proposed

to study the convergence and performance of the algorithm, particularly by accessing the

final results. In the present paper, a different approach is proposed, by using Shannon

entropy to analyze the MOPSO dynamics along the algorithm execution. The results

indicate that Shannon entropy can be used as an indicator of diversity and convergence

for MOPSO problems.

Keywords: multi-objective particle swarm optimization; Shannon entropy; diversity

1. Introduction

Particle swarm optimization (PSO) is a metaheuristic algorithm based on social species behavior.

PSO is a popular method that has been used successfully to solve a myriad of search and optimization

problems [1]. The PSO is inspired in the behavior of bird blocking or fish schooling [2]. Each

bird or fish is represented by a particle with two components, namely by its position and velocity.
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A set of particles forms the swarm that evolves during several iterations giving rise to a powerful

optimization method.

The simplicity and success of the PSO led the algorithm to be employed in problems where more

than one optimization criterion is considered. Many techniques, such as those inspired in genetic

algorithms (GA) [3,4], have been developed to find a set of non-dominated solutions belonging to the

Pareto optimal front. Since the multi-objective particle swarm optimization (MOPSO) proposal [5],

the algorithm has been used in a wide range of applications [1,6]. Moreover, a considerable number of

variants of refined MOPSO were developed in order to improve the algorithm performance, e.g., [7].

In single objective problem the performance of the algorithms can be easily evaluated by

comparing the values obtained by each one. Moreover, when the performance over time is required

the evolution of the best fitness value of the population is normally used. Advanced studies can be

accomplished by means of the dynamic analysis [8,9] of the evolution. Many indexes were introduced

to measure the performance of multi-objective algorithms according to the solution set produced by

them [10–12]. In those cases, when is difficult to identify the best algorithm, nonparametic statistical

tests are crucial [13,14].

Shannon entropy has been applied in several fields, such as communications, economics,

sociology, and biology among others, but in evolutionary computation it has not been fully explored.

For an example of research work in this area we can refer to Galaviz-Casas [15], which studies

the entropy reduction during the GA selection at the chromosome level. Masisi et al. [16] used

the (Renyi and Shannon) entropy to measure the structural diversity of classifiers based in neural

networks. The measuring index is obtained by evaluating the parameter differences and the GA

optimizes the accuracy of 21 classifiers ensemble. Myers and Hancock [17] predict the behavior

of GA formulating appropriate parameter values. They suggested the population Shannon entropy

for run-time performance measurement, and applied the technique to labeling problems. Shannon

entropy provides useful information about the algorithm state. The entropy is measured in the

parameter space. It was shown that populations with entropy smaller than a given threshold become

saturated and the population diversity disappears. Shapiro and Bennett [18,19] adopted the maximum

entropy method to find out equations describing the GA dynamics. Kita et al. [20] proposed a

multi-objective genetic algorithm (MOGA) based on a thermodynamical GA. They used entropy

and temperature concepts in the selection operator.

Farhang-Mehr and Azarm [21] formulated an entropy based MOGA inspired by the statistical

theory of gases, which can be advantageous in improving the solution coverage and uniformity

along the front. Indeed, in a enclosed environment, when an ideal gas undergoes an expansion, the

molecules move randomly, archiving a homogeneous and uniform equilibrium stated with maximum

entropy. This phenomenon occurs regardless of the geometry of the closed environment.

Qin et al. [22] presented an entropy based strategy for maintaining diversity. The method

maintains the non-dominated number of solutions by deleting those with the worst distribution, one

by one, using the entropy based strategy. Wang et al. [23] developed an entropy-based performance

metric. They pointed out several advantages, namely that (i) the computational effort increases
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linearly with the solution number, (ii) the metric qualifies the combination of uniformity and coverage

of Pareto set and (iii) it determines when the evolution has reached maturity.

LinLin and Yunfang [24] proposed a diversity metric based on entropy to measure the

performance of multi-objective problems. They not only show when the algorithm can be stopped,

but also compare the performance of some multi-objective algorithms. The entropy is evaluated

from the solution density of a grid space. These researchers compare a set of MOGA algorithms

performance with different optimization functions.

In spite of having MOPSO used in a wide range of applications, there are a limited number of

studies about its dynamics and how particles self-organize across the Pareto front. In this paper the

dynamic and self-organization of particles along MOPSO algorithm iterations is analyzed. The study

considers several optimization functions and different population sizes using the Shannon entropy

for evaluating MOPSO performance.

Bearing these ideas in mind, the remaining of the paper is organized as follows. Section 2

describes the MOPSO adopted in the experiments. Section 3 presents several concepts related with

entropy. Section 4 addresses five functions that are used to study the dynamic evolution of MOPSO

using entropy. Finally, Section 5 outlines the main conclusions and discusses future work.

2. Multiobjective Particle Swarm Optimization

The PSO algorithm is based on a series of biological mechanisms, particularly in the social

behavior of animal groups [2]. PSO consists of particles movement guided by the most promising

particle and the best location visited by each particle. The fact that particles work with stochastic

operators and several potential solutions, provides PSO the ability to escape from local optima and

to maintain a population with diversity. Moreover, the ability to work with a population of solutions,

introduces a global horizon and a wider search variety, making possible a more comprehensive

assessment of the search space in each iteration. These characteristics ensure a high ability to find

the global optimum in problems that have multiple local optima.

Most real world applications have more than a single objective to be optimized, and therefore,

several techniques were proposed to solve those problems. Due to these reasons, in the last

years many of the approaches and principles that were explored in different types of evolutionary

algorithms have been adapted to the MOPSO [5].

Multi-objective optimization problem solving aims to find an acceptable set of solutions, in

contrast with uni-objective problems where there is only one solution (except in cases where

uni-objective functions have more than one global optimum). Solutions in multi-objective

optimization problems intend to achieve a compromise between different criteria, enabling the

existence of several optimal solutions. It is common to use the concept of dominance to compare

the various solutions of the population. The final set of solutions may be represented graphically by

one or more fronts.

Algorithm 1 illustrates a standard MOPSO algorithm. After the swarm initialization, several

loops are performed in order to increase the quality of both the population and the archive. In iteration

loop t, each particle in the population selects a particle guide from the archive A(t). Based on
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the guide and personal best, each particle moves using simple PSO formulas. At the end of each

loop (Line 12) the archive A(t + 1) is updated by selecting the non-dominant solutions among the

population, P (t), and the archive A(t). When the non-dominant solution number is greater than the

size of the archive, the solutions with best diversity and extension are selected. The process comes

to an end, usually after a certain number of iterations.

Algorithm 1: The Structure of a standard MOPSO Algorithm

1: t = 0

2: Random initialization of P (t)

3: Evaluate P (t)

4: A(t) =Selection of non-dominated solutions

5: while the process do
6: for Each particle do
7: Select pg

8: Change position

9: Evaluate particle

10: Update p

11: end for
12: A(t)= Selection(P (t) ∪ A(t))

13: t = t+ 1

14: end while
15: Get results from A

3. Entropy

Many entropy interpretations have been suggested over the years. The best known are disorder,

mixing, chaos, spreading, freedom and information [25]. The first description of entropy was

proposed by Boltzmann to describe systems that evolve from ordered to disordered states. Spreading
was used by Guggenheim to indicate the diffusion of a energy system from a smaller to a larger

volume. Lewis stated that, in a spontaneous expansion gas in an isolated system, information
regarding particles locations decreases while, the missing information or, uncertainty increases.

Shannon [26] developed the information theory to quantify the information loss in the

transmission of a given message. The study was carried out in a communication channel and Shannon

focused in physical and statistical constraints that limit the message transmission. Moreover, the

measure does not addresses, in this way, the meaning of the message. Shannon defined H as a

measure of information, choice and uncertainty:

H(X) = −K
∑
x∈X

pi(x) log pi(x) (1)

The parameter K is a positive constant, often set to value 1, and is used to express H in an unit of

measure. Equation (1) considers a discrete random variable x ∈ X characterized by the probability

distribution p(x).
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Shannon entropy can be easily extended to multivariate random variables. For two random

variables (x, y) ∈ (X, Y ) entropy is defined as:

H(X, Y ) = −K
∑
x∈X

∑
y∈Y

pi(x, y) log pi(x, y) (2)

4. Simulations Results

This section presents five functions to be optimized with 2 and 3 objectives, involving the

use of entropy during the optimization process. The optimization functions F1 to F4, defined by

Equations (3) to (6), are known as Z2, Z3, DTLZ4 and DTLZ2 [27,28], respectively, and F5 is

known as UF8, from CEC 2009 special session competition [29].

F1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1(X) = x1

g(X) = 1 + 9
m∑
i=2

xi

m−1

h(f1, g) = 1−
(

f1
g

)2
f2(X) = g(X)h(f1, g)

(3)

F2 =

⎧⎪⎪⎨
⎪⎪⎩

f1(X) = x1

g(X) = 1 + 9
m

m∑
i=1

xi

f2(X) = g(X)−√g(X)x1 − 10x1 sin πx1

(4)

F3 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f1(X) = [1 + g(X)] cos(xα
1π/2) cos(x

α
2π/2)

f2(X) = [1 + g(X)] cos(xα
1π/2) sin(x

α
2π/2)

f3(X) = [1 + g(X)] sin(xα
1π/2)

g(X) = 1 + 9
m∑
i=3

(xα
i − 0.5)2

(5)

F4 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f1(X) = [1 + g(X)] cos(x1π/2) cos(x2π/2)

f2(X) = [1 + g(X)] cos(x1π/2) sin(x2π/2)

f3(X) = [1 + g(X)] sin(x1π/2)

g(X) = 1 + 9
m∑
i=3

(x−0.5)2

(6)

F5 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(X) = cos(0.5x1π) cos(0.5x2π) +
2

|J1|
∑
j∈J1

(
xj − 2x2 sin(2πx1 +

jπ
m
)
)2

f2(X) = cos(0.5x1π) sin(0.5x2π) +
2

|J2|
∑
j∈J2

(
xj − 2x2 sin(2πx1 +

jπ
m
)
)2

f3(X) = sin(0.5x1π) +
2

|J3|
∑
j∈J3

(
xj − 2x2 sin(2πx1 +

jπ
m
)
)2

J1 = {j|3 ≤ j ≤ m, and j − 1 is a multiplication of 3}
J2 = {j|3 ≤ j ≤ m, and j − 2 is a multiplication of 3}
J3 = {j|3 ≤ j ≤ m, and j is a multiplication of 3}

(7)
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These functions are to be optimized using a MOPSO with a constant inertia coefficient w = 0.7

and acceleration coefficients φ1 = 0.8 and φ2 = 0.8. The experiments adopt t = 1000 iterations and

the archive has a size of 50 particles. Furthermore, the number of particles is maintained constant

during each experiment and its value is predefined at the begging of each execution.

To evaluate the Shannon entropy the objective space is divided into cells forming a grid. In the

case of 2 objectives, the grid is divided into 1024 cells, nf1 ×nf2 = 32× 32, where nfi is the number

of cells in objective i. On the other hand, when 3 objectives are considered the grid is divided in 1000

cells, so that nf1 × nf2 × nf3 = 10× 10× 10. The size in each dimension is divided according to the

maximum and minimum values obtained during the experiments. Therefore, the size si of dimension

i is given by:

si =
fmax
i − fmin

i

nfi

(8)

The Shannon entropy is evaluated by means of the expressions:

H2(O) =

nf1∑
i

nf2∑
j

nij

N
log

nij

N
(9)

H3(O) =

nf1∑
i

nf2∑
j

nf3∑
k

nijk

N
log

nijk

N
(10)

where nijk is the number of solutions in the range of cell with indexes ijk.

The dynamical analysis considers only the elements of the archive A(t) and, therefore, the

Shannon entropy is evaluated using that set of particles.

4.1. Results of F1 Optimization

The first optimization function to be considered is F1, with 2 objectives, represented in

Equation (3). For measuring the entropy, Equation (9) is adopted (i.e., H2). The results depicted in

Figure 1 illustrate several experiments with different population sizes Np = {50, 100, 150, 200, 250}.
The number of parameters is maintained constant, namely with value m = 30.

Figure 1. Entropy H(f1, f2) during the MPSO evolution for F1 function.
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In Figure 1 it is verified that, in general, entropy has a value that hardly varies over the MOPSO

execution. At the beginning, outside the transient, the entropy measure is H2 ≈ 3.7. This transient

tends to dissipate as the PSO converges and the particles became organized. Additionally, from

Figure 1 it can be seen that the archive size does not influence the PSO convergence rate. Indeed,

MOPSO is an algorithm very popular to find optimal Pareto fronts in multi-objective problems,

particularly with two objectives.

Figure 2. Non-dominated solutions at iteration t = 1 for F1 function and Np = 150.
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Figure 3. Non-dominated solutions at iteration t = 90 for F1 function and Np = 150.
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Figure 4. Non-dominated solutions at iteration t = 1000 for F1 function and Np = 150.
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Figures 2–4 show that during all the evolution process the MOPSO presents a good diversity.

Therefore, is expected that entropy has a small variation throughout iterations. Moreover, after

generation 90, entropy presents minor variations revealing the convergence of the algorithm.

4.2. Results of F2 Optimization

Figure 5 illustrates the entropy evolution during the optimization of F2. This function includes

2 objectives and leads to a discontinuous Pareto front represented in Figure 6. The experiments

were executed with the same population sizes as for F1. It was verified that experiments with a

low number of population solutions have a poor (low) initial entropy, revealing a nonuniform front

solution at early iterations.

Figure 5. Entropy H(f1, f2) during the MPSO evolution for F2 function.
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Figure 6. Non-dominated solutions at iteration t = 1000 for F2.
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4.3. Results of F3 Optimization

In the case of the optimization of function F3 in Equation (5), three objectives are considered.

The entropy evolution is plotted in Figure 7 for Np = {100, 150, 200, 250, 300, 350, 400}. Moreover,

is considered m = 12 and α = 100.

For experiments with a small population size, the convergence of the algorithm reveals some

problems. Indeed, for populations with Np = 50 particles the algorithm does not converge
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to the Pareto optimal front. With Np = 100 particles the algorithm takes some time to start

converging. This behavior is shown in Figure 7 where pools with many particles (i.e., 350 and

400 particles) reach faster the maximum entropy. In other words, a maximum entropy corresponds

to a maximum diversity.

Figure 7. Entropy H(f1, f2, f3) during the MPSO evolution for F3 function.
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Figure 8. Non-dominated solutions at iteration t = 1 for F3.
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Figure 9. Non-dominated solutions at iteration t = 30 for F3.
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In Figure 7 three search phases are denoted by SP1, SP2 and SP3. The SP1 phase corresponds

to a initial transient where the particles are spread for all over the search space with a low entropy.

For the experiment with Np = 300, phase SP1 corresponds to the first 30 iterations (see Figures 8

and 9). The second phase, SP2, occurs between iterations 40 and 200, where the particles search the

f1 × f3 plane, finding mainly a 2-dimensional front (Figures 10 and 11). Finally, in the SP3 phase

(e.g., steady state) the algorithm approaches the maximum entropy. In this phase, particles move
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in the entire front and are organized in order to give a representative front with good diversity (see

Figures 12 and 13).

Figure 10. Non-dominated solutions at iteration t = 40 for F3.
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Figure 11. Non-dominated solutions at iteration t = 200 for F3.
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Figure 12. Non-dominated solutions at iteration t = 300 for F3.
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Figure 13. Non-dominated solutions at iteration t = 1000 for F3.
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For experiments considering populations with more particles, these phases are not so clearly

defined. This effect is due to the large number of particles that allows the algorithm to perform a

more comprehensive search. In other words, the MOPSO stores more representative space points

helping, in this way, the searching procedure.

4.4. Results of F4 Optimization

The results for the optimization function F4 are depicted in Figure 14. The function has 3

objectives and the Pareto front is similar to the one for function F3. It can be observed that

optimization with a larger number of solutions presents a regular convergence, as was verified for F3.

Figure 14. Entropy H(f1, f2, f3) during the MPSO evolution for F4 function.
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4.5. Results of the F3, F4 and F5 Medians

MOPSO is a stochastic algorithm and each time it is executed is obtained a different convergence

path for the best particle. In this line of thought, for each test group, 22 distinct simulations were

performed and the median taken as representing the entropy evolution. This section presents the

entropy evolution for 12 cases test set, 6 for F3 and 6 for F4, with population sizes of Np =

{150, 200, . . . , 350, 400} particles.

Figures 15 and 16 show evolution of the median of the 6 cases test sets for F3 and F4, respectively.

It can be seen that the larger the population size, the faster the convergence of the algorithm in finding

an uniform spreading covering the Pareto front. The only exception is the case of Np = 200 particles

and F4 function, that leads to a faster convergence than the case with Np = 250 particles.

Figure 17 presents the evolution of the median of 6 cases test sets for F5. It can also be observed

that population size affects the diversity, and consequently the space exploration, of the algorithm at

early iterations.

At initial iterations, it is natural to observe a entropy peak because the particles are scattered

throughout the objective space, and it is difficult to find near particles among the others. In these

stages spread was not maximum (entropy) because the distribution is not uniform.
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Figure 15. Median entropy H(f1, f2, f3) during the MPSO evolution for F3 function.
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Figure 16. Median entropy H(f1, f2, f3) during the MPSO evolution for F4 function.
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Figure 17. Median entropy H(f1, f2, f3) during the MPSO evolution for F5 function.
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4.6. Results of the F3, F4 and F5 Medians for MSPSO Algorithm

In this section, the functions F3, F4 and F5 are optimized using the Spreed-constrained

Multi-Objective PSO (SMPSO) [30]. The algorithm was downloaded from jMetal website [31]. The

algorithm was slightly modified in order to save the archive solutions during the algorithm evolution.

This SMPSO has the particularity of producing new effective particles positions in cases where the

velocity becomes too high and uses a polynomial mutation as a turbulence factor.
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Figures 18 and 19 present the evolution of the median of the 12 cases test sets, 6 for F3 and 6 for

F4, with population sizes of Np = {150, 200, . . . , 350, 400} particles. From these functions it can be

seen that the algorithm maintains a good spreed during its entire evolution, even in initial iterations.

This is due to the polynomial mutation and velocity effect.

Figure 18. Median entropy H(f1, f2, f3) during the MSPSO evolution for F3 function.
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Figure 19. Median entropy H(f1, f2, f3) during the MSPSO evolution for F4 function.
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When optimizing F5 (Figure 20) it can be observed a low entropy at early iterations that increases

over the iterations, meaning that the spread also improves throughout the execution of the algorithm.

Figure 20. Median entropy H(f1, f2, f3) during the MSPSO evolution for F5 function.

3.0

3.5

4.0

2 4 6 8 10

H
(f

1
,
f
2
,
f
3
)

10 100 1000

t

Np = 150
Np = 200
Np = 250
Np = 300
Np = 350
Np = 400



434

The MSPSO maintains a good diversity during the search process. This phenomena, does

not occur in the standard MOPSO used previously, where diversity decreases in initial stages of

the algorithm.

5. Conclusions and Future Work

This paper addressed the application of the entropy concept for representing the evolution

behavior of a MOPSO. One interpretation of entropy is to express the spreading of a system energy

from a small to a large state. This work adopted this idea and transposed it to measure the diversity

during the evolution of a multi-objective problem. Moreover, this measure is able to capture the

convergence rate of the algorithm. The optimization of four functions was carried-out. According

to the entropy index, the F1 and F2 functions, with two objectives, are easily and early reached,

independently of the number of population particles. When three objectives are considered, for

functions F3, F4 and F5, the number of population particles has an important role during the algorithm

search. It was verified that entropy can be used to measure the convergence and the MOPSO diversity

during the algorithm evolution. On the other hand, when using the MSPSO algorithm an high

entropy/diversity was observed during the entire evolution. Therefore, the deployed entropy based

index can be used to compare the solution diversity during evolution among different algorithms.

In conclusion, the entropy diversity can be used as a evolution index for multi-objective

algorithms in the same way the best swarm element is used in single objective optimization problems.

Future work will be devoted to incorporating entropy based indexes to evaluate the swarm

diversity in the algorithm run time. Indeed, as the analysis results presented in this paper confirm,

swarm diversity can be evaluated along evolution time, and if the entropy index is lower than a

problem function specific threshold, then measures can be adopted to reverse the diversity population

decrease. The use of online entropy based indexes can also be applied to the swarm population as

well as to the non-dominated archive. This will allow evaluate both populations diversity in order to

prevent the MOPSO premature convergence. The former research lines are currently under research

and their results will be submitted for another publication soon.
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Abstract: The game of football demands new computational approaches to measure 
individual and collective performance. Understanding the phenomena involved in the 
game may foster the identification of strengths and weaknesses, not only of each player, 
but also of the whole team. The development of assertive quantitative methodologies 
constitutes a key element in sports training. In football, the predictability and stability 
inherent in the motion of a given player may be seen as one of the most important 
concepts to fully characterise the variability of the whole team. This paper characterises 
the predictability and stability levels of players during an official football match. A 
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Fractional Calculus (FC) approach to define a player’s trajectory. By applying FC, one 
can benefit from newly considered modeling perspectives, such as the fractional 
coefficient, to estimate a player’s predictability and stability. This paper also formulates 
the concept of attraction domain, related to the tactical region of each player, inspired 
by stability theory principles. To compare the variability inherent in the player’s 
process variables (e.g., distance covered) and to assess his predictability and stability, 
entropy measures are considered. Experimental results suggest that the most predictable 
player is the goalkeeper while, conversely, the most unpredictable players are the 
midfielders. We also conclude that, despite his predictability, the goalkeeper is the most 
unstable player, while lateral defenders are the most stable during the match. 

Keywords: fractional calculus; entropy; stability; predictability; dynamic systems; 
football; performance analysis; variability 

PACS Codes: 37Fxx; 37Mxx; 01.80.+b; 05.45.Tp. 
 

1. Introduction 

The study of sports performance has developed over the years trying to improve the feedback 
provided to coaches and their staff [1]. From rudimentary systems, using only observation, to new 
technological-based approaches, many procedures can be developed to increase the understanding 
of a given sport [2]. Therefore, present day research proposes methods and techniques that can help 
analyse sports performance [3]. 

Football is one of the most popular sports in the World [4]. Scientific areas, such as engineering 
and mathematics, have been interested in providing their insights to further understand this sport in 
the last few years. The major contribution of mathematical tools resides in the field of human 
movement analysis with fast and efficient systems, providing quantitative measures to sports 
coaches [5]. Nevertheless, the technological devices and related methods should always be applied 
considering the aim of the analysis. 

Tactical analyses of performance, whether at the individual or collective levels, are of interest to 
coaches and sport researchers [5]. However, the lack of knowledge about advanced methods to 
analyse the dynamics of football players (space-time series) is responsible for the lack of studies 
focusing on the tactical performance of football matches [3]. In this sense, mathematics and 
engineering can provide valuable contributions to sports science in the performance analysis area.  

By benefiting from these scientific fields, it is possible to analyze football players’ variability in 
terms of dynamic trajectory [6]. Such variability was studied from a spatio-temporal point-of-view, 
by understanding the main factors and constraints that affect players’ actions [7]. In spite of the 
regular dynamics of a football game [8], and considering the tactical behavior of players, the 
variability of players’ trajectories can be seen as an interesting indicator in characterising football 
players within their specific tactical zones.  
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1.1. Variability Analysis in Sport 

The discussion about variability arises in the scope of systems theory, where the notion of 
nonlinearity was initially introduced [9]. By studying the variability of football players, the 
foundations were laid for a whole series of possible new methods to identify and classify their 
performance. Nevertheless, the assertive implementation of these notions requires quantitative 
methods. Therefore, some nonlinear methods, such as the approximate entropy [10], or the 
Lyapunov exponents [11], were adopted to study human performance features. It should be 
highlighted that, contrarily to traditional methods (e.g., standard variation, coefficient of variation), 
nonlinear methods can provide additional information about the structure of the variability that 
evolves over time [9].  

In invasive team sports (e.g., football, basketball and others), players are generally confined to a 
specific area (tactical region) depending on their role [7]. Nevertheless, the variability of a given 
player not only depends on his specific actions (i.e., at the microscopic level) but also on the team 
as a whole (i.e., the specific role in the team’s strategy at the mesoscopic level) [12]. In some cases, 
the emergent behaviours can be different in their regularity, depending upon the team’s strategy [10]. 

In the current state-of-the-art, only a few papers have analysed the variability of displacement of 
football players [13–15]. All these studies focused on the variability within each sub-phase (e.g.,  
1 vs. 1 player, 2 vs. 2 players) without considering the full match dynamics (e.g., 11-a-side game). 
Generally, studies around sub-phases have presented the variability in the emergent behaviours by 
means of different player strategies, so as to achieve the final result [15]. Despite their importance 
towards an understanding of the player’s decision-making processes, the variability can be 
associated with other important indicators. For instance, performance indices such as distance 
covered, speed, or intensity, should be considered so as to understand the player’s variability in the 
11-a-side match. This analysis can be a step forward to distinguish players that show similar results 
to the previously described indicators. 

All the same, the variability of trajectories can also be classified as stable or non-stable. Actually, 
the notion of “stability” is quite different from the one of “variability”. Stability is not only the 
resistance to a perturbation, but also the ability to return to the equilibrium point (e.g., initial 
position, tactical position, among others). The existence of a stable equilibrium point implies the 
existence of a “restoring force” which is directed towards the equilibrium point. Thus, we assume 
that there is a steady-state point to which players converge. The truth is that they are “only” 
attracted to that point, that is, they convergence to an equilibrium point that is defined by their 
tactical position. The “stability” can be understood, in the context of football, as the capability that 
a player reveals in keeping his trajectories within a specific region (such as their tactical position 
on the field). A similar assumption can be made about the “predictability” of players. By definition, 
predictability is the degree to which a correct prediction of a system’s state can be made. In the 
context of a player’s trajectory, the predictability is related to whether one can predict where the 
player will be, by knowing his trajectory so far. This is in line with the concept of predictability in 
mathematics, wherein a process is classified as predictable if it is possible to know the “next” state 
at the present time. 
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Despite the complexity of a player’s trajectory outside their specific tactical region during a 
football match, it is mostly certain that, eventually, the player will return to his own tactical region. 
Even when players change their strategic position, they return to their specific strategic position 
most of the time [16]. Hence, we can formulate that in, a rather simplistic way, a player can be 
considered more or less stably based, even when he remains outside his tactical region.  

1.2. Statement of Contribution and Paper Organization 

Players’ dynamics have been studied at the individual and collective level. This paper introduces 
a new approach for variability analysis, thus providing some new insights around football players’ 
behaviour. Moreover, this paper introduces a new set of parameters to easily distinguish players 
with regards to their activity profiles in official matches. These indices can provide deeper 
information about players’ behaviour while improving the sports training quality. For the study of 
the player’s variability, in terms of dynamic trajectory, the concepts associated with the Fractional 
Calculus (FC) mathematical formalism are adopted [17]. One of the first studies applying FC to 
trajectory analysis was introduced by Couceiro, Clemente and Martins [17] by estimating the next 
position of a player based on his previous trajectory. This was proposed for improving the accuracy 
of automatic tracking methods. As suggested by the authors, using the fractional coefficient of a 
player over the time, one can analyse his level of predictability. Therefore, the purpose of the 
current study is to determine the predictability level and, as a consequence, the stability of football 
players, comparing these values side-by-side with traditional football indicators, such as distance 
covered, player’s directions and the space covered by each player. 

Having these ideas in mind, this paper is organized as follows: Section 2 describes two 
alternative methods typically used in the football context, namely, Shannon’s entropy applied to 
heat maps and the approximate entropy as a variability measure applied to kinematic variables. 
Section 3 shows how FC may be applied to mathematically describe a football player’s trajectory. 
This is further exploited in Section 4 where the fractional coefficient is used to estimate the next 
position of a football player, thus shaping the player’s predictability. Section 5 presents an 
analytical procedure for designing an attraction domain related with the player’s maintenance of his 
own tactical position. Sections 6 and 7 consider the case study of one football match that relates the 
newly introduced indicators with traditional indices, discussing the predictability and the stability 
of each player while considering their tactical positions. Section 7 presents the conclusions. 

2. A Brief Overview of Entropy in Sports 

As previously stated, entropy-based measures have been the most typical nonlinear methods 
applied in the sports context. Therefore, this section describes two entropy methods used to study 
the variability of football players’ trajectories. 

2.1. Shannon’s Entropy 

Heat maps are a classical method to analyse a given player’s variability. Generally, heat maps 
represent the spatial distribution of a player over the field by considering the time spent at a certain 
position, that is, the frequency distribution (histogram) of each player’s coordinates [12]. However, 
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the analysis of heat maps in the football context have not benefited from any complementary 
metrics that may provide more assertive results. The Shannon’s entropy can be applied to images 
providing relevant information about the spatial variability of players. The entropy formula applied 
to images can be defined as [18]: 

p== �=_½ (1a)

E � �-p= ¨�+7p==  (1b)

where p= is the probability mass function,<�= denotes the histogram entry of intensity value ¦ and _½ is the total number of cells (i.e., the spatial resolution of the football field): 

p== �=_½ 
Consider the following example: 

Example 1: Let us consider a resolution of !<K7 for a football field of !�P Ú Y\<K. This results 
in a total number of cells _½ � Z�Z8. The heat map representation of two players of an 11-a-side 
football team, considering their position at each discretization interval of 1 s, is depicted in Figure 1. 

Figure 1. Examples of the players’ heat maps with low spatial variability (goalkeeper) 
and high spatial variability (midfielder). 

 

The data comes from an all “useful” time periods in one football match. By other words, only 
the instants where the ball is playable in the field are considered. As one may observe, it is possible 
to identify that the goalkeeper has a reduced area of action, thus spending more time around the 
same places and, consequently, increasing the intensity of colours. On the other hand, the 
dispersion is high on the midfielder player, thus reducing the time spent around the same place and, 
therefore, decreasing the intensity in any given place. The goalkeeper presents lower spatial 
variability than the midfielder, and is characterized by an entropy measure of<E � �C\�P. On the 
other hand, the midfielder presents an entropy of E � 8CPPX. 
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2.2. Approximate Entropy Calculus 

Pincus, Gladstone and Ehrenkranz [19] described the techniques for estimating the Kolmogorov 
entropy of a process represented by a time series and the related statistics approximate entropy. Let 
us consider that the whole data of 
 samples (i.e., seconds) is represented by a time-series as @	!�� @	8�� � � @	�� , from measurements equally spaced in time. These samples form a  
sequence of vectors 5	!�� 5	8�� � � 5	_ �K & !� o l�ÚJ , each one defined by the array 5	¦� � )@	¦� @	¦ & !� 9 @	¦ & K � !�, o l�ÚJ . The parameters _� , K, and é  must be 
fixed for each calculation. The parameter _½ represents the length of the time series (i.e., number 
of data points of the whole series), K denotes the length of sequences to be compared and é is 
the tolerance for accepting matches. Thus, one can define: 

n=J	é� � ;@K>O� �* 5	�� N@B� 
��
 ��5	¦�� 5	��� � é_½ � K & !  (3)

for ! � ¦ � _½ �K & !. Based on Takens’ work, one can defined the distance ��5	¦�� 5	��� for 
vectors 5	¦� and 5	�� as: ��5	¦�� 5	��� <� K�5/0��7���J�@	¦ & 3 � !� � @	� & 3 � !�� (4)

From the n=J	é�, it is possible to define: 

n=J	é� � 	_½ � K & !��� - n=J	é�a	�J(�
=0�  (5)

and the correlation dimension as: 


J � ¨¦K��1a��

d�	 nJ	é��d� é  (6)

for a sufficiently large K. This limit slope has been shown to exist for many chaotic attractors. 
This procedure is frequently applied to experimental data. In fact, researchers seek a “scaling range” 
of é values for which �	 z¸	���� �  is nearly constant for large K, and they infer that this ratio is the 

correlation dimension. In some studies, it was concluded that this procedure establishes 
deterministic chaos. 

Let us define the following relation: �J	é� � 	_½ � K & !��� { ¨; n=J 	é�a	�J(�=0� . (7)

One can define the approximate entropy as: �pE; � �J	é� � �J(�	é� (8)

On the basis of calculations that included the theoretical analysis performed by Pincus et al [19], 
the authors derived a preliminary conclusion that choices of é of the standard deviation of the data 
ranging from 0.1 to 0.2 would produce reasonable statistical validity of �pE;. 
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Table 1. Different signals and the range for approximate entropy range of values �pE; [9]. 

Signal Approximate Entropy Values 
Periodic function �� 
Chaotic system (e.g., Lorenz attractor) �C! 
Random time series !CW 

Consider the following example. 

Example 2: Let us represent the distance covered by the lateral defender at each second over a 
match as depicted in Figure 2. 

Figure 2. Distance covered by the lateral defender during a football match. 

 

From this example, the distance covered by the lateral defender results in an approximate 
entropy value of �pE; � �CW�P for é � �C8 of the standard deviation and K � 8 [19], thus 
being classified as a chaotic system (cf., Table 1). 

The entropy may not capture the adequate level of variability of a given player over time if 
applied on some type of signals. For example, when applied to the spatial distribution (cf.,  
Example 1), the entropy simply returns the spatial variability of a player without considering his 
trajectory over time. On the other hand, when applied to the distance covered (cf., Example 2), it 
yields the level of variability without considering the direction of the player trajectory. Other 
techniques can be applied in the sports context. For instance, by adopting the insights from 
Couceiro, Clemente and Martins [17], one can define a player’s variability, at each instant, using 
the FC memory properties as a predictability level. Therefore, the FC approach for the human 
variability understanding will be discussed in next section. 

3. Player’s Motion from the View of Fractional Calculus 

Fractional Calculus (FC) may be considered as a generalisation of integer-order calculus, thus 
accomplishing what integer-order calculus cannot [20]. As a natural extension of the integer (i.e., 
classical) derivatives, fractional derivatives provide an excellent tool for the description of memory 
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and hereditary properties of processes [21]. An important property revealed by the FC formulation 
is that while an integer-order derivative just implies a finite series, the fractional-order derivative 
requires an infinite number of terms. 

Despite FC’s potentialities only a limited number of applications based on FC have been 
reported so far within the sport sciences literature [17,22]. One of them was the development of a 
correction metric for golf putting to prevent the inaccurate performance of golfers when facing  
the golf lipout phenomenon [21]. The authors extended a performance metric using the  
Grünwald–Letnikov approximate discrete equation to integrate a memory of the ball’s trajectory. A 
more recent study by the same authors benefited from FC to overcome automatic tracking 
problems of football players [17]. As a prediction method based on the memory of past events, FC 
features offer a new perspective on understanding players’ motion. 

3.1. Fractional Calculus: Preliminaries 

The concept of Grünwald–Letnikov fractional differential is presented by the following definition: 

Definition 1 [23]: Let<� be the gamma function defined as: 

�	3� � 	3 � !�b (9)

The signal "F)5	
�, given by "F)5	
�, � d����1 � ��� { 	�����	F(��
�	/(���	F�/(�� 5	
 � 3��(�/01 �, (10)

is said to be the Grünwald–Letnikov fractional derivative of order H, H o �, of the signal 5	
�. 
An important property revealed by Equation (10) is that while an integer-order derivative just 

implies a finite series, the fractional-order derivative requires an infinite number of terms. Therefore, 
integer derivatives are “local” operators while fractional derivatives have, implicitly, a “memory” of 
all past events. However, the influence of past events decreases over time. The formulation in 
Equation (10) inspires a discrete time calculation presented by the following definition: 

Definition 2 [23]: The signal "F5)
,® given by: 

"F5)
,® � !�F- 	�!�/�)H & !,
�)3 & !,�)H � 3 & !, 5)
 � 3�,�

/01  (11)

where � is the sampling period and � is the truncation order, is the approximate discrete time 
Grünwald–Letnikov fractional difference of order H, H o �, of the discrete signal 5)
,. 

The series presented in Equation (11) can be implemented by a rational fraction expansion 
which leads to a superior compromise in what concerns the number of terms versus the quality of 
the approximation. That being said, it is possible to extend an integer discrete difference, i.e., 
classical discrete difference, to a fractional-order one, using the following definition: 

Definition 3 [24]: The classical integer “direct” discrete difference of signal 5)
, is defined  
as follows: 
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��5)
, � u 5)
, �� � �5)
, � 5)
 � !, �� � !����5)
, � ����5)
 � !,�� � ! (12)

where � o k� is the order of the integer discrete difference. Hence, one can extend the integer-order ��5)
, assuming that the fractional discrete difference satisfies the following inequalities: 

��!  H  � (13)

The features inherent to FC make this mathematical tool well suited to describe many 
phenomena, such as irreversibility and chaos, because of its inherent memory property. In this line 
of thought, the dynamic phenomena of a player’s trajectory configure a case where FC tools may 
fit adequately. 

3.2. Fractional Calculus Approach for the Study of Football Players Trajectories 

Both in manual and automatic multi-player tracking systems, a matrix containing the planar 
position of each player ; of team ¥ over time is generated:  

Definition 4 [17]: Consider the matrix:  

�Æ)
, � � 5�)
,�5a�)
,� , 5:)
, o l7 (14)

where _Æ represents the current number of players in team ¥ at sample/time 
. Matrix �Æ)
, is 
called the positioning matrix, wherein row ; represents the planar position of player ; of team ¥ at time 
. It is also noteworthy that each element from 5:)
, is independent from each other as 
they correspond to the 	5� I� coordinates of the nth player planar position. 

In our case, the 11-a-side football game will be analysed. Therefore, by Definition 4, we have _Æ � !!. Using Definitions 1, 2 and 3, considering players’ dynamics and following the insights  
from [17], one can define an approximation of player ; next position, i.e., 5:j)
 & !,, as: 

5:j)
 & !, � 5:1 & 5:)
, � 5:)
 � !, � !�F- 	�!�/�)H & !,�)3 & !,�)H � 3 & !, 5)
 & ! � 3�,�
/01  (15)

where 5:)
, � �,<�<
  � in such a way that 5:)�, � 5:1  corresponds to the initial tactical 
position of player ; in the field, 5:1 o <l7. Usually, within football context, each player has a 
specific tactical mission and an intervention region that provides some organization to the team’s 
collective dynamics. Despite the different movements to support the defensive and offensive phases, 
the player eventually returns to his main tactical region (TR) due to his positional role. The size of 
the TR depends on the player’s specific in-game mission. Regardless on its size, one can define the 
geometric centre of the TR of player ;, herein denoted as tactical position 5:1, as a specific planar 
position a player converges to during the game. Consider the following example: 

Example 3: Let us adopt the example of players’ spatial distribution alongside the football field 
introduced in Example 1. Figure 3 represents the tactical region of each player by means of the 
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standard deviation of their own heat map (histogram) [25]. It is possible to identify that the TR 
have different sizes depending on the in-game mission of each player. For instance, although the 
midfielder presents a larger dispersion along the field when compared to the goalkeeper, his 
standard deviation is smaller. The standard deviation of the goalkeeper’s trajectory is 4.69 m while 
the one of the midfielder’s trajectory is 2.46 m. Put differently, one can state that, although the 
midfielder’s spatial distribution is generally larger than the goalkeeper’s, the midfielder wanders 
approximately 68% of the time around the same tactical position (position with higher intensity on 
the heat map). 

Figure 3. Tactical regions (circumferences) of the goalkeeper and the midfielder by 
means of the standard deviation [25]. 

 

Note that the FC approach on Expression (15) should be accomplished for small sampling 
periods (e.g., � � ! s), as players may not be able to drastically change their velocity between two 
consecutive samples. Moreover, such strategy increases the memory requirements as it memorizes 
the last � positions of each player, i.e., �)�_Æ,. Nonetheless, the truncation order � does not 
need to be too large and will always be inferior to the current iteration/time 
, i.e., � � 
. For 
example, let us consider a truncation order � � !�, sampling period � � ! s and fractional 
coefficient H � 7M. Considering the last 10 previous samples, results in an attenuation of players’ 

position at time 
 � X (i.e., the 5)
 & ! � !�,), of approximately 99.5 (i.e., 
	�������ÇÉ(���)�1(�,��ÇÉ��1(��). 

Note that the influence of past events (i.e., previous positions) of a given player depend on the 
fractional coefficient H (cf., [22]). Hence, analysing the fractional coefficient H may be a source 
of useful information to understand the level of predictability of each player. 

4. Predictability 

As one may observe in Equation (15), a problem arises regarding the calculation of the 
fractional coefficient H. A player’s trajectory can only be correctly defined by adjusting the 
fractional coefficient H along time. In other words, H will vary from player to player and from 
iteration to iteration. Hence, one should find out the best fitting H for player ; at time 
, i.e., 
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H:)
,, based on its last known positions so far. The value of H:)
, will be the one that yields a 
smaller error between the approximated position 5:j)
 & !,  and the real one from the 
corresponding element of matrix �Æ)
,, denoted as �:J=:. This value H:)
, will be used to assess 
the next possible position and, again, will be systematically updated at each 
. This reasoning may 
be formulated by the following minimization problem: ���F�)�, �:J=:	H:)
 & !,� ���5:)
 & !, & 5:)
, � 5:)
 � !, � ��� { 	�����)F�)�(�,(�,�)/(�,�)F�)�(�,�/(�, 5)
 & ! � 3�,�/01 �, NC 
<H:)
 & !, o )�� !, 

(16)

We will not focus upon the best type of optimization method. In this paper, the solution of  
Equation (16) is based on golden section search and parabolic interpolation [26,27]. Successive 
parabolic interpolation allows finding the minimum distance by successively fitting parabolas to 
the optimization function at three unique points and, at each iteration, by replacing the “oldest” 
point with the minimum value of the fitted parabola. This method is alternated with the golden 
section search, hence increasing the probability of convergence without hampering the convergence 
rate. For a more detailed description about this optimization methods please refer to [26,27]. 

The solution of Equation (16) consists of the most adequate fractional coefficient for player ; 
at time 
, i.e., H:)
,. To clarify how H:)
, varies over time depending on a player’s trajectory let 
us introduce the following example: 

Example 4: Consider five illustrative unidimensional player’s trajectories: 

Figure 4. Five illustrative unidimensional trajectories. 
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Figure 4. Cont. 

The fractional coefficient H:)
, was calculated, at each sample 
, each pairwise combinations 
of the 5 different unidimensional signals represented in Figure 4 are combined into bidimensional <	5� I�-coordinates to exemplify the fractional coefficient variation. To improve the understanding 
of the fractional coefficient variability, the approximate entropy of H:)
, is also presented in 
Figure 5. 

Figure 5. Variability of the fractional coefficient H:)
, for each pairwise unidimensional 
trajectories from Figure 4. 
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As previously stated, one may observe that the closer to 1 the values of H:)
, are, the higher 
predictable player ;<¦s. In other words, a value of H:)
, � ! means that equation (13) can 
accurately predict the next position based on the previous ones, i.e., 5:j)
 & !, � 5:)
 & !,� <�<�:J=:	H:)
,� � �. Therefore, for constant trajectories (A-A), i.e., without moving at all, the 
fractional coefficients H:)
,  gets closer to a constant value of 1 and, as a result, a low 
approximate entropy, thus being highly predictable. These results are also the same for the 
constant-linear (A-B) trajectories, as well as for the linear-linear (B-B) trajectories, i.e., with 
constant speed. Regarding the periodic trajectories, one can observe an increase of the 
approximate entropy (�pE; � �CV) and the fractional coefficient H:)
, varies periodically. Also, 
it should be highlighted that the constant signal does not contribute towards a better predictability 
of the player’s trajectory. This occurs not only in the periodic-constant (A-C), but also in the 
chaotic-constant (A-D) and random-chaotic (A-E). The results are worse when the trajectory along 
one of the axis is constant yields worse results than when they are linear. These results suggest that 
a constant trajectory (i.e., when the player’s motion is only variable along one of the axis), does 
not have any effect in the fractional coefficient calculation. For a chaotic trajectory, the fractional 
coefficient variability decreases considerably, presenting values close to H:)
, � �CP in some 
situations. This variability is only exceeded by the random trajectories, in which the fractional 
coefficient in some situations may even get close to H:)
, � �, thus resulting in approximate 
entropy values in the range �pE; � )�CX� 8C�,. To summarize these results, Figure 6 depicts the 
average value of the fractional coefficient, i.e., H :)
,, for each case. 

Figure 6. Average value of the fractional coefficient H :)
, for each case from Figure 4. 

 

The mean values for the fractional coefficient are approximately H:)
, � �CXX for the A-A, A-B 
and B-B pairs. This value indicates that the trajectories are highly predictable. For all 
combinations, the linear trajectories increase the fractional coefficients, thus increasing the 
predictability of the player. On the other hand, the random trajectories decrease the mean values of 
the fractional coefficient, being more unpredictable. The most curious cases may be observed for 
constant trajectories paired with other trajectories that decrease the fractional coefficients, thus 
suggesting its neutrality regarding the players’ unpredictability. 
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By defining a single time-variant parameter retrieved from players’ planar trajectories, one can 
classify athletes’ predictability based on their behaviour in the field. In brief, we can discuss that 
player’s predictability can be used to define his decision-making. However, there is the need to 
define a value, or a range of values, of H:)
, in which one can classify players as predictable or 
unpredictable, without resorting to the definition of any arbitrary or problem-specific conditions. 
Therefore, the next section presents an attraction domain supported by stability analysis theory. 

5. Stability 

The main problem when analysing a player’s dynamics comes from its nonlinearity and 
variability over time. However, one can consider that each player converges to an equilibrium point 
defined by the attractor point (initial position 5:1) inherent in their initial TP. Therefore, this 
section presents the stability analysis of football players based on the Equation (15). In order to 
classify players as stable or unstable, one can formulate the following problem.  

5.1. Problem Formulation 

Consider a trajectory from player ; described by an Equation (15), in which the fractional 
coefficient H:)
, dictates its level of predictability. The goal is to find the attraction domain ! 
such that, if coefficients H:)
, o !, then the global asymptotic stability of the system in Equation 
(15) is guaranteed. In other words, the attraction domain<! represents the region wherein the 
football player may be considered both predictable and stable. 

5.2. General Approach 

As previously stated, the position returned by Equation (15) may not match the real position 
from the corresponding element of matrix �Æ)
,, i.e., 5:j)
 & !, � 5:)
 & !,. For having Equation 
(15) as a function of the signal 5:)
,, one can start by calculating the velocity vector of player ; 
as [17]: ±:)
, � 5:)
, � 5:)
 � !,, (17)

which can be related to the velocity vector in the next sampling instant as: ±:)
 & !, � �:)
 & !, ñ ±:)
,, (18)

where the symbol ñ represents the Hadamard product (aka, entrywise product) between the 
previous velocity at time 
 (±:)
,) and �:)
 & !, o l7 that we herein denote as stability vector 
of player ; at time 
 & !. For instance, if �:)
 & !, � Í, then the velocity remains the same 
between two consecutive iterations, i.e., ±:)
 & !, � ±:)
,. Note that although stable, the player 
may still be considered unpredictable under those same conditions at time 
 & ! based on the 
value of H:)
 & !,. Moreover, contrarily to the information provided by the fractional coefficient H:)
, that is unidimensional (i.e., H:)
, o l), the player may still be stable in one of the 
coordinate axis while unstable in the other. Figure 7 depicts an illustrative example in which a 
given player is stable in the 5-direction and unstable in the I-direction. 

As before, let us analyse the stability vector �:)
, considering the examples of Figure 4: 
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Example 5: Contrarily to the fractional coefficient, that varies according to the combination of two 
trajectories (one for each planar coordinate), the stability vector returns a different value for each 
coordinate. Moreover, as previously stated in Definition 4, since the 	5� I� coordinates of a player ; planar position are independent, one can simply analyse one of the components. Let us consider 
the identification of each coordinate as � � ì!� 8í in such a way that 5:)
, � 5)
,<I)
,®� �5:�)
,<5:7)
,®�. 

Figure 7. Diagram of a player’s trajectory stability and instability by means of �:)
,. 

 

Combining Equations (17) and (18), we can calculate the element � from the stability vector �:)
, at time 
: �:")
, � ¯�#)�,¯�#)���, � v�# )�,�v�# )���,v�# )���,�v�# )��7,, (19)

As a result, the trajectories of Figure 4, namely, constant (A), linear (B), periodic (C), chaotic 
(D) and random (E), produce the following values of �:")
, in Figure 8. 

Figure 8. Variability of the element �  from the stability vector �:)
,  for each 
unidimensional trajectories represented in Figure 4. 

 

It is possible to verify that the random trajectory is the one that results in higher values of 
entropy for the stability vector �:)
,, similarly to what was observed on the results for alpha 
results. In fact, the entropy values for the stability vector �:)
, are consistent with those retrieved 
for the fractional coefficient (Example 4). 

I


 � !�


 � ��


 � 8�

I�

5
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Having defined all the coefficients that may explain a football player’s trajectory, let us now 
solve the problem formulated in Section 5.1. 

5.3. Attraction Domain 

To better understand where the predictability and the stability of a player can be interpreted, let 
us consider Equations (17) and (18) and rewrite Equation (15) as: 5:)
 & !, � 5:1 & �:)
 & !, ñ 	5:)
, � 5:)
 � !,� � � ��� { 	�����)F�)�(�,(�,�)/(�,�)F�)�(�,�/(�, 5)
 & ! � 3�,�/01 . 

(20)

At this point, let us assume both coefficients as time-invariant, i.e., �:)
, � �: and H:)
, � H: 
for �<
. This is an assumption that is only taken for the purposes of finding the attraction domain 
wherein both coefficients may be defined to ensure player’s convergence to the initial TP at 
coordinate 5:1. 

The equilibrium point 5:�  can be defined as a constant position solution of Equation (20), such 
that, when each player ; reaches 5:�  at time 
, the velocity ±:)
, is zero (i.e., players will stop 
at the equilibrium point 5:� ). Supposing that the initial TP at coordinate 5:1 is constants (i.e., the 
player converges to his own initially defined TP), the particular solution 5:�  of each player can be 
obtained replacing 5:)
 & ! � 3,, 3� 
 o k1, by 5:�  in Equation (20), yielding: 5:� � v���( �$�{ 	����%)��)���,��,%)���,%)��)���,����,&�'� , (21)

in such a way that 5:� � 5:1 when d����. ��� { 	�����)F�)�(�,(�,�)/(�,�)F�)�(�,�/(�,�/01 � �< � < d����. H:)
, � !. 

In other words, the more predictable the player is, the more certain it will end up around his TP at 
coordinate 5:1. During the game, the player’s trajectory varies in order to adjust his position 
relatively to the ball, his teammates and his opponents. Nevertheless, at some point, the player 
returns to his specific tactical region, or equilibrium point. Let us provide an example: 

Example 6: The following charts represent the trajectory of the lateral defender during a football 
match (Figure 9). 

Figure 9. Player’s trajectory during a match: (a) 5 -axis (longitudinal) over time;  
(b) I-axis (lateral) over time; and (c) 	5� I�-planar coordinates. 
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Figure 9. Cont. 

 

 

It is possible to observe that from time to time the player returns to his own tactical region 
(defined by the red horizontal lines in Figures 9a,b or the red point in Figure 9c. This is a typical 
behaviour of football players. When the opponent team approaches the team’s goal in the defensive 
phase, the lateral defender should cover the interior space, thus approaching the y-axis centre of 
the field. In the offensive phase, particularly in counterattack situations, the lateral defender 
should support his midfielder, thus running along the x-axis. Nevertheless, in both cases, the lateral 
defender will return, at some point, to his own equilibrium point. 

In synthesis, each player should converge to the particular solution 5:�  from Equation (19), 
based on the following theorems [28]: 

Theorem 1 [28]: All solutions of Equation (20) converge to 5:�  as 
 � r, if and only if the 
homogeneous difference equation of (20) is asymptotically stable. 

Theorem 2 [28]: The homogeneous difference equation of (20) is asymptotically stable if and only 
if all roots of the corresponding characteristics equation have modulus smaller than one. 

In order to study the stability of the homogeneous difference Equation (20), let us truncate the 
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series at � � P  and consider a sampling time of � � ! . Once again, let us consider the 
identification of each coordinate 	5� I� as � � ì!� 8í, in such a way that 5:)
, � 5)
,<I)
,®� �5:�)
,<5:7)
,®�. Under those conditions, one can rewrite Equation (20) in the following form: 

5:")
 & !, � 	H: & �:"�5:")
, & g!8H:	H: � !� & �:"h 5:")
 � !,� !YH:	H: � !�	H: � 8�5:")
 � 8,& !8PH:	H: � !�	H: � 8�	H: � V�5:")
 � V, � 5:"1 

(22)

Based on Equation (22), it yields the following characteristic equation: p	(� ) (R & )�H: � �:",(M & ��7 H:	H: � !� & �:"� (7 & ���[H:	H: � !�	H: � 8�� ( &� �7R H:	H: � !�	H: � 8�	H: � V�� � �. 
(23)

Due to the complexity in obtaining the roots of the characteristics equation of homogeneous 
difference Equation (23), a result based on Jury-Marden’s Theorem [29] is established, ensuring 
that all roots of the real polynomial p	(� have modulus smaller than one. 

Theorem 3 [29]: Consider the real polynomial p	I� � �1I: & ��I:�� & 9& �:��I & �:� �1 � �. 
Construct an array having two initial rows: *B��� B�7� � � B��:(�+ � ì�1� ��� � � �:í *���� ��7� � � ���:(�+ � ì�:� �:��� � � �1í 
and subsequent rows defined by: 

B�x � ,B����� B����x(������� �����x(�, � � � !�8� � � ; & ! 

��x � B��:�x��(M 

All roots of the polynomial p	I� have modulus smaller than one if and only if �7� � �� �ç�  �<<	å � V�P� � � ; & !�. 
Considering Theorem 3 and the characteristic Equation (23), let us present the following result: 

Proposition 1: All roots of p	(� have modulus smaller than one if and only if the following 
conditions are met. 

u� P�X!8W�H:7 � VPX8���H: � 8PVVW���  �:"  XXX8 � WPX!H:!���H:7 � PX\XH: & ZZZ��  H:  !  (24)

Proof: The real polynomial p	(� described in Equation (23) can be rewritten as: �1(R & ��(M & �7(7 & �M( & �R � � (25)

Furthermore, one can construct an array having two initial rows defined as: *B��� B�7� � � B��U+ � ì�1� ��� � � �Rí *���� ��7� � � ���U+ � ì�R� �M� � � �1í (26)
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and subsequent rows defined by: 

B�x � ,B����� B����x(������� �����x(�,� (27)

��x � B��S�x��, (28)

where<� � 8�V�P�W and w � ��!�8. 
By Theorem 3, we consider that all roots of polynomial p	(� have modulus less than one if and 

only if �7� � �,�ç�  �, for å � V�P�WC  
Hence: 

è�7� � ��M�  ��R�  ��U�  � <-./0
/1 ! � �R7 � �	�M � �R���7 � 	�7��7  ��	�M � �R���	�� � �R�M� � �7�	�7 � �R�7��7 � 	�M��7  �	BR��7 � 	�R��7  �

 (29)

Solving Equation (29) we obtain Equation (24). 
 

Consequently, by Proposition 1, Theorem 1 and Theorem 2, the conditions in Equation (23) are 
obtained, so that all solutions of Equation (20) converge to 5:�  resulting in an attraction domain ! � 2	H:� �:"�D<�  H:  !~ � R1Û�7U1 H:7 � MRÛ7111 H: � 7RMMU111  �:"  ÛÛÛ7�URÛ�F��111F�Ç�RÛTÛF�(SSS1<3  

represented in Figure 10. 

Figure 10. Attraction domain ! of the asymptotic stability of the football player. 

 

Let us present a new example to clarify the definition of attraction domain. 

0 H;10.5
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Example 7: The predictability and stability coefficients along the 5-axis, �:�)
, and H:)
,, both 
for the goalkeeper and the lateral defender, were retrieved and represented on top of the attraction 
domain from Figure 10. 

Figure 11. Goalkeeper (green points) and lateral defender (red points) coefficients 
variability and the attraction domain !. 

 

It is possible to observe in Figure 11 that the goalkeeper has a high number of points outside the 
area from the attraction domain ! . Nevertheless, his trajectory coefficients are closer to the 
threshold H: � ! , meaning that the goalkeeper presents a larger predictability. Therefore, 
although the lateral defender can be classified as more stable, his motion it is more difficult to 
predict. This may be explained by the specific tactical missions. The goalkeeper, when his team is 
in the offensive phase, usually moves in order to reduce the open space with his teammates, which 
increases the size of his TR. Nevertheless, the goalkeeper’s movements are usually more linear, 
since he does not face as many constraints as his teammates (e.g., playing dyads, continuous 
interaction with teammates, among others), and, consequently, it is more predictable. The lateral 
defender should cover his own tactical region, producing a large amount of trajectory coefficients 
within the attraction domain. Nevertheless, as an outfield player, he performs more unpredictable 
trajectories. 

6. Experimental Results: A Case Study of a Football Match 

In this section, three main indicators will be considered: (i) the distance covered; (ii) the 
distribution frequency on the field (using heat maps); and (iii) the fractional coefficient measure of 
each player. 

During the 90 min of a regular match, the distances covered by top level players are in the order 
of magnitude of !��!8<4� for the field players, and about P<4� for the goalkeeper [30–33]. In 



457 

 

Reilly’s study [34], it was possible to observe that players under different contexts cover average 
distances between Z�!!CW<4�, indicating that outfield players should be able to cover \�!V<4� 
during the course of the match [35]. Some studies [32,36–38] show that defenders cover distances 
between 7 and 12 km, while midfielders cover distances between 9 and 13 km, and attackers 
between 7 and 11 km. Despite this important information, some questions remain open. One of the 
main questions is: how to differentiate two players that cover the same distance during the match? 
To answer this question, one may resort to the heat maps as previously addressed in this work. 
Although heat maps can be used for several different analyses, their main applications has been to 
provide a deeper understanding of the spatial distribution of players [39] and ball [40]. 

Position information about players may be analysed using the heat maps, representing the 
probability distribution of the player’s positions, during a match, on the field [16]. Similarly to this 
work, some studies around heat maps segmented the football field into !<�7 resolution. Also, the 
player’s position has been commonly discretized at each second, in which a given cell gets the 
value 1 to signal the player presence [40], or 0 otherwise. However, even the use of heat maps to 
characterize the players spatial distribution does not provides a way to analyse the level of 
predictability of each player. Note that heat maps do not consider players’ dynamics, since the 
trajectory is ignored. That is, they only represent the spatial distribution considering the players’ 
positions without involving the notion of time. 

In spite of these limitations, the variability of the fractional coefficient over time are used here to 
provide some more relevant information on how a player can be predictable (or unpredictable) and 
differentiate him from his teammates. Moreover, the stability levels of each player should be 
considered to understand how they tend to play under their specific tactical regions. All these 
variables will be analysed and discussed in the next section. 

6.1. Data Collection 

To evaluate the accuracy of the proposed method, one official football match from the first 
professional Portuguese League was analysed. All the players’ position in the field was acquired 
using a single camera (GoPro Hero with 1280 Ú 960 resolution), with capacity to process images 
at 30 Hz (i.e., 30 frames per second). The movements of the 22 players (goalkeepers included) 
from the two competing teams were recorded during the entire game. After capturing the football 
match, the physical space was calibrated using direct linear transformation (DLT) [41], thus 
producing the Cartesian planar positioning of all players and the ball over time. The whole process 
inherent in this approach, such as the detection and identification of players’ trajectories, the space 
transformation and the computation of metrics, was handled, using the high-level calculation 
package MATLAB. The tracking of football players was carried out manually and the positional 
data of each player was sorted based on the fractional methodology described in our previous  
work [3]. From the outcome of Couceiro et al. [3], a downsampling of the acquired data to 4 Hz 
was adopted (i.e., sampling period of � � 8W� ms). For a matter of efficiency, only playing 
periods were considered, hence excluding all the pause moments in which the ball was not in the 
field (i.e., ball out-of-bounds). This resulted in 3372 s (56.2 min) of useful match time (13,488 
samples). For this study, each player was analysed considering their specificities and they were 
numbered as depicted in Figure 12. 
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Figure 12. Players’ numbers within the strategic distribution of the team (1-4-3-3). 

 

The analysis of the fractional coefficient inherent to player’s trajectory will be divided into two 
components, that is, over time and the overall final outcome. For both cases, the fractional 
coefficient of each player will be compared with the traditional performance indicators. Throughout 
the analysis, the results will be discussed for all players and compared based on the four main 
football positions: goalkeeper (player 1), defenders (players 2–5), midfielders (players 6–8), and 
forwards (players 9–11). 

6.2. Results and Discussion 

Table 2 depicts the overall values of the distance covered, average values, standard deviation 
and entropy of the fractional coefficient, and entropy of the heat maps. 

Table 2. Descriptive statistics of the overall results for each player. 

  
Overall 

Distance [km]
â5 

AVG 
â5 

STD 
Heat Maps 

Entropy 
Distance 
Entropy 

â5 
Entropy

Goalkeeper Player 1 3.508 0.86 0.14 0.804 0.515 0,386 

Defenders 

Player 2 10.976 0.77 0.24 2.205 0.504 0,455 
Player 3 9.075 0.74 0.25 2.083 0.531 0,381 
Player 4 9.355 0.73 0.26 2.151 0.511 0,353 
Player 5 10.916 0.76 0.24 2.192 0.510 0,479 

Midfielders 
Player 6 11.263 0.68 0.30 2.372 0.543 0,372 
Player 7 12.520 0.69 0.29 2.470 0.547 0,363 
Player 8 12.556 0.68 0.30 2.449 0.562 0,398 

Forwards 
Player 9 11.747 0.74 0.26 2.338 0.512 0,364 

Player 10 10.783 0.76 0.25 2.024 0.507 0,455 
Player 11 11.117 0.71 0.27 2.333 0.546 0,389 

Overall 10,347 0.74 0.25 2.129 0.526 0.400 

Players 7 and 8 covered the largest overall distance (!8CW8� and !8CWWY km, respectively). On 
the other hand, the goalkeeper (player 1: VCW�\<4�) and central defenders (player 3: XC�ZW km; 
player 4: XCVWW  km) covered smaller overall distances. Both cases are in line with the  
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literature [30,42,43]. Generally, the largest distances are covered by midfielders since they act as 
links between defence and attack [36,42]. Bangsbo [44] reported that elite defenders and forwards 
cover approximately the same average distance, which is significantly less than the distance 
covered by midfield players. This study shows that central defenders, excluding goalkeepers since 
they are more constrained than other players, cover (with a large difference) a smaller distance than 
any other tactical position.  

In terms of heat maps entropy, the results are in line with the overall distance. All the 
midfielders have a larger entropy than the remaining teammates (player 7: E � 8CPZ�; player 8: E � 8CPPX; player 6: E � 8CVZ8). On the other hand, the goalkeeper (player 1) presents the lower 
entropy value (E � �CW!W), followed by the right forward (player 10) with E � 8C�8P, and the 
central defender (player 3) with E � 8C�\V . These results can be easily explained by the  
tactical roles of each position. In football, midfielders act as a link between the defenders and the 
forwards [42]. Therefore, they present a higher level of participation in the periods of time with or 
without ball possession. Also, as the goalkeeper and the central defenders have different roles in 
specific confined TR, they present a smaller spatial distribution (lower heat maps entropy). 
Conversely, lateral positions (defenders and forwards) have a larger TR. In some cases, the lateral 
defenders participate in offensive attempts. The inverse is observed in the lateral forwards players, 
because they regularly help in the defensive moments. Hence, the low values of entropy from 
player 10 can be explained by his reduced participation in the defensive phase. 

The fractional coefficients show that the midfielders are the most unpredictable players. Players 
6 and 7 are characterised by values close to H :)
, � �CY\. These values are in line with the 
combination linear-random trajectories. This tendency makes sense since midfielders cover more 
distances. On the other hand the goalkeeper’s trajectory is defined by larger fractional coefficient 
values (H :)
, � �C\Y). This result is in line with the combination constant-chaotic. In point of fact, 
this also makes sense since the goalkeeper stays most of the time around the same tactical region. 
The remaining players are somewhere between the combination constant-chaotic and linear-
random, with more tendency for the linear-random. 

Going further on this analysis, the attraction domain previously defined was considered so as to 
study the number of times that each player remained within their stability region. In a quantitative 
point-of-view, if a player’s trajectory is classified as stable (based on �:")
, and H:)
,), then the 
stability is defined as 1. Otherwise, the stability is defined as -1. Putting differently, a player that is 
as often within the stable region and the unstable one, will have an overall stability level of 0. From 
this analysis it is possible to obtain the stability values per player on the 5-axis and I-axis 
coordinates (see Figure 13). 

From the results shown, it is possible to observe that the goalkeeper (player 1) is the more 
unstable elements in both axes. On the other hand, defenders (players 2–5) are the elements with 
higher stability values. These values can be supported by the specific tactical missions of each 
player. Defenders should keep a large defensive stability by remaining in their tactical position, 
giving some equilibrium to the team. As a point of interest, a considerable number of goals suffered 
results from the defensive instability. Therefore, defenders should maintain their trajectories  
within their specific regions so as to ensure the possibility of recovering the ball in the offensive 
attempts by the opponent team. In contrast, the goalkeeper’s TR is evidently smaller than all his 
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teammates. As such, at many moments of the match (mainly in the offensive situations) the 
goalkeeper moves outside his TR, towards his remaining teammates. Such movements decrease the 
goalkeeper’s stability. 

Figure 13. Players’ stability levels at 5-axis and I-axis coordinates. 

 

Using both concepts (predictability and stability) it is possible to observe that one player can be 
highly predictable (in terms of trajectory) while unstable (going outside his TR). On the other hand, 
a highly unpredictable player can be very stable if he stays most of the time inside his TR. 
Therefore, those two concepts are different and they provide an interesting set of information for 
coaches and their staff. The predictability level can be used to classify the oscillations during the 
football match while the stability level can be used to identify player’s responsiveness to his TR. To 
illustrate the relationship between predictability and stability, let us present Figure 14. The 3D chart 
on Figure 14 depicts how the level of stability on the x-axis, �:�, is related to the level of stability 
on the y-axis, �:7, and the level of predictability represented by the fractional coefficient H:. 

Figure 14. Relationship between predictability H: and stability �:". 

 

As one may observe, the relationship between these measures is represented by a plane. 
Moreover, as already concluded from Figure 13, although players are more stable in the x-axis, 
there is a clear dependency between the stability on both axes. On the other hand, the level of 
predictability seems to vary in a significant manner depending on the positional main role of 
players. For instance, it is possible to divide the points into four clusters, wherein the goalkeeper 
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(red circle) represents the first cluster, the defenders represent the second cluster (blue triangles), 
the central players represent the third cluster (green lozenges) and the forwards represent the forth 
cluster (purple squares). 

The information retrieved from the fractional coefficient cannot be compared neither with the 
outcome provided by the total distance covered nor with the heat maps entropy. The distance 
covered can be the same for all players, without providing a specific characteristic about the 
behaviour of the player. The heat maps entropy only provides information about the spatial 
distribution of players on the field. This distribution may also be similar for two players without 
describing their trajectory over time. Only understanding the specific properties of each football 
player’s trajectory can improve the performance analysis and, likewise, improve the quality of the 
football training.  

6.3. Practical Remarks 

The information retrieved from the fractional coefficient cannot be compared with either the 
outcome provided by the total distance covered, or with the heat maps entropy. The distance 
covered can be the same for all players, without providing any specific characteristic about the 
behaviour of the player. The heat maps entropy only provides information about the spatial 
distribution of players on the field. This distribution may also be similar for two players without 
describing their trajectory over time. Only understanding the specific properties of each football 
player’s trajectory can improve the performance analysis and, likewise, to improve the quality of 
the football training. 

We should note that we are not redefining the concept of variability. Instead, this work proposes 
to analyse such variability by studying the regularity of players in returning to their own TR 
(stability), and by studying how predictable their trajectory may be (predictability). Stability, in 
science, is defined as its resistance to perturbations. In fact, this is a typical property shared by 
many dynamical systems, in which we could state that the stability is not only the resistance to a 
perturbation, but also the ability to return to the equilibrium point (or initial position) [45]. The 
existence of a stable equilibrium point implies the existence of a “restoring force” which is directed 
towards the equilibrium point. For instance, in the simple pendulum case study, this is a 
combination of the tension in the string and the force of gravity. Nevertheless, as opposed to the 
simple pendulum, the results presented here classify football players as non-linear dynamical 
systems, thus presenting chaotic or even stochastic trajectories. Although we assume that there is a 
steady-state point from which players converge, the truth is that they converge to an equilibrium 
point which is defined by their TR. In other words, a player’s orbit spirals in towards the 
equilibrium. The same can be said about the predictability of players. By definition, predictability 
is the degree to which a correct estimation of a system’s state can be made. This is in line with the 
concept of predictability in mathematics, wherein a process is classified as predictable if it is 
possible to know the “next” state at the present time. 

In many situations, the choice regarding the players from the first team is based on each player’s 
specific properties so as to adjust the team against their opponents. As such, one may choose 
between more stable players to focus on the defence, or more unpredictable ones to focus on the 
attack. The fractional coefficient can also be a useful method to improve the understanding about 
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decision-making in sports. The main techniques used so far for this specific issue have been the 
approximate entropy and the Lyapunov exponent. Nevertheless, the applicability of such methods 
depends on the variable that better explains the level of predictability. For a more specific tactical 
analysis, one should go further into understanding the fractional coefficient variability by resorting 
to stability theory. This is very important in understanding the player’s regularity on returning to 
his own TR. The stability confined to on attraction region has a great potential for use by coaches to 
classify the tactical oscillations of players, thus adjusting or readjusting the desired tactical 
behaviours. Also, the opponent coach can use this information to identify some unstable points and 
exploit them during the match. Nevertheless, it should be highlighted that neither the fractional 
coefficient, nor the stability analysis per se, are the ultimate answer to one’s needs in the context of 
football. Such team sport, as a complex and dynamic game, should be analysed using collective 
nonlinear methods. The classical perspective of the performance analysis has been overtaken using 
new technologies to improve the understanding of the individual and tactical parameters, mainly 
trying to explain the process variables. For the collective analysis, some metrics have been proposed 
based on the position of players over time [3,46,47]. Nevertheless, for the individual performance, the 
researchers have been emphasizing on the notational information (i.e., product variables) and 
kinematical information [43]. This paper provides a new take-home message on the individual 
performance of a football match, with the main purpose being the understanding of the specific 
properties of each player and their dynamical behaviour during the match. 

It is noteworthy that the herein proposed methodology proposed here was evaluated using one 
match. Its usefulness for coaches and sports analysts needs to be further assessed over multiple 
matches, with and without professional players. Note, however, that this requires the use of 
automatic tracking systems, such as AMISCO Pro and ProZone [48]. These systems provide online 
information to coaches and their staff about players’ movements (e.g., energy spent by a player). 
Nevertheless, despite of their efficiency and autonomous properties, player-to-player occlusion, 
similar player appearance, number of players changing over time, variability of players’ motion and 
noises or video blur present themselves as open problems [49]. Therefore, although generally 
autonomous, these tracking systems still require some human input as well as continual online 
verification by an operator to make sure that players are correctly tracked by the computer program 
[48]. Hence, beyond their expensive devices (e.g., many high-definition video cameras), those 
systems may benefit from the outcome provided by the fractional calculus methodology provided 
in this paper and previously presented in Couceiro et al. [17], to accurately and autonomously 
estimate a given player’s position over time. 

7. Conclusions 

New technological devices and mathematical methods have been used recently to analyse the 
performance of football players. Despite these developments, a gap still remains on understanding 
a player’s dynamical behaviour during the match. Some of the most important variables one may 
look at are inherent in a player’s variability, which one may classify based on the predictability and 
stability of his trajectory. This study proposed an approach to measure the predictability and 
stability levels of player’s trajectories based on the concepts inherent in Fractional Calculus. 
Furthermore, the variability of each player was measured using the well-known Shannon’s entropy 
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and the approximate entropy. The fractional coefficient, explaining a given player’s trajectory, was 
used in order to estimate his predictability. The addition of a new parameter, herein denoted here as 
the stability vector, gave rise to an attraction domain defining the player’s stability. The results 
showed that the goalkeeper was the most predictable and unstable player. The most unpredictable 
players were the midfielders while the most stable players were the defenders. All this information 
can be used by coaches to adjust and readjust the team’s strategy, as well as the tactical behaviour 
of players. 
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Abstract: Co-compact entropy is introduced as an invariant of topological conjugation

for perfect mappings defined on any Hausdorff space (compactness and metrizability

are not necessarily required). This is achieved through the consideration of co-compact

covers of the space. The advantages of co-compact entropy include: (1) it does not

require the space to be compact and, thus, generalizes Adler, Konheim and McAndrew’s

topological entropy of continuous mappings on compact dynamical systems; and (2)

it is an invariant of topological conjugation, compared to Bowen’s entropy, which is

metric-dependent. Other properties of co-compact entropy are investigated, e.g., the

co-compact entropy of a subsystem does not exceed that of the whole system. For

the linear system, (R, f), defined by f(x) = 2x, the co-compact entropy is zero,

while Bowen’s entropy for this system is at least log 2. More generally, it is found

that co-compact entropy is a lower bound of Bowen’s entropies, and the proof of this

result also generates the Lebesgue Covering Theorem to co-compact open covers of

non-compact metric spaces.

Keywords: topological dynamical system; perfect mapping; co-compact open cover;

topological entropy; topological conjugation; Lebesgue number
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1. Introduction

1.1. Measure-Theoretic Entropy

The concept of entropy per unit time was introduced by Shannon [1], by analogy with the

standard Boltzmann entropy measuring a spatial disorder in a thermodynamic system. In the 1950s,

Kolmogorov [2] and Sinai established a rigorous definition of K-S entropy per unit time for dynamical

systems and other random processes [3]. Kolmogorov imported Shannon’s probabilistic notion of

entropy into the theory of dynamical systems, and the idea was vindicated later by Ornstein, who

showed that metric entropy suffices to completely classify two-sided Bernoulli processes [4], a basic

problem, which for many decades, appeared completely intractable. Kolmogorov’s metric entropy

is an invariant of measure theoretical dynamical systems and is closely related to Shannon’s source

entropy. The K-S entropy is a powerful concept, because it controls the top of the hierarchy of ergodic

properties: K-S property ⇒ multiple mixing ⇒ mixing ⇒ weak mixing ⇒ ergodicity [3]. The K-S

property holds if there exists a subalgebra of measurable sets in phase space, which generates the

whole algebra by application of the flow [3]. The dynamical randomness of a deterministic system

finds its origin in the dynamical instability and the sensitivity to initial conditions. In fact, the K-S

entropy is related to the Lyapunov exponents, according to a generalization of Pesin’s theorem [5,6].

A deterministic system with a finite number of degrees of freedom is chaotic if its K-S entropy per

unit time is positive. More properties about K-S entropy can be found in papers [3,5,7]. The concept

of space-time entropy or entropy per unit time and unit volume was later introduced by Sinai and

Chernov [8]. A spatially extended system with a probability measure being invariant under space

and time translations can be said to be chaotic if its space-time entropy is positive.

1.2. Topological Entropy and Its Relation to Measure-Theoretic Entropy

In 1965, Adler, Konheim and McAndrew introduced the concept of topological entropy for

continuous mappings defined on compact spaces [9], which is an analogous invariant under

conjugacy of topological dynamical systems and can be obtained by maximizing the metric entropy

over a suitable class of measures defined on a dynamical system, implying that topological

entropy and measure-theoretic entropy are closely related. Goodwyn in 1969 and 1971,

motivated by a conjecture of Adler, Konheim and McAndrew [9], compared topological entropy

and measure-theoretic entropy and concluded that topological entropy bounds measure-theoretic

entropy [10,11]. In 1971, Bowen generalized the concept of topological entropy to continuous

mappings defined on metric spaces and proved that the new definition coincides with that of Adler,

Konheim and McAndrew’s within the class of compact spaces [12]. However, the entropy according

to Bowen’s definition is metric-dependent [13] and can be positive even for a linear function
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(Example 5.1 or Walters’ book, pp.176). In 1973, along with a study of measure-theoretic entropy,

Bowen [12] gave another definition of topological entropy resembling Hausdorff dimension, which

also equals to the topological entropy defined by Adler, Konheim and McAndrew when the space is

compact. Recently, Cánovas and Rodríguez, and Malziri and Molaci proposed other definitions of

topological entropy for continuous mappings defined on non-compact metric spaces [14,15].

1.3. The Importance of Entropy

The concepts of entropy are useful for studying topological and measure-theoretic structures

of dynamical systems. For instance, two conjugated systems have the same entropy, and thus,

entropy is a numerical invariant of the class of conjugated dynamical systems. Upper bounds on

the topological entropy of expansive dynamical systems are given in terms of the ε−entropy, which

was introduced by Kolmogorov-Tikhomirov [2]. The theory of expansive dynamical systems has

been closely related to the theory of topological entropy [16–18]. Entropy and chaos are closely

related, e.g., a continuous mapping, f : I → I , is chaotic if and only if it has a positive topological

entropy [19]. But this result may fail when the entropy is zero, because of the existence of minimum

chaotic (transitive) systems [20,21]. A remarkable result is that a deterministic system together

with an invariant probability measure defines a random process. As a consequence, a deterministic

system can generate dynamical randomness, which is characterized by an entropy per unit time that

measures the disorder of the trajectories along the time axis. Entropy has many applications, e.g.,

transport properties in escape-rate theory [22–26], where an escape of trajectories is introduced by

absorbing conditions at the boundaries of a system. These absorbing boundary conditions select a set

of phase-space trajectories, forming a chaotic and fractal repeller, which is related to an equation for

K-S entropy. The escape-rate formalism has applications in diffusion [27], reaction-diffusion [28]

and, recently, viscosity [29]. Another application is the classification of quantum dynamical systems,

which is given by Ohya [30]. Symbolic dynamical systems (
∑

(p), σ) have various representative

and complicated dynamical properties and characteristics, with an entropy log p. When determining

whether or not a given topological dynamical system has certain dynamical complexity, it is often

compared with a symbolic dynamical system [21,31]. For the topological conjugation with symbolic

dynamical systems, we refer to Ornstein [4], Sinai [32], Akashi [33] and Wang and Wei [34,35].

1.4. The Purpose, the Approach and the Outlines

The main purpose of this article is to introduce a topological entropy for perfect mappings

defined on arbitrary Hausdorff spaces (compactness and metrizability are not necessarily required)

and investigate fundamental properties of such an entropy.

Instead of using all open covers of the space to define entropy, we consider the open covers

consisting of the co-compact open sets (open sets whose complements are compact).

Various definitions of entropy and historical notes are mentioned previously in this section.

Section 2 investigates the topological properties of co-compact open covers of a space. Section

3 introduces the new topological entropy defined through co-compact covers of the space, which is
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called co-compact entropy in the paper, and further explores the properties of the co-compact entropy

and compares it with Adler, Konheim and McAndrew’s topological entropy for compact spaces.

Sections 4 investigates the relation between the co-compact entropy and Bowen’s entropy. More

precisely, Section 4 compares the co-compact entropy with that given by Bowen for systems defined

on metric spaces. Because the spaces under consideration include non-compact metric spaces,

the traditional Lebesgue Covering Theorem does not apply. Thus, we generalize this theorem to

co-compact open covers of non-compact metric spaces. Based on the generalized Lebesgue Covering

Theorem, we show that the co-compact entropy is a lower bound for Bowen’s entropies. In Section

4.2, a linear dynamical system is studied. For this simple system, its co-compact entropy is zero,

which is appropriate, but Bowen’s entropy is positive.

2. Basic Concepts and Definitions

Let (X, f) be a topological dynamical system, where X is a Hausdorff and f : X → X is a

continuous mapping. We introduce the concept of co-compact open covers as follows.

Definition 2.1. Let X be a Hausdorff space. For an open subset, U of X , if X\U is a compact

subset of X , then U is called a co-compact open subset. If every element of an open cover U of X is

co-compact, then U is called a co-compact open cover of X .

Theorem 2.1. The intersection of finitely many co-compact open subsets is co-compact, and the
union of any collection of co-compact open subsets is co-compact open.

Proof. Suppose that U1, U2, ..., Un are co-compact open. Let U =
n⋂

i=1

Ui. As X \Ui, i = 1, 2, ...n are

compact, X \ U =
n⋃

i=1

(X \ Ui) is compact, and hence, U is co-compact open.

Suppose that {Uλ}λ∈Λ is a family of co-compact sets. Let U =
⋃
λ∈Λ

Uλ. As any λ ∈ Λ X\Uλ is

compact, X\U =
⋂
λ∈Λ

(X\Uλ) is compact. Hence, U is co-compact open. �

Theorem 2.2. Let X be Hausdorff. Then, any co-compact open cover has a finite subcover.

Proof. Let U be a co-compact open cover. For any U ∈ U , X\U is compact. Noting that U is also an

open cover of X \ U , there exists a finite subcover, V , of X \ U . Now, V ∪ {U} is a finite subcover

of U . �

Definition 2.2. Let X and Y be Hausdorff spaces and let f : X → Y be a continuous mapping. If f

is a closed mapping and all fibers, f−1(x), x ∈ Y , are compact, then f is called a perfect mapping.

In particular, if X is compact Hausdorff and Y is Hausdorff, every continuous mapping from

X into Y is perfect. If f : X → Y is perfect, then f−1(F ) is compact for each compact subset,

F ⊆ Y [36].

Theorem 2.3. Let X and Y be two Hausdorff spaces and let f : X → Y be a perfect mapping. If
U is co-compact open in Y , then f−1(U) is co-compact open in X . Moreover, if U is a co-compact
open cover of Y , then f−1(U) is a co-compact Open Cover of X .
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Proof. It suffices to show that the pre-image of any co-compact set is co-compact. Let U be

co-compact open in Y . Then, F = Y \ U is compact in Y . As f is perfect, f−1(F ) is compact

in X . Hence, f−1(U) = X \ f−1(F ) is co-compact open in X . �

3. The Entropy of Co-Compact Open Covers

For compact topological systems, Adler, Konheim and McAndrew introduced the concept of

topological entropy and studied its properties [9]. Their definition is as follows: Let X be a compact

topological space and f : X → X a continuous mapping. For any open cover, U of X , let NX(U)
denote the smallest cardinality of all subcovers of U , i.e.,

NX(U) = min{card(V) : V is a subcover of U}
It is obvious that NX(U) is a positive integer. Let HX(U) = logNX(U). Then, ent(f,U , X) =

lim
n→∞

1
n
HX(

n−1∨
i=0

f−i(U)) is called the topological entropy of f relative to U , and ent(f,X) =

sup
U
{ent(f,U , X)} is called the topological entropy of f .

Now, we will generalize Adler, Konheim and McAndrew’s entropy to any Hausdorff space for

perfect mappings. Therefore, in the remainder of the paper, a space is assumed to be Hausdorff and

a mapping is assumed to be perfect.

Let X be Hausdorff. By Theorem 2.2, when U is a co-compact open cover of X , U has a finite

subcover. Hence, NX(U), abbreviated as N(U), is a positive integer. Let HX(U) = log N(U),
abbreviated as H(U).

Let U and V be two open covers of X . Define

U
∨
V = {U ∩ V : U ∈ U and V ∈ V}

If for any U ∈ U , there exists V ∈ V , such that U ⊆ V , then U is said to be a refinement of V
and is denoted by V ≺ U .

The following are some obvious facts:

Fact 1: For any open covers, U and V , of X , U ≺ U ∨V .

Fact 2: For any open covers, U and V , of X , if V is a subcover of U , then U ≺ V .

Fact 3: For any co-compact open cover, U , of X , H(U) = 0⇐⇒ N(U) = 1⇐⇒ X ∈ U .

Fact 4: For any co-compact open covers, U and V , of X , V ≺ U ⇒ H(V) ≤ H(U).
Fact 5: For any co-compact open covers, U and V , H(U ∨V) ≤ H(U) +H(V).
To prove Fact 5, let U0 be a finite subcover of U , with the cardinality, N(U). Let V0 be a finite

subcover of V with the cardinality, H(V). Then, U0

∨V0 is a subcover of U ∨V , and the cardinality

of U0

∨V0 is at most N(U)×N(V). Hence, N(U ∨V) ≤ N(U)×N(V), and therefore, H(U ∨V) ≤
H(U) +H(V).

Fact 6: For any co-compact open cover, U , of X , H(f−1(U)) ≤ H(U), and if f(X) = X , the

equality holds.

To prove Fact 6, let U0 be a finite subcover of U , with the cardinality, N(U). f−1(U0) is a subcover

of f−1(U). Hence, we have H(f−1(U)) ≤ H(U).
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Now, assume f(X) = X . Let {f−1(U1), f
−1(U2), ..., f

−1(Un)}, Ui ∈ U be a finite subcover

of f−1(U), with the cardinality, N(f−1(U)). As X ⊆
n⋃

i=1

f−1(Ui), we have X = f(X) ⊆
n⋃

i=1

f(f−1(Ui)) =
n⋃

i=1

Ui. Hence, U1, U2, ..., Un is a finite subcover of U . This shows H(U) ≤
H(f−1(U)). This inequality and the previous inequality together imply the required equality.

Lemma 3.1. Let {an}∞n=1 be a sequence of non-negative real numbers satisfying an+p ≤ an+ap, n ≥
1, p ≥ 1. Then, lim

n→∞
an
n

exists and is equal to inf an
n

(see [13]). �

Let U be a co-compact open cover of X . By Theorem 2.3, for any positive integer, n, and perfect

mapping, f : X → X , f−n(U) is a co-compact open cover of X . On the other hand, by Theorem 2.1,
n−1∨
i=0

f−i(U) is a co-compact open cover of X . These two facts together lead to the following result:

Theorem 3.1. Suppose that X is Hausdorff. Let U be a co-compact open cover of X , and f : X →
X , a perfect mapping. Then, lim

n→∞
1
n
H(

n−1∨
i=0

f−i(U)) exists.

Proof. Let an = H(
n−1∨
i=0

f−i(U)). By Lemma 3.1, it suffices to show an+k ≤ an + ak. Now, Fact

6 gives H(f−1(U)) ≤ H(U), and more generally, H(f−j(U)) ≤ H(U), j = 0, 1, 2, .... Hence,

by applying Fact 5, we have an+k = H(
n+k−1∨
i=0

f−i(U)) = H((
n−1∨
i=0

f−i(U))∨(n+k−1∨
j=n

f−j(U))) =

H(
n−1∨
i=0

f−i(U)∨(k−1∨
j=0

f−n(f−j(U)))) ≤ H(
n−1∨
i=0

f−i(U)) +H(
k−1∨
j=0

f−j(U)) = an + ak. �

Next, we introduce the concept of entropy for co-compact open covers.

Definition 3.1. Let X be a Hausdorff space, f : X → X be a perfect mapping, and U be a

co-compact open cover of X . The non-negative number, hc(f,U) = lim
n→∞

1
n
H(

n−1∨
i=0

f−i(U)), is said to

be the co-compact entropy of f relative to U , and the non-negative number, hc(f) = sup
U
{hc(f,U)},

is said to be the co-compact entropy of f .

In particular, when X is compact Hausdorff, any open set of X is co-compact, and any continuous

mapping f : X → X is perfect. Hence, Adler, Konheim and McAndrew’s topological entropy is a

special case of our co-compact entropy. It should be made aware that the new entropy is well defined

for perfect mappings on non-compact spaces, e.g., on Rn, but Adler, Konheim and McAndrew’s

topological entropy requires that the space be compact.

Co-compact entropy generalizes Adler, Konheim and McAndrew’s topological entropy, and yet,

it holds various similar properties, as well, as demonstrated by the fact that co-compact entropy is an

invariant of topological conjugation (next theorem) and more explored in the next section.

Recall that ent denotes Adler, Konheim and McAndrew’s topological entropy, and hc denotes the

co-compact entropy.
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Theorem 3.2. Let (X, f) and (Y, g) be two topological dynamical systems, where X and Y are
Hausdorff, f : X → X and g : Y → Y are perfect mappings. If there exists a semi-topological
conjugation, h : X → Y , where h is also perfect, then hc(f) ≥ hc(g). Consequently, when h is a
topological conjugation, we have hc(f) = hc(g).

Proof. Let U be any co-compact open cover of Y . As h is perfect and U is a co-compact open cover

of Y , h−1(U) is co-compact open cover of X by applying Theorem 2.3. Hence, we have:

hc(g,U) = lim
n→∞

1

n
H(

n−1∨
i=0

g−i(U)) = lim
n→∞

1

n
H(h−1(

n−1∨
i=0

g−i(U)))

= lim
n→∞

1

n
H(

n−1∨
i=0

h−1(g−i(U))) = lim
n→∞

1

n
H(

n−1∨
i=0

f−i(h−1(U)))

= hc(f, h
−1(U)) ≤ hc(f,U)

Therefore, hc(f) ≥ hc(g).

When h is a topological conjugation, it is, of course, perfect, too. Hence, we have both hc(f) ≥
hc(g) and hc(g) ≥ hc(f) from the above proof, implying hc(f) = hc(g). �

Remark: The condition that the conjugation map is perfect is crucial in this result. In the general

case, the inequality given by conjugacy need not hold. Cánovas and Rodríguez [14] defined an

entropy for non-compact spaces that has this property (Theorem 2.1 (a)), which can be applied for

non-perfect maps. Notice that Cánovas and Rodríguez’s definition does not depend on the metric

that generates the given topology of X . This is due to the fact that for compact metric spaces,

the definition of Bowen’s entropy does not depend on the metric. Since Cánovas and Rodríguez’s

definition is based on invariant compact sets, and they are the same for equivalent metrics, that is,

metrics that generate the same topology of X , Cánovas and Rodríguez’s definition does not depend

on the metric when topology is fixed [37].

We sum up some properties of the new definition of topological entropy in the following results.

A minor adaptation of the proof of standard techniques on topological entropy (e.g., [13]) gives the

proof of these results. These properties are comparable to that of Adler, Konheim and McAndrew’s

topological entropy.

Theorem 3.3. Let X be Hausdorff and id : X → X be the identity mapping. Then hc(id) = 0.

When X is Hausdorff and f : X → X is perfect, fm : X → X is also a perfect mapping [36].

Theorem 3.4. . Let X be Hausdorff and f : X → X be perfect. Then, hc(f
m) = m · hc(f).

Theorem 3.5. Let X be Hausdorff and f : X → X be perfect. If Λ is a closed subset of X and
invariant under f , i.e., f(Λ) ⊆ Λ, then hc(f |Λ) ≤ hc(f).
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4. Relations between Co-Compact Entropy and Bowen’s Entropy

4.1. Co-Compact Entropy Less Than or Equal to Bowen’s Entropy, hc(f) ≤ hd(f)

First let us recall the definition of Bowen’s entropy [13,38]. Let (X, d) be a metric space and

f : X → X a continuous mapping. A compact subset, E of X , is called a (n, ε)-separated set with

respect to f if for any different x, y ∈ E, there exists an integer, j, with 0 ≤ j < n, such that

d(f j(x), f j(y)) > ε. A subset, F , of X is called a (n, ε)-spanning set of a compact set, K, relative to

f if for any x ∈ K, there exists y ∈ F , such that for all j satisfying 0 ≤ j < n, d(f j(x), f j(y)) ≤ ε.

Let K be a compact subset of X . Put

rn(ε,K, f) = min{card(F ) : F is a (n, ε)−spanning set for K with respect to f}

sn(ε,K, f) = max{card(F ) : F ⊆ K and F is a (n, ε)−separated set with respect to f}

r(ε,K, f) = lim
n→∞

1

n
log rn(ε,K, f), s(ε,K, f) = lim

n→∞
1

n
log sn(ε,K, f)

r(K, f) = lim
ε→0

r(ε,K, f), s(K, f) = lim
ε→0

s(ε,K, f)

Then, sup
K

r(K, f) = sup
K

s(K, f), and this non-negative number, denoted by hd(f), is the Bowen

entropy of f .

It should be pointed out that Bowen’s entropy, hd(f), is metric-dependent, see e.g., [13,39].

For the topology of the metrizable space, X , the selection of different metrics may result in

different entropies.

Next, recall the Lebesgue Covering Theorem and Lebesgue Number [36]. Let (X, d) be a metric

space and U an open cover of X . diam(U) = sup{d(A) | A ∈ U} is called the diameter of U ,

where d(A) = sup{d(x, y) | x, y ∈ A}. A real number, δ, is said to be a Lebesgue number of U if

every open subset, U , of X , satisfying diam(U) < δ, is completely contained in an element of the

cover, U .

The Lebesgue Covering Theorem (see [36]): Every open cover of a compact metric space has a

Lebesgue number. �

Our next theorem generalizes the Lebesgue Covering Theorem to all co-compact open covers of

non-compact metric spaces.

Theorem 4.1. Let (X, d) be a metric space, regardless of compactness. Then, every co-compact
open cover of X has a Lebesgue number.

Proof. Let U be any co-compact open cover of X . By Theorem 2.2, U has a finite subcover

V = {V1, V2, ..., Vm}. Put Y = (X \ V1) ∪ (X \ V2) ∪ ... ∪ (X \ Vm). Then, Y is compact as

Vi’s are co-compact.

We will prove that V has a Lebesgue number, so does U . As it is obvious that the theorem holds

when Y = ∅, thus in the following proof, we assume Y �= ∅.
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Assume that V does not have a Lebesgue number. Then, for any positive integer, n, 1
n

is not

a Lebesgue number of V . Consequently, for each positive integer, n, there exists an open subset,

On, of X , satisfying diam(On) < 1
n

, but On is not completely contained in any element of V ,

i.e., On ∩ (X \ Vj) �= ∅, j = 1, 2, ...,m. Hence, On ∩ Y �= ∅. Take an xn ∈ On ∩ Y . By the

compactness of Y , the sequence xn has a subsequence, xni
, that is convergent to some point, y ∈ Y ,

i.e., lim
i→∞

xni
= y ∈ Y ⊆ X .

On the other hand, V is an open cover of X , thus there exists some V ∈ V , such that y ∈ V .

As V is open, there exists an open neighborhood, S(y, ε), of y, such that y ∈ S(y, ε) ⊆ V . Since

xni
converges to y, there exists a positive integer, M , such that xni

∈ S(y, ε
2
) for i > M . Let k be

any integer larger than M + 2
ε
. Then, for any z ∈ Onk

, we have d(z, y) ≤ d(z, xnk
) + d(xnk

, y) <
ε
2
+ ε

2
= ε, thus Onk

⊆ S(y, ε) ⊆ V ∈ V , which contradicts the selection of open sets, On’s.

Therefore, V has a Lebesgue number. �

Theorem 4.2. Let (X, d) be a metric space, U be any co-compact open cover of X , and f : X → X

be a perfect mapping. Then, there exists δ > 0 and a compact subset K of X , such that for all
positive integers, n,

N(
n−1∨
i=0

f−i(U)) ≤ n · rn(δ
3
, K, f) + 1

Proof. Let U be any co-compact open cover of X . By Theorem 2.2, U has a finite subcover,

V = {V1, V2, ..., Vm}. By Theorem 4.1, U has a Lebesgue number, δ. Put K = (X \V1)∪ (X \V2)∪
... ∪ (X \ Vm). If K = ∅, then X = Vj for all j = 1, 2, ...,m, and in this case, the theorem clearly

holds. Hence, we assume K �= ∅; thus, the compact set, K, has a (n, δ
3
)-spanning set, F , relative to

f and satisfying card(F ) = rn(
δ
3
, K, f).

(a) For any x ∈ K, there exists, y ∈ F , such that d(f i(x), f i(y)) ≤ δ
3
, i = 0, 1, ..., n − 1;

equivalently, x ∈ f−i(S(f i(y), δ
3
)), i = 0, 1, ..., n − 1. Hence, K ⊆ ⋃

y∈F

n−1⋂
i=0

f−i(S(f i(y), δ
3
)). By

the definition of the Lebesgue number, every S(f i(y), δ
3
) is a subset of an element of V . Hence,

n−1⋂
i=0

f−i(S(f i(y), δ
3
)) is a subset of an element of

n−1∨
i=0

f−i(V). Consequently, K can be covered by

rn(
δ
3
, K, f) elements of

n−1∨
i=0

f−i(V).
(b) For any x,∈ X \K, i.e., x ∈ V1 ∩ V2 ∩ ... ∩ Vm. In the following, we will consider points of

X \K, according to two further types of points.

First, consider those x for which there exists l with 1 ≤ l ≤ n − 1, such that f l(x) ∈ K

and x, f(x), f 2(x), ..., f l−1(x) ∈ X \ K (l depends on x, but for convenience, we use l instead

of lx). Namely, we consider the set, {x ∈ X \ K : x ∈ X \ K, x, f(x), f 2(x), ..., f l−1(x) ∈
X \ K, f l(x) ∈ K}. For every such x, there exists y ∈ F , such that d(f l+i(x), f i(y)) ≤ δ

3
, i =

0, 1, ..., n − l − 1; equivalently, x ∈ f−(l+i)(S(f i(y), δ
3
)), i = 0, 1, ..., n − l − 1. By the definition

of the Lebesgue number, every S(f i(y), δ
3
) is a subset of an element of V . Hence, V1 ∩ f−1(V1) ∩

... ∩ f−(l−1)(V1) ∩ (
n−l−1⋂
i=0

f−(l+i)(S(f i(y), δ
3
))) is a subset of an element of

n−1∨
i=0

f−i(V) and x ∈



476

V1 ∩ f−1(V1)∩ ...∩ f−(l−1)(V1)∩ (
n−l−1⋂
i=0

f−(l+i)(S(f i(y), δ
3
))). There are rn(

δ
3
, K, f) such open sets,

implying that
n−1∨
i=0

f−i(V) has rn(
δ
3
, K, f) elements that cover this type of point, x. As 1 ≤ l ≤ n− 1,

n−1∨
i=0

f−i(V) has (n− 1) · rn( δ3 , K, f) elements that actually cover this type of points, x.

Next, consider those x for which f i(x) ∈ X \ K for every i = 0, 1, ..., n − 1. One (any)

element of
n−1∨
i=0

f−i(V) covers all such points, x. Hence, X \ K can be covered by no more than

(n− 1) · rn( δ3 , K, f) + 1 elements of
n−1∨
i=0

f−i(V).

By (a) and (b), for any n > 0, it holds N(
n−1∨
i=0

f−i(V)) ≤ n · rn( δ3 , K, f)+1. Now, it follows from

U ≺ V and Fact 4, N(
n−1∨
i=0

f−i(U)) ≤ N(
n−1∨
i=0

f−i(V)) ≤ n · rn( δ3 , K, f) + 1. �

Theorem 4.3. Let (X, d) be a metric space and f : X → X be a perfect mapping. Then
hc(f) ≤ hd(f).

Proof. For any co-compact open cover, U of X , if X ∈ U , then hc(f,U) = 0. Hence, we can assume

X �∈ U . By Theorem 4.2, there exists δ > 0 and a non-empty compact subset, K, of X , such that for

any n > 0, it holds N(
n−1∨
i=0

f−i(U)) ≤ n · rn( δ3 , K, f) + 1. Hence, hc(f,U) = lim
n→∞

1
n
H(

n−1∨
i=0

f−i(U))
≤ lim

n→∞
1
n
log(n · rn( δ3 , K, f)+1) = r( δ

3
, K, f). Let δ → 0. It follows from the definition of Bowen’s

entropy (Walters’ book [13], P.168, Definition 7.8 and Remark (2)) that r( δ
3
, K, f) is decreasing on

δ and r(K, f) = lim
δ→0

r( δ
3
, K, f). Therefore, hc(f,U) ≤ r( δ

3
, K, f) ≤ r(K, f). Moreover, r(K, f) ≤

hd(f). Finally, because U is arbitrarily selected, hc(f) ≤ hd(f). �

Bowen’s entropy, hd(f), is metric-dependent. Theorem 4.3 indicates that the co-compact entropy,

which is metric-independent, is always bounded by Bowen’s entropy, i.e., hc(f) ≤ hd(f), regardless

of the choice of a metric for the calculation of Bowen’s entropy. In the next section, we will give an

example where co-compact entropy is strictly less than Bowen’s entropy.

4.2. An Example

In this section, R denotes the one-dimensional Euclidean space equipped with the usual metric

d(x, y) = |x− y|, x, y ∈ R. The mapping, f : R→ R, is defined by f(x) = 2x, x ∈ R. f is clearly

a perfect mapping. It is known that hd(f) ≥ log 2 [13]. We will show hc(f) = 0.

Let V be any co-compact open cover of R. By Theorem 2.2, V has a finite co-compact subcover,

U . Let m = card(U). As compact subsets of R are closed and bounded sets, there exist Ur, Ul ∈ U ,

such that for any U ∈ U , sup {R \ U} ≤ sup {R \ Ur} and inf {R \ U} ≥ inf {R \ Ul}. Let

ar = sup {R \ Ur} and bl = inf {R \ Ul}. Observe that for any n > 0, x ∈
n−1∨
i=0

f−i(Ui) ⇐⇒ x ∈
U0, f(x) ∈ U1, ..., f

n−1(x) ∈ Un−1, where Ui ∈ U , i = 0, 1, ..., n− 1.
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Case 1: 0 < bl < ar. For any n > 0 and x ∈ (ar,+∞), x ∈ Ur, f(x) ∈ Ur, ..., f
n−1(x) ∈ Ur.

So (ar,+∞) ⊆
n−1⋂
i=0

f−i(Ur). For any x ∈ (−∞, 0], x ∈ Ul, f(x) ∈ Ul, ..., f
n−1(x) ∈ Ul, thus

(−∞, 0] ⊆
n−1⋂
i=0

f−i(Ul).

As f is a monotone increasing mapping, there exists k > 0, such that fk(bl) > ar. We can

assume n > k > 0. Consider the following two possibilities (1.1 and 1.2).

(1.1) x ∈ [bl, ar].

This requires at most k iterations, so that fk(x) ∈ Ur. Hence, x ∈ Uj0 , f(x) ∈ Uj1 , ..., f
k−1(x) ∈

Ujk−1
, fk(x) ∈ Ur, ..., f

n−1(x) ∈ Ur, where Uj0 , Uj1 , ., Ujk−1
∈ U . Since card(U) = m, [bl, ar] can

be covered by mk elements of
n−1∨
i=0

f−i(U).
(1.2) x ∈ (0, bl).

This is divided into three further possibilities as follows.

(1.2.1) fn−1(x) > ar.

Choose j with 0 < j < n, such that f j−1(x) < bl, but f j(x) ≥ bl. Then, x ∈ Ul, f(x) ∈
Ul, ..., f

j−1(x) ∈ Ul, f
j(x) ∈ Uj0 , ..., f

j+k−1(x) ∈ Ujk−1
, f j+k(k) ∈ Ur, ..., f

n−1(x) ∈ Ur, where

Uj0 , Uj1 , ..., Ujk−1
∈ U . Since card(U) = m,

n−1∨
i=0

f−i(U) has mk elements that cover this kind of

point, x.

(1.2.2) bl ≤ fn−1(x) ≤ ar.

If fn−2(x) < bl, i.e., for the last jump getting into [bl, ar], it holds x ∈ Ul, ..., f
n−2(x) ∈

Ul, f
n−1(x) ∈ Uj0 , where Uj0 ∈ U , while card(U) = m; there are m elements of

n−1∨
i=0

f−i(U)
that cover these kind of points, x.

If fn−3(x) < bl and fn−2(x) ≥ bl, i.e., for the second jump to the last before getting into [bl, ar],

it holds x ∈ Ul, ..., f
n−3(x) ∈ Ul, f

n−2(x) ∈ Uj2 , f
n−1(x) ∈ Uj1 , where Uj2 , Uj1 ∈ U , while

card(U) = m,
n−1∨
i=0

f−i(U) has m2 elements that cover this kind of point, x.

Continue in this fashion: if fn−k(x) < bl and fn−(k−1)(x) ≥ bl, i.e., for the (k − 1)th

jump from the last before getting into [bl, ar], it holds x ∈ Ul, ..., f
n−k(x) ∈ Ul, f

n−(k−1)(x) ∈
Ujk−1

, ., fn−1(x) ∈ Uj1 , where Uj1 , ..., Ujk−1
∈ U , while card(U) = m,

n−1∨
i=0

f−i(U) has mk−1

elements that cover this kind of point, x.

If fn−(k+1)(x) < bl and fn−k(x) ≥ bl, i.e., jump into [bl, ar] on the kth, fn−1(x) > ar, and this is

Case (1.2.1).

(1.2.3) fn−1(x) < bl.

Clearly, x ∈
n−1⋂
i=0

f−i(Ul) ∈
n−1∨
i=0

f−i(U).
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Hence, in Case 1, where 0 < bl < ar, for any n > k > 0, it holds N(
n−1∨
i=0

f−i(U)) ≤ 2+mk+mk+

m+m2+...+mk−1, and by the definition of co-compact entropy, hc(f,U) = lim
n→∞

1
n
H(

n−1∨
i=0

f−i(U)) ≤
lim
n→∞

1
n
log(2 +mk +mk +m+m2 + ...+mk−1) = 0.

Case 2: bl < ar < 0. This is similar to Case 1 above.

Case 3: bl < 0 < ar. For any n > 0 and x ∈ (ar,+∞), x ∈ Ur, f(x) ∈ Ur, ..., f
n−1(x) ∈ Ur,

thus (ar,+∞) ⊆
n−1⋂
i=0

f−i(Ur).

Similarly, for x ∈ (−∞, bl), x ∈ Ul, f(x) ∈ Ul, ..., f
n−1(x) ∈ Ul, thus (−∞, bl) ⊆

n−1⋂
i=0

f−i(Ul).

As U is an open cover of R, there exists U0 ∈ U , such that 0 ∈ U0, f(0) = 0 ∈ U0, ..., f
n−1(0) =

0 ∈ U0, and hence, 0 ∈
n−1⋂
i=0

f−i(U0).

For x ∈ [bl, ar], U0, as an open set of R, can be decomposed into a union of many countably open

intervals. Noting that 0 ∈ U0, there are two further possibilities, as given in (3.1) and (3.2) below.

(3.1) The stated decomposition of U0 has an interval, (b0, a0), that contains zero, i.e., 0 ∈ (b0, a0).

Since f is a monotone increasing mapping, there exists k > 0, such that fk(b0) < bl and fk(a0) > ar.

Here, we can assume n > k > 0. Similar to Case 1, [bl, b0] can be covered by mk elements of
n−1∨
i=0

f−i(U), (b0, 0) can be covered by mk +m+m2 + ...+mk−1 elements of
n−1∨
i=0

f−i(U), (0, a0) can

be covered by mk +m+m2 + ...+mk−1 elements of
n−1∨
i=0

f−i(U) and [a0, ar] can be covered by mk

elements of
n−1∨
i=0

f−i(U). Hence, for any n > k > 0, N(
n−1∨
i=0

f−i(U)) ≤ 3 + mk + m + m2 + ... +

mk−1 +mk +m+m2 + ...+mk−1. Therefore, by the definition of co-compact entropy, hc(f,U) =
lim
n→∞

1
n
H(

n−1∨
i=0

f−i(U)) ≤ lim
n→∞

1
n
log(3+mk+m+m2+ ...+mk−1+mk+m+m2+ ...+mk−1) = 0.

(3.2) The only intervals covering zero are of the forms (−∞, a0) or (b0,+∞).

Consider the case, 0 ∈ (−∞, a0). As f is a monotone increasing mapping, there exists k > 0,

such that fk(a0) > ar. We can assume n > k > 0. Similar to Case 1, (0, a0) can be covered by

mk + m + m2 + ... + mk−1 elements of
n−1∨
i=0

f−i(U) and [a0, ar] can be covered by mk elements of

n−1∨
i=0

f−i(U), and it also holds [bl, 0) ⊆
n−1⋂
i=0

f−i(U0). Hence, for any n > k > 0, N(
n−1∨
i=0

f−i(U)) ≤ 3+

mk+m+m2+...+mk. By the definition of co-compact entropy, hc(f,U) = lim
n→∞

1
n
H(

n−1∨
i=0

f−i(U)) ≤
lim
n→∞

1
n
log(3 +mk +m+m2 + ...+mk) = 0. Therefore, when bl < 0 < ar, it holds hc(f,U) = 0.

The case, 0 ∈ (b0,+∞), is similar.

Now, by Cases 1, 2 and 3, it holds that hc(f,U) = 0. Noting that V ≺ U , it holds that hc(f,V) ≤
hc(f,U) = 0. Since V is arbitrary, hc(f) = 0.
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5. Concluding Remarks

The investigation of dynamical systems could be tracked back to Isaac Newton’s era, when

calculus and his laws of motion and universal gravitation were invented or discovered. Then,

differential equations with time as a parameter played a dominant role. However, it was not realized

until the end of the 19th century that the hope of solving all kinds of problems in celestial mechanics

by following Newton’s frame and methodology, e.g., the two body problem, becomes unrealistic

when Jules Henri Poincaré’s New Methods of Celestial Mechanics was publicized (shortly after this,

in the early 20th century, fundamental changes in electrodynamics occurred when Albert Einstein’s

historical papers appeared: reconciling Newtonian mechanics with Maxwell’s electrodynamics,

separating Newtonian mechanics from quantum mechanics and extending the principle of relativity

to non-uniform motion), in which the space of all potential values of the parameters of the system

is included in the analysis, and the attention to the system was changed from individual solutions

to dynamical properties of all solutions, as well as the relation among all solutions. Although

this approach may not provide much information on individual solutions, it can obtain important

information on most of the solutions. For example, by taking an approach similar to that in ergodic

theory, Poincaré concluded that for all Hamiltonian systems, most solutions are stable [40].

The study of dynamical systems has become a central part of mathematics and its applications

since the middle of the 20th century, when scientists from all related disciplines realized the power

and beauty of the geometric and qualitative techniques developed during this period for nonlinear

systems (see e.g., Robinson [31]).

Chaotic and random behavior of solutions of deterministic systems is now understood to be

an inherent feature of many nonlinear systems (Devaney [41], 1989). Chaos and related concepts

as main concerns in mathematics and physics were investigated through differentiable dynamical

systems, differential equations, geometric structures, differential topology and ergodic theory, etc., by

S. Smale, J. Moser, M. Peixoto, V.I. Arnol’d, Ya. Sinai, J.E. Littlewood, M.L. Cartwright, A.N.

Kolmogorov and G.D. Birkhoff, among others, and even as early as H. Poincaré (global properties,

nonperiodicity; 1900s) and J. Hadamard (stability of trajectories; 1890s).

Kolmogorov’s metric entropy as an invariant of measure theoretical dynamical systems is a

powerful concept, because it controls the top of the hierarchy of ergodic properties and plays

a remarkable role in investigating the complexity and other properties of the systems. As an

analogous invariant under conjugation of topological dynamical systems, topological entropy plays

a prominent role for the study of dynamical systems and is often used as a measure in determining

dynamical behavior (e.g., chaos) and the complexity of systems. In particular, topological entropy

bounds measure-theoretic entropy (Goodwyn [10,11]). Other relations between various entropy

characterizations were extensively studied, e.g., Dinaburg [42]. It is a common understanding that

topological entropy, as a non-negative number and invariant of conjugation in describing dynamical

systems, serves a unique and unsubstitutable role in dynamics. Consequently, an appropriate

definition of topological entropy becomes important and difficult.
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In the theory and applications of dynamical systems, locally compact systems appear commonly,

e.g., Rn or other manifolds. The introduced concept of co-compact open covers is fundamental

for describing the dynamical behaviors of systems as, for example, for locally compact systems,

co-compact open sets are the neighborhoods of the infinity point in the Alexandroff compactification

and, hence, admit the investigation of the dynamical properties near infinity.

The co-compact entropy introduced in this paper is defined based on the co-compact open covers.

In the special case of compact systems, this new entropy coincides with the topological entropy

introduced by Adler, Konheim and McAndrew (Sections 3 and 4). For non-compact systems, this

new entropy retains various fundamental properties of Adler, Konheim and McAndrew’s entropy

(e.g., invariant under conjugation, entropy of a subsystem does not exceed that of the whole system).

Another noticeable property of the co-compact entropy is that it is metric-independent for

dynamical systems defined on metric spaces, thus different from the entropy defined by Bowen.

In particular, for the linear mapping given in Section 4.2 (locally compact system), its co-compact

entropy is zero, which would be at least log 2 according to Bowen’s definition; as a positive entropy

usually reflects certain dynamical complexity of a system, this new entropy is more appropriate.

For a dynamical system defined on a metric space, Bowen’s definition may result in different

entropies when different metrics are employed. As proven in Section 4, the co-compact entropy

is a lower bound for Bowen’s entropies, where the traditional Lebesgue Covering Theorem for

open covers of compact metric spaces is generalized for co-compact open covers of non-compact

metric spaces. As studied by Goodwyn in [10,11] and Goodman [43], when the space is compact,

topological entropy bounds measure-theoretic entropy. The relation between co-compact entropy

and measure-theoretic entropy (K-S entropy) remains an open question. Of course, when the space is

compact, this relation degenerates to the variational principle [43]. Recently, M. Patrao (2010) [44]

explored entropy and its variational principle for dynamical systems on locally compact metric spaces

by utilizing one point compactification.
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Abstract: The fragile watermarking technique is used to protect intellectual property 
rights while also providing security and rigorous protection. In order to protect the 
copyright of the creators, it can be implanted in some representative text or totem. 
Because all of the media on the Internet are digital, protection has become a critical 
issue, and determining how to use digital watermarks to protect digital media is thus the 
topic of our research. This paper uses the Logistic map with parameter u = 4 to generate 
chaotic dynamic behavior with the maximum entropy 1. This approach increases the 
security and rigor of the protection. The main research target of information hiding is 
determining how to hide confidential data so that the naked eye cannot see the 
difference. Next, we introduce one method of information hiding. Generally speaking, 
if the image only goes through Arnold’s cat map and the Logistic map, it seems to lack 
sufficient security. Therefore, our emphasis is on controlling Arnold’s cat map and the 
initial value of the chaos system to undergo small changes and generate different chaos 
sequences. Thus, the current time is used to not only make encryption more stringent 
but also to enhance the security of the digital media. 

Keywords: encrypt; watermark; logistic map; Arnold’s cat map 
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1. Introduction 

Technology is changing rapidly. In the current highly competitive atmosphere, the Internet has 
become an integral part of our lives, but although obtaining information is convenient, many 
problems have arisen. For example, digital media have matured quickly and are widely used, 
resulting in copyright disputes. The contents and applications of information technology are ever 
more important. When sending important information, the computer acts as one’s “right-hand 
man”. However, it can easily be accessed and important information stolen if it is not encrypted. In 
the case of data being intercepted, we all hope that confidential data will not be found. Therefore, 
hiding information to protect it is essential. 

Due to the rapid development of the Internet and technology, digital data must be free from 
limitations of time and space to quickly spread throughout the Internet because users need to access 
messages immediately and save important data. Due to its convenience, users can use the Internet 
to easily obtain, copy, or modify digital data, and even use some powerful image editing software, 
such as Photoshop and Photo Impact. However, it is illegal to copy or modify unauthorized digital 
data. In order to protect the rights of the original owner while offering universal access, protecting 
intellectual property rights [1] is particularly important. 

In order to address this issue, we have researched some of the published works on fragile 
watermarking [2–3] procedures based on schemes for image authentication [4]. A robust image 
watermarking scheme usually embeds a watermark into an original image. For copyright 
protection, the owner should be capable of verifying and extracting the embedded watermark  
from the modified image. Modifications may, however, be rancorous, for example intentional 
tampering [5] or other image attacks. Image authentication watermarking techniques are therefore 
necessary, and can be classified into three groups: (A) Semi-fragile watermarking localizes and 
detects modifications to the contents [6]; (B) Fragile watermarking can detect any modification to 
the image [7]; and (C) Content-based fragile watermarking can detect only the significant changes 
in the image when we permit content saving processing, for example, coding and scanning [8]. The 
first proposed watermarking-based scheme for image authentication was presented by Walton [9] 
who divided the image into 8 F 8 blocks and embedded the LSB checksum in each block. The 
disadvantage of Walton’s scheme, however, is that modifying the blocks with the same position in 
two different authenticated images does not affect the image checksum. In order to improve this, 
Fridrich [10] used a pseudo-random sequence and modified the error diffusion method to embed a 
binary watermark into an image, so that it can be detected no matter how the values of the image 
pixels are changed. There are three basic steps in the method: (A) choose a chaotic map and 
generalize it by introducing some parameters, (B) make the chaotic map discrete with a finite 
square lattice of points that represent pixels, and (C) extend the discrete map to three-dimensions 
and further compose it with a simple diffusion mechanism. Using a different approach, Wong [11] 
proposed a public key fragile watermarking scheme for image authentication which divided the 
image into non-overlapping blocks and inserted digital signatures for authentication. In Wong’s 
scheme, a public key is used to generate a signature that uses the seven most significant bits of the 
pixels in each image block, and then adds a logo to become a watermark, embedding the 
watermark into the LSB of the corresponding blocks. The signature may be a signed hash value or 



486 

 

encrypted image content. If an image has been changed, it will be detected by these mechanisms. 
These mechanisms, however, cannot discover where the image was modified. In addition, the 
attached signature needs more storage or additional bandwidth, but they may not always be 
obtained [12]. Suthaharan [13] enhanced Wong’s proffered security by using a gradient image and 
its bit distribution properties to generate a huge key space to counter any vector quantization attack. 
A geometric attack is recognized as one of the most difficult attacks to resist. In response to such 
attacks, Wang [14] used the nonsubsampled contourlet transform (NSCT) domain with good visual 
quality and reasonable resistance to geometric attacks. A binary logo is used as a watermark in our 
scheme. By using a Logistic map [15–21], a chaotic map pattern is generated. A scrambled image 
is obtained from the chaotic map pattern and the binary watermark undergoes the exclusive-or 
(XOR) operation, and then is embedded in the LSB of each point of the image. The original image 
with the watermark is obtained by executing a reverse cat map. Zhao et al. [22] used embedding of 
the watermark in the wavelet descriptors based on the Neyman-Pearson criterion. This method can 
obtain high fidelity under a geometric attack. In [23], Zhao et al. proposed different embedding 
watermark techniques in the wavelet descriptors, including a method for watermarking using a 
chaos sequence and neural network. Furthermore, Guyeux and Bahi [24] proposed discrete chaotic 
iterations in order to hide information; this method uses the most and least significant coefficients 
to determine the topological chaos. In recent years, digital watermarking techniques [25] have been 
widely used in the protection of digital media rights. They can add the message that you want to 
save or embed the copyright trademark into the digital data without impacting the data, and at the 
same time retain their integrity and authenticity. Through extraction techniques to obtain the 
watermark, we can identify the original creator. 

This paper offers a chaotic system-based fragile watermarking scheme for image tampering 
detection [26]. It uses a novel watermarking scheme based on chaotic maps. The image is 
processed by Arnold's cat map to become an orderless image which is then divided into eight 
blocks. A chaotic watermark is obtained by using the XOR operation between the binary 
watermark and the binary chaotic image. Furthermore, we also embed the chaotic watermark into 
an orderless image of each block of least significant bits. 

The disadvantage of a chaotic system-based fragile watermarking scheme for image tampering 
detection is its lack of variability, which means that it is not possible to obtain the iterate cat map. 
With its lack of variability and randomness, it will be easy to crack. In order to solve this problem, 
we propose the time-variant system to enhance security. We use the current time to obtain the cat 
map image, because it cannot know the period through the formula. Our proposed method 
combines the cat map image and the current time, which can avoid image repeatability in the cat 
map. It also means that the watermarked image cannot be easily extracted. 

The rest of the paper is organized as follows: In Section 2, Arnold’s cat map and the Logistic 
map are briefly described. In Section 3, the proposed watermarking scheme is explained. The 
experimental results are given in Section 4, and conclusions are presented in Section 5. 
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2. Chaotic Mapping Algorithm 

2.1. Arnold’s Cat Map Encryption Algorithm 

A digital image is constituted of pixels. If there is an arbitrary arrangement of the original pixel 
positions, it will become confused and unrecognizable, but if it goes through position 
transformation several times, it can then revert to the original digital image. This arrangement, 
called Arnold’s cat map, was proposed by a Russian mathematician, Vladimir I. Arnold. The original 
image P is an NN F  array, and the coordinate of the pixel is }1,...,3,2,1,0,|),{( ��� NyxyxF . 
Arnold’s cat map encryption algorithm is described as follows: 

1
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where c and d are positive integers, and the value of the A matrix determinant is 1. When Arnold’s 
cat map algorithm is executed once, the original pixel position’s coordinate will be transferred from 
the ),( yx  to a new original pixel position; then the process is repeated with the A matrix 
multiplied. The pixels will continue to move until they return back to their original position; the 
number of moves is T, and the size of the pixel space is n = 0, 1, 2,  , N�1. Pixels move with 
periodicity, and T, c, d and the original image’s size N are correlated; thus, whenever the values 
change, it generates a completely different Arnold’s cat map. After being multiplied a few times, 
the correlation between the pixels will be completely chaotic. However, Arnold’s cat map 
encryption algorithm has periodicity, which reduces its encryption security. This is why we add the 
Logistic map into the chaos system to enhance security. 

T depends on the original c, d and N. Thus c, d and r, which are decided by the current time t (s), 
can serve as the private key; r is described as follows: 

modr t  T�  (3)

From Equations (1)–(3), Arnold’s cat map encryption algorithm with r times is described  
as follows: 
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Assuming 1�c , 1�d  and 256�N , we can conclude that the period T is 192; the periodic 
phenomenon in the cat map is shown in Figure 1. 
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Figure 1. Periodic phenomenon in the cat map. 

  
Original image Reversed 1 time Reversed 30 times 

  
Reversed 60 times Reversed 120 times Reversed 192 times 

2.2. Logistic Map 

In a seemingly chaotic system, there is in fact order. In the situation of two identical chaotic 
systems with different initial values, they look like two different things, but with a narrow view of 
the two systems, they still have the same appearance, such as the weather in Taiwan that changes 
every day, yet the four seasons of every year are fixed. Values usually change within a certain 
range that is not exceeded, so the chaos system can be controlled. 

Figure 2. The entropy of the Logistic map for 3.5 � u � 4. 

 

A Logistic map uses different initial values to serve as parameters that assort different users;  
it produces different chaotic sequences. The chaos sequence has randomness; the greater the 
sequence length, the better the randomness. X is an array generated from the chaos system whose 
range is restricted to 0–1. Xt is the position of instant start; and Xt+1 is the next position of instant 
start, described as follows: 

	 
ttt XuXX ��� 11  (5)

where 0 < u � 40 is the range of chaotic sequence, but the value between 3.5,699,456 and 4 has 
positive entropy. The maximum entropy is 1 with the parameter u = 4 as shown in Figure 2, and it 
has the best effect. If u is fixed and the initial condition is x(0), the sequence of the Logistic map is 
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very sensitive. Different initial conditions x(0), produce different sequences; they do not have any 
correlation. If one is unable to get the initial value, it is hard to get the same sequence without 
obtaining the initial value. 

3. The Proposed Method 

Assuming that the original image P size is NM F , the binary watermark image bW  size  

is nm F . 

3.1. Embedding the Watermark 

The watermark of our proposed algorithm is embedded as follows: 

1 Step 1: Original image P goes through Arnold’s cat map; we can obtain the period T from 
Equation (1). 

1 Step 2: Interception of minutes and seconds obtains the current time t; we get the value r 
which represents that P goes through Arnold’s cat map r times from Equation (3), and we 
can obtain the scrambled image Pscr from Equation (4). 

1 Step 3: Divide scrP  into 8-bit blocks. 

1 Step 4: From the current time t, the chaotic system can generate a chaotic sequence S from 
Equation (5) which ranges between 0 and 1; round it off and apply it to the Logistic 
map; fetch from t to tnm �F  and then we can obtain the chaotic image cpS . 

1 Step 5: Using the XOR operation between bW  and cpS , we can obtain cW  which is a 

binary chaotic watermark to be expressed as:  

  W S W bcpc a�  (6)

1 Step 6: The least significant bit of scrP  is replaced by cW . 
1 Step 7: Use Arnold’s cat map to let the modified scrP  reverse (T–r) times to obtain the final 

result wP . 

Figure 3. Our proposed diagram of the embedding process. 

scrP scrP

scrP

bW

cpS

cW

wP
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Figure 3 shows our proposed block diagram of the embedding process. For example, embedding 
the watermark process with 69�r  is shown in Figure 4. 

Figure 4. Process of embedded watermark with 69�r . 

 Step1 Step2 

 
Original image 

Image size is 
256256 F  

1 ,1 �� dc  

Arnold’s cat map  

T=192 

 
Current time=45:57 

69192 mod)576045( ��F�r
Arnold’s cat map 69 times 

Step3 Step4 Step5 

 

Chaotic sequence S 
from t to t�F 256256

and round off 

  W S W bcpp a�  

Step6 Step7 

 
 

3.2. Fetching the Watermark 

The watermark of our proposed algorithm is fetched as follows: 

1 Step 1: Intercept of minutes and seconds obtains the current time t from Equation (2); the 
analysis image aP  goes through Arnold's cat map r times; it can obtain the scrambled 
image ascrP . 

1 Step 2: Divide ascrP  into 8-bit blocks. 

1 Step 3: From the current time t, the chaotic system can generate a chaotic sequence S from 
Equation (5), which ranges between 0 and 1; round it off and apply it to the Logistic map; 
fetch from t to tnm �F , and then we can obtain the chaotic image cpS . 

1 Step 4: Using the XOR operation between the LSB of ascrP  and cpS , we can obtain eW , 

which is a binary fetched watermark to be expressed as:  

  S LSB of P W cpascre a�  (7)
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1 Step 5: The binary watermark bW  is compared with eW ; take a different place going 

through Arnold’s cat map (T–r) times, and then we can see which place was modified. 

The block diagram of the extraction process is shown in Figure 5. Fetching the watermark is 
shown in Figure 6. 

Figure 5. Block diagram of the extraction process. 

 

Figure 6. Process of fetching the watermark. 
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256256 F
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Figure 6. Cont. 

Step5

 

By using the current time t to control the value r of Arnold’s cat map, not only can the chaotic 
image reduce the image’s repeatability, but also the generated original image with the watermark 
has a considerable number of combinations because the original image with the watermark is 
generated from the parameters c, d, r, and t. The range of c and d is infinite positive integers, the 
range of r is (0, T), and the range of t is 0–3,660. If the values of c, d, r and t are not known, it is 
impossible to obtain the original image with the watermark; thus, it can enhance security. 

4. Experimental Results 

In this paper, we execute a variety of experiments to evaluate the performance of our algorithm. 
The pixel of the image is 256256F  via Arnold's cat map algorithm, generating the period 

192�T  and set 1�c , 1�d . Because the value of r is decided by the current time t, it can get a 
key which changes with the current time t. The key's distinctive quality is that it just affects the 
decoding, without the difference being obvious; for example, we obtain the minutes and seconds of 
the current time as 45 and 57; then the value of 69192mod)576045( ��F�  r . After we know r, 
we can know the reverse time that is just T–r, so that we can obtain the original image. The result is 
shown in Figure 7. 

Figure 7. Reverse time process. 
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We divided our experiments into two parts, modifying the range and numerical comparison. In 
the modified range, we used the Lena images to analyze the images to see whether they had been 
modified; the pixel of the original and watermarked images is 256256 F via the Logistic map 
algorithm. We set the parameter 1�c , 1�d , 192�T , 7.3�u , 5.0)0( �x , and 69�r
according to the current time t. In Figure 8, the experimental result shows that a larger modified 
region results in a more indistinct watermarked image. The analysis image of Lena is shown in 
Figure 8a1, while a2 is the extracted watermark from Figure 8a1. The modified region result is 
shown in Figure 8a3, a1 shows that the image has not been modified, because in Figures 8a2, a3, 
one does not see the place which has been modified. Figure 8b1 is Figure 8a1 combined with a 
flower. We can see the modified region in Figure 8b2, 8b3 shows the pattern of the modified region. 

Furthermore, we used the Baboon image to analyze the region which had been modified; the 
pixel of the original and watermarked images is 256256 F via the Logistic map algorithm, and we 
set the parameters 1�c , 1�d , 192�T , 7.3�u  and 5.0)0( �x . We obtained r  according to 
the current time t, because the current time of each experiment is different, and 133�r according 
to the current time t. In Figure 9, the experimental result shows that the larger modified region 
results in a more indistinct watermarked image. The analysis image of Baboon is shown in Figure 
9a1, while a2 is the watermark extracted from Figure 9a1. The modified region result is shown in 
Figure 9a3. Figure 9a1 shows that the image has not been modified, because in Figure 9a2, a3, one 
does not see the place which has been modified. Figure 9b1 is Figure 9a1 combined with blinkers. 
We can see the modified region in Figures 9b2, b3 show the pattern of the modified region. 

If the modified region area increases, the extracted watermark will become increasingly blurred, 
as the experimental figures show in Figures 8 and 9. However, we can still clearly distinguish the 
embedded watermark. Therefore, the extracted watermark of our proposed method is high fidelity. 
Besides, our proposed method can accurately show that the image is modified in location. 

In this paper, peak signal-to-noise ratio (PSNR) is used to compare the visual quality of the 
watermarked image with that of the original image P, where PSNR is defined as: 

dB
MSE

PSNR ��
�

�
��
�

�
�

2

10
255log10  (8)

The mean square error (MSE) is between the original and the modified image, where MSE is 
defined as: 
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jiPjiP

MN
MSE  (9)

In Equations (8) and (9), we can conclude that when PSNR rises, it means there is relatively less 
distortion; when PSNR falls, it means the distortion increases and the place has changed more from 
Equation (8). MSE is inversely proportional to PSNR, so for MSE, ‘the smaller the better’ in 
Equation (9); if the modified region increases, the value of PSNR will rise and the value of MSE 
will be less. 
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Figure 8. Comparison of different modifications of Lena. 
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In the numerical comparison, Figure 8 shows the extracted watermark and modified region of 
Lena. We used PSNR and MSE numeric to show that a larger modified region causes a higher value 
of PSNR and a lower value of MSE according to Equations (8) and (9). The experimental figures 
are shown in Figure 10. In Figure 10a1, the PSNR and MSE values are infinite and 0, respectively. 
Figure 10a1 is equal to the original image. We compare it with Figure 10b1–e1. In Figure 10b1, the 
PSNR with MSE values are + 21.58 dB with + 0.01 dB, respectively. In Figure 10c1, the PSNR 
with MSE values are + 17.12 dB with + 0.02 dB, respectively. In Figure 10d1, the PSNR with MSE 
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values are + 15.79 dB with + 0.03 dB, respectively. In Figure 10e1, the PSNR with MSE values are 
+ 14.57 dB with + 0.06 dB, respectively. 

Figure 9. Comparison of the different modifications of Baboon. 
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Based on the above result, Figure 10 a1 is the least modified region, and Figure 10 e1 is the 
most modified region. Likewise, Figure 11 a1 is the least modified region, and Figure 11 e1 is the 
most modified region. As mentioned above, we derive the result that the size of the modified 
region will affect the value of PSNR and MSE. 
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Figure 10. Comparison of PSNR and MSE for Lena. 
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Besides, we also used the Baboon image to gauge PSNR and MSE. In Figure 11a1, the PSNR 
and MSE values are infinite and 0, respectively, so Figure 11a1 is equal to the original image. We 
compare it with Figures 11b1–e1, and Figure 11e1 of the modified region is a synthesis of Figure 
11c1 of the modified region and Figure 11d1 of the modified region. In Figure 11b1, the PSNR 
with MSE values are + 22.53 dB with + 0.01 dB, respectively. In Figure 11c1, the PSNR with MSE 
values are + 20.61 dB with + 0.01 dB, respectively. In Figure 11d1, the PSNR with MSE values are + 
14.06 dB with + 0.04 dB, respectively. In Figure 11e1, the PSNR with MSE values are + 13.19 dB 
with + 0.05 dB, respectively. In Figure 11 c1–e1, the numerical comparison experiments are the 
same as the PSNR and MSE rules. 
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Figure 11. Comparison of PSNR and MSE for Baboon. 
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5. Conclusions 

Rawat and Raman proposed a new watermarking scheme with chaos in which a watermark was 
produced by Arnold’s cat map. The watermark becomes an orderless image, and is then divided 
into eight blocks. A chaotic watermark is obtained by using the XOR operation between the binary 
watermark and the binary chaotic image, and then the chaotic watermark is embedded into an 
orderless image of each block of the least significant bit. However, the drawback is that Arnold's 
cat map cannot be changed, and when r cannot change, it will lack variability and randomness. 
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Supposing that one of the encryption images had been extracted, then the information of all images 
would be cracked. 

In order to address this problem, we propose the chaotic system with a time-variant 
watermarking scheme to enhance security by using the current time t to obtain the Logistic map 
and Arnold’s cat map. The current time decides the initial time of the Logistic map and Arnold’s 
cat map r times. In other words, the value of the Logistic map and Arnold's cat map depends on the 
current time. We can obtain the value of the chaotic binary watermark using the XOR operation 
between the value of the Logistic map and the value of the binary watermarked pixel. The location 
of the current image pixel depends on the value of Arnold's cat map and the location of the original 
image pixel. Therefore, the information of the binary original watermark will be more difficult to 
capture, because each encrypted image is manufactured at a different time. There are four 
advantages to our proposed scheme. First, it has high fidelity. Secondly, it enhances randomness 
and security. Thirdly, it protects the watermark and the watermarked image from different attacks, 
and finally, it can locate modified regions in watermarked images. In our further study, embedding 
watermarks will be applied in other fields, such as video and sound. In addition, we will discuss 
chaotic strategies and the cat map’s period. 
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Abstract: Large-scale binary integer programs occur frequently in many real-world

applications. For some binary integer problems, finding an optimal solution or even

a feasible solution is computationally expensive. In this paper, we develop a discrete

meta-control procedure to approximately solve large-scale binary integer programs

efficiently. The key idea is to map the vector of n binary decision variables into a scalar

function defined over a time interval [0, n] and construct a linear quadratic tracking (LQT)

problem that can be solved efficiently. We prove that an LQT formulation has an optimal

binary solution, analogous to a classical bang-bang control in continuous time. Our

LQT approach can provide advantages in reducing computation while generating a good

approximate solution. Numerical examples are presented to demonstrate the usefulness

of the proposed method.

Keywords: large-scale binary integer programs; linear quadratic tracking; optimal

control

1. Introduction

Many decision problems in economics and engineering can be formulated as binary integer

programming (BIP) problems. These BIP problems are often easy to state but difficult to solve due

to the fact that many of them are NP-hard [1], and even finding a feasible solution is considered
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NP-complete [2,3]. Because of their importance in formulating many practical problems, BIP

algorithms have been widely studied. These algorithms can be classified into exact and approximate

algorithms as follows [4]:

(1) Exact algorithms: The exact algorithms are guaranteed either to find an optimal solution or

prove that the problem is infeasible, but they are usually computationally expensive. Major methods

for BIP problems include branch and bound [5], branch-and-cut [6], branch-and-price [7], dynamic

programming methods [8], and semidefinite relaxations [9].

(2) Approximate algorithms: The approximate algorithms are used to achieve efficient running

time with a sacrifice in the quality of the solution found. Examples of well-known metaheuristics,

as an approximate approach, are simulated annealing [10], annealing adaptive search [11], cross

entropy [12], genetic algorithms [13] and nested partitions [14]. Moreover, many hybrid approaches

that combine both the exact and approximate algorithms have been studied to exploit the benefits of

each [15]. For additional references regarding large-scale BIP algorithms, see [1,16–18].

Another effective heuristic technique that transforms discrete optimization problems into

problems falling in the control theory and information theory or signal processing domains has also

been studied recently. In [19,20], circuit related techniques are used to transform unconstrained

discrete quadratic programming problems and provide high quality suboptimal solutions. Our focus

is on problems with linear objective functions, instead of quadratic, and linear equality constraints,

instead of unconstrained.

In our previous work [21], we introduced an approach to approximating a BIP solution using

continuous optimal control theory, which showed promise for large-scale problems. The key

innovation to our optimal control approach is to map the vector of n binary decision variables into

a scalar function defined over a time interval [0, n] and define a linear quadratic tracking (LQT)

problem that can be solved efficiently. In this paper, we use the same mapping, but instead of solving

the LQT problem in continuous time, we explore solving the LQT problem in discrete time, because

the time index in our reformulation of the BIP represents the dimension of the problem, {0, 1, . . . , n},
and a discrete time approach more accurately represents the partial summing reformulation than the

continuous approach. In addition, in our previous work, the transformation into a continuous LQT

problem was based on a reduced set of constraints, and a least squares approach was used to estimate

the error due to the constraint reduction. The algorithm iteratively solved the LQT problem and the

least squares problem until convergence conditions were satisfied. In this paper, instead of iteratively

solving the LQT problem based on a reduced set of constraints, we solve the LQT problem only once

for the full state space. This approach improves the flow of information for convergence.

We have chosen a quadratic criterion for our approach because its formalism includes a measure

of the residual entropy of the dynamics of the algorithm as it computes successive approximation to

a solution. Because of the mapping used in our algorithm, the information measure is given by the

inverse of the Riccati equation that we solve. That inverse of the solution of the Riccati equation is a

Fisher information matrix of the algorithm as a dynamical system [22,23]. The information from the

algorithm in the criterion determines the quality of the solution.
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The computational complexity for solving the LQT problem is polynomial in the time horizon,

the dimension of the state space and the number of control variables. In our LQT problem, the time

horizon is n, the dimension of the state space is the number of constraints m, and the number of

control variables is 1. Our meta-control approach solves the LQT problem to obtain an efficient

approximate solution to the original BIP problem.

In Section 2, our approach is presented in detail, and numerical results are given in Section 3. In

Section 4, we state the conclusions of this work.

2. Development of the Meta-Control Algorithm for BIP Problems

The original BIP problem is:

Problem 1.

min
uj

j=0,...,n−1

n−1∑
j=0

c̃juj (1)

s.t.

n−1∑
j=0

ãijuj = b̃i i = 1, . . . ,m (2)

uj ∈ {0, 1} j = 0, . . . , n− 1 (3)

where uj for j = 0, . . . , n− 1 are binary decision variables. We assume c̃j, ãij , and b̃i are real known

values for i = 1, . . . ,m and j = 0, . . . , n− 1 and there exists at least one feasible point.

2.1. Partial Summing Formulation

We start by defining partial summing variables as in [21] from the original BIP problem as

f0,j+1 = f0,j + c̃juj (4)

fi,j+1 = fi,j + ãijuj (5)

for i = 1, . . . ,m and j = 0, . . . , n− 1, with initial conditions f0,0 = fi,0 = 0.

For ease of notation, we create a new (m+ 1) × 1 vector xj = [f0,j, f1,j, . . . , fm,j]
T

and the ith

element of xj is denoted xj(i) for i = 1, . . . ,m+1 and for j = 0, . . . , n. We also define the (m+ 1)×1
vector aj = [c̃j, ã1j, . . . , ãmj]

T
for j = 0, . . . , n−1, and the (m+ 1)×1 vector b =

[
0, b̃1, . . . , b̃m

]T
,

where the ith element of b is denoted b(i) for i = 1, . . . ,m+ 1. We define Problem 2 as follows, with

initial conditions x0 as a vector of zeros:

Problem 2.

min
uj

j=0,...,n−1

xn(1)

s.t. xj+1 = xj + ajuj j = 0, . . . , n− 1 (6)

x0 = 0 (7)

xn(i) = b(i) i = 2, . . . ,m+ 1 (8)

uj(uj − 1) = 0 j = 0, . . . , n− 1 (9)
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Proposition 1. Problem 2 exactly represents Problem 1.

The proof is straight-forward; the constraints ensure feasibility and the objective function is

equivalent to Problem 1.

2.2. Construct the LQT Problem

We construct an LQT problem, Problem 3, by first defining an error term, as a measure of

unsatisfied constraints, an (m+ 1)× 1 vector ej for j = 0, . . . , n, as

ej = xj − b (10)

We develop the dynamics in terms of the measure ej , by combining Equation (10) with

Equation (6), yielding

ej+1 = ej + ajuj (11)

and note that e0 = −b, given initial conditions x0 = 0. The criterion is to minimize the measure of

unsatisfied constraints using a terminal penalty for infeasibility and objective function value, which

is given by

J(u) =
1

2

n−1∑
j=0

eTj Qjej +
1

2
eTnFen (12)

We also relax constraint (9) with 0 ≤ uj ≤ 1.

The parameters Qj and F are positive semi-definite and user-specified. The (m + 1) × (m + 1)

matrix Qj is used to penalize the unsatisfied constraints. The (m+ 1)× (m+ 1) matrix F is used to

penalize the terminating conditions and aid in minimizing the original objective function.

We now summarize our discrete LQT problem with the criterion in Equation (12) as follows:

Problem 3.

min
uj

j=0,...,n−1

J(u) =
1

2

n−1∑
j=0

eTj Qjej +
1

2
eTnFen (13)

s.t. ej+1 = ej + ajuj j = 0, . . . , n− 1 (14)

0 ≤ uj ≤ 1 j = 0, . . . , n− 1 (15)

e0 = −b (16)

It is known that solving Problem 3 directly is numerically unstable [24]. However, Theorem 1

suggests an algorithmic approach to solving Problem 3, by making a discrete analog to a bang-bang

control with a switching function.

Theorem 1. Analogous to a bang-bang control in continuous time, Problem 3 has an optimal binary
solution with uj ∈ {0, 1} for discrete times j = 0, 1, . . . , n− 1 with non-singular arcs.

Proof. We first construct the Hamiltonian function [24] as follows

H(ej, λj+1, uj) =
1

2
eTj Qjej + λT

j+1 (ej + ajuj) (17)
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where λj is the (m+ 1)× 1 costate vector, for j = 0, . . . , n− 1, and it satisfies

λj = λj+1 +Qjej and λn = Fen (18)

Let e∗, λ∗ and u∗ be the optimal solution, by the necessary conditions for the optimality [24], we

have: H(e∗j , λ
∗
j+1, u

∗
j) ≤ H(e∗j , λ

∗
j+1, uj)

⇒ 1

2
e∗Tj Qje

∗
j + λ∗T

j+1

(
e∗j + aju

∗
j

) ≤ 1

2
e∗Tj Qje

∗
j + λ∗T

j+1

(
e∗j + ajuj

)
⇒ λ∗T

j+1aju
∗
j ≤ λ∗T

j+1ajuj, ∀uj ∈ [0, 1] (19)

Thus, we have

u∗
j =

⎧⎪⎨
⎪⎩

1 if λ∗T
j+1aj < 0

∈ [0, 1] if λ∗T
j+1aj = 0

0 if λ∗T
j+1aj > 0

(20)

If λ∗T
j+1aj �= 0, binary values for u∗

j are determined by Equation (20). When λ∗T
j+1aj = 0, the arc

is singular, and we may reintroduce constraint (9), uj(1− uj) = 0, to force a binary solution.

To get an intuitive understanding of the singularity issue, suppose all Qj = 0, and the element

at row 1, column 1 of matrix F equals zero. Then Problem 3 reduces to minimize the infeasibility

penalty term, 1
2

m∑
i=1

[(
n−1∑
k=0

ãikuk − b̃i

)2

Fi

]
. If this term equals zero, then en = 0, satisfying all of

the original constraints (2), and λn = 0 from Equation (18), and because Qj = 0, all λj = 0. Then

λ∗T
j+1aj = 0 for all j. However, if Qj and the first element of F have positive values, then λ∗T

j+1aj may

be positive or negative and Equation (20) is useful. An auxiliary problem to determine values for Qj

and F that resolve the singularity will be explored in future research.

To create an LQT problem that is practical to solve, we introduce a penalty term uj(uj − 1)Rj in

the criterion, where Rj is a Lagrangian multiplier associated with constraint (9):

Problem 4.

min
uj

j=0,...,n−1

1

2

n−1∑
j=0

(
eTj Qjej + uj(uj − 1)Rj

)
+

1

2
eTnFen (21)

s.t. ej+1 = ej + ajuj j = 0, . . . , n− 1 (22)

e0 = −b (23)

The optimal control for Problem 4 ûj can be solved by the standard dynamic programming

method [25] (see appendix for details). The computation associated with solving Problem 4 is

O(nm3). We then obtain an approximate binary solution to the original BIP problem as follows:

u∗
j =

{
0 for ûj < 0.5

1 for ûj ≥ 0.5
(24)

for j = 0, 1, . . . , n− 1.
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Motivated by the successive overrelaxation method [26], we introduce a weighting factor ω to

improve the stability of our proposed method. Rather than applying quantization at the final step as

shown in Equation (24), we did quantization at each step and propagate the binary value ūj during

the dynamic programming procedure (see appendix for details). At the final step, we then replace ûj

in Equation (24) with ωûj + (1− ω)ūj to get the approximate binary solution.

3. Numerical Results

We explore the limits of the algorithm with some test problems obtained from MIPLIB [27].

MIPLIB is a standard and widely used benchmark for comparing the performance of various mixed

integer programming algorithms, and most of the problems in the MIPLIB arise from real-world

applications. We have presented 6 tests in our numerical result section, where air01, air03, air04,

air05 and nw04 are airline crew scheduling type problems. The dimensions and the optimal solutions

for the test problems and the numerical results are shown in Table 1. The CPU time is given for

a single run with branch-and-cut with CPLEX, branch-and-bound in MATLAB, and our method

in MATLAB. In Table 1, the feasibility measure is the summation of the absolute differences of

feasibility over all constraints, and the optimality measure is defined as f̂−f∗
fW−f∗ [28], where f ∗

denotes the true objective function value, f̂ denotes the function value found by our proposed method

and fW denotes the worst (largest) function value. All tests are done on an Intel(R) Core(TM) i3

CPU @2.4 GHz machine under 64bit Windows7 with 4 GB RAM.

Table 1. Test Problems from MIPLIB.

Time(sec) with Time(sec) with Time(sec) with
Problem n m branch-and-cut branch-and-bound our method Feasibility Optimality

in CPLEX in MATLAB in MATLAB measure measure (%)

enigma 21 100 0.23 4.02 0.03 18 0

air01 771 23 0.28 2.86 0.22 13 2.55%

air03 124 10,757 1.05 17.64 34.00 138 -11.68%

air04 8,904 823 34.35 too large to run 3231.5 811 1.43%

air05 426 7,195 26.66 too large to run 698.6 322 -0.55%

nw04 87,482 36 9.83 too large to run 37.9 19 1.36%

In the numerical tests, we experimented with different values for parameters Qj , Rj and F on

the small problems enigma and air01. The diagonal elements of Qj were set to 0, 1 and 10, and

we found that smaller values were better, so we report results with Qj = 0 in Table 1. We also

tested values for parameter Rj set to 1, 10, 100 and 1000, and there was not much difference in

performance, so we set Rj = 10. As for parameter F , we found that bigger values were better, so we

set the diagonal elements of F to 100, 000. The parameters Qj penalize the intermediate error values

whereas the parameter F penalizes the terminal error at n. Since the terminal error better reflects

the original BIP optimality and infeasibility measures, intuitively, it makes sense to set Qj = 0 and

F large.

Values for the weighting factor ω ranged between 0.5 to 0.9 in our exploratory tests, and the best

results were typically for ω between 0.5 and 0.6.
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CPLEX ran very quickly and always found an optimal solution; branch-and-bound in MATLAB

was slower and only found a feasible solution for enigma, air01 and air03; our method in MATLAB

ran slower than CPLEX, but generally faster than branch-and-bound in MATLAB. Even though

our numerical results are “worse" than CPLEX, our methodology has a potential for extension with

polynomial computational complexity.

4. Summary and Conclusion

The meta-control algorithm for approximately solving large-scale BIPs shows much promise

because the computational complexity is linear in n (the number of variables) and polynomial in m

(the number of constraints), specifically on the order of O(nm3). An LQT approach is suggested by

the result in Theorem 1, which proves the existence of an optimal binary solution to the LQT problem.

We provide numerical results with experimentally chosen parameter values that demonstrate the

effectiveness of our approach.

In our future research, we will develop an auxiliary iterative method that can provide an explicit

algorithm for detecting valid parameter values automatically and investigate other ways to integrate

the quantization into the meta-control algorithm to improve the performance of this algorithm. We

will also develop a stochastic decomposition method to reduce the computation time.
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Appendix

We solve for ûj in Problem 4 using a dynamic programming approach. We write the cost-to-go

equation as:

V (ej, j) = min
uj

{
1
2
eTj Qjej +

1
2
uj(uj − 1)Rj + V (ej+1, j + 1)

}
(25)

with V (en, n) =
1
2
eTnFen, and equate it to the Riccati form

V (ej, j) =
1

2
eTj Σjej + eTj Ψj + Ωj (26)

where Σj represents a symmetric positive-definite (m+ 1) × (m+ 1) matrix, Ψj is a positive

(m+ 1)× 1 vector, and Ωj is a positive scalar.
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Combining the Equations (25), (26) and the dynamics in Equation (22), we have

V (ej, j) = min
uj

{
1

2
eTj Qjej +

1

2
uj(uj − 1)Rj +

1

2

(
ej + ajuj

)T
Σj+1

(
ej + ajuj

)

+
(
ej + ajuj

)T
Ψj+1 + Ωj+1

}
(27)

In order to minimize this expression we isolate the terms with uj in them

1

2
uj(uj − 1)Rj +

1

2
u2
ja

T
j Σj+1aj + uja

T
j Σj+1ej + uja

T
j Ψj+1

and take the derivative with respect to uj and set the value to 0,

(uj − 1

2
)Rj + aTj Σj+1ajuj + aTj Σj+1ej + aTj Ψj+1 = 0

This yields the solution uj for the optimal control

ûj =
1
2
Rj − aTj Σj+1ej − aTj Ψj+1

Rj + aTj Σj+1aj
(28)

In order to simplify notation, we let

Sj =
−aTj Σj+1

Rj + aTj Σj+1aj
(29)

δj =
1
2
Rj − aTj Ψj+1

Rj + aTj Σj+1aj
(30)

and we can now write

ûj = Sjej + δj (31)

We equate the Riccati form Equation (26) with the value function in Equation (27) evaluated at

ûj from Equation (31), yielding

1

2
eTj Σjej + eTj Ψj + Ωj =

1

2
eTj Qjej +

1

2
(Sjej + δj)(Sjej + δj − 1)Rj

+
1

2

(
ej + aj(Sjej + δj)

)T
Σj+1

(
ej + aj(Sjej + δj)

)
+
(
ej + aj(Sjej + δj)

)T
Ψj+1 + Ωj+1

We now solve for Σj and Ψj by separating the quadratic terms from the linear terms in ej .

Isolating the quadratic terms in ej , we have

1

2
eTj Σjej =

1

2
eTj Qjej +

1

2
eTj S

T
j RjSjej +

1

2
eTj
(
I + ajSj

)T
Σj+1

(
I + ajSj

)
ej

which yields the Riccati equation corresponding to Σj

Σj = Qj + ST
j RjSj +

(
I + ajSj

)T
Σj+1

(
I + ajSj

)
(32)
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Isolating the linear terms in ej , we have

eTj Ψj = eTj S
T
j (δj −

1

2
)Rj + eTj

(
I + ajSj

)T
Σj+1ajδj+1 + eTj

(
I + ajSj

)T
Ψj+1

and factoring out eTj , the tracking equation for Ψj is

Ψj =ST
j (δj −

1

2
)Rj +

(
I + ajSj

)T
Σj+1ajδj +

(
I + ajSj

)T
Ψj+1 (33)

Therefore, Σj and Ψj can be found backwards in time by Equations (32) and (33) from initial

conditions Σn = F,Ψn = 0.

Given Σj and Ψj , we can calculate ûj from Equations (28), (22) and (23). To calculate ūj for our

implementation with quantization, we use the same Σj and Ψj , but introduce rounding to the nearest

integer in Equations (28), (22) and (23) to obtain:

ūj = int

[
1
2
Rj − aTj Σj+1êj − aTj Ψj+1

Rj + aTj Σj+1aj

]
(34)

and

ēj+1 = int[ēj + ajūj] (35)

with ē0 = −int[b].
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Abstract: We study the phenomenon of periodic pulling which occurs in certain 
integrated microcircuits of relevant interest in applications, namely the injection-locked 
frequency dividers (ILFDs). They are modelled as second-order driven oscillators 
working in the subharmonic (secondary) resonance regime, i.e., when the self-
oscillating frequency is close (resonant) to an integer submultiple n of the driving 
frequency. Under the assumption of weak injection, we find the spectrum of the 
system’s oscillatory response in the unlocked mode through closed-form expressions, 
showing that such spectrum is double-sided and asymmetric, unlike the single-sided 
spectrum of systems with primary resonance (n � 1). An analytical expression for the 
amplitude modulation of the oscillatory response is also presented. Numerical results 
are presented to support theoretical relations derived. 

Keywords: Injection pulling; analog frequency dividers; injection-locked frequency 
dividers (ILFDs); nonlinear oscillators; synchronization; averaging method 

 

1. Introduction 

It is known that periodic pulling (or frequency pulling) is a general phenomenon that happens in 
any system involving the injection locking of self-sustained oscillations when the frequency of the 
periodic forcing is just outside the locking region (Arnold’s tongue) [1–3]. The occurrence of the 
periodic pulling is easily recognized by the characteristic aspect of the pulled oscillations, usually 
called beats, which exhibit a simultaneous modulation of amplitude and frequency with a pulse-like 
envelope of the amplitude. A theoretical investigation of the oscillatory response in the pulling 
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mode of driven oscillators is given in a number of papers (see [1–12] and references therein) 
starting from the pioneering investigation of Rjasin [6], who first performed a harmonic analysis of 
beats to establish the spectral composition. Later on, an approximate, but physically insightful, 
treatment of the pulling was given in a celebrated paper of Adler [7], who obtained an analytical 
expression for the phase difference between the forcing and the system response neglecting the 
amplitude modulation. Based on that approximation, valid for the regime of so-called weak 
injections, the spectrum of beats was derived analytically many years later by Armand [9], by using 
an appealing method as simple as effective. 

The features of the spectrum of beats have therefore already been known for a long time and can 
be summarized as follows: unlike the single-line spectrum in a locked mode, or the two-lines 
spectrum in a quasi-periodic mode far from the locking region, in a pulling mode the spectrum has 
a single sideband and is spread over many frequencies, starting from the free-running frequency, in 
the opposite side to that of the injected frequency. This result [9] has been reported in literature to 
explain experimental observations of pulling in microwave solid-state oscillators [10], in a 
unijunction transistor based oscillator [11], and in many papers dealing with the study of plasma 
instabilities and with periodically driven oscillating plasma systems (see [11,12], and references 
therein). These systems are well modeled by the van der Pol equation and exhibit a variety of 
dynamical phenomena observed in forced oscillators of van der Pol type [13–15]. In particular, 
mode locking and periodic pulling, bifurcations between quasi-periodic and frequency entrained 
states have been observed, as well as period-doubling bifurcations as a route to deterministic  
chaos [12], for which the study of chaotic dynamics and the derivation of lower bounds on their 
topological entropy is yet an attractive problem [13–17]. 

The pulling is observable in many electronic systems containing on-chip differential LC 
oscillators, and its occurrence is generally undesirable and harmful [18,19]. It is produced as a 
consequence of the unavoidable coupling of parts of the circuit, through the supply and the 
common substrate, or through parasitic paths [18,19]. It can therefore happen that an oscillator is 
subject to the action of an undesired periodic signal and, depending on its frequency, can operate in 
a locked-mode or in a pulling mode. Attempts to analytically calculate the simultaneous amplitude 
and frequency modulation in the pulling modes were recently made in [20,21] in the more simple 
case that the driving frequency is close to the self-oscillating frequency (primary resonance). The 
pulling phenomenon in injection-locked frequency dividers (ILFDs) is even more worrying, and its 
onset is to be avoided for a proper circuit operation as a divider. This imposes from one hand a 
reliable prediction of the locking range [22,23] and, on the other hand, a thorough understanding of 
the spectral properties of the oscillatory response during the pulling to avoid its effects. However, 
as far as is known to the authors, the pulling phenomenon in the frequency dividers, which operate 
in subharmonic resonance regime (secondary resonance), has never been investigated and some 
facets of the phenomenon yet are not known. 

The present paper is devoted to the study of the pulling in subharmonic resonant systems, which 
is not only of theoretical but also of practical interest. By widening the analysis method in [9], we 
derive an analytical procedure for finding the spectral components of the unlocked oscillation in 
the pulling mode of injection-locked frequency dividers. The procedure is simple and 
straightforward, and allows us to calculate such components in the form of series taking into 
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account both the amplitude and frequency modulation of the unlocked oscillation. We show that 
the power spectrum of the unlocked signal in the pulling mode is double-sided, and asymmetric, 
with respect to the natural frequency of the free-running oscillator, in contrast to the single-sided 
spectrum of systems with primary resonance [20,21]. Numerical results are presented to support 
theoretical relations derived. 

2. Nonlinear Model of Injection-Locked LC Frequency Dividers 

The circuit shown in Figure 1a is representative of the wide class of on-chip integrated circuits 
that perform the frequency division by exploiting the known phenomenon of injection-locking. It 
consists of a differential LC oscillator driven by a sinusoidal synchronization signal inv , applied to 

the gate of the tail device Mc, , with a frequency close to an integer multiple n of the LC-tank 
resonance frequency 0U , i.e., cos( )in in inv V tU� , in nU U� , 0 1 / LCU � , 0U U2 . 

Figure 1. (a) Circuit diagram of a conventional ILFD with injection via tail device; (b) 
its associated representation as a forced nonlinear LC oscillator. 

            � �

 

Between the two output nodes, the circuit can be schematized by the simple equivalent circuit 
shown in Figure 1b, where R denotes the losses of the LC-tank. The active part of the circuit, made 
of two cross-coupled MOS devices biased by the tail device, is represented by a memoryless  
two-terminal whose constitutive relationship i v�  depends on the external signal inv . To account 

for the frequency dependent behavior of the active part, due to the intrinsic capacitive effects of 
devices at high frequency operation, an equivalent capacitor can be used in the circuit of Figure 1b. 
In the present analysis, we investigate the behaviour of the equivalent circuit shown in Figure 1b, 
assuming that ( , )ini i v v�  is a saturation function of the form 0(1 )sign( )ini I k v v� � �  [22]. As a 
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rule, the LC-tank is assumed to filter out all of the harmonics of the forcing current, so that the output 
voltage is purely sinusoidal, and the amplitude of the injection signal is assumed sufficiently small. 

The forced LC oscillator shown in Figure 1b can operate as an injection-locked oscillator, if the 
external independent signal has a frequency close to the tank resonant frequency (primary 
resonance), while it can operate as an injection-locked frequency divider if the external signal has a 
frequency close to an integer multiple of the tank resonant frequency (secondary, or subharmonic 
resonance). In the following, we focus on the circuit operation as a divider with 2n � . 

By making the substitution t� U�  and introducing the frequency detuning parameter 
2 2
0 01 / 2( ) /R U U U U U� � 2 � , the describing equation of circuit in Figure 1b: 

2 1 1 1 ( , )inD D v D i v v
RC LC C

� �� � � �� �
� �

 (1)

can be written in the perturbation form: 

	 
2 ( , )inD v v v D v R i v v� �R �� � � �  (2)

where D�  denotes the derivative operator with respect to � , 0 / ( )Q� U U�  is a small 
dimensionless parameter tending to zero as 1 / Q , where 0Q RCU�  denotes the quality factor of 
the resonant circuit. Note that R  is a small parameter of the order of � , that is, ( )OR �� .  

The theory of the driven oscillator circuit in Figure 1b [22,23] predicts the existence of stable 
locked modes, if the ratio /inU U  is close to 2. In these states the ratio /inU U  remains constant, 
while the driving frequency is varied in a certain interval, called locking range. This interval 
widens by increasing the amplitude inV  of the driving signal and forms a tongue-shaped region, 
usually named Arnol’d tongue, in the parameter plane ( ,in inV U ). In the locked modes the phase 
relation between driving signal and locked oscillation is independent of time (phase-locking). The 
locking region has been studied in details in [22], and the bifurcation behavior which occurs at the 
transition point from entrainment to the loss of entrainment, in [24]. This does not exhaust the 
possible bifurcations. From the theory of dynamical systems we know that systems like the one in 
Figure 1b exhibit a multitude of dynamical regimes that occur in different parameter regions and, 
consequently, different bifurcations may occur [13–15]. In particular, period-doubling bifurcations, 
which generally happen in Arnold’s tongues for strong amplitude of the driving signal, are 
noteworthy because in the limit of their sequence a chaotic behavior occurs. The structure of the 
bifurcation diagrams, the possible synchronization regimes, and the connection between 
desynchronization and chaos are reported elsewhere, together with the study of chaos in terms of 
the topological entropy [13–17]. 

In the following, we analyze the circuit operation in the region outside the locking region, called 
quasi-periodicity region, where the frequency entrainment is not possible as a consequence of the 
inherently different interaction between the driving signal and the oscillator. In particular, we focus 
on the system’s response in the close proximity of the Arnold tongue, where the pulling 
phenomenon can be observed, just as in the case of the primary resonance. It is known that, near to 
the Arnold tongue, this interaction manifests as a periodically repeated and incomplete frequency 
entrainment process, known as periodic pulling. This process causes a simultaneous modulation of 
amplitude and phase of the system’s oscillatory response, which has a complex time evolution  
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and exhibits a power spectrum with very dense sidebands, which will be investigated in the  
next section. 

As in the pulling modes neither the amplitude of oscillation, nor the instantaneous frequency 
remain constant, we seek a solution of Equation (2) in the form: 

( ) ( )cos[ ( )]v t V t t tU I� �  (3)

where ( )tI  denotes the phase difference between the output voltage ( )v t  and the driving signal 
( )inv t . The formulation (2) of the circuit equation allows us to find its solution by the methods of 

asymptotic expansion [1–3,25], for small � . By solving Equation (2) by the asymptotic method of 
Bogolyubov and Mitropol’skii [25] we obtain two coupled truncated equations by which we 
determine the amplitude ( )V t  and the phase ( )tI . Under the assumption that the amplitude of the 
injection signal is sufficiently small, it can be shown that the averaging equations associated to 
Equation (2) are [22]: 

� �0( ) 1 cos 2 ( )
2 3

in
SS

k VV t V V t
Q
U I� �� �� � � �� �Z Y� �� �

�  (4)

� �0( ) sin 2 ( )
( ) 3
SS inV k Vt t

V t Q
UI I� � ��  (5)

where 0U U� � �  is the frequency detuning, and 04 /SSV RI ��  is the steady-state amplitude of 
the free-running oscillation, that is, for 0inv � . Equations (4) and (5) allow us to calculate both the 
amplitude and the phase modulation of the output voltage, which are slowly-varying function on a 
time scale t� , and to study the nonlinear dynamics of the system in all of the operating modes. In 
the next section, we show that under a suitable approximation this function can be calculated in a 
closed form.  

3. Analytical Treatment of Periodic Pulling 

To get a comprehensive view of the pulling phenomenon in the circuit in Figure 1, we need to 
solve the nonlinear system of coupled differential Equations (4) and (5). However, Equations (4) 
and (5) cannot be solved by quadrature, in the general case, as generally it happens for the 
averaging equations [4]. This is possible in the more simple case ( ) ( ) 0t V tI � �� �  that defines the 
phase-locked operation mode, which has been analyzed earlier [22]. The problem of solving 
Equations (4) and (5) becomes analytically tractable in the weak injection regime when the 
amplitude inV  of the external signal is sufficiently small. This entails a substantial simplification 
since the assumption ( ) ( )SSV t V v t� � � , with ( ) SSv t V@@�  can be made, which is used in all the 
existing analytical treatments of the periodic pulling [7–9,20,21]. Under this assumption, by 
making the substitutions 28 I� , 2� � � , and introducing the dimensionless pulling parameter 

0 /m Q� U� � , system (4), (5) reduces to a system of decoupled equations: 

cospv v HU 8� � ��� �  (6)

sin8 � 8� � � ��  (7)
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where / 3inm kV�  is a parameter dependent on the amplitude of the driving signal, p SSH V mU�  
and 0 / 2p QU U� . 

System (6), (7) is derived assuming that the amplitude modulation does not significantly affect 
the phase variation in Equation (5), and thus considering the amplitude as a parameter, equal to 

SSV . This allows us to analyze the phase dynamics of a driven oscillator independently from the 
amplitude, through a problem of reduced-order based on the single Equation (7). Note that this 
equation is formally similar to the celebrated Adler's equation who first introduced that  
approach [7], which was subsequently taken up in [26] using a nonlinear model and the 
perturbation theory [27]. The solution of Equation (7), valid for unlocked oscillation modes, is [7]: 

1 2 2( ) 2 tan 1 tan 1
2

t t8 � � ��� ��� �
� � � �Z Y� �

� �� �
. (8)

By exploiting the knowledge of the phase modulation (8), Armand [9] was able to analytically 
calculate the spectrum of the unlocked oscillation by using a simple and effective expedient, 
although little appreciated. In the present analysis, starting from the basic idea in [9], we show that, 
when ( ) SSV t V� , the spectrum of Equation (3) can be obtained by the spectrum of the phase factor 
exp( ( ))i tI  of the complex signal: 

( )ˆ t i t
SSv V e eU I�  . (9)

In the next two sections, we show how to calculate the phase factor exp[ ( )]i tI  from (8), and 
how the calculation of the spectrum can be improved including the correction due to the amplitude 
modulation v� , i.e., finding the more accurate function: 

( )( ) t i t
SSv V v e eU I� ��

�  (10)

obtained by solving Equation (6). 

3.1. Phase Modulation and Spectrum 

Firstly, we analyze the phase dynamics through the Adler’s like Equation (7). We note that, as 
28 I� , from Equation (8) the time evolution of the phase is: 

	 
1 2 2( ) tan 1 tan 1t tI � � ��� � � � � . (11)

The periodic function ( )tI  is essentially equivalent to Equation (8), except for the period that is 
equal to one-half, and thus the frequency:  

2
22 1 2 1 p�

�� �
: � � � � � � � ��� �

 (12)

is double. This frequency is usually termed beat frequency. We also note that the condition 
( ) 0tI ��  corresponds to the mode-locking condition in which the circuit in Figure 1 operates in the 

synchronous mode, under frequency entrainment conditions, as a frequency divider. That condition 
can be satisfied when | | 1� � , i.e., for 0| | /m QU� @ , which defines the critical detuning associated 
with the onset of pulling: 
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0
p m

Q
U

� � S  (13)

In the present paper we are interested specifically in values | | 1� @ . When this inequality is 
fulfilled, the circuit ceases to behave like a frequency divider by 2, and beats take place in the 
circuit. The difference between the frequencies of the external signal and the output voltage 
becomes ( )tU I� � . 

By making the substitution sin� _� , that defines a different pulling parameter lying in the 
interval [ / 2, / 2]� �� , we can write cos_: �� . Then, following the procedure in [9], from 
Equation (8) we can express cos8  in terms of the beat frequency : . By using simple 
trigonometric relationships, we get: 

( )

( )
/tan

t
2

/an 2
i

i t

i ti
i e

e
e

_

_
8 _

_

: �

: �
�

�
�

 (14)

or, equivalently: 
( ) ( 2 )

( ) ( 2 ) 1
1i i t i t

i i t
i

i t
e e e
e e e

e
_

8
_ _

_ _ _

: � : �

: � : �
� �

� �
�

�
�

 (15)

allowing us to relate the phase factor exp[ ( )]i t8  to the beat frequency : . By developing the 
function of the right hand side of Equation (14) in a power series of exp[ ( )]y i t _� : � , we find: 
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where we have put: 
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Taking into account that arcsin_ �� , we deduce that the parameter T has the same sign as �  
and lies in the range [ 1,  1]� . From the above it results that the phase factor in Equation (9) can be 
developed into the Fourier series:  
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This is a well-known result [9] that provides some interesting insight into the spectral properties 
of the system’s oscillatory response in the case of a strong periodic pulling for systems with a 
primary resonance, i.e., when 8  coincides with the phase angle between the driving signal and the 
system’s response. The spectrum of exp[ ( )]i t8  extends on only one side with respect to origin, 
i.e., for 0/ 2inU U@  ( 0� � ) the spectrum components at a frequency less than zero are cancelled 
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out, while for 0/ 2inU U�  ( 0� @ ) this cancellation occurs for the spectrum components at a 
frequency greater than zero. In other words, the non vanishing sideband lies always on the side 
opposite to the frequency perturbation induced by the driving signal. The spectral density of the 
side band is thus given by a geometric series and has an unusual triangular shaped envelope in a 
semi-logarithmic plot. Note that, by increasing �  the beat frequency :  decreases and the time 
evolution of the phase becomes increasingly nonlinear. Consequently, more spectral lines are 
added making denser the spectrum.  

The spectrum components in Equation (18) allow us to find the solution of Equation (6) in a 
closed-form, as we will show in the next section. However, to find the spectrum components of 

( )V t  under the approximation 0v �� , we need to find the spectrum of exp[ ( )]i tI , according to 
Equation (9). To this ends, it is convenient to use the relationship (15) for exp[ ( )]i tI , which we 
write in the form: 
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where 1 /z y�  and exp[ ( )]y i t _� : �  as before. Taking into account that the function 

	 
 	 
11 11 (/ )Bz z B ��� �� , exp )(B i_� , can be developed in a power series in the neighborhood 
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we deduce that the coefficients kA  of the power series for Equation (20), 
2

0 1 2( ) / /y A A y A yf � � � �� , are obtained in a closed-form by substituting the right hand side 

of Equation (22) in the power series for the function 1 B x� � , given by: 
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The leading coefficients kA  of the above series useful to evaluate the main output harmonics 

are obtained by the following formulas: 
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(24)

To obtain the coefficients of the power series for ( )g y , i.e., 2
0 1 2( )g y B B y B y� � � �� , we 

observe that the function 	 
1 11/ yBy B�� ��  can be developed in a power series in a 

neighborhood of 0y � , and that: 

1
2 1 ( 1)

1
1

1 (1 ) (
1

1)k k k

k

yx
BB

B B B y
y �

%�
� � �

�

�
� �� ��

� � . (25)

Consequently, the coefficients kB  are obtained by substituting the right-hand side of  

Equation (25) into the power series of the function 1 / 1 1 / B x� � , given by:  
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With this substitution, it can be shown that the coefficients can be expressed by the  
following formulas: 
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Finally, performing the product of the power series for ( )f z  and ( )g y , expressed by 
Equations (24) and (27), we find the coefficients of the power series of exp[ ( )]i tI  in the 
following explicit form: 
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where the coefficients mC  are expressed in terms of coefficients kA  and kB  up to order N in the 

following explicit form: 
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By virtue of the frequency shift induced by Equation (9), the coefficient mC  gives the m-th 
component of the spectrum of the output voltage ( ) cos( ( ))SSv t V t tU I� � . From Equation (29) we 
deduce that sidebands, referenced to the frequency / 2inU U� , are generated at frequency 

b mU U� � : . Note that, according to Equation (12), the spacing :  between sidebands can be 
smaller or greater than the frequency detuning 0U U� � � , differently from the case of primary 
resonance where it is always smaller than � . 

The numerical calculation of the sum of the truncated power series for exp[ ]iI  showed that the 
error between the sum of the series (28) and the function (19), reduces increasing the number of 
terms taken into account. In Figure 2, we reported the real part and the imaginary part of the 
function in (19) and of the power series (28) to show its convergence. 

Figure 2. (a) Real parts and (b) imaginary parts of the functions (19) and (28) 
evaluated for tJ _� : �  ranging between 0 and 2� . 

(a) 

(b) 
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It is worth noting that, unlike what happens in the case of a driven oscillator (primary 
resonance), the oscillatory response of a divider in a pulling mode shows a double-sided 
asymmetric spectrum with respect to U , as it follows from Equations (29) and (9). The time 
evolution of the phase ( )tI  and the frequency spectrum of cos( ( ))SSV t tU I�  are depicted in 

Figure 3, which shows the asymmetric spectral broadening process for some values of the pulling 
parameter � . For small values of � , the time evolution of the phase is nearly linear, and it 
becomes linear for 0� � , as expected for a conventional amplitude modulation. As �  increases, 
the evolution of the phase becomes increasingly nonlinear, alternating a range in which varies 
slowly to one where it varies rapidly, which gives rise to the known phenomenon of beats. 

Figure 3. Time evolution of ( )tI  from (11) and frequency spectrum of 
cos( ( ))SSV t tU I�  calculated numerically starting from (11) via FFT and calculated by 

analytical formulas (9), (28). Parameters are: 0 1 GHzf � , 10Q � , 0.1m � , 
1 VSSV � . In (a) and (b) 0.9� � , in (c) and (d) 0.5� � , in (e) and (f) 0.1� � . 
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3.2. Amplitude Modulation and Spectrum 

The previous analysis was carried out considering only the phase modulation, i.e., by neglecting 
the slowly-varying modulation of the amplitude. However, the time evolution of the amplitude 

( )V t  is actually coupled to the time evolution of the phase ( )tI , in our approximation through the 
term cos8  in Equation (6). Hence, both amplitude and phase evolve synchronously in time 
(periodic pulling). To find the amplitude modulation we can solve Equation (6) in a closed form by 
virtue of (18). 

For this purpose, we observe that the real part of the steady-state solution of the equation 
( ) ( ) tan( / 2)pv t t i HvU _� ����  is equal to zero, and that the real part of the steady-state solution of  

the equation: 
2
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for n odd, while for n even is equal to: 
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Consequently, we deduce that the harmonic components of ( )v t�  can be written in terms of the 
amplitude and phase in the following form: 
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and the amplitude nV�  is given by: 
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As expected, the harmonic components of ( )v t�  are separated by the beat frequency :  and 
decrease progressively according to (38). The frequency spectrum of ( )v t�  is shown in Figure 4 for 
some values of the pulling parameter � . We highlight that the signal modulating the oscillation 
amplitude has a rich spectrum for large values of � , while reduces to a simple sinusoid for small 
values of � . 

Figure 4. Frequency spectrum of v�  calculated numerically from time expressions 
(6),(11) via FFT and calculated by analytical formula (38). Parameters are: 0 1 GHzf � , 

10Q � , 0.1m � , 1 VSSV � . In (a) 0.9� � , in (b) 0.5� � , in (c) 0.1� � . 
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Finally, we observe that the spectrum of ( )v t�  can be used to improve the calculation of the 
spectrum of ( )V t  by simply making the product of two series, by virtue of Equation (10). 

4. Conclusions 

The presented investigation is the first attempt to develop an analytical procedure for analyzing 
the nonlinear dynamics of the periodic pulling in driven oscillators operating in a subharmonic 
resonance regime. The procedure has been developed by analyzing a driven oscillator of relevant 
practical interest, i.e., a divide-by-two injection-locked frequency divider, and it allows us to 
evaluate the spectrum and the amplitude modulation of the unlocked system’s response in the weak 
injection regime by closed-form expressions. It has proved a peculiar feature of the spectrum, 
which spreads asymmetrically on both sides of the driving signal frequency divided by two. 
Finally, we point out that the presented analysis procedure is general enough and it applies to any 
driven oscillator, irrespective of its nature, and to the more simple case of primary resonance. 
Moreover, the dynamical systems analyzed can be reduced to the classical forced van der Pol 
oscillator through a proper parameter setting. Consequently, results about the appearance of chaos 
and its investigation based on the topological entropy can be applied. 
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Abstract: In this paper, we present a methodological framework for conceptual 
modeling of assembly supply chain (ASC) networks. Models of such ASC networks are 
divided into classes on the basis of the numbers of initial suppliers. We provide a brief 
overview of select literature on the topic of structural complexity in assembly systems. 
Subsequently, the so called Vertex degree index for measuring a structural complexity 
of ASC networks is applied. This measure, which is based on the Shannon entropy, is 
well suited for the given purpose. Finally, we outline a generic model of quantitative 
complexity scale for ASC Networks. 

Keywords: structural complexity; numerical combination; vertex degree; class; networks 
 

1. Introduction 

Assembly supply chain (ASC) systems are becoming increasingly complex due to technological 
advancements and the use of geographically diverse sources of parts and components. One of the 
major challenges at the early configuration design stage is to make a decision about a suitable 
networked manufacturing structure that will satisfy the production functional requirements and will 
make managerial tasks simpler and more cost effective. In this context any reduction of redundant 
complexity of ASC is considered as a way to increase organizational performance and reduce 
operational inefficiencies. Furthermore, it is known that higher complexity degree of ASC systems 
makes it difficult to manage material and information flows from suppliers to end-users, because a 
small changes may lead to a massive reaction. Nonlinear systems that are unpredictable cannot be 
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solved exactly and need to be approximated. One way to approximate complex dynamic systems is 
to transform them into static structural models that could be evaluated with graph-based methods. 
Thus, structural complexity approaches that assess topological properties of networks are addressed 
in this paper. 

Structural complexity theory is a branch of computational complexity theory that aims to 
evaluate systems’ characteristics by analyzing their structural design. In structural complexity the 
main focus is on complexity classes, as opposed to the study of systems behavior to be conducted 
more efficiently. According to Hartmanis [1]: “structural complexity investigates both internal 
structures of complexity classes, and relations that hold between different complexity classes”. In 
this study our main intent is to identify topological classes of assembly supply chains (ASC). Our 
approach to generate classes of ASCs is based on some specific rules and logical restrictions 
described in Section 3. Subsequently, in Section 4, we present a method to compute the structural 
complexity of such networks. Finally, in the Conclusions section, the main contributions of our 
paper are mentioned. 

2. Related Works 

Complexity theory has captured the attention of the scientific community across the World and 
its proponents tout it as a dominant scientific trend [2]. According to ElMaraghy et al. [3], 
increasing complexity is one of the main challenges facing production companies. Complexity of 
systems has been defined in several ways because it has many aspects depending and on the 
viewpoint and context in which a system is analysed. For example, Kolmogorov complexity [4,5] 
is based on algorithmic information theory, which is related to Shannon entropy [6]. Both theories 
use the same unit—the bit— for measuring information. Shannon’s entropy has been generalized  
in different directions. For example, it has been widely used in biological and ecological  
networks [7–9].  

Information theories consider information complexity as the minimum description size of a 
system [10–12]. Related pertinent findings with regards to the impact of organization size on 
increasing differentiation have been expressed in the literature [13–15]. These authors maintain that 
increasing the differentiation of networks creates a control problem of integrating the differentiated 
subunits. According to Strogatz [16], the most basic issues in the study of complex networks are 
structural properties because structure always affects function. Moreover, he adds that there are 
missing unifying principles underlying their topology. The lack of such principles makes it difficult 
to evaluate of certain topological aspects of networks, including complexity. Structural or static 
complexity characteristics [17,18] are related to the fixed nature of products, hierarchical 
structures, processes and intensity of interactions between functionally differentiated subunits.  
So-called ‘layout complexity’ in this context is studied that has a significant impact on the 
operation and performance of manufacturing systems [19]. Hasan et al. [20] argue that “a good 
layout contributes to the overall efficiency of operations and can reduce by up to 50% the total 
operating expenses”. On the other hand, experiences show that managers prefer to continue  
with the inefficiencies of existing layouts rather than undergo expensive and time consuming 
layout redesign.  
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The relationship between product variety and manufacturing complexity in assembly systems 
and supply chains has been investigated by several authors [21–23]. Morse and You [24] developed 
the method called GapSpace to analyze assembly success in terms of non/interference of 
components. Zhu et al. [25] proposed a complexity measure based on quantifying human 
performance in manual mixed-model assembly lines where operators have to make choices for 
various assembly activities. An original approach to assessment of overall layout complexity was 
developed by Samy [26]. He proposed an overall Layout Complexity Index (LCI) which combines 
several indices. Obviously, there are many other research articles related to the topic of our paper. 
Based on a previous analysis of the literature sources it is possible to say that there are several 
aspects by which one could examine assembly supply chain complexity. In this paper, we propose 
to compute structural complexity with reduced effort using standardized classes of supply  
chain networks. 

3. Generating of Assembly Supply Chain Classes 

An assembly-type supply chains is one in which each node in the chain has at most one 
successor, but may have any number of predecessors. Such supply chain structures are convergent 
and can be divided into two types, modular and non-modular. In the modular structure, the 
intermediate sub-assemblers are understood as assembly modules, while the non-modular structure 
consists only from suppliers (initial nodes) and a final assembler (end node). The framework for 
creating topological classes of ASC networks follows the work of Hu et al. [27] who outlined the 
way forward to model possible supply chain structures, for example, with four original suppliers as 
shown in Figure 1.  

Figure 1. Possible ASC network with four initial suppliers (adopted from [27]). 

 

Generating all possible combinations of structures creates enormous combinatorial difficulties. 
Thus, it is proposed here to establish a framework for creating topological classes of assembly 
supply chains for non-modular and modular ASC networks based on number of initial nodes “i” 
respecting the following rules: 

1. The initial nodes “i” in topological alternatives are allocated to possible tiers tl (l = 1,...,m), 
ordered from left to right, except the tier tm, in which a final assembler is situated. We 
assume to model ASCs only with one final assembler. In a case when a real assembly 
process consists of more than one final assembler (for example 3) then it is advisable, for 
the purpose of the complexity measuring, to split the assembly network into three 
independent networks.  

2. The minimal number of initial nodes “i” in the first tier tl equals 2. 

No.1 No.2 No.3 No.4 No.5
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3. In case of non-modular assembly supply chain structure, the number of initial nodes “i” in 
the most upstream echelon is equal to the number of individual assembly parts or inputs  
(in = 1,..., r). 

Then, all possible structures for given number of initial nodes “i” can be created. An example of 
generating the sets of structures for the classes with numbers of initial nodes from 2 to 6 is shown  
in Figure 2. 

The numbers of all possible ASC structures for arbitrary class of a network can be determined 
by the following manner. We first need to calculate the sum of non-repeated combinations for each 
class of ASC structures through the so called the Cardinal Number [28]. The individual classes  
are determined by number of initial nodes “i”. Then, for any integer v � 2, we denote Cardinal 
Number by S(v) the finite set consisting of all q-tuples (v1, . . . , vq) of integers v1, . . . , vq � 2 with 
v1 + · · · + vq � v, where q is a non-negative integer. 

Figure 2. Graphical models of the selected classes of ASC structures. 

 

The Cardinal Number #S(v) of S(v) is equal to p(v) � 1, where p(v) denotes the number of 
partition of “v”, which increases quite rapidly with the number of initial nodes “i”. For instance, for 
i = 2, 3, 4, 5, 6, 7, 8, 9, 10, the cardinal numbers #S(v) are given by 1, 2, 4, 6, 10, 14, 21, 29, 41 
(A000065 sequence), respectively [29]. Subsequently, for each non-repeated combination “K”, a 
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multiplication coefficient “M(K)” has to be assigned. The combination “K” is established based on 
the number of inputs to the final assembler “in” which is situated in tier tm (see Figure 3). 

Figure 3. The transition of graphical ASC networks to the numerical combinations  
for i = 5. 

 

Then, M(i)—the number for all possible combinations of ASC structures for a given class can 
be obtained. This number is applied in Figure 4. 

Figure 4. Determination of total combinations of ASC networks related to the  
given classes. 

 

A critical step in determining all possible combinations of ASC structures for a given class (starting 
with a class for i = 2) are rules by which we can prescribe a multiplication coefficient “M(K)”.  
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In the case when we consider the number of initial nodes equals 2, there is only one numerical 
combination K = (1;1) corresponding with appropriate graphical model of assembly supply chain 
structure, and thus M(1;1) = 1. Similarly, for each non-repeated numerical combination “K” an exact 
logic rule has to be found. Accordingly we can formulate the following rules: 

R1: If the numerical combination “K” consists only of numeric characters (digits), assigned by 
symbol “n”, n � 2, e.g. K = (2;1) or K = (2;2;1) then M(2;1) or M(2;2;1) = 1. 

R2: If the numerical combination “K” consists just of one digit “3” and other digits are < 3,  
e.g., K = (3;1) or (3;2;2), then M(3;1) or M(3;2;2) = 2. 

R3: If the numerical combination “K” consists just of one digit “4” and other digits are < 3,  
e.g., K = (4;2), then M(4;2) = 5. 

Equally, we could continue to determine multiplication coefficients “M(K)” for similar cases 
when numerical combinations “K” consist just of one digit � 5 and other digits are < 3 or do not 
appear respectively. Then we would obtain the following multiplication coefficients: M(5;1) = 12; 
M(6;1) = 33; M(7;1) = 90; M(8;1) = 261; etc.. The multiplication coefficients for the given classes M(i) 
in such case, follow the Sloane Integer sequence 1, 2, 5,…, 261, 766, 2312, 7068,… (A000669 
sequence) [30], and are depicted in Table 1. 

Table 1. Determination of all relevant alternatives for structural combinations of  
ASC networks. 

The highest digit of combination set under 
condition that other digits are < 3 

Number of alternatives for the 
given combinations 

2 1 
3 2 
4 5 
… … 
8 261 
9 766 
… … 
17 7,305,788 
… … 

For other cases the following rules can be applied: 

R4: If the numerical combination “K” consists of arbitrary number of non-repeated digits 
assigned as “j,k,l,…, z” that are � 3 and other digits in the combination are < 3 or do not appear 
respectively, then the following calculation method can be used: 

	 
 zlkjzlkj MMMMM FFFF� ,...,,...,,,,  (1)

In order to apply this general rule under conditions specified in R4 the following examples can  
be shown: 

	 
 	 
 	 
 1025343;4 �F�F� MMM  (2)

	 
 	 
 	 
 	 
 12025123453;4;5 �FF�FF� MMMM  (3)
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 661123312361;2;3;6 �FFF�FFF� MMMMM  (4)

R5: If the numerical combination “K” consists just of two digits “3” and other digits in the 
combination are < 3 or do not appear respectively, then M(3;3) = 3. Calculation of this multiplication 
coefficient can be formally expressed in this manner: 

	 
 	 
 	 
	 
 	 
 3121 3,3333;3 ������ MMMM  (5)

R6: If the numerical combination “K” consists just of two digits “4” and other digits in the 
combination are < 3 or do not appear respectively, then M(4;4) = 15. Thus, M(4;4) is computed 
similarly to Equation (5): 

	 
 	 
 	 
	 
 	 
	 
 	 
	 
 	 
	 
 	 
 15123454321 4;4444444;4 ��������������� MMMMMMM  (6)

R7: If the numerical combination “K” consists just of two digits “5” and other digits in the 
combination are < 3 or do not appear respectively, then M(5;5) = 78 and the multiplication 
coefficient is computed similarly as Equations (5) and (6): 

	 
 	 
 	 
	 
 	 
	 
 	 
	 
 	 
	 
 	 
	 
 	 
	 

	 
	 
 	 
	 
 	 
	 
 	 
	 
 	 
	 


	 
 78123456789101112

1110987
654321

5,5

55555

55555555,5

�������������

����������

��������������

M

MMMMM
MMMMMMMM

 

(7)

Analogously, we can calculate multiplication coefficients “M(K)” for arbitrary cases when 
numerical combinations “K” consist just of two digits n�3 and other digits in the combination  
are < 3 or do not appear respectively. For such cases we can calculate the multiplication 
coefficients by this equation: 

	 
 	 
 	 
	 
 	 
	 
 	 
 	 
	 
� �1,...,21; ��������� nnnnnnn MMMMMM  (8)

R8: If the numerical combination “K” consists just of three digits “3” and other digits in the 
combination are < 3 or do not appear respectively, then M(3;3;3) = 4. Calculation of this 
multiplication coefficient can be formally expressed in this manner: 

	 
 	 
 	 
 	 
	 
 	 
 	 
 	 
	 
� � 	 
 	 
 	 
� � 412232331 3;3;3333;333;33;33;3;3 ��������������� MMMMMMMM  (9)

R9: If the numerical combination “K” consists just of three digits “4” and other digits are < 3 or 
do not appear respectively, then M(4;4;4) = 15. Calculation of this multiplication coefficient can be 
formally expressed in this manner: 

	 
 	 
 	 
 	 
	 


	 
 	 
 	 
	 
� �

	 
 	 
 	 
	 
 	 
	 
� �

	 
 	 
 	 
	 
 	 
	 
 	 
	 
� �

	 
 	 
 	 
	 
 	 
	 
 	 
	 
 	 
	 
� �

	 
 	 
 	 
� � 	 
 	 
� �
	 
 	 
 	 
� � 	 
 	 
 	 
 	 
� � 3545352515515352515515

25155151551551515
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321

21

1

4;4;4

444444;4

44444;4
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444;4

44;44;44;4;4

�������������������

��������������

����������

���������

�������

�����

����
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(10)
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R10: If the numerical combination “K” consists just of three digits “5” and other digits in the 
combination are < 3 or do not appear respectively, then M(5;5;5) = 78. Calculation of this 
multiplication coefficient can be formally expressed in this manner: 
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� �
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 364136101521283645556678
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1
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(11)

A general rule to calculate the multiplication coefficients “M(K)” for arbitrary cases (when 
numerical combinations “K” consist just of three digits n � 3 and other digits in the combination 
are < 3 or do not appear respectively) can be derived using the previous rules R8, R9 and R10 a 
formally can be expressed as: 
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 (12)

Obviously, there are other specific cases of numerical combinations for which multiplication 
coefficients can be formulated in exact terms. 

4. Static Structural Complexity Metrics for ASC Structures 

4.1. Some Terminology and Definitions 

The following section consists of theoretical concepts and working definitions for the given 
research domain. General networks can be properly defined as well as effectively recognized as 
structural patterns by graph theory (GT). GT deals with the mathematical properties of structures as 
well as with problems of a general nature. In this context, a graph is a network of nodes (vertices) 
and links (edges) from some nodes to others or to themselves. Graph G consists of a set of V 
vertices, {V}�{v1, v2, … , vV}, and the set of E edges, {E}�{e1, e2, … , eE}. The edge {e1} is the path 
from vertex v1 and ends in vertex vV. The number of the nearest-neighbors of a vertex v1 is termed 
vertex degree and denoted deg(v). The maximum degree of a graph G, denoted by �(G), and the 
minimum degree of a graph, denoted by �(G), are the maximum and minimum degree of its 
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vertices. For a vertex, the number of head endpoints adjacent to a vertex is called the in-degree of 
the vertex and the number of tail endpoints is its out-degree. For a directed graph, the sum of the 
vertex in-degree and out-degree is the vertex degree [31]. 

	 
 	 
 	 
ii vvv �� �� degdegdeg (13)

4.2. Specifications of ASC Networks Complexity Measure  

According to Shannon’s information theory, the entropy of information H(�) in describing a 
message of N system elements (or symbols), distributed according to some equivalence criterion � 
into k groups of N1, N2,…, Nk elements, is calculated by the formula: 

	 
 �������
��

k

i

ii
i

k

i
i N

N
N
N

ppH
1

22
1

loglog
, 

(14)

where pi specifies the probability of occurrence of the elements of the ith group.  
Since it is of interest to characterize entropy of information of a network according to (14),  

we can to substitute symbols or system elements for the vertices. In order to define the probability 
for a randomly chosen system element “i” it is possible to formulate general weight function as  
pi = wi / �wi, assuming that �pi = 1. Considering the system elements, the vertices, and supposing 
the weights assigned to each vertex to be the corresponding vertex degrees, one easily distinguishes 
the null complexity of the totally disconnected graph from the high complexity of the complete 
graph [32]. Then, the probability for a randomly chosen vertex i in the complete graph of V vertices 
to have a certain degree deg(v)i can be expressed by formula: 
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�

�
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i
i

i
i
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v
p

1
deg

deg

 
(15)

Shannon defines information as: 

HHI �� max  (16)

where Hmax is maximum entropy that can exist in a system with the same number of elements.  
Subsequently, the information entropy of a graph with a total weight W and vertex weights wi 

can be expressed in the form of the equation: 

	 
 ���
�

V

i
ii wwWWWH

1
22 loglog

 
(17)

Since the maximum entropy is when all wi = 1, then 

WWH 2max log�  (18)

By substituting W = deg(v)i and wi = deg(v)i, the information content of the vertex degree 
distribution of a network called as Vertex degree index (Ivd) is derived by Bonchev and Buck [32] 
that is expressed as follows: 

	 
 	 
�
�

�
V

i
iivd vvI

1
2 deglogdeg (19)
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Based on our previous comparison [33,34] of Vertex degree index with another complexity 
measures we can confirm that Ivd meet given criteria for a complexity assessment of networks in 
the best way. For the evaluation of complexity indicators the correlation based on Spearman’s rank 
correlation coefficient between different methods of complexity measures was used. 

Figure 5. The graphical principle of generating non-repeated structures based on vertex 
degree parameter. 
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4.3. Selection of ASC Networks with Non-repeated Sets of Vertex Degrees 

For the next step it is useful to assign values of vertex degrees to each node of the networks 
excluding a case when the value = 1 (as it can be seen in Figure 2). However, we have to take into 
consideration the existence of graphs of the same class with a repeated set of vertex degrees. In 
order to omit such superfluous structures it is purposeful to select from the classes of ASC 
structures only the graphs with a non-repeated set of vertex degrees and to order them in systematic 
way. Then we obtain the exact sums of such graphs, as it shown in Figure 5. For instance, when 
number of initial nodes i = 6, then sum of graphs equals 10. Figure 5 also provides graphical 
principle of generating non-repeated structures. 

When applying the Vertex degree index to assess the configuration complexity of clustered ASC 
networks with the non-repeated set of vertex degrees we gain values of complexity depicted in 
Figure 6. Then, we can compare complexity of optional assembly supply chain networks. From this 
figure we can see that complexity values of ASC structures for ascending ordered classes grow 
smaller and smaller. 

Figure 6. Computational results of the Ivd for selected classes “i” of ASC structures. 

 

5. The Concept of Quantitative Complexity Scale for ASC Networks 

Basically, the comparison of complexity is of a relative and subjective nature. It is also clear that 
through a relative complexity metric we can compare the complexity of the existing configuration 
against the simplest or/and the most complex one from the same class of ASC network. Perhaps, 
the most important feature of the relative complexity metric is that we can generalize it to other 
areas [35]. Accordingly, when we apply this complexity measure for the complete graphs with 
v(v�1)/2 edges we can get upper bounds for configuration complexity of any ASC structure with a 
given number of vertices. Obtained upper bounds derived from complexity values of selected 
complete graphs are shown in Figure 7. 
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Figure 7. Graph of the complexity measures for the selected complete graphs. 

 

When considering the fact that obtained complexity values for the complete graphs grow larger 
and larger, while complexity values of ASC structures for ascending ordered classes grow smaller 
and smaller it gives a realistic chance to establish quantitative complexity degrees of ASC 
networks. Under this assumption, arbitrary ASC networks can be categorize into quantitative 
configuration complexity degrees that are shown in Figure 8. In such case, the actual question 
arises regarding how many degrees of structural complexity are really needed to comprise all ASCs 
that we know exists. The seven-degree scale of structural complexity is based on inductive 
reasoning. For example, upper bound for configuration complexity of ASC networks with i = 10 
equals 40.04. Indeed, it is very presumable that practically all realistic ASC networks wouldn’t 
reach higher structural complexity than 216 what presents structural complexity for K9. However, 
in this context, it is necessary to take under consideration a relation between complexity and 
usability [36]. In this case it would be needed to estimate an optimal degree of structural 
complexity under when the usability of ASC networks is critical for its success. 

Figure 8. Proposed quantitative complexity degrees. 
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6. Conclusions 

The main contributions of this paper consist of the following four aspects: 

(1) A new exact framework for creating topological classes of ASC networks is developed. This 
methodological framework enables one to determine all relevant topological graphs for any 
class of ASC structure. The usefulness of such a framework is especially notable in cases 
when it is necessary to apply relative complexity metrics to compare the complexity of the 
existing configuration against the simplest or/and the most complex one. 

(2) In order to parameterize properties of vertices of the ASC networks, an efficient method to 
identify total number of the graphs with non-repeated sets of vertex degrees structure is 
presented. The determination of the non-repeated sets of vertex degrees structure (for 
selected classes of ASC networks are described in Figure 5) shows that the total numbers of 
such graphs follows the Omar integer sequence [37], with the first number omitted.  

(3) The Vertex degree index was applied to a new area of configuration complexity. 
(4) The quantitative object-oriented model for defining degrees of configuration complexity of 

ASC networks was outlined. 

The proposed approach to relative complexity assessment may easily be applied at the initial 
design stages as well as in decision-making process along with other important considerations such 
as operational complexity issues. However, this research path requires further independent research 
to confirm this preliminary results and proposals. 
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