2 research outputs found

    DroneLight: Drone Draws in the Air using Long Exposure Light Painting and ML

    Full text link
    We propose a novel human-drone interaction paradigm where a user directly interacts with a drone to light-paint predefined patterns or letters through hand gestures. The user wears a glove which is equipped with an IMU sensor to draw letters or patterns in the midair. The developed ML algorithm detects the drawn pattern and the drone light-paints each pattern in midair in the real time. The proposed classification model correctly predicts all of the input gestures. The DroneLight system can be applied in drone shows, advertisements, distant communication through text or pattern, rescue, and etc. To our knowledge, it would be the world's first human-centric robotic system that people can use to send messages based on light-painting over distant locations (drone-based instant messaging). Another unique application of the system would be the development of vision-driven rescue system that reads light-painting by person who is in distress and triggers rescue alarm.Comment: Accepted to the 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN 2020), IEEE copyright, 5 pages, 7 figure

    DronePick: Object Picking and Delivery Teleoperation with the Drone Controlled by a Wearable Tactile Display

    Full text link
    We report on the teleoperation system DronePick which provides remote object picking and delivery by a human-controlled quadcopter. The main novelty of the proposed system is that the human user continuously gets the visual and haptic feedback for accurate teleoperation. DronePick consists of a quadcopter equipped with a magnetic grabber, a tactile glove with finger motion tracking sensor, hand tracking system, and the Virtual Reality (VR) application. The human operator teleoperates the quadcopter by changing the position of the hand. The proposed vibrotactile patterns representing the location of the remote object relative to the quadcopter are delivered to the glove. It helps the operator to determine when the quadcopter is right above the object. When the "pick" command is sent by clasping the hand in the glove, the quadcopter decreases its altitude and the magnetic grabber attaches the target object. The whole scenario is in parallel simulated in VR. The air flow from the quadcopter and the relative positions of VR objects help the operator to determine the exact position of the delivered object to be picked. The experiments showed that the vibrotactile patterns were recognized by the users at the high recognition rates: the average 99% recognition rate and the average 2.36s recognition time. The real-life implementation of DronePick featuring object picking and delivering to the human was developed and tested.Comment: Accepted to the 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN 2019), IEEE copyright, 6 pages, 6 figures, 2 table
    corecore