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SUMMARY

There are millions of robots in operation around the world today, and almost

all of them operate on factory floors in isolation from people. However, it is now

becoming clear that robots can provide much more value assisting people in daily

tasks in human environments. Perhaps the most fundamental capability for a mobile

robot is navigating from one location to another. Advances in mapping and motion

planning research in the past decades made indoor navigation a commodity for mobile

robots. Yet, questions remain on how the robots should move around humans. This

thesis advocates the use of semantic maps and spatial rules of engagement to enable

non-expert users to effortlessly interact with and control a mobile robot.

A core concept explored in this thesis is the Tour Scenario, where the task is to

familiarize a mobile robot to a new environment after it is first shipped and unpacked

in a home or office setting. During the tour, the robot follows the user and creates

a semantic representation of the environment. The user labels objects, landmarks

and locations by performing pointing gestures and using the robot’s user interface.

The spatial semantic information is meaningful to humans, as it allows providing

commands to the robot such as “bring me a cup from the kitchen table”. While the

robot is navigating towards the goal, it should not treat nearby humans as obstacles

and should move in a socially acceptable manner.

Three main navigation behaviors are studied in this work. The first behavior is the

point-to-point navigation. The navigation planner presented in this thesis borrows

ideas from human-human spatial interactions, and takes into account personal spaces

as well as reactions of people who are in close proximity to the trajectory of the

xvii



robot. The second navigation behavior is person following. After the description of

a basic following behavior, a user study on person following for telepresence robots

is presented. Additionally, situation awareness for person following is demonstrated,

where the robot facilitates tasks by predicting the intent of the user and utilizing

the semantic map. The third behavior is person guidance. A tour-guide robot is

presented with a particular application for visually impaired users.
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CHAPTER I

INTRODUCTION

1.1 Robots in Human Environments

The vision promised by Karel Čapek in his 1921 science fiction play R.U.R, in which

the word “robot” was used the first time, featured intelligent autonomous systems that

co-existed and worked for humans. The reality almost a century later today is that

robots do exist, however almost all of them operate in factories, physically separated

from human workers. With this separation, the safety of humans is ensured. However,

it is now becoming clear that robots can provide much more value if they operate in

human environments, assisting people in daily tasks. With the recent improvements in

hardware and software systems and in robotics research, development of such robots

is not science fiction anymore. According to International Federation of Robotics

(IFR), $2.2 billion worth of personal robots were sold in the year 2014, including

robotics vacuum cleaners, lawn mowers, educational and entertainment robots. This

disruptive technology will make fascinating new applications possible, in contexts

such as homes, hospitals, offices and factories, including but not limited to: delivery,

elderly care, collaborating on an assembly line and household tasks such as cleaning.

The feasibility and reliability of such applications will determine their business value,

while potentially generating a new industry. Therefore, any development in this field

is a step toward realization of intelligent and social robots.

1.2 Robots that Navigate in Human Environments

The most important difference of a robot from a computer is actuation: the ability

to move in the physical world. Perhaps the most fundamental capability for a mobile

1



robot is navigation from one location to another. Advances in mapping, localization

and path planning research in the past decades made indoor navigation a common

capability for mobile robots.

Robots occupy the same physical space with us, therefore should be aware of the

fact that their movements would be observed and reacted by humans. As we start

having more and more mobile robots in human environments, we will notice that

robots can move in a way that is not socially acceptable by people. For example,

robots can cut people’s paths, navigate uncomfortably close to people and move in

a way that doesn’t signal where it is intended to go. Investigating the context of

robots in human environments gave rise to the sub-field of robotics: Human-Robot

Interaction (HRI). This relatively new research field extends in many directions with

a common goal: robots that will perceive its environment, reason and act in a safe

way to facilitate people’s lives. Thus, a robot that will serve to people should not

only be a machine, but also respect social rules and protocols.

1.3 The Science of Personal Spaces

How should mobile agents adjust their spatial relationships with respect to humans?

In fact, humans already have a framework for this problem. It is called the proxemics,

coined by Hall [40], which studies of our use of space and the spatial separation

individuals naturally maintain. One of Hall’s main findings is that humans adjust

the amount of distance between them in four distance levels: intimate, personal,

social and public distances, depending on the intimacy level between individuals.

Another important research work in human-human is Kendon’s F Formations [53],

which studies the formations people tend to take in groups settings.

Personal spaces are influenced by other factors such as cultures, the range of their

sensory systems, and postures of the two actors. Although it is not known whether it

is best to model robot navigation behaviors after humans, applying the concepts from
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human-human spatial studies is a good start. This is especially true given that non-

expert users today never interacted with a mobile robot and thus are likely expect

the robot to behave within human social norms.

1.4 Semantic Maps

Robots keep a representation of its environment to enable navigation behaviors, and

this representation is usually in the form of a discrete metric map, where each grid cells

represent whether that position is occupied with an obstacle or not. Mobile robots

that use such a map can accept navigation goals in metric coordinates (i.e. go to

coordinate (5.2, -1.3)), however exact coordinates may not be the most intuitive way

to communicate goals for human users. Robots that navigate in human environments

will need to accept human-friendly navigation goals. A map for such robots should

facilitate establishment of a common ground between the robot and its user and

enable referencing to the same spatial elements. For example, the robot should be

able to understand commands such as “go to the kitchen table” or “wait outside

Joe’s room”. This is only possible with a richer map representation that includes

semantic information. In particular, if the humans and robots need to communicate

over navigation goals that involve objects, landmarks or rooms, a map should include

information about these.

1.5 Tour Scenario

One method to familiarize the robot to a new human environment is the Tour Scenario

[129], by which the robot interactively collects semantic information. Here is how the

Tour Scenario is defined: After the robot product is shipped and unpacked in a

home or office setting, a human user takes the robot on a tour so the robot can

create a representation of the environment. In this interactive scenario, the robot

learns basic information about the surroundings, while following the user. During the

tour, the user can point out and identify relevant places and objects which the robot

3



can utilize for future tasks. It is likely that the a commercial robot product that

has the capability of the familiarizing task will include both human-interactive and

automatic components (i.e. automatic object recognition). In this thesis we focus on

the interactive components.

1.6 Challenges

There are four primary challenges in developing a practical robotic system that nav-

igates using semantic information. From the robot’s perspective, the interesting re-

search questions are:

• Where are the people?

• How should I move around humans?

• How can I acquire semantic information about this environment?

• How can I utilize this semantic information to improve navigation?

The challenges laid out by these questions will be addressed for the remainder of

this section, and the answers will be discussed throughout this thesis.

1.6.1 Robust People Tracking

In order to be engaged in any kind of meaningful spatial interaction with humans, a

robot has to be able to track people around it. Robust tracking of people is necessary

to ensure high success rates for HRI tasks.

We use a tracking system that estimates the positions and velocities of humans,

using three distinct body part detectors. These detectors are the leg detector, torso

detector and upper body detector. Use of multiple modalities is leveraged to in-

crease the robustness of tracking and provide more coverage around the robot. The

detections are consolidated into position estimations using a Kalman Filter.
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1.6.2 Social Navigation

Path planing for mobile robots has traditionally been considered a shortest-path prob-

lem. While this leads to sound solutions and collision-free paths, the behavior of the

robot may be perceived as unsafe or unnatural by human observers. When a robot is

navigating in an human environment, the most important consideration is the safety

of people. Moreover, even if a robot’s motions are safe, they can still cause discom-

fort. For example, sudden appearance of a robot can bother people or cutting in

between two people while they are in a conversation may be considered rude behav-

ior. Therefore, social factors should also be taken account along with effectiveness of

robot motions. Borrowing the idea from Sisbot [119], we attach personal spaces and

social constraints as costs to map cells while planning a path. Our planner also takes

into account people’s reaction to the robot’s motion. Humans routinely use antici-

pation during navigation. For example, in a hallway encounter, one person may lean

towards the left of the corridor, expecting the other to take right. We aim to give

this anticipation ability to robots. Furthermore, we develop interactive navigation

applications where the task of the robot is to follow a person or to a guide a person

to a location.

1.6.3 Interactive Map Annotation

The question of how semantic maps could be useful for various tasks is addressed in

Section 1.4. People may want to provide custom labels to landmarks, objects and

waypoints instead of generic ones. By using unique labels, ambiguities can be resolved.

For example, if an automatic object recognizer is utilized, the robot could be confused

if it is given the command “bring my laptop” and there are multiple laptops in the

environment. Moreover, the ability to label objects and locations would complement

automatic recognizers. For example, if an object recognition system makes an error,

a user would be able to change the object’s label. Our solution to annotate maps is
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to maintain a common ground between a human and and the robot is via the Tour

Scenario, as described in Section 1.5.

1.6.4 Situation Awareness for Navigation

Metric maps provide a single type of information: whether a grid cell is occupied

with an obstacle or not. While this kind of a simplistic map representation may be

sufficient for some navigation tasks, if the robot needs to communicate with human

users about its goals, it should have a richer map representation of the environment.

The robot can leverage the semantic information presented in the map and increase

its usefulness for navigation tasks.

Simply put, Situation Awareness is knowing what is going on around you. It can

be achieved in various contexts for robot navigation. Person following with a robot is

a widely studied research topic, however in the literature it is not usually considered

why the robot is following the person and how the task context can be used to increase

effectiveness. For example, during the Tour Scenario, the robot may employ a more

intelligent following strategy if it knows the user will be pointing at landmarks and

places. Furthermore, consider handling of the doors while following. If the robot does

not know that it is standing on a doorway, it can block the path for others. If the

door is added to the semantic map, the robot can have the opportunity to handle

the door passing graciously. Moreover, the robot can utilize the floor layout of the

environment to adjust its speed. For example, if the robot is in a region where the

chance to encounter a person is high, slowing down may be a sensible action to take.

1.7 Scope and Context

In this section, we provide an overview of the assumptions of our research. At a high

level, autonomous robots perceive its environment, reason the situation, act in the

world. In the HRI context, the research in perception is focused on improving the

robot’s ability to “see” its environment, identify objects and humans. The reasoning
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part is focused on deciding on “what to do” and “how to do” in a given situation.

Acting part is focused on the execution and control of motions, as well as the design

of mechanisms. This thesis mainly focuses on the reasoning part while also offering

a solution to the perception part.

We assume that we have a wheeled mobile robot platform. Even though some of

our algorithms are derived for a non-holonomic robot with differential drive actuation,

it is a technical limitation rather than a conceptual one, as they can be applied to

mobile robots with different mechanisms with minor changes. We further assume that

the robot is self-contained: equipped with on-board sensors, is capable of creating a

map of the environment with an existing Simultaneous Localization and Mapping

(SLAM) package, and then able to localize itself in this created map as it moves in

the environment.

Furthermore, we focus on scenarios where people in the environment are standing

or walking, because that’s the most common body pose the robot would encounter.

A user can control the robot via tablet or smartphone apps. Similar function-

ality could be achieved with a speech dialog system, however we chose touch-based

interfaces due to their ubiquity and reliability.

1.8 Thesis Overview

1.8.1 Thesis Statement

Non-expert users can effortlessly interact with and control a mobile robot through

the use of semantic maps and spatial rules of engagement.

1.8.2 Contributions

• A method for a human to take a mobile robot on a tour and interactively

add labeled objects, landmarks and locations to the robot’s map using natural

deictic gestures and later use these labeled entities as end goals for navigation
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• Development of a navigation planner that takes into account social factors, and

people’s reactions to robot’s motions

• Development of a person guidance behavior and its application to indoor wayfind-

ing for blind users

• Development of a person following behavior and its usage for telepresence robots

• Demonstration of situation awareness for person following behavior, targeted at

the Tour scenario

1.8.3 Document Outline

The structure of this thesis is shown in Figure 1.

Figure 1: Thesis Outline

The first prerequisite for a socially aware robot is detecting and tracking people.

Chapter 2- Person Detection, Tracking and Recognition presents our method

of leg detection, torso detection and face recognition and how the robot estimates the

positions of nearby people using these detections.
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When a robot is able to keep track of the positions of nearby people, it can follow

a user. Chapter 3 - Person Following describes how the robot follows a person.

Additionally, an application of person following for telepresence robots is presented

in Section 3.3.

If a robot has the capability to follow a person, a user can take the robot on a tour

around the house and teach landmarks to the robot. Chapter 4 - Interactive Map

Labeling describes our semantic map representation, the process of interactively

labeling landmarks, the user interface and how to detect pointing gesture targets.

The ability to track nearby people also gives the robot the capability to conduct

socially aware navigation toward labeled landmarks. Chapter 5 - People-Aware

Navigation discusses how we extract goal points from semantic maps, and a people-

aware planner for navigating from a start position to a goal position.

If a robot is able to navigate toward a goal position or a landmark, it can also

guide people to the same goals. Chapter 6 - Person Guidance presents the

behavior design of a tour guide robot and how the robot can guide a person to a goal.

Furthermore, we present an application of person guidance for visually impaired users

in Section 6.3.

The person tracking and following capability, combined with the existence of la-

beled landmarks, enables the robot to react to social situations during following.

Chapter 7 - Situation Aware Person Following discusses some problematic sce-

narios that could be encountered during following and presents our design of robot

behaviors for these situations.

Chapter 8 - Conclusion and Discussion discusses the contributions of this

thesis, lessons learned during the research program and future work in this area of

research.

Appendix A lists telepresence user study survey questions.

Appendix B gives details of the user study on haptic belts for guiding blind
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people.
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CHAPTER II

PERSON DETECTION, TRACKING AND

RECOGNITION

The ability to detect, track and recognize a person is an important prerequisite for

human-robot interaction. The challenge is to robustly track humans in the vicinity

of the robot considering the robot’s movements, sensing capabilities and occlusions.

The scope of how much information is needed from the human perception module

depends on the task objective. First, the robot should determine if there are people

nearby. If the robot senses people around, the robot should find out where they

are. Representing people as points (x,y) in maps is common practice for robot path

planning. If the task requires the robot to face a person, the robot should be able

to detect the orientation θ of the person. The robot can further determine who the

detected person is. Identification of humans is necessary for enabling non-generic

service. Finally, the robot can interpret what the person is doing by analyzing the

motion features and through gesture analysis. Tracking body parts of humans over

time give significant information about human activity.

We focus on tracking people who are either walking or standing, as these are the

two most common human poses around a mobile robot. Many camera-based full-body

or body part detectors have been developed in the literature, reviewed in Section 2.1.

We aim to robustly track a person 360◦ around the robot. However, most sensors

have a limited field of view and using only a single detector can lead to a system with

a single point of failure. Therefore, for our use cases, a multimodal system is better

suited the tracking people using on-board sensors.

Using laser scanners for people detection is a natural choice as state-of-the-art
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mobile robots are already equipped with an ankle-height laser scanner that is mainly

used for navigation. The laser scanners we used on our robot are Hokuyo UTM 30-

LX, which has 270◦ Field of View (FOV), 0.25◦ angular resolution, 40Hz refresh rate

and 30m maximum range. We are only interested in detections in close range (less

than 5m). In that range interval, and the accuracy of each laser reading is ±3cm,

which is sufficient for our use cases. The relatively higher accuracy and resolution are

the two advantages of laser scanners over cameras and RGB-D cameras. Cameras,

on the other hand, have the advantage of providing richer information, which can be

used to extract body parts.

After a literature survey in Section 2.1, we give details on our body part detectors

in Section 2.2. Each detector produces a point measurement, which is then used to

keep a list for person hypotheses. The state of the hypotheses are maintained using

a Kalman Filter, explained in Section 2.3. We present our face recognition method

in Section 2.4.

2.1 Related Work

Person detection was first addressed by the computer vision community as an object

detection problem. Early research on person detection using vision is surveyed by

Moeslund [82]. Face detection is a common method for detecting people, with the

work of Viola and Jones [137] being the most popular approach. See Zhang [145] for a

survey on contemporary approaches on vision based face detection. Another popular

topic has been pedestrian detection in crowded scenes Leibe [69] and Tuzel [135].

In the past two decades, laser scanners has been the de-facto sensor for localization

and mapping. For this reason, leg detection in laser scans became common practice.

Legs are typically distinguished in laser scans using geometric features such as arcs

[140] and boosting can be used to train a classifier on a multitude of features [3].

Early works by Montemerlo [83] and Schulz [111] used particle filters for tracking legs
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in laser scan measurements. Topp [127] demonstrates that leg tracking in cluttered

environments is prone to false positives. Glas [34] uses a network of laser sensors at

torso height in hall-type environments to track the position and body orientation of

multiple people. Several works used different sensor modalities to further improve

the robustness. Carballo [15] uses a second laser scanner at torso level to improve the

robustness of detection. Kleinehagenbrock [60] and Bellotto [6] combine leg detection

and face tracking in a multi-modal tracking framework. Other examples include

combining sound localization and vision [9] and combining RFID tracking and vision

[33].

Tracking of the body parts has long been a topic of interest in vision [5, 115]. With

the introduction of 3D sensors such as the Velodyne, Swissranger and Kinect, robust

tracking of body parts became possible. Spinello [120] trains geometrical features

at different height levels in the 3D point cloud for pedestrian detection. Ganapathi

[30] estimates body part locations with a probabilistic model. One of the well-known

skeleton tracking algorithms is the Microsoft Kinect SDK by Shotton [114], which

trains decision forests using simple depth features and a large database. This software

is not suitable to work continuously on a mobile robot as it is designed to work on

a stationary sensor. In the robotics community, there are efforts to develop skeleton

trackers that are better suited to work on mobile robots and in unstructured scenes

[13].

Face recognition is a widely used application as surveyed by Phillips [98]. One

of the approaches in face recognition uses a set of patch masks for features that

doesn’t necessarily correspond to eyes, ears or noses [134]. Zhao [146] combines PCA

(Principal Component Analysis) and LDA (Linear Discriminant Analysis) to improve

the recognition when only few samples are available. There has been some work to

identify humans using 3D data, such as the head-to-shoulder signature [59] and body

motion characteristics [86]. Biometric person identification techniques, such speaker
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recognition [57], 3D ear shape [141] and multi-modal cues [31] have potential to be

more accurate than face recognition. However, these approaches are better suited to

work in controlled environments.

2.2 Person Detection

In this section, we present our body part detectors, namely leg detection (Section

2.2.1) and torso detection (Section 2.2.2). In addition, we use an implementation of an

upper body detector by Mitzel [80], which uses a template and the depth information

of a RGB-D camera to identify upper bodies (shoulders and head), designed to work

for close range human detection using head mounted cameras.

2.2.1 Leg Detection

A front-facing laser scanner at ankle height is used for leg detection. The output of

a laser scanner at each iteration is an array of range measurements, represented in

the polar coordinate system. We first convert the range data to Cartesian coordinate

system:

xi =

φend∑
φ=φstart

ri cos(φ)

yi =

φend∑
φ=φstart

ri sin(φ)

Then we cluster the scan into segments, with the assumption that nearby laser points

belong to the same object. Two adjacent distance measurements are considered to

be in the same segment if the Euclidean distance between them is below a threshold

value. Starting from one end of the array of measurements, a new segment is started if

|ri−ri+1| > dcluster. Although some approaches use a variable segmentation threshold

that is a function of the range, we use a fixed clustering threshold dcluster = 0.1m.

The segmentation process results in a set of segments S. A set of geometric features

are extracted from each laser segment in S.
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In a laser scan, legs can appear in different patterns [127]. We look only single leg

and person-wide blob patterns as these two cover all the ways legs can be seen in a

laser scan. Depending on the application, we accept either only the single leg pattern

or both of the patterns. This is explained in more detail in Section 2.3.

A number of geometric features can be extracted from a laser segment, as de-

tailed by Arras [3]. We use three geometric features: segment width, circularity, and

Inscribed Angle Variance (IAV):

1. Segment Width: Measures the Euclidean distance between the first and last

point of a segment Si

2. Segment Circularity: For this feature we use the ratio of the perpendicular

distance from the middle point to the line segment that connects start and end

points, to the segment width. For example, in a perfect half circle in Figure 2,

the circularity criterion is |P0Pn|/dmid = 0.5. In case of a laser scan, as can be

seen in Figure 3, we again consider the ratio of dmid to segment width. For this

calculation, we only use the start, end and middle points of a laser scan as it

gives a fast measure on the circularity of the laser segment.

OP0	   P4	  

P1	  
P3	  

Pmid	  

P0	   Pn	  

dmid	  

P5	  

dmid	  

P0	   P10	  

Figure 2: Circularity criterion in a per-
fect circle is: |P0Pn|/dmid = 0.5

OP0	   P4	  

P1	  
P3	  

Pmid	  

P0	   Pn	  

dmid	  

P5	  

dmid	  

P0	   P10	  

Figure 3: Circularity criterion in a this
laser segment is: |P0P10|/dmid = 0.5

3. Inscribed Angle Variance (IAV): This feature is originally proposed by Xavier

[140], in order to detect circles. For shapes that are not perfect circles but are
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similar to circles, IAV feature should be consistent. Laser segments from a leg

usually resemble a circle, therefore we use IAV as one of the features for leg

detection. As an example, inscribed angles on a circle is shown in Figure 4. As

a geometric property of the circle, angles ∠P0P1P4 and ∠P0P2P4 are equal. IAV

for a given set of points is the average of all inscribed angles:

IAVS =

Pn−1∑
P=P1

∠P0PPn
n

where IAVS = 90◦ for a perfect circle.

OP0	   P4	  

P1	  
P3	  

Figure 4: Inscribed angles of an arc are shown in the figure. Inscribed Angle Variance
(IAV) is calculated by taking the average of all inscribed angles on a laser segment.

We captured a set of laser scans data while the robot followed a person through an

office environment. The following method used for this experiment will be discussed

in detail in Section 3.2. About 17 × 103 Single Leg and 0.6 × 103 person-wide blob

patterns were manually labeled in the data. In addition, 120 × 103 segments were

labeled as ’other’. We first pre-computed the mean and standard deviation of these

features, and then used these values for detection. The mean and standard deviations

of geometric features for single leg, personwide blob, as well as other segments are

given in Table 1.

For every segment Si in a test laser scan, we first extract the geometric features

f i1, f
i
2, f

i
3. We then calculate the weighted Mahalanobis distance to the average leg

parameters for the each leg pattern:

Di
mah =

nfeatures∑
j=1

√
wj

(f ij − µj)2

σ2
j

(1)

16



Table 1: Table shows the mean and standard deviation of geometric leg features
training set.

Segment type
Width(m) Circularity IAV(radians)
µ σ µ σ µ σ

Single Leg 0.13 0.03 0.25 0.15 2.23 0.4
Personwide blob 0.33 0.07 0.14 0.09 2.61 0.16
Other 0.22 0.12 0.1 0.11 2.71 0.38

where wj is the weight for each feature and µj and σj are pulled from Table 1. The re-

sulting Mahalanobis distance Dmahleg is then compared with a detection threshold. If

Dmahileg < Thresholdleg, the segment Si is considered a detection. Thresholdleg de-

fines how many standard deviations away from the average features are allowed. In our

implementation, we empirically set the feature weights as: Wleg = (0.35, 0.26, 0.39),

with the feature order given in Table 1. For normal operation, we set Thresholdleg =

1.5, which accounts for about %95 of the detections. If only one person is being

tracked, we use a higher threshold. The reasoning behind this will be explained in

Section 2.3.

2.2.1.1 Associating Leg Segments

After single leg patterns are detected, we attempt matching the leg segments by

determining whether each leg pair are connected. The method described in this

section applies to configurations where a RGB-D camera is pointing to the lower

body of the human. For each leg segment pair, if both of them are within the FOV of

the RGB-D sensor, we use our algorithm to determine whether there is a connectivity

between two candidate leg segments. If connectivity is found, then the leg segments

pair is qualified to represent a person. If this method is not applicable due to robot

configuration, we use solely the distance between leg pairs for association. See Figure

5 as an example result. Figure 6 shows the flow chart of the leg segment association

algorithm. Here we describe the steps of this algorithm. First, the centroids each of

the two candidate leg segments are found. These points are projected onto the depth
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Figure 5: Two person detections are seen in this figure. Our leg segment association
algorithm propagates pixels vertically from candidate leg segments and connects leg
pairs.

image acquired from the RGB-D camera. At each iteration for each leg segment,

our algorithm first propagates horizontally to both directions in the depth image to

determine the center pixel, and it propagates 1 pixel vertically (+z direction). If there

are no connectivity after a number of iterations, then we conclude that the candidate

leg pair does not represent a person. If there is a connectivity at some point, we

then assign a likelihood score to the pair. The score is a function of the total vertical

propagation height. If this score is higher than a threshold, then the algorithm

concludes that the leg candidate segments represent a person. In our experience, we

observed that the propagation scoring eliminates most of the false positives.

2.2.2 Torso Detection

For this detector, we used another Hokuyo UTM 30-LX laser scanner, placed at torso

height (1.27m), directed towards the back of the robot. Our approach relies on fitting

an ellipse to laser segments and interpreting the axis lengths. By using the shape of

the ellipse, the body orientation of the person is estimated (Figure 7).
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Figure 6: Flow chart for determining if two leg segment candidates belong to a single
person.

The first step to detect torsos in a laser scan is to segment the laser scan into clus-

ters. We use the same segmentation technique used for leg detection, as explained in

Section 2.2.1. We then fit an ellipse to each laser segment. We use a numerical ellipse

fitting method that solves the problem with a generalized eigensystem, introduced

by Fitzgibbon [27]. This fitting method is robust, efficient and ellipse-specific, so

that even very noisy sensor data will always return an ellipse. Compared to iterative

methods, it is computationally more efficient.

To detect a torso in a laser segment, we use the minor and major axis lengths,

in addition to the three geometric features introduced in Section 2.2.1 for detection

of legs. We collected 450 laser scans while a person stood 2m away from the sensor

and made a one full turn around. We calculated the mean and standard deviation
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Figure 7: Our torso detector fits an ellipse to the human torso and estimate its
position using the ellipse centroid and orientation using axis lengths.

Table 2: Table shows mean and standard deviations of geometric features for a
human torso in the training data set acquired by a torso-height laser scanner.

Torso Features µ σ

Width(m) 0.44 0.12
Circularity 0.32 0.18
IAV(radians) 2.57 0.38
Major axis length(m) 0.39 0.08
Minor axis length(m) 0.17 0.06

of the all five features, which is given in Table 3. For a given laser segment, we

find the weighted Mahalanobis distance in Equation 1 to the averaged parameters.

If Dmahitorso < Thresholdtorso, the segment is considered a detection. The feature

weight constants we used was Wtorso = (0.19, 0.09, 0.35, 0.24, 0.13), in respective order

given in Table 2. These values were empirically determined, although it is possible

that optimizing the feature weights would yield better results.

Figure 8 shows how the torso detection success rate changes with respect to the

Mahalanobis Distance Threshold in our training dataset. What is not displayed in the

plot is that a higher detection threshold leads to more false positive rates. For normal

operation, we set Thresholdtorso = 1.25, which accounts for about %90 detection rate.

If the tracker is dedicated to track only a single person, then we use a higher threshold,
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Thresholdtorso = 2, to account for about %99 of the detections. The reasoning behind

the higher threshold is that false positives would be dismissed anyway if only a single

person is tracked.
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Figure 8: Torso detection rate vs the detection threshold

2.2.2.1 Evaluation of Torso Detection

The ellipse fitting algorithm output is the centroid of the ellipse, and the minor and

major axes. We assume the orientation of detected humans is aligned with the minor

axis. This provides two solutions: either the front or the back of the person is facing

towards the sensor. While this is a significant limitation our current system, one can

potentially utilize face detection as will be described in Section 2.4 to estimate if the

person is facing the front of the sensor or not.

In order to evaluate the accuracy of the position and orientation estimations of

our torso detection method, we collected torso data from 23 people. Subjects were

instructed to stand on 4 targets at different distances with 8 different orientations on

each target. Experimental setup from the sensor’s point of view is shown in Figure 9.

For each pose at every target, we logged the position and orientation estimate of the

torso detector and compared it with ground truth, which is defined by the markings

21



on the floor.

Figure 9: Experimental setup for measuring the position and orientation estimation
errors of torso detection. The pictures are taken from the laser scanner’s point of
view.

Table 3 shows the angular error at every target distance and human orientation

with respect to the laser scanner.

Table 3: Mean orientation error of the torso detector with respect to distance from
sensor and body pose is shown. Data from 23 individuals is used.

Distance To Laser N NE E SE S SW W NW ALL

1.0m 4◦ 12◦ 22◦ 13◦ 5◦ 7◦ 26◦ 17◦ 13◦

2.5m 5◦ 16◦ 19◦ 10◦ 3◦ 6◦ 14◦ 17◦ 11◦

4.0m 4◦ 10◦ 30◦ 16◦ 7◦ 11◦ 21◦ 17◦ 15◦

5.5m 5◦ 11◦ 41◦ 18◦ 10◦ 6◦ 38◦ 23◦ 19◦

ALL 4◦ 12◦ 27◦ 14◦ 6◦ 7◦ 24◦ 18◦ 14.5◦

The average position error was about 5cm regardless of the distance and the ori-

entation of the human. The average orientation error throughout all the experiments

was 14.5◦. Error in orientation, however, varied greatly by the pose of the person

with respect to the laser scanner. Average error in orientation differed slightly with

respect to the distance from the sensor and was the least with 11◦ when the humans

were 2.5m away from the sensor. We attribute to the fact that when humans are
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closer than 2.5m to the laser scanner, it captures more of the arms, which makes

the fitted ellipse slightly worse. The orientation of the human with respect to the

sensor had a significant effect on orientation error. Least error was achieved when

people faced the sensor (4◦) or the opposite way (6◦). On the other hand, average

orientation error was between 24◦ and 27◦ when humans were perpendicular to the

sensor, because a large portion of the torso was not visible to the laser scanner in

that configuration.

2.3 Person State Estimation

The position and velocity of the person can not be determined by direct observation

due to measurement noise and false detections. Therefore there is a need for a filtering

algorithm in order to estimate the state of a person. Using a state predictor for human

movement has two advantages. First, the predicted trajectories are smoother than

raw detections. Smooth tracking helps the robot maintain consistent trajectories

for high-level applications such as person following (Section 3). Second, it provides

a posterior estimate that can be used for data association when there is a lack of

matching detections. This allows the tracker to handle temporary occlusions. We use

a Kalman Filter [50] to predict the position and velocity of a person. There are other

types of filtering techniques available in the literature, such as Particle Filters [54].

Since the results of the person state estimator is used by time-critical higher level

applications, the tracker should come up with an estimate in real time. Therefore

the choice of using Kalman Filters was motivated by its computational efficiency.

Efficient person state estimation also increases the safety of the robot, as the robot

can react faster if there are people in close proximity.

Accoding to Hicheur [44], humans tend to maintain a constant speed when they

are walking straight and reduce speed while turning. Using this observation, we used

constant velocity model which assumes people will maintain their speed. Even though
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this assumption is not always true, it provides a simple model without sacrificing too

much from tracking performance.

The Kalman filter estimates a process as a predictor-corrector cycle using feedback

control. The process has two cycling states: time update and measurement update.

Time update projects the state forward by using the current state and error covari-

ance. Measurement update is responsible for the feedback and corrects the previous

estimate.

The Kalman Filter is governed by two linear stochastic difference equations:

sk = Ask−1 +Buk−1 + w (2)

zk = Hsk + v (3)

Where sk represents the process state at time step k, A is the state propagation

matrix, B relates the optional control input u, zk is a measurement, H is the mea-

surement observation matrix. w and v represent the process and measurement noises,

respectively, drawn from normal probability distributions with zero mean N(0, Q) and

N(0, R).

We define the state of a person sk at time step k as:

sk =



xk

yk

ẋk

ẏk


(4)

where (xk, yk) is the position and (ẋk, ẏk) is the velocity of the person in Cartesian

Coordinates. With the constant velocity model, the time update equations are:

xk = xk−1 + ẋk−1∆tk (5)

yk = yk−1 + ẏk−1∆tk (6)

ẋk = ẋk−1 (7)

ẏk = ẏk−1 (8)

24



where ∆tk is the time difference from the previous detection. This results in the

following Kalman Filter matrices:

A =



1 0 ∆tk 0

0 1 0 ∆tk

0 0 1 0

0 0 0 1


B =



0

0

0

0


H =

1 0 0 0

0 1 0 0

 (9)

A track is lost if there are no detections for a fixed amount of time. At every time

update of a filter, if ∆tk is larger than a fixed threshold, the track is deleted from the

list.

The reason B vector is zero is that we track people in the world frame and robot

motion is already accounted for with robot localization. For this reason, we assume

there are no control inputs to our system. The noise matrices we used are:

Q = qI4 R = rI2 (10)

where we used q = 0.02 and r = 1.0 in practice.

Our approach is multimodal in the sense that asynchronous measurements are

accepted from different sources as long as they provide a position estimate in the

respective sensor frames. Using the latest localization information, this position is

converted to the world frame. Before the measurement is accepted as valid, we

execute one more check. We check if a new detection is in collision with the static

map, and if it is in collision, we reject that detection. The check against the static

map is fast and helps reduce false positives in practice. We use Nearest Neighbor

(NN) data association [4], which is a reasonable compromise between performance

and computational cost.

Depending on the task, a single person or multiple people must be tracked. For

example, for following a person or guiding a person, tracking a specific user is suffi-

cient. However, for point-to-point navigation or when searching a specific person, the

robot should track multiple people. We examine each case below:
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• Single target tracking: For some tasks, such as person following, dedicated

tracking of a single specific user is required and tracking bystanders is optional.

In this case, our goal is to keep tracking the specific user, so we significantly

relax the detection thresholds of the detectors. Even though doing so results

in more spurious detections, we do not start more than a single track. This

approach improves the tracking performance of a single person.

• Multi-target tracking: When the robot is navigating from a point to another

among people, the robot should keep track of bystanders and respect their

personal spaces. In multi-target case, we keep a separate Kalman filter for each

tracked person. If a detection is matched to multiple tracks, only the closest

track is associated with the detection and the other filters are considered to

have no detections for that time step.

2.4 Face Recognition

For certain interactive navigation tasks such as finding a specific person, a robot needs

to have person recognition capability. Our person recognition approach uses face

recognition and optionally shirt color features. We detect faces in RGB images using

the popular face detector by Viola and Jones [137], and use the eigenface method by

Turk and Penland [134] for extracting features. With the eigenface approach, faces

are represented in a lower-dimensional space. Sirovich and Kirby [118] showed that

dimension reduction method Principal Component Analysis (PCA) can be used on

face images to form a set of basis features. The main idea of PCA for faces is to find

vectors that best account for variation of face images in all training images. These

vectors are called eigenvectors. Then a face space called eigenfaces is constructed

and the images are projected onto this space. Our approach of face recognition has

the following steps:

1. A person previously unknown to the robot initiates training.
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Figure 10: Example results of our person recognition method is shown in the im-
age. We use eigenfaces and PCA face recognition method and optionally shirt color
recognition.

2. Robot asks the person to turn his face one side to another, and takes M number

of face and shirt pictures

3. Eigenfaces from the entire training set is calculated, and every known face is

projected to the corresponding M -dimensional weight facespace.

4. After training is completed, face recognition is reactivated.

5. When face recognition is active, a distance value from face recognition and

optionally from shirt color matching is received and it is thresholded for a

decision.

An example recognition result is shown in Figure 10. Our approach allows new

faces to be trained on-the-fly. Using the GUI of the robot, a user can start training

and adjust the information in the person database. The person data is managed by

a SQLite database hosted locally on the robot.

Shirt color matching can be used when there is not much time between the training

and recognition. Activating the shirt color matching should improve recognition and
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reduce false positive detections. We take a rectangular region below the face as

the shirt area (1.5 times below the the face rectangle size). A histogram with a

number of bins is generated for each shirt pattern. Each pixel is pushed into bins

according to their normalized RGB value. We calculate a distance value between two

histograms using the Earth Mover Distance [105]. In addition, the trained histogram

can adaptively be updated at every high confidence detection in order to account for

illumination changes. The overall person score is calculated by a weighted average of

face and shirt distances.
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CHAPTER III

PERSON FOLLOWING

There are many scenarios in which a person following robot could be useful. For ex-

ample, a robot can carry luggage of travelers in airports, or groceries in a supermarket.

Person following is also the enabling capability for interactive label acquisition during

the Tour Scenario discussed in Section 1.5. For the tour scenario, the robot needs

to know how to follow a person before building an environment representation and

providing services to the user. There are two properties that a person following robot

should have: robustness and social awareness. Typically, a service robot operates

in a dynamic and populated environment, therefore the robot must be able to keep

track of a single person even when they are temporarily occluded. Multimodal person

tracking that is presented in Chapter 2 helps the robot to have an estimate of the

user’s position. For the person following task, the robot has to track a designated

user, and the detection thresholds of detectors are relaxed for robust tracking at the

expense of more false positive detections.

For intelligent following, the robot not only has to keep appropriate distance to

the user, but also has to recognize what the user is trying to do. For example, during

the tour scenario, when the user stops, the robot should predict when the user is

going to annotate a landmark, and it should come beside the user instead of standing

behind. Moreover, the robot should be smarter when passing doors or following

a person who is cutting a corner. In order to be able to handle these scenarios,

the robot should act beyond purely reactive following behavior. It is desirable for

the robot to anticipate what the user is going to do and take appropriate action.

The current chapter will discuss the basic following behavior whereas Chapter 7 will
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discuss situation awareness and improved behavior for person following.

In this chapter, after referring previous works on person following robots in Section

3.1, we present a basic person following method in 3.2. In Section 3.3, we present an

application of person following for telepresence robots.

3.1 Related Work

A robot that follows a person is a widely studied scenario in robotics. A relevant body

of work is pursuit evasion [17], in which the target is trying to evade the follower. In

our applications, we assume that the target user is cooperating with the robot.

In one of the earliest works in this area by Sidenbladh [116], robot keeps the

person centered in the camera image using a P controller. Prassler [99] also offers

a reactive approach using the Velocity Obstacles concept, which uses the velocity of

the target to find allowable velocities of the robot that guarantees avoiding collision

if both the target and the robot moved with constant speed for future steps. The

approach is applied on a wheelchair, however social constraints were not considered.

Gockley [35] observed how people walk together. It is reported that partners who

were conversing tend to look forward with occasional glances to each other. Ohya [91]

presents a following method that escorts a target on the side while avoiding obstacles.

It was assumed that the target would move with the same acceleration and velocity.

Murakami [87] presents a method to first estimate the sub-goal of the leading person

and then following as if the robot knows the goal. Park [96] models the problem as a

control problem and offers an algorithm based on Model Predictive Control. Miura

[81] employs randomized tree expansion and biases the calculated paths towards a

sub-goal, which is the current position of the person. Hoeller [45] adopts the virtual

targets idea and selects a goal position in a circular region around the person. Stein

[122] proposes choosing and following a leader to handle navigation in crowds.

Some of the relevant works considered the social side of the interaction. Gockley
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compared two elementary following methods in [36]: direction following, where the

robot always attempts to drive towards the tracked person, and path following, in

which the robot follows the exact path the person took. It was shown that direction

following behavior was perceived as more human-like and natural than path following.

Yuan’s approach [142] switches the following behavior between parallel, direction and

path following depending on the layout of the obstacles. Zender [143] emphasizes

situation awareness for following and studies handling of doors and corridors. To

handle the doors, the robot increases its following distance and that leads the robot

to wait for a while. Following in a corridor is handled with an approach similar to

Pacchierotti [94], and the robot’s speed is adjusted. Loper [72] presents a system that

is capable of responding to verbal and non-verbal gestures and following a person.

Granata [37] presents behaviors such as going towards, following and searching a user.

Ota [92] touches upon the recovery functions whenever the robot loses tracks of the

leading person.

3.2 Basic Person Following

In this section, we describe our basic person following method, that is the default

following mode. When the following behavior is initiated from a higher level process,

first the guide person must be tracked. The robot looks for the closest person in the

vicinity of the robot (within 2m). If no person is detected for a period of time, then

the command is invalidated. We use the approach described in Section 2 to detect

and track users.

In the basic person following mode, the robot has three different strategies de-

pending on the distance towards the followed person. The distance to the user is

calculated as the distance from the center of the robot base to the person’s cur-

rent location estimation. We used Hall’s characterization of personal spaces in order

to determine the distance limits. The three distinct zones and corresponding robot
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Effective Following Range (~3.5m)

Rotation-only Range (1.2m)

No motion range (0.45m)

Figure 11: Overhead sketch of the robot and relevant ranges for person following.
Robot is represented as the triangle in the middle.

behavior are defined in Hall’s work [39] as follows:

Intimate Zone [0− 0.45m]: The person is very close to the robot, therefore any

motion of the robot may be potentially unsafe. The robot comes to a complete halt

in this zone (v = 0, w = 0). A full stop also allows the user to safely interact with

the on-board tablet GUI.

Personal Zone [0.45 − 1.2m]: When the robot is in the personal zone of the

user, the robot stops and rotates towards the followed person (v = 0, w = wrotation).

The rotational velocity is determined with a P controller, with the error term defined

as the difference between the robot’s current orientation and the tracked person’s

orientation. The rotational speed is capped at a fixed value, so that the person feels

comfortable with the rotation speed of the robot.

Social Zone [1.2m− 3.5m]: In this range interval, the robot executes the main

following behavior. At every time step, a goal pose that is 1.2m away from the and

headed towards the user is calculated (see Figure 12 for an illustration). A collision-

free path is found and the robot executes this path until a new measurement from

the target person is received. The path is found using Dynamic Window Approach
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(DWA) local planing method. We use the ROS implementation of DWA for the basic

following behavior.

Rotation-only Range (1.2m)

Goal Position

Robot

User

Figure 12: An illustration of how the goal position is calculated when the user is in
the social space [1.2m− 3.5m].

Sometimes it is inevitable that the person tracking system loses the target, partic-

ularly when the person is consistently faster than the robot or the person goes outside

the range of the sensors (further than ∼ 3.5m in our case). When this happens, the

robot will attempt to go to its last calculated goal position and look for the person.

With this behavior, the robot attempts to keep up with the lost person as far as

possible with the hope that the person will re-appear in the vicinity of the last seen

position. After the robot reaches this goal, it stops and waits for an amount of time.

If the user is saved to the database, or the robot already knows that he/she is in the

database, then the face recognition system that will be described in Section 2.4 is

activated. Otherwise, the robot continues following the closest person that appears

in this position. If no person is detected within a fixed amount of time (5 seconds

in our implementation), then the robot declares that the person is lost and starts

listening for a new following command.
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3.3 Application To Telepresence Robots

A telepresence robot can be described as Skype on wheels, where a remote user tele-

conferences in a physical environment while having the motion control of a robotic

system. Telepresence robots constitute a promising area in the consumer robotics in-

dustry as evidenced by recent start-up companies working on telepresence products.

However, currently all the telepresence robots that are available in the market are

controlled by manual driving by the remote controller - usually via the keyboard or

a joystick. In this section, we present an implementation of person following on a

telepresence robot and a user study that evaluates effect of having person following

capability on a telepresence robot.

Telepresence robots are a level above video conferencing since the robot is used

as the communication medium and the remote user can now control the movement.

Therefore, the spatial interaction between people and a telepresence robot in social

situations is worth investigating. One of those situations is moving with a group

of people. In an effort to analyze the spatial and verbal interaction, we focus on

engagement with one person where the remote user interacts with the person while

following him/her in a corridor. This is situation is very likely to happen in office

environments, for example when the remote user is having a discussion with a co-

worker while walking to his office after a meeting. As telepresence robots become

more common, there will be need to have the functionality of autonomous following

of a person so that the remote user doesn’t have to worry about controlling the robot.

We evaluate our system by conducting a user study, where there are two following

conditions:

1. Manual Person Following: Robot is controlled with an Xbox controller

2. Autonomous Person Following: Following is initiated by clicking on a user in

RGB-D image
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The aim of the user study is to measure how remote users like using the au-

tonomous following feature compared to the manual. For the study, the remote user

has a task that consists of listening to a passage the guiding person reads, and an-

swering related questions after the interaction. We also observe subjects’ experiences

using the system, get useful feedback to pinpoint future challenges that can be helpful

designing new generations of telepresence robots.

3.3.1 Robot Platform

Figure 13: The telepresence robot platform we used for our experiments.

The system described in this paper is implemented on an experimental telepresence

robot platform shown in Figure 13. The robot has a differential drive base and can

be used for about 8 hours with full charge. The remote user connects to the robot

via wireless internet and communicates with others using Skype. The robot is also

equipped with an omni-directional microphone and a high-end speakerphone. A wide-

angle camera is placed on top of the monitor and tilted slightly downward to help

the remote user to see the floor, robot base and people’s faces at the same time. A

Kinect Sensor is also placed above the monitor. Person following is initiated using
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the user interface shown in Figure 14.

Figure 14: User Interface of the robot for the remote user.

A modified version of the local planner used in Section 5.5.2 is used for person

following. A utility function consisting multiple factors, including the respective

position to the person, is optimized over multiple steps using Breadth-First Search.

Details of this path planning method can be found in [21].

3.3.2 User Study

In this study, remote user is the subject and the followed person is the experimenter.

To investigate the effectiveness of using autonomous person following for an interac-

tion task, we ran a controlled experiment and varied manual vs. autonomous following

within subjects.

Design: The experiments were conducted in working hours and bypassers were free

to walk across the experiment area or talk. The subjects were given the task of

following the experimenter through the course for a lap and listen to the passage
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he is reading. In the first run, the subject used one of the autonomous following or

teleoperation methods to follow a person and complete the lap. In the second run,

the subject used the other method. At the end of each run, the subject was asked to

complete a 4-question quiz about the passage. At the end of both runs, the user was

asked which method he/she will prefer over the other for this type of a scenario. The

exact questionnaire can be found in Appendix A. The passages and quiz questions

were taken from Test of English as a Foreign Language (TOEFL) listening section

examples. The passages were chosen so that they are at a similar difficulty level. The

time it takes to read a passage corresponded approximately to the same time a lap

is completed. We also asked numbered 7 point Likert scale questions, administered

after each run, about how Understandable the experimenter was, if the UI was Easy

to Use, if the robot exhibited Natural Motions, how Safe the remote user felt, if the

subject was able to Pay Attention to the passage, how Fast the robot was and how

much Fun the subject had.

Participants: 10 volunteers participated in the study (6 male and 4 female between

the ages of 25-48). 5 of the participants had little knowledge, 4 had average knowledge

and 1 had above average knowledge on robotics. The participants weren’t gamers:

4 participants never played console games, 4 played rarely, 1 sometimes played and

1 often played. 6 of the participants often used video conferencing software, while 2

sometimes and 2 rarely used. 9 of the participants were not native English speakers

and all of them had taken the TOEFL before.

Procedure: The participants were first greeted by the experimenter and instructed

to complete a pre-task questionnaire regarding their background. The robot was

shown to the participant and basic information about its capabilities was told. The

experimenter explained the task while walking with the participant in the experiment

area and showing the course to be followed. Participants were told that they should
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stay close to the experimenter while he is walking and there will be a quiz regarding

the passage afterwards. The participant was informed that there are 2 operation

modes: manual and autonomous person following.

Before the experiment started, the participant went through training for about

15 minutes. First, the participant learned the basic controls for the Xbox controller

when he/she was nearby the robot. Then the participant was taken to the remote

station, which was about 20 meters away from the corridor area. The participant was

informed about the UI and was shown how the autonomous following is activated.

Then a test run was executed, where the remote user followed the experimenter via

teleoperation and had a conversation.

After the training, the actual run was executed using one of the manual or au-

tonomous methods. We switched the starting method for every other experiment in

order not to bias the subjects’ opinions about one particular method. When the lap

was completed, first the passage quiz, then the survey questions were answered by

the subject. Then, the second experiment using the other method was executed and

the second passage quiz and survey questions were given to the subject. As the last

question, the subject was asked to state his/her method of preference. Lastly, the

participants were debriefed about the study and engaged in a discussion.

Measures: We had three measurement criteria to compare manual vs autonomous

following:

1. Number of correct answers to passage quizzes: Assuming the standardized

TOEFL exercises were of same difficulty, we ran a paired t− test on two groups

of autonomous and manual.

2. Survey questions: We ran a paired t − test using 7-point Likert Scale on each

of the seven questions.
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3. Preferred Method: We looked at which method subjects chose over the other

one.

Results: Out of the 4 quiz questions, the correct answers for autonomous group

(µ = 2.9, σ = 0.9) were more than the manual group (µ = 2.2, σ = 1.2) but

the statistical difference was not statistically significant (t(9) = 1.48, p = 0.17 on

t− test).

Table 4 summarizes the survey results. For Understandable and Fun, the scores

slightly favored autonomous method but the difference wasn’t statistically significant.

Manual method was found to be easy to use (µ = 5.0, σ = 2.2), but the UI for

autonomous method (clicking) was found to be marginally easier (µ = 6.5, σ = 0.9),

(t(9) = 2.13, p = 0.06). The motions of the robot was found to be significantly

more Natural to have a conversation for autonomous method (µ = 5.4, σ = 1.0) than

manual method (µ = 3.5, σ = 1.9), (t(9) = 2.52, p = 0.03). Participants thought

they were able to Pay more Attention to the passage the experimenter is reading

when the robot was following the him autonomously (µ = 5.3, σ = 1.8) compared

to manual method (µ = 3.4, σ = 1.5) and the statistical difference was significant

(t(9) = 2.63, p = 0.02). Participants have found the autonomous method (µ = 5.1,

σ = 1.7) safer than manual method (µ = 2.3, σ = 1.4) and there was a significant

difference between two groups (t(9) = 3.09, p = 0.01). The speed of the robot was

found to be neither fast nor slow for both methods (µ = 3.9, σ = 0.3) and (µ = 4.3,

σ = 0.8).

All 10 subjects chose autonomous person following over teleoperation for this task.

3.3.3 Design Implications

Our user study showed that a person following behavior is desirable for telepresence

robots when there is interaction. The follow-up discussions also agreed with the survey

results, as one subject (R10) stated: “It just gives me more focus and concentration.”
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Table 4: Survey results of the user study for person following for telepresence robots.
Table displays survey question average and standard deviations for the two conditions:
Autonomous Person Following and Manual Person Following.

Question
Autonomous Manual Drive t− test
µ σ µ σ p t

1. Understandable 4.0 1.5 3.6 1.7 0.47 0.73
2. Easy UI 6.5 0.9 5.0 2.2 0.06 2.13
3. Natural Motion 5.4 1.0 3.5 1.9 0.03 2.52
4. Safe 5.1 1.7 2.3 1.4 0.01 3.09
5. Pay Attention 5.3 1.8 3.4 1.5 0.02 2.63
6. Fast 3.9 0.3 4.3 0.8 0.10 −1.8
7. Fun 5.3 1.5 5.1 1.7 0.66 0.45

Below, we list our observations and implications for future research and design for

telepresence robots:

Motor Noise: Even though the motors on the robot were relatively quiet, 8 out

of 10 participants expressed that the motor noise made communication harder. This

justifies the close scores we collected in the survey question asking if the subject was

able to understand what the experimenter was saying. (R8) was disturbed by the

noise: “When I was driving, it was always this constant sound. It was worse for the

autonomous one. It was constantly adjusting and compensating for the movement.”

On the other hand, (R5) found the motor noise useful: “I actually like it because it

gives me the feedback whether I’m driving faster or slower. It also gives me a little bit

feeling of life.” Thus, although excessive motor noise should be avoided, some noise

might be useful.

Wireless Connection: Second most cited problem for video conferencing was

the video quality and time lags. (R8) clearly expressed why it was hard to walk with

the experimenter using the manual method: “The frame rate drops all of a sudden

and you have no choice but to stop.” Another subject (R9) made use of the displayed

sensor data when the video conferencing quality went bad: “Because of the lag, I

just switched to the Kinect (depth image) and the overhead view (laser).” This was
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possible because the wide angle camera image was coming from Skype whereas sensor

displays were received from the Windows Remote Assistance. Clearly, a big challenge

for telepresence systems is to deal with wireless connection problems.

Natural Interaction: Even though the participants thought the motions of the

robot were natural to have a conversation (µ = 5.4, σ = 1.0), some didn’t feel it

was a natural way to communicate. As seen in Figure 13, the screen displaying the

remote user’s face is flat and it introduced problems when the robot was traveling

side-by-side to the person. (R5), when asked about walking side by side: “..we don’t

have face-to-face. It is not really a conversation.” This raises design considerations

on how the remote user’s face is brought out. One of the subjects (R5) discovered

that the microphone characteristics are different than human hearing: “I don’t have

a distance sense if the experimenter is further away or close. If you have the fading

audio, then I’ll immediately notice.” Whether a telepresence robot should exhibit the

same characteristics of human perception or not is an open question and needs further

investigation.

Assisted Teleoperation: Telepresence robots should possess a layer to assists

the remote user to avoid obstacles and collisions. Safety ratings for the manual

method were very low (µ = 2.3, σ = 1.4) and (R8) expressed the concern: “I was

especially worried about running into the experimenter.” This suggests that scenarios

involving interaction would demand more attention of the remote users. The tele-

operation should also be intuitive and be similar to driving modalities that people

are already used to. (R4) stated: “I was thinking about Manual mode compared to

driving a car.” before suggesting “.. maybe something like a cruise control might be

good.”

Gaming Experience: Since the robot was controlled by a gaming console con-

troller, some participants likened the manual mode to gaming. (R9) said: “Manual

is like playing video games.” and (R5) said: “I don’t play video games so controlling
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those consoles is not natural to me.” Thus, it is possible that gamers are less likely to

have trouble driving the robot. The same observation was made by Takayama [124].

Long Term Interaction: None of the subjects who participated in our study

had used a telepresence robot before. (R6) justified the inability to use the manual

method: “Maybe if I have some more practice for about several hours of driving

the robot, I can use manual as well as autonomous.” (R8) on having fun using

teleoperation: “It was fun because it was the first time I did it but I can imagine that

over time, I’ll get bored of it.” The Fun question in the survey received similar scores

for autonomous and manual, possibly because using a telepresence robot was a new

experience for the subjects. Studies regarding long term interaction for telepresence

robots can yield interesting results, as in [68].

Error recovery: When the person was lost during following, the UI displayed

a text that the person was lost so that the remote user can re-initiate the following

by clicking on the person. None of the subjects complained about the robot losing

the person. When asked explicitly about the robot losing the experimenter, (R10)

answered: “That’s not a big deal in comparison to me driving the robot.” Therefore,

applications developed for telepresence robots can take advantage of the human being

in the loop and does not have to be error-free for deployment.

3.3.4 Discussion

User studies showed that autonomous person following is a desired capability for

telepresence robots and it was favored over direct teleoperation for an accompanying

task. Autonomous following was found to be safer, easier to use and helped the

remote users to pay more attention to the conversation instead of the robot control.

From the experience earned from user studies, there are still interesting challenges to

explore in terms of human-robot interaction for telepresence robots.
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CHAPTER IV

INTERACTIVE MAP LABELING

Robots that co-exist with humans will need to accept commands from human users.

As mentioned in Chapter 1, the robot keeps a metric map for autonomous naviga-

tion. Requiring users to understand the robot’s internal representation of the world

and to provide goals in terms of metric coordinates may not be a convenient way

of interaction. World representation of robots should enable effortless communica-

tion between users and robots. For example, it is not easy for someone to quickly

interpret the floor plan and provide a goal with explicit coordinates (1.2, 4.5, 0.0).

Maps should include spatial information to support tasks that requires more than

simple obstacle avoidance. For example, if the task involves interaction with planar

surfaces, landmarks, objects, or people; a robot’s map should be able to represent

these information. For these reasons, adding semantic information to robot maps is

essential. There are several methods to support the annotation of entities in a robot

map. For example, while the robot is building its representation of the environment,

it can recognize objects or landmarks such as doors, tables, rooms and automatically

add these features to its map. Even though such a system would be useful, it may

wrongly label some objects. In that case, the correct label can be provided by a hu-

man with an interactive system. Custom labels would also allow unique annotations

such as ”John’s Room”.

We use a map representation that includes objects, 2D waypoints, 3D polygons

that defines the boundary of planar surfaces along with user-appointed labels. We

provide details about waypoint representations in Section 4.2.1, planar surfaces in

Section 4.2.2 and objects in Section 4.2.3. To add labeled landmarks and objects
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to the semantic map, we use an interactive system that uses a combination of a

graphical user interface (GUI) and natural pointing gestures. Using the GUI, users

can command the robot to follow them, add waypoints along the robot’s path and

add landmarks or objects to the map by pointing at them and entering a label. Our

GUI is described in Section 4.3 and our approach to determine the pointing gesture

targets is presented in Section 4.4.

4.1 Related Work

One of the key concepts in semantic mapping is establishing a common ground [19].

By referring to same structures and objects with the same reference, the communi-

cation about labeled entities is grounded.

One of the closely related works to our interactive labeling approach Human Aug-

mented Mapping, introduced by Topp and Christensen in [126] and [128]. This ap-

proach involves labeling two types of entities: regions and locations. Regions are

meant to represent areas such as rooms and hallways, and serve as containers for

locations. Locations are meant to represent specific important places in the envi-

ronment, such as a position at which a robot should perform a task. This approach

was applied to the Cosy Explorer system, described in [144], which includes a metric

map, a topological map, as well as detected objects. While our goal is similar, we use

a different map representation, method of labeling and interaction design. Kuipers

[67] introduced Spatial Semantic Hierarchy, which is a method of organizing semantic

information for spatial regions. Another application using semantic maps is direction

following, studied by Kollar [61]. This work describes a system capable of following

directions in natural language, i.e. “go past the computers”.

4.2 Semantic Maps

Semantic mapping aims to create maps that include various types of semantic in-

formation to allow the robot to have a richer representation of the environment. In
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this section, we briefly present the semantic information we use to enrich the occu-

pancy grid maps: waypoints, planar landmarks and objects. Although we describe

three types of entities for storing semantic information, it is possible to include more

features.

4.2.1 Navigation Waypoints

We define navigation waypoint as a navigable pose represented in the map frame. A

pose (x, y, θ) represents the position and orientation of with respect to a coordinate

frame. We will refer a navigation waypoint simply as a waypoint for the remainder

of this text. Using the GUI, a user can save the robot’s current pose along with a

label, assuming that the robot is properly localized in the map. This method is the

most straightforward way to save a pose and use it later for a task. When the robot

is asked to navigate to a labeled waypoint, the goal of the robot is simply the saved

pose.

Even though the waypoint method is easy to use and practical, it has shortcom-

ings. It fails to capture the shape and extent of the structure designated by the label,

which might be important for some tasks, such as object search. Moreover, point

based references are not sufficient to represent a region or volume in a map, such as a

hallway or a room. For example, if the user wants to save hallway as a landmark, it is

useful to have a representation of the location and the extent of the hallway. Another

example is that the user can label a coffee table, which is a movable object. Instead of

saving a fixed coordinate location for the landmark, robot can save the planar surface

and can potentially have a model to handle moving landmarks. This gives the robot

robustness in its operations and a method to potentially use the planar surfaces as

features in localization [133].
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4.2.2 Planar Surfaces

In this type of semantic information, we keep track of a set of observed planar surfaces

as part of the map representation. We use a front-facing RGB-D camera to acquire

the data. Planes are extracted from the point cloud by an iterative RANdom SAmple

Consensus (RANSAC) method, which allows us to find all planes meeting constraints

for size and number of inliers. A clustering step is performed on extracted planes to

separate multiple coplanar surfaces, such as two tables with the same height, but at

different locations. We make use of the Point Cloud Library (PCL) [106] for much of

our point cloud processing. Planes are represented in the hessian normal form. Since

the observed planes do not have infinite extent, we bound the observed area with a

polygon - in this case, the convex hull of all the observed points on the plane. The

convex hull is accompanied with a user-provided label.

In order to label a planar landmark, the user goes through the following sequence:

1. User activates basic person following behavior (Section 3.2) and comes near a

planar surface of interest.

2. Robot adjusts its pose so it can perceive both the surface and the user.

3. User enters the label using the GUI and activates pointing gesture recognition

4. User performs a pointing gesture towards the landmarks of interest

The act of labeling a planar surface with a label ”Table” from the view of the RGB-

D camera planted on the robot is shown in Figure 15. After the labeling process, the

planar landmark is added to the map representation.

4.2.3 Objects

Our approach allows interactively building object models for selected objects, and

then annotate these models with a label. This enables the robot to quickly build a
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Figure 15: A user is pointing at a table to add it to the semantic map

small object database of the specific objects it needs to interact with. The interactive

system works as described in the previous section. Different from labeling planar

landmarks, however, we keep a bag of features for each object in the database. Once

a user has performed a pointing gesture to label an object, the robot moves to a

favorable position and activates its its pan-tilt unit to aim the sensors at this location.

Object segmentation is performed using point cloud data from an RGB-D sensor.

First, the large planar surface corresponding to the table is detected. This is removed

from the point cloud, and point clusters above this are detected. The robot calculates

the likelihood of each object being the target, as will be explained in Section 4.4 and

confirms with user if ambiguity is detected. After the target is confirmed, the cluster

points are projected into the camera image, and are used to generate a region of

interest. SURF features are found in the region of interest, and are stored as an

object model along with the provided label.

4.3 Graphical User Interface

We developed an on-board tablet interface to enable interaction between the user

and the robot. The interface has been implemented on a Nexus 7 Tablet running on

Android Operating System. The tablet is equipped with WiFi and talks with the

robot using a TCP-based server-client communication model. The client must have

47



the the IP address of the server machine to establish the connection. The messages are

sent back-and forth as via XML files. The XML files are serialized and de-serialized

using libXML++ package for C++ (server) and XMLPullParser (client) for Android

OS. With the tablet interface, a user can do the following:

• Add/Delete a Labeled or Generic waypoint

• Label a Planar Surface or Object

• Initiate Person Following

• Initiate Person Guidance to a Labeled Planar Surface/Object/Waypoint

• Stop Robot

• Change IP Address and Port of the TCP connection

A screenshot of our tablet user interface is shown in Figure 16.

Figure 16: The GUI that runs on the robot
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4.4 Pointing Gestures for Human-Robot Interaction

A natural way to refer to objects and landmarks is to point at them. In this work, we

analyze the performance of our pointing gesture recognition, and present an uncer-

tainty model that enables us to reason about ambiguity in pointing gestures, when

gesture targets are too close to one another. We model the uncertainty of pointing

gestures in a spherical coordinate system, use this model to determine the correct

pointing target, and detect when there is ambiguity. Two pointing methods are eval-

uated using two skeleton tracking algorithms: elbow-hand and head-hand rays, using

OpenNI NITE and Microsoft Kinect SDK [113]. A data collection with 6 users and

7 pointing targets was performed, and the data was used to model users’ pointing

behavior. The resulting model was evaluated for its ability to distinguish between

potential pointing targets, and to detect when the target is ambiguous. An example

scenario is shown in Figure 17.

Figure 17: (Left) Our approach allows a robot to detect when there is ambiguity on
the pointing gesture targets. (Right) The point cloud view from robot’s perspective
is shown. In this demonstration, both objects are identified as potential intended
targets, therefore the robot decides that there is ambiguity.
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4.4.1 Related Works

Pointing gestures are widely used in Human-Robot Interaction applications. Exam-

ples include interpretation of spoken requests [147], pick and place tasks [10], joint

attention [25], referring to places [42] or objects [110], instructing [76] and providing

navigation goals to a robot [101].

Early works on recognizing pointing gestures using stereo vision utilized back-

ground subtraction [18, 48, 49]. Other popular methods include body silhouettes [51],

hand poses [47], motion analysis [78] and Hidden Markov Models [139, 7, 70, 88, 24, 2].

Matuszek [79] presented a method for detecting deictic gestures given a set of detected

tabletop objects, by first segmenting the users’ hands and computing the most distal

point form the user, then applying a Hierarchical Matching Pursuit on these points

over time.

After deciding if a pointing gesture occurred or not, an algorithm must estimate

the direction of pointing. This is typically done by extending a ray from a body

part to another. Several body part pairs are used in the literature, such as eye-

fingertip [51] and shoulder-hand [46]; with the two of most commonly used methods

being elbow-hand [101, 11, 10] and head-hand [7, 110] rays. Some studies found that

head-hand approach is a more accurate way for estimating pointing direction than

elbow-hand [100, 25]. Recent works made use of skeleton tracking data in depth

images [100, 10, 101]. Other approaches, such as measuring head orientation with

a magnetic sensor [88] and pointing with a laser pointer [16, 52] is reported to have

a better estimation accuracy than the body part methods, but require additional

hardware. We prefer not to use additional devices in order for the interaction to be

as effortless as possible.

Given a pointing direction, several methods have been proposed to determine

which target or object is referred by the gesture, including euclidean distance on a

planar surface [16], ray-to-cluster intersection in point clouds [10, 100] and searching

50



a region of interest around the intersection point [110]. Droeschel [24] trains a func-

tion using head-hand, elbow-hand and shoulder-hand features with Gaussian Process

Regression and reports a significant improvement on pointing accuracy. Some efforts

fuse speech with pointing gestures for multi-modal Human-Robot Interaction [2, 63].

To our knowledge, only Zukerman [148] and Kowadlo [63] considered a proba-

bilistic model for determining the referred object for a pointing gesture. In their

approach, the probability that the user intended an object is calculated using the 2D

distance to the object and the occlusion factor. Objects that reside in a Gaussian

cone emanating from the user’s hand are considered as candidates in the model. The

approach is implemented in [148], where it is reported that due to high variance of

the gesture recognition system, the Gaussian cone typically encompassed about five

objects in cluttered settings. Our work addresses the confusion in such settings. In

contrast to their work, we measure Mahalanobis distances to potential target objects

using a prior error analysis.

4.4.2 Pointing Gesture Representation

4.4.2.1 Pointing Gesture Recognition

Our approach to pointing gesture recognition is to use a third party skeleton tracking

package as implemented by OpenNI NITE 1.5 (OpenNI) or Microsoft Kinect SDK 1.5

(MS-SDK). Skeleton tracking software produces 3D positions for several important

positions on the user’s body, including hands, elbows, shoulders and head. We use

the user’s hands, elbows, and head points for the recognition of pointing gestures.

We are primarily interested in pointing gestures generated by pointing with one’s

arm. We consider two rays for determining the pointing direction: elbow-hand and

head-hand. Both of these methods were evaluated with the two skeleton tracking

implementations. For each depth frame, this yields two rays for each of the OpenNI

and MS-SDK trackers:
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• ~veh := ~pelbowphand

• ~vhh := ~pheadphand

When a pointing gesture recognition request is received from a higher level process,

the gesture is searched in a time window of T seconds. Two conditions must be met

to trigger a pointing gesture:

• ~veh makes an angle more than φg with the vertical axis

• pelbow and phand stays near-constant for duration ∆tg

The first condition requires the arm of the person to be extended away from his/her

body, while the second ensures that the gesture is consistent for some time period.

The parameters are empirically determined as: T = 30s, φg = 45◦ and ∆tg = 0.5s.

4.4.2.2 Representing Pointing Directions

We represent a pointing ray in two angles: a “horizontal” / “azimuth” sense we

denote as θ and a “vertical” / “altitude” sense we denote as ψ. We first attach a

coordinate frame to the hand point, with its z-axis oriented in either Elbow-hand ~veh

or Head-Hand ~vhh directions, depending on which method is used. The hand point

was chosen as the origin for this coordinate system because both of head-hand and

elbow-hand pointing methods include the user’s hand. The transformation between

the sensor frame and the hand frame sensorThand is calculated by using an angle-axis

rotation. An illustration of the hand coordinate frame for Elbow-Hand method and

corresponding angles are shown graphically in Figure 18.

Given this coordinate frame and a potential target point P, we first transform it

to the hand frame by:

handptarget = Thand · ptarget
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Figure 18: Vertical (ψ) and horizontal (θ) angles in spherical coordinates are il-
lustrated. A potential intended target is shown as a star. The z-axis of the hand
coordinate frame is defined by either the Elbow-Hand (this example) or Head-Hand
ray.

We calculate the horizontal and vertical angles for a target point as handptarget =

(xtarg, ytarg, ztarg) follows:

[θtarget ψtarget] = [atan2(xtarg, ztarg) atan2(ytarg, ztarg)]

Where atan2(y, x) is a function returns the value of the angle arctan( y
x
) with the

correct sign. This representation allows us to calculate the angular errors in our error

analysis experiments in Section 4.4.4.1. The angles for each object is then used to

find the intended target, as explained in the following section.

4.4.2.3 Determining Intended Target

We propose a probabilistic approach to determine the referred target by using statis-

tical data from previous pointing gesture observations. We observed that head-hand

and elbow-hand methods, implemented using two skeleton trackers, returned differ-

ent angular errors in spherical coordinates. Our approach relies on learning statistics

of each of these approaches, and compensating for the error when the target object

is searched. First, given a set of prior pointing observations, we calculate the mean

and variance of the vertical and horizontal angle errors for each pointing method.
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This analysis will be presented in Section 4.4.4.1. Given an input gesture, we apply

correction to the pointing direction and find the Mahalanobis distance to each object

in the scene.

When a pointing gesture is recognized, and the angle pair

[θtarget ψtarget]

is found as described in the previous section, we first apply a correction by subtracting

the mean terms from measured angles:

[θcor ψcor] = [θtarget − µθ ψtarget − µψ]

We also compute a covariance matrix for angle errors in this spherical coordinate

system:

Stype =

σθ 0

0 σψ


We get the values for µθ, µψ, σθ, σψ from Tables 5 and 6 for the corresponding

gesture type and target. We then compute the mahalanobis distance to the target

by:

Dmah(target,method) =
√

[θcor ψcor]TS
−1
method[θcor ψcor]

We use Dmah to estimate which target or object is intended. We consider two use

cases: the objects are represented as a 3D point or a point cloud. For point targets,

we first filter out targets that have a Mahalanobis distance larger than a threshold

Dmah > Dthresh. If none of the targets has a Dmah lower than the threshold, then we

conclude that the user did not point to any targets. If there are multiple targets that

has Dmah ≤ Dthresh , then we determine ambiguity by employing a ratio test. The

ratio of the least Dmah and the second-least Dmah among all targets is compared with

a threshold to determine if there is ambiguity. If the ratio is higher than a threshold,

then the robot can ask the person to resolve the ambiguity.
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If the target objects are represented as a point cloud, we then compute the hor-

izontal and vertical angles for every point in the point cloud and find the minimum

mahalanobis distance among all. The distance to an object is then represented by

this minimum value. Usage of the point cloud instead of the centroid for determining

the intended object has several advantages. First, it yields better estimations due

to the coverage of the full point cloud. Second, it takes into account the size of the

object. For example, if a person is pointing to a chair or door, it is very unlikely that

he/she will target the exact center. If the point cloud is used, then we can easily tell

that the object is targeted.

4.4.3 Data Collection

To evaluate the accuracy of pointing gestures, we created a test environment with 7

targets placed on planar surfaces in view of a Kinect sensor (Figure 19). Depth data

was collected from six users, who pointed at each of the seven targets with their right

arm while standing at 2 meters away from the sensor. Targets 1 through 4 were on

tables positioned around the user, while targets 5 through 7 were located on a wall

to the user’s right. Our use case is on a mobile robot platform capable of positioning

itself relative to the user. For this reason, we can assume that the user is always

centered in the image, as the robot can easily rotate to face the user and can position

itself at a desired distance from the user.

4.4.3.1 Ground Truth Target Positions

We make use of a plane extraction technique from a point cloud to have an accurate

ground truth measurement. First, the two table and wall planes are extracted from

the point cloud data using the planar segmentation technique described in [131]. We

then find the pixel coordinates of corners on targets in RGB images, using Harris

corner detection [41], which produces calculated corners in image coordinates with

sub-pixel accuracy. The pixel coordinate corresponding to each target defines a ray in
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Figure 19: Our study involved 6 users that pointed to 7 targets while being recorded
using 30 frames per target.

3D space relative to the Kinect’s RGB camera frame. These rays are then intersected

with the planes detected from the depth data, yielding the 3D coordinates of the

targets.

Kinect 

MS Kinect Studio 1.5 

.xed 

MS Kinect SDK 1.5 
Skeleton Tracker 

MS-SDK 
Skeleton Data 

.xed to .oni 
converter 

.xed 

NITE 1.5 
Skeleton Tracker 

OpenNI NITE 
Skeleton Data 

Figure 20: Data capturing pipeline for error analysis of pointing gestures.

In order to be able to do a fair comparison between MS-SDK and OpenNI skeleton

trackers, we used the same dataset for both. MS-SDK and OpenNI use different device

drivers, therefore can not be directly used on the live depth stream at the same time.

Because of this, we extract the skeleton data offline in multiple stages. The pipeline

for the data capture procedure is illustrated in Figure 20. We first save the depth
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streams as .xed files using Microsoft Kinect Studio program. The acquired .xed file is

converted to .oni in a OpenNI recorder application by streaming the depth stream to

through Kinect Studio. The .oni is then played back in skeleton tracking application

in OpenNI, which writes the OpenNI skeleton data to a .txt file. MS-SDK skeleton

data is obtained by playing back the original .xed in the skeleton tracking application.

To factor out the effectiveness of our pointing gesture recognition method de-

scribed in Section 4.4.2.1, we manually started the time when each pointing gesture

began for data collection. Starting from the onset of the pointing gesture as anno-

tated by the experimenter, the following 30 sensor frames were used as the pointing

gesture. This corresponds to a recording of 1 second in the Kinect sensor stream. For

each frame, we extracted skeleton data using both the MS-SDK and the OpenNI.

4.4.4 Evaluation

4.4.4.1 Error Analysis

The four rays corresponding to the four different pointing approaches described in

Section 4.4.2.1 were used for our error analysis. As described in Section 4.4.3.1, the

ground truth target positions are available. We computed two types of errors for each

gesture and target:

• Euclidean error of ray intersections with target planes (Figure 21)

• Angular error in spherical coordinates (Tables 5, 6 and Figure 22)

We elaborate our error analysis subsequent sections.
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4.4.4.2 Euclidean error

Given a ray ~v in the sensors frame from one of the pointing gesture approaches, and

a ground truth target point ptarget lying on a target planar surface, the ray-plane

intersection between ~v and plane was computed for each ray, resulting in a 3D point

lying on the plane. Figure 21 shows the 2D projections for all 30 measurements from

each subject (shown in different colors) and each target. For ease of display, the

3D intersection coordinates with the target planes are displayed in a 2D coordinate

system attached to the target plane, with the ground truth target point as the origin.

As can be seen in Figure 21, the pointing gesture intersection points were fairly

consistent across all users, but varied per target location. The elbow-hand method

produced similar results for MS-SDK and OpenNI. The same is true for the head-

hand method. It is also noteworthy that the data for each target tends to be quite

clustered for all methods, and typically not centered on the target location.

4.4.4.3 Angular Error

We computed the mean and standard deviations of the angular errors in the spher-

ical coordinate system for each pointing gesture method and target. Section 4.4.2.2

describes in detail how the angles (θ, ψ) are found. The mean and standard deviation

values are given in Tables 5 and 6. The aggregate errors are also displayed as a box

plot in Figure 22.

Several observations can be made from these results. The data from the elbow-

hand pointing method reports that users typically point about 11 degrees to the left

of the intended target direction, and about 9 above the target direction. Similarly,

the data from the head-hand pointing method reports that users typically point about

2 degrees to the left of the intended pointing direction, but with a higher standard

deviation than the elbow-hand method. On average, the vertical angle ψ was about

60



5 degrees below the intended direction for the OpenNI tracker and 10 degrees be-

low for the MS-SDK tracker, with a higher standard deviation than the elbow-hand

methods. The disparity between the two skeleton trackers for this pointing method

is because they report different points for the head position, with the MS-SDK head

position typically being reported higher than the OpenNI head position. The overall

performance of the OpenNI and MS-SDK skeleton trackers, however, is fairly similar,

with the MS-SDK having slightly less variation for our dataset.

Figure 22: Box plots of the errors in spherical coordinates θ and ψ for each pointing
method.

As can be seen in the aggregate box plot in Figure 22, the horizontal angle θ

has a higher variation than the vertical angle ψ. Examining the errors for individual

target locations shows that this error changes significantly with the target location.

As future work, it would be interesting to collect data for a higher density of target

locations to attempt to parameterize any angular correction that might be applied.
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4.4.4.4 Object Separation Analysis

Using the error analysis and pointing gesture model presented in previous sections,

we conducted an experiment to determine how our approach distinguished two po-

tentially ambiguous pointing target objects. We use the results of the angular error

analysis results and not the euclidean error analysis for the remainder of the paper

because of our angular representation of pointing gestures.

Figure 23: Example scenarios from the object separation test is shown. Our experi-
ments covered separations between 2cm (left images) and 30cm (right images). The
object is comfortably distinguished for the 30cm case, whereas the intended target
is ambiguous when the targets are 2cm apart. Second row shows the point cloud
from Kinect’s view. Green lines show the Elbow-Hand and Head-Hand directions
and green circles show the objects that are within the threshold Dmah < 2.

The setup consisted of a table between the robot and the person and two coke cans

on the table (Figure 23) where the separation between objects was varied. To detect
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the table plane and segment out the objects on top of it, we used the segmentation

approach presented in [131]. The object centroid positions, along with their point

clouds were calculated in real-time using our segmentation algorithm. The separation

between objects were varied with 1 cm increments from 2 − 15cm and with 5cm

increments between 15 − 30cm. We could not conduct the experiment below 2 cm

separation because of the limitations of our perception system. We used the OpenNI

skeleton tracker because rest of our system is based in Linux, and we already found

that performance difference with MS-SDK for pointing angle errors is insignificant.

The experiment was conducted with one user, who was not in the training dataset.

For each separation, the user performed 5 pointing gestures to the object on the right

and 5 to the object on the left. The person pointed to one of the objects and the

Mahalanobis distance Dmah to the intended object and the other object is calculated

using the approach in Section 4.4.2.3. We used the mean and standard deviation

values of Target 2 (Figure 19) for this experiment because the objects were located

between the robot and the person.
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Figure 24: Resulting Mahalanabis distances of pointing targets from the Object
Separation Test is shown for a) Elbow-Hand and b) Head-Hand pointing methods.
Distance to the intended object is shown in green and the distance to the other object
is shown in red. Solid lines show distances after correction is applied.
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4.4.4.5 Results and Discussion

The results of the object separation experiment is given for Elbow-Hand (Figure 24(a))

and Head-Hand (Figure 24(b)) methods. The graphs plot object separation versus the

Mahalanobis distance for the pointed object and the other object for corrected and

uncorrected pointing direction. There are several observations we make by looking at

these results.

First, the Mahalanobis distance Dmah for the intended object was always lower

than the other object. The corrected Dmah for both Elbow-Hand and Head-Hand

methods for the intended object was always below 2, therefore selecting the threshold

Dthres = 2 is a reasonable choice. We notice that some distances for the unintended

object at 2cm separation is also below Dmah < 2. Therefore, when the objects are 2cm

apart, then the pointing target becomes ambiguous for this setup. For separations of

3cm or more, Dmah of the unintended object is always over the threshold, therefore

there is no ambiguity. Second, correction significantly improved Head-Hand method

accuracy at all separations, slightly improved Elbow-Hand method accuracy between

2 − 12cm but slightly worsened after 12cm. We attribute this to the fact that the

angles we receive is heavily user-dependent and can have a significant variance across

methods as showed in Figure 22. Third, the Mahalanobis distance stayed generally

constant for the intended object, which was expected. It linearly increased with

separation distance for the other object. Fourth, patterns for both methods are fairly

similar to each other, other than Head-Hand uncorrected distances being higher than

Elbow-Hand. This reinforced our conclusion that both skeleton trackers had similar

performance for the estimation of pointing targets. Our evaluation showed that in a

scenario where the separation between two objects were varied, our system was able

to identify that there is ambiguity for 2 cm separation and comfortably distinguished

the intended object for 3 cm or more separation.
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CHAPTER V

PEOPLE-AWARE NAVIGATION

Autonomous navigation is one of the most fundamental capabilities for a mobile

robot. There are many algorithms that achieve point-to-point autonomous naviga-

tion thanks to the advances in mapping, localization and motion planning research.

Many of these algorithms are optimized to find the least-cost path, or the shortest

path. However, when there are humans in the environment, such algorithms sud-

denly become inefficient or insufficient. For example, while it is acceptable for a

robot to get very close to a wall, doing so to a human is socially unacceptable and

unsafe. Similarly, sudden appearance of a robot can surprise humans and cause dis-

comfort. There are many other social scenarios where the shortest path may not be

optimal. In addition to sub-optimality, these approaches may be incomplete in the

sense that they can not find a solution even though there is a feasible one. This is

because shortest-path navigation algorithms treat every object in the environment as

an obstacle. This assumption does not hold when intelligent agents are present in

the environment. Therefore navigation should differentiate humans and obstacles to

enable intelligent robot behaviors.

Another aspect to spatial interaction between humans and robots is the dynamics

of the robot motion. For example, people may feel uncomfortable and unsafe when

they are in close proximity to high-speed agents or objects. Therefore, for a robot in a

human environment, while it may be acceptable to speed up in some regions, its speed

should be limited in places where there is a significant possibility of encountering a

human.
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In this chapter, we first provide a background on the most commonly used au-

tonomous navigation methods in Section 5.1 and provide a literature survey on nav-

igation among people in Section 5.2. In Section 5.3, we review the mapping and

localization techniques we use. In Section 5.4, we present how the goal points for

navigation are determined. We then present our people-aware navigation method in

Section 5.5. Lastly, we present speed maps, that sets speed limits for mobile robots

in an environment in Section 5.6.

5.1 Standard Approach in Autonomous Navigation

In general, there are two prerequisites that enables autonomous point-to-point navi-

gation:

1. The map of the environment, usually in the form of a discrete grid, that repre-

sents static objects in the environment

2. A method to localize the robot in the map using sensory information as it moves

in the environment

Robot navigation involves finding a collision-free path from a start pose (x0, y0, θ0)

to a goal pose (xg, yg, θg), where the coordinates are defined with respect to a world

frame, i.e. map. In real-time operation, (x0, y0, θ0) is the robot’s current pose as the

robot tries to reach to the goal pose from where it currently is. θg is optional as the

goal of the robot could be to reach the goal position regardless of its orientation. The

goal position is provided from an external process, and we will touch upon how the

goal positions are calculated in Section 5.4.

A common approach to path planning is to divide the path planning into two

parts: global and local. Global planning aims to find a path from the start position

to the goal position. The global path is a set of consecutive positions that connect

the start postion to the goal position on the gridmap. A global path is usually found
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Figure 25: High-level system overview of mobile robot navigation

with a search algorithm executed on a graph or tree of nodes, where a node represents

a robot state. The search heuristics is dependent on specific global planners. Usually,

short and collision-free shorter paths are favored. The local planner is responsible

for the execution of the global path by calculating a trajectory and sending velocity

commands to motor controllers. As the robot acts in the environment, its sensors

sense the new state of the robot and people, and the new iteration begins. The

system overview is shown in Figure 25.

A popular method to to implement the global and local planners is by using a

costmap. A costmap has the same representation as the map. Different from static

maps, costmaps cells can have non-zero values, which represent a cost. Many different

formations of cost structures can be designed and costmap designs alter the behavior

of the robot.

Note that this approach assumes the robot is able to execute any path provided to

it. Holonomic robots can move in any direction, however non-holonomic robots has

constraints in their movements. For example, car-like robots can not move sideways.
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Two common approaches to solve this problem are: to implement trajectory planners

that can handle imperfect control or to embed the robot’s dynamics into planners.

5.2 Related Work

In this section, we review the literature on robot navigation in human environments

including socially acceptable navigation, learning behaviors from humans and coop-

erative navigation.

Socially Acceptable Path Planning

Socially acceptable robot navigation include point-to-point navigation [119], ap-

proaching people [108] and evacuating buildings [90]. Some works used the personal

space concept in cost-based general path planners [119, 58]. Sisbot [119] models the

personal spaces as a ellipse-shaped Gaussian cost functions, and takes into account

the safety and vision fields of humans. Kirby [58] presents a path planner that takes

into account social conventions such as tending to one side of the hallways. A po-

tential field based trajectory planner for dynamic human environments is presented

by Svenstrup [123]. Rios-Martinez [102] presents a RRT-based planner that con-

siders not just safety but also the comfort of humans. In simulation, if interaction

within a group of people is detected, the robot can either join the group or try not to

disturb the interaction. This approach is implemented on a wheelchair robot [136].

Althaus [1] presents a robot that can join a group of people and adjust to the for-

mation reactively. The scenario where a robot encounters a human in a hallway is

studied by Pacchierotti [94]. They experimentally found parameters such as the dis-

tance between the human and the robot when the robot begins to deviate from its

path and lateral distance that robot should be placed when it is passing the human.

Lu [73] show that using gaze cues makes robot-human hallway passing more efficient.

Learning Navigation from Human Behavior

Robots that move like humans are usually favored, as observed by Sasaki [107].
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One way to simulate human navigation behavior is to use costmaps that capture social

conventions [109, 74]. Contrary to the imitation approach in Bennewitz’s approach

[8], the robot tries to avoid predicted paths, with the goal to minimize the risk of

interference. Kuderer [66] presents a tele-operated robot that computes the policy of a

navigation behavior by learning from observations of pedestrians. Pellegrini [97] trains

a dynamic social behavior, that account for social interactions, also using pedestrian

data.

Human Cooperation in Robot Navigation

Work by Dragan [23] claim that the robot motions should be predictable so the

human observers can judge the motive of the robot and predict its future behaviors.

An observational study by Lichtenthaler [71] claims that three features can increase

the predictability of robot navigation: straight lines, stereotypical motions and us-

age of additional gestures. Kruse [64] observes that when paths of two humans are

crossed at a right angle, they adapt their velocity rather than the path. This behavior

is implemented on a robot, resulting in more predictable motions. Robots can exploit

human cooperation in certain scenarios. In populated environments, one way to move

with the crowd is to follow individuals that move towards the robot’s goal [121, 85].

Trautman [130] mentions the ’freezing problem’, where traditional path planners fail

to produce a feasible solution in crowded human environments. Muller [85] briefly

mentions a ’shooing away’ behavior, where the robot accelerates towards a human,

hoping that he/she will get out of the way. Kruse [65] introduces an optimistic plan-

ner, which assumes that people will cooperate with robot movements. Their approach

relies on assigning a non-infinite cost if the robot enters to a human’s personal space,

however the plan fails if humans doesn’t move as expected because of the lack a local

planner.
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5.3 Mapping and Localization

Our navigation approach uses a 2-layer map:

1. Metric layer: Used for localization and obstacle avoidance

2. Semantic layer: Used for tasking and includes features such as planar landmarks,

doors, navigation waypoints and objects

In a new environment, we first run the ROS gmapping Simultaneous Localization

and Mapping (SLAM) package to generate the metric map. This SLAM approach is

based on the Rao-Blackwellized particle filter approach [38]. The front Hokuyo laser

scanner is used to generate the map and localize the robot. The semantic layer is

generated and edited by the interactive Tour Scenario (Chapter 4).

After the map is generated and saved, the robot continiously localizes itself in the

map. We used the ROS amcl package for localization, which implements the KLD-

samping Monte Carlo particle localization approach [28]. This approach provides

local localization: it only can estimate the position of the incrementally from recent

location information. Therefore, when the robot is started, this method of localization

needs a global position estimate. Our system accepts two methods of initialization:

1. Manual Initialization: This is the standard method of initialization in ROS. A

robotics expert provides a crude initial position estimate using the rviz interface

that runs on the robot’s computer. This method, in its current form, requires

a robotics expert to specify the initial pose of the robot.

2. Automatic Initialization using QR codes: We use a specially designed and lo-

cated QR code to globally localize the robot. The robot automatically infers

its initial location upon detection of the QR code, without external help from

humans. System designers can place the QR code tags to strategic places in the

environment, such as entrances and frequently visited areas.
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QR codes in general contain links, text and various other data. In our application,

the QR pattern includes text in XML format, which includes the link to the map

and speed map files, and the position of the QR pattern in the map. We used the

visp auto tracker ROS package to extract the pose of the QR code as well as the

content embedded in the pattern. A QR code pattern that includes localization

information is shown in Figure 26. The data embedded to the QR code in the figure

is in the form:

Here is a sample information that a robot can read from a QR pattern:

<root>

<map>http :// l i n k 1 /</map>

<speedmap>http :// l i n k 2 /</speedmap>

<x>101.26</x>

<y>98.76</y>

<z>1.45</z>

<q1>0.0</q1>

<q2>0.0</q2>

<q3>0.0</q3>

<q4>1.0</q4>

</root>

The position provided in the pattern is the position and orientation (in quater-

nions) of the QR tag in the map frame. Using this information, a robot can acquire

the knowledge of the environment automatically and locate itself in the map. When

the position of the QR pattern is acquired upon its detection, here is how the pose of

the robot mapTrobot is calculated:

mapTrobot = (mapTQR) · (QRTrobot)
QRTrobot = (QRTcam) · (camTrobot) = (camTQR)−1 · (robotTcam)−1

Therefore:
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Figure 26: A robot can acquire map information and localize itself against the map
upon detection of a specially designed QR code

mapTrobot = (mapTQR) · (camTQR)−1 · (robotTcam)−1

where:

robotTcam is the transformation from the robot base frame to the camera frame on

the robot and is known.

camTQR is the pose of the QR code in the camera frame and is available upon

detection of the QR code.

mapTQR is the transformation from the robot base frame to the camera frame on

the robot and is read from the data embedded to the QR code.

mapTrobot is the pose of the robot in the map and is unknown.

After the initial pose is provided, the local localization method amcl takes over.

5.4 Goal Points for Navigation

As presented in Section 4, our interactive system allows a user to annotate landmarks.

After completing the Tour Scenario, the robot is able to use labeled entities as nav-

igation goals. A user can enter a navigation destination to the robot in three ways:

via labeled waypoints, planar landmarks or objects.
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5.4.1 Labeled Waypoints

If a waypoint is labeled and saved, the robot attaches that label to the raw pose.

Therefore, if the robot is instructed to navigate to a labeled waypoint, then the goal

is readily the pose of that waypoint.

5.4.2 Labeled Planar Landmarks

If the label is attached to planar landmark, or a set of planar landmarks, we use

the following methodology depending on the number of landmarks attached to the

corresponding label:

5.4.2.1 Only a single plane has the corresponding label:

Figure 27: Top down point cloud view of a room. A planar landmark with label Table
has previously been annotated by a user. The convex hull for the planar landmark
is shown in red lines. When asked to navigate to Table, the robot calculates a goal
position, which is shown as the yellow point.

We assume that the robot should navigate towards the closest edge of the plane, so

we first select the closest vertex on the landmark’s convex hull to the robot’s current

position, and project it to the floor plane. We find the line between the closest vertex

on the convex hull and the robot’s current pose, and the goal position would be on
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this line, a meter away from the vertex. This results in the robot navigating to near

the desired planar surface, and facing it. This method is suitable for both horizontal

planes such as tables, or vertical planes such as doors. An example for calculating a

goal pose for a uniquely labeled planar landmark is shown in Figure 27.

5.4.2.2 Multiple planes are attached to the same label

When there are multiple planes associated with the same label, then we interpret this

landmark as a region or space, such as a room or corridor. In this case, we project the

points of all planes with this label to the ground plane, and compute the convex hull.

The goal position is chosen as the centroid of the convex hull. Rooms and spatial

regions could be useful fort tasks such as object search. An example for calculating

a goal for a two landmarks that has the same label is shown in Figure 28.

Figure 28: Top down point cloud view of a hallway. The user has previously anno-
tated two planar landmarks with the same label, Hallway. When asked to navigate
to Hallway, the robot chooses a goal position in the middle of the planar landmarks,
shown as the yellow point.

5.4.3 Labeled Objects

As discussed in Section 4.2.3, plane detection is executed before tabletop object de-

tection. When the robot is asked to navigate to a labeled object, the planar surface
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that the object lies on is given as the goal landmark. The robot calculates the goal

position as described in the single labeled landmark case in the previous section.

5.5 People Aware Navigation

People-aware navigation algorithms aim to generate human-friendly paths that con-

sider the safety and comfort of people. As reviewed in Section 5.2, a common as-

sumption for point-to-point people aware navigation is that humans are independent

agents and that robot’s motions have no effect on people’s motions. However, humans

navigate by constantly anticipating other people’s reactions. Similarly, mere presence

of a robot in motion is likely to influence how nearby humans would move. Robots can

potentially use this implicit cooperation between moving embodied agents. For exam-

ple, consider a robot that is outside a room and given a goal pose in the room. There

is a person standing at the door and blocking the path. Such an example is illustrated

in Figure 29. Standard path planners fail to produce a solution to this problem. The

role of physical embodiment in human-robot interaction is significant [138], however

it is commonly ignored in robot navigation. A people-aware planner should anticipate

that the human may give way to the robot if it expresses its desire to enter the room,

either implicitly or explicitly. By using anticipation, a robot can reduce time of travel

and behave more human-like.

In this section, we propose a people-aware navigation planner that considers re-

actions of humans to robot motion. Our planner first finds the least-cost path with

a cost definition considering the path length, and safety and disturbance of people.

The costmap definition is discussed in Section 5.5.1. Then the path is refined by

simulating people’s reaction to robot’s motion using Social Forces Model [43]. The

path refinement step will be described in detail in Section 5.5.1.1. In dynamic simu-

lation, robots and humans repulse each other, and additional forces helps the robot

to stay away from obstacles and conserve formation in groups. Paths are re-planned
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GOAL 

CAN’T GO 

THERE, 

SORRY! 

Figure 29: Standard path planners fail to produce a solution to the ’room problem’.
Our people-aware planner anticipates that the human can give way to the robot if it
approaches towards its goal.

whenever the world state changes or humans do not move as anticipated. In Section

5.5.2, we discuss the local planner. We then discuss the implementation of the system

in Section 5.5.3, demonstrate two example scenarios in simulation in Section 5.5.3.1

and two on the real system in Section 5.5.3.2.

5.5.1 Global Planner

The global planner takes the start and goal positions and a 2D grid map as input and

aims to find a set of waypoints that connects the start and goal cells. The output

path has the minimum cost with regards to a cost function with 3 parameters: path

length, human safety and group disturbance. We use A* search with Euclidean

distance heuristic on a 8-connected grid map to find the minimum cost path. The

configuration space obstacles are found by inflating the map obstacles for as much as

the radius of the robot with the circular robot assumption.

Path length cost: Each action a of the robot (moving to one of the 8 adjacent

cells) has a non-negative action cost Costa(xi, yi, a). If the destination cell is occupied

by a configuration space obstacle, then the action cost is infinite. Otherwise, it is the
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euclidean distance in meters. The action cost is thus defined as:

Costa(xi, yi, a) =


u if a = N, E, S, W

u
√

2 if a = NW, NE, SW, SE

∞ if Cell(xi+1, yi+1) in obstacle

(11)

where N,NW,.. are the grid cell expansion directions and u is the grid cell size. The

resulting path length cost of a path P is then the sum of all action costs:

Costpath(P ) =
∑
a∈P

Costa(xi, yi, a) (12)

Safety cost: The notion of safety is the absolute need of any human-robot inter-

action scenario. This cost is a human centered 2D Gaussian form of cost distribution

and aims to keep a distance between the robot and the humans in the environment.

While some approaches use un-isotropic cost functions to account for human orien-

tation, we use a isotropic Gaussian for its simplicity. Each cell coordinate around a

human contains a cost inversely proportional to the distance. Since the safety loses

its importance when the robot is sufficiently far away from the human, safety cost be-

comes zero after a threshold distance. If there are multiple people in an environment,

the safety cost of a cell takes its value from the closest human.

Costsafety(x, y) =

 rmaxh∈H(N (µh,
∑

)) if d < dmaxsafety

0 if d ≥ dmaxsafety

(13)

where d is the distance to the closest human, H is the set of all humans, µh =

(|x−h.x|, |y−h.y|) and
∑

= 0.5I2 is a fixed covariance matrix. The multiplication by

the grid cell size r compensates for the grid map resolution. Otherwise, for example, if

a very fine map was used, safety cost would dominate the path length and disturbance

costs, which are independent of the map resolution.

Disturbance cost: This cost is aimed to represent the cases where the robot

potentially disturbs the interaction of a group of humans. For example, if two people

are facing each other and talking, then the robot should not cross between them.
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We model this with a disturbance cost that is introduced if the robot’s path crosses

between two people. We do not detect if there actually is conversation between the

people, but estimate the disturbance cost using body poses of agents. This cost

increases if body orientations of two people are facing each other and is inversely

proportional on the distance between the two humans.

For each step taken in the grid, we check if the line segment from the current po-

sition to the projected position intersects a line segment between all pairs of humans.

To illustrate, let’s assume the robot crosses the line between human A and human B

in Figure 30(a).

The disturbance cost is calculated as:

Costdist(x, y, a) = max(0, f(d).( ~AA′. ~AB + ~BB′. ~BA))

f(d) =
1

d
− 1

dmaxdisturbance

(14)

where all the vectors are normalized and dmaxdisturbance is the maximum distance

between the humans that returns a disturbance cost. Figure 30(b) illustrates several

examples of disturbance costs with dmaxdisturbance = 3 meters.

Total Cost: The total cost of a path P is computed with a weighted average of

path length, safety and disturbance costs. We use A* search to find the least-cost

path.

CostTotal(P ) = wp.Costpath + ws.Costsafety + wd.Costdist (15)

5.5.1.1 Path Refinement using Social Forces

In this section, we describe the path refinement process that is applied to the global

path. The initial geometric path generated by the global planner is not smooth,

therefore robot motion might not be easy to interpret for human observers. The

path refinement processes the global plan and simulates the parts of the path where

group of humans are closeby. We use Social Forces Model (SFM) [43] to simulate

the motions of humans and the robot. Interaction between people are modeled as
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(a)

Humans Formation Cost 
(d=1m) 
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(d=2m) 

 
0 
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0.66 

 
0.16 

 
0.66 

 
0.16 

 
0.94 

 
0.23 

 
1.33 

 
0.33 

(b)

Figure 30: Disturbance costs in different human-human configurations and distances
is shown. A path that crosses the dashed lines incurs the disturbance cost calculated
on the right side of the table shown in b)

attractive and repulsive forces in SFM, similar to the Potential Field Method [55] for

robot navigation. The forces are recomputed iteratively and the resulting simulated

paths replaces the corresponding path sections in the global plan.

First, groups of people are found by clustering with respect to their positions.

Simple euclidean distance thresholding is used for clustering people. In our current

implementation, a group region is defined as a rectangle, although other shapes can

also be used. The path refinement process receives the global plan and finds out

where it enters and exits each group region. Goal of the dynamic iterative simulation

is to find a sub-plan between two points: where the robot enters and departs the

group region. Forces apply to all agents, including the robot and humans. We define

4 forces acting on the agents:

• Fgoal : attraction towards a sub-goal

• Fsocial : repulsion from other agents
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• Fobs : repulsion from the nearest obstacle

• Fgroup : attraction or repulsion towards group members

The directions of forces acting on the robot at the first iteration of force simulation

are illustrated in Figure 31(a). The force magnitudes with respect to distances are

plotted in Figure 31(b).

Start Goal 

F(goal) 

F(social) 

F(obs) 

(a) (b)

Figure 31: a) Social forces acting on the robot, Fgoal,Fsocial and Fobs, are shown at
the first iteration of the dynamic planner. Note that Fgroup = 0 as the robot does not
belong to a group in this example. b) Social force magnitudes as a function of the
distance between the two agents

Starting from the first group region that intersects the static plan, the following

procedure is applied within every group region: At every iteration, first the force

vectors acting on the robot are calculated. Then the planner takes a step in the

direction of the net force vector for a fixed step size. Then each of the humans in the

group takes a step towards the resultant force that is acting on them. The planner

continues the iterations until a solution is found or there is a timeout. If a solution is

found, the calculated sub-plan replaces the static plan in this group region. Potential

fields are known to stuck to local minima [62], and the planner might go into infinite

80



loop. If a solution cannot be found, we stop the planner after a number of iterations

and the static plan is taken as it is in the corresponding group region.

5.5.2 Local Planner

The local planner is responsible for finding the trajectory that the robot is capable

of executing. It accepts a geometric global path as input and computes the linear

and angular velocity necessary to follow the dynamic path. We adopt a local planner

inspired by Dynamic Window Approach (DWA) by Fox [29]. In the original DWA

approach, only circular trajectories are considered, defined by pairs of linear and an-

gular velocities (v, w). They use an objective function, consisting of target heading,

clearance from obstacles and velocity of the robot is maximized by sampling admissi-

ble velocities. Our approach also samples admissible velocities, but the optimization

criteria we use consists only of the Euclidean distance to a sub-goal point chosen on

the path that is ahead of the robot. The velocity that results in the closest proximity

to the sub-goal is chosen and sent to robot controllers. At every control iteration,

the sub-goal is chosen as the first point ahead of the robot that is further than a

distance threshold. We found that a threshold of 0.25 meters was sufficient to choose

the sub-goal. After the local planner calculates the output velocities, they are applied

to the robot and the iterative process continues until the the robot reaches the goal.

Since the goal is a singular point, it is impossible for the robot to be exactly at the

goal. Therefore, a tolerance around the goal point, defined as a circle around the goal

is defined.

Given the robot’s current pose and an applied velocity, the DWA approach requires

to have a motion model for the robot. The motion model projects what the robot pose

would be, if a velocity pair is applied to it for a time period. The actuation model we

used for our implementation is a non-holonomic mechanism with two wheels. While

one can use the general motion equations derived in [29], we used linear approximated
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motion equations for our robot, as shown in Equation 16. Given a robot pose qt =

(xt, yt, θt) at time t and an input velocity (v, w), the projected robot pose at time

t+ ∆t is:

qt+∆t = fmotion(qt, v, w,∆t) =


xt − v

w
sin(θt) + v

w
sin(θt + w∆t)

yt + v
w
cos(θt)− v

w
cos(θt + w∆t)

θt + w∆t

 (16)

5.5.3 Results

In this section, we provide qualitative results both in simulation and on the real robot.

5.5.3.1 Simulation

Figure 32: A solution is shown to the ”Room Problem”. The robot is outside a room
and the goal pose is inside the room. Traditional planners can not solve the problem
because two people are blocking the doorway. Our planner generates a tentative path,
with the initial global plan shown in green and the dynamic refinements are shown
in orange.

Room Problem: In this scenario, the robot is outside the room and a point

inside the room is given as the goal (Figure 32). There are two people standing at

the doorway and there are two more standing people inside. Traditional planners
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can not find a solution to this scenario because the path is blocked. The static plan

and dynamic plans are shown in green and orange, respectively. This path is planned

for the current time but makes assumptions about future positions of humans. Note

that the dynamic planner modifies only the parts of plan inside group regions (blue

rectangles). In the first group region near the doorway, the static plan involves going

between the humans. Dynamic simulation suggests that people will get closer to

each other if the robot drives towards the side. In the second group region, since two

humans are oriented to each other, going between them would add a high disturbance

cost, therefore the static plan avoids going between them. Safety costs encourages

staying far from the humans, but not too far because a longer path would increase

the path length cost. The robot is further led to stay closer to the room boundaries

in the dynamic planner due to the repulsive forces from both humans.

Office Environment: Goal of the robot is to navigate to a goal position in an

office environment where there are 4 people (Figure 33). In this scenario, we show

how the planned path is changes with the poses of humans even though the start

and goal position of the robot doesn’t change. There are 3 main ways the robot can

navigate to its goal: left, center or right corridor.

In the first configuration in Figure 33, two people are grouped together as they

are looking at each other. The robot decides to take the center corridor, first slightly

disturbing the speaking duo, then switches sides in the corridor and reaches its goal.

In the figure, the dynamic path (pink line) is overlaid on the static path (green line).

In the second configuration in Figure 33, The third person at the center corridor

joins the conversation. Now we have 2 human groups, shown as rectangles, in the

scene. Since passing through a group of 3 people would incur a high disturbance

cost in addition to the safety cost, the robot decides to take a longer route (left

corridor). Since this path does not intersect any group regions, no dynamic simulation

is executed.
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Figure 33: An example scenario for people aware navigation is shown. Each image
depicts a different configuration of people in the environment. Our algorithm cal-
culates a path for every situation. a) The robot takes shortest route, traveling in
the vicinity of a group of two and another individual. b) third individual joins the
group. Robot takes a longer path that doesn’t have humans on path. c) fourth person
changes his position, leading the robot to take the longest route.
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In the third configuration in Figure 33, the group of three hasn’t moved, but the

fourth person person has changed its position. In this case, if the left corridor is

taken again, an additional safety cost would be incurred. Therefore the robot decides

to take the longest route (right corridor). Again, since the robot travels far from

humans, no dynamic simulation is executed.

5.5.3.2 Real Robot

We used a the mobile robot platform Segway RMP-200 for experiments on the real

system. We demonstrate our anticipatory navigation planner on the real system in

two environments: hallway and kitchen. Each scenario is run twice under different

human poses in order to demonstrate how the planner responds.

Hallway passing: In this scenario (Figure 34), robot’s goal is to navigate to

the end of the hallway. In the first run, humans move as the robot anticipates. In

the second run, humans do not move as anticipated, and the robot adjusts its path.

Each step is described in the caption of the figure. In both cases, the initial plan is

to cut in between the two people. This is because the safety cost for getting close to

one of the humans was more dominant than the disturbance cost.

Narrow corridor: In this scenario (Figure 35), robot’s goal is to drive towards

the exit door. There are 3 people nearby the robot. The robot can either take the

shorter route that is the direct path, or take a longer path that is to the left of the

table. Each important step is described in the caption of the figure. The first run

shows that the robot may plan hoping to influence the human. The second run shows

that the robot may take a longer route if the disturbance and safety costs are going

to be large.

5.6 Speed Limits for Safe Navigation

In this chapter so far, we studied navigation planning that aims to generate human-

friendly paths. The most important criteria for social navigation is the safety of
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Figure 34: The Hallway scenario for people aware point-to-point navigation. Each
row displays the steps of a different run. The static plan (green line) and dynamic
plan refinement (pink line) are shown. First run: a) Navigation starts. The dynamic
planner anticipates that people will give way to the robot when it starts to move
towards them. b) Humans notice the robot, and give way by increasing the separation
between them. c) The robot continues towards its goal and humans regroup. Second
run: d) both the static and dynamic plan involves going in between humans again e)
human on the right gets closer to the other person. Since a human made significant
movement, dynamic planner re-plans. Plan no longer involves going in between. f)
static planner periodic re-plan triggers, leading to robot to stick to the wall to the
right.
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Figure 35: The Kitchen scenario for people aware point-to-point navigation. Each
row displays the steps of a different run. In the first run, there are two people blocking
the path to the left and one person at the narrow corridor. a) robot decides to take
the shorter route, because it would disturb one person instead of two. There is not
enough space to pass, and dynamic planner assumes the person would get out of the
bottleneck to give way. b) human behaves as robot anticipated and gets out of the
narrow passage. robot slows down because it enters the human region. c) person gets
back to his original position, robot reaches the goal. In the second run: d) there are
two people at the narrow corridor and one person on the left. The robot decides to
take the longer route and pass the third person from left. The safety cost from the two
others would be too high if the robot took the direct route. e) the person steps back
as he recognizes the robot. since the person has moved, the dynamic planner re-plans
and decides to pass from right. f) after the robot passes the person, it proceeds to its
goal.
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people. Previously, we introduced Safety Cost in Section 5.5.1 as well as repulsion

forces in Section 5.5.1.1 to bolster safety. However, a seemingly safe path generated

by our approach can still lead to an accident because it is may not be possible for the

robot to track every human in the environment all the time. For example, when the

robot is turning a corner, there is a risk that the robot suddenly encounters a person.

Since the robot have finite deceleration, a collision may be unavoidable. Moreover,

the person tracker may fail and may not be able to sense people. The top speed a

robot would be allowed to navigate should dependent on the context. For instance,

a robot should move slowly and carefully in a hospital room. On the other hand,

the robot may navigate faster in a long office corridor. The speed limits should be

provided by experts or the building owners, who would govern how fast the robots

should navigate in a particular environment.

In this section, we introduce the concept of speed maps that sets the speed limits

for mobile robots in an environment. We claim that usage of such speed maps make

the robots safer and potentially more efficient. The speed map designed for the second

floor of the College of Computing building at Georgia Tech is shown in Figure 36.

The free spaces in this map are divided into three zones:

1. Green zone: The robot is allowed to travel at relatively faster speeds.

2. Yellow zone: Human interaction is possible and the top speed is limited.

3. Red zone: Human encounter is probable and the top speed is minimal.

Speed maps can be designed in many ways depending on the context and task.

This speed map shown in Figure 36 is designed by hand using the following rules:

Spaces corresponding to rooms and cubicles are covered as Red Zones. Blind corners

are covered with a Red Zone close to corner and Yellow zone enclosing the Red Zone.

Corridors are covered as Green Zones and the rest is covered as Yellow Zones.
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Figure 36: A speed map designed for the IRIM Lab at Georgia Tech is shown. The
robot has to be relatively slow in red zones, can have moderate speed in yellow zones
and is allowed to move relatively faster in green zones.

The speed map depicted in Figure 36 is designed by hand, however the speed map

generation can be automatized using automatic room categorization and additional

processing. Room segmentation has been proposed in an interactive fashion by Diosi

[22], as well as automatically, especially for creating topological maps [84].

5.6.1 Results

In this section, we evaluate the effect of applying speed limits in the scenario shown

in Figure 37(a). The robot is in an office environment and it has to turn a corner

to reach the its goal. There is a person standing right around the corner and the

person is not visible to the robot until it gets fairly close to the person. We had two

conditions of speed limits:

• Condition 1: Speed map is not used, the top speed of the robot was set at
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vmax = 1.0m/s

• Condition 2: Speed map in Figure 37(a) is used. The top speed varied in each

zone as: vmax(green) = 1.5m/s, vmax(yellow) = 0.5m/s, vmax(red) = 0.15m/s

In both conditions, standard ROS Navigation is used, which found the lowest cost

path on a costmap consisting of costs from nearby obstacles. The robot detected

the person using our multimodal person detection and tracking method described

in Chapter 2. We analyze the distance/velocity of the robot as it encountered the

human and measure the time to reach to the goal as evaluation metrics.

The trajectory generated in Condition 1 is shown in Figure 37(b). Note that

the robot got dangerously close to the human while it turned the corner and it was

traveling with about 0.3m/s when it detected the person. The trajectory generated in

Condition 2 is shown in Figure 37(c). With this approach, the robot slowed down as it

approached the corner, therefore allowing earlier detection of the human. The robot

gave more space to the human in this case and the encounter speed was 0.15m/s,

half of the encounter speed in Condition 1. Considering the speed of the robot and

distance to the human at the time of encounter, we can say that the robot behavior

in Condition 2 was safer than the robot behavior in Condition 1. The second metric

we measured was the time to reach the goal. The robot was more efficient with the

proposed approach, reaching the goal in 28s in Condition 2 compared to 29.1s in

Condition 1.
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(a)
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(b)

START	  

GOAL	  

HUMAN	  

(c)

Figure 37: The section of the map that corresponds to a turn is shown in the figures.
The trajectories resulting from the experiment comparing our speed maps approach
with a fixed top speed are displayed. The robot has a fixed goal location. Right
around the corner, there is a bystander human, who is not visible to the robot until
the robot makes the turn. Points annotate robot position measured at fixed time
intervals. a) Speed map of a corridor intersection at the second floor of College of
Computing at Georgia Tech. b) Robot’s top speed is fixed at 1.0m/s. Note that the
distance between robot positions are mostly constant. The robot gets very close to
the bystander because it is moving relatively fast when it turned the corner. c) The
robot is allowed to move with 1.5m/s in green, 0.5m/s in yellow and 0.15m/s in red
zones. Colors of the sampled points on the path show the associated speed zone. It
can be observed from the trajectories that the robot motion handled the corner turn
safer in in c) than in b)
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CHAPTER VI

PERSON GUIDANCE

The application of guiding a person to a location with a robot has many uses, such

as giving tours in museums, showing a location to visitor and helping the visually

impaired navigate. We think the guidance behavior is one of the most fundamental

capabilities a socially interactive robot should have. A straightforward approach to

guide a person would be the the stop-and-wait method: robot plans a path and

executes it normally as long as the guided person is nearby, and stops then the

person is outside a defined radius. However, this method of guidance may lead to

sudden stops and would not be socially acceptable. A guide robot should consider

the distance to the human and incorporate this information in its control strategy.

In this chapter, after reviewing the literature on guide robots in Section 6.1, in

Section 6.2 we present our guidance method, which adjusts the speed of the robot as

a function of the distance to the person. Then we present an application of person

guidance in Section 6.3, specifically tailored for blind users.

6.1 Related Work

The earliest works in guide robots focused on long-term deployment of tour guide

robots in public places such as museums. Burgard [12] presents the robot Rhino,

that was deployed to a museum for 47 hours. The Minerva robot was an improved

model over Rhino [125], and was deployed to a museum with an order of magnitude

larger floor space. This robot was in operation for two weeks, and was able to have

short-term interaction with people via head motion and facial expressions. Siegwart

[117] presents a robot that was deployed in an exhibition for 6 months. Nourbakhsh

[89] presents a project where four guide robots were deployed to museums for a period
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of five years. The authors remark that it is indeed possible to deploy guide robots

public places without supervision. All these tour-guide robots had various degrees

of autonomy and generally was received with enthusiasm. However, in all of these

works it was apparent that there is a need for research in the area of Human-Robot

Interaction.

Pacchierotti [93] demonstrates an office guide robot, but the main focus is on

passing people in corridors. Clodic [20] presents robot deployed in another museum.

It was reported that a continuous interaction all along the guiding mission is funda-

mental to keep visitor’s interest. Martin [75] studies the scenario of guiding a visitor

in an office environment and focuses on robust person tracking. Pandey [95] focuses

on the leave-taking of the guided person. The robot predicts the intent of the discon-

tinuation of the task and either breaks the mission or searches for the user depending

on the waiting time. Martinez-Garcia [77] focuses on the scenario of guiding a group

of people with multiple robots at the same time. Garrell [32] works on a similar prob-

lem, where the task of the two robots is to control group of people and guide them.

Another relevant scenario is the evacuation scenario, in which there is a danger and

robots guide people to the safe a location [56, 103].

6.2 Guide Robot

In this section, we describe how the guiding behavior is achieved. The robot’s higher

level actions are governed by a finite state machine, as shown in Figure 38.

When the robot is first started, it is in the NON-LOCALIZED state. When the

initial pose is given, either manually or by detection of the QR code (Section 5.3), the

robot switches to WAITING state. This is the state where the robot actively looks

input from users. When a person is closeby, robot approaches towards the person so

the on-board tablet GUI is facing the potential user. If the person inputs a guide

request, the robot displays destination and asks for confirmation. If the user confirms
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Figure 38: Finite State Machine for the Guide Robot

the goal, then the robot goes in to GUIDING PERSON state. When guiding is

completed, robot waits for a while at the guidance destination and goes back to the

base. At any time, a user can cancel an operation or enter a new command.

Max	  Speed	  

dist	  to	  human	  

Figure 39: Speed profile of a person guiding robot as a function of the distance to
the user.

After a person guidance request is received from a higher level process, the robot

first plans a path using a navigation planner such as ROS Navigation or our navigation
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planner presented in Chapter 5. The robot continues on its path while constantly

monitoring the distance between itself and the guided person, and adjusts its speed

accordingly. A variable speed profile so that the robot can keep up with the person

and the motions of the robot is smoother. We define a speed function that is a

function of the distance between the robot and the user. This speed profile is shown

in Figure 39. The robot moves at a low speed vsafe if the human is dangerously close.

The speed is peaked at distance dpeak and the robot stops if the distance is larger than

dguide, which may indicate that the human is not interested in being guided. Note

that vpeak is capped by the speed limits in the environment, provided by the speed

map approach presented in Section 5.6.

6.2.1 Pilot Study

We evaluate the proposed guidance method in a comparison study. The task of

the robot is to guide a person in an office environment. Figure 37(a) shows the

part of the map and the goal of the robot. There are not any other people in the

environment other than the guided person and ROS Navigation is used for point-to-

point navigation planning. The robot actively guides a user to this goal position, in

the following two conditions:

1. Stop-and-wait: The robot stops as long as the distance to the user is higher

than a threshold

2. Proposed method: The maximum speed of the robot is altered as a function of

the distance to the user. The velocity profile shown in Figure 40 is used with

dguide = 1.7m, dpeak = 0.9m, dsafe = 0.1m, vsafe = 0.1m/s, vpeak = 1.0m/s.

In the experiment, when guiding was enabled, the human first waited until the

robot stopped at dguide. Then he took a step and waited for a second time, and then

started following the robot. As the evaluation metric, we measure the instantaneous

speeds of the robot and the human.
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6.2.2 Results

(a)

(b)

Figure 40: Comparison of robot and human speeds are shown for two person guidance
methods. a) Stop-and-wait guidance with ROS Navigation b) Proposed guidance
method. Accelerations were less steeper in b).

The comparison of robot speeds is given in Figure 40(a) for Condition 1 and Figure

40(b) for Condition 2. Between t = 0 and t = 9s, the accelerations were higher for

the stop-and-wait condition. Robots that exhibit high accelerations will likely be

perceived as unsafe, therefore the proposed method exhibits more socially acceptable

behavior. Moreover, after the person started closely following the robot (t > 9s), our
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approach is better at mimicking the speed of the human.

6.3 Application To Blind Users

In this section, we present a person guidance application that is specifically tailored

for guiding blind users. Our approach consists of planning a path for the user and

applying vibrations via a haptic belt to keep the user on the path.

6.3.1 Tactile Belt

In the previous section, we assumed that the guided person could observe where

the robot is. With a blind user, this assumption does not hold. Therefore we need

a mechanism to give directions to the user. Readily available options for assistive

interfaces are limited to Braille or devices that presents content with speech synthesis.

These ways of presenting information have difficulty dealing with representing spatial

information. We also think visually impaired individuals would prefer a non-spoken

interface because they mostly rely on their sense of hearing in daily life. We therefore

use a tactile belt for navigation guidance, because it can represent directions and

rotations, be worn discreetly and does not occupy the hearing sense.

The belt has 8 pancake vibration motors, linearly spaced around the waist, and

the motors can be controlled asynchronously via an Arduino board. We used two

distinct vibration patterns to control the person’s movements:

1. Directional Movement: When the guided person should move in a direction

2. Rotational Movement: When the guided person should turn around self

The vibration patterns that induce directional and rotational movements in the

human can be specified in many ways. We evaluated four patterns in each category

with a user study. The details of this user study as well as a survey about the usability

of the tactile belt can be found in Appendix B. The user study showed that the
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directional motion pattern with the highest recognition rate and least reaction time

was the TWO TAPS pattern, which is illustrated in Figure 41. For the rotational

motion pattern, we used the continuous rotation with a single motor, illustrated in

Figure 42.
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Figure 41: The vibration pattern applied by the Tactile Belt to induce directional
movements. A motor is fired for a duration of 250ms, inactivated for 250ms and fired
again for 250ms.
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Figure 42: The vibration pattern applied by the Tactile Belt to induce rotational
movements. The consequent vibrations motors are fired consecutively, starting from
left for CW and right for CCW rotation.

A special stop signal is applied to the belt when the user reaches the destination.

Stop signal is implemented similar to TWO TAPS pattern except all the motors are

activated instead of one.
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6.3.2 Planning the Path of the User

We model the person as a non-holonomic robot and plan a path for him/her. Vi-

bration signals are applied to influence the motion of the user and keep him/her on

the path. Coupled with our person tracking module, the ’robot’ stays localized in

the map and with respect to the path. The path is re-planned every second to deal

with possible deviations. Next section is concerned with how the linear and angular

velocities extracted from the planner are converted to the vibration patterns.

6.3.3 Velocity to Vibration Mapping

Given a desired velocity that the ’robot’ should execute, we first determine if a di-

rectional or rotational vibration pattern should be applied by the belt. If the linear

velocity is dominant, then the human should walk towards that direction. If the an-

gular velocity is dominant, the human should rotate around self. If both the linear

and angular velocity is close to zero, the human should not move. To calculate which

motion is appropriate, the ’robot’ is simulated using Equation 16. If the distance the

’robot’ took is larger than a threshold, then a directional vibration pattern is used.

If it is less than the threshold, a rotational pattern is used. If both of the velocities

are small enough, then no vibration is applied. When the human reaches the goal,

the stop signal is applied with the belt.

6.3.4 Demonstration

We demonstrated that our system can successfully guide a blindfolded person to a

goal location in a room. The experimenter manually provided several goal poses

using the GUI. Note that since the system re-plans frequently, therefore the planner

is able to accommodate dynamic obstacles and compensate unpredictable motions

of the person. The demonstration steps as well as their explanations are shown in

Figure 43.
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(a) (b)

(c) (d)

(e) (f)

Figure 43: Autonomous guiding of a blindfolded person using the tactile belt. a)
The guidance starts. The user is blindfolded and is standing at the left of the screen.
The human detection system detects him and places an ellipse marker with an arrow
depicting his orientation. The operator gives a goal point by clicking on the screen.
The goal point is the right traffic cone, and given by the big arrow. b) The system
autonomously generates a path for the user. As seen in the picture the path is
collision free. At this stage the belt begin to vibrate towards the front of the user.
c) An unexpected obstacle (another person) appears and stops in front of the user.
The system detects the other person as an obstacle, and reevaluates the path. A new
path going around the obstacle is immediately calculated and sent to the user by the
belt. d) The user receives a rotation vibration modality, and begins to turn towards
the new path. And follows this path from now on. e) The obstacle leaves. The path
is then reevaluated and changed. The user receives forward directional belt signal,
and advances towards the goal. f) The person reaches to the vicinity of the goal and
stop signal is applied.
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CHAPTER VII

SITUATION AWARE PERSON FOLLOWING

Simply put, Situation Awareness (SA) is knowing what is going on around you.

Endsley [26] defines three steps for SA: perception, comprehension and projection.

Perception is detecting the situation by perceiving cues, comprehension is combin-

ing and interpreting information and projection is forecasting future events. In this

section, we discuss SA for person following behavior for mobile robots. In the Chap-

ter 3, we presented the basic following behavior, where the robot follows the person

strictly from behind, while maintaining a fixed distance. The related works on person

following discussed in Section 3.1 mostly use the same principle: the robot uses the

person to calculate a target position and blindly follows the human irrespective of the

situation. Although this method is sufficient for some scenarios, it can easily lead to

socially awkward situations. For example, consider the case that the followed person

stops just outside a door. In this case, the robot would occupy the doorway, blocking

other people’s passage, however thinks it is doing its task well because it maintains

a fixed distance to the user. If the robot knows what the user intends to do, it can

anticipate those actions and suitably adjust its behavior. Person following can be

used in different contexts, such as for carrying luggage in airports or groceries in a

supermarket. We showed in Chapter 4 that semantic maps that include landmarks

and waypoints could be used to communicate goals between the robot and the user.

The stored semantic information can also be used to facilitate robot navigation. We

specifically focus on three scenarios of situation aware person following:

1. Joining a group of people

2. Labeling landmarks during the Tour Scenario
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3. Passing Doors

The robot behaviors for each of these scenarios are modeled and executed via

triggered events, inspired by Cakmak’s framework [14]. Handling of an event during

following is implemented as a sequence of four phases:

1. Signal: Robot detects an event using perceptual cues

2. Approach: Robot moves to a position better suited to the task

3. Execution: Robot and/or Human execute the task

4. Release: Robot detects the end of event and continues with the basic following

behavior

With this methodology, robot uses the three steps of SA: Perception for detecting

the start and ending of an event, Comprehension for interpreting where it should

move to and what the task is, and Projection to estimate the future goals of the

person. In this chapter, we study three scenarios that could be encountered while the

robot is following the person. In Section 7.1, we first show how the robot moves when

the followed person stops and talks with someone else. In Section 7.2, we study the

following behavior for labeling landmarks during the Tour Scenario. In Section 7.3,

we look at how the robot should handle door passages.

7.1 Joining a Group

While the robot is following a person, one of the scenarios that could be encountered

is when the followed person interacts with some other person. If the basic following

method is used, the robot would stay behind the person and that could lead to an

awkward formation where the robot is left out of the group (see Figure 44 for an

example). Our proposed solution to this problem is for the robot to join the group
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Figure 44: The problem that occurs when the followed person stops and interacts
with another person is shown. The robot is left out of the group when it does not
detect or react to this social situation.

of people using engagement rules. Joining a group has been addressed previously

[1, 112], however not in the person following context.

Our solution to this problem is to choose a position for the robot to stay during

the conversation. Our choice of the position is guided by Kendon’s F-Formations

[53]. Kendon studied how people assemble and what formations they assume while

they are interacting. In this representation the space is divided in three regions as

can be seen in Figure: 45. o-space is the empty space surrounded by people, p-space

contains the participants and r-space is the outer area beyond the o-space. Kendon

studied commonly encountered formations such as L-formation, circular, face-to-face

and side-by-side formations.

In our approach, when the robot detects the existence of a group formation, it

samples poses on the p-space, scores them and chooses a collision-free goal pose.

When the interaction ends and the group formation is broken, the robot continues

the basic following behavior. The execution phases for this behavior as well as the

behavior transitions are given in Table 7.

We follow the Signal/Approach/Task/Release procedure for the design of this

behavior. The Signaling phase is triggered whenever the user is close to another
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Figure 45: Definition of space around people according to Keldon’s F-Formation
representation of group formations

Table 7: Conditions to trigger phases when the user is involved with the Joining a
Group Event during following.

Signal dist(user, groupcenter) < threshold
speed(user) ∼ 0
person roughly facing group

Approach Optimal Goal: in the p-space in the circular formation

Execution The group interacts with each other, including the robot

Release dist(user, groupcenter) > threshold

person or a group of people. The user must have close to zero speed to enable

signaling for this behavior, because the user may walk past the group. After the

robot detects the signal, we sample positions around the group to locate a “suitable”

goal pose for the robot. A pose that is collision free but that gives the robot highest

chance of interaction is favored. We use a utility function that scores candidate goal

points. Intuitively, a pose that is close to both people and could see both is considered

a suitable goal pose. We sample points 360◦ around the p-space, for a fixed sampling

resolution.

Every sampled position p has a score of:

Score(p) = 1.0− Costvisibility(p)− Costobstacle(p)
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(a) (b)

(c) (d)

Figure 46: Demonstration of the robot joining a group when the followed person
interacts with a group of people. The robot is initially following the user throughout
the environment and keeping a fixed distance of 1.2m to the user. a) Signal phase:
The user has stopped and is in the cloxe proximity to to another person. b) Approach
phase: The robot calculates and navigates to a goal position, so it can potentially
interact with people in the group. c) Execution phase: The interaction happens.
c) Release phase: user moves away from the group and basic following behavior
continues.

Where we define the costs as:

Costvisibility(p) = dist(user, person)/(dist(p, person)− dist(p, user))

Costobstacle(p) = max(local cost(p), global cost(p))

(17)

The local and global costs are fetched from the ROS costmaps, normalized to [0.0-

1.0] interval. The sample with the highest nonnegative score is chosen as the goal

position. The orientation of the robot is chosen as looking toward the center of all
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the people in the group. After the goal pose is determined, the robot is commanded

to navigate there. During the Execution phase, interaction that potentially involves

the robot occurs. Whenever the user leaves the group, then the Release phase is

executed. The robot continues tracking the user with the basic following method.

This behavior is implemented on a real robot and snapshots from this demonstra-

tion is shown in Figure 46.

7.2 Following For Labeling

One of the problems we found out during the Tour Scenario experiments was that

as the robot is following the user, it does not have any information about the task.

This leads to awkward situations when the user wants to label a landmark or object,

because the robot can not perceive the pointing gesture or the object/landmark of

interest at the same time when it is following from behind all the time. This situation

is illustrated in Figure 47.

The robot behavior can be more intelligent in those cases if the robot can predict

ahead of time when the user is going to label landmark. The robot follows the phase

transitions defined in Table 8 for this scenario.

Table 8: Conditions to trigger phases when the user is involved with the Landmark
Labeling Event during following.

Signal dist(user, convexhull(landmark)) < threshold
speed(user) ∼ 0
person roughly facing landmark

Approach
Optimal Goal: Close to both the landmark and person,
facing in between

Execution User points and labels landmark

Release dist(user, convexhull(landmark)) > threshold

Our approach relies on predicting when a labeling is going to happen, and position

the robot base so it has a better chance to perceive both the pointing gesture and

the object/landmark of interest. Our methodology for this scenario is similar to the

106



(a)

(b)

Figure 47: a) A common problem we encountered during the Tour Scenario. The
user wants to label an object on the table, however the robot does not understand
this intention and stays behind at a fixed distance to the user. b) Our solution is to
move to a location that has the visibility of both the user and the object.

joining a group behavior as presented in Section 7.1. The difference is that, instead

of sampling points around the group of people, for the landmark labeling behavior we

sample points around a circle that includes the user and the centroid of the convex

hull of the landmark.

To go over the phases, this behavior is triggered when the user has stopped nearby

an unlabeled landmark or object and facing it. A goal position that is close to both

the landmark and person, facing in between is found and the robot navigates there.

Then the user can execute the labeling task via pointing gestures. After the task is

completed, the robot waits until the user to leaves the vicinity of the landmark. When

that happens, the robot continues following the user. If, during any of the phases, the

person tracking fails, it informs the user so following can be restarted. The phases

and conditions for this behavior are summarized in Table 8. The situation awareness
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(a) (b)

(c) (d)

Figure 48: Demonstration of situation awareness for the Tour scenario. The robot is
following the user throughout the environment and keeping a fixed distance of 1.2m
to the user. a) Signal phase: The user has stopped and is in the cloxe proximity to the
convex hull of the table. b) Approach phase: The robot calculates and navigates to
a goal position, so it can perceive the pointing gesture and target. Execution phase:
The user points out to the object on the table. c) Release phase: user moves away
from the table d) Basic following behavior continues.

for labeling landmarks is implemented on the Segway robot for the Tour Scenario.

Snapshots from a demonstration for this behavior is shown in Figure 48.

7.3 Door Passing

When the user approaches a door during following, the situation can easily become

problematic if the robot continues with the basic person following behavior. For

example, if the user intends to close an open door or open a closed door, the robot
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might end up blocking the movement of the door. Moreover, a deadlock situation

occurs when the user wants to go through a door with spring-loaded hinges. In that

case, the user would need to hold to door to keep it open, and because the distance

between the robot and the user is less than the following threshold, the robot would

stay still and won’t pass the door. A robot SA should be aware of this possibility and

take appropriate action.

Table 9: Conditions to trigger phases when the user is passing through a door during
following.

Signal dist(user, convexhull(door)) < threshold
speed(user) ∼ 0
User performs pointing gesture towards the passage

Approach
Optimal Goal: A position on the other side of the door
that doesn’t block the doorway

Execution Robot and user meet at the same side of the door

Release dist(user, convexhull(door)) > threshold

Opening, closing or passing through a door, and detecting these actions require

a sophisticated recognition and system. However the robot can assume that any of

those actions are possible when the user is approacing the door. In our approach,

the robot can can continuously monitor the user’s proximity to the doors using the

semantic map, if the user labeled door landmarks beforehand. Our approach can

handle doors with spring-loaded hinges, even though it does not have a model of the

door except the convex hull of its plane.

The phases and conditions for door passing situation are summarized in Table

9. The robot takes action when the user is nearby a door and performs a pointing

gesture towards it, to signal that the robot should pass from the door (Signal Phase).

If the action is not signaled, the robot continues with basic following during the

door passage. After the detection of a pointing gesture, a goal position is calculated

(Approach Phase). The goal positions are sampled on the other side of the door, that
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Figure 49: Demonstration of situation awareness for door passing during person
following. It is assumed that the user previously added the door as a labeled landmark
to the semantic map via the Tour Scenario. This is a swing door with spring loaded
hinges, so it would close if not kept open actively. a) The robot is following the user
by keeping a fixed distance to the user. b) Signal phase: The user has stopped, is in
close proximity to the door and performed a pointing gesture toward the other room.
c) Approach Phase: The robot passes the door while the user is holding the door
d) Release Phase: User has more than a threshold distance to the door, and robot
continues with the basic following.

is guaranteed not the block the opening/closing of the door. A collision-free position

with the least obstacle cost sample is chosen as the goal point. Note that while the

robot is moving, it does not aim to keep fixed distance to the user anymore. After the

robot reaches the goal, it waits for the person to pass the door (Execution Phase).

After the user moved away from the door, the basic following behavior takes over.

The situation awareness for this scenario is implemented on the Segway robot. The
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snapshots from the behavior can be seen in Figure 49.
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CHAPTER VIII

CONCLUSION

Most of the robots that are in operation today are on factory floors in separation from

people for safety. However, robots that work for and work with humans have a great

potential. Navigation is one of the most fundamental capabilities for a mobile robot.

Mobile robots occupy the same space with us, therefore should respect spatial rules

of engagement. Humans are good at adjusting their spatial relationships with each

other in social situations, therefore it is reasonable to use human-human interaction

studies to design navigation behaviors. State-of-the art robots use only a metric map

for navigation, however utilizing semantic maps that includes objects and landmarks

can enable new navigation behaviors. This thesis addressed several challenges: inter-

active semantic labeling, social navigation behavior design and situation awareness

for navigation.

To conclude, we re-state the thesis statement: Non-expert users can effortlessly

interact with and control a mobile robot through the use of semantic maps and spatial

rules of engagement. Having an app interface (Section 4.3), use of QR codes for au-

tomatic initialization (Section 5.3), use of natural gestures and autonomous behavior

for telepresence robots (Section 3.3) shows our focus on effortless non-expert inter-

actions. The benefits of semantic maps were demonstrated in accepting goals from

users (Section 5.4), adjusting the speed of the robot (Section 5.6) and for situations

such as door passing (Section 7.3) and landmark labeling (Section 7.2). Spatial rules

of engagement we used include personal spaces and group interactions (Section 5.5).

The rest of this chapter elaborates on the key contributions of this thesis, discusses

the results and observations, outlines future work for the next steps for each topic,
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and concludes with final remarks.

8.1 Interactive Map Labeling

At the core of this thesis lies the idea of the Tour Scenario, where the user takes

the robot on a tour and teaches objects and places. Tour Scenario provides the

opportunity for a mobile robot to acquire spatial representations from human users

and later utilize them for better usability and effective navigation. This scenario could

be used the first time a robot is brought home, for example if it is purchased brand

new. That would also give an opportunity to users to interact with the robot and get

familiar with their new companion. Tour Scenario could also be used after the first

use, for example whenever the layout of the house changes, or when a new object or

furniture is purchased. Therefore one can think that the Tour Scenario could be used

for long-term interactions.

In our work, Chapter 4 presented our semantic map representation as well as

the steps of the Tour Scenario. The main contribution of the chapter is the use of

an interactive labeling process to add a multitude of features to the map: objects,

waypoints and planar surfaces. Use of the labeled semantic features as navigation

goal enables communicating goals in natural language. Another contribution is the

use of natural pointing gestures for interactive labeling and a model of determining

the likelihood of which object the user intends to point at.

We think that future commercial domestic robots will have the “familiarization

task” in some form or another, because it is important for the robot to learn the

objects and locations its user cares about. We believe that the Tour Scenario pre-

sented in this thesis presents a feasible solution for this task. Semantic maps creates a

common ground between users and robots, and will enable new set of service robotic

tasks. Use of annotated semantic maps can also be studied in other contexts, such as

to improve SLAM [132], visual object search [104], and direction giving [61].
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8.2 Social Navigation Behavior Design

This thesis touches upon several considerations and use cases for navigation behavior

design for social robots. These include people-aware navigation, person following and

guidance, and situation-aware navigation.

8.2.1 People-Aware Navigation

Mobile robots will be entwined in our daily lives in the future. These robots will

operate in environments designed for humans, therefore people would expect them

to move in a socially acceptable manner. Possibly the most common navigation

task would be point-to-point navigation: the robot navigates to a goal position from

its current position, without explicit communication with bystanders. The social

part makes the social navigation algorithms interesting and different than classical

motion planning methods. Research in this field suggested using safety and comfort

as criteria for safe and comfortable navigation among people. This requires multi-

disciplinary effort in both robotics and psychology research. The research in this area

is concentrated in two camps: 1) Social costmap design on geometric path planning.

2) Reactive and short-term behavior design to move in the vicinity of people. This

thesis contributes to both: with costmap design for people-aware navigation and

reactive behaviors for person following and guidance.

Our work on point-to-point people aware navigation was presented Chapter 5. We

demonstrated that by using anticipation, the robot exhibits human-like navigation

behavior, can reach its destination in less time and can find solutions to problems

that are insolvable by standard planners. We believe that our method will increase

the predictability of robots motions.

Currently, social navigation techniques is not viewed as an essential capability

for mobile robots. In the future, robots will be a part of our daily lives and social

navigation planning will be a necessity. Human-human spatial interaction studies are
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shown to be helpful in designing interactive navigation behaviors. Currently, it is

not very straightforward to measure how socially aware the navigation planners are,

mainly because a planner can exhibit many different behaviors in different contexts.

We think a set of standard evaluation methods will need to be developed for this

area of robotics research. As future work, we would like to evaluate and compare our

planner with other approaches.

8.2.2 Person Following and Guidance

An effective person following behavior is an essential to the Tour Scenario. It enables

the robot to keep up with the guide-person during the guided exploration of the space

and move around the environment. Person guidance is one of the applications that

could be used after the environment representation is acquired. It can be used in

scenarios where the robot conveys information to the user, (i.e. museum tours), or

to take a person to a location in an unfamiliar environment (i.e. guiding people in

airports).

Our work on person following and person guidance were presented in Chapters 3

and 6, respectively. We presented a basic method for person guidance, and presented

a complete tour-guide robot system. We also showed that our guidance approach

results in more gracious motions compared to standard ROS Navigation. A specific

application, targeted on wayfining for blind users is studied in depth. We showed

that it is technically feasible to guide a blindfolded person in indoors using vibrations

applied by a haptic belt.

We also presented a basic following behavior that keeps a certain distance from the

user and studied use of autonomous person following for telepresence robots. Current

commercial telepresence robots do no have autonomous features and our user study

showed that people favor the use of autonomous navigation features.

115



Interactive navigation behaviors such as following and guidance is useful for sev-

eral tasks. In the literature, such behaviors are limited to specific scenarios, such as

hallway encounters [94] and joining a group [1]. We presented basic behaviors that

are aimed for general human environments. We further delved into specialized appli-

cations for particular user communities. Our approach relies on developing different

planners for each behavior, however in the future it may be interesting to develop a

unifying planning framework that can handle different types of interactive navigation

scenarios.

8.2.3 Situation Awareness for Navigation

In this thesis, one of contributions is enabling of situation awareness for navigation.

We introduced speed maps, that specifies robot top speeds in an environment. The

speed limits were determined by partitioning the map into corridors, rooms, and

corners. Depending on the environment, speed limits can vary. For example, the

robot should move slower in a hospital room but can travel faster in an empty corridor.

We showed that speed maps not only can reduce the impact of a potential collision,

but it can also reduce travel time. Robots yielding to speed maps also can potentially

be can perceived safer. In the future, we envision a comprehensive set of rules for

robot navigation, essentially acting as traffic rules for mobile robots.

We also demonstrated situation awareness for person following. Our approach

relies on designing specialized navigation behaviors upon detection of an event (i.e.

user passes a the door or labels a landmark). We split an event into phases in an

attempt to standardize the detection of events and execution of actions. Not many

works in this area addressed door passing for navigation [144]. Our approach allows

handling spring-loaded doors graciously and facilitates the Tour Scenario.

Situation awareness demonstrated in this work only scratches the surface of the

possibilities. A planner can potentially consider many other different factors, such
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as the identity of users, time of the day, cultures and task instructions. Another

interesting possibility is to use machine learning to learn the preference of its users.

8.3 Discussion

Despite the encouraging demonstrations and results achieved throughout this thesis,

there are several limitations of the presented research. These limitations include

short-term challenges in perception and planning as well as long-term challenges such

as evaluation and integrated system design.

Among the short-term challenges is the perception of people. Even though our

body of work on people detection and tracking was sufficient to carry on experiments,

it is not of production quality. Our current system can detect only standing people

and has a usable range of about 3-4 meters, which can be significant limitations for

some applications. A flexible yet general-purpose person tracking method should be

able to accommodate different sensor configurations, robustly track multiple people

in the presence of heavy occlusion and recognize people without necessarily seeing

their faces. The common practice in robotics research is to develop a person track-

ing method from scratch for a specific purpose and sensor suite or to use a third

party tracker as a black-box. We think that as a community we should set common

standards and build on previous efforts.

Another significant limitation of the work in this thesis is the lack of thorough val-

idation and evaluation of the designed navigation behaviors. These behaviors should

be assessed both from a technical point of view and from a user experience per-

spective. The technical assessment is easier to do, as simulations and quantitative

measures could be used for evaluating navigation behaviors. Apart from building an

accurate theoretical model, the real performance of the robot behavior needs to be

taken into account especially for a complex mobile robot system moving in dynamic
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environments and situations. User studies can be designed to quantify the user expe-

rience that can not be measured from technical assessment. Even though user studies

gives an initial opinion about a design, they do not capture the user experience of

a long-term interaction with a product. Therefore we ultimately need to have the

robots in the field to have an realistic opinion about the behavior design. One way

of improving the robot behaviors could be a fast design iteration using feedback from

early adopters of a the mobile robot product.

We designed navigation behaviors such that there is only an implicit interaction

between the robot and humans during the navigation. The robot signaled its intention

only through motion and did not explicitly communicate with people. However,

additional modalities such as speech and gaze could be utilized to complement the

motions of the robot.

Algorithms and behaviors presented in this thesis used some fixed parameters.

Most of the time, these parameters were determined empirically and with trial-and-

error experiments. However, this is not the best methodology to tune the parameters.

One can use data science tools such as machine learning to tune the parameters of the

system. Machine learning could also be used for a wider range of behaviors, such as

to learn socially acceptable paths or behaviors or to adapt to specific user preferences.

In this thesis, we studied a number of navigation behaviors including point-to-

point navigation, person following, guidance. We delved more into the person fol-

lowing by studying at specific scenarios that could be encountered person following:

passing doors, joining a group and landmark labeling. The choice of which scenarios

are worthy to address was guided by our initial tests. For example, as we were testing

the Tour Scenario, the guide person had to scramble to adjust his own location so

that the robot could see both the landmark and the user. Although we think the

scenarios we studied are essential for person following, it is likely that user studies

or real use could reveal that different following behaviors are needed. Furthermore,
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the tour guide robot and situation aware following was implemented using a state

machine, which requires a pre-defined event to happen to change the behavior. Al-

though state machines are easy to use because of their simplicity in representation,

more sophisticated architectures could be used going forward such as subsumption,

hierarchical task planning or petri nets.

The hardest part of the research that went into this thesis was the system inte-

gration and implementation. A great deal of work went to get the robot behaviors

right and to make all the different modules work at the same time. Robots fail and

fail often. Robots has to operate with reasonable robustness under dynamic condi-

tions in real-world operation. Robotics research should be complemented with solid

engineering to create great robot products.

8.4 Final Remarks

The reasoning methods described in this thesis are vital for robots to navigate au-

tonomously among people. If, in the future, robots co-exist with us, assist people

in daily tasks, help the elderly and carry our bags for us, they will need to navigate

safely without making nearby people uncomfortable. The feasibility and reliability of

those applications will determine the business value of mobile domestic service robots.

In this thesis, we showed proof of concept for enabling behaviors and that there is

potential for commercialization for both navigation in general environments and for

specialized applications such as telepresence robotics and aiding the blind. We expect

that future work inspired by the concepts presented in this thesis will allow robots to

exhibit intelligent navigation behaviors.
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APPENDIX A

TELEPRESENCE STUDY SURVEY
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APPENDIX B

VIBRATION PATTERN ANALYSIS FOR HAPTIC BELTS

In this Chapter, we provide the user study for vibration patterns to be used on the

Tactile Belt described in Chapter 6.

B.1 Tactile Belt

The belt is made of elastic material so that the vibration motors make contact with

the human body and the angle between motors is fixed. This property allows us to

represent the 8 cardinal directions consistently for every user.

Upon receiving a vibration pattern, the controller on the belt applies correspond-

ing sequences of voltages to the vibration motors. A vibration pattern incorporate

the activation frequency, duration and rhythm of vibrations for all motors.

Figure 50: The haptic belt prototype used for guidance

B.1.1 Hardware

8 coin type vibration motors are placed uniformly placed around the belt. Although

coin motors provide less strength than cylindrical motors, their size and shape make

them ideal for the belt application. The motors have 3V rated voltage, 9000 rpm
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rotation, 90 mA rated current and a maximum 50db mechanical noise and they are

driven by a single ULN2803A chip with Pulse Width Modulation (PWM) at 20 kHz.

For controlling the belt, we chose an Arduino, which is a relatively cheap open

source electronics prototyping platform. The communication between the Controller

PC and the belt is achieved by a RS-232 serial port. Arduino Uno has a built-in

USB-to-serial converter and the electronics are powered by this USB port.

B.1.2 Software

Our system makes use of the Robot Operating System (ROS) software infrastructure

for interprocess communication and message passing. Controller PC sends messages

to Arduino on belt, which consists of a bit array for each of the 8 motors. A bit in

the array indicates if the motor is going to vibrate or not, during the corresponding

time slot of 1/16 seconds. Upon receiving the bit arrays command, Arduino starts

executing the bits one by one. Since all the motors are actuated in the main controller

loop, the vibrations are synchronous.

B.2 Vibration Patterns

We define two main classes of vibration patterns depending on the type of intended

human motion: directional and rotational. Directional patterns induce a motion

towards a direction. Rotational patterns induce a rotation around self, which is

intended to control the orientation of the human.

• ONE TAP: a motor is active for 250ms

• TWO TAPS: a motor is active 250ms, inactive for 250ms and active for 250ms

again

• CONT: a motor is active until a new pattern is applied

• WAVE: a feeling that starts from the opposite end of desired direction and

ends in desired direction
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Figure 51: Evaluated vibration patterns. a) Directional b) Rotational

Figure 51(a) illustrates all 4 directional patterns for towards northeast cardinal

direction (Vibration Motor 1).

• SOLO ONCE: activates all 8 motors consecutively, starting from left motor

for clockwise, right for counter-clockwise.

• SOLO CONT: repeats SOLO ONCE pattern

• DUAL ONCE: circle motion is executed for one full circle with two opposing

motors instead of one

• DUAL CONT: repeats DUAL ONCE pattern

Figure 51(b) illustrates all 4 rotational patterns for a clockwise rotation motion.
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B.3 Procedure

The subject first went through a training for 5 minutes where experimenter applied

directional and rotational patterns and told the correct direction/rotation. The sub-

ject is instructed to walk randomly in a confined area so that the patterns are tested

while the human is in motion. The subject was asked to press a button on a Xbox con-

troller whenever he/she decides on the direction/rotation and then tell the direction

(coded 1-8) or rotation (left or right). The experiments consisted of 4 studies:

1. 5 samples from each of the ONE TAP, TWO TAPS, WAVE directional

patterns are applied in random order.

2. 8 samples from CONT directional pattern are applied.

3. 2 samples from each of the 4 rotational patterns are applied.

4. 2 samples from each of the 4 rotational patterns while a random directional

motion pattern is applied in between samples.

Upon the completion of the experiment, the experimenter applied all vibration

patterns one by one and asked which directional and rotational pattern the he/she

would prefer. Then, a post-study survey is conducted.

We hypothesize that subjects will prefer a one-time signal pattern in Experiment

1 to continuous pattern in Experiment 2 because a long lasting vibration may be

annoying to the users. Our second hypothesis is that applying intermediate directional

patterns will reduce the recognition rate of rotational patterns. This would be tested

by comparing Study Experiment 3 and Experiment 4 results.

B.4 Measures

3 metrics were used for evaluation:
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• Recognition error (RE): Angle difference between applied and perceived

direction

• Recognition accuracy (RA): Percentage of correct recognition

• Reaction time (RT): Time between the start of the pattern to the instant

the subject decides on an answer. A timeout occurs if subject can not give an

answer in 5 seconds.

The post-survey consisted of 4 usability questions on a 10-point Likert scale. Par-

ticipants were also asked for their preferred directional and rotational patterns.

B.5 Results

B.5.1 Directional Patterns

Recognition error and RT w.r.t. pattern type: A total of 344 directional

pattern samples were sampled in Experiments 1 and 2. Since the directions are

discretized, RE from any single test ranges from 0 to 180◦ with 45◦ increments.

Results with respect to pattern type is in Table 10.

Table 10: Average recognition error and reaction times of directional patterns
ONE TAP TWO TAPS CONT WAVE

Directional Error 12.4◦ 10.6◦ 8.4◦ 23.1◦

Reaction Time (s) 1.32 1.13 1.26 1.92

With a mean RE of 8.4◦, CONT pattern was the most accurate directional pat-

tern, followed by TWO TAPS pattern with 10.6◦. Subjects recognized TWO TAPS

the fastest by an average of 1.13 seconds. WAVE pattern performed significantly

worse than others on both measures.

Recognition accuracy w.r.t. applied direction: The confusion matrix for

RA of the applied directions is given in Table 52.

Our results show that the recognition accuracy is highly dependent on the applied

direction. The subjects recognized the front direction with highest RA (%97) whereas
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Figure 52: Confusion matrix of recognition accuracy of directional vibration patterns.
Our results show that the recognition accuracy is highly dependent on the applied
direction. The subjects recognied the front direction (Direction 1) with the highest
accuracy (%97) whereas Direction 3 had the least accuracy (%55)

Direction 3 (right) had the least RA (%55).

We expected the directional RA to be symmetrical around the belt, meaning that

the accuracy of right and left directions should be equally sensitive to haptic feedback.

However, there is at least %10 accuracy difference for all 3 such pairs. This could be

due to imperfect alignment of motors in the belt prototype.

B.5.2 Rotational Patterns

Table 11: Average recognition accuracy and reaction times of rotational patterns
SOLO ONCE DUAL ONCE SOLO CONT DUAL CONT

Recog. Accuracy %100 %92 %100 %98
Reaction Time (s) 1.32 1.84 1.16 1.68

A total of 256 rotational pattern samples were tested Experiments 1 and 2. Results

are in Figure 11.

Subjects recognized SOLO ONCE and SOLO CONT patterns with %100 ac-

curacy, whereas had DUAL ONCE had %92 RA. SOLO CONT had the least RT

by 1.16 seconds. It is interesting to note that this reaction time is almost identical to

the directional pattern with the least RT (1.13s).

127



B.5.3 Usability of Tactile Belt

Subjects thought that it was fairly easy to move while wearing the belt (M=9.2).

Most subjects thought that the belt was comfortable (M=8.3) and it fit their waist

well (M=8.4). The vibration motors were not found very silent (M=6.8). Actual

questions in the post-study survey results are shown in Figure 53.

0 1 2 3 4 5 6 7 8 9 10 11

Q1) How easy was it to move while 
wearing the belt? 
(hard ... easy)
Q2) How comfortable was the belt? 
(very uncomfortable ... very 
comfortable)
Q3) How well did the belt fit your 
waist size?
(not well ... very well)
Q4) How silent were the motors?
(loud ... silent)

Figure 53: Results of post-study survey.

B.5.4 Discussion

Among directional patterns, TWO TAPS had the least RT and was found the most

intuitive by our usability study. When asked which directional pattern they would

prefer, 10 out of 15 subjects chose TWO TAPS, 3 subjects chose CONT and 2

subjects selected ONE TAP and no one chose WAVE. Although CONT have less

recognition error, most subjects preferred TWO TAPS probably because people

didn’t feel comfortable when the vibration lasted for a long time. This supports our

first hypothesis that continuous patterns would not be found preferable.

7 out of 15 subjects preferred SOLO ONCE, 7 subjects preferred SOLO CONT

and 1 subject preferred DUAL CONT in the post-study survey. Our results show

that subjects rarely made mistakes in recognizing rotations and using a single motor
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for rotation patterns is preferable over using two motors. Therefore an application

may use either of the SOLO patterns.

Our second hypothesis did not hold, as we found that application of other pattern

between rotational patterns did not deteriorate the recognition rate.
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