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ABSTRACT 

While unmanned ground vehicle (UGV) teleoperation is advantageous in terms of adaptability 

and safety, it introduces challenges resulting from the operator’s poor perception of the remote 

environment.  Previous literature on the ability of haptic feedback to augment visual displays 

indicates that UGV obstacle avoidance information may be more meaningfully communicated 

via vibrotactile torso systems.  Presenting this information so that operators can accurately detect 

the proximity from walls and obstructions could result in a significant reduction in errors, 

ultimately improving task performance and increasing the usability of teleoperation.  The goal of 

the current study was to determine the degree to which a vibrotactile torso belt could improve 

UGV teleoperation performance over video feed alone in a simulated environment.  Sixty 

operators controlled a UGV using a simulated video feed, while half also utilized a vibrotactile 

belt.  Results indicated that the vibrotactile display did not improve navigational performance or 

decrease subjective workload over video feed alone.  Possible reasons for this and limitations are 

discussed. 
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Investigating the Usability of a Vibrotactile Torso Display for Improving Simulated 

Teleoperation Obstacle Avoidance 

Unmannned ground vehicle (UGV) operation is the control of a ground-based 

robotic system from a distant location.  UGVs are becoming increasingly important 

because of their ability to remove humans from dangerous and otherwise inaccessible 

environments.  They are currently employed in a number of military and civilian 

applications and their employment will continue to expand into additional tasks requiring 

an emphasis on operator safety.  These vehicles are controlled by operators in direct line 

of sight of the UGV, known as remote control operation, or in physically separate 

environments known as teleoperation (Fong & Thorpe, 2001).  Of the two, teleoperation 

has the potential for a wider range of applications, including the bottom of the ocean, 

lunar surfaces, urban search and rescue, and combat missions.   

While teleoperation is advantageous in terms of adaptability and safety, it 

introduces challenges resulting from the operator’s poor perception of the remote 

environment (e.g., Smets, 1995, Tittle, Roesler & Woods, 2002).  Since the operator is 

separated from the UGV, feedback about the remote environment must be displayed in 

the form of camera feeds and graphical displays which, alone, are insufficient for 

successful operation and navigation (see Chen, Haas & Barnes, 2007).  Not only does this 

poor perceptual feedback lead to increases in cognitive load, but it can also hinder even 

the most basic and important UGV navigational tasks, such as estimating distances from 

obstacles and possible collisions (Van Erp & Padmos, 2003).  Presenting this information 

so that operators can accurately detect the proximity from walls and obstructions could 
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result in a significant reduction in errors, ultimately improving task performance and 

increasing the usability of UGV teleoperation. As a result, a primary area in teleoperation 

research has been concerned with how to best display information about the remote 

environment, focusing on visual and tactile feedback. 

Visual feedback, the primary source of perceptual information used in traditional 

teleoperation displays, often fails to transmit all the perceptual information necessary for 

perceiving obstacle proximities.  Much of this visual feedback is in the form of video 

feed from one or more cameras attached to the remote UGV. Traditional video feeds omit 

critical properties used in direct visual perception, thereby reducing the perceptual 

information available about the remote environment.  This includes a reduced field of 

view that gives the appearance of viewing the remote environment through a scope, or 

“soda straw” (Woods, Tittle, Feil & Roesler, 2004). This limited field of view inhibits 

performance directly related to obstacle avoidance such as the detection of remote targets 

(Darken, Kempster & Peterson, 2001) and the detection of time-to-collision (Van Erp & 

Padmos, 2003).  Further, information about depth present in normal binocular viewing of 

the natural environmant is reduced in teleoperation, contributing to what has been called 

the “remote perception problem” (Gomer, Dash, Moore & Pagano, 2009; Moore, Gomer, 

Pagano & Moore, 2009; Tittle et al., 2002).  As a result, teleoperators must rely on 

monocular information that is not coupled to normal head movements, negatively 

affecting depth perception and, ultimately, obstacle proximity detection by distorting 

estimates of distance and size (Gomer et al., 2009; Rastogi, 1996).   
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Within the context of simulated environments, modifying the field of view also 

affects perceptual cues related to distance perception (Kuhl, Thompson, & Creem-Regehr 

, 2006; Thompson, & Creem-Regehr , 2006, 2009; Waller, 1999).  Geometric field of 

view (GFOV) is the view of the visual angle depicted in the remote environment.   

Objects and environmental properties can be altered to appear closer and larger by 

shrinking the GFOV (magnification), or can be rendered to appear smaller and farther 

away by increasing the GFOV (minification).  More of the remote environment can be 

displayed to the operator when the GFOV is minimized, and minification has shown to 

improve distance estimates for both egocentric judgements (distance to an object) (Kuhl, 

et al., 2006) and exocentric judgements (distance between objects) (Waller, 1999). 

The sense of touch has shown to support traditional visual feedback by utilizing 

sensations of pressure and texture to communicate information about the remote 

environment (see Chouvardas, Miliou & Hatalis, 2005b).  Presenting feedback via touch 

reduces demands on other senses such as vision, leading to improvements in operational 

performance.  As a result, tactile displays are increasingly being used to augment other 

sensory systems, especially in situations where there is reduced visual information 

available (Archaumbault & Burger, 2001), such as teleoperation (Chouvardas, Miliou & 

Hatalis, 2005a).     

While some tactile modalities are better suited for particular human-computer 

interaction tasks than others (see Chouvardas, Miliou & Hatalis, 2007), vibration may be 

particularly beneficial in teleoperation  (Chouvardas, et al., 2007; Kontarinis & Howe, 

1995).  These vibrotactile displays are the most extensively studied of the tactile 
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modalities (see Chouvardas, et al., 2005b) and they are becoming more widely used in 

many common consumer electronics (i.e., cellular phones).  Physiologically, vibration 

stimulates the Pacinian corpuscles, which respond rapidly to changing stimuli.  This 

allows operators to perceive real-time stimuli about the remote environment and react 

quickly (Chouvardas, et al., 2007).  Second, vibrotactile feedback has the ability to 

present a wide range of information to teleoperators that can carry different meanings.  

Perceptible vibration varies in amplitude, frequency, and rhythm, and can be detected at 

different locations and during different temporal intervals (Van Erp, 2002).   Further, the  

mechanical vibrating elements of tactors, or haptic motors, can be designed to be small 

and lightweight with minimal power consumption, making them ideal candidates for 

integration into wearable garments (Tan & Pentland, 1997).  This permits the operator to 

be mobile and less confined to a single location .  As a result, these types of  displays 

have been associated with teleoperation performance improvements in air, land and sea, 

(see Van Erp & Self, 2008) as well as space (Van Erp & Van Veen, 2006; Van Erp, Van 

Veen, & Ruijsendaal, 2007).   

Vibrotactile feedback can be presented in a variety of forms.  While teleoperators 

have navigated UGVs using gloves (e.g., Lathan & Tracey, 2002), styluses (e.g., Lee, 

Sukhatme, Kim & Park, 2002), and joysticks (e.g., Rösch, Schilling, & Roth, 2002), this 

feedback may be more appropriately displayed via devices worn around the torso.  These 

types of displays are typically in the form of vests or belts that not only cover larger skin 

surfaces, they do not occupy the use of the hands.  Encompassing the midsection, 

vibrotactile torso displays present localized feedback throughout the trunk via multiple 
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tactors, delivering three-dimensional sensory information.  Similar to the rooting reflex in 

infants where babies turn in the direction of a touch to the cheek, vibrotactile stimulation 

naturally draws attention in the direction of the tactile sensation.  Also referred to as the 

tap-on-the-shoulder principle (Van Erp & Verschoor, 2004), this effect is an intuitive 

mode of feedback presentation in that it requires little to no training to understand (Tan & 

Pentland, 1997; Van Erp & Van Veen, 2004).  Further, tactile stimulation surrounding the 

torso is spatially mapped to the users egocentric position, giving these displays a holistic, 

360º field of touch  that is naturally understood (Van Erp, 2000).  These proprioceptive 

advantages have made vibrotactile torso displays beneficial when used in conjunction 

with other displays, and have shown to reduce mental workload, improve  navigational 

performance, and  augment visual displays. 

When task demands are high, incorporating a vibrotactile display along with 

visual feedback can lead to performance improvements without increasing cognitive 

workload demands. For example, Van Erp, Veltman, and Van Veen (2003) assessed the 

effectiveness of a vibrotactile vest to improve altitude error in a simulated helicopter 

study, under both normal and degraded visual conditions.  They found that incorporating 

a vibrotactile display reduced the error by half without affecting the subjective workload 

of the pilot.  Research also indicates that torso vibrotactile displays can decrease 

workload associated with understanding position under degraded visual conditions.  

Using a motion machine, Cheung and Bouck (2009) had participants reorient themselves 

from various heave, roll, and pitch starting locations by using feedback from twenty-four 

tactors located throughout their midsection.  The researchers assessed the utility of the 
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display by comparing the amount of displacement and workload  between participants 

either receiving or not receiving vibrotactile feedback.  Further, participants were unable 

to see or hear.  They found that both displacement and workload, as assessed by the 

NASA Task Load Index (NASA-TLX; Hart & Staveland, 1988) were significantly 

reduced when utilizing the vibrotactile vest.     

Vibrotactile torso displays have also been shown to improve cueing and 

navigational performance in different operational contexts.  For example, Ho, Tan, and 

Spence (2005) demonstrated that automobile drivers utilizing a vibrotactile belt 

responded more quickly and accurately to driving events.  The belt contained two sensors 

that cued attention to critical events in driving scenarios and the task required participants 

to correctly respond by braking or accelerating.  Those wearing the display reacted faster 

and more accurately than those not wearing the display.  Vibrotactile displays can also 

reliably present waypoint navigation information to pedestrians.  Van Erp, Hendrik, Van 

Veen, and Jansen (2005) measured the pace of participants as they walked an unknown 

path only guided by tactile feedback from a vibrotactile display which was a belt 

containing eight tactors.  They determined that all participants were able to complete the 

routes and increased their pace to acceptable walking speeds within a short time frame.   

The authors extended this type of navigation with vibrotactile displays to air and 

maritime environments.  Van Erp, Jansen, Dobbins, and Van Veen (2004) demonstrated 

the ability of a vibrotactile belt to guide operator navigation in a set course for a Gazelle 

helicopter and a high-speed inflatable boat.  Without knowledge of their course and only 

using vibrotactile feedback cues, the operators were able to successfully guide their 
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vehicles over the navigation path.  Furthermore,  in both wayfinding navigation studies, 

participants had little to no familiarity or experience with the display. 

Vibrotactile torso displays also improve performance by reducing perceptual 

challenges resulting from displays that present too much or too little visual information.   

Many situations require teleoperators to make operational decisions while simultaneously 

monitoring numerous telemetry displays and one or more video feeds from a remote 

UGV.  Cognitive resources can become increasingly strained, but implementing 

vibrotactile torso displays has been found to decrease subjective levels of mental 

workload in navigation (Cheung & Bouck, 2009; Van Erp, et al., 2003; Van Erp & Van 

Veen, 2004; Van Erp & Werkhovern 2006).  In addition, vibrotactile torso displays 

deliver feedback more efficiently when there is not enough visual information.  For 

example, extreme conditions such as smoke or darkness provide little to no video feed, 

and teleoperators may be forced to rely solely upon graphical telemetry displays.  In these 

types of visually demanding situations, implementing vibrotactile torso displays have 

resulted in improved task performance (Cheung & Bouck, 2009; Van Erp, et al., 2003; 

Van Erp 2005).   

Even though vibrotactile torso displays have been shown to improve performance 

by augmenting visual feedback, they have yet to be employed to aid operators’ ability to 

detect and avoid environmental obstructions. Obstacle avoidance, which includes 

accurately identifying and then circumventing collisions with walls, barriers, 

obstructions, and other UGVs, can result in robot damage or damage to environmental 

surfaces.  Avoiding collisions is heavily dependent on the perception of the remote 
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environment as operators must be able to accurately estimate distances to obstructions, 

correctly judge aperture widths, and maintain safe distances from walls.  Improving these 

abilities would not only result in a significant increase in overall UGV teleoperation 

usability but would reduce the costs associated with damaged and potentially irretrievable 

UGVs.   

Previous literature on the ability of haptic feedback to augment visual displays 

indicates that obstacle avoidance information may be more meaningfully communicated 

via vibrotactile torso systems, though there is no empirical evidence to support this.  

Entities such as the NATO Research & Technology Organization have recognized the 

importance of obstacle avoidance in teleoperation, as well as the potential of tactile 

displays to enhance obstacle detection and avoidance (Van Erp & Self, 2008).  Even 

though tactile torso display systems deliver feedback more intuitively than visual and 

graphical displays, they have not been incorporated into UGV teleoperation displays to 

improve obstacle avoidance.   The goal of the proposed study was to determine the 

degree to which a vibrotactile torso belt could improve efficient teleoperation 

navigational performance over a video feed alone. 

Specifically, the present study investigated two hypotheses in the context of a 

simulated environment.  First, it was hypothesized that a vibrotactile torso display would 

improve obstacle avoidance performance over a video feed alone.  Vibrotactile torso 

feedback can intuitively direct attention of operators (Van Erp & Verschoor, 2004), it has 

shown to improve navigational performance (Van Erp, Hendrik, Van Veen, & Jansen, 

2005) and it can augment visual displays when communicating information about the 
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remote environment (Chouvardas, et al., 2005b).   Therefore, operators wearing the 

vibrotactile torso display would hit fewer obstacles and have faster course completion 

times.  Second, subjective workload would be lower for teleoperators using the torso 

display than those utilizing visual feed alone.  Incorporating vibrotactile torso displays 

have shown to reduce subjective cognitive load in operators in previous research (Cheung 

& Bouck, 2009; Van Erp, et al., 2003), and it is hypothesized that subjective workload 

scores will be lower for those utilizing a vibrotactile display in the current study.     

 

Methods 

Participants 

Sixty students attending Clemson University (Clemson, SC) participated in this 

study (24 males, 36 females; age, M = 19.03 SD = 1.09) and were awarded course credit 

for their participation.  All participants had normal or corrected to normal vision, and 

self-reported full use of their arms, neck, and hands.     

Materials and Apparatus 

Performance was evaluated in the context of a simulated environment.   A 

simulated video feed of a remote environment was created using a Joint Architecture for 

Unmanned Systems (JAUS)-compliant unmanned vehicle simulator developed by 

AnthroTronix (AnthroTronix, Silver Springs, MD).   The simulated video feed emulated 

a remote environment and UGV from the point of view of a camera placed on the top rear 

of  the vehicle.   The two courses were maze-like passageways, with constricted corridors 

and numerous turns (see Figure 1 for representative screen shots).   
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Figure 1.  Representative images of simulated video feed and virtual course.   

 

The simulated video feed was presented to participants through a 19” Acer LCD 

monitor.  The image of the simulated video feed appeared in a 9 x 7” frame in the center 

of the screen.   Participants used a Logitech Dual Action Gamepad remote controller to 

navigate the simulated environment (see Figure 2). 

 

 

Figure 2.  Remote controller used for operating the simulated UGV. 

 

Vibrotactile feedback was supplied by a tactile feedback belt system developed by 

Anthrotronix, Inc. under an Army Research Laboratory effort (see Figure 3).  The system 
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is a military field belt comprised of eight rotary vibration tactors which are contained 

underneath heavy fabric.  Each sensor is approximately 1.9 cm in diameter and 1 cm in 

thickness, and vibrates with a tactile intensity of 1 g nominal.  The belt weighs 

approximately 1.3 lbs and is adjustable to fit snuggly around the torso.  Each tactor is 

individually powered and can vary in amplitude of vibration, allowing the belt to provide 

feedback at different locations and intensities around the torso.  The tactile belt 

communicates with the computer and JAUS simulator via Bluetooth. 

 

 

Figure 3.  The vibrotactile feedback belt. 

             Subjective workload was assessed using the NASA Task Load Index (NASA-

TLX) mental workload questionnaire (Hart & Staveland, 1988).  The NASA-TLX 

evaluates the magnitude of six separate subscales associated with mental demand in a 

given task.  Participants assign weights and ratings to the six separate factors and 

magnitudes of each factor are reported.  Only Overall Workload, a weighted average of 

the subscales, was utilized in the present study and ranges from 0 (low) to 100 (high). 

Design 

The present study utilized a between-subjects design to assess any navigational 

performance differences for operators utilizing a vibrotactile feedback display.   
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Participants were randomly divided into two conditions: one group navigated the course 

using only simulated video feed while the second group utilized simulated video feed in 

addition to a vibrotactile display.  Performance was measured by the time it took to 

complete the course and the number of collisions within the course.  

The number of participants was determined after conducting a power analysis 

based on the effect sizes summarized by Elliott, Coovert, and Redden (2009).  The range 

of applicable effect sizes, in the form of Hedge’s g, for the current study ranged from 

.597 to .911.  Using power=.80, condition sizes were calculated to range from n=35 to 

n=15, respectively.  A conservative midrange value of n=30 per group was chosen.  

A demographics questionnaire included open-ended questions regarding 

videogame experience.  Participant responses were coded on a 1 to 5 Likert scale in terms 

of experience.   

All participants completed a brief training course to become comfortable with the 

simulated environment and controller (and vibrotactile display for the display condition).  

Following successful completion of the training course, all participants completed two 

experimental courses.  Completion entailed controlling the simulated vehicle from a 

starting point A to a finish point.  After completion of both courses, mental workload was 

assessed using the NASA-TLX mental workload questionnaire.  The number of collisions 

and course completion time were each combined over both experimental courses because 

both experimental courses were similar in design.  Differences in performance and 

workload between the two conditions were used to evaluate the overall effectiveness of 

the vibrotactile display. 
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Procedure 

All participants provided informed consent and completed a short demographics 

questionnaire, which included questions regarding video game experience.  A brief 

explanation of the study was given, which included an explanation of UGVs using a 

small model robot that emulated the simulated vehicle.  Participants were then 

familiarized with the controller and simulated environment.  For those participants in the 

display condition, the features and functionality of the vibrotactile belt system were 

described and the belt was then comfortably fitted to their waist. 

All participants then completed a brief training course which mimicked the 

experimental courses in terms of design, but was significantly shorter.  This allowed 

participants to become familiar with the technology and to also demonstrate a level of 

minimal proficiency.  The training course required participants to navigate the vehicle 

from starting point A to finish point B in less than 90 seconds while making fewer than 

ten collisions.  If participants exceed either criterion, they completed the same training 

course until they were able to meet both limits. An experimenter recorded time while the 

simulator recorded the number of collisions, which were defined as any point the vehicle 

came into contact with any entity in the course (walls, corners, obstacles).  Those in the 

display condition completed the training course while wearing the vibrotactile display.   

Following successful completion of training, participants completed two trial 

courses in the same order.    Both experimental courses were longer than the training 

course and contained obstacles.  Those in the display condition also completed the 

courses while wearing the vibrotactile display.  Participants were instructed to control the 
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simulated UGV from start to finish as quickly as they could while avoiding collisions to 

the best of their ability.     

Once participants were finished, they completed the NASA-TLX and a qualitative 

survey regarding task difficulty. 

Results 

Data Analysis 

Performance was recorded in two experimental courses.   Because both 

experimental courses were qualitatively similar in terms of design, both the number of 

collisions and the course completion time were summed between Course 1 and Course 2 

to represent a single score for each measure of performance.  NASA-TLX subjective 

workload data are represented as Overall Workload and range from  0 (low) to 100 

(high). 

Overall Performance and Workload 

Means for each performance measure by both display type and gender are listed 

in Table 1.  Performance was significantly correlated with workload, such that those with 

fewer collisions and faster course completion times experienced less workload (see Table 

2).  Videogame experience was also correlated with both measures of performance, such 

that more experience resulted in less collisions and faster completion times. Three 

independent samples t-tests concluded there was no effect of display type on the number 

of collisions (t(58)=.90, p=.37), course completion time (t(58)=-1.34, p=.19) or overall 

subjective workload (t(58)=.32, p=.75). 
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Table 1. 

Means and standard deviations for performance measures by display condition and 

gender. 

   

Collisions 
Completion 

Time (s) 

NASA TLX 

Score 

(0-100) 

Videogame 

Experience  

(Likert, 1-

5) 

 Gender N M SD M SD M SD M SD 

No Display F 20 78.4 48.87 614.05 93.24 46.27 18.10 2.3 1.08 

 M 10 39.9 16.56 537.5 58.87 39.40 12.63 3.4 1.08 

 Total 30 65.57 44.62 588.53 90.12 43.97 16.58 2.67 1.18 

 

Vibrotactile 

Display 

F 16 74.81 48.50 684.5 138.87 49.42 11.13 1.94 1.06 

 M 14 33.43 15.24 559.14 54.18 34.77 19.56 3.64 1.28 

 Total 30 55.5 41.97 626.0 123.84 42.58 17.05 2.73 1.44 

 

 

Table 2 

Overall Pearson correlation coefficients for performance and demographic variables. 

 Number of 

Collisions 

Completion 

Time  

NASA-TLX 

Score 

    

Completion Time (s) .73** --  

NASA-TLX Score .47** .45** -- 

Videogame experience -.39** -.42** -.23 

**p<.01 
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Three two-way between groups analyses of covariance were conducted to assess 

the effect of display type and gender on each dependent variable while controlling for 

videogame experience, which has shown to be  related to teleoperational ability (Chen, 

2010).    For number of collisions, there was no main effect of display type (F (1,55)= 

.28, p=.60, η
2
= .01), although males made significantly fewer collisions than females (F 

(1,55)= 6.01, p=.02, η
2
= .10).  There was no significant interaction (F (1,55)= .00, p=.95, 

η
2
= .00).  For course completion time, while those in the vibrotactile display condition 

had a trend towards longer times than those without the vibrotactile display, the 

difference was not significant (F (1,55)= 3.14, p=.08, η
2
= .05).  Males completed the 

course significantly faster than females (F (1,55)= 6.00, p=.02, η
2
= .10), though there was 

no interaction (F (1,55)= .52, p=.47, η
2
= .01).  Lastly, there was no significant difference 

between display conditions for subjective workload (F (1,55)= .03, p=.86, η
2
= .00).  

Males tended to report lower workload scores than females, though the difference was 

not significant (F (1,55)= 3.9, p=.06, η
2
= .06).  There was no interaction between 

workload and gender (F (1,55)= .70, p=.41, η
2
= .01).  

To further assess the contributions of gender and videogame experience on 

navigational performance, standard multiple regression analyses were conducted for each 

dependent variable.  For number of collisions the multiple regression resulted in r
2
 (60) = 

.25 with only gender significant. Partial t-values were t (57) =-2.62 (p=.01) and t(57) = -

1.52 (p=.13) for gender and videogame experience, respectively. When the regression 

was repeated with videogame experience removed from the model the r
2
 dropped to .22, 

indicating that once gender was in the model videogame experience only accounted for 
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an additional 3% of the variance in the number of collisions.  For course completion time, 

the multiple regression resulted in r
2
 (60) = .21.  Gender was a significant predictor with 

a partial t-value of   t(57) =-2.13 (p=.04), while videogame experience was close to 

significant, with a partial t-value of t(57) = -1.94 (p=.06).   The model r
2
 lowered to .19 

when the regression was repeated with videogame experience removed, indicating when 

including gender videogame experience contributed only an additional 2% of the 

variance in course completion times.   For total workload, a simple regression was 

conducted to assess the contribution of gender and omitted videogame experience 

because of the lack of a significant correlation (see Table 2).   Gender was a significant 

predictor (t(59)=-2.62, p=.01).and had a r
2
 (60) = .11, indicating that approximately 11% 

of the variation in workload scores was due to gender.     

Performance by Individual Course 

Because there was no effect of display type on overall trial performance, 

subsequent  analyses were conducted  to further explore performance during the two trial 

courses individually.  Means and standard deviations for both Course 1 and 2 by display 

type are presented  in Table 3.   Irrespective of display type, Course 1 contained more 

collisions while Course 2 contained a higher course completion time, though the first 

course contained more obstacles while the second course was longer.  To assess whether 

there was any effect of display type on performance in either course, independent 

samples t-tests were performed for each performance variable.  In Course 1, there was no 

effect of display type on collisions (t(58) = .90, p= .37) or course completion time (t(58) 
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= -1.15, p= .26).  Findings were similar for Course 2 as there was no effect of display 

type on collisions (t(58) = .46, p= .65) or completion time (t(58) = -1.34, p= .17).  

 

Table 3. 

Means and standard deviations for performance measures in each trial course by display 

condition and gender. 

 
Course 1 Course 2 

 
Collisions 

Completion  

time (s) 
Collisions 

Completion  

time (s) 

 M SD M SD M SD M SD 

No Display 58.47 37.88 211.43 45.08 7.1 10.13 377.10 51.62 

 

Vibrotactile 

Display 

49.80 36.60 226.30 54.93 5.7 13.12 399.70 74.34 

Total 54.13 37.19 218.87 50.38 6.4 11.64 388.4 64.47 

 

Performance during Training 

Performance during training was also explored and descriptive statistics are listed 

by display type and gender in Table 4.  If participants failed to meet criterion by 

completing the training course in under 90 seconds while making fewer than 10 

collisions, they were required to complete the same course again.  Three participants 
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failed to complete the training course on the first try, though these participants met both 

requirements during their second time through the training course.  They were all females 

in the Vibrotactile Display condition and exceeded the collision limit by having 11, 13, 

and 83 collisions.  Because 83 was an extreme outlier compared to the performance of 

other participants, this participant’s performance data was omitted from the data 

presented in Tables 3 and 4. 

 

Table 4. 

Means and standard deviations for performance measures during training by display 

condition and gender. 

   
Training Collisions 

 
Training Completion Time (s) 

 Gender N M SD Min Max  M SD Min Max 

No Display 
F 20 2.85 2.32 0 8 

 
55.9 5.9 48 67 

 
M 10   .60   .70 0 2 

 
53.0 6.6 41 65 

 
Total 30 2.10 2.20 0 8 

 
54.9 6.2 41 67 

 

Vibrotactile 

Display 

F 15* 3.33 4.01 0 13 

  

59.73 

 

9.45 48 90 

 
M 14   .93 1.27 0 4 

 
53.71 5.15 43 63 

 Total 29 2.17 3.21 0 13 
 

56.8 8.14 43 90 

*One participant was removed due to an extremely high number of collisions.   
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Both number of collisions and course completion time during training was 

assessed to determine any main effect of the vibrotactile display or gender.  A two-way 

between groups analyses of variance was conducted, while omitting the single participant 

with 83 collisions.  There was no main effect for display type for either collisions (F 

(1,55)= .356, p=.55, η
2
= .01)  or course completion time (F (1,55)= .1.53, p=.22, η

2
= .03).  

There was a main effect of gender for both number of collisions (F (1,55)= .11.71, p=.00, 

η
2
= .18) and for completion time (F (1,55)= .5.69, p=.02, η

2
= .09), indicating that males 

performed significantly better than females during training.  However, the interaction was 

not significant for either collisions (F (1,55)= .01, p=.91, η
2
= .00) or completion time (F 

(1,55)= .73, p=.39, η
2
= .01). 

 

Discussion 

This study investigated the ability of a vibrotactile display to improve simulated 

teleoperation performance over a video feed alone.  It was hypothesized that operators 

wearing the vibrotactile belt would make fewer collisions and have faster course 

completion times, as well as report lower ratings of subjective workload.  However, these 

hypotheses were not supported in the present study.  There was no effect of the 

vibrotactile display on either the number of collisions or the course completion times.  

These findings are contrary to recent navigational research with vibrotactile displays, 

which have generally found that these types of interfaces improve navigational and 

operational performance.  The belt also had no effect on subjective cognitive workload as 

assessed by the NASA-TLX.  Previous research has found reduced workload ratings 
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when incorporating tactile feedback along with a visual display (Cheung & Bouck, 2009; 

Van Erp, et al., 2003; Van Erp & Van Veen, 2004; Van Erp & Werkhovern 2006).   

Specifically, the vibrotactile display used in the current study did not supplement 

teleoperational performance over video feed alone in the given simulated context.  

Reasons for this include potential problems associated with the experimental tasks, 

concerns related to training and learning effects, and issues with the vibrotactile 

feedback.  

It is possible that the perception of the course via the video feed alone was not 

challanging enough in the present study to elicit performance differences.  Van Erp and 

Van Veen (2004) demonstrated differences in performance and subjective ratings of 

mental load between three different display types during a perceptual driving task that 

was explicitly designed to require a high workload.  They assessed reaction time and 

workload within both normal and high workload conditions for a visual display, a tactile 

display, and a combined multimodal display.  Under normal workload conditions there 

were no performance differences between the three displays, but significant performance 

differences were revealed when workload was high.  Perceived workload remained 

unchanged for the tactile and multimodal display groups between workload conditions, 

but for the visual modality there was a large difference between the normal and high 

conditions.  In the present experiment the ability of the subjects to perceive the simulated 

course may not have been difficult enough to elicit performance differences between the 

two display modalities and future studies with this vibrotactile display should increase the 

cognitive demand of operators and degrade the video feed.   For example, additional 
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monitoring tasks could be applied, the video could be degraded, or consequences for trial 

errors could be implemented.   

Participants were required to demonstrate a minimum level of proficiency during 

a training scenario, and it is possible that the criteria of the training task were not rigorous 

enough.  Simulated navigational tasks such as these are susceptible to many factors, 

including spatial ability and prior experience,  and this training task was to ensure that 

participants could perform at a specific level before being required to complete the 

experimental courses.  Because there were no performance differences in the 

experimental trial, post hoc analyses were conducted to assess performance during 

training.  Only three participants were required to complete the training course a second 

time due to an exceeded number of collisions (one was very extreme), though all were 

able to meet the performance criteria when completing the course a second time.  Further, 

the means for number of collisions (M=2.2) and completion time (M=56.8 seconds) were 

well below the set criteria (10 collisions and 90 seconds, respectively).   Future study 

design using the display and simulator in this study should ensure that training 

requirements are more stringent.  

Minor differences in the design of the two simulated experimental courses made it 

impossible to asses any learning effects, which may have partially shadowed any 

performance effects of the vibrotactile display.  Post hoc analyses assessing the courses 

individually revealed a higher number of collisions in the first course.   However, the first 

course contained more difficult obstacles and required the participant to make more 

complicated navigational maneuvers.  The second course was also much longer than the 
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first, which resulted in a longer mean completion time.  Had these experimental scenarios 

been more similar in terms of number of obstacles and length, comparative analyses 

could have been conducted.  It would have been possible to assess interactions between 

display type and rate of improvement and to determine how much variance in 

performance was due to experience with the simulated courses.  Simulated courses 

evaluated with the vibrotactile display will be designed to be similar in terms of collisions 

and distance for future studies. 

  In the present study participants had a clear, unobstructed view of the remote 

environment and it is possible that the tactile display did not present any additional 

information about the environment that could not be easily obtained through vision.  

Performance differences have been found between visual and multimodal (visual + 

tactile) displays in situations with degraded visual conditions (Van Erp, 2005).  Adding a 

scenario where visual conditions were impaired may have resulted in performance 

differences between display conditions.  Future studies assessing the practicality of 

vibrotactile displays should assess its ability to improve performance when visual 

feedback is poor.   

The vibrotactile display used in the current study was highly sensitive and it may 

not have delivered feedback that was specific enough to be informative.  Vibration was 

emitted when the vehicle came within a specific proximity of an obstacle and perhaps this 

distance was too large, resulting in an overabundance of vibratory feedback.  Post 

experimental comments revealed that many participants considered the vibration 

excessive, with the display vibrating when the participants felt that they were in no 
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danger of hitting an obstacle.  Several comments from participants indicated that the 

vibration was so prolonged that they attempted to ignore the feedback altogether.   

Modifying the time of feedback presentation by reducing the distance between the 

vehicle and the obstacle before operators are notified vibrotactilly may result in a more 

practical display.    

Besides the timing of vibratory feedback presentation, the varying amplitudes of 

feedback may also have resulted in a display that was not informative about obstacle 

proximities in the simulated environment.  The vibrotactile display used in the present 

study delivered varying intensities of localized vibration through each of the eight tactors 

in the belt to alert operators of changing obstacle proximities from the vehicle, though the 

difference between intensities was small.   The different vibrotactile intensities that 

operators felt may have been too similar and, perceptually, the difference between the 

mildest sensation may not have differed greatly from the most intense vibration.  

Operators may have interpreted vibration from each of the tactors as only a single alert 

and not as a dynamic feedback system providing differing degrees of warnings.  As a 

result, operators may not have found the vibration to be of much informational value. 

Research has shown that vibrotactile feedback is limited in terms of conveying 

information through intensity differences because humans are sensitive to only a small 

number of discernable differences in vibration frequencies (Van Erp; 2002).   Future 

studies with this display should investigate more meaningful methods of presenting 

remote environments through vibrotactile feedback, or at least ensure that fluctuating 

feedback meant to alert operators is reliably discernable.  
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Similarly, the vibrotactile display also failed to reliably inform operators when 

they had collided with an obstacle.  While the intensity of vibration increased as the 

vehicle came in closer contact with an obstacle, there was no change in vibration from 

when the vehicle was directly beside an object to when the vehicle was in contact with an 

object.  The tactor presented a constant, static buzz, to where post-experimental feedback 

revealed that several participants were somewhat unaware whether they had actually 

collided with an obstacle or merely come very close to it.  Incorporating feedback that 

adequately informs participants of a collision is crucial for a display that is meant to help 

prevent impact with obstacles.  Future studies should seek to understand what type of 

collision feedback would be most informative, including varying the types of vibrotactile 

stimulation or incorporating other displays, such as visual telemetry displays. 

While there was no effect of a vibrotactile display on teleoperation performance, 

gender was a strong predictor of navigational ability in the present study.  Generally, 

gender differences in virtual navigation have been thought to be the result of differences 

in spatial ability and strategy (Lawton & Morrin, 1999; Prestopnik & Roskos-Ewoldsen, 

2000).  Teleoperation performance has also shown to be affected by videogame usage 

(Chen, 2010), of which men tend to have more experience (Philips, Rolls, Rousse, & 

Griffiths, 1995).  However, gender was a stronger predictor than videogame experience 

when both were placed into multiple regression models together, and videogame 

experience was not significant when gender was placed into the model first.   While both 

spatial ability and videogame experience certainly may have played a role in contributing 

to a considerable gender effect in the current study, other studies have found that visual 
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displays can affect performance differences between males and females and future 

studies should consider the type of visual display.  For instance, visual displays with 

larger and wider fields of view have reduced performance differences between males and 

females typically observed in virtual navigation tasks (Tan, Czerwinski, & Robertson, 

2006). 

The perception of remote environments during teleoperation is fraught with 

difficulties (e.g., ; Casper & Murphy, 2003; Gomer et al., 2009; Moore et al., 2009; 

Murphy, 2004; Smets, 1995; Tittle, Roesler, & Woods, 2002), and future studies should 

continue to explore different displays for improving various types of operator 

performance.  While the present study failed to find any obstacle avoidance 

improvements from the vibrotactile display, knowledge from these findings will 

contribute to designing the next prototype and inform future studies of display 

limitations. 
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