1,797 research outputs found

    Short proofs of some extremal results

    Get PDF
    We prove several results from different areas of extremal combinatorics, giving complete or partial solutions to a number of open problems. These results, coming from areas such as extremal graph theory, Ramsey theory and additive combinatorics, have been collected together because in each case the relevant proofs are quite short.Comment: 19 page

    Online Ramsey Games in Random Graphs

    Get PDF
    Consider the following one-player game. Starting with the empty graph on n vertices, in every step a new edge is drawn uniformly at random and inserted into the current graph. This edge has to be coloured immediately with one of r available colours. The player's goal is to avoid creating a monochromatic copy of some fixed graph F for as long as possible. We prove a lower bound of nβ(F,r) on the typical duration of this game, where β(F,r) is a function that is strictly increasing in r and satisfies limr→∞ β(F,r) = 2 − 1/m2(F), where n2−1/m2(F) is the threshold of the corresponding offline colouring proble

    Online vertex-coloring games in random graphs

    Get PDF
    Consider the following one-player game. The vertices of a random graph on n vertices are revealed to the player one by one. In each step, also all edges connecting the newly revealed vertex to preceding vertices are revealed. The player has a fixed number of colors at her disposal, and has to assign one of these to each vertex immediately. However, she is not allowed to create any monochromatic copy of some fixed graph F in the process. For n → ∞, we study how the limiting probability that the player can color all n vertices in this online fashion depends on the edge density of the underlying random graph. For a large family of graphs F, including cliques and cycles of arbitrary size, and any fixed number of colors, we establish explicit threshold functions for this edge density. In particular, we show that the order of magnitude of these threshold functions depends on the number of colors, which is in contrast to the corresponding offline coloring proble

    Bounds on Ramsey Games via Alterations

    Full text link
    This note contains a refined alteration approach for constructing H-free graphs: we show that removing all edges in H-copies of the binomial random graph does not significantly change the independence number (for suitable edge-probabilities); previous alteration approaches of Erdos and Krivelevich remove only a subset of these edges. We present two applications to online graph Ramsey games of recent interest, deriving new bounds for Ramsey, Paper, Scissors games and online Ramsey numbers.Comment: 9 page

    Upper Bounds for Online Ramsey Games in Random Graphs

    Get PDF
    Consider the following one-player game. Starting with the empty graph on n vertices, in every step a new edge is drawn uniformly at random and inserted into the current graph. This edge has to be coloured immediately with one of r available colours. The player's goal is to avoid creating a monochromatic copy of some fixed graph F for as long as possible. We prove an upper bound on the typical duration of this game if F is from a large class of graphs including cliques and cycles of arbitrary size. Together with lower bounds published elsewhere, explicit threshold functions follo

    On the optimality of the uniform random strategy

    Full text link
    The concept of biased Maker-Breaker games, introduced by Chv\'atal and Erd{\H o}s, is a central topic in the field of positional games, with deep connections to the theory of random structures. For any given hypergraph H{\cal H} the main questions is to determine the smallest bias q(H)q({\cal H}) that allows Breaker to force that Maker ends up with an independent set of H{\cal H}. Here we prove matching general winning criteria for Maker and Breaker when the game hypergraph satisfies a couple of natural `container-type' regularity conditions about the degree of subsets of its vertices. This will enable us to derive a hypergraph generalization of the HH-building games, studied for graphs by Bednarska and {\L}uczak. Furthermore, we investigate the biased version of generalizations of the van der Waerden games introduced by Beck. We refer to these generalizations as Rado games and determine their threshold bias up to constant factors by applying our general criteria. We find it quite remarkable that a purely game theoretic deterministic approach provides the right order of magnitude for such a wide variety of hypergraphs, when the generalizations to hypergraphs in the analogous setup of sparse random discrete structures are usually quite challenging.Comment: 26 page

    Coloring random graphs online without creating monochromatic subgraphs

    Full text link
    Consider the following random process: The vertices of a binomial random graph Gn,pG_{n,p} are revealed one by one, and at each step only the edges induced by the already revealed vertices are visible. Our goal is to assign to each vertex one from a fixed number rr of available colors immediately and irrevocably without creating a monochromatic copy of some fixed graph FF in the process. Our first main result is that for any FF and rr, the threshold function for this problem is given by p0(F,r,n)=n−1/m1∗(F,r)p_0(F,r,n)=n^{-1/m_1^*(F,r)}, where m1∗(F,r)m_1^*(F,r) denotes the so-called \emph{online vertex-Ramsey density} of FF and rr. This parameter is defined via a purely deterministic two-player game, in which the random process is replaced by an adversary that is subject to certain restrictions inherited from the random setting. Our second main result states that for any FF and rr, the online vertex-Ramsey density m1∗(F,r)m_1^*(F,r) is a computable rational number. Our lower bound proof is algorithmic, i.e., we obtain polynomial-time online algorithms that succeed in coloring Gn,pG_{n,p} as desired with probability 1−o(1)1-o(1) for any p(n)=o(n−1/m1∗(F,r))p(n) = o(n^{-1/m_1^*(F,r)}).Comment: some minor addition

    Online Ramsey theory for a triangle on FF-free graphs

    Get PDF
    Given a class C\mathcal{C} of graphs and a fixed graph HH, the online Ramsey game for HH on C\mathcal C is a game between two players Builder and Painter as follows: an unbounded set of vertices is given as an initial state, and on each turn Builder introduces a new edge with the constraint that the resulting graph must be in C\mathcal C, and Painter colors the new edge either red or blue. Builder wins the game if Painter is forced to make a monochromatic copy of HH at some point in the game. Otherwise, Painter can avoid creating a monochromatic copy of HH forever, and we say Painter wins the game. We initiate the study of characterizing the graphs FF such that for a given graph HH, Painter wins the online Ramsey game for HH on FF-free graphs. We characterize all graphs FF such that Painter wins the online Ramsey game for C3C_3 on the class of FF-free graphs, except when FF is one particular graph. We also show that Painter wins the online Ramsey game for C3C_3 on the class of K4K_4-minor-free graphs, extending a result by Grytczuk, Ha{\l}uszczak, and Kierstead.Comment: 20 pages, 10 page
    • …
    corecore