61 research outputs found

    Product graph-based higher order contextual similarities for inexact subgraph matching

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record Many algorithms formulate graph matching as an optimization of an objective function of pairwise quantification of nodes and edges of two graphs to be matched. Pairwise measurements usually consider local attributes but disregard contextual information involved in graph structures. We address this issue by proposing contextual similarities between pairs of nodes. This is done by considering the tensor product graph (TPG) of two graphs to be matched, where each node is an ordered pair of nodes of the operand graphs. Contextual similarities between a pair of nodes are computed by accumulating weighted walks (normalized pairwise similarities) terminating at the corresponding paired node in TPG. Once the contextual similarities are obtained, we formulate subgraph matching as a node and edge selection problem in TPG. We use contextual similarities to construct an objective function and optimize it with a linear programming approach. Since random walk formulation through TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities and better discrimination among the nodes and edges. Experimental results shown on synthetic as well as real benchmarks illustrate that higher order contextual similarities increase discriminating power and allow one to find approximate solutions to the subgraph matching problem.European Union Horizon 202

    Design of Finite-Length Irregular Protograph Codes with Low Error Floors over the Binary-Input AWGN Channel Using Cyclic Liftings

    Full text link
    We propose a technique to design finite-length irregular low-density parity-check (LDPC) codes over the binary-input additive white Gaussian noise (AWGN) channel with good performance in both the waterfall and the error floor region. The design process starts from a protograph which embodies a desirable degree distribution. This protograph is then lifted cyclically to a certain block length of interest. The lift is designed carefully to satisfy a certain approximate cycle extrinsic message degree (ACE) spectrum. The target ACE spectrum is one with extremal properties, implying a good error floor performance for the designed code. The proposed construction results in quasi-cyclic codes which are attractive in practice due to simple encoder and decoder implementation. Simulation results are provided to demonstrate the effectiveness of the proposed construction in comparison with similar existing constructions.Comment: Submitted to IEEE Trans. Communication

    Learning Backtrackless Aligned-Spatial Graph Convolutional Networks for Graph Classification.

    Get PDF
    In this paper, we develop a novel Backtrackless Aligned-Spatial Graph Convolutional Network (BASGCN) model to learn effective features for graph classification. Our idea is to transform arbitrary-sized graphs into fixed-sized backtrackless aligned grid structures and define a new spatial graph convolution operation associated with the grid structures. We show that the proposed BASGCN model not only reduces the problems of information loss and imprecise information representation arising in existing spatially-based Graph Convolutional Network (GCN) models, but also bridges the theoretical gap between traditional Convolutional Neural Network (CNN) models and spatially-based GCN models. Furthermore, the proposed BASGCN model can both adaptively discriminate the importance between specified vertices during the convolution process and reduce the notorious tottering problem of existing spatially-based GCNs related to the Weisfeiler-Lehman algorithm, explaining the effectiveness of the proposed model. Experiments on standard graph datasets demonstrate the effectiveness of the proposed model

    A quantum Jensen-Shannon graph kernel using discrete-time quantum walks

    Get PDF
    In this paper, we develop a new graph kernel by using the quantum Jensen-Shannon divergence and the discrete-time quantum walk. To this end, we commence by performing a discrete-time quantum walk to compute a density matrix over each graph being compared. For a pair of graphs, we compare the mixed quantum states represented by their density matrices using the quantum Jensen-Shannon divergence. With the density matrices for a pair of graphs to hand, the quantum graph kernel between the pair of graphs is defined by exponentiating the negative quantum Jensen-Shannon divergence between the graph density matrices. We evaluate the performance of our kernel on several standard graph datasets, and demonstrate the effectiveness of the new kernel

    LDPC codes from voltage graphs

    Get PDF
    Several well-known structure-based constructions of LDPC codes, for example codes based on permutation and circulant matrices and in particular, quasi-cyclic LDPC codes, can be interpreted via algebraic voltage assignments. We explain this connection and show how this idea from topological graph theory can be used to give simple proofs of many known properties of these codes. In addition, the notion of abelianinevitable cycle is introduced and the subgraphs giving rise to these cycles are classified. We also indicate how, by using more sophisticated voltage assignments, new classes of good LDPC codes may be obtained

    A quantum Jensen-Shannon graph kernel for unattributed graphs

    Get PDF
    In this paper, we use the quantum Jensen-Shannon divergence as a means of measuring the information theoretic dissimilarity of graphs and thus develop a novel graph kernel. In quantum mechanics, the quantum Jensen-Shannon divergence can be used to measure the dissimilarity of quantum systems specified in terms of their density matrices. We commence by computing the density matrix associated with a continuous-time quantum walk over each graph being compared. In particular, we adopt the closed form solution of the density matrix introduced in Rossi et al. (2013) [27,28] to reduce the computational complexity and to avoid the cumbersome task of simulating the quantum walk evolution explicitly. Next, we compare the mixed states represented by the density matrices using the quantum Jensen-Shannon divergence. With the quantum states for a pair of graphs described by their density matrices to hand, the quantum graph kernel between the pair of graphs is defined using the quantum Jensen-Shannon divergence between the graph density matrices. We evaluate the performance of our kernel on several standard graph datasets from both bioinformatics and computer vision. The experimental results demonstrate the effectiveness of the proposed quantum graph kernel

    Zeta Functions of Finite Graphs and Coverings, Part II

    Get PDF
    AbstractGalois theory for normal unramified coverings of finite irregular graphs (which may have multiedges and loops) is developed. Using Galois theory we provide a construction of intermediate coverings which generalizes the classical Cayley and Schreier graph constructions. Three different analogues of Artin L-functions are attached to these coverings. These three types are based on vertex variables, edge variables, and path variables. Analogues of all the standard Artin L-functions results for number fields are proved here for all three types of L-functions. In particular, we obtain factorization formulas for the zeta functions introduced in Part I as a product of L-functions. It is shown that the path L-functions, which depend only on the rank of the graph, can be specialized to give the edge L-functions, and these in turn can be specialized to give the vertex L-functions. The method of Bass is used to show that Ihara type quadratic formulas hold for vertex L-functions. Finally, we use the theory to give examples of two regular graphs (without multiple edges or loops) having the same vertex zeta functions. These graphs are also isospectral but not isomorphic
    corecore