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Galois theory for normal unramified coverings of finite irregular graphs (which
may have multiedges and loops) is developed. Using Galois theory we provide a
construction of intermediate coverings which generalizes the classical Cayley and
Schreier graph constructions. Three different analogues of Artin L-functions are
attached to these coverings. These three types are based on vertex variables, edge
variables, and path variables. Analogues of all the standard Artin L-functions
results for number fields are proved here for all three types of L-functions. In par-
ticular, we obtain factorization formulas for the zeta functions introduced in Part I
as a product of L-functions. It is shown that the path L-functions, which depend
only on the rank of the graph, can be specialized to give the edge L-functions, and
these in turn can be specialized to give the vertex L-functions. The method of Bass
is used to show that Ihara type quadratic formulas hold for vertex L-functions.
Finally, we use the theory to give examples of two regular graphs (without multiple
edges or loops) having the same vertex zeta functions. These graphs are also
isospectral but not isomorphic. � 2000 Academic Press

1. INTRODUCTION

1.1. Summary

In Stark and Terras [14] and Stark [13], we investigated three sorts of
zeta functions (vertex, edge, and path) that may be attached to irregular
graphs X. These may be viewed as analogues of the Dedekind zeta function
of a number field. Moreover, they have some analogous properties. When
the graph is regular, the Riemann hypothesis for the vertex type, or Ihara,
zeta function is equivalent to the graph being Ramanujan in the sense of
Lubotzky et al. [9]. We gave in [14] a simple proof of the fact that for
an unramified graph covering Y�X the Ihara zeta function of X divides the
Ihara zeta function of Y. The analogue of this fact is an unproved conjec-
ture in general for Dedekind zeta functions of extensions of number fields.
This result and many examples in Part I suggested that there is a full graph
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analogue of Artin L-function theory. This will be provided in Sections 3, 4,
and 5 for vertex, edge, and path L-functions, respectively.

To do this, we provide in Section 2 a complete Galois theory of normal
unramified coverings of finite graphs. The analogue of the Frobenius
automorphism of number theory plays an important role. We give a con-
struction of covering graphs intermediate to normal coverings which
generalizes the well known Cayley and Schreier graph constructions (see
Terras [16]). We will use this construction in Section 6 to obtain an example
of a non-isomorphic pair of isospectral regular graphs having neither multiple
edges nor loops using the simple group of order 168, namely, GL(3, F2). To
see that the two graphs we construct are non-isomorphic, we make use of
a lemma about counting triangles in graphs in terms of characters of
permutation representations. This lemma is obtained as part of our proof
of the induction property of L-functions.

1.2. The Zeta and L-Functions

Lang [8] gives the definitions and basic theory of zeta and L-functions
in the number field setting. See also the survey article by Stark [12]. Artin
L-functions are among the most important functions in algebraic number
theory. Various conjectures are still open (e.g., the Artin conjecture that
they are holomorphic for irreducible non-trivial characters of the Galois
group). They appear prominently in much of the recent work on the sub-
ject. See, for example, Murty [10] and Stark [12].

Various authors such as Hashimoto [5, 6], and Sunada [15] have
investigated the analogues for graphs. They obtain an analogue of the
Chebotarev density theorem even when the covering is ramified though the
point-of-view is rather different from ours.

Let us briefly summarize the definitions of the edge and path zeta func-
tions. If X is any connected finite undirected graph with vertex set V and
(undirected) edge set E, we orient its edges arbitrarily and obtain 2 |E |
oriented edges e1 , e2 , ..., en , en+1=e&1

1 , ..., e2n=e&1
n . ``Primes'' [C] in X

are equivalence classes of closed backtrackless tailless primitive paths C.
Write C=a1a2 } } } as , where a j is an oriented edge of X. Backtrackless
means that ai+1 {a&1

i , for all i. Tailless means that as {a&1
1 . The equiv-

alence class [C] is the set

[C]=[a1 a2 } } } as , a2 a3 } } } asa1 , ..., asa1 } } } as&1].

[C] is primitive means C{Dm, for any integer m�2 and path D in X.
For the multiedge zeta function of X, we need a 2 |E |_2 |E | matrix W

with ij entry the complex variable wij if the associated edges ei and ej have
the terminal vertex of ei equal the starting vertex of ej and ej {e&1

i .
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Otherwise the ij entry wij=0. We will also set w(ei , ej)=wij , for edges e i

and ej .

Definition 1. For the prime [C], C=a1a } } } as , the multiedge norm
of C is

NE (C)=w(as , a1) `
s&1

i=1

w(ai , ai+1).

Definition 2. The multiedge zeta function of X is

`E (W, X)= `
[C]

(1&NE (C))&1.

If you specialize the non-zero wij to be the same variable u, then you
obtain the Ihara zeta function of X,

`E (W, X)|non&0 wij=u=`X (u). (1)

The multiedge zeta function is somewhat more general than that in Stark
and Terras [14], where we had 2 |E | variables ui=wij . But the proof given
in [14] for the special case extends to show that

`E (W, X)=det(I&W)&1. (2)

This fact is much easier to prove than the corresponding result for the
vertex Ihara zeta function

`X (u)&1=(1&u2)r&1 det(I&Au+Qu2). (3)

Here r is the rank of the fundamental group of X, A is the adjacency matrix
of X, and Q is the diagonal matrix with j th diagonal entry Qj=
&1+degree j th vertex of X. An elementary determinant identity due to
Bass [1] allows one to derive (3) from (2). We will obtain the analogous
result for Artin L-Functions in Section 4. See also Kotani and Sunada [7].

If you specialize the non-zero wij to be 1 and call the resulting matrix
W1 , then

Tr((I&W1 t)&1)= :
�

n=0

cn tn,

where cn is the number of closed backtrackless tailless paths of length n.
Thus the magnitudes of the eigenvalues of W1 control the backtrackless
tailless random walks on X just as the magnitudes of the eigenvalues of the
adjacency matrix A of X control the ordinary random walks on X (see
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Terras [16]). Equivalently, it is the zeros of the reciprocal of the Ihara zeta
function `X (u)&1 which control the backtrackless tailless random walks on
X rather than the eigenvalues of A.

The multipath zeta function of X is created in a similar manner to the
multiedge zeta function replacing edges of X with generators of the
fundamental group of X. We assume that X is a connected graph with
vertex set V and (undirected) edge set E. Because X is connected, there is
a subgraph T of X with |V | vertices which is a tree. T is called a spanning
tree for X and it has |V |&1 edges. We give each of the edges on the tree
T a direction and label them t1 , ..., t |V | &1 . The inverse edges on T will be
labeled t |V | , ..., t2 |V |&2 . We give each of the r=|E |&|V |+1 remaining
edges on X a direction and label them e1 , ..., er . The inverse edges will be
labeled er+1 , ..., e2r .

This allows us to identify the free group of rank r generated by the ej 's
as the fundamental group of X. Any prime cycle C on X is uniquely (up to
starting point on the tree between last and first ek) determined by the
ordered sequence of ek 's it passes through. See Section 5 for more details
of this algorithm.

Consider a 2r_2r matrix Z=(zij)1�i, j�2r of complex variables where
zij=0 if ej=e&1

i . Let z(ei , ej)=zij . Consider the prime [C], C=a1a2 } } } as ,
where aj # [e1 , ..., er , er+1=e&1

1 , ..., e2r=e&1
r ] and C is a reduced product

in the generators of the fundamental group. Here ``reduced product'' means
that aj+1 {a&1

j , for all j, and also as {a&1
1 .

Definition 3. The multipath norm of the reduced prime C=a1 a2 } } } as is

NP(C)=z(as , a1) `
s&1

i=1

z(ai , ai+1).

Definition 4. The multipath zeta function of X is

`P(Z, X )= `
[C]

(1&NP(C))&1.

Note that the multipath zeta function involves a matrix Z which is
smaller than the matrix W in the multiedge zeta function. However, the
matrix Z has far fewer zero entries than the matrix W.

We saw in Stark and Terras [14] that

`P(Z, X )=det(I&Z)&1.

Moreover it is possible to specialize the variables of the path zeta func-
tion to obtain the edge zeta function. This result is at first sight rather
amazing, since `P has fewer variables than `E . The specialization algorithm
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of Stark and Terras [14] was improved by Stark [13] and that improved
algorithm will be improved upon further and explained here. See Section 5.

The aim of this paper is to extend all the preceding results about zeta
functions of X to Artin L-functions of unramified normal coverings Y of X
with Galois group G(Y�X ). We need to consider primes [D] of Y dividing
primes [C] of X and the Frobenius automorphism [Y�X, D] # G(Y�X ).
See the definitions in Subsections 2.3 and 2.4. Given a representation \ of
G(Y�X ), one defines the multipath Artin L-functions by replacing NP(C)
with \([Y�X, D]) NP(C). The multiedge Artin L-function is defined
similarly.

These new Artin L-functions have all the properties of the old; e.g. the
L-function corresponding to a representation \ of a subgroup H/G(Y�X )
is the same as the L-function corresponding to the induced representation
\*=IndG

H \, as defined in Terras [16], for example. Thus one obtains a
factorization of the (specialized down to X ) multiedge (respectively, multi-
path) zeta function of Y as a product over the inequivalent irreducible
representations of G(Y�X ) of multiedge (respectively, multipath) Artin L
functions. See Sections 4 and 5. We saw examples of such factorizations in
Stark and Terras [14] and Stark [13]. More examples will be presented
here.

2. THE BASICS: COVERINGS, GALOIS THEORY,
AND FROBENIUS AUTOMORPHISMS

2.1. Normal Unramified Coverings

Throughout this paper ``covering'' means ``unramified covering.'' We
assume that we have a connected graph X with vertex set V and (undi-
rected) edge set E. We will find that it simplifies the proofs of Section 5
significantly if we allow graphs to have loops and more than one edge
between vertices. This is also useful in helping to explain the factorizations
of zeta functions of graphs obtained in Stark and Terras [14].

For convenience in following paths, give each edge of X an arbitrary
direction. Because X is connected, there is a subgraph T of X with |V |
vertices which is a tree. As such, T has |V |&1 edges. The remaining
r=|E |& |V |+1 edges of X give us a set of r generators for the fundamental
group of X.

First we need some definitions. It is not enough to say that an abstract
graph covers an abstract graph if you want to prove the fundamental
theorem of Galois theory. For this we need to talk about neighborhoods
and directed coverings.
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Definition 5. A neighborhood N of a vertex v in a directed graph X is
obtained by taking one-third of each edge at v. The labels and directions
are to be included. Think of it as two lists. The first list contains all edges
with v as initial vertex. The second list contains all edges having v as ter-
minal vertex. See Fig. 1.

Definition 6. A directed graph covering Y of X means there is an
assignment of directions on the edges of Y such that there is a covering map
?: Y � X which is onto and maps neighborhoods of Y 1�1 and onto
neighborhoods on X (i.e., preserving directions).

Definition 7. A finite graph Y is a covering of a graph X if, after
assigning directions arbitrarily to the edges of X, there exists an assignment
of directions to the edges of Y such that Y is a directed graph covering
of X.

Note that the fact that Y is a covering of X is independent of the choice
of directions on X. See Fig. 2 for examples of invalid assignment of direc-
tions in Y over X. Note also that if you lift a loop you may get a graph
with multiple edges. Thus once you allow loops, you cannot discuss the
general covering without allowing multiple edges.

Definition 8. A d-sheeted normal covering Y of the graph X means
that there are d graph automorphisms _: Y � Y such that ? b _=?. The
Galois group G(Y�X ) is the set of these maps _.

Many examples of coverings��normal and non-normal��can be found in
Stark and Terras [14]. Here let us just consider a few basic examples.

Example. The cube is a quadratic covering of the tetrahedron. See Fig. 3,
where the edges in the tree of X are shown as dotted lines. The edges of the
corresponding two sheets of Y are also shown as dotted lines.

FIG. 1. A directed graph with a picture of a neighborhood of a vertex.
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FIG. 2. Example of invalid covering maps.

In coverings of X involving multiedges or, worse still, loops, it is quite
helpful to label the edges of X and give them directions as well, and then
label the cover similarly to see that we have a cover.

Proposition 1. The Galois group G=G(Y�X ) acts transitively on the
sheets of the covering. We view the d sheets of Y as d copies of a spanning
tree of X. Points of Y can thus be labeled (x, g) for x # X, g # G.

Proof. Every path downstairs in X has a unique lift once you specify
the initial vertex in Y��even when there are loops and multiedges once you
assign a direction to all edges. So now each spanning tree has a unique lift
starting at any point in ?&1(v0), where v0 is a fixed point in X. These d lifts
are the sheets of the covering. An automorphism _ # G takes sheets to
sheets. Any automorphism that fixes a sheet is the identity.

Equivalently any automorphism that fixes a point v~ 0 # ?&1(v0) is the
identity because a path from v~ 0 to v~ in Y projects under ? to a path from
v0 to v=?(v~ ) in X and this path has a unique lift starting at v~ 0 which must
be the path we started with. So if v~ 0=_(v~ 0) then v~ =_(v~ ) and _ must be
the identity.

FIG. 3. The cube Y as a quadratic cover of the tetrahedron X.
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So each distinct _ # G takes v~ 0 to a different point and there are only d
different points in Y above v0 . It follows that the action of G is transitive.
Otherwise two different automorphisms would take v0 to the same point
and we just showed that is impossible.

We choose one of the sheets of Y and call it sheet 1. The image of sheet 1
under an element g in G will be called sheet g. Any vertex x~ on Y can
then be uniquely denoted x~ =(x, g), where x=?(x~ ) and g is the sheet
containing x~ . K

Definition 9. The Galois group G(Y�X ) moves sheets of Y via
g b (sheet h)=sheet(gh),

g b (x, h)=(x, gh), for x # X, g, h # G.

It follows that g moves a path in Y as

g b (path from (a, h) to (b, j))=path from (a, gh) to (b, gj). (4)

Example. A directed n-cycle is a normal n-fold covering of a loop with
cyclic Galois group. See Fig. 4 for this example.

Consider the covering in Fig. 4. Note that the Ihara zeta function
`X (u)=(1&u)&2, and we have the factorization

`Y (u)=(1&un)&2= `
n&1

j=0

(1&w ju)&2, where w=e2?i�n.

The adjacency matrix of X is the 1_1 matrix A=(2) and not (1). Here the
degree of the graph is 2 and thus in Ihara's theorem (Theorem 1 of Stark
and Terras [14]), we have 1&Au+qu2=1&2u+u2=(1&u)2. The

FIG. 4. An n-cycle covering a loop.
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factorization of `Y (u) will be seen here as a factorization of the Ihara
zeta function into a product of Artin L-functions. See the Corollary to
Proposition 3 in Section 3.

Question. Suppose a graph Y has a large symmetry group S and G is a
subgroup of S. Is there a graph X such that Y is a normal cover of X with
group G?

Answer. Not always. For example, the cube has S4 symmetry group
and G=S4 cannot be the Galois group G(Y�X ) since for X to exist |G|
divides the number |V | of vertices of Y as well as the number |E | of edges
of Y and thus it also divides r&1=|E |&|V |.

Examples. X with the cube as a normal cover. See Figs. 5 and 6 for
these examples.

Let Y be the cube. Then |V |=8, |E |=12 and |G| divides g.c.d(8, 12)=4.
We present a normal covering Y�X such that G=G(Y�X ) is a cyclic group
of order 4 in Fig. 5 and another such covering Y�X in Fig. 6 where
G=G(Y�X ) is the Klein 4-group.

Example. The octahedron as a cyclic 6-fold cover of 2 loops. The
octahedron has |V |=6, |E |=12 which implies that |G|=6 may be
possible. An example where X is a double loop is given in Fig. 7.

2.2. Intermediate Coverings

What is the meaning of X� is intermediate to Y�X? It is more than just
Y covers X� and X� covers X. Consider Fig. 6. There are three intermediate

FIG. 5. An order 4 cyclic cover Y�X, where Y is the cube. Included is the intermediate
quadratic cover X� . The notation makes clear the covering projections ?: Y � X, ?2 : Y � X� ,
?1 : X� � X,
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FIG. 6. A Klein 4-group cover Y�X, where Y=the cube. Included is one of the 3
intermediate quadratic covers.

quadratic covers of which one is drawn. Abstractly Y covers all three inter-
mediate graphs. Since each of the intermediate graphs X� 1 , X� 2 , X� 3 is
isomorphic to the other two, each covers the other two and thus each X� i

is intermediate between Y and X� j . That would negate the fundamental
theorem of Galois theory.

The cure for this lies in the following definition.

FIG. 7. A cyclic 6-fold cover Y�X, where Y is the octahedron.
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Definition 10. If we have three graphs X, X� , Y with Y covering both
X and X� and with X� covering X, having projection maps ?: Y � X,
?2 : Y � X� , ?1 : X� � X, we will say that X� is intermediate to Y�X iff
?=?1 b ?2 .

A projection map means more than just a pointwise map on vertices but
also a map of neighborhoods and thus the preceding definition requires
that the neighborhoods on X� are consistent with those on X and Y.

In Galois theory, if Y�X is normal with Galois group G, there will be a
1&1 correspondence between intermediate graphs and subgroups. Thus we
will later speak of THE intermediate graph corresponding to a subgroup H
of G. In order to be able to do this, we need to define what it means for
two abstract intermediate graphs to be ``the same'' or ``equal''.

Definition 11. Suppose Y is an (unramified) covering of X with the
projection map ? and that edges in Y and X have been assigned directions
consistent with ?. Suppose X� and X� $ are intermediate graphs with projec-
tions ?2 and ?$2 from Y to X� and X� $, respectively, and projections ?1 and
?$1 from X� and X� $, respectively, to X, where ?=?1 b ?2=?$1 b ?$2 . Thus the
edges of X� and X� $ inherit directions consistent with these projections. We
say X� and X� $ are the same or equal if there is a (directed) graph
isomorphism i: X� � X� $ such that ?$2=i b ?2 and ?1=?$1 b i.

Clearly Definition 11 yields an equivalence relation between intermediate
graphs X� to a covering Y�X.

Theorem 1 (Fundamental Theorem of Galois Theory). Suppose Y�X is
an unramified normal covering with Galois group G=G(Y�X ).

v (1) Given a subgroup H of G, there exists a graph X� intermediate
to Y�X such that H=G(Y�X� ). Write X� =X� (H).

v (2) Suppose X� is intermediate to Y�X. Then there is a subgroup
H=H(X� ) of G which is G(Y�X� ).

v (3) Two intermediate graphs X� and X� $ are equal (as in Definition 11)
if and only if H(X� )=H(X� $).

v (4) We have H(X� (H))=H and X� (H(X� ))=X� . So we write X� W H
for the correspondence between intermediate graphs X� to Y�X and subgroups
H of the Galois group G=G(Y�X ).

v (5) If X� 1 W H1 and X� 2 W H2 then X� 1 is intermediate to Y�X� 2 iff
H1 /H2 .

Proof. (1) Let H be a subgroup of G. Recall that points of Y have the
form (x, _), with x # X and _ # G. Now define the vertices of X� by X� =
[(x, H_) | x # X, H_ # H"G]. Then put an edge between (a, H_) and
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(b, H{), for a, b # X and _, { # G iff there are h, h$ # H such that (a, h_) and
(b, h${) have an edge joining them in Y. The edge between (a, H_) and
(b, H{) in X� is given the label and direction of the projected edge between
a and b in X. It is easy to see that X� is well-defined, intermediate to Y�X,
and connected.

(2) Let X� be intermediate, with projections ?: Y � X, ?2 : Y � X� , ?1 :
X� � X. Fix a point v0 # X and let v~ 0=?2(v~~ 0) # X� be such that v~~ 0 # ?&1(v0)
is on sheet 1 of Y. That is, v~~ =(v0 , 1) as in Proposition 1. Define
H=[h # G | h(v~~ 0) # ?&1

2 (v~ 0)].

We need only show that H is closed under multiplication to see that H
is a subgroup of G. Let h1 and h2 be elements of H. Then the vertices
(v0 , h1) and (v0 , h2) project under ?2 to v~ 0 . Let p~~ 1 and p~~ 2 be paths on Y
from (v0 , 1) to the vertices (v0 , h1) and (v0 , h2), respectively. Then p~~ 1 and
p~~ 2 project under ?2 to closed paths p~ 1 and p~ 2 in X� beginning and ending
at v~ 0 ; p~~ 1 and p~~ 2 also project under ?=?1 b ?2 to closed paths p1 and p2 in
X beginning and ending at v0 . By Eq. (4), h1 b p~~ 2 starts at (v0 , h1) and ter-
minates at (v0 , h1h2). Therefore the lift of p~ 1 p~ 2 from X� to Y beginning at
(v0 , 1), which is the same as the lift of p1 p2 from X to Y beginning at
(v0 , 1), terminates at (v0 , h1h2). Therefore h1h2 is in H and H is a subgroup
of G.

Taking this further, let v~ be another vertex of X� and assume ?(v~ )=v # X.
Let v~~ =(v, g0) be a vertex in Y with v~ =?2(v~~ ) # X� . Let q~~ be a path in Y
from (v0 , 1) to (v, g0) and p~~ a path in Y from (v0 , 1) to (v0 , h), where
h # H. These two paths project to paths q~ from v~ 0 to v~ in X� , and p~ from v~ 0
to v~ 0 in X� . Projected all the way to X, we get paths q from v0 to v, and p
from v0 to v0 , respectively. Again, by Eq. (4), we see that the path p~ q~ from
v~ 0 to v~ in X� lifts to a path from (v0 , 1) to (v0 , hg0) in Y. Thus, for all g in
the coset Hg0 , the vertex (v, g) projects under ?2 to v~ , and this provides the
complete inverse image ?&1

2 (v~ ) in Y since |?&1
2 (v~ )|=|H|. See Fig. 8 below.

It is clear now that the coset graph X� (H) is equal to X� in the sense
defined above. We may think of the projection ?2 corresponding to the
abstract intermediate graph X� as providing the analogy of an embedding
of intermediate number fields. The graph X� (H) would then be the corre-
sponding embedded version of X� .

Parts (3), (4), and (5) are left to the reader. K

2.3. Conjugate and Normal Intermediate Graphs

Suppose X� is a graph intermediate to Y�X, where Y�X is normal
(unramified) with Galois group G. We presume that all edges of Y, X� , and
X have been given directions consistent with the projection maps
Y w�

?2 X� w�
?1 X. If we think of ?2 as providing the embedding of X� into Y,
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FIG. 8. Part of the proof of Part (2) of Theorem 1, showing Hg0=?&1
2 (v~ ). The dashed

lines are the projection maps ?1 and ?2 .

then we should let ?2: Y � X� vary (as a projection of directed graphs)
subject to ?=?1 b ?2 and think of these different ?2 's as ``conjugate
embeddings'' of X� in Y. The following definition accomplishes the equivalent.

Definition 12. Suppose Y�X is normal with Galois group G and that
X� and X� $ are intermediate graphs with projection maps ?2 and ?$2 from Y
to X� , X� $, respectively, and ?1 , ?$1 from X� , X� $ to X. We assume ?=
?1 b ?2=?$1 b ?$2 is the projection from Y to X and that directions have been
assigned to all edges in all four graphs consistent with these projections.
We say that X� and X� $ are conjugate intermediate graphs if there is an
isomorphism (of directed graphs) i: X� � X� $ such that ?1=?$1 b i.

Note that there is no condition involving i, ?2 and ?$2 ; the natural extra
condition ?$2=i b ?2 would make X� and X� $ not only conjugate but equal
(as in Definition 11). With this definition, we can lift vertices or paths from
X� to Y via ?&1

2 and also via i followed by ?$&1
2 . These 2 lifts need not be

the same.
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Theorem 2. With the notation of Definition 12, let H and H$ be the sub-
groups of G corresponding to X� and X� $ via the fundamental theorem of
Galois Theory. Then X� and X� $ are conjugate intermediate graphs iff H and
H$ are conjugate subgroups of G.

Proof. Suppose that H and H$= g0 Hg&1
0 are conjugate subgroups of

G, where g0 # G. We want to show that the corresponding intermediate
graphs X� =X� (H) and X� $=X� (H$) (using the notation of the fundamental
theorem of Galois theory) are conjugate. We have the disjoint coset decom-
positions

G= .
n

j=1

Hgj and G= .
n

j=1

H$g0 gj .

Thus the graphs X� and X� $ have vertices [(v, Hgj) | v # X, 1� j�n] and
[(v, H$g0 gj) | v # X, 1� j�n], respectively. The isomorphism i: X� � X� $ is
defined by i(v, Hg)=(v, H$g0 g).

To prove the converse, we suppose that X� and X� $ are conjugate inter-
mediate graphs. We must show that the corresponding subgroups
H=H(X� ) and H$=H(X� $) (using the notation of the fundamental theorem
of Galois theory) are conjugate. So we have an isomorphism i: X� � X� $ such
that ?1=?$1 b i. Choose a vertex v0 in X and let v~ 0=?2(v~~ 0) in X� , where
v~~ =(v0 , 1) is on sheet 1 of Y. Let v~ be an arbitrary vertex of X� projecting
to a vertex v in X, and let v~~ =(v, g) be a vertex in Y projecting to v~ under
?2 . See Fig. 9. The collection of all g # G such that (v, g) # Y projects to v~

FIG. 9. Proof that conjugate graphs correspond to conjugate subgroups.
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is a right coset Ha of G. Let p~~ be a path on Y from v~~ 0 to v~~ . It projects to
a path p~ in X� from v~ 0 to v~ and to a path p in X from v0 to v.

Now i( p~ ) is a path in X� $ from i(v~ 0) to i(v~ ) which also projects under ?$1
to p by hypothesis. Since i(v~ 0) projects under ?$1 to v0 , we may assume
there is an element g0 # G such that the vertex (v0 , g0) in Y projects via ?$2
to i(v~ 0). Now ?(g0 b p~~ )=?( p~~ )= p and since ?=?$1 b ?$2 , we see that the
path ?$2(g0 b p~~ ) in X� $ is a path with initial vertex i(v~ 0) projecting to p in X.
By the uniqueness of lifts, we find that i( p~ )=?$2(g0 b p~~ ). However g0 b p~~ ter-
minates at (v, g0 g). Therefore ?$2 takes (v, g0 g) to i(v~ ). In particular, the
set of all such g0 g is g0 Ha=(g0Hg&1

0 ) g0a. Therefore the subgroup of G
corresponding to X� $ is g0Hg&1

0 .
Note that we have actually proved much more: the effect of the

isomorphism i can be accomplished by the element g0 # G. Further, g0 itself
may be replaced by any element of the right coset (g0Hg&1

0 ) g0= g0H, a
left coset of H. In this way, there is a 1-1 correspondence between left
cosets of H and all possible ``embeddings'' of X� in Y. K

Last we come to the question of classifying normal intermediate
coverings.

Theorem 3. Suppose Y�X is a normal covering with Galois group G and
X� is an intermediate covering corresponding to the subgroup H of G. We may
consider X� as a covering of X in its own right with the same projection map
used as an intermediate covering. Then X� is itself a normal covering of X if
and only if H is a normal subgroup of G and when this happens
G(X� �X )$G�H.

Proof. We continue the development begun in the proof of Theorem 2.
We may think of X� as being given by X� (H) (using the notation of the
fundamental theorem of Galois theory), whose vertex set is [(v, Hgj) | v #
X, 1� j�n], where the gj are right coset representatives for H"G.

Now suppose H is a normal subgroup of G. A coset Hg acts on X� (H)
by taking (v, Hgj) to (v, Hggj). This action preserves edges. It is also tran-
sitive on the cosets Hgj since the identity coset H } 1 can be taken to any
other coset Hgj by setting g= gj . Thus we have n=|G�H| automorphisms
of X� (H). Hence X� (H) is normal over X with Galois group G�H.

Conversely, suppose X� �X is normal and that i is an automorphism of X�
in G(X� �X ). We will think of X� $ as X� with ?1=?$1 and ?2=?$2 . Although
i is not the map that makes X� $=X� (that map is the identity map),
nevertheless, i is an isomorphism between X� and X� $ and it is a conjugation
map since ?$1 b i=?1 b i=?1 . Thus Theorem 2 applies and there is an ele-
ment g0 # G such that X� $ corresponds to g0Hg&1

0 . Since X� $=X� , we have
g0 Hg&1

0 =H. Further, if v~ 0 in X� is chosen as in the proof of Theorem 2,
then ?2((v0 , g0))=?$2((v0 , g0))=i(v~ 0). As i runs through the n elements of
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G(X� �X ), i(v~ 0) runs through the n lifts of v0 to X� . Thus the corresponding
n different g0 's run through all n left cosets of H in G, and we have
g0 Hg&1

0 =H for all of these. Therefore H is normal in G. K

2.4. Primes in Coverings

In order to discuss Artin L-functions of a normal graph covering Y�X,
we need to recall the analogue of primes in graphs and the analogue of a
prime in Y dividing a prime in X. See Stark and Terras [14] and Stark
[13] for more details on the graph theory and Lang [8] for the number
theoretic version.

As we said in Section 1 a path C on X follows a finite succession of
directed edges. When there are no loops or multiedges, it may also be
designated by listing the vertices through which C passes in order C=
(v1 , ..., vk) , vi # X. The path C is closed if v1=vk . A closed path is called
a cycle. The length of C denoted &(C) is the number of edges in the path.
A closed path such that 2 consecutive edges in the path are inverses of each
other is said to have backtracking. A path such that the first and last edges
are inverses of each other is said to have a tail. The closed path which runs
through the same vertices (and edges) as C but starts at vj rather than v1

is an equivalent path to C.

Definition 13. A ``prime'' [C] in X is an equivalence class of primitive
closed backtrackless, tailless cycles C such that C{Dm, m�2 and D a
path in X. For brevity, we will sometimes refer to primitive closed
backtrackless tailless cycles C as prime cycles.

We do not have unique factorization into primes here. Nevertheless we
do have primes D in covers Y�X above primes C in X. This allows one to
find analogues of the corresponding concepts regarding prime ideals in
extensions of algebraic number fields

Suppose D is a prime cycle in a covering Y of X with projection map ?.
Then ?(D) is backtrackless and tailless in X but may not be primitive.
However, there is a prime cycle C in X and an integer f such that ?(D)=
C f. The integer f is independent of the choice of prime D in [D].

Definition 14. If D is a prime cycle in a covering Y�X with projection
map ? and ?(D)=C f, where C is a prime cycle of X, we will say that [D]
is a prime of Y above [C], or more loosely, that D is a prime above C and
we write D | C and f =f (D, Y�X ). We say that f is the residual degree of D
with respect to Y�X.

When Y�X is normal, then for a prime C of X and a given integer j,
either every lift of C j is closed in Y or no lift is closed. Thus the residual
degree of [D] above C is the same for all [D] above C. Let g= g(D, Y�X )

147ZETA FUNCTIONS OF FINITE GRAPHS



be the number of primes [D] above [C]. Since we are dealing with
unramified covers, the analogue of ramification is e=e(D, Y�X )=1 and we
have the familiar formula from algebraic number theory for normal covers,

efg=d=number of sheets of the cover. (5)

Definition 15. If Y�X is normal and [D] is a prime of Y over [C] in
X and _ is in G(Y�X ), we refer to [_ b D] as a conjugate prime of Y
over C.

We then have f (_ b D, Y�X )= f (D, Y�X ). If f =f (D, Y�X ), then as g
runs through G(Y�X ), g b D runs through all possible lifts of C f from X to
Y and thus the conjugates of [D] account for all the primes of Y above
[C].

Next we consider the analogues of the familiar transitivity property for
f. Given Y�X a finite unramified normal graph covering with Galois group
G and suppose X� is a legal intermediate cover with H=Gal(Y�X� ). Suppose
?1 : X� � X and ?2 : Y � X� are the covering maps. Then ?: Y � X is the
covering map ?=?1 b ?2 . Let E be a prime of Y over the prime C of X and
let ?2(E)=D f2, where f2= f (E, Y�X� ). Then we have the transitivity
property,

f (E, Y�X )= f (E, Y�X� ) f (D, X� �X ). (6)

Note that we do not actually need to assume Y�X normal.

Example. Primes in the cube Y over primes in the tetrahedron X. In
Fig. 10 we show a prime [C] of length 3 in X defined by C=(a, d, c, a).
The prime [D] of Y, with D=(a$, d", c$, a", d $, c", a$) , has length 6 and
is over [C] in X. Note that we can write D=C1(_ b C1), where
C1=(a$, d", c$, a") and the Galois group is G=G(Y�X )=[1, _]. We are
using the notation x$=(x, 1) and x"=(x, _) in Y, for x # X. Here
&(D)=2&(C)=6. In this example f =2 and g=1.

A second example in Y�X is also shown in Fig. 10. It has the prime [D$]
of Y represented by D$=(a", c$, d", b", a") over the prime [C$] represented
by C$=(a, c, d, b, a) in X. We have &(D$)=&(C$)=4. Here f =1 and
g=2 since there is another prime D" in Y over C$ also pictured in Fig. 10.

2.5. Frobenius Automorphisms

As usual, Y is a normal cover of the graph X with Galois group G. Next
we introduce the Frobenius automorphism [Y�X, [D]] for a prime [D] in
Y over the prime [C] in X. It has properties analogous to the Frobenius
automorphism associated to Galois extensions of algebraic number fields.
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FIG. 10. Primes in the cube dividing primes in the tetrahedron. Here &(D)=6, &(C)=3,
f =2, g=1 and D"=_ b D$, &(D$)=&(D")=&(C)=4, f =1, g=2.

See Lang [8]. We first define the automorphism _( p) # G=G(Y�X )
associated to a directed path p of X.

Definition 16. Given any path p of X, there is a unique lifting of p to
a path p~ of Y starting on sheet 1. If p~ has its terminal vertex on sheet #, we
define the normalized Frobenius automorphism _( p) in G by _( p)=#.

The basic calculational rule for normalized Frobenius automorphisms is
given by the following lemma.

Lemma 1. v (1) Suppose that p1 and p2 are two paths on X with the
terminal vertex of p1 being the initial vertex of p2 . Then _( p1 p2)=
_( p1) _( p2).
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FIG. 11. The map _ preserves composition of paths.

v (2) If a path p is composed of edges e1 , ..., en ; that is, p=e1 } } } en ,
then _( p)=_(e1) } } } _(en)

Proof. Suppose p1 goes from a to b in X and p2 goes from b to c in X.
Then the lift p~ 1 of p1 starting on sheet 1 of Y goes from (a, 1) to (b, _( p1)).
The lift p~ 2 of p2 starting on sheet 1 of Y goes from (b, 1) to (c, _( p2)). See
Fig. 11. Therefore the lift of p2 starting on sheet _( p1) goes from (b, _( p1))
to (c, _( p1) _( p2)). Thus the lift of p1 p2 beginning on sheet 1 of Y will end
on sheet _( p1) _( p2). K

Now we can define the Frobenius automorphisms and decomposition
groups.

Definition 17. Suppose C is a prime cycle on X starting and ending at
vertex a. Let D be a prime cycle of Y over C starting and ending at vertex
(a, +) on sheet +. If the residual degree of D�C is f, then D is the lifting of
C f which begins on sheet +. Suppose C itself lifts to a path C� on Y starting
on sheet + at (a, +) and ending on sheet & at (a, &). We define the Frobenius
automorphism

[Y�X, [D]]=&+&1.
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Definition 18. The decomposition group of D with respect to Y�X is

Z(D)=Z(D, Y�X )=[{ # G | [{ b D]=[D]].

Next we need to find analogues of the usual properties of the Frobenius
automorphism (as in Lang [8]).

Proposition 2 (Properties of the Frobenius Automorphism).

v (1) For a prime cycle D in Y over C in X, the Frobenius
automorphism is independent of the choice of D in its equivalence class [D].
Thus we can define [Y�X, [D]]=[Y�X, D], without ambiguity.

v (2) The order of [Y�X, D] in G is the residual degree f =
f (D, Y�X ).

v (3) If { # G, then [Y�X, { b D]={[Y�X, D] {&1.

v (4) If D begins on sheet 1, then [Y�X, D]=_(C).

v (5) The decomposition group Z(D) is the cyclic subgroup of G of
order f generated by [Y�X, D]. In particular, Z(D) does not depend on the
choice of D in its equivalence class [D].

Proof. Part (4) is proved by noting that the respective definitions are
the same.

Now we prove Part (1). Suppose C has initial (and terminal) point ver-
tex a in X and D is the lifting of C f beginning at vertex (a, +0) on sheet +0 .
In lifting C f, we lift C a total of f times consecutively, beginning at (a, +0)
and ending respectively at (a, +1), (a, +2), ..., (a, +f &1), (a, +f), where
+f=+0 , and + j {+0 , for j=1, 2, ..., f &1.

Suppose that (b, }) is another vertex on D, where b is on C. Thus (b, })
lies on one of the f consecutive lifts of C referred to above, say the r th. See
Fig. 12.

The vertex b splits C into two paths C= p1 p2 , where b is the terminal
vertex of p1 and the initial vertex of p2 . The vertex (b, }) on Y is the
terminal vertex of the lift of p1 to D beginning at (a, +r&1). The lift of the
version of C in [C] beginning at b, namely p2 p1 to a path on Y which
starts at (b, }) then ends at a vertex (b, *) on D which lies on the (r+1)st
consecutive lift of C.

Suppose C� $ is a path on Y from (a, 1) to (a, +0) and that C$ is the pro-
jection of C� $ to X. The vertices (a, +0), (a, +1), (b, }), and (b, *) of Y are
then the terminal points of the lifts of the paths

C$, C$C, C$C r&1p1 , C$C rp1 ,
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FIG. 12. The vertex (b, }) lies on the r th consecutive lift of C (shown with r=2). The lift
to a path in Y starting at (b, }) of the version of C in [C] starting at b ends at a vertex (b, *)
which arises on the (r+1) st consecutive lift of C.

respectively, to paths on D starting at (a,1). Therefore, by Lemma 1 we
have

+0 =_(C$), +1=_(C$C)=_(C$) _(C);

}=_(C$Cr&1p1)=_(C$) _(C)r&1 _( p1);

*=_(C$Crp1)=_(C$) _(C)r _( p1).

It follows that [Y�X, D] is the common value of

*}&1=+1+&1
0 =_(C$) _(C) _(C$)&1.

This proves (1). It also proves (3) in the case {=+&1
0 =_(C$)&1 and this

suffices to prove (3) in general.
In the same manner as above, we also find that each

+j=_(C$C j)=_(C$) _(C) j
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and thus

+j +&1
0 =_(C$) _(C) j _(C$)&1=[Y�X, D] j. (7)

This proves (2).
Last, we prove (5). If { b D is equivalent to D, then since { b D also starts

at a vertex projecting to a, we must have {+0=+ j , for one of the +j above.
Thus, for some j, {=+j+&1

0 =[Y�X, D] j by (7). Conversely, any such { has
[{ b D]=[D]. Since the Frobenius automorphism of D is independent of
the choice of starting point, the decomposition group of D depends only
on [D]. K

It remains only to discuss the Frobenius automorphism with respect to
intermediate coverings.

Theorem 4 (More Properties of the Frobenius Automorphism).

v (1) Suppose X� is an intermediate covering to Y�X and corresponds
to the subgroup H of G=G(Y�X ). Let [D] be an equivalence class of prime
cycles in Y such that D lies above C� in X� . Let f =f (D, Y�X )=f1 f2 , where
f2= f (D, Y�X� ) and f1= f (C� , X� �X ). Then f1 is the minimal power of
[Y�X, D] which lies in H and we have

[Y�X, D] f1=[Y�X� , D]. (8)

v (2) If further X� is normal over X, then as an element of H"G, we
have

[X� �X, C� ]=H[Y�X, D].

Proof. (1) Let C be the prime of X below C� . The Frobenius
automorphism [Y�X� , D] is found by lifting C� from X� to Y. This is the same
as lifting C f1 from X to Y and the analysis in the proof of Proposition 2
(Eq. (7) in particular) gives Eq. (8) of (1). The fact that f1 is the minimal
power of [Y�X, D] which lies in H follows from the fact that

Z(Y�X� , D)=Z(Y�X, D) & H.

which we know to be cyclic of order f2 . Therefore since [Y�X, D] is of
order f1 f2 , we see that [Y�X, D] j cannot be in H if j< f1 .

(2) Now suppose that X� is normal over X. We think of X� as given
by our earlier construction where vertices (v, {) of Y project to vertices
(v, H{) of X� . We suppose D starts and ends at (a, +0) in Y and that C� starts
and ends at (a, H+0) in X� . If C lifts to a path in Y starting at (a, +0) and
terminating at (a, +1), then C lifts to a path in X� starting at (a, H+0) and
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terminating at (a, H+1). Then (2) follows from the definition of the
Frobenius automorphism. K

2.6. The construction of Intermediate Coverings and Minimal Normal
Coverings via Frobenius Automorphisms

Lemma 2. Suppose Y�X is normal with Galois group G. Let e1 , ..., er be
the cut edges of X with directions assigned. The r normalized Frobenius
automorphisms _(ej), j=1, ..., r, generate G.

Proof. Since _(t)=1 for all edges t on the tree of X, for any path p on
X, _( p) is a product of the _(ej) and their inverses, by Lemma 1. But, by
lifting all paths of X to paths starting on sheet 1 of Y, we can get to every
sheet of Y and thus we have obtained the whole of G. K

Lemma 3. Suppose Y�X is normal with Galois group G and X� is an inter-
mediate graph corresponding to the subgroup H of G. Let H0=�g # G gHg&1.
Then H0=[1] if and only if there are no intermediate graphs, other than Y,
which are normal over X and intermediate between Y and X� .

Proof. This is a standard fact in Galois theory. A normal intermediate
graph covering X� would correspond to a normal subgroup of G contained
in H and conversely. Any normal subgroup of G contained in H is also
contained in every conjugate of H and hence is contained in H0 . Since H0

is a normal subgroup of G, we are done. K

Lemma 4. Suppose X� is a covering of X and that Y�X is a normal
covering of X of minimal degree such that X� is intermediate to Y�X. Let
G=G(Y�X ) and H=G(Y�X� ). Let Hg1 , ..., Hgn be the right cosets of H.
Any element g # G gives rise to a permutation of the Hgj by multiplication on
the right. Let +(g) denote the corresponding permutation of 1, ..., n. That is
+(g)(i)= j if Hgi g=Hgj . Then + is a faithful (i.e., 1&1) permutation
representation of G.

Proof. By definition +(g) +(g$)=+(gg$), and thus + is a homomorphism.
The homomorphism + will be 1-1 if and only if its kernel is the identity.
The kernel consists of all g # G such that Hg$g=Hg$, \g$ # G. This happens
iff Hg$gg$&1=H, \g$ # G. This is equivalent to g # g$&1Hg$, \g$ # G. By
Lemma 3, g=1 and + is 1-1. K

Now we put these three lemmas together.

Theorem 5. Let the graphs Y, X� , X, the groups G, H, and the represen-
tation + be as in Lemma 4. Suppose that e is one of the (directed ) cut edges
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of X (i.e., edges not in a given spanning tree of X ). Let _(e) be the corre-
sponding normalized Frobenius automorphism of G. Suppose that v is the
initial vertex of e and v$ is the terminal vertex of e. If +=+(_(e)) is the
permutation of 1, ..., n such that +(i)=+(_(e))(i)= j, then the directed edge
e lifts to an edge in X� starting at (v, Hgi) and terminating at (v$, Hgj).

Proof. By the definition of +, Hgi_(e)=Hgj . This means that gi _(e)=
hgj for some element h # H. By definition of _(e), the edge e lifts to an edge
on Y from (v, 1) to (v$, _(e)). If we apply gi to this edge, we get an edge
on Y commencing at (v, gi) and terminating at (v$, gi_(e))=(v$, hgj).
Hence e lifts to a directed edge on X� from (v, Hgi) to (v$, Hgj). K

This theorem allows us to construct intermediate graphs given a normal
cover and it also allows us to construct the minimal normal cover Y of X
having a given intermediate covering graph X� of X as well as the Galois
group G(Y�X ). We illustrate this with the S3 example from Fig. 11 of Stark
and Terras [14]. We reproduce this here as our Fig. 13. We will present
another series of examples based on the simple group of order 168 in
Section 6.

Example. An S3 Cover. Consider the covering Y6 �X given in Fig. 13.
Two intermediate graphs Y2 and Y3 are shown. Note that the covering
Y3 �X is not normal.

We can view our Galois group G(Y6 �X ) as the dihedral group of
motions of a regular triangle and write S3=D3=[I, R, R2, F, FR, FR2],
where F denotes a flip of the triangle and R a rotation by 120%, F2=I,
R3=I, FR=R2F. We can identify the sheets of the graph Y via: a$=(a, I ),
a"=(a, FR2), a$$$=(a, R2), a(4)=(a, FR), a(5)=(a, R), a(6)=(a, F ), for
a # X.

We define c to be the directed cut edge of X from vertex 2 to vertex 4 and
d is the directed cut edge of X from vertex 4 to vertex 3. With the sheets
assigned group elements as above, we see that c lifts to an edge of Y6 from
sheet I to sheet FR and hence _(c)=FR. Similarly _(d )=FR2. Let
H=[I, FR], a subgroup of S3 . There are three cosets Hgi , i=1, 2, 3,
where we may take g1=I, g2=FR2, g3=F.

Then Hg1_(c)=Hg1 , Hg2_(c)=Hg3 , Hg3_(c)=Hg2 , and the cycle
decomposition of the permutation corresponding to _(c) is (1)(23).
Likewise the cycle decomposition of the permutation corresponding to _(d )
is (12)(3).

We can now construct the intermediate graph corresponding to H. We
take three copies of the tree of X with the vertices in each copy labeled $,
", $$$. The permutation (1)(23) corresponding to _(c) tells us to lift c to
three edges in the cover; from 2$ to 4$, from 2" to 4$$$, and from 2$$$ to 4".
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FIG. 13. A sextic S3 covering Y6 of a subgraph X of K4 with intermediate quadratic Y2

and cubic Y3 covers. A spanning tree in X is given by dotted lines. The sheets of the coverings
are copies of this tree.

Likewise the permutation (12)(3) for _(d) says we lift d to the three edges
from 4$ to 3", from 4" to 3$, from 4$$$ to 3$$$. The resulting graph is precisely
Y3 in Fig. 13. Actually the three two element subgroups of S3 are the con-
jugates of H. Each has three cosets and in each case with the correct label-
ing of the cosets (6 choices), we will get Y3 . This is because we have not
provided in Fig. 13 the projections from Y6 to Y3 . Without knowing this
projection, the three conjugate intermediate cubic covers of X are all
isomorphic with the isomorphism preserving the projections to X by
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Theorem 2. In other words, as abstract covers of X, with no reference to
Y6 , they are all exactly alike.

Now we discuss the reverse question. Suppose we are given the cover Y3

of X and wish to construct the minimal normal cover of X having Y3 as
an intermediate graph. We suppose Y is this unknown cover, G the Galois
group G(Y�X ), and H the subgroup corresponding to Y3 . Thus H has
three cosets in G; we label the cosets so that Hg1 , Hg2 , Hg3 correspond to
the sheets $, ", $$$, respectively of Y3 . According to Lemma 4, the permutation
corresponding to _(c) is (1)(23) and the permutation corresponding to _(d )
is (12)(3). Further, by Lemmas 2 and 4, these permutations generate an
isomorphic copy of G inside S3 and under this isomorphism, _(c) becomes
(1)(23) and _(d ) becomes (12)(3). These two permutations generate all of S3

and thus G=S3 . The corresponding normal cover is then a sextic cover Y6

of X. The six sheets of Y6 are copies of the tree of X labeled by the six group
elements. If g is one of these elements, we connect vertex (2, g) on sheet g to
vertex (4, g_(c)) on sheet g_(c). The resulting directed edge with initial vertex
(2, g) projects to c. Likewise, we connect vertex (4, g) on sheet g to vertex
(3, g_(d )) on sheet g_(d ) and project the resulting directed edge to d. The
resulting normal cover is Y6 as shown in Fig. 13.

Can we say which subgroup of S3 corresponds to Y3? No; we can iden-
tify H only up to conjugation. There are several ways of thinking about
this. One way is that we do not know which of the three cosets Hg1 , Hg2 ,
Hg3 contains the identity element of the group. The three choices give the
three embeddings. Equivalently, we can relabel the sheets of Y3 and the
three cosets. On Sn , a relabeling is equivalent to conjugation.

3. VERTEX ARTIN�IHARA L-FUNCTIONS

Suppose that Y is a normal unramified covering of X with Galois group
G=G(Y�X ).

Definition 19. If \ is a representation of G with degree d=d\ , and u
is a complex variable with |u| sufficiently small, define the vertex Artin�
Ihara L-function by

LV (u, \, Y�X )=LV (u, \)= `
[C]

det(I&\([Y�X, D]) u&(C))&1,

where the product runs over primes [C] of X and [D] is arbitrarily chosen
from the primes in Y above C. Here [Y�X, D] is the Frobenius auto-
morphism of Definition 17. The subscript V stands for vertex L-function
and &(C) is the length of a curve C representing the prime [C].
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When the representation \ is trivial (=1), this is the Ihara zeta function
(for irregular graphs) of formula (1) in the introduction. It was considered
in Stark and Terras [14], formula (1.2)

LV (u, 1, Y�X )=`X (u). (9)

For the representation theory of finite groups; e.g., the definition of induced
representation needed in the next proposition, see, for example, Terras [16].

Proposition 3 (Formal Properties of the Vertex Artin-L-Function).

v (1) LV (u, \1 �\2)=LV (u, \1) LV (u, \2).

v (2) Let Y�X be an unramified normal covering. Suppose X� is inter-
mediate to Y�X and assume X� �X is normal, G=Gal(Y�X ), H=Gal(Y�X� ).
Let \ be a representation of G�H$Gal(X� �X ). Thus \ can be viewed as a
representation of G, often called the lift of \. Then

LV (u, \, Y�X )=LV (u, \, X� �X ).

v (3) If X� is an intermediate cover of the unramified normal graph
cover Y�X and \ is a representation of H=Gal(Y�X� ), then let \*=IndG

H \,
that is, the representation induced by \ from H up to G. Then

LV (u, \*, Y�X )=LV (u, \, Y�X� ).

Proof. Only property (3) requires some effort. We will postpone the
proof of (3) until the next section when we do the more general case of
edge L-functions. K

Corollary (Factorization of the Ihara Zeta Function of an Unramified
Normal Extension of Graphs). Suppose that Y is a normal unramified
covering of X with Galois group G=G(Y�X ). Let G� be a complete set of
inequivalent irreducible unitary representations of G. Then

`Y (u)=LV (u, 1, Y�Y )= `
\ # G�

LV (u, \, Y�X )d\.

Proof. Use the fact that

IndG
[e] 1= :

\ # G�

� d\ \. K

One also has the useful fact that the representations of G(Y�X ) can be
used to block diagonalize the adjacency matrix of Y. See Dedeo et al. [3].
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We define some matrices associated to a representation \ of G(Y�X ),
where Y�X is a finite unramified normal covering of graphs.

Definition 20. For _, { # G and vertices a, b # X, define the |X |_|X |
matrix A(_, {) by setting the entry A(_, {)a, b= the number of directed
edges in Y from (a, _) to (b, {). Here every undirected edge of Y has been
given both directions.

Except when (a, _) and (b, {) are the same vertex on Y (i.e., a=b and
_={), and even then if there is no loop at (a, _)=(b, {), A(_, {)a, b is
simply the number of undirected edges on Y connecting (a, _) to (b, {).
However if there is a loop at (a, _)=(b, {), then it is counted in both
directions and thus the undirected loop is counted twice.

Since we can easily show that

A(_, {)=A(1, _&1{),

we can write

A(_, {)=A(_&1{).

Definition 21. If \ is a representation of G(Y�X ), define

A\= :
_ # G

A(_)�\(_).

Also set

Q\=Q�Id ,

where Q= the |X |_|X | diagonal matrix with diagonal entry corresponding
to a # X given by qa=(degree a)&1 and d is the degree of \.

Now we can generalize Ihara's theorem (3).

Theorem 6. With the hypotheses and definitions above, we have

LV (u, \, Y�X )&1=(1&u2) (r&1) d det(I&A\u+Q\u2).

Here r is the rank of the fundamental group of X.

Proof. See the next section for a proof. K

Note. One could simply generalize the proof for the case that the
representation is trivial given in Stark and Terras [14, proof of
Theorem 2]. Instead we generalize Bass's proof in [1] or at least our
version of his proof.
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Example. The Cube over the Tetrahedron. See Fig. 3, where the action
of the group G=G(Y�X )=[1, _] on Y is denoted with primes; i.e.,
x$=(x, 1) and x"=(x, _), for x # X. In this case the representations of G
are the trivial representation \0=1 and the representation \ defined by
\(1)=1, \(_)=&1. So Q\=2I4 . There are two cases.

Case 1. The representation \0=1. Here A1=A(1)+A(_)=A, where

A(1)=\
0
1
0
0

1
0
1
1

0
1
0
0

0
1
0
0+ , A(_)=\

0
0
1
1

0
0
0
0

1
0
0
1

1
0
1
0+ ,

and A is the adjacency matrix of X.

Case 2. The representation \. Here we find

A\=A(1)&A(_)=\
0
1

&1
&1

1
0
1
1

&1
1
0

&1

&1
1

&1
0+ .

Now we proceed to check our formulas for this case. We know by the
corollary to Proposition 3 that

`Y (u)=LV (u, 1, Y�Y )=LV (u, 1, Y�X ) LV (u, \, Y�X )

=`X (u) LV (u, \, Y�X ). (10)

In Stark and Terras [14], we found that

`X (u)&1=(1&u2)2 (1&u)(1&2u)(1+u+2u2)3

and

`Y (u)&1=(1&u2)2 (1+u)(1+2u)(1&u+2u2)3 `X (u)&1.

Indeed, we easily check that (since r=3)

LV (u, \, Y�X )&1=(1&u2)2 det(I4&A$\u+2u2I4)

=(1&u2)2 (1+u)(1+2u)(1&u+2u2)3.

It is noteworthy that here LV (u, \, Y�X )=`X (&u), although this is not
instantly apparent in the determinant formula where &A{A\ .

160 STARK AND TERRAS



Note. Thanks to Theorem 6, Eq. (10) can be viewed as a factorization
of an 8_8 determinant,

det(I8&AYu+2I8 u2)=det(I4&AX u+2I4u2) } det(I4&A$\u+2I4 u2).

Example. The Cube over a Dumbbell. The covering we consider in this
example is Y�X in Fig. 5. The covering group G(Y�X ) is the integers mod 4
denoted Z4=[0, 1, 2, 3 (mod 4)]. We label the sheets as

x$1 =(x, 0(mod 4)), x$2 =(x, 1(mod 4)),

x"1=(x, 2(mod 4)), x"2=(x, 3(mod 4)).

The irreducible representations are all one-dimensional and may be
written /&( j)=exp( 2?i&j

4 )=i&j, for j, & # Z4 . Note that although X has loops,
Y does not. It follows that

A(0)=\0
1

1
0+ , A(1)=A(3)=I2 , A(2)=0.

Thus

A/0
=\2

1
1
2+ , A/1

=\0
1

1
0+=A/3

, A/2
=\&2

1
1

&2+ .

The corresponding L-functions are

L(u, /0 , Y�X )&1=(1&u2) det \1&2u+2u2

&u
&u

1&2u+2u2+
=(1&u2)(1&u)(1&2u)(1&u+2u2);

L(u, /1 , Y�X )&1=L(u, /3 , Y�X )&1=(1&u2) det \1+2u2

&u
&u

1+2u2+
=(1&u2)(1+u+2u2)(1&u+2u2)

L(u, /2 , Y�X )&1=(1&u2) det \1+2u+2u2

&u
&u

1+2u+2u2+
=(1&u2)(1+u)(1+2u)(1+u+2u2).

One sees again that as in the corollary to Proposition 3

`Y (u)=L(u, /0 , Y�X ) L(u, /1 , Y�X ) L(u, /2 , Y�X ) L(u, /3 , Y�X ).
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Note. Again you can view the preceding equality as a factorization of
the determinant of an 8_8 matrix as a product of 4 determinants of 2_2
matrices.

Example. An S3 Cover. We consider the example from Fig. 13. Then we
find our matrices

A(I )=\
0
1
1
1

1
0
0
0

1
0
0
0

1
0
0
0+ , A(FR2)=\

0
0
0
0

0
0
0
0

0
0
0
1

0
0
1
0+ ,

A(FR)=\
0
0
0
0

0
0
0
1

0
0
0
0

0
1
0
0+ , A(R2)=0, A(R)=0, A(F)=0.

Next we need to know the representations of S3 . See Terras [16, Chaps. 16
and 17]. The non-trivial 1-dimensional representation of S3 has the values
/1(FR)=&1 and /1(FR2)=&1. The 2-dimensional representation \ has
the values

\(FR)=\0
|

|2

0 + , and \(FR2)=\ 0
|2

|
0+ , where |=e2?i�3.

Now we can compute the matrices in our L-functions,

A/0
=A, A/1

=\
0
1
1
1

1
0
0

&1

1
0
0

&1

1
&1
&1

0+ ,

A\=A1(I )�\(I )+A1(FR)�\(FR)+A1(FR2)�\(FR2)

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 |2

1 0 0 0 0 0 0 |

=
1
0

0
0

0
0

0
0

0
0

|2

1
|
1

0
1

.

0 0 0 | 1 0 0 0

0 0 0 |2 1 0 0 0

0 | |2 0 1 0 0 0
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It follows that

LV (u, /0 , Y6 �X )&1

=(1&u2) det \
1+2u2

&u
&u
&u

&u
1+u2

0
&u

&u
0

1+u2

&u

&u
&u
&u

1+2u2+
=(1&u2)(1&u)(1+u2)(1+u+2u2)(1&u2&2u3);

LV (u, /1 , Y6 �X )&1

=(1&u2) det \
1+2u2

&u
&u
&u

&u
1+u2

0
u

&u
0

1+u2

u

&u
u
u

1+2u2+
=(1&u2)(1+u)(1+u2)(1&u+2u2)(1&u2+2u3);

LV (u, \, Y6 �X )&1

=(1&u2)2 det(I8&A\u+u2Q\).

=(1&u2)2 (1+u+2u2+u3+2u4)(1+u+u3+2u4)

_(1&u+2u2&u3+2u4)(1&u&u3+2u4).

Putting all our result together, using Theorem 6, we have

`X (u)&1=LV (u, /0 , Y6 �X )&1

=(1&u2)(1&u)(1+u2)(1+u+2u2)(1&u2&2u3);

`Y2
(u)&1 `X (u)=LV (u, /1 , Y2 �X )&1=LV (u, /1 , Y6 �X )&1

=(1&u2)(1+u)(1+u2)(1&u+2u2)(1&u2+2u3);

`Y3
(u)&1 `X (u)=LV (u, \, Y6�X )&1

=(1&u2)2 (1+u+2u2+u3+2u4)(1+u+u3+2u4)

_(1&u+2u2&u3+2u4)(1&u&u3+2u4);

and

`Y6
(u)=LV (u, /0 , Y6 �X ) LV (u, /1 , Y6 �X ) LV (u, \, Y6 �X )2

=`X (u)
`Y2

(u)

`X (u) _
`Y3

(u)

`X (u)&
2

.
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Thus it follows from the theory that

`X (u)2 `Y6
(u)=`Y2

(u) `Y3
(u)2

as we noted in Stark and Terras [14, p. 149]. This is analogous to an
example of zeta functions of pure cubic extensions of number fields that
goes back to Dedekind.

Note. Again the last equality above says that a certain 24_24
determinant involving polynomials in u can be factored as a product of 2
determinants of 4_4 matrices times the square of an 8_8 determinant.

Example. A Klein 4-Group Cover Y�X from Fig. 6. Here we can identify
the Galois group G=G(Y�X ) with Z2

2 . The identification is given by
x$1=(x, (1, 0)), x"1=(x, (1, 1)), x$2=(x, (0, 0)), x"2=(x, (0, 1)).

The characters of G are /r, s(u, v)=(&1)ru+sv, for r, s, u, v # Z2 . We find
that

LV (u, /0, 0 , Y�X )&1=(1&u2) det \1+2u2

&3u
&3u

1+2u2+
=ZX (u)&1=(1&u2)(1&u)(1+u)(1&2u)(1+2u).

Similarly

LV (u, /0, 1 , Y�X )&1=(1&u2) det \1+2u2

&u
&u

1+2u2+
=LV (u, /1, 1 , Y�X )&1

=ZX (u)&1=(1&u2)(1&u+2u2)(1+u+2u2).

Also

LV (u, /1, 0 , Y�X )&1=(1&u2) det \1+2u2

u
u

1+2u2+
=(1&u2)(1&u+2u2)(1+u+2u2).

Thus all 3 L-functions with non-trivial characters are equal. This
happens here because all 3 intermediate quadratic covers of X are
isomorphic as abstract graphs (although not conjugate) and so they have
equal zeta functions. Each intermediate zeta function is of the form `X� (u)=
`X (u) LV (u, /, Y�X ), where / runs through the 3 non-trivial characters of
G as X� runs through the 3 intermediate quadratic covers of X. For `Y (u)
we have
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`Y (u)&1= `
/ # G�

LV (u, /, Y�X )&1

=(1&u2)4 (1&u)(1+u)(1&2u)(1+2u)(1&u+2u2)3

_(1+u+2u2)3.

We also obtain the relation

`2
X (u) `Y (u)=`X� (u)3

valid for all 3 intermediate quadratic covers X� of X.

Example. a Cyclic 6-Fold Cover Y�X from Fig. 7. The covering group
G=G(Y�X )$Z6=[1, 2, 3, 4, 5, 6 (mod 6)], with identity element 6
(mod 6). Let |=e2?i�6. The characters are /a(b)=|ab, for a, b # Z6 . Here
the matrices A({) are 1_1. We obtain

A(6)=A(3)=0, A(1)=A(2)=A(4)=A(5)=1.

We find that

A/0
=4=A=adjacency matrix of X;

A/j
=0, for j=1, 3, 5;

A/j
=&2, for j=2, 4.

Then

LV (u, /0 , Y�X )&1=`X (u)&1=(1&u2)(1&u)(1&3u);

LV (u, /j , Y�X )&1=(1&u2)(1+3u2), for j=1, 3, 5;

LV (u, /j , Y�X )&1=ZX (u)&1=(1&u2)(1+2u+3u2), for j=2, 4.

Set

1+3u2 &u &u 0 &u &u
&u 1+3u2 &u &u 0 &u

m=\ &u
0

&u
&u

1+3u2

&u
&u

1+3u2

&u
&u

0
&u + .

&u 0 &u &u 1+3u2 &u
&u &u 0 &u &u 1+3u2
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By Ihara's formula

`Y (u)&1=(1&u2)6 det(m)

=(1&u2)6 (3u&1)(u&1)(3u2+2u+1)2 (1+3u2)3,

which agrees with the product

`Y (u)= `
/ # G�

LV (u, /, Y�X ).

4. MULTIEDGE ARTIN L-FUNCTIONS

A variable attached to a directed edge can be thought of as attached to
an ordered pair of vertices��the initial and terminal vertices of that edge.
It will be very fruitful to attach variables to pairs of edges, and later to
pairs of paths. Suppose that the directed edges of X are e1 , ..., e2 |E | . We
attach a variable wij to each ordered pair of edges ei and ej such that ei

``feeds into'' ej ; that is, whenever the terminal vertex of ei is the initial
vertex of ej , PROVIDED THAT ei is not the inverse of ej . To all other
pairs i, j we set wij=0. In this manner, we create a 2 |E |_2 |E | matrix
W=(wij) whose entries are the multiedge variables together with zeros
elsewhere. We call W the multiedge matrix.

We recall the edge norm of a cycle from Definition 1. For a backtrack-
less, tail-less cycle C made up of the n directed edges a1 , ..., an (that is, a
path of minimum length in its free homotopy class), we define the edge
norm of C to be

N(C)=NE (C)=w(a1 , a2) w(a2 , a3) } } } w(an&1 , an) w(an , a1).

Here if a$=ei , a"=ej , then w(a$, a")=wij . Let \ be a representation of
G=G(Y�X ).

Definition 22. The multiedge Artin L-function is defined by

L(W, \)=LE (W, \, Y�X )= `
[C]

det(I&\([Y�X, D]) NE (C))&1.

Here W=(wij) is the multiedge matrix above. The product runs over all
primes [C] of X, D is arbitrarily chosen from the primes in Y over C, and
[Y�X, D] is the Frobenius automorphism of Definition 17.

As for the vertex L-function, the determinant does not depend on the
choice of D above C since the various [Y�X, D] are conjugate to each
other.
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The multiedge Artin L-function clearly specializes to the vertex
Artin�Ihara L-function LV (u, \, Y�X ) of Definition 19 when all non-zero
variables wij are set equal to the same complex variable u.

Lemma 5. Suppose that \ is a representation of G=G(Y�X ) and / is the
corresponding character. Then

log(LE (W, \, Y�X ))= :
[C]

:
�

j=1

1
j

/(_(C) j) NE (C) j.

Thus LE (W, \, Y�X ) depends only on the character / of the representation
\ and not on the particular representation \ in it equivalence class.

Proof. This is a standard formula in the theory of Artin L-functions. K

One can, as usual, relate the multiedge Artin L-function of the trivial
representation to what we called the edge zeta function `E(W, X ) in
Definition 2,

`E (W, X )= `
[C]

det(I&NE(C))&1.

The following proposition lists some of the formal properties of the
multi-edge L-function. However, we postpone discussion of the induction
property (which is the analogue of part (3) of Proposition 3) until later in
this section.

Proposition 4 (Some Formal Properties of the Multiedge Artin
L-Function).

v (1) LE (W, 1, Y�X )=`E (W, X ).

v (2) LE (W, \1 �\2 , Y�X )=LE (W, \1 , Y�X ) LE (W, \2 , Y�X ).

v (3) Let Y�X be an unramified normal covering. Suppose X� is inter-
mediate to Y�X and assume X� �X is normal, G=Gal(Y�X ), H=Gal(Y�X� ).
Let \ be a representation of G�H$Gal(X� �X ). Thus \ can be viewed as a
representation of G, often called the lift of \. Then

LE (W, \, Y�X )=LE (W, \, X� �X ).

Proof. These are the exact analogues of formula (9) and parts (1) and
(2) of Proposition 3 on the vertex Artin L-function. K

We need the following lemma as in [14, Part I].
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Lemma 6. Suppose we have two power series

f (x1 , ..., xn)= :
i1 , ..., in

a(i1 , ..., in) x i1
1 } } } x in

n ,

and

g(x1 , ..., xn)= :
i1 , ..., in

b(i1 , ..., in) x i1
1 } } } x in

n

(i.e., the sums are over all n-tuples of non-negative integers) with a(0, ..., 0)=
b(0, ..., 0)=0. Then f (x1 , ..., xn)=g(x1 , ..., xn) iff

:
n

j=1

xj
�

�x j
f (x1 , ..., xn)= :

n

j=1

xj
�

�xj
g(x1 , ..., xn).

Proof. This is clear since the differential operator takes each monomial
in the xj to itself times the total degree of the monomial. K

Theorem 7 (The Multiedge Artin L-Function Is the Inverse of a Polyno-
mial). Suppose the representation \ has degree d. If, in block form, we set
W\=(wij\(_(ei))), with the excess wij all zero, and I is the 2 |E | d_2 |E | d
identity matrix, then

LE (W, \, Y�X )=det(I&W\)&1.

Proof. By Lemma 5, we have, with /=Tr(\),

:
wij

wij
�

�wij
log(LE (W, \, Y�X ))= :

[C]

:
�

j=1

&(C) /(_(C) j) NE (C j)

=:
C

:
�

j=1

/(_(C) j) NE (C j).

Now the sum is over paths C rather than classes [C].
On the other hand, the block i1 , in+1 entry of W n

\ is

:
i2, ..., in

w(i1 , i2) } } } w(in , in+1) \(_(i1)) } } } \(_(in))

= :

&(C)=n
C=i1 } } } in

w(i1 , i2) } } } w(in , in+1) \(_(C)).

Here the sum is over all paths C on X of length n with leading edge i1 . The
sum may be restricted to those paths C whose initial edge is i1 and whose
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terminal edge in feeds into in+1 with the additional stipulation that in+1 is
not the inverse edge to in , since all remaining paths contribute 0 to the
sum. Thus when in+1=i1 , we are talking about closed backtrackless,
tailless cycles. Hence

:
wij

w ij
�

�wij
log(LE (W, \, Y�X ))=Tr((I&W\)&1)

=:
wij

wij
�

�wij
log(det((I&W\)&1)).

By Lemma 6, the proof is complete. K

For Artin's fundamental induction theorem to hold, we must relate, or
specialize, the edge variables of a covering graph of X to the edge variables
of X. We prove the induction theorem after defining more precisely what
we mean by specializing.

Definition 23. Suppose that X� is an unramified covering of X and that
W� and W are the corresponding multiedge matrices. Suppose e~ i and e~ j are
two edges of X� and ei and ej are the projections of these edges in X. If e~ i
feeds into e~ j and e~ i {e~ &1

j , then ei feeds into ej and e i {e&1
j . Thus we can

set the variable w~ (e~ i , e~ j)=w(ei , ej). When we do this for all the variables of
W� , we say we have specialized the multiedge variables of X� to the projected
multiedge variables of X. We denote the resulting specialized matrix by
W� spec . For a prime C� of X� we write NE(C� )spec to mean that we take the
edge norm NE (C� ) and specialize all the w~ (e~ i , e~ j) as above.

Now we come to the induction theorem for L-functions. The heart of the
classical number theory proof is contained in the following lemma, whose
corollary we will need in Section 6.

Lemma 7. Suppose Y�X is a finite unramified normal covering with
Galois group G and that H is the subgroup of G corresponding to an inter-
mediate covering X� . Suppose / is a character of H and /* is the corresponding
induced character of G. For any prime [C] of X, we have

:
�

j=1

1
j

/*(_(C) j) NE (C) j= :
[C� ] | [C]

:
�

j=1

1
j

/(_~ (C� ) j) NE (C� ) j
spec . (11)

Here _(C) is the normalized Frobenius automorphism in G corresponding to
C in X and _~ (C� ) is the normalized Frobenius automorphism in H corre-
sponding to C� in X� .
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Proof. Let D1 be the prime of Y above C starting on sheet 1 so that
_(C)=[Y�X, D1]. Using the Frobenius formula for the induced character,
we have

:
�

j=1

1
j

/*(_(C) j) NE (C) j

= :
�

j=1

:

(g_(C) g&1) j # H
g # G

1
j |H|

/((g_(C) g&1) j) NE (C) j.

Each distinct [D] of Y above C is of the form D= g b D1 and occurs for
f =f (D, Y�X ) elements of G, where f is the residual degree of Definition 14.
From Proposition 2 we obtain

:
�

j=1

1
j |H|

:

(g_(C) g&1) j # H
g # G

/((g_g&1) j) N(C) j

= :
[D] | [C]

:

[Y�X, D] j # H
j�1

f
j |H|

/([Y�X, D] j) N(C) j.

We group the various D over C into those over a fixed C� and then sum
over the C� . Once we do this, for a fixed C� , all D dividing C� have the same
minimal power j= f1= f (C� , X� �X ) such that [Y�X, D] j # H. This power
gives the Frobenius automorphism of D with respect to Y�X� by Theorem 4.
Thus our last double sum is

:
[C� ] | [C]

:
[D] | [C� ]

:
j�1

f
f1 j |H|

/([Y�X� , D] j) N(C) f1 j.

For all [D] | [C� ], the [Y�X� , D] are conjugate to each other in H and
there are g2 such D where g2 f2=|H|. Here f2= f (D, Y�X� ) and g2=
g(D, Y�X� ). If we pick one fixed D above C� , we therefore get

:
[D] | [C� ]

:
j�1

f
f1 j |H|

/([Y�X� , D] j) NE (C) f1 j

= :
j�1

fg2

f1 j |H|
/([Y�X� , D] j) N(C) f1 j

= :
j�1

1
j

/([Y�X� , D] j) N(C) f1 j.

170 STARK AND TERRAS



Putting the chain of equalities together proves the lemma, since

N(C) f1=N(C� )spec . K

Corollary. Suppose Y�X is a finite unramified normal covering with
Galois group G and that H is the subgroup of G corresponding to an inter-
mediate cover X� . Let /*

1 be the character of G induced from the trivial
character /1 of H. Then the number of primes [C� ] of X� above a prime [C]
of X with lengths &(C� )=&(C) is /*

1 (_(C)), where _(C) denotes the
normalized Frobenius automorphism of Definition 16. In other words,
/*

1 (_(C)) is the number of primes of X� above [C] with residual degree 1.

Proof. We take /=/1 in Lemma 7 and set each non-zero edge variable
wij=u. After this substitution, NE (C)=u&(C) and NE (C� )spec=u&(C� ). We
look at the u&(C) term on both sides of Eq. (11). On the left side we are
looking at the j=1 term and get /*(_(C)) as the coefficient of u&(C). On
the right side, only j=1 occurs and only when &(C� )=&(C). Thus the
coefficient of the u&(C) term on the right is the number of [C� ] above [C]
with &(C� )=&(C). K

Theorem 8 (Induction Property of Multiedge L-Functions). Suppose
Y�X is a finite unramified normal graph covering. If H is a subgroup of G
corresponding to the intermediate covering X� and \* is the representation of
G induced by a representation \ of H, then

LE (W� spec , \, Y�X� )=LE (W, \*, Y�X ).

Proof. Note that the two determinants arising from Theorem 7 are the
same size. For the reader familiar with induced representations, looked at
properly, the two determinants are the same. However, here we will
complete the classical number theory proof based on Lemma 7.

By Lemma 5 we have

log(LE (W, \*, Y�X ))= :
[C]

:
�

j=1

1
j

/*(_(C) j) N(C) j.

By Lemma 7 the right side is

:
[C� ]

:
�

j=1

1
j

/(_~ (C� ) j) NE (C� ) j
spec ,

where the sum is over all primes C� of X� and _~ (C� ) is the corresponding
normalized Frobenius automorphism in H. By Lemma 5 again, we are
done. K
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Corollary. Suppose Y�X is an unramified normal graph covering with
Galois group G(Y�X ). Then

`E (W� spec , Y )= `
\ # G�

LE (W, \, Y�X )d\.

Next we prove Theorem 6 in the preceding section.

Proof of Theorem 6. Bass [1] gave the first proof of the quadratic
formula for zeta functions of irregular graphs (Theorem 6 when \ is the
trivial representation). His ingenious proof, which we generalize here for
any representation \, simply transforms the multiedge formula in
Theorem 7 when all the non-zero wij are specialized to equal u into the
quadratic formula of Theorem 6. To accomplish this, in our language, Bass
introduces two fundamental |V |_2 |E | zero-one matrices relating vertices
to edges. The first of these is the starting matrix (we would call it the initial
matrix, but the letter ``I '' is already taken), S=(sve) indexed by vertices v
and directed edges e with sve=1 if v is the starting (initial) vertex of e and
sve=0 otherwise. We assume that the e are ordered as usual so that ej+|E |

is the inverse edge to ej . The second matrix is the terminal matrix T=(tve)
with the same indices and tve=1 if v is the terminal vertex of e and tve=0
otherwise. Note that each column of S and T has precisely one non-zero
entry. These matrices are also related by a simple formula, upon setting

J=\ 0
I |E |

I |E |

0 + .

We then have

SJ=T, TJ=S,

since the starting (terminal) vertex of an edge ej is the terminal
(respectively starting) vertex of ej+|E | .

From these matrices, we obtain all the matrices of our theorems when
the representation \ is trivial. Indeed we easily find that the |V |_|V |
matrices A and Q are given by

A=S tT, Q+I |V |=S tS=T tT,

where tS denotes the transpose of the matrix S. Notice that the product for
A counts exactly the number of undirected edges connecting two distinct
vertices vi {vj , and counts two times the number of loops at each vertex.
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Also define the 2 |E |_2 |E | matrix W1 to be the matrix obtained from
W by setting all the non-zero wij equal to 1. We will multiply W1 by u to
match our zeta function. Then we have

W1+J= tTS.

The J compensates for the fact that we do not allow edges ej to feed into
edges ej\|E | , whereas the product on the right counts such pairs.

We are ready to generalize all these matrices to include representations.
We suppose we have a normal unramified cover Y�X with group G=
G(Y�X ) and that \ is a d-dimensional representation of G. If B=(bij) is
any matrix, by B�Id we mean explicitly the block matrix (bijId). With this
agreement define

S\=S�Id , T\=T�Id , J\=J�Id , Q\=Q�Id .

Again we have

S\ J\=T\ , T\J\=S\ , Q\+I |V | d=S\
tS\=T\

tT\ . (12)

Our most important two matrices, the analogues of A and W1 , have the
representation \ itself built in and not just the dimension of \. For them,
we need an auxiliary block diagonal matrix R\ incorporating the
normalized Frobenius automorphism of each edge. Define

R\=\
\(_(e1))

0
b
0

0
\(_(e2))

b
0

} } }
} } }
. . .
} } }

0
0
b

\(_(e2 |E |))+ .

The matrix A\ introduced in Definition 13 of the preceding section is then
given by

A\=S\R\
tT\ . (13)

The definition for W\ (with all wij set equal to 1 and which will be
multiplied by u in proving our theorem) becomes

W\=R\ W1 �Id .

Thus we have

W\+R\ J\=R\
tT\S\ . (14)
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The matrix R\ has one important calculational property of its own. Since
any edge e has the property that ee&1 lifts from X to Y to a two edge path
starting and ending on sheet 1, we see that

_(e) _(e&1)=_(ee&1)=1.

Hence \(_(e&1))=\(_(e))&1 as well. This means that we can write the
matrix R\ in block form

R\=\U
0

0
U&1+ . (15)

Then

(R\J\)2=I2 |E | d . (16)

We now come to the heart of our generalization of Bass's proof. In the
following Lemma all the matrices are square of size ( |V |+2 |E | ) d written
in block form. The first block of each matrix row has |V | d rows of the
matrix and the first block column has |V | d columns. The second block
row has 2 |E | d rows and the same is true of the second block column.

Lemma 8. We have the block matrix identity

\ I |V | d

R\
tT\

0
I2 |E | d+\

I |V | d (1&u2)
0

S\ u
I2 |E | d&W\u+

=\I |V | d&A\ u+Q\ u2

0
S\u

I2 |E | d+R\ J\u+\
I |V | d

R\
tT\& tS\u

0
I2 |E | d + .

Proof. Using the relation (14), the matrix product on the left in the
lemma is

\ I |V | d (1&u2)
R\

tT\(1&u2)
S\u

I2 |E | d+R\J\u+ . (17)

Using (12), (13), and (16) we find that the right hand side of our
formula is given by (17) as well. This proves the lemma. K

Now we complete the proof of Theorem 6. Taking the determinant of the
matrix equality in Lemma 8, we get

(1&u2) |V | d det(I2 |E | d&W\u)

=det(I |V | d&A\u+Q\u2) det(I2 |E | d+R\J\u).
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We need to calculate the last determinant. By (15), we can split up
I2 |E | d+R\J\u into |E | d_|E | d blocks,

I2 |E | d+R\J\u=\ I |E | d

U&1u
Uu

I |E | d+ .

Hence

\ I |E | d

&U&1u
0

I |E | d+ (I2 |E | d+R\J\u)=\I |E | d

0
Uu

I |E | d (1&u2)+
and

det(I2 |E | d+R\J\u)=(1&u2) |E | d.

Theorem 6 follows. K

Remarks. Note that the multiedge L-functions of a graph become those
of other graphs by specializing variables in certain ways. For example, you
can contract an edge to a point by setting the corresponding variable equal
to 1. You can cut an edge by setting a variable equal to 0. If you set
wij=wi+|E | , j=0, for fixed i, you have eliminated the edge ei from the
graph. If you just set wij=0, you have made ei a one-way edge.

Example. The Multiedge L-Function of a Cube Covering a Dumbbell.
See Fig. 5 for the covering of the cube over the dumbbell. The multiedge
L-functions for the representations of the Galois group of Y�X, which is Z4 ,
require the matrix W which has entries wij , when edge ei feeds into edge ej .
For the labeling of the edges of the dumbbell, see Fig. 14. We find that the
matrix W is

w11 w12 0 0 0 0
0 0 w23 0 0 w26

W=\ 0
0

0
w42

w33

0
0

w44

w35

0
0
0 + .

w51 0 0 w54 0 0
0 0 0 0 w65 w66

Next we need to compute _(ei) for each edge ei and each _ # G(Y�X ). We
will write G(Y�X )=[_1 , _2 , _3 , _4], where (x, _j)=x( j), for x # X. The
identification of G(Y�X ) with Z4 sends _j to ( j&1(mod 4)). Then compute
the Galois group elements associated to the edges: _(e1)=_2 , _(e2)=_1 ,
_(e3)=_2 , _(e4)=_4 , _(e5)=_1 , _(e6)=_4 . The representations of our
group are 1-dimensional, given by /a(_b)=ia(b&1), for a, b # Z4 .
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FIG. 14. Edge labelings for the dumbbell.

So we obtain

LE (W, /0 , Y�X )&1

=`E (W, X )&1

w11&1 w12 0 0 0 0
0 &1 w23 0 0 w26

=det \ 0
0

0
w42

w33&1
0

0
w44&1

w35

0
0
0 + ;

w51 0 0 w54 &1 0
0 0 0 0 w65 w66&1

LE (W, /1 , Y�X )&1

=det(I&W/1
)

iw11&1 iw12 0 0 0 0
0 &1 w23 0 0 w26

=det \ 0
0

0
&iw42

iw33&1
0

0
&iw44&1

iw35

0
0
0 + ;

w51 0 0 w54 &1 0
0 0 0 0 &iw65 &iw66&1
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LE (W, /2 , Y�X )&1

=det(I&W/2
)

&w11&1 &w12 0 0 0 0
0 &1 w23 0 0 w26

=det \ 0
0

0
&w42

&w33&1
0

0
&w44&1

&w35

0
0
0 + ;

w51 0 0 w54 &1 0
0 0 0 0 &w65 &w66&1

LE (W, /3 , Y�X )&1

=det(I&W/3
)

&iw11&1 &iw12 0 0 0 0
0 &1 w23 0 0 w26

=det \ 0
0

0
iw42

&iw33&1
0

0
iw44&1

&iw35

0
0
0 + .

w51 0 0 w54 &1 0
0 0 0 0 iw65 iw66&1

Note that, by the corollary to Theorem 8, the product of these four 6_6
determinants has to be a 24_24 determinant,

det(I&W� spec)= `
3

i=0

det(I&W/i
),

where W� spec is available from the authors upon request.
You can use Maple to check the identity.

5. THE MULTIPATH ARTIN L-FUNCTIONS

It is well known that the fundamental group 1 of X is a free group on
r=|E |& |V |+1 generators. We have previously defined the multipath zeta
function in terms of variables attached to pairs of generating paths in 1
(see Stark and Terras [14] and Stark [13]). The algorithms of Stark and
Terras [14] were improved in Stark [13]. As we need these new algo-
rithms here, we review them briefly. A fuller discussion appears in [13].
We present an equivalent version here, but in a manner which makes the
specialization algorithms more transparent.

As above, we assume that X is a connected graph with vertex set V,
(undirected) edge set E, and a base vertex denoted v0 . Because X is
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connected, there is a subgraph T of X with |V | vertices which is a tree. As such
T has |V |&1 edges. We give each of the r=|E |&|V |+1 remaining edges
a direction and label them e1 , ..., er . The inverse edges will be labeled
er+1 , ..., e2r . We will give each of the |V |&1 edges on the tree T a direction
and label them t1 , ..., t |V |&1 . The inverse edges on T will be labeled t |V | , ...,
t2 |V |&2 . Any backtrackless, tailless cycle on X is uniquely (up to starting
point on the tree between last and first ek) determined by the ordered
sequence of ek 's it passes through. In particular, if e i and e j are two con-
secutive ek 's in this sequence, then the part of the cycle between ei and e j

is the unique backtrackless path on T joining the terminal vertex of ei to
the initial vertex of ej . Further for such ei and ej , ej is not the inverse of
ei , since the cycle is backtrackless. Nor is the last edge the inverse of the
first. Conversely, given any ordered sequence of edges from the ek 's, with
no two consecutive edges being inverses of each other and with the last
edge not being the inverse of the first, there is a unique (up to starting
point on the tree between the last and first ek) backtrackless tailless cycle
on X whose sequence of ek 's is the given sequence.

The free group of rank r generated by the ek 's puts a group structure on
backtrackless tailless cycles which is completely equivalent to the
fundamental group of X. When dealing with the fundamental group of X,
any closed path starting at a fixed vertex v0 on X is completely determined
up to homotopy by the ordered sequence of ek 's through which it passes.
When backtracking is eliminated, such a path consists of a tail on the tree
followed by a backtrackless, tailless cycle corresponding to the same
sequence of ek 's, followed by the original tail in the reverse direction, end-
ing at v0 again. Any sequence of ek 's determines such a path on X with
initial and terminal vertex at v0 . In this manner, the free group of rank r
generated by the ek 's becomes identified with the fundamental group of X,
and for this reason, we will refer to the free group generated by the ek 's as
the fundamental group of X. Compare this version with the presentation in
Stark [13] based on paths beginning and ending at v0 .

Just as there are two elementary reduction operations for paths
expressed in terms of directed edges, so there are the corresponding
elementary reduction operations for words in the fundamental group of X.
As we are presenting it here, this means that if a1 , ..., an and e are taken
from the ei or their inverses, the two elementary reduction operations for
words in the fundamental group of X are:

(1) a1 } } } ai&1ee&1ai+2 } } } an $a1 } } } a i&1 ai+2 } } } an ;

(2) a1 } } } an $a2 } } } an a1 .

Using just the first elementary reduction, each equivalence class of words
corresponds to a group element and a word of minimum length in an
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equivalence class is a reduced word in the language of group theory. Since
the second operation is equivalent to conjugating by a1 , an equivalence
class using both elementary reductions corresponds to a conjugacy class in
the fundamental group and a word of minimum length using both equiv-
alence operations corresponds to finding words of minimum length in a
conjugacy class of the fundamental group. If a1 , ..., an are taken from e1 , ...,
e2r , a word C=a1 } } } an is of minimum length in its conjugacy class
(denoted by [C]) if and only if ai+1 {a&1

i , for 1�i�n&1 and a1 {a&1
n .

This is equivalent to saying that C corresponds to a backtrackless, tailless
cycle under the correspondence at the start of this section. Equivalent
cycles correspond to conjugate elements of the fundamental group. A con-
jugacy class [C] is primitive if a word of minimal length in [C] is not a
power of another word. Equivalently, a conjugacy class is primitive if and
only if the corresponding backtrackless tailless cycles (all equivalent to
each other) are prime. We will say that a word of minimal length in its
conjugacy class is reduced in its conjugacy class. From this point on, when
we write a conjugacy class [C], it will be assumed that a representative
element C has been chosen which is reduced in [C].

For i and j in the range from 1 to 2r, we attach a variable zij to each
ordered pair of paths ei and ej , PROVIDED that ei is not the inverse of
ej . To the remaining 2r pairs i, j such that i= j\r, we set zij=0. In this
manner, we create a 2r_2r matrix Z=(zij) whose entries are the multipath
variables together with zeros elsewhere. We call Z the multipath matrix.

For a reduced path C=a1 } } } an in a conjugacy class [C], we define the
multipath norm of C to be (as in Definition 3)

N(C)=NP(C)=z(a1 , a2) z(a2 , a3) } } } z(an&1 , an) z(an , a1),

where z(ei , ej)=zij . This is non-zero by the reduction assumption and is
well defined since the only reduced elements of a conjugacy class are cyclic
reorderings of each other.

Definition 24. The multipath Artin L-function of the normal
unramified graph covering Y�X associated to a representation \ of the
Galois group G(Y�X ) is

LP(Z, \)=LP(Z, \, Y�X )= `
[C]

det(1&NP(C) \([Y�X, D]))&1,

where the product runs through equivalence classes of primitive reduced
conjugacy classes other than the identity class. Here D is arbitrarily chosen
from the conjugate primes in Y above the cycle corresponding to C and
[Y�X, D] is the Frobenius automorphism of Definition 17.
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Since Frobenius automorphisms of conjugate primes are conjugate, the
determinant in the definition of LP(Z, \) is independent of the choice of D
above C.

The multipath zeta function (see Definition 4) introduced in Stark and
Terras [14] is given by LP(Z, 1, X ), where 1 is the trivial representation.

Lemma 9. Suppose that \ is a representation of G=G(Y�X ) and / is the
corresponding character. Then

log(LP(Z, \, Y�X ))= :
[C]

:
�

j=1

1
j

/([Y�X, D] j) NP(C) j.

In particular, LP(Z, \, Y�X ) depends only on the character / of the represen-
tation \ and not on the particular representation \ in its equivalence class.

Proof. This is the exact analogue of Lemma 5. K

Proposition 5 (Some Formal Properties of the Multipath Artin
L-Function).

v (1) LP(Z, 1, Y�X )=`P(Z, X ).

v (2) LP(Z, \1 �\2 , Y�X )=LP(Z, \1 , Y�X ) LP(Z, \2 , Y�X ).

v (3) Let Y�X be a unramified normal covering. Suppose X� is
intermediate to Y�X and X� �X is normal with G=G(Y�X ) and H=G(Y�X� ).
Let \ be a representation of G�H$G(X� �X ). Thus \ can be viewed as a
representation of G, often called the lift of \. Then

LP(Z, \, Y�X )=LP(Z, \, X� �X ).

Proof. The proofs are exact analogues of the proofs of Proposition 4
above. K

Theorem 9 ([14], The Multipath Artin L-Function Is the Inverse of a
Polynomial).

The multipath L-function satisfies

LP(Z, \, Y�X )=det(I&Z\)&1.

Here Z\=(zij\(_(ei))) and I is the 2dr_2dr identity matrix, where d is the
degree of \.

Proof. The proof is the same as that in Theorem 7 for the multiedge
L-functions. We choose D so that [Y�X, D]=_(C), the normalized
Frobenius automorphism corresponding to C as in Definition 16. Note that
if a path C on X corresponds to a sequence of cut edges a1 , ..., an , then
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_(C)=_(a1) } } } _(an), since all the remaining edges of the path are on the
tree and for any edge b on the tree _(b)=1. K

We now turn to our improved specialization algorithm. We wish to
specialize the multipath variables zij so that each NP(C) becomes the
multiedge NE (C), where in the first instance C is a product of generators
of the fundamental group of X and in the second C is a product of edges
of X. We use the generators of the fundamental group of X which were
identified above with (directed) edges ej of X left out of a spanning tree T.
Thus we use the elementary reduction operations above to write C as a
reduced word in the generators ej of the fundamental group.

As above, let the tj denote directed edges on the spanning tree T. Then
for i{ j\r (that is, ei {e&1

j ), we write the part of the corresponding path
between ei and ej as the (unique) product t&1

} } } t&n
, where the t&k

's are
directed edges on T. Thus our cycle C is first a product of generators ei of
the fundamental group and then a product of actual edges ei and tk of X.
We now set Z=Z(W )=(zij)1�i, j�2r where

zij=zij (W )=w(ei , t&1
) _ `

n&1

k=1

w(t&k
, t&k+1

)& w(t&n
, e j). (18)

This accomplishes the desired specialization.

Theorem 10. With the specialization (18), we have the equality of the
path and edge L-functions,

LP(Z(W ), \, Y�X )=LE (W, \, Y�X ).

Proof. This is clear: with the specialization, the defining infinite pro-
duct for LP(Z(W ), \, Y�X ) becomes the defining infinite product for
LE (W, \, Y�X ). K

Our improved specialization algorithm allows us to conclude directly
from Theorem 9 that the multiedge and Ihara zeta functions are inverses of
polynomials. However, we do not instantly get our earlier explicit expres-
sions for these zeta functions.

Example. We show the specialization for the graph in Fig. 13 which we
redraw in Fig. 15 with the edges labeled. To avoid conflicting numbering,
we will use letters as subscripts. We introduce the five edges inverse to a,
b, c, d, e and label them A, B, C, D, E. We take the cut edges to be the
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FIG. 15. The rank 2 graph of Fig. 13. The edges are denoted by lower-case letters with a
direction arbitrarily assigned as indicated by the arrows. The directed edges in the inverse
directions are labeled with the corresponding capital letters. The three edges of a tree connect-
ing every vertex of the graph are shown in dotted lines; the remaining two edges correspond
to generators of the fundamental group and are shown with solid lines.

cC and dD pairs. Removing the cut edges gives a tree T indicated by the
dotted lines in Fig. 13 and 15. The matrix Z is then

Z=\
zcc

zdc

0
zDc

zcd

zdd

zCd

0

0
zdC

zCC

zDC

zcD

0
zCD

zDD
+ .

To specialize a variable as in (18), for example zdc , we write the path
starting with d, following the tree and ending with c as dBAc. We then
specialize zdc to wdB wBAwAc . In this way the matrix Z specializes to the
matrix

Z(W )=\
wcEwEA wAc

wdBwBAwAc

0
wDEwEAwAc

wcd

wdB wBe wed

wCawae wed

0

0
wdBwBeweC

wCawae weC

wDC

wcEwEbwbD

0
wCa wabwbD

wDEwEbwbD
+ .

It is particularly easy to specialize Z so as to get the Ihara zeta function
without even writing down Z(W ). Since all the edge variables are set equal
to u, this means we have only to count the number of edges on the tree
connecting each ei and ej (from the terminal vertex of ei to the initial vertex
of ej) and add one for the initial ei ; the result is the power of u replacing
zij in Z. Again with zdc , d together with the two edges B and A constitute
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the three edges on the backtrackless path starting with d and following the
tree up to the initial vertex of c. Thus we specialize zdc to u3. We then get

`X (u)&1=det(I&Z(u)),

where

Z(u)=\
u3

u3

0
u3

u
u3

u3

0

0
u3

u3

u

u3

0
u3

u3+ .

It is interesting to note that a different choice of cut edges and resulting
tree can yield a completely different Z(u). To illustrate, if in our example
graph, we use the tree of Fig. 16, we are led to the specialized matrix (rows
and columns indexed in order by c, e, C, E).

Z(u)=\
u4

u4

0
u2

u3

u3

u2

0

0
u
u4

u3

u
0
u4

u3+ .

which still results in the same vertex zeta function. The 2 different Z(u)
matrices here are not even similar since their traces are not equal.

Example. The Multipath L-Functions of an S3 Cover. See Fig. 13 for a
picture of the covering. We compute the path L-functions for the case that
all variables are specialized down to u using the tree of Fig. 15. This
requires us to find the 3 matrices corresponding to the representations

FIG. 16. The graph of Fig. 15 with a different spanning tree.

183ZETA FUNCTIONS OF FINITE GRAPHS



of G(Y�X ) described in our earlier discussion of the S3 example.
Here |=exp( 2?i

3 ). Since _(c)=FR=_(c)&1 and _(d )=FR2=_(d )&1, we
obtain

Z(u)=Z/0
=\

u3

u3

0
u3

u
u3

u3

0

0
u3

u3

u

u3

0
u3

u3+ ; Z=Z/1
=&Z;

0 u3|2 0 u|2 0 0 0 u3|2

u3| 0 u| 0 0 0 u3| 0

0 u3| 0 u3| 0 u3| 0 0

Z\(u)=
u3|2

0
0
0

u3|2

0
0

u3|2

u3|2

0
0

u3|2

0
0

0
u3|2 .

0 0 u3| 0 u3| 0 u3| 0

0 u3| 0 0 0 u| 0 u3|
u3|2 0 0 0 u|2 0 u3|2 0

So we have the L-functions,

LP(Z(u), /0 , Y�X )&1

=`X (u)&1=det \
u3&1

u3

0
u3

u
u3&1

u3

0

0
u3

u3&1
u

u3

0
u3

u3&1+
=1&4u3&2u4+4u6+4u7+u8&4u10

=&(u+1)(2u2+u+1)(u2+1)(2u3+u2&1)(u&1)2;

LP(Z(u), /1 , Y�X )&1

=LV (u, /1 , Y�X )&1=`X (&u)&1

=1+4u3&2u4+4u6&4u7+u8&4u10

=&(u&1)(2u2&u+1)(u2+1)(2u3&u2+1)(u+1)2;
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LP(Z(u), \, Y�X )&1

=LV (u, \, Y�X )&1

&1 u3|2 0 u|2 0 0 0 u3|2

u3| &1 u| 0 0 0 u3| 0

0 u3| &1 u3| 0 u3| 0 0

=det
u3|2

0
0
0

u3|2

0
&1

u3|2

u3|2

&1
0

u3|2

0
0

0
u3|2

0 0 u3| 0 u3| &1 u3| 0

0 u3| 0 0 0 u| &1 u3|
u3|2 0 0 0 u|2 0 u3|2 &1

=1+2u4&2u6+3u8+2u10+3u12&10u14&7u16&8u18+16u20

=(2u4+u3+2u2+u+1)(2u4&u3&u+1)

_(2u4&u3+2u2&u+1)(2u4+u3+u+1)(u&1)2 (u+1)2.

This agrees with our example in the preceding section.
Now we come to the induction property of the multipath L-functions.

For this, if X� is a covering of X, we need to specialize the path matrix Z�
of X� to the variables in the path matrix Z of X. This must be done in such
a way that if C� is a reduced cycle in its conjugacy class of the fundamental
group of X� , then under the specialization, NE (C� ) becomes NE (C) where C
is the projected cycle of C� in X. This is easy to achieve by building upon
an analogy between edge and path zeta functions developed in Stark [13]
to treat the case of quadratic coverings.

The desired analogy rests upon the fact that in X, we may contract the
base tree T to a point without losing any information about the fundamen-
tal group of X. In the contracted graph, the path and edge zeta functions
are the same. In the process, in the cover X� , we also contract each sheet
(the connected inverse images of T ) to a point and here the lifts of the r
generating paths of X become the edges of the contracted X� . What makes
the process interesting is that if X� is an n-fold covering of X, then n&1 of
the lifted edges from the contracted X must be set aside to complete the
tree of X� . The remaining nr&(n&1)=n(r&1)+1 edges of the contracted
X� give rise to the generating paths of the fundamental group of X� . The
specialization algorithm needs to take account of the tree edges.

Everything is in place to do this. First we specialize the Z� variables to
the edge variables on the contracted X� . Each NP(C� ) becomes NE (C� ) on
the contracted X� . We follow this by specializing the edge variables of the
contracted X� to the edge variables of the contracted X. This turns NE (C� )
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into NE (C) which, on the contracted X, is the same as NP(C). This accom-
plishes the desired specialization.

For example, the contracted versions of X and Y3 from Fig. 13 are
shown in Fig. 17.

The tree T� of Y3 is completed with one of the lifts of the cC pair between
the top two sheets of Y3 and one of the lifts of the dD pair between the
bottom two sheets. The remaining four undirected edges of the contracted
Y3 give rise to the fundamental group of Y3 and the resulting 8_8 path
matrix Z� . We give these edges directions projecting to either c or d, rather
than C or D, and labels I, II, III, IV, as shown. The inverse edges, project-
ing to C and D, are given labels V, VI, VII, VIII, as shown. The rows and
columns of Z� are then labeled by the roman numerals I�VIII.

Following our algorithm, the resulting specialized matrix Z� spec is then

zdd zdc zcc zdc zcd zdd zdc zcdzdc

zcd zcczcc zcc zcd zdd zcc zcdzdc

zdCzCd zdc zddzdd zddzdc

zcD zDC zCd

0
zcDzDc

zDc zcc

zcd

zDczcd zdd

zcc

zDczcd zdc

zCCzCd 0 zCdzdd zCdzdc

zDDzDC zCd zDDzDc 0 zDc

zCDzDC zCd zCDzDc zCd 0

0 zdC zdc zcD zdczcd zdC

zcD 0 zcc zcD zcczcd zdC

zdCzCD zdCzCC 0 zddzdC

zcD zDCzCD

zDD

zcDzDC zCC

zDC

zcD zDD

zDc zcD

0
zDczcd zdC

.

zCCzCD zCC zCC zCD zCd zdC

zDDzDC zCD zDDzDC zCC zDD zDD zDC

zCD zDC zCD zCDzDC zCC zCDzDD zCC

As an illustration, the IV, I entry Z� IV, I follows directed edge IV (project-
ing to c), through two edges of T� (projecting to D and C consecutively) to
edge I (projecting to d ) resulting in the specialized value zcD zDCzCd . This
agrees with the fact that any path on Y3 going through consecutive cut
edges IV and I must project to a path on X going consecutively through
c, D, C, d.
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Theorem 11 (Induction Property for Multipath L-Functions). If H is a
subgroup of G corresponding to the intermediate covering X� and \ is a
representation of H and \* is the representation of G induced by \, then

L(Z� spec , \, Y�X� )=L(Z, \*, Y�X ).

Proof. We follow the idea of contracting each copy of the tree T to a
point, both in X and in X� . In this manner, both sides of the equality of this
theorem become multiedge L-functions attached to a graph with one vertex
and r loops and the corresponding covering of it. Since the induction
theorem has been proved in Theorem 8 for multiedge L-functions, we are
finished. K

Remark. From Theorem 9, the equality of Theorem 11 becomes

det(I&Z� spec, \)=det(I&Z\*).

Unlike the analogous equality that we get for the multiedge L-functions by
combining Theorem 7 and Theorem 8, here these determinants are of
different sizes!

The following corollary is obtained just as for the corollary to
Theorem 8.

Corollary. Suppose Y�X is an unramified normal graph covering with
Galois group G(Y�X ). Then

`P(Z� spec , Y )= `
\ # G�

LP(Z, \, Y�X )d\.

Example. Factorization of the path zeta function of a non-normal cubic
cover Y3 over X from Fig. 13. This is analogous to the example from
zeta functions of number fields which goes back to Dedekind (see [12,
Sect. 3.3]).

Here we re-consider the last example. Set |=e2?i�3 and

u1 =zcc , u2 =zcd , u3 =zcD , u4 =zdc , u5 =zdd , u6 =zdC ,

u7=zCd , u8=zCC , u9=zCD , u10=zDc , u11=zDC , u12 =zDD .

Then by the corollary to Theorem 11, the product of

det \
u1&1

u4

0
u10

u2

u5&1
u7

0

0
u6

u8&1
u11

u3

0
u9

u12&1+
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and

&1 |2u1 0 |2u2 0 0 0 |2u3

|u1 &1 |u2 0 0 0 |u3 0

0 |u4 &1 |u5 0 |u6 0 0

det
|2u4

0
0
0

|2u5

0
&1

|2u7

|2u6

&1
0

|2u8

0
0

0
|2u9

0 0 |u7 0 |u8 &1 |u9 0

0 |u10 0 0 0 |u11 &1 |u12

|2u10 0 0 0 |2u11 0 |2u12 &1

must equal the determinant of the matrix

u5&1 u4 u1 u4 u2u5 u4u2 u4

u2 u1 u1&1 u1 u2u5 u1u2 u4

u6u7 u4 u5 u5&1 u5 u4

Z� spec&I=
u3u11u7

0
u3u10

u10u1

u2

u10u2u5

u1&1
u10u2u4

u8u7 0 u7u5 u7u4

u12u11 u7 u12u10 0 u10

u9 u11u7 u9u10 u7 0

0 u6 u4u3 u4u2u6

u3 0 u1 u3 u1 u2u6

u6u9 u6u8 0 u5u6

u3u11u9

u12&1
u3u11u8

u11

u3u12

u10 u3

0
u10u2u6

.

u8u9 u8u8&1 u9 u7 u6

u12 u11u9 u12u11u8 u12u12&1 u11

u9u11u9 u9 u11u8 u9u12 u8&1
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FIG. 17. The contracted versions of X and Y3 from Fig. 13. Solid edges are the cut edges
generating the fundamental group.

6. NON-ISOMORPHIC REGULAR GRAPHS WITHOUT LOOPS OR
MULTIEDGES HAVING THE SAME IHARA ZETA FUNCTION

Algebraic number fields K1 , K2 can have the same Dedekind zeta
functions without being isomorphic. See Perlis [11]. The smallest examples
have degree 7 over Q and come from Artin L-functions of induced
representations from subgroups of G=GL(3, F2), the simple group of
order 168. An analogous example of 2 graphs (each having 7 vertices)
which are isospectral but not isomorphic was given by P. Buser. These
graphs are found in Fig. 18. See Buser [2] or Terras [16, Chap. 22].
Buser's graphs ultimately lead to 2 planar isospectral drums which are not
obtained from each other by rotation and translation. See Gordon et al.
[4]. But Buser's graphs are not simple. That is, they have multiple edges
as well as loops. We can use our theory to obtain examples of simple
regular graphs with 28 vertices which are isospectral but not isomorphic.
See Fig. 19. The graphs in Fig. 19 are constructed using the same group G
and subgroups Hj as in Buser's examples.

Define G=GL(3, F2), which is a simple group of order 168. Two
subgroups Hj of index 7 in G are

1 0 0 1 V V

H1={\V V V+= and H2={\0 V V+= .

V V V 0 V V
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FIG. 18. Buser's isospectral non-isomorphic Schreier graphs. See Buser [2]. The sheets of
X� 1 and X� 2 are numbered 1 to 7 from bottom to top. Lifts of a are on the right in each graph;
lifts of b are on the left.

It is well known that these two subgroups are not conjugate in G. This fact
is also a trivial consequence of our upcoming construction of two non-
isomorphic intermediate graphs corresponding to these subgroups Hj of G.
More importantly, these two groups give rise to equivalent permutation
representations of G and this means we will get graphs with the same zeta
function.

Given g # G, all 24 elements of H1 g have the same first row. The 7
possible non-zero first rows correspond naturally to the numbers 1�7 in
binary. Thus we have a natural way of tabulating the 7 right cosets of H1

as H1 gj , j=1, ..., 7, where the first row of each gj represents j in binary.
For example, the first row of g6 is (110); as another example, H1 g4 is the
identity coset. Given g, it is also very easy to calculate what coset H1 gj g
is, since the first row of the product gj g depends only on the first row of gj .
Thus, for a given g # G, it is easy to calculate the permutation +(g) (intro-
duced in Subsection 2.6) corresponding to multiplying the 7 cosets H1 gj by
g on the right.

We will need the permutations +(A) and +(B) for the two matrices used
by Buser,

0 1 1 1 0 0

A=\0 1 0+ and B=\0 0 1+ .

1 0 0 0 1 1
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We find that

+(A)=(1436)(2)(57) and +(B)=(132)(4)(576).

For example, to find H1 g3A, we want the first row of

0 1 1 0 1 1 1 1 0

\V V V+\0 1 0+=\V V V+ # H1 g6

V V V 1 0 0 V V V

and so +(A) takes 3 to 6. Indeed, we need only to add appropriate rows
of A and B to find both permutations +(A) and +(B).

We will want to do the same permutation calculation with the matrices
A and B acting on the right cosets of H2 . At first glance, the right cosets
of H2 seem more difficult to deal with, but fortunately a very useful
automorphism of G helps out. The map .(g)= tg&1, where tg denotes the
transpose of g # G, provides an automorphism of G in which .(H1)=H2 .
If we apply . to the right cosets H1 g j , we get G as a union of the 7 right
cosets H2

tg&1
j . Further, to find how a given element g # G permutes these

cosets, it is sufficient to look at the action of tg&1 on the H1 gj . We have

0 0 1 1 0 0
tA&1=\0 1 1+ and tB&1=\0 1 1+ .

1 0 0 0 1 0

Therefore the action of tA&1 and tB&1 on the right cosets H1 g j is given by
the permutations

+( tA&1)=(14)(2376)(5) and +( tB&1)=(123)(4)(567).

These same permutations give the actions of A and B on the right cosets
H2

tg&1
j .

The matrices A and B generate the group G. Buser [2] used these
matrices to construct 2 Schreier graphs corresponding to the 2 subgroups
H1 and H2 . In our terminology, this means that one constructs coverings
X� 1 and X� 2 of X, where X is the graph consisting of a single vertex and a
double loop. We give each loop a direction resulting in two directed edges
a and b, say. We assign the normalized Frobenius elements _(a)=A and
_(b)=B. The resulting normal cover of X is the Cayley graph of G corre-
sponding to the generators A and B. We are interested in the two
intermediate graphs X� 1 and X� 2 corresponding to the subgroups H1 and H2

by Theorem 1; which are Schreier graphs. The previously calculated
permutations +(A) and +(B) instantly give the graphs X� 1 and X� 2 . See
Fig. 18
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FIG. 19. Non-isomorphic graphs without loops or multiedges having the same-Ihara zeta
functions. The superscripts number the sheets of X� 1 and X� 2 . The lifts of a are on the right side
of each graph, lifts of b are on the left, and lifts of c cross from the left to the right.

For many different reasons, the 2 graphs in Fig. 18 are not isomorphic��
even as undirected graphs. Look at triple edges; look at double edges; look
at distances between loops, etc. Therefore H1 and H2 are not conjugate
in G. Both graphs are 4-regular; they have the same zeta function and their
adjacency matrices have the same spectrum (i.e., they are isospectral
graphs).

192 STARK AND TERRAS



While regular, the graphs of Fig. 18 have loops and multiedges. We now
construct an example of two regular non-isomorphic graphs with the same
zeta function such that the graphs have no loops or multiedges. We use the
same G, H1 and H2 , but now take X to be a tetrahedron. Thus X has
rank 3. We take the cut edges (directed as in Fig. 19) to be a, b, c. As
normalized Frobenius automorphisms, we choose

_(a)=A, _(b)=_(c)=B.

We then take 7 copies of the tree of X for the sheets in X� 1 and again for
X� 2 . On X� 1 , we lift a, b, c using the permutations +(A) and +(B) above to
connect appropriate vertices. On X� 2 we lift a, b, c using the permutations
+( tA&1) and +( tB&1) to connect appropriate vertices. This results in the
3-regular graphs X� 1 and X� 2 shown in Fig. 19.

Let us give a few more details of this construction. The edge c goes from
vertex 2 to vertex 3 in X and has the normalized Frobenius automorphism
_(c)=B. The lifts of c to X� 1 are determined by the permutation +(B)=
(132)(4)(576). This means that c in X lifts to an edge in X� 1 from 2$ to 3(3),
an edge from 2(3) to 3(2), and edge from 2" to 3$ and then (beginning a new
cycle) to an edge from 2(4) to 3(4), etc. The edge b lifts in exactly the same
manner as c. Similarly, for X� 1 , the edge a in X corresponds to the permuta-
tions (1436)(2)(57). This means that edge a in X lifts to an edge in X� 1 from
3$ to 4(4), an edge from 3(4) to 4(3), an edge from 3(3) to 4(6), etc.

To see that graphs X� 1 and X� 2 in Fig. 18 are not isomorphic, proceed as
follows. There are exactly 4 triangles in each graph (indicated by very thick
solid lines in Fig. 19) and they are connected in pairs in both graphs. This
distinguishes in each pair the 2 vertices not on common edges (starred ver-
tices). In X� 1 we can go in 3 steps (via dotted lines) from a starred vertex
in one pair to a starred vertex in the other pair and, in fact, in 2 different
ways. This cannot be done at all in X� 2 .

We have said that each of X� 1 and X� 2 has 4 triangles and it is not too
hard to verify this by systematically checking both graphs. However, the
corollary to Lemma 7 gives us a usable formula. We will count the triangles
on X� 1 and X� 2 up to equivalence and choice of direction on the triangle (this
is what we mean when we say there are 4 triangles on each graph). Since X
has no loops or multiedges, any triangle on X� 1 or X� 2 projects to a triangle on
X. Up to equivalence and choice of direction, there are four triangles on X.

Let /1 be the trivial character on H1 or H2 . The induced character /*
1

on G is the same in both cases. According to the Corollary to Lemma 7,
for any directed triangle C on X, there are /*

1 (_(C)) directed triangles
above C on X� 1 and also above C on X� 2 . Reversing the direction of C
reverses the direction of the covering triangles. We choose the most
convenient direction for each triangle.
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Three of the triangles on X have 2 edges on the tree of X with nor-
malized Frobenius elements=1 automatically. Thus, with appropriate
choice of direction in each case, _(C)=A, B, B, for each triangle. The
fourth triangle may be taken to be the path ab&1c whose normalized
Frobenius is _(a) _(b)&1 _(c)=AB&1B=A. For g # G, /*

1 (g) is simply the
number of 1 cycles in the permutation +(g). In particular, /*

1 (A)=/*
1 (B)

=1 (the same for both H1 and H2). Thus each of the 4 triangles of X
has precisely 1 triangle of X� j above it for j=1 or 2. It follows that the
triangles shown in Fig. 19 account for all triangles on X� 1 and X� 2 as
claimed.

To see that the graphs are isospectral, one just notices that as above

`X� j
(u)=LV (u, \j).

The same argument as we used in Terras [16, loc. cit.] for Buser's graphs
says that the representations \j=IndG

Hj
1 are equivalent because the sub-

groups Hj are almost conjugate (i.e. |H1 & [g]|=|H2 & [g]|, for every
conjugacy class [g] in G).
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