
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Faculty Publications, Department of Mathematics Mathematics, Department of

2008

LDPC codes from voltage graphs
Christine A. Kelley
University of Nebraska-Lincoln, ckelley2@unl.edu

Judy L. Walker
University of Nebraska - Lincoln, judy.walker@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/mathfacpub

Part of the Applied Mathematics Commons, and the Mathematics Commons

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University
of Nebraska - Lincoln.

Kelley, Christine A. and Walker, Judy L., "LDPC codes from voltage graphs" (2008). Faculty Publications, Department of Mathematics.
171.
https://digitalcommons.unl.edu/mathfacpub/171

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/224735561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathematics?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub/171?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages


LDPC codes from voltage graphs
Christine A. Kelley

Department of Mathematics
University of Nebraska-Lincoln
Lincoln, NE 68588, USA.

Email: ckelley2@math.unl.edu

Judy L. Walker
Department of Mathematics

University of Nebraska–Lincoln
Lincoln, NE 68588, USA.

Email: jwalker7@math.unl.edu

Abstract—Several well-known structure-based constructions
of LDPC codes, for example codes based on permutation and
circulant matrices and in particular, quasi-cyclic LDPC codes,
can be interpreted via algebraic voltage assignments. We explain
this connection and show how this idea from topological graph
theory can be used to give simple proofs of many known
properties of these codes. In addition, the notion of abelian-
inevitable cycle is introduced and the subgraphs giving rise to
these cycles are classified. We also indicate how, by using more
sophisticated voltage assignments, new classes of good LDPC
codes may be obtained.

I. INTRODUCTION
Graph-based codes have attracted widespread interest due

to their efficient decoding algorithms and remarkable perfor-
mance on several communication channels. However, theoret-
ical results that give proof of when they are good and how
to design them are hard to come by. Much work has focused
on understanding the asymptotic performance of ensembles of
these codes for block lengths tending to infinity. For practical
implementation, the design of short to moderate length codes
with algebraic structure is desired. Several researchers have
proposed structure-based constructions of these codes and each
of these constructions has aimed to optimize one or more
properties in the resulting graph that intuitively improve the re-
sulting code’s performance, such as girth, expansion, diameter,
stopping sets, or pseudocodewords. One area of recent interest
is protograph LDPC codes, which are codes based on graphs
obtained by taking random lifts of a suitably chosen base
graph, or protograph. However, many of these constructions
appear ad hoc and there is a serious lack of a mathematical
theory in designing these graph-based codes. In this work, we
aim to bridge this gap by unifying several different families
of graph-based codes under one common framework—namely,
codes on graphs arising as voltage graphs.
We consider a voltage graph viewpoint from topological

graph theory wherein specific lifts of graphs are determined via
“voltage assignments”, i.e., assignments of elements of a so-
called voltage group, to the edges of a base graph, thus making
the lifting entirely algebraic. This algebraic characterization of
lifts is a powerful tool for analyzing several graph properties
of the resulting lifts using the properties of the base graph.
In this paper, this tool is applied to codes that are amenable
to voltage graph interpretation, and consequently, their graph
properties are better understood.
The paper is organized as follows. We introduce some

preliminary definitions and notation in Section II. In particular,

we review the terminology of voltage graphs. In Section III,
we show how graph-based codes can be obtained algebraically
from voltage graphs, and illustrate this using the Sridhara-
Fuja-Tanner (SFT) LDPC codes and array-based LDPC codes
as examples. In Section IV, the notion of abelian-inevitable
cycles is introduced and the isomorphism classes of subgraphs
(or equivalently, matrix substructures) that give rise to these
cycles in the LDPC Tanner graph are identified and classified.
The results presented here correct a result used in [16], [20],
and, subsequently, extend the work from [16]. Ongoing work
addressing how this method may be used to construct new
families of LDPC and other graph-based codes is outlined in
Section V.

II. PRELIMINARIES
A binary low-density parity-check (LDPC) code is defined

by a sparse parity-check matrix H or, equivalently, by the
incidence graph of H called the Tanner graph. The left and
right vertices are called variable nodes and check nodes,
respectively. The set of codewords is the set of all binary
assignments to the variable nodes such that at each check
node, the modulo two sum of the variable node assignments
connected to that check node is zero. The notion of covering
graphs (or lifts of graphs) enters into the analysis of the graph-
based iterative decoder in the explanation of pseudocodewords
[11], [14], [17], [25].
In an entirely different context, various researchers have

looked at constructing families of LDPC codes by taking
random lifts of a specially chosen base graph, or “protograph”,
yielding the so-called “protograph codes” [24], [6], [7], [19].
The idea exploited in these constructions is that the properties
of the base graph may shed light on the properties of the
covering graphs, and therefore on the resulting codes. Indeed,
random lifts of graphs have been heavily studied (see, for
example, [18], [1], [2]). While these codes have exhibited good
performance, we believe that constructions using algebraically-
designed lifts may outperform these random methods as well
as provide a good handle on the code properties such as
minimum distance, girth, stopping sets, and pseudocodewords.
An algebraic construction of specific covering spaces for

graphs was introduced by Gross and Tucker in the 1970s
[13]. Given a graph X = (VX , EX) where each edge in
X has a positive and negative orientation, a function α,
called an ordinary voltage assignment, maps the positively
oriented edges to elements from a chosen finite groupG, called
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Fig. 1. A right-derived voltage graph with voltage group A = Z/5Z.

the voltage group. The negative orientation of each edge is
assigned a voltage that is the inverse element of the voltage
assigned to its positive orientation. The base graphX , together
with the function α, is called an ordinary voltage graph. The
values of α on the edges are referred to as voltages. A new
graph Xα, called the (right) derived graph, is a degree |G| lift
of X and has vertex set VX×G and edge set EX×G, where if
(u, v) is a positively oriented edge in X with voltage h ∈ G,
then there is an edge from (u, g) to (v, gh) in Xα for each
g ∈ G. Figure 1, which is taken from [13], shows a base graph
X with voltages assigned to its edges from the additive group
of integers modulo 5 (i.e., G = Z/5Z), and the corresponding
right-derived graph obtained from this assignment.
In the case that the voltage group is the symmetric group

Sn on n elements, one can also view the pair (X, α) as a per-
mutation voltage graph. The permutation derived graph Xα

has vertex set VX ×{1, . . . , n} and edge set EX ×{1, . . . , n}.
If π ∈ Sn is a permutation voltage on the edge e = (u, v) of
X , then there is an edge from (u, i) to (v, π(i)) in Xα for
i = 1, 2, . . . , n. Note that Xα is a degree n lift of X rather
than a degree n! lift as it would be if viewed as an ordinary
derived graph as discussed above.
For an edge e, let e− and e+ denote the negative and

positive orientations, respectively, of e. A walk in the voltage
graph X with voltage assignment α may be represented by
the sequence of oriented edges as they are traversed, e.g.
W = eσ1

1 eσ2
2 . . . eσn

n where each σi is + or − and e1, . . . , en

are edges in G. In this setting, the net voltage of the walk W
is defined as the voltage group product

α(eσ1
1 )α(eσ2

2 ) . . . α(eσn

n )

of the voltages on the edges of W in the order and direction
of the walk.
For example, the walk W = d+e−d−c+ in the voltage

graph of Figure 1 has net voltage 0 + (−2) + (−0) + 1 =
−1 = 4 ∈ Z/5Z.
The following theorem from [13] will be useful to us.
Theorem 2.1: Let W be a walk in a voltage graph X with

initial vertex v. Then for each vertex (v, g) in Xα for g ∈ G,
there is a unique walk Wg in Xα that starts at (v, g) and
projects down to W . Assume W = eσ1

1 eσ2
2 · · · eσn

n is closed,
backtrackless, and tailless. ThenWg , for any g ∈ G, is a cycle
on Xα if and only if the net voltage of W is the identity of
G.

Voltage graphs have been successfully used to obtain many
instances of graphs with extremal properties; see [9], [4], [5],
[3].

III. CODES DESCRIBED USING VOLTAGE TERMINOLOGY
We now describe three popular families of quasi-cyclic

LDPC codes proposed in [22], [23], [10] and [8], respectively,
and show how the codes can be interpreted via voltage graphs.

A. SFT codes [22], [23]
For a prime q, the integers {0, 1, . . . , q−1} form a field un-

der addition and multiplication modulo q, i.e., the Galois field
Fq. The non-zero elements of Fq form a cyclic multiplicative
group F

×

q of order q − 1. Let j and k be distinct divisors of
q−1 and let a and b be elements of F

×

q with orders o(a) = k
and o(b) = j, respectively. Form the j × k matrix P over Fq

that has as its (s, t) entry Ps,t = b(s−1)a(t−1), for 1 ≤ s ≤ j
and 1 ≤ t ≤ k.
The LDPC code is constructed by specifying its parity check

matrix H . Specifically, H is made up of a j × k array of
circulant sub-matrices as shown below:

H =

⎡
⎢⎢⎣

I1 Ia Ia2 . . . Iak−1

Ib Iab Ia2b . . . Iak−1b

. . . . . . . . . . . . . . .
Ibj−1 Iabj−1 Ia2bj−1 . . . Iak−1bj−1

⎤
⎥⎥⎦ . (1)

where Ix is a q × q identity matrix with rows cyclically
shifted to the left by x positions. The circulant sub-matrix
in position (s, t) within H is obtained by cyclically shifting
the rows of the identity matrix to the left by Ps,t places. The
resulting binary parity check matrix is of size jq× kq, which
means the associated code has a rate R ≥ 1 − (j/k). The
codes constructed using this technique are quasi-cyclic with
period k, i.e., cyclically shifting a codeword by one position
within each of the k blocks of circulant sub-matrices (where
each block consists of q code bits) results in another codeword.

Example 3.1: A [155,64,20] SFT code (q = 31): Set q =
31, k = 5 and j = 3. Then we may take a = 2, b = 5 in F

×

31

to have o(a) = k and o(b) = j, and the parity check matrix
is given by

H =

⎡
⎣ I1 I2 I4 I8 I16

I5 I10 I20 I9 I18

I25 I19 I7 I14 I28

⎤
⎦

(93×155),

where Ix is a 31 × 31 identity matrix with rows shifted
cyclically to the left by x positions.
As shown in Figure 2 and in [15], the Tanner graph of

this code may be viewed as the derived graph arising from
a permutation voltage assignment on the complete bipartite
graph K3,5 on 3 right and 5 left nodes, where the voltage
assignments come from the symmetric group S31 on 31
elements, and the voltages are permutation elements that
yield the shifts as given in the construction. For example,
the entry I2s5t in the parity-check matrix corresponds to the

proyster2
Text Box



edge between the sth left node, s = 0, . . . , 4, and the tth

right node, t = 0, 1, 2 in the base graph K3,5 and a voltage
equal to a permutation element that yields a circulant shift
of 2s5t (mod 31). Thus, the circulant matrix I1 corresponds
to the voltage element (1 2 3 . . . 31) ∈ S31 assigned to
the edge from the 0th left node to the 0th right node in
K3,5. The circulant I2 corresponds to the element (voltage)
(1 3 5 7 9 . . . 31 2 4 6 . . . 30) ∈ S31 assigned to the edge
from the 1st left node to the 0th right node in K3,5 and so
on.

K3,5.

⇒

Tanner graph of an SFT code.

Fig. 2. An SFT code viewed as a voltage graph. Note that the graph on the
right is a schematic, as a true representation would have 155 variable nodes,
93 check nodes and 465 edges.

B. Array-based LDPC codes
Array-based LDPC codes were introduced in [10]. We

present the construction and show how these codes can be
interpreted as permutation voltage derived graphs in a straight-
forward manner.
For a prime q and positive integer j ≤ q, the parity-check

matrix of the array code is defined by

H(q, j) =

2
6666664

I I I . . . I

I P P 2 . . . P (q−1)

I P 2 P 4 . . . P 2(q−1)

...
...

... . . .

...
I P (j−1) P (j−1)2 . . . P (j−1)(q−1)

3
7777775

,

where I is the q× q identity matrix and P = Iq−1 is the q× q
identity matrix cyclically shifted to the right by one position.
The array code is quasi-cyclic with block length N = q2 and
rate R ≥ 1− j

q
.

The Tanner graph of the above code may be obtained via
a voltage assignment on the permutation voltage graph Kj,q

which is the complete bipartite graph on q left vertices and j
right vertices. The edge that connects the sth left node to the tth

right node in Kj,q, for 0 ≤ s ≤ q−1 and 0 ≤ t ≤ j−1, is the
permutation πts, where π = (1 2 3 . . . q) is the permutation in
the symmetric group Sq and πts is the permutation π applied
recursively ts times.
Eleftheriou, et al., proposed [8] a modification to the above

construction in order to obtain an efficient encoding. The
modified array code is defined by designing a parity-check
matrix H(q, j, k), for q ≤ j < k, as follows:

H(q, j, k) =

2
6666664

I I I . . . I . . . I

0 I P . . . P (j−2) . . . P (k−2)

0 0 I . . . P 2(j−3) . . . p2(k−3)

...
...

... . . .

... . . .

...
0 0 . . . 0 I . . . P (j−1)(k−j)

3
7777775

,

where I is the q×q identity matrix and P is the q×q identity
matrix cyclically shifted to the right by one position. The
above code is an irregular quasi-cyclic code with block length
N = qk and rate R = 1− j

k
.

The Tanner graph of the above code may be obtained via
a voltage assignment on the permutation voltage graph Qj,k

which is the bipartite graph on k left vertices X and j right
vertices Y and having edges (s, t), 0 ≤ s ≤ k − 1, 0 ≤ t ≤
j − 1 and satisfying s ∈ X , t ∈ Y , s ≥ t . The edge that
connects the sth left node to the tth right node in Qj,k, for
0 ≤ s ≤ k − 1, 0 ≤ t ≤ j − 1 and s ≥ t, is the permutation
πt(s−t), where π = (1 2 3 . . . q) is the permutation in the
symmetric group Sq .

Remark 3.2: The permutation voltages assigned to the
edges of the base graph in the above constructions belong to
an abelian subgroup of the symmetric group Sq . More general
assignments of these voltages may yield codes that have girth
and minimum distance not limited by the upper bounds (see
Section IV) imposed by using abelian voltage groups.

C. Other constructions
One other notable construction of quasi-cyclic LDPC codes

is by Song, et al., [21] where the parity-check matrix is
composed of blocks of circulant matrices that are not neces-
sarily shifted identity matrices, but rather matrices obtained
by superimposing shifted identity matrices. These are also
amenable to the voltage graph interpretation where we allow
multiple edges between pairs of vertices in the base graph.

IV. ABELIAN-INEVITABLE CYCLES
In [16], the authors identify matrix substructures that, in

quasi-cyclic LDPC codes, give rise to so-called inevitable
cycles. However, they use brute force methods and only
generate a list of sub-matrices in the base graph parity-check
matrix having up to ten ones that yield these inevitable cycles.
In the following, we completely classify all such submatrices,
or equivalently, subgraphs, that generate these cycles. We start
by formalizing the notion of an inevitable cycle suggested in
those papers by introducing the term abelian-forcing walk.
A sequence of vertices and edges v0e1v1 . . . vn−1envn on

a graph is called a closed walk if the vertices vi−1 and vi

are the endpoints of the edge ei and vn = v0. A closed walk
v0e1v1 . . . vn−1envn is backtrackless if ei �= ei+1 for 1 ≤ i ≤
n − 1. A backtrackless closed walk v0e1v1 . . . vn−1envn is
said to be tailless if en �= e1. A backtrackless, tailless closed
walk W is abelian-forcing if for each edge in W , the number
of traversals of that edge in the positive direction is the same
as that in the negative direction.
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Lemma 4.1: An abelian-forcing walk W on X has net
voltage 0 for any voltage assignment α to any abelian voltage
group G. Hence for each g ∈ G, the lift Wg of W in Xα is
a cycle of length |W |.

Proof: Since the voltage assigned to a negatively-
oriented edge is the inverse of the voltage of the corresponding
positively-oriented edge, the first statement is clear. The sec-
ond statement is immediate from Theorem 2.1.

We define U to be an abelian-forcing graph if there is an
abelian-forcing walk on U which uses every edge of U .
Definition 4.2: Let X be a graph. A positive integer n is

an abelian-inevitable cycle length for X if, for every abelian
group G and every voltage assignment α of G on X , the
derived graph Xα must have a simple cycle of length n.
The relationship between abelian-forcing walks and abelian-

inevitable cycle lengths is given by the next lemma, the proof
of which is immediate from definitions and Lemma 4.1 above.
Lemma 4.3: If X has an abelian-forcing walk of length n,

then n is an abelian-inevitable cycle length for X .
For the classification, we will need terminology for two main
types of subgraphs. Define an (a, b, c)-theta graph, denoted by
T (a, b, c), to be a graph consisting of two vertices v and w,
each of degree three, that are connected to each other via three
disjoint paths A, B, C of (edge) lengths a ≥ 1, b ≥ 1, and
c ≥ 1, respectively, and define a (a1, a2; b)-dumbbell graph,
denoted D(a1, a2; b) to be a connected graph consisting of
two edge-disjoint cycles A1 and A2 of lengths a1 ≥ 1 and
a2 ≥ 1, respectively, that are connected by a path B of length
b ≥ 0. In the case that b = 0, we get a bouquet of two circles,
which we refer to as a degenerate dumbbell graph.
Note that if T (a, b, c) is a subgraph of a simple bipartite

graph with a ≥ b ≥ c ≥ 1 then b ≥ 2 and a ≡ b ≡ c (mod 2).
That is, a, b and c have the same parity. If D(a1, a2; b) is a
subgraph of a simple bipartite graph with a1, a2 ≥ 1 and
b ≥ 0, then a1, a2 ≥ 4 and are even. The next proposition is
a generalization of Exoo’s “Observation 1” [9].

Proposition 4.4:
1) If X contains an (a, b, c)-theta graph, then 2(a + b + c)
is an abelian-inevitable cycle length for X .

2) If X contains an (a1, a2; b)-dumbbell graph, then 2(a1+
a2) + 4b is an abelian-inevitable cycle length for X .
Proof: Suppose X contains an (a, b, c)-theta graph with

paths A, B and C. Then AB−1CA−1BC−1 is an abelian-
forcing walk of length 2(a+b+c). Similarly, if X contains an
(a1, a2; b)-dumbbell graph with cycles A1 and A2 connected
by the path B, then A1BA2B

−1A−1
1 BA−1

2 B−1 is an abelian-
forcing walk of length 2(a1+a2)+4b. The result now follows
from Lemma 4.3.
The utility of this voltage graph viewpoint may been seen

when one analyzes the girth of the Tanner graph of the SFT
codes. The girth is the length of the smallest cycle in the
graph, and is important as it measures the number of iterations
of decoding for which the messages passed along the graph
remain independent. Indeed, iterative decoding is optimal on
cycle-free graphs. It was shown in [23] that the [155, 64, 20]

B

A

C

A1 A2B

Theta graph Dumbbell graph

Fig. 3. A theta graph and a dumbbell graph.

SFT code in Section III has girth 8 and, more generally, all
codes in the family have girth at most 12. The base graphs in
the SFT construction all contain the complete bipartite graph
K2,3 as a subgraph, and K2,3 is the theta graph T (2, 2, 2).
Thus, Proposition 4.4 immediately gives that the girth of the
Tanner graphs of the SFT codes is at most 12. This argument
on girth is much more concise than other proof methods
such as in [23], [12]. The next result classifies the subgraphs
that give rise to abelian-inevitable cycles, namely the abelian-
forcing graphs, and gives upper bounds on the girth of an
abelian voltage graph in terms of these subgraphs.

Theorem 4.5: Suppose X contains an abelian-forcing sub-
graph and let α be any abelian voltage assignment forX . Then
one of the following holds:
1) X contains an (a, b, c)-theta graph for some a, b, c ≥ 1,
in which case the girth of Xα is at most 2(a + b + c).

2) X contains an (a1, a2; b)-dumbbell graph for some a1,
a2 ≥ 1 and b ≥ 0, in which case the girth of Xα is at
most 2(a1 + a2) + 4b.
Proof: By Proposition 4.4, it is enough to prove that X

must contain either a theta graph or a dumbbell graph. Without
loss of generality, we may assume X is abelian-forcing. Let
Γ and Δ be distinct simple cycles on X of lengths m and n
respectively. Let I be the set of vertices in Γ∩Δ. We consider
three cases: |I| = 0, |I| = 1 and |I| ≥ 2. If |I| = 0, let v
be any vertex on Γ and let w be any vertex on Δ. Since
X is connected, there is a path P in X from v to w. Write
P = P1P2P3, where P1 ⊂ Γ, P3 ⊂ Δ and P2 shares edges
with neither Γ nor Δ; note that one or both of P1 and P3 may
be empty but P2 is certainly nonempty. Then Γ ∪ P2 ∪Δ is
the nondegenerate dumbbell graph D(m, n; b), where b ≥ 1 is
the length of P2. Next, assume |I| = 1. Then Γ∪Δ is clearly
the degenerate dumbbell graph D(m, n; 0). Finally, assume
|I| ≥ 2, and write Γ and Δ in terms of their vertices Γ =
v1, v2, . . . , vm, v1 and Δ = w1, w2, . . . , wn, w1. Without loss
of generality, we may assume v1 = w1 and there is some j ≥ 1
such that vi = wi for i ≤ j and vj+1 �= wj+1. If j = |I|, then
Γ∪Δ = T (a, b, c) with a = j−1, b = m−j and c = n−j. If
j < |I|, then let t be minimal such that vj+t = wk for some
k ≥ j + 1. Let A be the path vj , vj+1, . . . , vj+t; let B be the
path wj , wj+1, . . . , wk; and, noting that j < k, let C be the
path wj , wj−1, . . . , w1, wn, wn−1, . . . wk . Then A ∪B ∪C is
a (t, k − j, j − 1 + n− k)-theta graph.
We note that Theorem 4 in [20] is incorrect; the proof

assumes the overlaps are consecutive although the statement
does not. Since Theorems 1 and 3 in [16] rely on this result,
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they are incorrect as well. However, Theorem 1 in [16] is
correct when rephrased as
Theorem 4.6: Let Γ and Δ be simple cycles with r ≥ 0

consecutive edge overlaps and lengths 2k and 2�, respectively.
In the case that r = 0, assume further that Γ and Δ share at
least one vertex. Then there is an inevitable cycle of length
2(2� + 2k − r) in the protograph code.
We now give a correct version of Theorem 3 of [16]:

Theorem 4.7: Let X be a graph of girth g. Then every
abelian-inevitable cycle length for X is at least 3g.

Proof: If X contains no abelian-forcing walks, there
is nothing to prove. So suppose n is an abelian-inevitable
cycle length for X . Then X , by Theorem 4.5, X has either a
subgraph T (a, b, c) with 2a + 2b + 2c ≤ n or a subgraph
D(a1, a2; b) with 2(a1 + a2) + 4b ≤ n. If X contains a
T (a, b, c) subgraph, then a + b ≥ g, b+ c ≥ g, and a + c ≥ g.
We have

g ≤ a + c = (a + b) + (b + c)− 2b and so

−b ≤
g

2
−

a + b

2
−

b + c

2
.

Therefore,

n ≥ 2(a + b + c) = 2 ((a + b) + (b + c)− b))

≥ 2

(
(a + b) + (b + c) +

(
g

2
−

a + b

2
−

b + c

2

))

= (a + b) + (b + c) + g

≥ 3g.

On the other hand, if X contains D(a1, a2; b), then a1 ≥ g,
a2 ≥ g, and so n ≥ 4g + 4b > 3g. Hence, in either case, we
have n ≥ 3g, proving the theorem.

V. ONGOING WORK

We are currently applying this voltage-graph analysis to
understand other properties of the derived graphs and their
implications for the resulting graph-based codes. Simultane-
ously, we are investigating constructions of LDPC codes by
specific voltage assignments. We are considering both the
application of one voltage group to a sequence of base graphs
and also the use of a tower of groups as voltage groups
applied to a specific base graph to generate these families
of LDPC codes. The techniques may yield new codes as
well as improve the existing constructions such as the SFT
codes, array-based codes, and other families. Our preliminary
results suggest that using appropriate non-abelian groups for
the voltage assignments may yield superior codes. This novel
voltage graph approach is not limited to LDPC codes; rather,
it can be applied in the algebraic design of other graph-based
codes such as turbo codes, repeat-accumulate codes, serial-
concatenated codes, etc. Indeed, some constructions of repeat
accumulate codes have offset functions that can be related to
the voltage assignment function.
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