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Abstract. In this paper, we develop a new graph kernel by using the
quantum Jensen-Shannon divergence and the discrete-time quantum walk.
To this end, we commence by performing a discrete-time quantum walk
to compute a density matrix over each graph being compared. For a pair
of graphs, we compare the mixed quantum states represented by their
density matrices using the quantum Jensen-Shannon divergence. With
the density matrices for a pair of graphs to hand, the quantum graph
kernel between the pair of graphs is defined by exponentiating the neg-
ative quantum Jensen-Shannon divergence between the graph density
matrices. We evaluate the performance of our kernel on several standard
graph datasets, and demonstrate the effectiveness of the new kernel.

1 Introduction

Graph based representations are powerful tools for structural analysis in pattern
recognition. One challenge of classifying graphs is how to convert the discrete
graph structures into numeric features. One way is to use graph kernels. The
main advantage of using graph kernels is that they characterize graph features
in a high dimensional space and thus better preserve graph structures.

Generally speaking, a graph kernel is a similarity measure between a pair of
graphs [1]. To extend the large spectrum of kernel methods from the general ma-
chine learning domain to the graph domain, Haussler [2] has proposed a generic
way, namely the R-convolution, to define a graph kernel. For a pair of graphs, an
R-convolution kernel is computed by decomposing each graph into smaller sub-
graphs and counting the number of isomorphic subgraph pairs between the two
original graphs. Thus, a new type of decomposition of a graph usually results in a
new graph kernel. Following this scenario, Kashima et al. [3] introduced the ran-
dom walk kernel, which is based on the enumeration of common random walks
between two graphs. Borgwardt et al. [4], on the other hand, proposed a shortest
path kernel by counting the numbers of matching shortest paths over the graphs.
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Aziz et al. [5] introduced a backtrackless kernel using the cycles identified by the
Ihara zeta function [6] in a pair of graphs. Shervashidze et al. [7] developed a
fast subtree kernel by comparing pairs of subtrees identified by the Weisfeiler-
Lehman (WL) algorithm. Some other alternative R-convolution kernels include
a) the segmentation graph kernel developed by Harchaoui and Bach [8], b) the
point cloud kernel developed by Bach [9], and c) the (hyper)graph kernel based
on directed subtree isomorphism tests [10].

Recently, a number of alternative graph kernel measures have been intro-
duced in the literature. These are based on the computation of the mutual infor-
mation between two graphs in terms of the classical Jensen-Shannon divergence.
In information theory, the classical Jensen-Shannon divergence is a dissimilarity
measure between probability distributions. In [11–13], we have used the classical
Jensen-Shannon divergence to define a Jensen-Shannon graph kernel. Unlike the
R-convolution kernels that count the number of isomorphic substructure pairs,
the Jensen-Shannon graph kernel is defined in terms of the entropy difference
between a pair of graphs and their composite graph (e.g., the disjoint union
graph or the product graph formed by the pair of graphs). Here, the entropy
of a graph can be either the von Neumann entropy (associated with the graph
spectrum information) or the Shannon entropy (associated with the steady state
random walk or the information functional). Both the von Neumann entropy and
the Shannon entropy of a graph can be directly computed without the need to
decompose the graph into substructures. As a result, the Jensen-Shannon graph
kernel avoids the computational burden of comparing all pairs of substructures
for a pair of graphs. To develop this work further, in [14–16] we have introduced a
new quantum Jensen-Shannon graph kernel using the quantum Jensen-Shannon
divergence [17, 18] and the continuous-time quantum walk [19]. Here the basic
idea is to associate with each graph a mixed quantum state representing the
time evolution of a quantum walk. The kernel between a pair of graphs is then
defined as the quantum Jensen-Shannon divergence between their corresponding
density matrices [14].

The aim of this paper is to develop our previous quantum Jensen-Shannon
kernels [14–16] one step further. We propose a new quantum Jensen-Shannon ker-
nel for graphs using the discrete-time quantum walk. The discrete-time quantum
walk is the quantum analogue of the discrete-time classical random walk [19].
Remarkably, the discrete-time quantum walk possesses a number of interest-
ing properties that are not exhibited by its classical counterpart. In fact, the
behaviour of the discrete-time quantum walk is governed by a unitary matrix
rather than a stochastic matrix, as in the case of the classical random walk. As
a consequence, its evolution is reversible and non-ergodic. However, unlike the
continuous-time quantum walk, where the state space is the graph vertex set,
the state space of the discrete-time quantum walk is the set of arcs residing on
the graph edges. More specifically, given an undirected graph G(V,E), each edge
{u, v} ∈ E is replaced by a pair of directed arcs (u, v) and (v, u), and the set of
arcs is denoted by Ed. Then, the state space for the discrete-time quantum walk
is the set of arcs Ed. We are interested in developing a new quantum Jensen-



Shannon kernel where the graph structure is probed by means of a discrete-time
quantum walk. To commence, we perform a discrete-time quantum walk on each
graph and we compute a mixed quantum state represented by a density matrix.
With the density matrices for a pair of graphs to hand, the quantum graph kernel
between the pair of graphs is defined by exponentiating the negative quantum
Jensen-Shannon divergence between the graph density matrices. We evaluate
the performance of our new kernel on several standard graph datasets from both
bioinformatics and computer vision. The experimental results demonstrate the
effectiveness of the proposed graph kernel. Our new kernel is shown to be com-
petitive to state-of-the-art graph kernels.

2 Quantum Mechanical Background

In this section, we introduce the quantum mechanical formalism that will be used
in this work. We commence by reviewing the concept of discrete-time quantum
walk on a graph. Furthermore, we describe how to associate with each graph a
density matrix describing the quantum walk evolution. Then, we show how to
compute the von Neumann entropy of a graph through its density matrix. Final-
ly, we discuss the relationship between the Perron-Frobenius operator [20] and
the transition matrix of the discrete-time quantum walk, and thus explain the
advantage of the discrete-time quantum walk over its continuous-time version.

2.1 Discrete-time Quantum Walks

The discrete-time quantum walk is the quantum counterpart of the discrete-time
classical random walk [21]. To simulate the evolution of a discrete-time quantum
walk on a graph G(V,E), we first replace each edge e(u, v) ∈ E with a pair of
directed arcs ed(u, v) and ed(v, u). This in turn ensures the reversibility of the
quantum process. Let us denote the new set of arcs as Ed. Then, the state space
for the discrete-time quantum walk is Ed, and we denote the state corresponding
to the walker being on the arc ed(u, v) as |uv⟩. A general state of the walk is

|ψ⟩ =
∑

ed(u,v)∈Ed

αuv|uv⟩, (1)

where the quantum amplitudes αuv are complex, i.e., αuv ∈ C. The probability
that the walk is in the state |uv⟩ is given by Pr(|uv⟩) = αuvα

∗
uv, where α

∗
uv is

the complex conjugate of αuv.
The evolution of the state vector between the steps t and t+1 is determined by

the transition matrix U . The entries of U determine the transition probabilities
between states, i.e., |ψt+1⟩ = U |ψt⟩. Since the evolution of the walk is linear and
conserves probability, the matrix U must be unitary, i.e., U−1 = U †, where
U † denotes the Hermitian transpose of U .

It is usual to adopt the Grover diffusion matrix [22] as the transition matrix.
Using the Grover diffusion matrices, the transition matrix U has entries

U(u,v),(w,x) =

{
2
dx

− δux, v = w;

0, otherwise,
(2)



where U(u,v),(w,x) gives the quantum amplitude for the transition ed(u, v) →
ed(w, x) and δux is the Kronecker delta, i.e., δux = 1 if u = x and 0 otherwise.
Given a state |u1v⟩, the Grover matrix assigns the same amplitudes to all tran-
sitions |u1v⟩ → |vui⟩, and a different amplitude to the transition |u1v⟩ → |vu1⟩,
where ui denotes a neighbour of v. Finally, note that although the entries of
U are real, they can be negative as well as positive. It is important to stress
that, as a consequence of this, negative quantum amplitudes can arise during the
evolution of the walk. In other words, the definition in Eq.(2) allows destructive
interference to take place.

2.2 A Density Matrix from the Mixed State

In quantum mechanics, a pure state can be described as a single ket vector. A
quantum system, however, can also be in a mixed state, i.e., a statistical ensemble
of pure quantum states |ψi⟩, each with probability pi. The density matrix (or
density operator) of such a system is defined as

ρ =
∑
i

pi |ψi⟩ ⟨ψi| (3)

Assume a sample graph G(V,E). Let |ψt⟩ denote the state corresponding to a
discrete-time quantum walk that has evolved from the step t = 0 to the step
t = T . We define the time-averaged density matrix ρTG for G(V,E) as

ρTG =
1

T + 1

T∑
t=0

|ψt⟩ ⟨ψt| . (4)

Since |ψt⟩ = U t |ψ0⟩, where U is the transition matrix of the discrete-time
quantum walk, Eq.(4) can be re-written in terms of the initial state |ψ0⟩ as

ρTG =
1

T + 1

T∑
t=0

(U )t |ψ0⟩ ⟨ψ0| (U⊤)t. (5)

As a result, the density matrix ρTG describes a quantum system that has an equal
probability of being in each of the pure states defined by the evolution of the
discrete-time quantum walk from step t = 0 to step t = T .

2.3 The von Neumann Entropy of a Graph

In quantum mechanics, the von Neumann entropy [23] HN of a density matrix
ρ is defined as HN = −tr(ρ log ρ) = −

∑
i ξi ln ξi, where ξ1, . . . , ξn denote the

eigenvalues of ρ. Note that if the quantum system is in a pure state |ψi⟩ with
probability pi = 1, then the Von Neumann entropy HN (ρ) = −tr(ρ log ρ) is
zero. On the other hand, a mixed state generally has a non-zero Von Neumann
entropy associated with its density matrix. Here we propose to compute the von



Neumann entropy for each graph using the density matrix defined in Eq.(5).
Consider a graph G(V,E), the von Neumann entropy of G(V,E) is defined as

HN (ρG) = −tr(ρTG log ρTG) = −
|V |∑
j

λGj log λGj , (6)

where λG1 , . . . , λ
G
j , . . . , λ

G
|V | are the eigenvalues of ρTG.

2.4 Relation to the Perron-Frobenius Operator

In [20], Ren et al. have demonstrated that the Perron-Frobenius operator can be
represented in terms of the transition matrix of discrete-time quantum walks.
To show this connection, we first introduce the definitions of the directed line
graph and the positive support of a matrix.

Definition 1 For a sample graphG(V,E), the directed line graph OLG(VL, EdL)
is a dual representation of G(V,E). To obtain OLG(VL, EdL), we first con-
struct the associated symmetric digraph SDG(V,Ed) of G(V,E), by replac-
ing every edge e(u,w) ∈ E(G) by a pair of reverse arcs, i.e., directed edges
ed(u,w) ∈ Ed(G) and ed(w, u) ∈ Ed(G) for u,w ∈ V . The directed line graph
OLG(VL, EdL) is the directed graph with vertex set VL and arc set EdL defined
as follows

VL = Ed(SDG),
EdL = {(ed(u, v), ed(v, w)) ∈ Ed(SDG)× Ed(SDG) | u, v, w ∈ V, u ̸= w}. (7)

The Perron-Frobenius operator T = [Ti,j ]|VL|×|VL| of G(V,E) is the adjacency
matrix of the associated directed line graph OLG(VL, EdL). �
Definition 2 The positive support S+(M ) = [si,j ]m×n of the matrix M =
[Mi,j ]m×n is defined to be a matrix with entries

si,j =

{
1, Mi,j > 0,
0, otherwise,

(8)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n. �
Based on the definition in [20], we can re-define the Perron-Frobenius op-

erator in terms of the unitary matrix of the discrete-time quantum walk. Let
G(V,E) be a sample graph and U be the unitary matrix associated with the
discrete-time quantum walk on G(V,E). The Perron-Frobenius operator U of
G(V,E) is

T = S+(U⊤). (9)

Def.1, Def.2 and Eq.(9) show us how the discrete-time quantum walk and the
Perron-Frobenius operator (i.e., the directed line graph) are co-related. For a
graph G(V,E) and its directed line graph OLG(VL, EdL), VL is just the s-
tate space of the discrete-time quantum walk on G(V,E), i.e., each vertex in



OLG(VL, EdL) corresponds to a unique directed arc residing on the correspond-
ing edge in G(V,E). Moreover, if there is a directed edge from a vertex vL ∈ VL
to a vertex uL ∈ VL, the transition of the quantum walk on G(V,E) is allowed
from the arc corresponding to vL to the arc corresponding to uL, and vice versa.
As a result, the discrete-time quantum walk on a graph can also be seen as a
walk performed on its directed line graph. The state space of the walk is the ver-
tex set of the line graph, and the transition of the walk relies on the connections
between pairs of vertices in the line graph.

Furthermore, in [10, 20], we have observed that the directed line graph of a
graph possesses some interesting properties that are not available on the original
graph. For instance, compared to the original graph the line graph spans a higher
dimensional feature space and thus exposes richer graph characteristics. This is
because the cardinality of the vertex set for the line graph is much greater than,
or at least equal to, that of the original graph. This property suggests that the
discrete-time quantum walk may reflect richer graph characteristics than the
continuous-time quantum walk on the original graph.

Finally, since the discrete-time quantum walk can be seen as a walk on the
line graph and the state space of the walk is the vertex set of the line graph, we
propose to use the rooting of the in-degree distribution of the line graph as the
initial state of the discrete-time quantum walk.

3 A Quantum Jensen-Shannon Graph Kernel

In this section, we develop a new quantum Jensen-Shannon kernel for graphs by
using the quantum Jensen-Shannon divergence and the discrete-time quantum
walk. We commence by reviewing the concept of the classical and quantum
Jensen-Shannon divergence. Finally, we give the definition of the new kernel.

3.1 Classical and Quantum Jensen-Shannon Divergence

The classical Jensen-Shannon divergence is a non-extensive mutual information
measure defined between probability distributions. Consider two (discrete) prob-
ability distributions P = (p1, . . . , pa, . . . , pA) and Q = (q1, . . . , qb, . . . , qB), then
the classical Jensen-Shannon divergence between P and Q is defined as

DJS(P,Q) = HS

(P +Q
2

)
− 1

2
HS(P)− 1

2
HS(Q), (10)

where HS(P) =
∑A

a=1 pa log pa is the Shannon entropy of distribution P. DJS is
always well defined, symmetric, negative definite and bounded, i.e., 0 ≤ DJS ≤ 1.

The quantum Jensen-Shannon divergence has recently been developed as a
generalization of the classical Jensen-Shannon divergence to quantum states by
Lamberti et al. [17]. Given two density operators ρ and σ, the quantum Jensen-
Shannon divergence between them is defined as

DQJS(ρ, σ) = HN

(ρ+ σ

2

)
− 1

2
HN (ρ)− 1

2
HN (σ). (11)



DQJS is always well defined, symmetric, negative definite and bounded, i.e.,
0 ≤ DQJS ≤ 1 [17].

3.2 A Quantum Kernel Using the Discrete-time Quantum Walk

We propose a novel quantum Jensen-Shannon kernel for graphs using the quan-
tum Jensen-Shannon divergence associated with the discrete-time quantum walk.
Given a set of graphs {G1, . . . , Ga, . . . , Gb, . . . , GN}, we simulate a discrete-time
quantum walks on each Ga(Va, Ea) and Gb(Vb, Eb) for t = 0, 1, . . . , T ). Then,
the density matrices ρSG;a and σT

G;b of Ga(Va, Ea) and Gb(Vb, Eb) can be comput-

ed using Eq.(5). With the density matrices ρTG;a and σT
G;b to hand, the quantum

Jensen-Shannon divergence DQJS(ρG;a, σG;b) is computed as in Eq.(11). Finally,
the quantum Jensen-Shannon kernel kQJS(Ga, Gb) between the pair of graphs
Ga(Va, Ea) and Gb(Vb, Eb) is defined as

kQJS(Ga, Gb) = exp(−αDQJS(ρ
T
G;a, σ

T
G;b))

= exp{−αHN

(ρTG;a + σT
G;b

2

)
+ α

1

2
HN (ρTG;a) + α

1

2
HN (σT

G;b)}.
(12)

where
ρT
G;a+σT

G;b

2 is a mixed state, α is a decay factor satisfying 0 ≤ α ≤ 1, and
HN (·) is the von Neumann entropy defined in Eq.(6). For simplification, in this
work we set α as 1.
Lemma The quantum Jensen-Shannon kernel kQJS is positive definite pd.
Proof This follows the definitions in [17, 18]. The quantum Jensen-Shannon
divergence between a pair of density operators ρTG;a and σT

G;b is symmetric and
is a dissimilarity measure. Thus, the proposed quantum kernel kQJS that is
computed by exponentiating the negative divergence measure is pd. �

For a pair of graphs, each of which has n vertices and m edges, the quantum
kernel kQJS requires time complexity O(m3). This is because the state space of
the discrete-time quantum walk for a graph corresponds to the vertex set of its
line graph. The number of the vertex in the line graph is double in the number
of the edges of the original graph, i.e., the size of the unitary matrix or the
density matrix for a graph is m ×m. The von Neumann entropy relies on the
eigen decomposition of the density matrix, and thus requires time complexity
O(m3). As a result, the whole time complexity of the kernel kQJS is O(m3).

4 Experimental Evaluations

4.1 Graph Datasets

We explore our new kernel on five standard graph datasets from bioinformatics
and computer vision. These datasets include: MUTAG, PPIs, PTC(MR), COIL5
and Shock. Some statistic concerning the datasets are given in Table 1.



MUTAG: The MUTAG dataset consists of graphs representing 188 chemical
compounds, and aims to predict whether each compound possesses mutagenicity.
PPIs: The PPIs dataset consists of protein-protein interaction networks (PPIs).
The graphs describe the interaction relationships between histidine kinase in
different species of bacteria. There are 219 PPIs in this dataset and they are
collected from 5 different kinds of bacteria. Here we select two kinds of bacteria,
i.e., Proteobacteria40 PPIs and Acidobacteria46 PPIs, as the testing graphs.
PTC: The PTC (The Predictive Toxicology Challenge) dataset records the car-
cinogenicity of several hundred chemical compounds for male rats (MR), female
rats (FR), male mice (MM) and female mice (FM). These graphs are very small
(i.e., 20 − 30 vertices), and sparse (i.e., 25 − 40 edges. We select the graphs of
male rats (MR) for evaluation. There are 344 test graphs in the MR class.
COIL5:We create a dataset referred to as COIL5 from the COIL image database.
The COIL database consists of images of 100 3D objects. In our experiments, we
use the images for the first five objects. For each of these objects we employ 72
images captured from different viewpoints. For each image we first extract cor-
ner points using the Harris detector, and then establish Delaunay graphs based
on the corner points as vertices. Each vertex is used as the seed of a Voronoi
region, which expands radially with a constant speed. The linear collision fronts
of the regions delineate the image plane into polygons, and the Delaunay graph
is the region adjacency graph for the Voronoi polygons.
Shock: The Shock dataset consists of graphs from the Shock 2D shape database.
Each graph is a skeletal-based representation of the differential structure of the
boundary of a 2D shape. There are 150 graphs divided into 10 classes.

4.2 Experiments on Standard Graph Datasets from Bioinformatics

Experimental Setup:We compare the performance of our new quantum Jensen-
Shannon kernel (QJSD) with that of several alternative state-of-the-art graph
kernels. These kernels include 1) the unaligned quantum Jensen-Shannon k-
ernel (UQJS) associated with the continuous-time quantum walk [14], 2) the
Weisfeiler-Lehman subtree kernel (WL) [7], 3) the shortest path graph kernel
(SPGK) [4], 4) the Jensen-Shannon graph kernel associated with the steady s-
tate random walk (JSGK) [11], 5) the backtrackless random walk kernel using
the Ihara zeta function based cycles (BRWK) [5], and 6) the random-walk graph
kernel [3]. For our QJSD kernel, we let T = 40. In fact, as we let T > 30
we observe that the von Neumann entropy of the density matrices reaches an
asymptote. While the optimal procedure would be that of selecting the value of
T through cross-validation, the computational complexity of the kernel makes
it unfeasible to do so. Moreover, previous work has shown that letting T → ∞
allows us to achieve a good trade-off in terms of accuracy and computational
effort [16]. For the Weisfeiler-Lehman subtree kernel, we set the dimension of the

Table 1. Information of the Graph based Datasets.

Datasets MUTAG PPIs PTC COIL5 Shock

Max # vertices 28 232 109 241 33
Min # vertices 10 3 2 72 4
Ave # vertices 17.93 109.60 25.60 144.90 13.16
# graphs 188 86 344 360 150
# classes 2 2 2 5 10



Table 2. Accuracy Comparisons (In % ± Standard Errors) on Graph Datasets.

Datasets MUTAG PPIs PTC(MR) COIL5 Shock

QJSD 83.16 ± .86 70.57 ± 1.20 58.23 ± .80 69.78 ± .37 44.86 ± .64
QJSU 82.72 ± .44 69.50 ± 1.20 56.70 ± .49 70.11 ± .61 40.60 ± .92
WL 82.05 ± .57 78.50 ± 1.40 56.05 ± .51 33.16 ± 1.01 36.40 ± 1.00
SPGK 83.38 ± .81 61.12 ± 1.09 56.55 ± .53 69.66 ± .52 37.88 ± .93
JSGK 83.11 ± .80 57.87 ± 1.36 57.29 ± .41 69.13 ± .79 21.73 ± .76
BRWK 77.50 ± .75 53.50 ± 1.47 53.97 ± .31 14.63 ± .21 0.33 ± .37
RWGK 80.77 ± .72 55.00 ± .88 55.91 ± .37 20.80 ± .47 2.26 ± 1.01

Weisfeiler-Lehman isomorphism as 10. Based on the definition in [7], this means
that we compute 10 different Weisfeiler-Lehman subtree kernel matrices (i.e.,
k(1), k(2), . . . , k(10)) with different subtree heights h(h = 1, 2, . . . , 10), respec-
tively. Note that, the WL and SPGK kernels are able to accommodate attributed
graphs. In our experiments, we use the vertex degree as a vertex label for the
WL and SPGK kernels.

Given these datasets and kernels, we perform a 10-fold cross-validation using
a C-Support Vector Machine (C-SVM) to evaluate the classification accuracies
of the different kernels. More specifically, we use the C-SVM implementation of
LIBSVM. For each class, we use 90% of the samples for training and the remain-
ing 10% for testing. The parameters of the C-SVMs are optimized separately for
each dataset. We report the average classification accuracies (± standard error)
of each kernel in Table 2. Results: Overall, in terms of classification accuracies
our QJSK kernel outperforms or is competitive with the state-of-the-art kernels.
In particular, the classification accuracies of our quantum kernel are significantly
better than those of the graph kernels based on the classical random walk and
the backtrackless random walk, over all the datasets. This suggests that our ker-
nel using discrete-time quantum walks has better ability of capturing the graph
characteristics. With respect to the quantum Jensen-Shannon kernel based on
the continuous-time quantum walk, we observe a significant improvement on the
PTC and Shock datasets. This is because the discrete-time quantum walk can
be seen as a walk on line graphs, and reflects richer graph characteristics than
the continuous-time quantum walk on the original graphs.

5 Conclusion

In this paper, we develop a new quantum Jensen-Shannon kernel for graphs by
using the quantum Jensen-Shannon divergence and the discrete-time quantum
walk. Our new quantum kernel can reflect richer graph characteristics than our
previous quantum Jensen-Shannon kernel using the continuous-time quantum
walk. Experiments demonstrate the effectiveness of the new quantum kernel.
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