1,996 research outputs found

    BlogForever D2.6: Data Extraction Methodology

    Get PDF
    This report outlines an inquiry into the area of web data extraction, conducted within the context of blog preservation. The report reviews theoretical advances and practical developments for implementing data extraction. The inquiry is extended through an experiment that demonstrates the effectiveness and feasibility of implementing some of the suggested approaches. More specifically, the report discusses an approach based on unsupervised machine learning that employs the RSS feeds and HTML representations of blogs. It outlines the possibilities of extracting semantics available in blogs and demonstrates the benefits of exploiting available standards such as microformats and microdata. The report proceeds to propose a methodology for extracting and processing blog data to further inform the design and development of the BlogForever platform

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    Sample-based XPath Ranking for Web Information Extraction

    Get PDF
    Web information extraction typically relies on a wrapper, i.e., program code or a configuration that specifies how to extract some information from web pages at a specific website. Manually creating and maintaining wrappers is a cumbersome and error-prone task. It may even be prohibitive as some applications require information extraction from previously unseen websites. This paper approaches the problem of automatic on-the-fly wrapper creation for websites that provide attribute data for objects in a ‘search – search result page – detail page’ setup. The approach is a wrapper induction approach which uses a small and easily obtainable set of sample data for ranking XPaths on their suitability for extracting the wanted attribute data. Experiments show that the automatically generated top-ranked XPaths indeed extract the wanted data. Moreover, it appears that 20 to 25 input samples suffice for finding a suitable XPath for an attribute

    An integration-oriented ontology to govern evolution in big data ecosystems

    Get PDF
    Big Data architectures allow to flexibly store and process heterogeneous data, from multiple sources, in their original format. The structure of those data, commonly supplied by means of REST APIs, is continuously evolving. Thus data analysts need to adapt their analytical processes after each API release. This gets more challenging when performing an integrated or historical analysis. To cope with such complexity, in this paper, we present the Big Data Integration ontology, the core construct to govern the data integration process under schema evolution by systematically annotating it with information regarding the schema of the sources. We present a query rewriting algorithm that, using the annotated ontology, converts queries posed over the ontology to queries over the sources. To cope with syntactic evolution in the sources, we present an algorithm that semi-automatically adapts the ontology upon new releases. This guarantees ontology-mediated queries to correctly retrieve data from the most recent schema version as well as correctness in historical queries. A functional and performance evaluation on real-world APIs is performed to validate our approach.Peer ReviewedPostprint (author's final draft

    An Integration-Oriented Ontology to Govern Evolution in Big Data Ecosystems

    Full text link
    Big Data architectures allow to flexibly store and process heterogeneous data, from multiple sources, in their original format. The structure of those data, commonly supplied by means of REST APIs, is continuously evolving. Thus data analysts need to adapt their analytical processes after each API release. This gets more challenging when performing an integrated or historical analysis. To cope with such complexity, in this paper, we present the Big Data Integration ontology, the core construct to govern the data integration process under schema evolution by systematically annotating it with information regarding the schema of the sources. We present a query rewriting algorithm that, using the annotated ontology, converts queries posed over the ontology to queries over the sources. To cope with syntactic evolution in the sources, we present an algorithm that semi-automatically adapts the ontology upon new releases. This guarantees ontology-mediated queries to correctly retrieve data from the most recent schema version as well as correctness in historical queries. A functional and performance evaluation on real-world APIs is performed to validate our approach.Comment: Preprint submitted to Information Systems. 35 page

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    Declarative approach to data extraction of web pages

    Get PDF
    Thesis submitted to Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, in partial fulfilment of the requirements for the degree of Master in Computer ScienceIn the last few years, we have been witnessing a noticeable WEB evolution with the introduction of significant improvements at technological level, such as the emergence of XHTML, CSS,Javascript, and Web2.0, just to name ones. This, combined with other factors such as physical expansion of the Web, as well as its low cost, have been the great motivator for the organizations and the general public to join, with a consequent growth in the number of users and thus influencing the volume of the largest global data repository. In consequence, there was an increasing need for regular data acquisition from the WEB, and because of its frequency, length or complexity, it would only be viable to obtain through automatic extractors. However, two main difficulties are inherent to automatic extractors. First, much of the Web's information is presented in visual formats mainly directed for human reading. Secondly, the introduction of dynamic webpages, which are brought together in local memory from different sources, causing some pages not to have a source file. Therefore, this thesis proposes a new and more modern extractor, capable of supporting the Web evolution, as well as being generic, so as to be able to be used in any situation, and capable of being extended and easily adaptable to a more particular use. This project is an extension of an earlier one which had the capability of extractions on semi-structured text files. However it evolved to a modular extraction system capable of extracting data from webpages, semi-structured text files and be expanded to support other data source types. It also contains a more complete and generic validation system and a new data delivery system capable of performing the earlier deliveries as well as new generic ones. A graphical editor was also developed to support the extraction system features and to allow a domain expert without computer knowledge to create extractions with only a few simple and intuitive interactions on the rendered webpage
    corecore