1,004 research outputs found

    Translation of EEG spatial filters from resting to motor imagery using independent component analysis.

    Get PDF
    Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) often use spatial filters to improve signal-to-noise ratio of task-related EEG activities. To obtain robust spatial filters, large amounts of labeled data, which are often expensive and labor-intensive to obtain, need to be collected in a training procedure before online BCI control. Several studies have recently developed zero-training methods using a session-to-session scenario in order to alleviate this problem. To our knowledge, a state-to-state translation, which applies spatial filters derived from one state to another, has never been reported. This study proposes a state-to-state, zero-training method to construct spatial filters for extracting EEG changes induced by motor imagery. Independent component analysis (ICA) was separately applied to the multi-channel EEG in the resting and the motor imagery states to obtain motor-related spatial filters. The resultant spatial filters were then applied to single-trial EEG to differentiate left- and right-hand imagery movements. On a motor imagery dataset collected from nine subjects, comparable classification accuracies were obtained by using ICA-based spatial filters derived from the two states (motor imagery: 87.0%, resting: 85.9%), which were both significantly higher than the accuracy achieved by using monopolar scalp EEG data (80.4%). The proposed method considerably increases the practicality of BCI systems in real-world environments because it is less sensitive to electrode misalignment across different sessions or days and does not require annotated pilot data to derive spatial filters

    GUIDER: a GUI for semiautomatic, physiologically driven EEG feature selection for a rehabilitation BCI

    Get PDF
    GUIDER is a graphical user interface developed in MATLAB software environment to identify electroencephalography (EEG)-based brain computer interface (BCI) control features for a rehabilitation application (i.e. post-stroke motor imagery training). In this context, GUIDER aims to combine physiological and machine learning approaches. Indeed, GUIDER allows therapists to set parameters and constraints according to the rehabilitation principles (e.g. affected hemisphere, sensorimotor relevant frequencies) and foresees an automatic method to select the features among the defined subset. As a proof of concept, we compared offline performances between manual, just based on operator’s expertise and experience, and GUIDER semiautomatic features selection on BCI data collected from stroke patients during BCI-supported motor imagery training. Preliminary results suggest that this semiautomatic approach could be successfully applied to support the human selection reducing operator dependent variability in view of future multi-centric clinical trials

    Extracting optimal tempo-spatial features using local discriminant bases and common spatial patterns for brain computer interfacing

    Get PDF
    Brain computer interfaces (BCI) provide a new approach to human computer communication, where the control is realised via performing mental tasks such as motor imagery (MI). In this study, we investigate a novel method to automatically segment electroencephalographic (EEG) data within a trial and extract features accordingly in order to improve the performance of MI data classification techniques. A new local discriminant bases (LDB) algorithm using common spatial patterns (CSP) projection as transform function is proposed for automatic trial segmentation. CSP is also used for feature extraction following trial segmentation. This new technique also allows to obtain a more accurate picture of the most relevant temporal–spatial points in the EEG during the MI. The results are compared with other standard temporal segmentation techniques such as sliding window and LDB based on the local cosine transform (LCT)

    Wavelet Lifting over Information-Based EEG Graphs for Motor Imagery Data Classification

    Get PDF
    The imagination of limb movements offers an intuitive paradigm for the control of electronic devices via brain computer interfacing (BCI). The analysis of electroencephalographic (EEG) data related to motor imagery potentials has proved to be a difficult task. EEG readings are noisy, and the elicited patterns occur in different parts of the scalp, at different instants and at different frequencies. Wavelet transform has been widely used in the BCI field as it offers temporal and spectral capabilities, although it lacks spatial information. In this study we propose a tailored second generation wavelet to extract features from these three domains. This transform is applied over a graph representation of motor imaginary trials, which encodes temporal and spatial information. This graph is enhanced using per-subject knowledge in order to optimise the spatial relationships among the electrodes, and to improve the filter design. This method improves the performance of classifying different imaginary limb movements maintaining the low computational resources required by the lifting transform over graphs. By using an online dataset we were able to positively assess the feasibility of using the novel method in an online BCI context

    Spatial Filtering Pipeline Evaluation of Cortically Coupled Computer Vision System for Rapid Serial Visual Presentation

    Get PDF
    Rapid Serial Visual Presentation (RSVP) is a paradigm that supports the application of cortically coupled computer vision to rapid image search. In RSVP, images are presented to participants in a rapid serial sequence which can evoke Event-related Potentials (ERPs) detectable in their Electroencephalogram (EEG). The contemporary approach to this problem involves supervised spatial filtering techniques which are applied for the purposes of enhancing the discriminative information in the EEG data. In this paper we make two primary contributions to that field: 1) We propose a novel spatial filtering method which we call the Multiple Time Window LDA Beamformer (MTWLB) method; 2) we provide a comprehensive comparison of nine spatial filtering pipelines using three spatial filtering schemes namely, MTWLB, xDAWN, Common Spatial Pattern (CSP) and three linear classification methods Linear Discriminant Analysis (LDA), Bayesian Linear Regression (BLR) and Logistic Regression (LR). Three pipelines without spatial filtering are used as baseline comparison. The Area Under Curve (AUC) is used as an evaluation metric in this paper. The results reveal that MTWLB and xDAWN spatial filtering techniques enhance the classification performance of the pipeline but CSP does not. The results also support the conclusion that LR can be effective for RSVP based BCI if discriminative features are available

    Is implicit motor imagery a reliable strategy for a brain computer interface?

    Get PDF
    Explicit motor imagery (eMI) is a widely used brain computer interface (BCI) paradigm, but not everybody can accomplish this task. Here we propose a BCI based on implicit motor imagery (iMI). We compared classification accuracy between eMI and iMI of hands. Fifteen able bodied people were asked to judge the laterality of hand images presented on a computer screen in a lateral or medial orientation. This judgement task is known to require mental rotation of a person’s own hands which in turn is thought to involve iMI. The subjects were also asked to perform eMI of the hands. Their electroencephalography (EEG) was recorded. Linear classifiers were designed based on common spatial patterns. For discrimination between left and right hand the classifier achieved maximum of 81 ± 8% accuracy for eMI and 83 ± 3% for iMI. These results show that iMI can be used to achieve similar classification accuracy as eMI. Additional classification was performed between iMI in medial and lateral orientations of a single hand; the classifier achieved 81 ± 7% for the left and 78 ± 7% for the right hand which indicate distinctive spatial patterns of cortical activity for iMI of a single hand in different directions. These results suggest that a special brain computer interface based on iMI may be constructed, for people who cannot perform explicit imagination, for rehabilitation of movement or for treatment of bodily spatial neglect

    Entropy-based EEG Time Interval Selection for Improving Motor Imagery Classification

    Get PDF
    Classification of different motor imagery tasks using electroencephalogram (EEG) signals is challenging, since EEG presents individualized temporal and spatial characteristics that are contaminated by noise, artifacts and irrelevant mental activities. In most applications, the EEG time interval on which feature extraction algorithms operate is fixed for all subjects, whereas the start time and the duration of motor imagery-based brain activities can vary from subject to subject. To improve the classification accuracy, this paper proposes a novel entropy-based algorithm to accurately identify the time interval that motor imagery has been performed. The proposed algorithm searches through different time intervals across trials and finds the one with minimum irregularity. The hypothesis behind the proposed algorithm is that when motor imagery is performed, the activities of the neurons in the motor cortex tend to become more synchronized and less irregular. We evaluate our proposed algorithm using a publicly available motor imagery-based BCI dataset. The experimental results show that the proposed algorithm selects the EEG intervals leading to superior BCI performance compared to fixed EEG intervals that are commonly used for all subjects

    Information Theoretic Approaches for Motor-Imagery BCI Systems: Review and Experimental Comparison

    Get PDF
    Brain computer interfaces (BCIs) have been attracting a great interest in recent years. The common spatial patterns (CSP) technique is a well-established approach to the spatial filtering of the electroencephalogram (EEG) data in BCI applications. Even though CSP was originally proposed from a heuristic viewpoint, it can be also built on very strong foundations using information theory. This paper reviews the relationship between CSP and several information-theoretic approaches, including the Kullback–Leibler divergence, the Beta divergence and the Alpha-Beta log-det (AB-LD)divergence. We also revise other approaches based on the idea of selecting those features that are maximally informative about the class labels. The performance of all the methods will be also compared via experiments.Gobierno Español MICINN TEC2014-53103-
    corecore