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Abstract

A motor imagery (MI) based brain-computer interface (BCI) decodes the mo-
tor intention from the electroencephalogram (EEG) of a subject and trans-
lates this into a control signal. These intentions are hence classified as dif-
ferent cognitive tasks, e.g. left and right hand movements. A challenge in
developing a BCI is handling the high dimensionality of the data recorded
from multichannel EEG signals which are highly subject-specific. Designing a
portable BCI whilst minimizing EEG channel number is a challenge. To this
end, this paper presents a method to reduce the channel count with the goal
of reducing computational complexity whilst maintaining a sufficient level of
accuracy, by utilising an automatic subject-specific channel selection method
created using the Pearson correlation coefficient. This method computes the
correlation between EEG signals and helps to select highly correlated EEG
channels for a particular subject without compromising classification accu-
racy (CA). Common spatial patterns (CSP) are used to analyse imagined
left and right hand movements and the method is evaluated on both BCI
Competition III Dataset IIIa and right hand and foot imagined tasks on BCI
Competition III Dataset IVa. For both datasets, a minimum number of EEG
channels are identified with an average channel reduction of 65.45% whilst
demonstrating an increase of >5% in CA using channel Cz as a reference.
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1. Introduction

A brain-computer interface (BCI) aims to provide a communication path-
way for severely motor impaired people whose natural neuromuscular path-
ways have become damaged [1] and translates neurophysiological signals into
commands used to control external mechanisms [2]. One common example of
a BCI system is based upon imagined movement or motor imagery (MI) and
does not require actual body movement [3] instead using the recorded neu-
rophysiological activity associated with imagined movement as control com-
mands [4]. Some BCI systems record multichannel electroencephalography
(EEG)/magnetoencephalography (MEG) data to achieve good performance
but many of these recorded channels will contain irrelevant information and
noise [5, 6, 7] which requires a preprocessing step to remove [8, 9, 10]. There
is often little evidence that exists on the location and number of channels
needed for a particular MI task to achieve optimal performance. Addition-
ally, the number of channels and their location is also likely to vary between
individuals meaning that even if an optimal subset of channels is found for
one subject, this same subset is unlikely to produce the same performance
for a different subject. Producing a subset of channels enables the rejection
of noisy channels whilst allowing for a similar if not higher level of classifi-
cation accuracy with the benefit of reduced processing time, equipment and
computational cost. Thus, this paper presents an algorithm which can auto-
matically select subject specific subsets of channels to enhance classification
accuracy of MI tasks.

To date, there have been a number of channel selection methods discussed
in the literature based with on either manual or automatic techniques. Chan-
nels are often simply manually selected based on prior neurophysiological
knowledge. For instance, MI based BCI systems generally focus on the sen-
sorimotor cortex and channels around C3, C4, and Cz of the 10-20 system
where most movement-related activity tends to occur [8, 11, 12].

If channels are not selected manually, then they may be selected using a
filter-based technique, wrapper-based technique, or a combination of these.
In wrapper-based techniques, potentially useful subsets of channels are eval-
uated and subsequently selected using a specific classifier through training
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and testing. However, this technique does tend to overfit and is more expen-
sive in terms of computation when compared against filter-based methods.
He et al. [13] used Common Spatial Patterns (CSP) and a Bayes classifier to
reduce their channel count from 59 to an average of 33 whilst reporting an
accuracy of approximately 95%. Whereas Wang et al. [14] used a Fisher dis-
criminant classifier and CSP to show accuracies above 90% for two subjects
using just four channels.

Filter-based techniques, on the other hand, tend to be faster, do not
require a classifier, and are scalable. However, these benefits come with
the disadvantage of a generally lower accuracy than wrapper-based methods.
Yang et al. [15] were able to reduce their channel count from 118 to 11
without significantly affecting accuracy, whilst Yang et al. [16] used a genetic
algorithm in combination with an artificial neural network (ANN) to give an
accuracy of 80% with 10 channels and 86% from just 6 channels using another
dataset. Recently, Gaur et al. [10, 17] randomly selected fifteen channels from
a dataset of twenty-two channels over the motor cortex region. This approach
helped them to achieve a better classification accuracy than when using all
twenty-two channels. In a more recent study, EEG signals were classified into
left hand and right MI task using tangent space based transfer learning to
enhance the generalized capability of BCI applications [18]. For a review of
channel selection algorithms specific to EEG, readers can refer to [19] whilst
[20] provides a more recent survey of MI specific filtering techniques.

Various MI related channel selection methods have been proposed [21,
22, 23, 24, 25]. In [21], the CSP-rank identifies the most relevant channels
for each MI task in all frequency bands and features are only extracted from
selected channels in those frequency bands utilizing the existing capability
of the least absolute shrinkage and selection operator (LASSO) algorithm
[22]. In another study, Park and Chung [23] performed channel selection
using a frequency-optimized local region CSP approach using the variance
ratio dispersion score (VRDS) and inter-class feature distance (ICFD) of
small EEG channel groups. Another research group [24], applied class cor-
relation, ReliefF, random forest feature ranking, and infinite latent feature
selection (ILFS) in multiple frequency bands to identify relevant channels.
Using a four-class MEG MI BCI dataset a channel group was formed based
on strongly correlated channels whereas Park et al. [25], selected the group
with the highest Fisher score as a channel subset using a filter-bank CSP
technique.

This paper aims to implement channel reduction through subject-specific

3



channel selection. The study aids in the selection of highly correlated EEG
channels against a reference channel for each subject without compromising
classification accuracy. A subject-specific subset of channels allows for a more
performant classifier whilst allowing for a reduction in both computational
complexity and hence time. Three variations of a novel channel selection
technique are presented to automatically select these channels, taking as a
reference channel C3, C4, or Cz for each subject.

The aims of the paper are thus:

1. To eliminate the non-discriminative information from discriminative
information present in the EEG channels;

2. To implement subject-specific EEG channel selection where EEG chan-
nels are automatically selected based on the Pearson correlation coef-
ficient method using a reference channel;

3. To evaluate the performance of the proposed methods on different MI
tasks because in each task EEG signals are measured from the same
cortical areas;

4. To find whether it is possible to achieve better classification accuracy
using fewer monopolar EEG channels;

5. To report the classification accuracy when single trials are classified.

The paper is organized as follows: Section 2 describes the dataset, signal
processing and feature extraction methods including correlation and CSP;
Section 3 presents and discusses the results which includes a comparison of
results reported in the literature using the same data-sets [26], whilst Section
4 concludes the study.

2. Methods

2.1. Dataset

The BCI Competition III Dataset IVa [22] was used for this study. The
dataset contains multichannel EEG recorded from five healthy subjects seated
in a comfortable chair with their arms on armrests. The dataset contains 118
EEG signals which were then band-pass filtered from 0.05 to 200 Hz then
sampled at a frequency of 1000 Hz and further down-sampled to 100 Hz.
Visual cues were shown to subjects to perform three different types of MI
tasks for a duration of 3.5 s: (L) left hand, (R) right hand, or (F) foot. An
inter-trial interval of approximately 2 s was allowed for participants to take
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Figure 1: A block diagram detailing the signal processing pipeline from both a training
and testing perspective.

a short break. For this study, classification of right hand and foot MI tasks
was used to show the effectiveness of the proposed method compared to the
results from a group [26] who studied the same classification problem.

Table 1: Trial information for BCI Competition III Dataset IVa.

Subject Training trials Testing trials
A01 168 112
A02 224 56
A03 84 196
A04 56 224
A05 28 252

A total of 280 trials were available for each of the five subjects with 118
EEG channels recorded. Table 1 displays the number of training trials (la-
belled) and test trials (unlabelled) for all five subjects. A detailed breakdown
of the training and testing trials for each subject is given in Table 1.

BCI Competition III Dataset IIIa [27] was also used which comprises
EEG signals recorded from three subjects, wherein subjects perform right
hand, left hand, tongue, and foot MI tasks. Sixty EEG signals were recorded
for each subject. For this study, only EEG signals related to left and right
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hand MI tasks were considered. For each subject, a training (labelled) and
testing (unlabelled) set were used for this classification problem.

Table 2: Trial information for BCI Competition III Dataset IIIa.

Subject Training trials Testing trials
B01 45 45
B02 30 30
B03 30 30

Each set consisted of 45 trials per set for subject B1 whilst subjects B2
and B3 contained 30 trials. A detailed breakdown of the training and testing
sets for each subject may be obtained from Table 2.

2.2. Signal Processing

A BCI consists of several different signal processing stages as illustrated
in Fig. 2. This paper will focus on the feature extraction stage by separating
and eliminating non-discriminative information from discriminative informa-
tion present in the EEG channels. This is performed by selecting appropriate
EEG channels and hence performing dimensionality reduction, as a higher
number of channels means a higher dimensional signal and therefore a higher
subsequent number of potential features. As discussed earlier there have been
several attempts to reduce this dimensionality as evidenced in the literature.
This paper uses the Pearson correlation coefficient to reduce this dimension-
ality and hence the computational complexity with the aim of preserving or
improving classification accuracy.

2.2.1. Feature Extraction

Pearson’s Correlation Coefficient (CC) Features are extracted by
taking of one of three channels, i.e. C3, C4, or Cz, as a reference and its
correlation with the remaining channels is calculated. Channels with a cor-
relation value of >0.5, >0.6, >0.7, or >0.8 are selected and the rest of the
channels are discarded (Fig. 1). More details about the number of channels
selected for each subject are reported in the results section.

The discrete classification of each evaluation trial is assigned a class. For
each trial in the evaluation data for a particular subject, the features are
extracted using a time segment between 0.5 s to 2.5 s following the cue
having advised the subject to imagine a particular MI task (similar to the
BCI Competition III Dataset IVa winner). With each CSP algorithm, 3 pairs
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Figure 2: An overview of the brain-computer interface (BCI) closed loop.

of spatial filters (sf) are used to extract features (sf = 3), as recommended
in [26, 28]. The extracted features are classified using a linear discriminant
analysis (LDA) algorithm, more details of which may be obtained from [29].

The algorithm for the proposed method is found below:

Algorithm 1 Proposed subject specific channel selection algorithm

Input: Let X denote the signal in time domain
Output: Subject specific channels selected based on correlation taking

C3/C4/Cz as a reference channels separately
1: For each reference channel selected from C3/C4/Cz
2: For each subject in time domain
3: Using the selected as reference channel, compute correlation with all the

remaining channels in training session
4: Select all channels with correlation > 0.7 in the training session and

simultaneously select the same identified channels in evaluation session
5: return Channels selected for each subject with correlation > 0.7 in

training session and evaluation session

Common Spatial Pattern (CSP) The common spatial patterns (CSP)
algorithm aims to learn spatial filters which minimise the variance of a class
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while maximising the variance of another. It is often helpful to bandpass
filter the multichannel EEG signals [28, 12]. The band-power in any given
frequency band gives the variance of the filtered EEG signals in the selected
band. The CSP method obtains optimal discrimination for MI based BCI
tasks based on band-power features [12]. The CSP method uses the spatial
filters w by optimizing the function as follows:

Q(w) =
wTP T

1 P1w

wTP T
2 P2w

=
wTC1w

wTC2w
(1)

where T signifies the transpose of the matrix. Pi gives the training data
matrix with sample points as rows and channels as columns. The spatial
covariance matrix for a particular class i is Ci.

There are many ways to solve this optimisation problem but the optimi-
sation technique used in this work is solved by initially visualising that the
function Q(w) is unchanged, if the filter w is rescaled. In fact Q(kw) = Q(w),
where k gives a real constant indicating the rescaling of filter w is arbitrary.
Therefore, minimising Q(w) is comparable to minimising wTC1w subject to
the constraint wTC2w = 1 as there is always a possible way to find a rescaling
factor of w such that wTC2w = 1. This constrained optimisation problem
amounts to minimising the following function using the Lagrange multiplier
method:

L(β, w) = wTC1w − β(wTC2w − 1) (2)

The derivative of L with regard to w is 0 and the filters w minimising L
are such that :

∂L

∂w
= 2wTC1 − 2βwTC2 = 0⇐⇒ C1w = βC2w ⇐⇒ C−1

2 C1w = βw (3)

Now, this is a standard eigenvalue problem. Hence, the eigenvectors of
Z = C−1

2 C1 are used to obtain the spatial filters minimising Eq. 1 corre-
sponding to both the largest and the lowest eigenvalues. The features are
extracted as the logarithm of EEG signal variance in the selected band after
the projection of filters w using the CSP matrix [26].

3. Results and Discussion

Results are presented for classification of right hand and foot MI tasks
and compared with those from another group [26] who studied the same
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classification problem.
The calculated feature set was obtained by taking sf=3 after channel

selection using the above described method helping to attain highly separable
features for all subjects. As an example, Fig. 4 shows the box plot of feature
separability (p < 0.05) for subject 5 in the training session using a five-fold
cross validation scheme for right hand and foot MI tasks.

It should be noted that the correlation of 0.7 was identified after an initial
investigation by using one of the channels C3, C4, or Cz as a reference result-
ing in our three proposed methods: Proposed method 1 (PM1) using C3 as a
reference, proposed method 2 (PM2) using C4 as a reference, and proposed
method 3 (PM3) using Cz as a reference. Although the correlation coefficient
was also computed between the range of 0.5 to 0.8, it was determined that
the correlation value of 0.7 gave the best results without compromising the
classification accuracy (CA). The results obtained in the training session with
five-fold cross-validation with correlation coefficient(>0.7) started showing a
decrease in CA except for one of the nine subjects with the proposed methods
(PM1-C3 and PM2-C4) as shown in Table 3. For demonstration, the CA and
channels selected have been shown in Table 3 and Table 4 respectively for
correlation coefficients from 0.5 to 0.8. The bold values show the threshold
of 0.7 which gives optimum results without compromising the classification
ACC. See also Fig. 3 which shows cross-validation classification ACC plotted
against total channel number (CH) for each correlation coefficient, i.e. 0.5,
0.6, 0.7, 0.8.

Table 3: Classification ACC in training session of proposed method with 5-fold cross
validation. CC refers to correlation coefficient.

Subject
PM1-C3 (CC) PM2-C4 (CC) PM3-Cz (CC)

0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8
A01 90.45 90.52 90.46 89.3 92.25 92.28 91.07 89.29 89.88 89.93 89.27 89.29
A02 96.92 96.42 96.42 96.38 96.92 96.42 96.41 95.47 96.47 96.42 95.07 90.98
A03 71.22 73.09 68.1 69.9 81.15 78.64 75.18 70.17 69.15 68.17 61.99 54.71
A04 89.24 87.27 91.06 87.42 98.18 85.45 94.55 91.06 91.21 85.45 87.58 91.21
A05 100 100 100 96.67 96.67 92.67 96.67 79.33 100 100 100 88.67
B01 96.67 96.67 96.67 94.44 96.67 96.67 97.78 86.67 97.78 96.67 97.78 95.56
B02 100 96.67 98.33 98.33 100 98.33 98.33 98.33 100 98.33 98.33 96.67
B03 98.33 96.67 98.33 95 98.33 96.67 95 88.33 98.33 96.67 98.33 96.67

Average 92.85 92.16 92.42 90.93 95.02 92.14 93.12 87.33 92.85 91.46 91.04 87.97

Table 5 shows the accuracies of each subject A01-A05 and B01-B03 for
the proposed methods PM1-PM3 along with the comparison method 4 with
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Table 4: Channels selected with the proposed method in training session with 5-fold cross
validation. CC refers to correlation coefficient.

Subject
PM1-C3 (CC) PM2-C4 (CC) PM3-Cz (CC)

0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8
A01 53 51 48 40 54 51 50 42 54 52 49 43
A02 52 50 44 42 55 50 48 43 52 35 23 9
A03 53 51 47 39 54 52 52 44 21 17 12 5
A04 29 23 16 11 84 61 40 17 58 37 23 12
A05 25 22 13 7 87 66 34 10 78 47 28 13
B01 55 49 39 20 59 46 33 19 60 53 44 25
B02 60 55 45 26 60 55 48 28 59 50 44 35
B03 53 44 34 21 51 35 21 13 54 49 43 28

Average 47.5 43.13 35.75 25.75 63 52 40.75 27 54.5 42.5 33.25 21.25

Figure 3: Cross-validation CA plotted against total CH for each correlation coefficient
value in the training session.
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Figure 4: The box plot shows the extracted feature with sf=3 in the training session using
five-fold cross validation for right hand and foot MI tasks.

Table 5: Classification ACC comparison of proposed methods (PM1, PM2, and PM3) with
another research group for comparison (Comparison method 4 [26]) in the test session.
Bold entries indicate highest classification ACC.

Subject
PM1-C3 PM2-C4 PM3-Cz Comparison method 4

Accuracy(%) Channels Accuracy(%) Channels Accuracy(%) Channels Accuracy(%) Channels
A01 75 48 65.18 50 75.89 49 66.07 118
A02 98.21 44 98.21 48 94.64 23 96.43 118
A03 48.47 47 63.27 52 57.14 12 47.45 118
A04 70.54 16 77.23 40 75.89 23 71.88 118
A05 80.56 13 65.48 34 72.22 28 49.60 118
B01 96.67 39 94.44 33 96.67 44 95.56 60
B02 61.67 45 61.67 48 61.67 44 61.67 60
B03 98.34 34 91.67 21 93.33 43 93.33 60

Average 78.68 35.75 77.14 40.75 78.43 33.25 72.75 96.25
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Figure 5: Channels selected for subject A01, subject A02 and subject A03 with channel
C3 as a reference channel using PM1.

Figure 6: Channels selected for subject A01, subject A02 and subject A03 with channel
C4 as a reference channel using PM2.

Figure 7: Channels selected for subject A01, subject A02 and subject A03 with channel
Cz as a reference channel using PM3.

Figure 8: All 118 channels selected for subject A01, subject A02 and subject A03 using
comparison method 4.
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Figure 9: Group CA of proposed methods (PM1-C3, PM2-C4, PM3-Cz) with another
research group’s (Method 4) for comparison.

Fig. 9 displaying the average accuracy for each subject for comparison, a full
description of which now follows.

Each of the three proposed methods, i.e. PM1, PM2, PM3, on aver-
age outperformed comparison method 4 whilst using a substantially reduced
channel count. Across eight subjects PM1 shows an increased mean perfor-
mance of >5% (p<0.08), with PM2 >4% (p<0.2), and PM3 >5% (p<0.09).
The performance of each individual subject also improves on average over
the three methods compared to the comparison method 4 [26].

Subject A01, although showing a slight drop in ACC with PM2 (reduced
channels (RC) >50%) compared with Method 4, improved in accuracy in
both PM1 (CA >8% and RC >59%) and PM3 (CA >9% and RC >58%).
Subject A02 who scored highly in method 4 originally, improved marginally
in both PM1 and PM2 (CA >1.5% and RC >62%) and (CA >1.5% and RC
>53%), although dropped slightly in accuracy in PM3 (RC >80%). Subject
A03 scored similarly to method 4 in PM1 improving by just over 1%, but
improved in both PM2 (CA >15%) and PM3 (CA >9%) and an overall
average in all three methods of CA >8%. Subject A04 improved in two of
the three methods - PM1 (CA <1% and RC >86%), PM2 (CA >5% and RC
>61%), and PM3 (CA >4% and RC >80%) with an average improvement of
just over 2.6%. Although subject A02 showed little improvement on average
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over three methods (CA >0.5%), interestingly, subject A05 shows the most
improvement with PM1 (CA >30%), PM2 (CA >15%), and PM3 (>22%)
and an improvement on average over all three methods of >23%.

Subject B01 and B03 have improved by only ca >1% and ca >5% with
significant reduction of rc >35% and rc >43% in the channels selected using
the PM1 and PM3. Moreover, the same classification was achieved with a
reduced number of channels using PM1 (rc >25), PM2 (rc >52), and PM3
(rc >26).

With regards to channel reduction, PM2 uses <41 channels on average
over all 8 subjects, representing <58% of the original 96.25 channels. PM1
gives a greater improvement with rc <36 channels, or <63% with PM2. PM3
demonstrates the greatest reduction in channel number on average over all
subjects rc <65% of the original 96.25 channels.

Thus the PM1 and PM3 show comparable results in terms of average CA
but with 35.75 and 33.25 average number of channels. Further analysis is
required to determine why the reference taken from Cz produces the best
outcomes in this case.

Figures 5 - 8 show the channels selected with PM1, PM2 and PM3, and
comparison method 4 respectively in terms of electrode weights from a neu-
rophysiological point of view. Fig. 5 depicts the different regions of the brain
where subject-specific channels are selected for subject A01, subject A02 and
subject A03 with channel C3 as a reference channel denoted by PM1 in terms
of electrode weight. Similarly, Figs. 6 and 7 show the brain region selected
in terms of electrode weight when subject-specific channels are selected for
subject A01, subject A02 and subject A03 with channel C4 and channel Cz
as a reference channel denoted by PM2 and PM3 respectively. For compar-
ison, Figure 8 shows all 118 channels selected for subject A01, subject A02
and subject A03 denoted by method 4 [26]. Hence, it is possible to visually
inspect the location of the automatically selected subject-specific channels
when examined alongside comparison method 4 and it is evident from the
figures that there is a substantial channel reduction using the proposed meth-
ods.

To contrast, another research group [25] identified correlated channels
using the Fisher score to select the channel set for MI classification in the
feature extraction step, and classified the selected features using the support
vector machine (SVM) classifier [30]. In our study, channel selection was per-
formed in the pre-processing stage where pairwise correlation was computed
using the Pearson correlation method taking C3, C4, or Cz as a reference
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channel. This method is much simpler to understand and has the potential
to be implemented for the online classification of MI tasks in BCI systems.

It is interesting to note that two out of our three proposed methods have
shown a lower variance in CA than the comparison method 4 making our
method more robust across multiple datasets.

This paper’s findings demonstrate that it is possible to simultaneously
reduce the number of channels whilst maintaining a sufficient (and in fact
an increased) level of accuracy. The variation in the number and position
of channels selected in each case highlights the inherent differences in the
human brain and the subsequent difficulty involved in designing a MI BCI
adding to the already challenging problem of non-stationarity present in the
signals again highlighting the need for the technique presented within this
paper.

It would be interesting to perform further analysis to ascertain whether
correlation values to two decimal places would yield a higher CA whilst fur-
ther reducing the number of necessary channels. Additionally, although on
average a balance was struck between the correlation coefficient value and
the number of channels rejected, this correlation value was fixed at 0.7 for all
participants and it would be interesting to select a subject-specific correlation
coefficient as there were certainly differences in CA between participants.

A future study could, for example, use a method to search all permuta-
tions of the correlation coefficient to a finer degree of resolution to find the
optimal value whilst maintaining a set threshold CA level. Additionally, this
dimensionality reduction has implications not only for the speed at which
a dataset can be processed but also with regard the efficiency at which on
online implementation of the system could be realised.

Ultimately, the techniques presented in this work could potentially lead to
a fully automated and personalised BCI - one which is more adept at shaping
to individual users’ cortical physiology and hence to the highly individualised
brainwaves produced therein.

4. Conclusion

In this study, an automatic subject specific channel selection technique
was proposed to select channels for a MI-based BCI. These channels are se-
lected automatically based on correlations computed between one of C3, C4,
or Cz as a reference and other EEG channels. The results were presented
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using a correlation of 0.7, which demonstrates not only an improved over-
all CA but also a significant reduction in the number of channels, due to
the well-documented association with the sensorimotor areas. This study
offers two contributions to the research field. Firstly, the number of channels
were significantly reduced using the proposed algorithms without compro-
mising performance. This reduction in the number of channels makes it
more suitable for the practical real-time application of BCI. Secondly, the
idea of channel selection was introduced using the standard EEG channel
distribution and an intelligent algorithm for automatic selection of channels
for each subject. In future studies, a thorough analysis may reveal better se-
lection criteria which should allow for a further reduction in channels whilst
maintaining CA.
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