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Abstract. The imagination of limb movements offers an intuitive paradigm for
the control of electronic devices via brain computer interfacing (BCI). The anal-
ysis of electroencephalographic (EEG) data related to motor imagery potentials
has proved to be difficult task. EEG readings are noisy, and the elicited patterns
occur in different parts of the scalp, at different instants and at different frequen-
cies. Wavelet transform has been widely used in the BCI field as it offers temporal
and spectral capabilities, although it lacks of spatial information. In this study we
propose the use of a tailored second generation wavelet to extract features from
these three domains. This transform is applied over a graph representation of mo-
tor imaginary trials, which encodes temporal and spatial information. This graph
is enhanced using per-subject knowledge in order to optimise the spatial rela-
tionships among the electrodes, and to improve the filter design. The resulting
method improves the performance of classifying different imaginary limb move-
ments maintaining the low computational resources required by the lifting trans-
form over graphs. By using an online dataset we were able to positively assess
the feasibility of using the novel method in online BCI contexts.

1 Introduction

Brain signal analysis, applied for the control of computerised devices, deter-
mines a human-machine interaction paradigm known as brain-computer interfac-
ing (BCI). This new way of communication not only has a direct positive impact
on motor disabled users in terms of quality of life and interaction with their sur-
roundings, but also opens new modes of operation for healthy users to interact
with their environment.
The human brain responds to different stimuli with alterations in its neural activ-
ity. These alterations which manifest as changes in the electrical activity in the
cortex and changing blood oxygen levels in different regions, can be measured
with appropriate technology. In terms of electrical activity, these responses pro-
voke oscillations known as event related potentials (ERP) that can be measured
with electroencephalographic (EEG) devices and detected with appropriate algo-
rithms [11].
One example of an ERP is the imagination of limb movements, which is com-
monly known as motor imagery (MI). Depending on the limb involved, the brain
activity derived from MI tasks produces changes in neural activity on different
parts of the brain cortex, at different rates and with different temporal behaviour.
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These changes produce a series of short lasting amplifications and attenuations in
the EEG data known as event related desynchronisation (ERD) and event related
synchronisation (ERS) [17].
The study of ERS/ERD has proven to be a hard task. EEG data is noisy and of low
amplitude, there is no inter-subject pattern consistency, and features that make the
ERS/ERD patterns recognisable appear at different time intervals, different scalp
locations and different frequency bands.
Wavelets have been profusely applied in the BCI domain as they allow a meaning-
ful temporal-spectral analysis of the EEG data. Shifts and dilations of a mother
wavelet function provide a series of orthogonal subspaces resulting in what is
known as multi-resolution analysis (MRA) [10]. First generation wavelets present
a major disadvantage of difficult design. Researchers usually make use of well
established wavelet families, even though the wavelet function features may not
completely fulfil the needs of the domain of study.
On the other hand, during the last decade a new wavelet framework has become
popular for building tailored wavelets. Wavelet lifting, often referred to as second
generation wavelets, offers a simple framework to construct wavelet functions
that have fewer restrictions and can be applied in a natural way to many situations
that first generation wavelets are incapable of handling [23] [24].
The possibilities offered by the lifting transform open new interesting ways to
look at BCI signal processing. In [1] a new MRA system for BCI data anal-
ysis was proposed using lifting scheme over graphs to fully explore the three
domains involved in ERS/ERD patterns evolution. Graph EEG data representa-
tion is a natural way of describing the spatio/temporal relations among electrode
readings. The purpose of this study is to extend the static graph representation
by automatically building an enhanced graph in which the connections represent
meaningful relationships among different electrodes. For this purpose we used
mutual information as it provides a measurement of how much information one
channel shares with another channel.
The paper is organised as follows: data acquisition is detailed in Section 2.1, Sec-
tion 2.2 explains the lifting scheme over graphs, Section 2.3 describes how the
graphs are built, Section 2.4 focuses on the feature extraction technique, pattern
description and classification methods, and the experimental methodology is de-
scribed in Section 2.5. The obtained results along with discussions are presented
in Section 3. Finally, the conclusions are drawn in Section 4.

2 Methods

2.1 Data Acquisition and Preprocessing

The first dataset was recorded at the BCI Laboratory at the University of Essex.
The protocol was set up as follows: The electrode placement followed the 10-20
international system and 32 channels were recorded with a sampling frequency
of 256 Hz. During the recording session the subject was sitting on an arm-chair
in front of a computer screen. A fixation cross was showed at the beginning of
the trial at t = 0s. At t = 2s a cue was shown indicating the imaginary movement
class to perform. The end of the trial was marked when the fixation cross and
cue disappeared at t = 8s. The subjects were asked to perform 120 trials of each
of the three imaginary movements (right hand, left hand and feet). A total of 12



subjects participated in the recording sessions, half of them were naive on the use
of BCI systems, 58% of the subjects were female, and the ages ranged from 24
to 50. During the result analysis these subjects were identified by the prefix E-X,
with X being the subject number.
The second dataset is from the BCI Competition IV (dataset 2a) and follows a
similar acquisition protocol. The full experiment description can be found in [5].
The data covers four different types of MI movement data: right-hand, left-hand,
feet and tongue recorded at 250Hz. There are a total of 288 trials recorded, for
each of the nine subjects. The subjects belonging to this dataset are identified by
the prefix C-X.
The calibration trials of the third dataset were acquired following an identical pro-
tocol to the one described for the first dataset. The validation trials were recorded
while the subject controlled a BCI system in real-time with continuous feedback,
even though the results for the online classification are not the ones described
here, the data was reprocessed for this study. Twelve healthy subjects took part
in the experiment, all of whom were naive to the use of online BCI. The subjects
were aged from 24 to 32 and 50% were female. The results for this dataset are
labeled with the prefix O-X.

Fig. 1: Numbering of the 15 electrodes used during the experimentation, which were allocated
from FC3 to FC4, C3 to C4, and CP3 to CP4.

For this study we utilised a subset of 15 electrodes, covering the major area of the
motor cortex ( Figure 1). The original data was filtered from 8 to 30 Hz in order
to attenuate external noise and artifacts. Each trial Xi of T samples was scaled by
applying Xi =

1√
T

Xorig
i (It −1t1

′
t), where It is the T ×T identity matrix and 1t is

a T dimensional vector with ones in it.
The competition data was already divided into training and evaluation subsets.
The off-line data from the University of Essex was split using the first two ac-
quisition runs (180 trials) as training data and the last two runs (180 trials) as
evaluation set. The data from the online experiment contained 160 trials for cali-
bration and 90 trials for validation purposes.



2.2 Wavelet Lifting over EEG Graphs

First generation wavelets represent signals in terms of shifts and dilations of the
basis function known as mother wavelet. The design of this function obeys a set
of restrictions assuring an accurate orthogonal decomposition of the original data.
The main benefit of wavelet analysis over other orthogonal systems, such as the
Fourier transform or the cosine transform, is its multiscale capability. Wavelets
allow to analyse the data not only in the frequency domain, but also in the tem-
poral domain at different levels. [10] [12].
The use of first generation wavelets is pervasive in many domains where signal
processing is involved, and BCIs are no exception.
In P-300 based BCIs is common to find wavelet decomposition used as method
of signal analysis. In [4] they use non-parametric statistics from the different
levels of a Mexican hat common wavelet transform. The Daubechies wavelet
in its discrete variant was applied in [16] using the thresholded coefficients as
feature vectors for classification.
There are also several examples of the use of the wavelet transform in MI-based
BCIs. In [18] Morlet wavelets are used to decompose signals of imaginary limb
movements. In [6] discrete wavelet transform is applied using different families
(Daubechies, Coiflets and Symlets), sub-band power and the standard deviation of
the analysis and detail coefficients at different levels are used as feature extraction
method. In [26] Coiflet decompositions of fifth order are used, as they claim that
its shape is the closest to the ERD/ERS signals.
It is rarer to find the wavelet transform in the study of SSVEP BCIs but it has
been applied, as in [25] where continuous Morlet wavelets were used to study the
EEG data.
One major issue to cope with when working with the wavelet transform is that
wavelet function design is an extremely complex task, and therefore, researchers
apply common families in their studies despite the mother wavelet may not be
suitable for the domain of study. The introduction of second generation wavelets,
also known as wavelet lifting [22], alleviates this problem making the design
of complete multiresolution systems more straight forward. The wavelet lifting is
capable of handling data where Fourier analysis is not suitable (and therefore first
generation wavelets either) such as unevenly sampled data, surfaces, spheres [20],
trees [21] and graphs [14] [13].
A lifting scheme consists of iterations of three basic operations [7]:

– Split: Separate the original signal x into two subsets, referred as odd (xo)
and even (xe) elements.

– Predict: The error of predicting xo in base of xe using a predictor operator
P conforms the wavelet coefficients d.

– Update: The coarser approximation of the original signal is calculated by
combining xe and d using an update operator U.

A lifting transform over graphs can be defined as follows [14]. Let us consider a
graph G = (V,E) where V is the node set of size N = No +Ne and E the edges
linking those nodes. V is divided into the even and odd sets and E is represented
using the adjacency matrix Ad j. We rearrange V and Ad j so that the odd set of
nodes (a vector Vo of size No×1) is gathered before the even set (a vector Ve of
size Ne×1), obtaining the following structure:



Ṽ =
(Vo

Ve

)
˜Ad j =

(
FNo×No JNo×Ne

KNe×No LNe×Ne

)
(1)

The submatrices F and L in ˜Ad j in Equation (1) are discarded as they link ele-
ments within the same node sets. The block matrices J and K contain only edges
linking nodes from different node sets.
The lifting transform functions are defined using a weighted version of the block
matrices J and K:

D =Vo− Jω×Ve

A =Ve +Kω×D (2)

where the prediction and update functions are defined as a matrix product: P =
Jω×Ve and U = Kω×D, where Jω and Kω are the weighted adjacency block
matrices and their actual values depend on the domain of application.
We repeat the process described in Equation(2) in each level l + 1 assigning the
approximation coefficients A in level l to V .

2.3 Automatic EEG Graph Building and Filter Design

In [1], a static EEG data graph representation was introduced. This representation
had the benefit of keeping a channel oriented structure although no extra infor-
mation was used to optimise the inter-channel links. In order to stablish which
channels should be connected for each subject we made use of the mutual infor-
mation of every pair of channels [9][15].
Mutual information measures the amount of information that one random variable
Y contains about another random variable Z and is given by:

I(Y ;Z) = ∑
y∈Y

∑
z∈Z

p(y,z)log
p(y,z)

p(y)p(z)
(3)

where p(y,z) is the joint probability mass function and, p(y) and p(z) is the
marginal probability mass function.
Consider a set of MI trials XT×C of T samples and C channels. In order to sta-
blish the relationships among the spatial locations we compute the mutual infor-
mation M(r,s) = I(cr;cs) for every pair of channels cr cs with r ∈ {1 . . .C} and
s ∈ {1 . . .C}. Note that the diagonal elements of M are set to zero (the mutual
information of a channel with itself is ignored) and rest of non-zero elements
normalised between zero and one.
The symmetric matrix M describes how all the channels are related to each other
and this information can be used to build a specific graph representation for each
subject.
Let us assume that the graph Gx = (V x,Ex) is embedding a trial X , where V x

defines the nodes and the edge set Ex is represented by a weighted adjacency
matrix Ad jx:

Ad jxi j =

{
ai j If vx

i is connected to vx
j

0 Otherwise
(4)



For convenience, the odd set will correspond to the elements of X at odd values
of t, and the even set at even values of t. Therefore, we obtain two different node
vectors vx

o and vx
e.

The predict and update filters are computed in terms of the matrices M and Ad jx.
The following steps are carried out in order to set the adjacency matrix values:

1. Apply a threshold th to the matrix M such that M(r,s) = 0 if M(r,s)< th, so
only those channels with high mutual information values will be linked, and
normalise the non-zero values between zero and one.

2. Set Ad jx such that for a given channel c and instant t it will be connected to
the previous t−1 and following t +1 time instants with a weight ai j = 1.

3. For all the other channels cr and adjacent temporal values t +1 and t−1 set
the weight ai j = M(c,cr) in the corresponding entry of Ad jx, if M(c,cr)> 0.

The resulting adjacency submatrices of Fx and Lx from Ad jx are empty. The pre-
dict and update matrices Jωx and Kωx (weighted versions the submatrices Jx and
Kx) are computed row-wise as Jωx

i j =
Jx

i j

∑
J
k=0 Jx

ik
and Kωx

i j =
Jx

i j

2∗∑J
k=0 Jx

ik
. It is notewor-

thy to mention that the obtained lifting filters are weighted Laplacian graph filters,
and the design explained here ensures that those channels that share high mutual
information will contribute more to the detail coefficients than those that share
low mutual information.

2.4 Feature Extraction and Classification

One of the main drawbacks in the use of multiresolution analysis for signal classi-
fication is the large number of coefficients generated during the transform. In or-
der to overcome this problem we use common spatial patterns (CSP) as a method
for feature extraction and dimensionality reduction. CSP is an extension to PCA
where two different classes of data are taken into account.
Assuming that the trials contains data from the label (+) and the label (-), the
set of samples X is divided into X (+) and X (−). Their simultaneously estimated
covariance matrix decomposition is given by [3]:

Σ
(+) =WΛ

(+)W T

Σ
(−) =WΛ

(−)W T (5)

where Σ(+) is the estimated covariance matrix for the trials belonging to class (+)
and Σ(−) is the covariance matrix for the trials belonging to class (-). Λ(+) and
Λ(−) are diagonal matrices with the eigenvalues corresponding to the decompo-
sition of Σ(+) and Σ(−). A large eigenvalue Λ

(+)
j j means that the corresponding

eigenvector from matrix W , w j, leads to high variance in the projected signal in
the positive class and low variance in the negative one (and vice-versa). The CSP
projection results in Yi =W T Xi.
The different detail Dl and approximation Al sets at different levels l from the
MRA were projected onto their own CSP subspaces Y Dl = W T

Dl ×Dl and Y Al =

W T
Al ×Al . For clarity, we will refer to Y Dl and Y Al using Ȳ .

For every Ȳ , we extracted the rows which maximised and minimised the vari-
ance between the two different classes (namely, the first m rows and last m rows)
and calculated every feature as fk = var(ȳk) with k = {1,2, . . . ,m,C−m,C−
(m− 1), . . . ,C}, obtaining a total of F = 2 ∗m features. In order to scale down



the difference among the feature values, the logarithm f log
k = log( fk

∑
F
j=1 f j

) was

computed [19].
For this study, m ∈ 2,3,4 was chosen using cross validation as explained in Sec-
tion 2.5.
The features obtained from the CSP were classified using LDA as it provides a
fair compromise between resource consumption and classification performance [2].
In order to measure the classification performance Kappa value [8] was used
instead of the classification ratio. Kappa value gives an accurate description of
the classifier’s performance, taking into account the per class error distribution.
The Kappa value was computed as κ = po−pc

1−pc
, where po is the proportion of units

on which the judgement agrees (based on the output from the classifier and the
actual label), and pc is the proportion of units on which the agreement is expected
by chance.

2.5 Experimental Methodology

After the data preprocessing, a temporal sliding window of one second with a fifth
of second overlap was applied over each trial. The segmented data was then trans-
formed using a lifting scheme over graphs (See Section 2.2 and Section 2.3) to the
sixth level. The transformation resulted in twelve different coefficient sets, which
were further processed to obtain the feature sets by selecting different number of
CSP features (See Section 2.4).
The MRA approaches used for comparison were:

– Graph lifting scheme with static graphs [1]. The static graph is built by link-
ing the elements from the surrounding channels as shown in Figure 2. The
filters are calculated analogously as explained in Section 2.3 but by setting
the weights of the Laplacian filters to one.

Fig. 2: Detail of the graph after the even/odd split for the static approach. The even element
(in red) is linked to the surrounding odd elements (in black) adding spatial information to the
decomposition.

– Graph lifting scheme and mutual information driven graph building.
Each detail and approximation coefficient sets from the different temporal seg-
ments were classified with a separate LDA model after applying CSP. This led to
a total of ns ∗ l ∗2 LDA outputs, with ns being the number of segments and l the



number of levels. A majority voting approach was carried out in order to obtain
the final classification output for each trial.
A cross-validation step using five folds was performed over the training data in or-
der to select the two free parameters involved: the threshold applied to the mutual
information matrix in Section 2.3 and the number of CSP features as explained
in Section 2.4.

3 Results and Discussion

From the analysis of the mutual information matrix M for the different subjects
we learn that, in general, the standard deviations of the paired calculation do not
differ much when compared among classes (two orders of magnitude smaller than
the mean). Therefore, instead of computing a matrix M and a different graph to
process one class against the others, we just use the whole set of data to generate
the mutual information based adjacency matrix. This simplifies the model de-
creasing the execution time. It is also noteworthy that the performance of the
transform calculation does not vary although the values of the filters applied
changed.

Fig. 3: Representation of the values of M for subjects C-3 and C-5 applying different thresholds

Figure 3,Figure 4 and Figure 5 are graphical representations of the values of the
matrix M for different users and with different thresholds. In Figure 3 we find
two examples to show that there exists a clear correlation between the electrode
spatial location and the mutual information, the parallel lines crossing the fig-
ure diagonally corresponds to high mutual information values between adjacent



Fig. 4: Representation of the values of matrix M for subjects E-7 and E-8 applying different
thresholds

electrodes. This correlation is more evident if we compare it with with Figure 6,
which corresponds to the matrix M of the static approach. Although from Fig-
ure 4 to 5 this effect is still noticeable, it is more obvious how, for these specific
subjects, the inter-electrode information is more prominent in particular locations
of the motor cortex, concretely, in the frontal and central lobes for subject E-7 and
0-2, eminently central for subject E-8, and more scattered for subject 0-7.
After applying the experimental methodology described in Section 2.5 we can
analyse the impact of the automatic graph building on the classification results.
Figure 7, Figure 8 and Figure 9 show how the median Kappa values change when
different threshold values are applied. It is clear that the behaviour of the method
is dependant on the subject of analysis. Some subjects, such as E-8, C-4 and C-
2, are not significantly affected by the change of the threshold value, although,
on the other hand, we find subjects where the Kappa value fluctuates around 0.1
depending on the threshold value such as in subjects C-3, C-7, E-9, E-11, O-1
and O-4.
After selecting the two parameters, the mutual information threshold and the
number of features used in CSP, from the cross-validation results we can com-
pute the classification performance on the evaluation data. Table 1 shows the
Kappa values and mean accuracy for the Essex dataset, Table 2 for the competi-
tion dataset, and Table 3 for the online dataset.
For 78.8% of the 32 subjects the proposed method achieved a higher Kappa value.
For some of the subjects this improvement rises the Kappa value by 0.1 when
compared to the static approach.



Fig. 5: Representation of the values of matrix M for subjects O-2 and O-7 applying different
thresholds

Fig. 6: Values of the matrix M for the static graph approach.

There exists a difference between the Essex and the online datasets in terms of
classification accuracy, even though the acquisition protocol was practically iden-
tical. This decrement in the classification performance is due to effect of stress
suffered by the subjects during the online experiments.

As a final remark we can mention that the proposed method obtains a Kappa
value of 0.586 using the competition dataset, while the winner achieved 0.57.



Fig. 7: Median of the Kappa value in function of the threshold applied to the matrix M for the
competition dataset

Fig. 8: Median of the Kappa value in function of the threshold applied to the matrix M for the
Essex dataset

The small number of subjects in the competition data does not allow us to carry
out a definitive significance test to compare both approaches.

4 Conclusions

In this study we have proposed a novel method to improve the EEG data rep-
resentation based on static graphs by using the mutual information among the
different channels, which constitutes an example of the possibilities offered by
second generation wavelets in the BCI domain. This new strategy for building



Table 1: Results on the Essex dataset in terms of Kappa values. The mean accuracy is included at
the bottom.

Subject GLS GLS + Mutual Information
E-1 0.757 0.741
E-2 0.736 0.744
E-3 0.539 0.644
E-4 0.730 0.712
E-5 0.392 0.393
E-6 0.529 0.488
E-7 0.883 0.891
E-8 0.210 0.263
E-9 0.565 0.581
E-10 0.757 0.774
E-11 0.237 0.321
E-12 0.648 0.707

Mean Kappa 0.582 0.605
± ±

0.21 0.19
Mean Acc 0.723 0.737

± ±
0.14 0.13

Table 2: Results on the competition dataset in terms of Kappa values. The mean accuracy is
included at the bottom.

Subject GLS GLS + Mutual Information
C-1 0.754 0.763
C-2 0.410 0.419
C-3 0.800 0.805
C-4 0.484 0.475
C-5 0.243 0.257
C-6 0.317 0.364
C-7 0.629 0.758
C-8 0.661 0.707
C-9 0.698 0.721

Mean Kappa 0.555 0.586
± ±

0.19 0.20
Mean Acc 0.666 0.689

± ±
0.15 0.15



Fig. 9: Median of the Kappa value in function of the threshold applied to the matrix M for the
online dataset

the graph also has an impact on the filter design, allowing an automatic way to
weight the contribution of the different spatial locations.
After applying the proposed methodology on the three datasets, the resulting
Kappa value was increased for an 78.8% percent of the subjects obtaining for
several subjects an improvement of 0.1.
From the results achieved on the online dataset we can state that the proposed
method is suitable for it use in online BCI systems, although the calibration time
needed to obtain competitive results is relatively high, as the number of features
used by CSP and the threshold have to be set via cross-validation.
Comparing the mutual information matrices from different subjects we can ob-
serve how the initial static graph approach, where the surrounding electrodes were
linked together, was appropriate as close electrodes tend to share similar informa-
tion.
These positive results encourage us to explore new ways for optimising the graph
representation of EEG data. Although mutual information has helped to improve
the classification rate, other techniques such as Granger causality, which could
be more robust when coping with non-stationarity, should be examined in future
work.
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