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Abstract

Brain computer interfaces (BCI) provide a new approach to human computer com-
munication, where the control is realised via performing mental tasks such as motor
imagery (MI). In this study, we investigate a novel method to automatically segment
electroencephalographic (EEG) data within a trial and extract features accordingly in
order to improve the performance of classifying MI data. A new local discriminant
bases (LDB) algorithm using common spatial patterns (CSP) projection as transform
function is proposed for automatic trial segmentation. CSP is also used for feature ex-
traction following trial segmentation. This new technique also allows to obtain a more
accurate picture of the most relevant temporal-spatial points in the EEG during the MI.
The results are compared with other standard temporal segmentation techniques such
as sliding window and LDB based on the local cosine transform (LCT).

Keywords: brain computer interface, motor imagery, local discriminant bases,
common spatial patterns.

1. Introduction

Brain computer interfaces (BCI) are communication systems that use human thoughts
as control signals to operate machines [1]. These systems are particularly valuable for
paralysed users who may not be able to interact with computers in any other manner.
From the non-disabled user’s point of view, BCIs can enrich human computer interac-
tion where the subject’s mental states, such as emotions and error related activity, can
be taken into account. Regular users suffering from an induced disability (situations
where the user’s concentration or attention may be compromised, such as surgeons or
pilots) may also benefit from this kind of human computer interaction [2].

BCIs are classified into several paradigms depending on which mental state or sig-
nal type is analysed [3]. Whenever a limb movement is performed, several areas on
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the brain cortex are activated due to firing signals from different neuronal populations.
Some of these populations show activity even if no real movement is performed at all;
just imagining limb movement is sufficient to produce changes of state in the motor
cortex [4]. The BCI studied in this paper is based on motor imagery (MI), using EEG
as a method for signal acquisition.

Limb movement imagery is characterised by short lasting power amplifications /at-
tenuations along the µ band in EEG, which are known as event related desynchro-
nisation (ERD) and event related synchronisation (ERS) [5][6]. Many BCI designs
rely on ERD/ERS to discriminate MI movements (such as hands, feet, fingers, tongue,
etc.) [7][8]. ERD/ERS components can be found in temporal, spatial, and spectral
domains. Different researchers use different techniques to find the most discriminant
features in each domain. For example, many studies focus on spatial components such
as common spatial patterns (CSP) [9]. Some researchers try to extract relevant infor-
mation from the ERD/ERS time course using techniques like local discriminant bases
(LDB) [10]. Other studies combine elements from two or three different domains,
such as PARAFAC based methods [11][12], common sparse spectral spatial pattern
(CSSSP) [13], filter bank common spatial pattern (FBCSP) [14], and wavelet common
spatial pattern (WCSP) [15].

The time span given to the subject for imagining limb movement is denominated
a trial, within which the ERD/ERS occurs. Depending on the experiment protocol
the trial duration may vary from four to eight seconds. The classification of the data
obtained from the feature extraction can be performed sample by sample, giving a
classification result for every sample in the input data, or trial by trial, where only
a single prediction is given for the whole trial. CSP has been popularly used in the
literature for feature extraction due to its ability in locating the active sources while
maximising the variance among two or more classes. Usually CSP is applied for trial
by trial classification sub-dividing the trial in different frequency bands.

In this paper, we aim to study the benefits of using CSP in different temporal stages
of the trial development instead of focusing on different frequency bands. Our mo-
tivation is originated from two different grounds. Firstly, we hope to decrease the
computational effort derived from the feature extraction when an unseen trial is to be
processed. Secondly, unifying the spatial analysis provided by CSP with a temporal
study, we will be able to construct a temporal-spatial profile that may be useful for
further studies.

In contrast to exhaustive methods such as using sliding windows, LDB finds a sub-
set of signal segments in the temporal domain to build a discriminant base. Traditional
approaches [16] use the local cosine transform (LCT) as transform function, which has
certain major disadvantages. Firstly, each channel is transformed independently losing
the spatial context during the transform. Secondly, the resulting coefficients from a dis-
crete cosine transform need an extra step for feature selection prior to the classification
phase.

In this study, we propose a new LDB approach, where, instead of LCT, CSP is used
as transform function. This allows us to build up a coherent spatio-temporal analysis
tool, which can simultaneously identify the significant temporal segments and spatial
locations on the scalp to improve the EEG classification. The covariance decompo-
sition performed by CSP adds insights from the spatial relationships into the LDB
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algorithm, whilst the features extracted from the transform are directly used for the
pattern construction.

This paper is organised as follows: Section 2 explains the methodology: data ac-
quisition (Section 2.1), time segmentation strategies (Section 2.2.1), feature extraction
methods in spatial (Section 2.2.2) and temporal domains (Section 2.2.3), classification
techniques (Section 2.3), and the experiment set up (Section 2.4). Section 3 describes
and discusses the obtained results. Conclusions are drawn in Section 4.

2. Methods

2.1. Data Acquisition

During this study, we used three different data sets, one from the BCI Competition
IV (dataset 2a [17]) and two collected in the BCI Laboratory at the University of Essex.
They were acquired following a similar protocol.

The first data set is publicly available allowing us to place our outcomes with the
best ranked methods. The data contains four different classes: imaginary movement of
right hand, left hand, feet, and tongue, recorded from nine subjects. The subjects sat
in an arm-chair facing a computer screen, with 22 electrodes placed on the scalp fol-
lowing the international 10-20 location system. Initially, at t = 0s, a fixation cross was
printed on the screen, after two seconds (at t = 2s) an arrow was displayed indicating
which imaginary class to perform and this cue was shown until t = 3.25s. Although
the fixation cross disappeared at t = 6s there may be still MI related ERD/ERS pat-
terns after this, i.e., there is an offset period of a couple of seconds. The EEG data was
recorded at 250 Hz and band pass filtered between 0.5 and 100 Hz. During preprocess-
ing, an elliptic band pass filter was applied to filter the data in pass band range of 8 to
30 Hz.

The second data set contains three classes from the imagery movement of right
hand, left hand, and feet from three subjects. The EEG signals were recorded from five
bipolar electrodes (FC3-PC3, FC1-PC1, PZ-FZ,FC2-PC2 and FC3-PC3) and sampled
at 250 Hz. The trial structure is the same as the first data set.

The last set of data consists of 15 channels that were recorded at 256 Hz from five
different subjects. The electrodes used were those longitudinally positioned from FC3
to FC4 (FC3, FC1, FCZ, FC2 and FC4), from C3 to C4, and from CP3 to CP4. The
subjects were asked to perform three different imaginary movements: right hand, left
hand and feet.

2.2. Feature Extraction

2.2.1. Time Segmentation
In this study, we explore two different time segmentation strategies: manually par-

titioning the trial, or relying upon an automatic method such as LDB to segment the
signals. The EEG trial is processed from the instant t = 2s to t = 7s in order to capture
information from the trial onset to offset. The EEG segments from the training trials
within each partitioning interval are used to build a CSP matrix for extracting signal
features that will be used in the later classification step.
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1. Manual segmentation: Based on a sliding window this approach requires two
parameters, the segment length and the overlapping size. Using this technique
we evenly cover the trial during different development stages.

2. Automatic segmentation: The modified version of LDB described in Section 2.2.3
is used to perform an automatic trial segmentation. In this case, the parameters to
set will be the transform technique, cost function, minimum window length and
overlapping size. Both LCT and CSP as the transform technique will be investi-
gated. The cost functions applied to evaluate the transformed signal segments are
Fisher’s criterion [18] and Davies-Bouldin Index (DBI) [19]. These cost func-
tions were chosen because they measure the class separability based on the ratio
of the inter-class distance to the intra-class deviation, similar to linear discrim-
inant analysis (LDA), which is used as the classification method. The window
length and overlapping size are set to be comparable to the manual segmentation
experiments.

2.2.2. Common Spatial Patterns
Methods like principal component analysis (PCA) [20] and independent component

analysis (ICA) [21] rely on statistical relationships to extract the most relevant features
from a data set and have been extensively applied in domains such as video compres-
sion or image processing. CSP is based on PCA decomposition and can be regarded as
a supervised blind source separation technique [22] which maximises the variance be-
tween two different classes. As this is the method used in the feature extraction stage,
an introduction to its basics is given next.

Let us consider a matrix Xi of EEG data captured during an interval of length T ,
namely a trial or a segment a trial. The dimension of Xi will be N × T as the signal is
captured from N different channels.

Every evaluation trial Xi is projected onto the subspace composed of the spatial
filters W ∈ RN×N , which has been previously computed from the training data as the
solution for the generalised eigenvalue decomposition:

Σ(+) = WΛ(+)W
′

Σ(−) = WΛ(−)W
′

where Σ(+) is the estimated covariance matrix for the trials belonging to class (+) and
Σ(−) is the covariance matrix for the trials belonging to class (-). A large eigenvalue
λ
(+)
j means that the corresponding vector wj leads to high variance in the projected

signal in the positive class and low variance in the negative one (and vice-versa).
The CSP projection results in Yi = WXi. In our experiments, we take the first m

rows and lastm rows in Yi, which maximise the variance of one class while minimising
the variance of the other class, and compute each feature as fl = var(yl) for l =
{1, . . . ,m,N − (m− 1), . . . , N}, obtaining a total of L = 2 ∗m features per class. In
order to scale down the difference among the feature values we compute the logarithm
f logl = log( fl∑L

j=1 fj
) [23].
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2.2.3. Local Discriminant Bases
An LDB algorithm selects a basis of local functions or temporal segments where

the most substantial information about a signal can be found. The algorithm is simple
and can be used in combination with other spatial approaches [24]. The basic idea is
to represent the temporal-spatial information using a binary tree and then prune those
branches and nodes which lead to poorer discrimination. Measuring this discrimination
power is done through a cost function. Different domains have different requirements
in terms of class separation. Typically we can use different distance measures to assess
the interclass separability such as Euclidean distance or Fisher’s criterion.

The common dyadic tree decomposition of the signal [25] presents an important
caveat as the signal is not fully explored, i.e., only those portions enclosed within a
node will be transformed and evaluated during the execution. In order to overcome this
issue an alternative is proposed in [26] where a merge and divide strategy is adopted
covering signal segments that are not visited in the binary tree configuration. This new
approach adds adaptability to the LDB algorithm resulting in a more accurate basis.

The LDB algorithm used in this work is described in Algorithm 1. It starts with
two children and one mother segments. Initially the segment sizes are defined by the
configuration but will change during the execution. It should be noted that as we are
handling several channels, the transform within a segment is calculated for each of
them, and the cost function is applied taking all the information into account. Although
in the BCI domain this approach has focused mainly on LCT [25], other techniques
may be applied such as wavelet-packets [27]. We are not interested in the latter as it
does not allow the exploration of the signal with variable segment lengths.

In this paper, we look into the possibility of directly using CSP as the transform. In
this case we do not focus on the frequency decomposition but in the separability of the
features extracted from the selected segment.

An issue that we face when using this version of LDB is that some selected seg-
ments have to be removed as they may not contribute to improving the final classifi-
cation although they perform better than their siblings. However, these segments are
easily identifiable as their cost function value is relatively smaller than the rest of the
segments which conform to the basis.

2.3. Classification

In this study, LDA is used as the classification method. In spite of its simplicity, this
model has proved to achieve results comparable to other approaches such as support
vector machines and artificial neural networks [28]. Its main benefit comes from its
low computational resource consumption.

A window based majority voting mechanism was used to obtain the class label
for each segment, i.e., the predicted label of the current segment will depend on the
predicted labels of the previous segments. Specifically, the label for the segment si
will be labelsi = mode({LDA labelsi−k

}K−1
k=0 ) as this has proven to improve the

final classification accuracy [29].
Rather than the raw classification accuracy, the Kappa value [30] is used as perfor-

mance measure as it gives a better picture of the ratio of the classifier accuracy taking
into account the per class error distribution. The Kappa value is defined as κ = po−pc

1−pc
,
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Algorithm 1: Local Discriminant Bases
1: Set the minimum window size to winSize
2: Set the overlapping size to overlap
3: Child1 = [0, winSize+ overlap]
4: Child2 = [winSize− overlap, 2 ∗ winSize+ overlap]
5: Mother = [0, 2 ∗ winSize+ overlap]
6: bestSegments = List()
7: repeat
8: Extract features by applying the transform (CSP or LCT) to the three

segments, Child1,Child2 and Mother.
9: Calculate the cost function (Fisher’s criterion or DBI) using the features

extracted in the previous step.
10: if Cost function of any child element is less than the mother’s then
11: bestSegments.add(Child1)
12: Mother = shift(Mother, winSize, overlap) {As the child gets the

best cost function move the mother segment to the next interval}
13: Child1 = Child2 {Redefine the children segments}
14: Child2 = shift(Child2, winSize, overlap) {Move the second child

to the next interval}
15: else
16: bestSegments.add(Mother)
17: Child2 = shift(Child1, winSize, overlap) {Move the first child to

the next interval}
18: Child1 = Mother {The mother segment takes the role of first child}
19: Mother = expand(Mother, winSize, overlap) {Expand the mother

segment to include the next interval}
20: end if
21: until The end of the signal is reached

where po is the proportion of units on which the judgement agrees (output from the
classifier and the actual label), and pc is the proportion of units for which the agree-
ment is expected by chance (e.g., 0.25 for four classes).

2.4. Experimental Methodology
The experimental methodology used in this paper consists of four steps which will

be applied to the available data (Figure 1):

1. Apply the segmentation strategy (sliding window or LDB);

2. Apply CSP to each segment to extract features. This process is repeated with
different number of CSP features (i.e. two, four, six and eight);

3. Classify the patterns obtained using LDA (one LDA per segment);

4. The final output for the whole trial will rely on a majority voting among the LDA
outputs from the different segments;
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Figure 1: Diagram showing the different steps involved in the experiments. Every EEG trial goes through a
segmentation process. These segments are processed using CSP to obtain the final patterns to be classified
using an LDA. The output of every LDA is taken into account to give the final trial output.

The EEG data from each subject is divided into two sessions. The first session
is used to test every configuration and identify the best parameter configuration using
cross validation. The second session is used as evaluation data which leads to the
results presented in Section 3.

In order to assure that the results are comparable we have used consistent segment
lengths along the experiments which are 125 (0.5s), 150 (0.6s), 200 (0.8s) and 250 (1s)
samples.

3. Results

3.1. Classification Performance

In this section, we present the results obtained from the execution of the different
proposed strategies in terms of Kappa values. Table 1 displays the Kappa values of
the best configurations (segment length and number of features extracted from CSP)
obtained from the cross-validation analysis on the training set and applied to the eval-
uation set.

Ideally we would like to compare our results with the methods proposed in the
competition (for subjects one to nine) but the lack of data and methodology description
provided thwarts this goal. As a mere piece of information we mention that the two
highest ranked proposals obtained 0.57 ± 0.18 and 0.52 ± 0.22 Kappa values respec-
tively, meanwhile the sliding window approach scores 0.57± 0.20.

From the presented results, we can observe that LDB obtains better results than
sliding window except for the case of the subjects 5 and 14. This indicates that se-
lecting a best basis improves the classification ratio in most cases. It can be seen that
LDB+CSP obtains the highest Kappa values on 65% of the subjects whilst LDB+LCT
on the 24%; this indicates that replacing LCT with CSP would be an effective approach
most of the time.

In order to test the significance of these results we adopted the Wilcoxon rank sum
test [31] as it is designed for paired values and it shows a robust behaviour for small
populations where the distribution is unknown [32]. From the significance analysis
we learn that LDB+CSP+Fisher’s criterion obtains a significant higher Kappa perfor-
mance with p < 0.05 when compared with the sliding window approach, although this
behaviour is not consistent for the rest of LDB based approaches. When it comes to
comparing the performance between LDB+CSP and LDB+LCT, the common spatial
pattern based approach performs significantly better (p = 0.002). Regarding the cost
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Subject Sliding LDB+CSP LDB+CSP LDB+LCT LDB+LCT+
window +Fisher’s +DBI +Fisher’s +DBI

1 0.70 0.75 0.63 0.64 0.71
2 0.43 0.50 0.46 0.46 0.34
3 0.72 0.74 0.72 0.72 0.72
4 0.43 0.40 0.45 0.43 0.42
5 0.24 0.19 0.22 0.23 0.22
6 0.30 0.41 0.38 0.40 0.39
7 0.76 0.78 0.74 0.75 0.73
8 0.76 0.72 0.78 0.76 0.78
9 0.73 0.78 0.70 0.74 0.76
mean (data set 1) 0.57±0.20 0.59±0.19 0.57±0.18 0.58±0.21 0.57±0.18
10 0.72 0.72 0.72 0.62 0.65
11 0.56 0.62 0.59 0.64 0.55
12 0.86 0.88 0.90 0.93 0.88
mean (data set 2) 0.72± 0.14 0.75± 0.15 0.74± 0.15 0.73± 0.17 0.70± 0.17
13 0.59 0.61 0.61 0.59 0.63
14 0.77 0.73 0.65 0.70 0.69
15 0.57 0.57 0.63 0.48 0.56
16 0.84 0.80 0.84 0.73 0.86
17 0.87 0.86 0.84 0.84 0.89
mean (data set 3) 0.73± 0.13 0.71± 0.12 0.71± 0.11 0.67± 0.14 0.73± 0.14

Table 1: Kappa values from best configurations chosen by cross validation on the training set

function there is not significant difference between Fisher’s criterion and DBI in terms
of Kappa value.

In Table 2, we draw upon the results of different segmentation strategies, detailing
the utilised segment lengths. For the LDB based methods, it is noteworthy that with
different minimum segment lengths the outcomes are different. Due to the modifica-
tions made to the original LDB algorithm, when using a small initial segment we will
explore bigger segments along the way, covering higher and lower frequencies more
efficiently. From the experimental results, we can state that using the smallest segment
size (125 samples), we obtain a statistically significantly better Kappa value than using
the largest segments, with p < 0.05. If we focus on the overall performance, it is clear
that the sliding window strategy leads to more consistent results, regardless of the seg-
ment length. This is likely because it uses almost the same segments regardless of the
segment length as shown in Table 3.

In terms of the computational load during the evaluation phase sliding window is,
in general, the highest resource consuming option, as for every segment a CSP transfor-
mation and an LDA classification has to be performed. As shown in Table 3, even using
the smallest segment length, the number of segments required by LDB+CSP is about
a half of that required by sliding window. Under certain configurations LDB is able to
find a trade-off between computing effort and classification performance, obtaining no
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Segment Sliding LDB+CSP LDB+CSP LDB+LCT LDB+LCT+
length window +Fisher’s +DBI +Fisher’s +DBI
125 0.60± 0.21 0.62± 0.24 0.62± 0.22 0.58± 0.20 0.60± 0.21
150 0.60± 0.20 0.62± 0.24 0.63± 0.20 0.56± 0.20 0.60± 0.21
200 0.61± 0.22 0.61± 0.21 0.61± 0.21 0.55± 0.21 0.58± 0.21
250 0.61± 0.19 0.57± 0.23 0.58± 0.22 0.55± 0.21 0.56± 0.20

Table 2: Kappa values related to segment lengths

Segment Sliding LDB+CSP LDB+CSP LDB+LCT LDB+LCT+
length window +Fisher’s +DBI +Fisher’s +DBI
125 23 10.83±4.27 18.81±7.71 16.83±6.43 28.30±3.47
150 23 5.51±2.22 9.24±4.06 10.22±3.12 13.87±2.27
200 22 2.86±1.33 4.41±2.14 5.37±1.36 6.66±1.23
250 21 2.10±0.92 3.13±1.45 4.16±1.10 4.56±1.06

Table 3: Number of segments resulted from different configurations

significantly worse results than sliding window but with much fewer CSP transforma-
tions. It is fair to mention that during the calibration process (cross-validation analysis)
LDB is computationally heavier due to the nature of this algorithm that explores the
different segments, but it is not an issue during the evaluation phase. Therefore, we
would suggest choosing a segment length as small as possible so that the algorithm
will explore a larger amount of frequencies and temporal locations along the trial, but
keeping in mind that the computational load during the validation stage will increase if
the segment length is too small.

3.2. Method Analysis and Spatio-Temporal Information

Besides the classification performance, the novel approach of combining CSP and
LDB allows us to obtain a detailed picture about which areas contain more information
during different periods of time. From the segments obtained via LDB we can directly
draw upon the intervals that provide a better class dichotomisation. In Figure 2, we
can observe that these segments are relatively associated to their cost function values.
Different subjects develop different suitable segments during the LDB process, and
different transforms tend to affect the outcomes of different intervals too.

In section 2.2.2, we explained how to obtain the spatial filters W from a set of
labelled signals. From these filters, we can compute the corresponding spatial patterns
A = (W )−1 and project the most relevant components in A onto the scalp as shown in
Figure 3 for subject two. This procedure allows us to observe the areas which maximise
and minimise the variance for different tasks along the trial development.

Combining both CSP and LDB information, we obtain a detailed picture in do-
mains of time and space, as shown in Figure 4. This representation allows us to easily
locate which channels add more useful information during the trial development for a
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Figure 2: Most significant segments selected using LDB+CSP with Fisher’s criterion as cost function for
subject 2 (minimum segment size used here is 150 samples). The larger the value from the cost function is,
the better the patterns are separable. Here it is possible to appreciate how LDB explores different segment
sizes along the trial adapting to the user’s data.

Figure 3: Spatial patterns from the segments shown in Figure 2 (subject 2). The upper row are the patterns
which maximise the variance whereas the lower row are the patterns which minimise it. The small rectangle
under each pattern is the segment’s cost function value.

given class (in this case, right hand movement). The resulting structure could be eas-
ily applied in combination with other methods to improve the feature selection or to
weight different spatio-temporal locations along the trial.

An example of this temporal-spatial decomposition can be found in Figure 4 a),
when the minimum segment size was set to 125 samples. It can be seen that the most
meaningful interval is found around 4.1s and most channels contribute significant in-
formation. In the same figure, another highlighted segment appears from 3.9s to 4.0s,
in which the class-relevant information appears around the channels FC4, C2, C4, C6
and CP4.

4. Conclusions

In terms of classification accuracy measured by the Kappa value, LDB+CSP per-
forms significantly better than sliding window with CSP for feature extraction, and
has an additional advantage of consuming less computational resources. However,
its classification accuracy depends on the segmentation length. The proposed method
achieved better classification performance than the BCI competition winner as well.
However, due to the lack of information provided by the BCI competition winner, it is
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Figure 4: Accumulated spatial patterns along time during trial development for subject 2. Y-axis shows the
different channels and X-axis represents the trial duration. a) minimum segment size was set to 125 samples;
b) minimum segment size was set to 150 samples.

difficult to compare to the results obtained in the competition with a statistical signifi-
cance test.

The combination of CSP and LDB gives detailed information on which instants
and channels contain the most significant information for EEG classification during
the trial development. We believe that this is an interesting contribution to LDB as the
temporal-spatial decomposition can be exploited in order to improve existing methods
or develop new ones.

When it comes to the use of LCT and CSP as transform function, the results indicate
that CSP performs significantly better than LCT. This is likely due to the fact that
during the discovery of the best basis, CSP already takes into account which parts of
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the signal will contribute better to the classification output.
When comparing automatic and manual partition techniques, LDB+CSP reduces

computational resource consumption while obtaining classification performance com-
parable to the sliding window approach. The number of CSP projections (temporal
segments) and LDA classifications involved is reduced by about a half during the eval-
uation stage, with comparable classification performance.
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