1,393 research outputs found

    Smooth path planning with Pythagorean-hodoghraph spline curves geometric design and motion control

    Get PDF
    This thesis addresses two significative problems regarding autonomous systems, namely path and trajectory planning. Path planning deals with finding a suitable path from a start to a goal position by exploiting a given representation of the environment. Trajectory planning schemes govern the motion along the path by generating appropriate reference (path) points. We propose a two-step approach for the construction of planar smooth collision-free navigation paths. Obstacle avoidance techniques that rely on classical data structures are initially considered for the identification of piecewise linear paths that do not intersect with the obstacles of a given scenario. In the second step of the scheme we rely on spline interpolation algorithms with tension parameters to provide a smooth planar control strategy. In particular, we consider Pythagorean\u2013hodograph (PH) curves, since they provide an exact computation of fundamental geometric quantities. The vertices of the previously produced piecewise linear paths are interpolated by using a G1 or G2 interpolation scheme with tension based on PH splines. In both cases, a strategy based on the asymptotic analysis of the interpolation scheme is developed in order to get an automatic selection of the tension parameters. To completely describe the motion along the path we present a configurable trajectory planning strategy for the offline definition of time-dependent C2 piece-wise quintic feedrates. When PH spline curves are considered, the corresponding accurate and efficient CNC interpolator algorithms can be exploited

    Smooth path planning with Pythagorean-hodoghraph spline curves geometric design and motion control

    Get PDF
    This thesis addresses two significative problems regarding autonomous systems, namely path and trajectory planning. Path planning deals with finding a suitable path from a start to a goal position by exploiting a given representation of the environment. Trajectory planning schemes govern the motion along the path by generating appropriate reference (path) points. We propose a two-step approach for the construction of planar smooth collision-free navigation paths. Obstacle avoidance techniques that rely on classical data structures are initially considered for the identification of piecewise linear paths that do not intersect with the obstacles of a given scenario. In the second step of the scheme we rely on spline interpolation algorithms with tension parameters to provide a smooth planar control strategy. In particular, we consider Pythagorean–hodograph (PH) curves, since they provide an exact computation of fundamental geometric quantities. The vertices of the previously produced piecewise linear paths are interpolated by using a G1 or G2 interpolation scheme with tension based on PH splines. In both cases, a strategy based on the asymptotic analysis of the interpolation scheme is developed in order to get an automatic selection of the tension parameters. To completely describe the motion along the path we present a configurable trajectory planning strategy for the offline definition of time-dependent C2 piece-wise quintic feedrates. When PH spline curves are considered, the corresponding accurate and efficient CNC interpolator algorithms can be exploited

    A new surface joining technique for the design of shoe lasts

    Get PDF
    The footwear industry is a traditional craft sector, where technological advances are difficult to implement owing to the complexity of the processes being carried out, and the level of precision demanded by most of them. The shoe last joining operation is one clear example, where two halves from different lasts are put together, following a specifically traditional process, to create a new one. Existing surface joining techniques analysed in this paper are not well adapted to shoe last design and production processes, which makes their implementation in the industry difficult. This paper presents an alternative surface joining technique, inspired by the traditional work of lastmakers. This way, lastmakers will be able to easily adapt to the new tool and make the most out of their know-how. The technique is based on the use of curve networks that are created on the surfaces to be joined, instead of using discrete data. Finally, a series of joining tests are presented, in which real lasts were successfully joined using a commercial last design software. The method has shown to be valid, efficient, and feasible within the sector

    08221 Abstracts Collection -- Geometric Modeling

    Get PDF
    From May 26 to May 30 2008 the Dagstuhl Seminar 08221 ``Geometric Modeling\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Positive Data Visualization Using Trigonometric Function

    Get PDF
    A piecewise rational trigonometric cubic function with four shape parameters has been constructed to address the problem of visualizing positive data. Simple data-dependent constraints on shape parameters are derived to preserve positivity and assure smoothness. The method is then extended to positive surface data by rational trigonometric bicubic function. The order of approximation of developed interpolant is

    Annales Mathematicae et Informaticae (36.)

    Get PDF
    corecore