

ANNALES

MATHEMATICAE ET

INFORMATICAE

VOLUME 36. (2009)

EDITORIAL BOARD

Sándor Bácsó (Debrecen), Sonja Gorjanc (Zagreb), Tibor Gyimóthy (Szeged),
Miklós Hoffmann (Eger), József Holovács (Eger), László Kozma (Budapest),
Kálmán Liptai (Eger), Florian Luca (Mexico), Giuseppe Mastroianni (Potenza),
Ferenc Mátyás (Eger), Ákos Pintér (Debrecen), Miklós Rontó (Miskolc, Eger),
László Szalay (Sopron), János Sztrik (Debrecen, Eger), Gary Walsh (Ottawa)

INSTITUTE OF MATHEMATICS AND INFORMATICS
ESZTERHÁZY KÁROLY COLLEGE

HUNGARY, EGER

HU ISSN 1787-5021 (Print)
HU ISSN 1787-6117 (Online)

A kiadásért felelős:
az Eszterházy Károly Főiskola rektora

Megjelent az EKF Líceum Kiadó gondozásában
Kiadóvezető: Kis-Tóth Lajos

Felelős szerkesztő: Zimányi Árpád
Műszaki szerkesztő: Tómács Tibor

Megjelent: 2009. december Példányszám: 50

Készítette:
az Eszterházy Károly Főiskola nyomdája

Felelős vezető: Kérészy László

Annales Mathematicae et Informaticae

36 (2009) pp. 3–14
http://ami.ektf.hu

A common fixed point theorem via a
generalized contractive condition

Abdelkrim Aliouchea, Faycel Merghadib

aDepartment of Mathematics, University of Larbi Ben M’Hidi Oum-El-Bouaghi, Algeria
bDepartment of Mathematics, University of Tebessa, Algeria

Submitted 8 January 2009; Accepted 12 June 2009

Abstract

We prove a common fixed point theorem for mappings satisfying a gener-
alized contractive condition which generalizes the results of [3, 4, 12, 15, 19,
20, 24] and we correct the errors of [7, 12, 20].

Keywords: Metric space, weakly compatible mappings, common fixed point.

MSC: 47H10, 54H25

1. Introduction

Sessa [21] defined S and T to be weakly commuting as a generalization of
commuting if for all x ∈ X .

d (STx, TSx) 6 d (Tx, Sx) .

Jungck [9] defined S and T to be compatible as a generalization of weakly com-
muting if

lim
n→∞

d (STxn, TSxn) = 0

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = t for
some t ∈ X . It is easy to show that commuting implies weakly commuting implies
compatible and there are examples in the literature verifying that the inclusions are
proper, see [9, 21]. Jungck et al [10] defined S and T to be compatible mappings
of type (A) if

lim
n→∞

d
(
STxn, T

2xn
)

= 0 and lim
n→∞

d
(
TSxn, S

2xn
)

= 0,

3

4 A. Aliouche, F. Merghadi

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = t for
some t ∈ X . Example are given to show that the two concepts of compatibility
are independent, see [10]. Recently, Pathak and Khan [16] defined S and T to be
compatible mappings of type (B) as a generalization of compatible mappings of
type (A) if

lim
n→∞

d
(
TSxn, S

2xn
)

6
1

2

[
lim
n→∞

d (TSxn, T t) + lim
n→∞

d
(
T t, T 2xn

)]
,

lim
n→∞

d
(
STxn, T

2xn
)

6
1

2

[
lim
n→∞

d (STxn, St) + lim
n→∞

d
(
St, S2xn

)]
,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = t for
some t ∈ X . Clearly compatible mappings of type (A) are compatible mappings of
type (B), but the converse is not true, see [16]. However, compatible mappings of
type (A) and compatibility of type (B) are equivalent if S and T are continuous,
see [16]. Pathak et al [17] defined S and T to be compatible mappings of type (P)
if

lim
n→∞

d
(
S2xn, T

2xn
)

= 0,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = t for
some t ∈ X . However, compatibility, compatibility of type (A) and compatibility
of type (P) are equivalent if S and T are continuous, see [17]. Pathak et al [18]
defined S and T to be compatible mappings of type (C) as a generalization of
compatible mappings of type (A) if

lim
n→∞

d
(
TSxn, S2xn

)
6

1

3

[
lim

n→∞

d (TSxn, T t) + lim
n→∞

d
(
T t, S2xn

)
+ lim

n→∞

d
(
T t, T 2xn

)]
,

lim
n→∞

d
(
STxn, T 2xn

)
6

1

3

[
lim

n→∞

d (STxn, St) + lim
n→∞

d
(
St, T 2xn

)
+ lim

n→∞

d
(
St, S2xn

)]
,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = t for
some t ∈ X . Compatibility, compatibility of type (A) and compatibility of type
(C) are equivalent if S and T are continuous, see [18]. Pant [15] defined S and T
to be reciprocally continuous if

lim
n→∞

STxn = St and lim
n→∞

TSxn = T t,

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = t
for some t ∈ X . It is clear that if S and T are both continuous, then they are
reciprocally continuous, but the converse is not true. Moreover, it was proved in
[15] that in the setting of common fixed point theorem for compatible mappings
satisfying contractive conditions, the continuity of one of the mappings S and T
implies their reciprocal continuity, but not conversely.

2. Preliminaries

Definition 2.1 (See [11]). S and T are said to be weakly compatible if they com-
mute at their coincidence points; i.e., if Su = Tu for some u ∈ X , then STu = TSu.

A common fixed point theorem via a generalized contractive condition 5

Lemma 2.2 (See [9, 10, 16, 17, 18]). If S and T are compatible, or compatible of
type (A), or compatible of type (P), or compatible of type (B), or compatible of type
(C), then they are weakly compatible.

The converse is not true in general, see [4].

Definition 2.3 (See [13]). S and T are said to be R−weakly commuting if there
exists an R > 0 such that

d (STx, TSx) 6 Rd (Tx, Sx) for all x ∈ X. (2.1)

Definition 2.4 (See [14]). S and T are pointwise R−weakly commuting if for all
x ∈ X , there exists an R > 0 such that (2.1) holds.

It was proved in [14] that R-weakly commutativity is equivalent to commuta-
tivity at coincidence points; i.e., S and T are pointwise R-weakly commuting if and
only if they are weakly compatible.

Lemma 2.5 (See [22]). For any t ∈ (0,∞), ψ(t) < t iff limn→∞ ψn(t) = 0, where
ψn denotes the n-times repeated composition of ψ with itself.

Several authors proved fixed point and common fixed point theorem for map-
pings satisfying contractive conditions of integral type, see [1, 3, 4, 5, 6, 7, 12, 19,
20]. The following theorem was proved by [3].

Theorem 2.6 (See [3]). Let A,B, S and T be self-mappings of a metric space
(X, d) satisfying

S (X) ⊂ B (X) and T (X) ⊂ A (X) ,

∫ d(Sx,Ty)

0

ϕ(t) dt 6 ψ

(∫ M(x,y)

0

ϕ(t) dt

)

for all x, y ∈ X, ψ : R+ → R+ is a right continuous function such that ψ(0) = 0
and ψ(s) < s for all s > 0 and ϕ : R+ → R+is a Lebesgue integrable mapping which
is summable and satisfies ∫ ǫ

0

ϕ(t) dt > 0,

M(x, y) = max

{
d(Ax,By), d(Sx,Ax), d(Ty,By),

1

2
[d(Sx,By) + d(Ty,Ax)]

}
.

If one of A (X) , B (X) , S(X) and T (X) is a complete subspace of X, then A and
S have a coincidence point and B and T have a coincidence point. Further, if S
and A as well as T and B are weakly compatible, then A,B, S and T have a unique
common fixed point in X.

Recently, Zhang [24] and Aliouche [2] proved common fixed point theorems
using generalized contractive conditions in metric spaces.

Let A ∈ (0,∞], R+
A = [0, A) and F : R+

A → R satisfying

6 A. Aliouche, F. Merghadi

(i) F (0) = 0 and F (t) > 0 for each t ∈ (0, A),
(ii) F is nondecreasing on R+

A,
(iii) F is continuous.
Define ̥[0, A) = {F : F satisfies (i)–(iii)}.

Lemma 2.7 (See [24]). Let A ∈ (0,∞], F ∈ ̥[0, A). If limn→∞ F (ǫn) = 0 for
ǫn ∈ R+

A, then limn→∞ ǫn = 0.

The following examples were given in [24].
(i) Let F (t) = t, then F ∈ ̥[0, A) for each A ∈ (0,∞].
(ii) Suppose that ϕ is nonnegative, Lebesgue integrable on [0, A) and satisfies

∫ ǫ

0

ϕ(t) dt > 0 for each ǫ ∈ (0, A).

Let F (t) =
∫ t
0 ϕ(s) ds, then F ∈ [0, A).

(iii) Suppose that ψ is nonnegative, Lebesgue integrable on [0, A) and satisfies
∫ ǫ

0

ψ(t) dt > 0 for each ǫ ∈ (0, A)

and ϕ is nonnegative, Lebesgue integrable on
[
0,
∫ A
0
ψ(s) ds

)
and satisfies

∫ ǫ

0

ϕ(t) dt > 0 for each 0 < ǫ <

∫ A

0

ψ(s) ds.

Let F (t) =
∫ ∫ t

0
ψ(s) ds

0
ϕ(u) du, then F ∈ ̥[0, A).

(iv) If G ∈ [0, A) and F ∈ ̥[0, G(A − 0)), then a composition mapping

F ◦ G ∈ ̥[0, A). For instance, let H(t) =
∫ F (t)

0 ϕ(s) ds, then H ∈ ̥[0, A) when-
ever F ∈ ̥[0, A) and ϕ is nonnegative, Lebesgue integrable on ̥[0, F (A− 0)) and
satisfies ∫ ǫ

0

ϕ(t) dt > 0 for each ǫ ∈ (0, F (A− 0)).

Let A ∈ (0,∞] and ψ : R+
A → R+ satisfying

(i) ψ(t) < t for all t ∈ (0, A)
(ii) ψ is upper semi-continuous.
(iii) ψ is nondecreasing on R+

A,
Define Ψ[0, A) = {ψ : ψ satisfies (i)-(iii)}.

3. Main results

Theorem 3.1. Let (X, d) be a metric space and D = sup{d(x, y) : x, y ∈ X}. Set
A = D if D = ∞ and A > D if D < ∞. Let A1, A2, S and T be self-mappings of
(X, d) satisfying

A1(X) ⊂ T (X) and A2(X) ⊂ S(X),

A common fixed point theorem via a generalized contractive condition 7

F (d (A1x,A2y)) 6 ψ(F (L(x, y))) (3.1)

for all x, y in X, where

L(x, y) = max
{
d(Sx, T y), d(A1x, Sx), d(Ty,A2y),

1

2
[d(Sx,A2y) + d(A1x, T y)]

}
,

F ∈ ̥[0, A) and ψ ∈ Ψ[0, F (A − 0)) for all A ∈ (0,∞]. Suppose that the pair
(A1, S) is weakly compatible and there exists w ∈ C(A2, T): the set of coincidence
points of A2 and T such that A2Tw = TA2w. If one of A1 (X) , A2(X), S (X) and
T (X) is a complete subspace of X, then A1, A2, S and T have a unique common
fixed point in X.

Proof. Let x0 be arbitrary point in X . Inductively, we can define a sequence {yn}
in X such that

y2n = A1x2n = Tx2n+1 and y2n+1 = Sx2n+2 = A2x2n+1

for all n = 0, 1, 2, As in the proof of [2], {yn} is a Cauchy sequence in X .
Assume that S (X) is complete. Therefore

lim
n→∞

A1x2n = lim
n→∞

Tx2n+1 = lim
n→∞

A2x2n+1 = lim
n→∞

Sx2n+1 = z = Su

for some u ∈ X . If A1u 6= z using (3.1) we obtain

F (d (A1u,A2x2n+1)) 6 ψ(F (L(u, x2n)))

where

L(u, x2n) = max
{
d(Su, Tx2n+1), d(A1u, Su), d(Tx2n+1, A2x2n+1),

1

2
[d(Su,A2x2n+1) + d(A1u, Tx2n+1)]

}
.

Letting n→ ∞, we get

F (d (A1u, z)) 6 ψ(F (d (A1u, z))) < F (d (A1u, z))

which is a contradiction and so z = A1u = Su. If z 6= A2w, applying (3.1) we
obtain

F (d (A1u,A2w)) 6 ψ(F (d (A1u,A2w)))

where

L(u, v) = max
{
d(Su, Tw), d(A1u, Su), d(Tw,A2w),

1

2
[d(Su,A2w) + d(A1u, Tw)]

}
.

Hence
F (d (z,A2w)) 6 ψ(F (d (z,A2w))) < F (d (z,A2w)).

which is a contradiction and so z = A1u = Su = A2w = Tw.

8 A. Aliouche, F. Merghadi

Since the pairs (A1, S) is weakly compatible and there exists w ∈ C(A2, T) such
that A2Tw = TA2w, we have Sz = A1z and Tz = A2z.

If A1z 6= z we have by (3.1)

F (d (A1z,A2w)) 6 ψ(F (L(z, w)))

where

L(z, w) = max
{
d(Sz, Tw), d(A1z, Sz), d(Bw,A2w),

1

2
[d(Sz,A2w) + d(A1z, Tw)]

}
.

Therefore
F (d (A1z, z)) 6 ψ(F (d (A1z, z))) < F (d (A1z, z))

and so A1z = Sz = z. Similarly, we can prove that A2z = Tz = z.
The proof is similar when T (X) is assumed to be a complete subspace of X.

The case in which A1 (X) or A2 (X) is a complete subspace of X is similar to the
case in which T (X) or S (X) respectively is complete since A1 (X) ⊂ T (X) and
A2 (X) ⊂ S (X). The uniqueness of z follows from (3.1). �

Theorem 3.1 generalizes Theorem 2.6 of [3].

Corollary 3.2. Let (X, d) be a metric space and D = sup{d(x, y) : x, y ∈ X}.
Set A = D if D = ∞ and A > D if D < ∞. Let {Ai}, i = 1, 2, . . . , S and T be
self-mappings of (X, d) satisfying

A1(X) ⊂ T (X) and Ai(X) ⊂ S(X), i > 2

and
F (d (A1x,Aiy)) 6 ψ(F (Li(x, y))), i > 2

for all x, y in X, where

Li(x, y) = max
{
d(Sx, T y), d(A1x, Sx), d(Aiy, T y),

1

2
[d(Sx,Aiy) + d(A1x, T y)]

}
,

F ∈ ̥[0, A) and ψ ∈ Ψ[0, F (A − 0)) for all A ∈ (0,∞]. Suppose that the pair
(A1, S) is weakly compatible and there exists w ∈ C(Ai, T): the set of coincidence
points of Ai and T such that AiTw = TAiw for some i > 2. If one of Ai (X) , S (X)
and T (X) is a complete subspace of X. Then Ai, S and T have a unique common
fixed point in X.

If ϕ(t) = 1 in Corollary 3.2, we get a generalization of a theorem of [15]. The
following example illustrates our corollary 3.2.

Example 3.3. Let X = [0, 10] be endowed with the metric d (x, y) = |x− y|,

Sx =

0, if x = 0,

x+ 8, if x ∈ (0, 2] ,

x− 2, if x ∈ (2, 10] ,

Tx =

0, if x = 0,

x+ 5, if x ∈ (0, 2] ,

x− 2, if x ∈ (2, 10] ,

A common fixed point theorem via a generalized contractive condition 9

A1x =

{
3, if x ∈ (0, 2] ,

0, if x ∈ {0} ∪ (2, 10] ,
A2x =

{
0, if x ∈ [0, 2] ,

4, if x ∈ (2, 10] ,

A3x =

{
0, if x ∈ [0, 2] ,

5, if x ∈ (2, 10] ,
A4x =

{
0, if x ∈ [0, 2] ,

6, if x ∈ (2, 10] ,

Aix =

{
2 + 2

i , if x ∈ (0, 2] ,

0, if x ∈ {0} ∪ (2, 10] ,
for all i > 4.

The pair (A1, S) is weakly compatible, but it is not compatible of type (A),
(B), (P) and (C), see [6].

A1 (X) ⊂ T (X) and Ai (X) ⊂ S (X).
The pair (Ai, T), i > 4, is weakly compatible because Ai and T commute at

their coincidence point x = 0, but it is not compatible of type (A), (B), (P) and
(C).

Let xn = 2 + 1
n . We have Txn = 1

n and Aixn = 0, hence

lim
n→∞

Txn = lim
n→∞

Aixn = t = 0.

In the other hand, AiTxn = Ai(
1
n) = 2 + 2

i and TAixn = T 0 = 0 and so
limn→∞ d (AiTxn, TAixn) = 2 + 2

i 6= 0. Therefore, the pair (Ai, T) is not compat-
ible.

A2
i xn = Ai0 = 0 and T 2xn = T

(
1
n

)
= 5 + 1

n , so limn→∞

∣∣TAixn −A2
ixn
∣∣ = 0

and limn→∞

∣∣AiTxn − T 2xn
∣∣ = limn→∞(3+ 1

n− 2
i) 6= 0 for all i > 3. Then, (Ai, T)

is not compatible of type (A).

lim
n→∞

∣∣AiTxn − T 2xn
∣∣ = 3 − 2

i
>

1

2

[
lim
n→∞

|AiTxn −Ai0| + lim
n→∞

∣∣Ai0 −A2
ixn
∣∣
]

=
1

2

∣∣∣∣2 +
2

i

∣∣∣∣ =
1

i
+ 1,

hence (Ai, T) is not compatible of type (B).
limn→∞

∣∣A2
i xn − T 2xn

∣∣ = limn→∞(5 + 1
n) = 5 6= 0. Therefore, (Ai, T) is not

compatible of type (P).

lim
n→∞

∣∣AiTxn − T 2xn
∣∣ = 3 − 2

i

>
1

3

[
lim
n→∞

|AiTxn −Ai0| + lim
n→∞

∣∣Ai0 − T 2xn
∣∣+ lim

n→∞

∣∣Ai0 −A2
i xn
∣∣
]

=
1

3

(
7 +

2

i

)

for i > 4. So, the pair (Ai, T) is not compatible of type (C).
It can be verified that the pairs (A2, T) , (A3, T) and (A4, T) are not weakly

compatible because x = 6 is a coincidence point of A2 and T , but A2T 6 = 4 6=

10 A. Aliouche, F. Merghadi

TA26 = 2, x = 7 is a coincidence point of A3 and T , but A3T (7) = 5 6= TA3(7) = 3
and x = 8 is a point of coincidence for A4 and T , but A4T (8) = 6 6= TA4(8) = 4.

Now, we begin to verify the rest of conditions of Corollary 3.2. Let F (t) =
ln(1 + t) and ψ(t) = ht, where 0 6 h < 1 and t > 0. Set

R = ln(1 + |A1x−Aiy|) − hmax

ln(1 + |Sx− Ty|), ln(1 + |A1x− Sx|),
ln(1 + |Aiy − Ty|),
1
2 [ln(1 + |A1x− Ty|) + ln(1 + |Sx−Aiy|)]

We have the following cases. If x = 0 and y = 0 we get R 6 0 for all 0 6 h < 1. If
x = 0 and y ∈ (0, 2], we get

R = ln

(
3 +

2

i

)
− hmax

{
ln (y + 6) , ln

(
y + 4 − 2

i

)
,

1
2

[
ln (y + 6) + ln

(
3 + 2

i

)]
}

6 0

for h >
ln(3+ 2

i)
3 ln 2 and so there exists 0 6 h < 1. If x = 0 and y ∈ (2, 10], we get

R = −hmax {ln (y − 1) , ln (y − 1) , ln (y − 1)} 6 0

for all 0 6 h < 1. If x ∈ (0, 2] and y = 0, we get

R = ln 4 − hmax

{
ln (x+ 9) , ln (x+ 6) ,
1
2 [ln 4 + ln (x+ 9)]

}
6 0

for h > ln 4
ln 11 and so there exists 0 6 h < 1. If x ∈ (0, 2] and y ∈ (0, 2], we get

R = ln

(
2 − 2

i

)
− hmax

{
ln(x − y + 4), ln(x+ 6), ln

(
y + 4 − 2

i

)
,

1
2

[
ln (y + 3) + ln

(
x+ 7 − 2

i

)]
}

6 0

for h >
ln(3− 2

i)
ln 8 . Hence, there exists 0 6 h < 1. If x ∈ (0, 2] and y ∈ (2, 10], we get

R = ln 4 − hmax

{
ln (x+ 11 − y) , ln (x+ 6) , ln (y − 1) ,
1
2 [ln (|5 − y| + 1) + ln (x+ 9)]

}
6 0

for h > ln 4
ln 11 . Hence, there exists 0 6 h < 1. If x ∈ (2, 10] and y = 0, we get

R = −hmax

{
ln (x− 1) , ln (x− 1) , 0,

1

2
ln (x− 1)

}
6 0

for all h > 0. Hence, there exists 0 6 h < 1. If x ∈ (2, 10] and y ∈ (0, 2], we get

R = ln

(
3 +

2

i

)
− hmax

{
ln (|x− (y + 7)| + 1) , ln (x− 1) ,
ln
(
y + 3 − 2

i

)
, 1

2

[
ln (y + 5) + ln

(∣∣x− 4 − 2
i

∣∣+ 1
)]
}

6 0

for h >
ln(3+ 2

i)
ln 9 . Hence, there exists 0 6 h < 1. If x, y ∈ (2, 10] we get

R = −hmax

{
ln (|x− y| + 1) , ln (x− 1) , ln (y − 1) ,
1
2 [ln (y − 1) + ln (x− 1)]

}
6 0

A common fixed point theorem via a generalized contractive condition 11

for all 0 6 h < 1.
Now, we verify that (A2, T) and (A3, T) satisfy all the conditions of Theo-

rem 4.2. Set

R1 =

∫ |A1x−A2y|

0

1

1 + t
dt−

− hmax

∫ |Sx−Ty|

0
1

1+t dt,
∫ |A1x−Sx|

0
1

1+t dt,
∫ |A2y−Ty|

0
1

1+t dt,

1
2

[∫ |A1x−Ty|

0
1

1+t dt+
∫ |Sx−A2y|

0
1

1+t dt
]

We have the following cases. If x = 0 and y = 0 we get R1 6 0 for all 0 6 h < 1.
If x = 0 and y ∈ (0, 2], we get

R1 = −hmax

{
ln (y + 6) , 0, ln (y + 6) ,

1

2
[y + 6]

}
6 0

for all 0 6 h < 1. If x = 0 and y ∈ (2, 10], we get

R1 = ln 5 − hmax

{
ln (y − 1) , ln (|y − 6| + 1) ,
1
2 [ln (y − 1) + ln 5]

}
6 0

for h > ln 5
ln 9 , hence there exists 0 6 h < 1. If x ∈ (0, 2] and y = 0, we get

R1 = ln 4 − hmax

{
ln (x+ 9) , ln (x+ 6) , 0,
1
2 [ln 4 + ln (x+ 9)]

}
6 0

for all h > ln 4
ln 11 . Hence, there exists 0 6 h < 1. If x ∈ (0, 2] and y ∈ (0, 2], we get

R1 = ln 4 − hmax

{
ln (4 + x− y) , ln (x+ 6) , ln (y + 6) ,
1
2 [ln (y + 3) + ln (x+ 9)]

}
6 0

for h > ln 4
ln 8 . Hence there exists 0 6 h < 1. If x ∈ (0, 2] and y ∈ (2, 10], we get

R1 = ln 2 − hmax

{
ln 11, ln (x+ 6) , ln (|y − 6| + 1) ,
1
2 [ln (|5 − y| + 1) + ln (x+ 5)]

}
6 0

for h > ln 2
ln 11 . Hence,there exists 0 6 h < 1. If x ∈ (2, 10] and y = 0, we get

R1 = −hmax

{
ln (x− 1) , ln (x− 1) ,

1

2
ln (x− 1)

}
6 0

for all 0 6 h < 1. In the same manner, if x ∈ (2, 10] and y ∈ (0, 2], we get R1 6 0
for all 0 6 h < 1. If x ∈ (2, 10] and y ∈ (2, 10], we get

R1 = ln 5 − hmax

{
ln (|x− y| + 1) , ln (x− 1) , ln (|y − 6| + 1) ,
1
2 [ln (y − 1) + ln |x− 6| + 1]

}
6 0

12 A. Aliouche, F. Merghadi

for h > ln 5
ln 9 . Hence, there exists 0 6 h < 1.Similarly, we can prove the conditions

of Theorem 4.2 if we take the mapping A3 instead of A2. Finally we remark that
all conditions of our theorem are verified and 0 is the unique common fixed point
of Ai, S and T .

The following example support our Theorem 3.1.

Remark 3.4. In this example, Theorem 2.6 of [3] is not applicable since the pair
(A2, T) is not weakly compatible, but Theorem 3.1 is applicable. Also, a theorem
of [15] for Ai = A2 for all i > 2 is not applicable since the pairs (A1, S) and (A2, T)
are not compatible. In the same manner, Theorem 1 of [12] is not applicable.

Remark 3.5. In the proof of Lemma 1 of [20] and Theorem 2.1 of [7], the authors
applied the inequality

a 6 b + c =⇒
∫ a

0

ϕ(t)dt 6

∫ b

0

ϕ(t)dt +

∫ c

0

ϕ(t)dt

which is false in general as it is shown by the following example.

Example 3.6. Let ϕ(t) = t, a = 1, b = 1
2 and c = 3

4 . Then 1 < 1
2 + 3

4 , but

∫ 1

0

ϕ(t)dt =
1

2
>

∫ 1
2

0

ϕ(t)dt +

∫ 3
4

0

ϕ(t)dt

=
1

8
+

9

32
=

13

32
.

To correct these errors, the authors should follow the proof of Theorem 2 of
[19].

Remark 3.7. In the proof of Theorem 1 of [12], the authors applied the inequality

lim
n→∞

d(xn, xn+1) = 0 =⇒ {xn} is a Cauchy sequence

which is false in general. It suffices to take xn = 1
n , n ∈ N∗. Thus, To correct this

error, the authors should follow the proof of Theorem 2 of [19].

References

[1] Aliouche, A., A common fixed point theorem for weakly compatible mappings in
symmetric spaces satisfying a contractive condition of integral type, J. Math. Anal.
Appl., 322 (2) (2006), 796–802.

[2] Aliouche, A., Common fixed point theorems of Gregus type for weakly compatible
mappings satisfying generalized contractive conditions, J. Math. Anal. Appl., 341 (1)
(2008), 707–719.

A common fixed point theorem via a generalized contractive condition 13

[3] Altun, I., Turkoglu, D., Rhoades, B.E., Fixed points of weakly compatible
mappings satisfying a general contractive condition of integral type, Fixed Point
Theory And Applications, Volume 2007 (2007), Article ID 17301, 9 pages.

[4] Branciari, A., A fixed point theorem for mappings satisfying a general contractive
condition of integral type, Int. J. Math. Math. Sci., 29 (2002), 531–536.

[5] Djoudi, A., Aliouche, A., Common fixed point theorems of Gregus type for
weakly compatible mappings satisfying contractive conditions of integral type, J.
Math. Anal. Appl., 329 (1) (2007), 31–45.

[6] Djoudi, A., Merghadi, F., Common fixed point theorems for maps under a con-
tractive condition of integral type, J. Math. Anal. Appl., 341 (2) (2008), 953–960.

[7] Gairola, U.C., Rawat, A.S., A fixed point theorem for integral type inequality,
Int. Journal of Math. Analysis, Vol. 2, 2008, no. 15, 709–712.

[8] Bouhadjera, H., Djoudi, A., Common fixed point theorems for pairs of single and
multivalued D-maps satisfying an integral type, Annales Math. et Inf., 35, (2008),
43–59.

[9] Jungck, G., Compatible mappings and common fixed points, Int. J. Math. Math.
Sci., 9 (1986), 771–779.

[10] Jungck, G., Murthy, P.P., Cho, Y.J., Compatible mappings of type (A) and
common fixed points, Math. Japonica., 38 (2) (1993), 381–390.

[11] Jungck, G., Common fixed points for non-continuous non-self maps on non metric
spaces, Far East J. Math. Sci., 4 (2) (1996), 199–215.

[12] Kohli, J.K., Vashistha, S., Common fixed point theorems for compatible and
weakly compatible mappings satisfying general contractive type conditions, Studii şi
Cercetări Ştiinţifice, Seria Matematică, Universitatea din Bacău, 16 (2006), 33–42

[13] Pant, R.P., Common fixed points of noncommuting mappings, J. Math. Anal. Appl.,
188 (1994), 436–440.

[14] Pant, R.P., Common fixed points for four mappings, Bull. Calcutta. Math. Soc., 9
(1998), 281–286.

[15] Pant, R.P., A Common fixed point theorem under a new condition, Indian J. Pure.
Appl. Math., 30 (2) (1999), 147–152.

[16] Pathak, H.K., Khan, M.S., Compatible mappings of type (B) and common fixed
point theorems of Gregus type, Czechoslovak Math. J., 45 (120) (1995), 685-698.

[17] Pathak, H.K., Cho, Y.J., Kang, S.M., Lee, B.S., Fixed point theorems for
compatible mappings of type (P) and applications to dynamic programming, Le
Matematiche, 1 (1995), 15–33.

[18] Pathak, H.K., Cho, Y.J., Khan, S.M., Madharia, B., Compatible mappings
of type (C) and common fixed point theorems of Gregus type, Demonstratio Math.,
31 (3) (1998), 499–518.

[19] Rhoades, B.E., Two fixed point theorems for mappings satisfying a general con-
tractive condition of integral type, Int. J. Math. Math. Sci., 63 (2003), 4007–4013.

[20] Vijayaraju, P., Rhoades, B.E., Mohanraj, R., A fixed point theorem for a
pair of maps satisfying a general contractive condition of integral type, Int. J. Math.
Math. Sci., 15 (2005), 2359–2364.

14 A. Aliouche, F. Merghadi

[21] Sessa, S., On a weak commutativity condition of mappings in fixed point consider-
ations, Publ. Inst. Math. Beograd., 32 (46) (1982), 149–153.

[22] Singh, S.P., Meade, B.A., On common fixed point theorems, Bull. Austral. Math.
Soc., 16 (1977), 49–53.

[23] Suzuki, T., Meir-Keeler contractions of integral type are still Meir-Keeler con-
tractions, Int. J. Math. Math. Sci., 2007, Article ID 39281, 6 pages, 2007.
doi:10.1155/2007/39281.

[24] Zhang, X., common fixed point theorems for some new generalized contractive type
mappings, J. Math. Anal. Appl., 333 (2) (2007), 780–786.

A. Aliouche
Department of Mathematics
University of Larbi Ben M’Hidi Oum-El-Bouaghi
04000
Algeria
e-mail: alioumath@yahoo.fr

F. Merghadi
Department of Mathematics
University of Tebessa
12000
Algeria
e-mail: faycel_mr@yahoo.fr

Annales Mathematicae et Informaticae
36 (2009) pp. 15–28
http://ami.ektf.hu

Approximation approach to performance
evaluation of Proxy Cache Server systems

Tamás Bérczes

Department of Informatics Systems and Networks, University of Debrecen

Submitted 8 January 2009; Accepted 15 April 2009

Abstract

In this paper we treat a modification of the performance model of Proxy
Cache Servers to a more powerful case when the inter-arrival times and the
service times are generally distributed. First we describe the original Proxy
Cache Server model where the arrival process is a Poisson process and the
service times are supposed to be exponentially distributed random variables.
Then we calculate the basic performance parameters of the modified perfor-
mance model using the well known Queueing Network Analysis (QNA) ap-
proximation method. The accuracy of the new model is validated by means
of a simulation study over an extended range of test cases.

Keywords: Queueing Network, Proxy Cache Server, Performance Models,
GI/G/1 queue

1. Introduction

The Internet quickly became an essential and integral part of today’s life. How-
ever, the booming use of the Web has caused congested networks and overloaded
servers. So, the answer from the remote Web server to the client often takes a
long time. Adding more network bandwidth is a very expensive solution. From the
user’s point of view it does not matter whether the requested files are on the firm’s
computer or on the other side of the world. The main problem is that the same
object can be requested by other users at the same time. Because of this situation,
identical copies of many files pass through the same network links, resulting in an
increased response time. By preventing future transfer, we can cache information
and documents that reduces the network bandwidth demand on the external net-
work. In general, there are three types of caches that can be used in isolation or
in a hierarchical fashion. Caching can be implemented at browser software [2]; the
originating Web sites [3]; and the boundary between the local area network and the

15

16 T. Bérczes

Internet [4]. Browser cache are inefficient since they cache for only one user. Web
server caches can improve performance, although the requested files must delivery
through the Internet, increasing the response time. In this paper we investigate the
third type. Requested documents can be delivered directly from the Web server or
through a Proxy Cache Server (PCS). A PCS has the same functionality as a Web
server when looked at from the client and the same functionality as a client when
looked at from a Web server. The primary function of a PCS is to store documents
close to the users to avoid retrieving the same document several times over the
same connection. It has been suggested that, given the current state of technology,
the greatest improvement in response time will come from installing a PCS at the
boundary between the corporate LAN and the Internet.

In this paper, we present an extended version of the performance model of a
PCS (see [5, 7]) using a more powerful case when inter-arrival times and the service
times are generally distributed.

The organization of the paper is as follows. In Section 2, renewal-based para-
metric decomposition models are reviewed (see [1, 10]). In Section 3 we introduce
a modified version of the original performance model of Proxy Cache Server, where
we include the repetition loop at the Proxy Server. A detailed description of the
generalized model is given in Section 4. Section 5 is devoted to the validation of
the numerical results of the approximation. The paper ends with Comments.

2. The GI/G/1 approximation

The GI/G/1 approximation described here is an example of a method using
Parametric Decomposition (see [10]) where the individual queueing nodes are an-
alyzed in isolation based on their respective input and output processes. In this
model, the arrival process is a general (GI) arrival process characterised by a mean
arrival rate and a squared coefficient of variation (SQV) of the inter-arrival time
and the service time may have any general distribution. To use the approxima-
tion, we need only to know the mean and the squared coefficient of variance of the
inter-arrival times and the service times. In order to apply this method, we assume
that the arrival process to a network node is renewal, so the arrival intervals are
independent, identically distributed random variables. Immediate feedback, where
a fraction of the output of a particular queue enters the queue once again, needs
special treatment. Before the detailed analysis of the queueing network is done,
the method first removes immediate feedback in a queue by suitably modifying its
service time.

This model contains procedures required for modeling of the basic network op-
erations of merging, departure and splitting, arising due to the common sharing of
the resources and routing decisions in the network. Futhermore, the approximation
provide performance measures (i.e. mean queue lengths, mean waiting times, etc.)
for both per-queue and per-network.

The parameters required for the approximation: Arrival process: (λA - the
mean arrival rate), (c2A - the SQV of the inter-arrival time) and service time (τS

Approximation approach to performance evaluation of Proxy Cache Server systems 17

- the mean service time), and (c2S - the SQV of the service time) at a considered
node.

The approximation method that transforms the two parameters of the inter-
nal flows for each of the three basic network operations and the removal of the
immediate feedback, as given in [1], is described in the following:

1) Merging GI traffic flows: The superposed process of n individual GI flows,
each characterized by λj and c2j (j = 1, . . . , n), as it enters the considered node
is approximated by a GI traffic flow with parameters λA and c2S , representing
the mean arrival rate and SQV of the inter-arrival time of the superposed flow,
respectively. The mean arrival rate and the SQV of the inter-arrival time of the
superposed flow is given by:

λA =

n∑

j=1

λj ,

c2A = ̟

n∑

j=1

λj
λA

c2j + 1 −̟,

with

̟ =
1

1 + 4(1 − ρ)2(ν − 1)
,

ν =
1

∑n
j=1

(
λj

λA

)2 ,

and ρ is the utilisation at the node, defined by ρ = λAτS .

2) Departure flow from a queue: The departure flow from a queue is approx-
imated as a GI traffic flow, characterized by λD and c2D, representing the mean
departure rate and SQV of the inter-departure time of the departure flow, respec-
tively. Under equilibrium conditions, the mean flow entering a queue is always
equal to the mean flow existing the queue: λD = λA. The SQV of inter-departure
time of the departure flow is given by:

c2D = ρ2c2S +
(
1 − ρ2

)
c2A

3) Splitting a GI flow Probabilistically: If a GI flow with parameters λ and c2 is
split into n flows, each selected independently with probability pi, the parameters
for the i-th flow will be given by:

λi = piλ,

c2i = pic
2 + (1 − pi).

4) Removing immediate feedback: If the output traffic from a queue is fed back
to this queue itself (Qi), so that the net arrival process is the sum of the external

18 T. Bérczes

arrivals Λ and the fed back portion piiλi. The approach followed to eliminate this
immediate feedback at the queue is to suitably adjust the service time at the queue
and the SQV of service time. Assume that the original service parameters at the
considered node are: τS,U - the mean service time, and c2S,U - the SQV of the service
time. Removing the immediate feedback from that node we will get the modified
service parameters:

τS,M =
τS,U

1 − pii
,

c2S,M = pii + (1 − pii)c
2
S,U ,

Wq,M =
Wq,M

1 − pii
.

This reconfigured queue without immediate feedback is used subsequently for solv-
ing the queueing network.

5) Mean waiting time: If the considered node is a GI/G/1 queue, the following
Kramer and Langenbach-Belz approximation is used (see [12]):

Wq =
τS · ρ(c2A + c2D)β

2(1 − ρ)

with

βWeb =

{
exp

(
2(1−ρ)(1−c2A)2

3ρ(c2A+c2D)

)
, for c2A < 1,

1 for c2A > 1.

3. The model of Proxy Cache Server

In this section we modified the original (M/M/1) performance model of Proxy
Cache Server (see [5]). In this version of the performance model the Proxy Cache
Server behaves like a Web server. So, if the size of the file that will pass through
the server, is greater then the server’s output buffer it will start a looping process
until the delivery of all file’s is completed (see [11, 6]).

Using Proxy Cache Server, if any information or file is requested to be down-
loaded, first it is checked whether the document exists on the Proxy Cache Server
or not. (We denote the probability of this existence by p). If the document can be
found on the PCS then its copy is immediately transferred to the user. In the op-
posite case the request will be sent to the remote Web server. After the requested
document arrived back to the PCS then a copy of it is delivered to the user.

Approximation approach to performance evaluation of Proxy Cache Server systems 19

λ1

λ2

bandwith
Client network

(1 − qxc)λ
′

λ′

PCS Server

Λ λ2 λ1

λ

PCS Lookup
λ3

Server network
bandwith

λ′3

(1 − q)λ′3

λ′3 λ3 λ3 Λ

λ2

Web server Inilisation

Figure 1: Network model

Figure 1 illustrates the path of a request in the original model (with feedback)
starting from the user and finishing with the return of the answer to the user. The
notations of the most important basic parameters used in this model are collected
in Table 3.

In this section we assume that the requests of the PCS users arrive according to
a Poisson process with rate λ, and the external requests arrive to the Web server
according to a Poisson process with rate Λ, respectively.

The service rate of the Web server is given by:

µWeb =
1

YS + BS

RS

where Bs is the capacity of the output buffer, Ys is the static server time, and Rs
is the dynamic server rate.

The service rate of the PCS is given by the equation:

µPCS =
1

Yxc + Bxc

Rxc

where Bxc is the capacity of the output buffer, Yxc is the static server time of the
PCS, and Rs is the dynamic server rate of the PCS. The solid line in Figure 1
(λ1 = pλ) represents the traffic when the requested file is available on the PCS and
can be delivered directly to the user. The λ2 = (1 − p)λ traffic depicted by dotted
line, represents those requests which could not be served by the PCS, therefore
these requests must be delivered from the remote Web server. λ3 = λ2 + Λ is
the flow of the overall requests arriving to the remote Web server. First the λ3

20 T. Bérczes

traffic undergoes the process of initial handshaking to establish a one-time TCP
connection (see [11, 7]). We denote by Is this initial setup.

If the size of the requested file is greater then the Web server’s output buffer
it will start a looping process until the delivery of all requested file’s is completed.
Let

q = min

(
1,
Bs
F

)

be the probability that the desired file can be delivered at the first attempt. So
λ′3 is the flow of the requests arriving at the Web service considering the looping
process. According to the conditions of equilibrium and the flow balance theory of
queueing networks

λ3 = qλ′3

Also, the PCS have to be modeled by a queue whose output is redirected with
probability 1 − qxc = min

(
1, Bxc

F

)
to its input, so

λ = qxcλ
′

where λ′ is the flow of the requests arriving to the PCS, considering the looping
process.

Then we get the overall response time (see [5]):

Txc =
1

1
Ixc

− (λ)
+ p

F
Bxc

1

(Yxc+
Bxc
Rxc

)
− λ

qxc

+
F

Nc

+ (1 − p)

1
1
Is

− λ3

+
F
Bs

1

(Ys+ Bs
Rs

)
− λ3

q

+
F

Ns
+

F
Bxc

1

(Yxc+
Bxc
Rxc

)
− λ

qxc

+
F

Nc

 .

(3.1)

4. The GI/G/1 model of Proxy Cache Server

In this section instead of M/M/1 queues we will use GI/G/1 queues using the
approximation describe in Section 2.

Approximation approach to performance evaluation of Proxy Cache Server systems 21

λ1

λ2

bandwith
Client network

λ
DPCS M2

λA

PCS Server

S2
Λ λ2,R λ1

λ

PCS Lookup DLookup

λ3,DLookup

S1
Server network
bandwith

λ3,DWeb

DWeb

λ3,DInit

DInit M1

λ3 Λ

λ2

Web server Inilisation

Figure 2: Modified Network model

The requests of the PCS users is assumed to be generalized inter-arrival (GI) process
(see [10]) with λ mean arrival rate and with c2λ SQV of the inter-arrival time, and
the external arrivals at the remote Web server are generalized inter-arrival process
too with parameters Λ and c2Λ.

The parameters of the queue PCS Lookup and the queue of the TCP initializa-
tion (see Figure 2) are µLookup, c2Lookup and µInit, c2Init and the parameters of the
Web and PCS servers are µWeb, c2Web and µPCS , c2PCS where:

µLookup =
1

Ixc
,

and

µInit =
1

IS
,

µWeb =
1

YS + BS

RS

,

µPCS =
1

Yxc + Bxc

Rxc

where Ixc is the lookup time of the PCS (in second) and Is is the TCP setup
time. The Bs and Bxc parameters are the capacity of the output buffer of the Web
server and the PCS, Ys and Yxc are the static server times, and Rs and Rxc are
the dynamic server rates for the Web and Proxy servers (see [7]).

In the first step we removed the immediate feedbacks from the Web server and
from the PCS, respectively. Figure 2 shows the modified model. After the removal

22 T. Bérczes

we have to modify the parameters of the corresponding servers:

µWeb,M = µWebq,

c2Web,M = (1 − q) + qc2Web,

µPCS,M = µPCSqxc,

c2PCS,M = (1 − qxc) + qxcc
2
PCS .

In the model we have 2 superposition point (S1,S2), 2 merging point (M1,M2) and
4 separate queue where we have to recalculate the basic parameters. In S1 position
the flow of the requests split in two flows with probability p and 1 − p.

The recalculated parameters of the departure flow after checked of the avail-
ability of the required file are:

λD = λ,

c2DLookup
= ρ2c2Lookup +

(
1 − ρ2

)
c2λ,

where

ρ =
λ

µIxc

.

The solid line (λ1) represents those requests, which are available on the PCS and
can be delivered directly to the user. The λ2 traffic depicted by dotted line, repre-
sents those requests which could not be served by the PCS, therefore these requests
must be delivered from the remote Web server.

The parameters of the two flows are:

λ1 = pλD,

c21 = pc2DLookup
+ (1 − p),

λ2 = (1 − p)λD,

c22 = (1 − p)c2DLookup
+ p.

In M1 position the λ2 flow and the external requests are merging, and we get the
λ3 flow with the parameters defined below:

λ3 = λ2 + Λ,

c23 = w

(
λ2

λ3
c22 +

Λ

λ3
c2Λ

)
+ (1 − w)

where

w =
1

4(1 − ρ)2(ν − 1)
,

ν =
1

(
λ2

λ3

)2

+
(

Λ
λ3

)2 ,

Approximation approach to performance evaluation of Proxy Cache Server systems 23

and

ρ =
λ3

µInit

The parameters of the departure flow (λ3,DInit) after the TCP initialisation are:

λ3,DInit = λ3,

c23,DInit
= ρ2c2Init +

(
1 − ρ2

)
c23,

where

ρ =
λ3,DInit

µInit
.

The parameters of the departure flow (λ3,DW eb
) from the Web server are:

λ3,DW eb
= λ3,

c23,DW eb
= ρ2c2Web,M +

(
1 − ρ2

)
c23,DInit

,

where

ρ =
λ3

µWeb,M
.

Then in S2 position the λ3,DW eb
flow splits into two parts. One part is the traffic

of the external requests, with probability Λ
λ2+Λ , and the second part is the flow

(λ2,R) of the returning requests to the PCS. The parameters of the λ2,R traffic are:

λ2,R = λ2,

c22,R =
λ2

λ2 + Λ
c23,DW eb

+

(
1 − λ2

λ2 + Λ

)

In M2 position the λ1 traffic and the λ2,R traffic are merging into λA traffic which
is described by parameters:

λA = λ1 + λ2,R = λ1 + λ2 = λ,

c2A = w

(
λ1

λ
c21 +

λ2

λ
c22,R

)
+ (1 − w)

where

w =
1

4(1 − ρ)2(ν − 1)
,

ν =
1

(
λ1

λ

)2
+
(
λ2

λ

)2 ,

and

ρ =
λ

µPCS,M

24 T. Bérczes

The overall response time can be calculated as follows (see [5, 11]):

Txc = TLookup + p

{
TPCS +

F

Nc

}

+ (1 − p)

{
TInit + TWeb +

F

Ns
+ TPCS +

F

Nc

}
,

where

TLookup = WLookup +
1

µLookup
=

=

1
µLookup

ρLookup

(
c2λ + c2Lookup

)
β

2 (1 − ρlookup)
+

1

µLookup
,

β =

exp

(
− 2(1−ρLookup)(1−c2λ)

2

3ρLookup(c2λ+c2Lookup)

)
for c2λ < 1

1 for c2λ > 1

ρLookup =
λ

µLookup

and

TPCS = WPCS +
1

µPCS,M
=

=

1
µP CS,M

ρpcs
(
c2A + c2pcs,M

)
β

2 (1 − ρpcs)
+

1

µpcs,M
,

where

β =

exp

(
− 2(1−ρpcs)(1−c2A)

2

3ρpcs(c2A+c2pcs,M)

)
for c2A < 1

1 for c2A > 1

ρpcs =
λA

µpcs,M

and

TInit = WInit +
1

µInit
=

=

1
µInit

ρInit
(
c23 + c2Init

)
βInit

2 (1 − ρInit)
+

1

µInit
,

where

βInit =

exp

(
− 2(1−ρInit)(1−c23)

2

3ρInit(c23+c2Init)

)
, for c23 < 1

1 for c23 > 1

Approximation approach to performance evaluation of Proxy Cache Server systems 25

ρInit =
λ3

µInit

and

TWeb = WWeb +
1

µWeb,M
=

=

1
µW eb,M

ρweb

(
c2DInit

+ c2web,M

)
βweb

2 (1 − ρweb)
+

1

µweb,M
,

βWeb =

exp

(
− 2(1−ρweb)(1−c2DInit

)2

3ρweb

(
c2DInit

+c2web,M

)
)
, for c2DInit

< 1

1 for c2DInit
> 1

ρweb =
λ3

µweb,M

5. Numerical results

For the numerical explorations the corresponding parameters of Cheng and Bose
[7] are used. The value of the other parameters for numerical calculations are:
Is = Ixc = 0.004 seconds, Bs = Bxc = 2000 bytes, Ys = Yxc = 0.000016 seconds,
Rs = Rxc = 1250 Mbyte/s, Ns = 1544 Kbit/s, and Nc = 128 Kbit/s. These values
are chosen to conform to the performance characteristics of Web servers in [9].

For validating the approximation, we wrote a simulation program in Microsoft
Visual Basic 2005 under .NET framework 2.0. It was run on a PC with a T2300
Intel processor (1.66 GHz) with 2 GB RAM. First we validated the simulation pro-
gram using exponential distributions. For validation we calculated the analytical
results of the overall response time given by Eq(3.1) and compared to the simu-
lation results. In Table 1, we can see that the corresponding mean of the total
response times are very close to each other; they are the same at least up to the
4th decimal digit.

For the validation of the approximation method we used the following dis-
tributions (see [8]). In case 0 < cX < 1 we use an Ek−1,k distribution, where
1
k 6 k < 1

k−1 . In this case the approximating Ek−1,k distribution is with proba-
bility p (resp. 1 − p) the sum of k − 1 (resp. k) independent exponentials with
common mean 1

µ . Choosing

p =
1

1 + c2X

(
kc2X −

(
k
(
1 + c2X

)
− k2c2X

)1/2)
and µ =

k − p

E(X)

the Ek−1,k distribution matches E(X) and cX .
In case cX > 1 we fits a H2(p1; p2;µ1;µ2) hyper-exponential distribution with

balanced mean (see [8]):
p1

µ1
=
p2

µ2

26 T. Bérczes

So the parameters of this H2 distributions are:

p1 =
1

2

(
1 +

√
c2X − 1

c2X + 1

)
, p2 = 1 − p1,

and

µ1 =
2p1

E(X)
, µ2 =

2p2

E(X)
.

For the easier understanding we used for all queues the same SQV rate. In Table 2,
we show the results of the simulations and approximations with various parameters.

Parameters Analytical result Simulation result Approximation Difference
λ = 20, Λ = 100 0.425793 0.425706 0.425793 0.000087
λ = 80, Λ = 100 0.430135 0.430136 0.430135 0.000001

Table 1: Exponential distribution

Arrival intensity SQV Simulation result Approx. result Difference
0.1 0.423084 0.423129 0.000045

λ = 20 0.8 0.425127 0.425189 0.000062
Λ = 100 1.2 0.423042 0.426328 0.003286

1.8 0.421744 0.427979 0.006235
0.1 0.423591 0.423974 0.000383

λ = 80 0.8 0.428624 0.428725 0.000101
Λ = 100 1.2 0.425821 0.431507 0.005686

1.8 0.424049 0.435869 0.011820

Table 2: Approximation

6. Comments

In this paper we modified the performance model of Proxy Cache Server to a
more powerful case when the arrival processes is a GI process and the service times
may have any general distribution. To obtain the overall response time we used the
QNA approximation method, which was validated by simulation. As we can see in
Table 2, when the SQV < 1 the overall response time obtained by approximation
is very close to response time obtained by simulation; they are the same at least
up to the 3–4th decimal digit. In case when the SQV > 1 the response times
are the same only to 2–3th decimal digit. We can see, when the SQV = 1.2 the
difference between the response times are 0.005686, and when the SQV = 1.8 the
difference between the response times is greater (0.01182). So, using greater SQV
the approximation error is greater.

Approximation approach to performance evaluation of Proxy Cache Server systems 27

Table 3: Notations

λ: arrival rate from the PCS
Λ: external arrival rate
F : average file size (in byte)
p: cache hit rate probability

Bxc: PCS output buffer (in byte)
Ixc: lookup time of the PCS (in second)
Yxc: static server time of the PCS (in second)
Rxc: dynamic server time of the PCS (in byte/second)
Nc: client network bandwidth (in bit/second)
Bs: Web output buffer (in byte)
Is: lookup time of the Web server (in second)
Ys: static server time of the Web server (in second)
Rs: dynamic server time of the Web server (in byte/second)
Ns: server network bandwidth (in bit/second)

References

[1] Atov I., QNA Inverse Model for Capacity Provisioning in Delay Constrained IP
Networks. Centre for Advanced Internet Architectures. Technical Report 040611A
Swinburne University of Technology Melbourne, Australia, (2004).

[2] Aggarwal, C., Wolf, J.L. and Yu, P.S., Caching on the World Wide Web. IEEE
Transactions on Knowledge and Data Engineering, 11 (1999) 94–107.

[3] Almeida, V.A.F., de Almeida, J.M. and Murta, C.S. Performance analysis of
a WWW server. Proceedings of the 22nd International Conference for the Resource
Management and Performance Evaluation of Enterprise Computing Systems, San
Diego, USA, December 8. 13 (1996).

[4] Arlitt, M.A. and Williamson, C.L. Internet Web servers: workload characteri-
zation and performance implications. IEEErACM Transactions on Networking, 5
(1997), 631–645.

[5] Berczes, T. and Sztrik, J., Performance Modeling of Proxy Cache Servers. Journal
of Universal Computer Science., 12 (2006) 1139–1153.

[6] Berczes, T., Guta, G., Kusper, G., Schreiner, W. and Sztrik, J., Analyzing
Web Server Performance Models with the Probabilistic Model Checker PRISM. Tech-
nical report no. 08-17 in RISC Report Series , University of Linz, Austria. November
2008.

[7] Bose, I. and Cheng, H.K., Performance models of a firms proxy cache server.
Decision Support Systems and Electronic Commerce., 29 (2000) 45–57.

[8] Henk C. Tijms Stochastic Modelling and Analysis. A computational approuch. John
Wiley & Sons, Inc. New York, (1986).

[9] Menasce, D.A. and Almeida, V.A.F., Capacity Planning for Web Performance:
Metric, Models, and Methods. Prentice Hall., (1998).

28 T. Bérczes

[10] Sanjay K. Bose An introduction to queueing systems. Kluwer Academic/Plenum
Publishers, New York, (2002).

[11] Slothouber L.P., A model of Web server performance. 5th International World
Wide Web Conference, Paris, Farnce., (1996).

[12] Whitt, W., The Queueing Network Analyzer. Bell System Technical Journal., Vol.
62, No. 9 (1983) 2799–2815.

Tamás Bérczes
Department of Informatics Systems and Networks
University of Debrecen
P.O. Box 12
H-4010 Debrecen
Hungary
e-mail: berczes.tamas@inf.unideb.hu

Annales Mathematicae et Informaticae
36 (2009) pp. 29–41
http://ami.ektf.hu

Crossed ladders and Euler’s quartic

A. Bremnera, R. Høibakkb, D. Lukkassenbc

aSchool of Mathematics, Arizona State University, USA
bNarvik University College, Norway

cNorut Narvik, Norway

Submitted 8 January 2008; Accepted 15 April 2009

Abstract

We investigate a particular form of the classical “crossed ladders” problem,
finding many parametrized solutions, some polynomial, and some involving
Fibonacci and Lucas sequences. We establish a connection between this par-
ticular form and a quartic equation studied by Euler, giving corresponding
solutions to the latter.

MSC: 11D25, 11G05.

1. Introduction

The so-called “Crossed Ladders Problem” can be formulated as follows. Two
ladders of lengths a,b, lean against two vertical walls as shown in Figure 1. The
ladders cross each other at a point with distance c above the ground. Determine
the distance x between the walls and the heights y, z, above the ground of the
points where the ladders touch the walls.

The defining system of equations is

x2 = a2 − y2 = b2 − z2, (1.1)

c =
yz

y + z
. (1.2)

There is enormous literature on the crossed ladder problem, as may be seen for ex-
ample by consulting the extensive bibliography of Singmaster’s “Sources in Recre-
ational Mathematics”, Section 6L: “Geometric Recreations. Crossed ladders”; see
Singmaster [9]. The second and third authors have also recently investigated this
problem; see Høibakk et al. [4, 5].

29

30 A. Bremner, R. Høibakk, D. Lukkassen

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

a

b

c

y

z

x

Figure 1: The crossed ladders

Our interest is in ladder problems where the lengths are all integers, and so we are
reduced to finding integer solutions to the Diophantine system (1.1) where, without
loss of generality, we may assume x, y, z, a, b have no common divisor. For certainly
a solution of the ladder problem gives rise to such x, y, z, a, b; and conversely, given
coprime x, y, z, a, b, then scaling by the factor

S =
y + z

gcd(yz, y + z)

results in an integer solution to (1.1), (1.2). Høibakk et al. [4] observe empirically
that the ratio y : z frequently takes an integer value greater than 1, and in this
note we investigate the conditions and implications that imposing this restriction
implies. Putting

y = Mz, M > 1, (1.3)

gives

x2 +M2z2 = a2, x2 + z2 = b2, (1.4)

which as the intersection of two quadrics in projective 3-space (with a point at
z = 0) represents an elliptic curve. A quartic form is easy to derive. At (1.3), (1.4)
we can set

x : y : z : a : b = (X2 − Y 2) : 2MXY : 2XY : Z : (X2 + Y 2), (1.5)

with

X4 + (4M2 − 2)X2Y 2 + Y 4 = Z2. (1.6)

Crossed ladders and Euler’s quartic 31

The inverse transformation is given by
(
X

Y
,
Z

Y 2

)
=

(
x+ b

z
,

2a(x+ b)

z2

)
.

Thus solutions to the crossed ladder problem under the restriction (1.3) correspond
to solutions of the Diophantine equation (1.6). The equation

X4 +mX2Y 2 + Y 4 = � (1.7)

has been studied since the 17th century. A solution is said to be trivial if either
XY = 0 or if X2 = Y 2 = 1, which can occur only when m is of the form k2 − 2.
Fermat showed there are no non-trivial solutions for m = 0. Euler showed that
for m = 14 there are only trivial solutions, and found non-trivial solutions for
47 values of m between 2 and 200, and for 73 values of −m between 2 and 200.
Pocklington [7], Sinha [10], and Zhang [11] produced classes ofm for which (1.7) has
no non-trivial solutions; and Brown [3] completed the determination of solvability
of (1.7) in the range 0 6 m 6 100. Bremner & Jones [2] studied the equation in
some detail, determining solvability of (1.7) (subject to standard conjectures) in
the range |m| 6 3000. We can deduce from the tables of [2], for example, that the
smallest value of M for which non-trivial solutions of (1.6) exist is M = 7, with
small solutions at (X,Y) = (5, 1), leading to (x, y, z, a, b, c) = (12, 35, 5, 74, 26, 35

8),
and (X,Y) = (6, 1) with (x, y, z, a, b, c) = (35, 84, 12, 91, 37, 21

2).
It is our intention here to investigate the quartic (1.6) and derive parametrized

families for M for which there exist non-trivial solutions. Surprisingly many values
of M for which non-trivial solutions to (1.6) exist turn out to be members of such
infinite families. We describe several such families, and indicate the corresponding
point on (1.6). It is then straightforward to compute the corresponding solution to
the crossed ladder problem by means of the ratios at (1.5). Some of the parametric
families are given in terms of polynomials, others in terms of Fibonacci and Lucas
sequences.

The ideas are essentially ad hoc, and by no means exhaustive: many values of
M for which non-trivial solutions to (1.6) exist have not been found as members
of infinite families.

We note that a cubic form of the elliptic curve at (1.4) is given by

E : v2 = u3 + (−2M2 + 1)u2 + (M4 −M2)u = u(u−M2)(u − (M2 − 1)), (1.8)

where the maps are given by

x : z : a : b = (v2 − u2) : 2uv : (−u3 + (M4 −M2)u) : (v2 + u2),

and

(u, v) =

(
(a− b)(a− x)

z2
,

(a− b)(b+ x)(a− x)

z3

)
.

We therefore also obtain the maps between the cubic curve at (1.8) and the quartic
curve at (1.6), namely

(X,Y, Z) = (v, u, u3 − (M4 −M2)u),

32 A. Bremner, R. Høibakk, D. Lukkassen

(u, v) =

(
X2 + (2M2 − 1)Y 2 + Z

2Y 2
,
X(X2 + (2M2 − 1)Y 2 + Z)

2Y 3

)
.

2. Linear parametrizations

We show that there can be no nontrivial points on the curve (1.6), whereX,Y, Z
are linear polynomials in M . The curve (1.8) represents a rational elliptic surface
S, and as such we know by results of Shioda (see, for example, Shioda [8, Cor.
5.3, Thm. 10.8] that the Mordell-Weil group of (1.8) over C(M) is generated by
those points which are given by polynomials u at most quadratic in M . Finding
points on (1.8) over C(M) whose u-coordinate is at most quadratic in M is a
straightforward machine computation. However, it is not necessary to carry out:
the discriminant of the cubic model at (1.8) is equal to 16M4(M2 − 1)2, so that
the curve is singular at (M), (1/M), (M ± 1). Computing the Kodaira reduction
types, the Shioda formula for the rank gives rank(E(C(M))) = 0, and consequently
rank(E(Q(M))) = 0. The only points on (1.8) are the torsion points, namely (0, 0),
(M2, 0), and (M2 − 1, 0), corresponding to trivial points on (1.6).

3. Parametrizations of higher degree

At (1.4), we set without loss of generality b + z = gp2, b − z = gq2, a + y =
hr2, a− y = hs2, (x =)gpq = hrs, (p, q) = (r, s) = 1, for integers p, q, r, s and g,
h; and the restriction (1.3) demands

M =
pq(r2 − s2)

rs(p2 − q2)
∈ Z. (3.1)

We correspondingly have crossed ladder solution

x : y : z : a : b = 2pq : M(p2 − q2) : (p2 − q2) :
pq(r2 + s2)

rs
: (p2 + q2),

and point at (1.6) given by

(X,Y, Z) =

(
p+ q, p− q,

2pq(r2 + s2)

rs

)
.

We study several particular cases.

3.1. Case I

We suppose (r, s) = (pq, 1), which implies g = h and demands

M =
p2q2 − 1

p2 − q2
∈ Z. (3.2)

Crossed ladders and Euler’s quartic 33

An immediate family of solutions arises on setting (p, q) = (2n + 1, 2n − 1) with
corresponding M and point on (1.6) given by:

M = n(2n2 − 1), (X,Y, Z) = (2n, 1, 8n4 − 4n2 + 1).

This gives numerical values of M = 14, 51, 124, 245, . . .

The curve E takes the form

En : v2 = u
(
u− n2(2n2 − 1)2

) (
u− (n2 − 1)(4n4 + 1)

)
,

and the corresponding point on the elliptic curve En is

P (u, v) =
(
(n2 − 1)(2n2 − 1)2, 2n(n2 − 1)(2n2 − 1)2

)
.

We can compute multiples of P to obtain parametrized solutions to the crossed
ladder problem of increasing degree. For example,

2P =

(
(8n4 − 4n2 + 1)2

16n2
, − (16n4 − 1)(8n4 − 4n2 + 1)

64n3

)
,

corresponding to the crossed ladder solution

(x, y, z, a, b) = ((4n2 − 2n− 1)(4n2 + 2n− 1)(8n3 − 2n− 1)(8n3 − 2n+ 1),

8n2(2n2 − 1)(16n4 − 1)(8n4 − 4n2 + 1),

8n(16n4 − 1)(8n4 − 4n2 + 1),

2048n12 − 2048n10 + 896n8 − 384n6 + 128n4 − 16n2 + 1,

−(1024n10 − 768n8 + 512n6 − 160n4 + 16n2 + 1)).

(Remark: the torsion group on En is Z/2Z×Z/2Z and points Q+T for T torsion
return the same values of (x, y, z, a, b) as for Q, up to sign; so it is only of interest
to consider (x, y, z, a, b) corresponding to the direct multiples of P on En). The
point 3P returns polynomials of degree 24.

We can obtain families of solutions to (3.2) by demanding that

n(pq + ǫ) = p2 − q2, ǫ = ±1, (3.3)

for integers n. When n = 1, the theory of the Pell equation gives all solutions of
(3.3) as (p, q) = (Fk+1, Fk), where Fi is the i-th Fibonacci number. In this instance,
M = Fk+1Fk − (−1)k, with associated ladder solution

(x, y, z, a, b) = (2Fk+1Fk, F
2
k+1F

2
k − 1, F 2

k+1 − F 2
k , F

2
k+1F

2
k + 1, F 2

k+1 + F 2
k),

and point on (1.6)

M = Fk+1Fk − (−1)k, (X,Y, Z) = (Fk+2, Fk−1, 2(F 2
k+1F

2
k + 1)).

Numerical values of M that occur are M = 7, 14, 41, 103, 274, . . .

34 A. Bremner, R. Høibakk, D. Lukkassen

When n > 1, solutions are provided in terms of the recurrence relation

Ri = nRi−1 +Ri−2, i > 2, R0 = ǫ, R1 = 1, ǫ = ±1.

Then
R2
k+1 −R2

k = n(Rk+1Rk − ǫ(−1)k),

and taking (p, q) = (Rk+1, Rk) gives rise to

M =
1

n
(Rk+1Rk + ǫ(−1)k).

We have
R2i+1 ≡ 1 mod n, R2i ≡ ǫ mod n,

so M will be integral precisely when k is odd. Thus setting (p, q) = (R2i, R2i−1)
gives rise to

M =
1

n
(R2iR2i−1 − ǫ) ∈ Z.

The corresponding point on (1.6) is given by

(X,Y, Z) = (R2i +R2i−1, R2i −R2i−1, 2(R2
2iR

2
2i−1 + 1)).

The case n = 2, ǫ = 1, gives the well-known Pell sequence R = {1, 1, 3, 7, 17, 41, . . .}
with corresponding M equal to 59, 2029, When ǫ = −1, then the R-sequence

is {−1, 1, 1, 3, 7, 17, 41, . . .} with corresponding M equal to 11, 349,
If we leave n as parameter, then we obtain the following values of M :

n4 + 2ǫn3 + 4n2 + 4ǫn+ 3 (3.4)

n8 + 2ǫn7 + 8n6 + 12ǫn5 + 21n4 + 22ǫn3 + 20n2 + 12ǫn+ 5 (3.5)

...

Without loss of generality (by changing the sign of n if necessary) we may take
ǫ = 1, and the first line above corresponds to the crossed ladder problem solution
given by

(x, y, z, a, b) =

(2(n2 + n+ 1)(n3 + n2 + 2n+ 1),

n(n+ 1)(n2 + 1)(n2 + n+ 2)(n4 + 2n3 + 4n2 + 4n+ 3),

n(n+ 1)(n2 + 1)(n2 + n+ 2),

n10 + 4n9 + 12n8 + 24n7 + 38n6 + 46n5 + 44n4 + 32n3 + 17n2 + 6n+ 2,

n6 + 2n5 + 6n4 + 8n3 + 9n2 + 6n+ 2),

with point on (1.6) given by

(X,Y, Z) = ((n+ 1)(n2 + n+ 2), n(n2 + 1),

Crossed ladders and Euler’s quartic 35

2(n10 + 4n9 + 12n8 + 24n7 + 38n6 + 46n5 + 44n4 + 32n3 + 17n2 + 6n+ 2)).

Other approaches to making the quotient (3.2) integral include setting p =
Fn+1 + Fn−1, q = Fn, when we obtain

M =
1

4
(Fn+2 + Fn)(Fn + Fn−2),

which is integral precisely when n ≡ ±2 mod 6. Numerical values of M are given
by M = 11, 551, The point on (1.6) is

(X,Y, Z) = (Fn+1, Fn−1,
1

2
F2n+1F2n−1).

We can also take (p, q) = (Pn, Qn), where Pn, Qn are the familiar Pell-sequences
defined by Pn = 2Pn−1 + Pn−2, n > 2, P0 = 1, P1 = 1, and Qn = 2Qn−1 +Qn−2,
n > 2, Q0 = 0, Q1 = 1. Thus P is the sequence 1, 1, 3, 7, 17, 41, 99, · · · , Q the
sequence 0, 1, 2, 5, 12, 29, 70, · · · , and P 2

n − 2Q2
n = (−1)n. Then

M = 2Q2
n − (−1)n = Pn+1Pn−1,

with numerical values M = 7, 51, 287, The point on (1.6) is

(X,Y, Z) = (Pn +Qn, Pn −Qn, 2(P 2
nQ

2
n + 1)) = (Qn+1, Qn−1, 2(P 2

nQ
2
n + 1)).

3.2. Case II

We assume p2 − q2 = r2 − s2, q = rs, which implies M = p, and demands

p2 − r2(s2 + 1) = −s2. (3.6)

We consider s to be a fixed parameter, and by considering norms from the quadratic
field Q(

√
s2 + 1) in which we note s +

√
s2 + 1 is a unit of norm −1, can define

solutions (pi, ri) by means of

pi + ri
√
s2 + 1 = (s+

√
s2 + 1)2i(p0 + r0

√
s2 + 1)

for an initial solution (p0, r0). It is readily seen that pi and ri are determined
recursively by

pi+2 = (4s2 + 2)pi+1 − pi, p1 = (2s2 + 1)p0 + 2s(s2 + 1)r0,

ri+2 = (4s2 + 2)ri+1 − ri, r1 = 2sp0 + (2s2 + 1)r0.

The crossed ladder solution is

(x, y, z, a, b) = (2piris, pi(p
2
i − r2i s), p

2
i − r2i s

2, pi(r
2
i + s2), p2

i + r2i s
2),

and the corresponding point on (1.6) is given by:

M = pi, (X,Y, Z) = (pi + ris, pi − ris, 2pi(r
2
i + s2)).

36 A. Bremner, R. Høibakk, D. Lukkassen

Taking (p0, r0) = (1, 1), then (p1, s1) = (2s3 + 2s2 + 2s+ 1, 2s2 + 2s+ 1), and we
obtain the sequence pi, i > 1 as:

1 + 2s+ 2s2 + 2s3, 1 + 4s+ 8s2 + 12s3 + 8s4 + 8s5, . . .

As an example, the former corresponds to crossed ladder solution

(x, y, z, a, b) =(2s(1 + 2s+ 2s2)(1 + 2s+ 2s2 + 2s3),

(1 + s)(1 + 2s)(1 + s+ 2s2)(1 + 2s+ 2s2 + 2s3),

(1 + s)(1 + 2s)(1 + s+ 2s2),

(1 + 2s+ 2s2 + 2s3)(1 + 4s+ 9s2 + 8s3 + 4s4),

1 + 4s+ 9s2 + 16s3 + 20s4 + 16s5 + 8s6),

and point on (1.6) with M = 2s3 + 2s2 + 2s+ 1,

(X,Y, Z) = ((2s+1)(2s2+s+1), s+1, 2(2s3+2s2+2s+1)(4s4+8s3+9s2+4s+1)).

Numerical values of M that arise from these parametrizations are

M = 7, 11, 29, 41, 79, 103, 169, 199, 209, . . .

(with M = 199 arising from M = 1 + 4s+ 8s2 + 12s3 + 8s4 + 8s5, the other values
arising from M = 1 + 2s+ 2s2 + 2s3).

If instead we take (p0, r0) = (±s2, s), then the resulting sequence pi is

s2(3 + 4s2), s2(5 + 20s2 + 16s4), . . .

which is a special case of the sequence derived under Case III, and is not considered
further here.

If at (3.6) we consider instead r to be a fixed parameter, then

p2 − s2(r2 − 1) = r2. (3.7)

Analogously,

pi + si
√
r2 − 1 = (r +

√
r2 − 1)i(p0 + s0

√
r2 − 1),

for an initial solution (p0, s0). Taking (p0, s0) = (r, 0) we obtain the recurrences

pi+2 = 2rpi+1 − pi, p0 = r, p1 = r2,

si+2 = 2rsi+1 − si, s0 = 0, s1 = r,

giving the sequence of pi (and hence M) as

r(2r2 − 1), r2(4r2 − 3), r(8r4 − 8r2 + 1), . . .

Numerical values of M arising from these parametrizations are:

M = 14, 51, 52, 124, 194, 245, . . .

Crossed ladders and Euler’s quartic 37

3.3. Case III

We suppose (r, s) = (p, 1), which demands

q(p2 − 1)

p2 − q2
∈ Z. (3.8)

Solutions are generated by the recurrence relations

pi = npi−1 − pi−2, i > 3, p1 = −1, p2 = 1,

qi = nqi−1 − qi−2, i > 3, q1 = 1, q2 = 1,

where, on taking (p, q) = (pi, qi), we have corresponding value of M equal to
(n+2

4)qi. Accordingly, we take n ≡ 2 mod 4. The first three values of (pi, qi) with
the corresponding M and point (X,Y, Z) on (1.6) are as follows, where we require
n ≡ 2 mod 4.

(p3, q3) = (n+ 1, n− 1), M =

(
n+ 2

4

)
(n− 1),

(X,Y, Z) =

(
n, 1, (n− 1)

(
1

2
n2 + n+ 1

))
;

(3.9)

(p4, q4) = (n2 − n+ 1, n2 − n− 1), M =

(
n+ 2

4

)
(n2 − n− 1),

(X,Y, Z) =

(
n2 − 1, n,

1

2
(n2 − n− 1)(n4 + 2n3 − n2 − 2n+ 2)

)
;

(p5, q5) = (n3 + n2 − 2n− 1, n3 − n2 − 2n+ 1),

M =

(
n+ 2

4

)
(n3 − n2 − 2n+ 1),

(X,Y, Z) =
(
n(n2 − 2), n2 − 1,

1

2
(n3 − n2 − 2n+ 1)(n6 + 2n5 − 3n4 − 6n3 + 2n2 + 4n+ 2)

)
.

Numerical values of M arising from these parametrizations are:

M = 7, 10, 22, 27, 41, 45, 52, 58, 76, 85, 115, 126, 162, 175, 217, . . .

The solution at (3.9) has M quadratic in the parameter n, and we can find all the
corresponding parametrizations of (1.6) because it may be shown that the curve
(1.8) which equals

En : v2 = u

(
u− 1

16
(n− 1)2(n+ 2)2

)(
u− 1

16
(n− 2)(n+ 3)(n2 + n+ 2)

)
,

38 A. Bremner, R. Høibakk, D. Lukkassen

is of rank 1 over Q(n) with generator

P (u, v) =
(

1

16
(n− 2)(n− 1)(n2 + n+ 2),

1

16
n(n− 2)(n− 1)(n2 + n+ 2)

)
. (3.10)

(That the rank is 1 follows from Shioda’s formula for the K3 elliptic surface repre-
sented by En; that P is a generator follows from computing its height of 7/8, and
using arguments similar to those of Kuwata [6]). So, for example,

2P =

(
(n− 1)2(n2 + 2n+ 2)2

16n2
, − (n− 1)2(n+ 1)(n2 + 1)(n2 + 2n+ 2)

16n3

)
,

leading to

(X,Y, Z) =

(
− (n+ 1)(n2 + 1), n(n2 + 2n+ 2),

1

2
(n8 + 4n7 + 6n6 + 4n5 − n4 − 4n3 + 2n2 + 4n+ 2)

)
,

and

3P =

(
(n − 2)(n − 1)(n2 + n + 2)(n4 + 3n3 + 3n2 + n + 1)2

16(n4 + n3 + n2 − n − 1)2
,

(n − 2)(n − 1)n(n2 + n + 2)(n3 − n − 1)(n3 + 2n2 + 3n + 3)(n4 + 3n3 + 3n2 + n + 1)

16(n4 + n3 + n2 − n − 1)3

)
,

leading to

(X, Y, Z) =

=
(
n(n3 − n − 1)(n3 + 2n2 + 3n + 3), (n4 + 3n3 + 3n2 + n + 1)(n4 + n3 + n2 − n − 1),

−
1

2
(n − 1)(n2 + 2n + 2)(n14 + 6n13 + 17n12 + 36n11 + 66n10 + 104n9 + 139n8

+ 140n7 + 95n6 + 38n5 + 4n4 + 6n2 + 4n + 1)
)
.

An alternative approach to making (3.8) integral is to set p = Fn, q = Fn+1+Fn−1,
where n is odd (so that F 2

n − 1 = Fn+1Fn−1). Then M = 1
4 (Fn+1 + Fn−1), and

is integral precisely when n ≡ 3 mod 6. This gives rise to numerical values for
M equal to M = 19, 341, Alternatively, setting p = Fn+1 + Fn−1, q = Fn,

and using that (Fn+1 + Fn−1)
2 − 1 = 5Fn+1Fn−1 for n odd, then M = 5

4Fn,
which is integral precisely when n ≡ 0 mod 6. Corresponding numerical values are
M = 10, 180, 3230, . . .

3.4. Case IV

We demand p+ q = r − s, pq = rs, by setting

p = n+ 1, q = n− 1, r = m+ n, s = m− n,

Crossed ladders and Euler’s quartic 39

where
m2 − 2n2 = −1, (3.11)

in which case M = m, with corresponding (x, y, z, a, b) given by

(n2 − 1, 2mn, 2n, m2 + n2, n2 + 1).

The solutions of (3.11) are well known, corresponding to m + n
√

2 being an odd
power of the fundamental unit 1 +

√
2 in the ring Z[

√
2]: namely m = pi, where

pi = 6pi−1 − pi−2, i > 2, and p0 = 1, p1 = 7. This gives numerical values
M = 7, 41, 239, . . .

3.5. Case V

We demand p2 − q2 = r2 − s2 and put p + q = K(r − s), K(p − q) = r + s.
Eliminating r, s,

M(K4 − 1)p2 − 2(M + 2K2 +MK4)pq +M(K4 − 1)q2 = 0

whose discriminant being square demands that

(M +K2)(MK2 + 1) = �.

Assuming M +K2 = (A+K)2, then M = 2AK+A2, so that 2AK3 +A2K2 +1 =
� = (Aρ − 1)2, say, giving A = 2(ρ+K3)/(ρ2 −K2). If we choose ρ = K2 there
results K = (A+ 2)/A, M = A2 + 2A+ 4, so that setting w = A+ 1, we have

M = w2 + 3, (p, q, r, s) = (w(3 + w2), −2(1 + w2), −w(1 + w2), 2),

with point on (1.6)

(X,Y, Z) =
(
(−1+w)(2−w+w2), (1+w)(2+w+w2), 2(3+w2)(4+w2+2w4+w6)

)
.

Numerical values are M = 12, 19, 28, 39, 52, 67, 84, 103, 124, 147, 172, 199, 228, . . .

Choosing instead ρ = K + 2, then

A = (K2 −K + 2)/2, M = (K + 1)(K + 2)(K2 −K + 2)/4,

(p, q, r, s) =
(
(K + 1)2(K2 −K + 2), (K − 1)(K + 2)(K2 + 1),

2(K + 1)(K2 + 1), 2(K − 1)
)
,

with point on (1.6)

(X,Y, Z) =
(
2K(K3 +K2 + 2), 2(K2 +K + 2),

2(K + 1)(K + 2)(K2 −K + 2)(K6 + 2K5 + 3K4 + 4K3 + 4K2 + 2)
)
.

40 A. Bremner, R. Høibakk, D. Lukkassen

Numerical values are M = 7, 12, 33, 40, 96, 105, 220, . . .

Finally, if we set 2AK3 +A2K2 + 1 = (AK +K2 − 1)2, then A = K(K2 − 2)/2
and M = K2(K4 − 4)/4, with corresponding (X,Y, Z) = (2(K4 − 2), 2K2, 2(K2 −
2)(K2 +2)(K8−2K4 +2)). On setting K2 = 2w this gives rise to the parametriza-
tion

M = 2w(w2 − 1), (X,Y, Z) = (2w2 − 1, w, (w2 − 1)(8w4 − 4w2 + 1)).

Numerical values are M = 12, 48, 120, 240,

The curve with M = w2 + 3 represents a K3 elliptic surface:

E : v2 = u
(
u− (w2 + 3)2

) (
u− (w2 + 4)(w2 + 2)

)
.

and it is possible to show by the Shioda formula that the rank of E over C(w) is
equal to 1. It is likely that

P =

(
(w2 − w + 2)2(w2 + 3)

(w − 1)2
,

(w + 1)(w2 + 3)(w2 + w + 2)(w2 − w + 2)

(w − 1)3

)

is a generator for the group (in which case the field of definition of the group is ac-
tually Q(w)), and this could be verified as above using a height argument, although
we have not undertaken the computation. As before, therefore, we can determine
infinitely many parametrized solutions to the ladder problem by computing multi-
ples of P .

4. Rank data

We list here the rank of the elliptic curve (1.8) in the range 3 6 M < 200
(computed with the aid of Magma [1]).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1
20 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1
40 1 2 1 0 1 1 0 1 1 0 0 1 2 1 1 0 0 1 1 2
60 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 1
80 1 1 1 1 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0
100 1 0 1 3 0 1 0 1 1 1 0 1 1 1 0 2 0 0 1 1
120 1 1 0 0 2 0 1 1 0 0 0 2 1 1 0 1 1 2 1 1
140 1 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 1 1 1 1
160 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 2
180 2 1 1 1 0 0 1 1 1 0 0 0 0 0 2 1 1 0 1 2

There are 111 instances in the range 1 < M < 200 of curves with positive rank,
of which we have identified 39 as coming from parametrized families. Of course
it is unlikely that every curve of positive rank arises from a parametrization. For
example, the curve at M = 127 has rank 1 and the smallest solution of the equation
at (1.6) is given by (X,Y, Z) = (59914079, 205805825, 3132229187148973634).

Crossed ladders and Euler’s quartic 41

References

[1] Bosma, W., Cannon, J., Playoust, C., The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4): (1997), 235–265.

[2] Bremner, A., Jones, J.W., On the equation x4 + mx2y2 + y4 = z2, J. Number
Theory 50 (1995), no. 2, 286–298.

[3] Brown, E., x4 + dx2y2 + y4 = z2: Some cases with only trivial solutions - and a
solution Euler missed, Glasgow Math. J., 31 (1989), 297–307.

[4] Høibakk, R., Jorstad, T., Lukkassen, D., Lystad, L.P., Integer Crossed
Ladders; parametric representations and minimal integer values, Normat, Nordisk
Matematisk Tidsskrift, 56, 2, (2008), 68–79.

[5] Høibakk, R., Lukkassen, D., Crossed Ladders and Power Means, Elem. Math.,
63, 3, (2008), 137–140.

[6] Kuwata, M., The canonical height and elliptic surfaces, J. Number Theory 36 no.
2, (1990), 201–211.

[7] Pocklington,H.C., Some Diophantine impossibilities, Proc. Cambridge Philos.
Soc. 17 (1914), 108–121.

[8] Shioda, T., On the Mordell-Weil lattices, Comment. Math. Univ. St. Paul. 39 no.
2, (1990), 211–240.

[9] Singmaster, D.B., Sources in Recreational Mathematics, An Annotated Bibliog-
raphy, Eighth Preliminary Edition, (2004), http://www.gotham-corp.com/sources.
htm

[10] Sinha, T.N., A class of quartic Diophantine equations with only trivial solutions,
Amer. J. Math., 100 (1978), 585–590.

[11] Zhang, M.Z., On the Diophantine equation x4 + kx2y2 + y4 = z2, Sichuan Daxue
Xuebao, 2 (1983), 24–31.

A. Bremner
School of Mathematics, Arizona State University, Tempe AZ 85287, USA
e-mail: bremner@asu.edu

R. Høibakk
Narvik University College, P.O.B. 385, N-8505 Narvik, Norway
e-mail: rh@hin.no

D. Lukkassen
Narvik University College, P.O.B. 385, N-8505 Narvik, Norway

and

Norut Narvik, P.O.B. 250, N-8504 Narvik, Norway
e-mail: dl@hin.no

Annales Mathematicae et Informaticae
36 (2009) pp. 43–46
http://ami.ektf.hu

On the existence of triangle with given
angle and opposite angle bisectors length∗

József Bukor

Department of Mathematics
J. Selye University, Komárno, Slovakia

Submitted 21 June 2009; Accepted 30 September 2009

Abstract

Let us denote by la, lc the lengths of angle bisectors on the sides BC and
AB, respectively. We prove that for given positive la, lc and angle β = ABC∠

there is a unique triangle.

Keywords: triangle, bisector

MSC: 51-99

It is known that for given lengths of three angle bisectors there is always a
unique triangle [2], for an elementary proof, see [5]. In this note we consider the
question of existence of a triangle with given angle and the lengts of two angle
bisectors. The proposed question was motivated by the works of V. Oxman [3, 4],
where the conditions for the existence of a triangle with given length of one side
and two angle bisectors were studied.

Using methods of elementary calculus we prove the following theorem

Theorem. Given positive la, lc, β < π, there is a unique triangle ABC with
β = ABC∠ and lengths of bisectors of angles to the sides BC, AB equal to la, lc.

Proof. Recall that that in a triangle ABC with sidelengths a, b, c the bisector of
angle CAB∠ has length

la =

√
bc

(
1 − a2

(b + c)2

)
. (1)

We shall prove that for given BC = 1, β = ABC∠ and p = la
lc

there is a unique
triangle. For simplicity, let us denote the side lengths AB and AC by x and y,
respectively. See Figure 1.

∗Supported by KEGA grant no. 3/5277/07.

43

44 J. Bukor

A

B C

la

lc

y
x

1

β

Figure 1

By the well-known Steiner-Lehmus theorem if a triangle has two equal bisectors
(p = 1), then it is an isoscales triangle. Without lost of generality we may suppose
p > 1.

From (1) we have

l2a = xy

(
1 − 1

(x + y)2

)
and l2c = y

(
1 − x2

(y + 1)2

)
.

Therefore

p2 =
l2a
l2c

=
x(x+ y − 1)(y + 1)2

(x+ y)2(y + 1 − x)
.

Let us consider the function

f(x) =
x(x + y − 1)(y + 1)2

(x+ y)2(y + 1 − x)
.

Note, y is a function of x, since by the law of cosines

y =
√
x2 + 1 − 2x cosβ.

For convenience we ignore the dependence of y on x in notation. Our goal is to
show that the equation f(x) = p2 has a unique solution.

By the stronger form of Steiner-Lehmus theorem (see, e.g. [1])

la > lc ⇐⇒ a < c,

we immediately have that x > 1.
Obviously, f(x) is a continuous function on the interval [1,∞). It is easy to check
that

lim
x→1

f(x) = 1 and lim
x→∞

f(x) = ∞.

By the above and the continuity of f(x), Bolzano’s theorem implies the existence
of a solution of f(x) = p2.

On the existence of triangle with given angle and opposite angle bisectors length 45

To prove the uniqueness we show that the function f(x) is strictly increasing
on [1,∞).
Since the derivative of the function y

y′ =
x− cosβ√

x2 + 1 − 2x cosβ

is positive on [1,∞), hence y is strictly increasing throughout that interval.
Then

x+ y − 1

x+ y
= 1 − 1

x+ y
(2)

is strictly increasing on [1,∞), too. Since

(y + 1 − x)′ = y′ − 1 =
cos2 β − 1

(x− cosβ +
√
x2 + 1 − 2x cosβ)

√
x2 + 1 − 2x cosβ

is negative, we deduce that
1

y + 1 − x
(3)

strictly increases for x > 1.
Let

g(x) = ln
x(y + 1)2

x+ y
.

Then

g′(x) =
1

x
+

2y′

y + 1
− 1 + y′

x+ y

which can be rewritten into the form

g′(x) =
(
y2 + y + xyy′ + xy′(2x− 1)

) 1

x(y + 1)(x+ y)
.

Clearly, g′(x) is positive for any x > 1. From this follows that

x(y + 1)2

x+ y
(4)

is strictly increasing on [1,∞) (the positive function is strictly increasing if and
only if its natural logarithm is strictly increasing). Taking into account that f(x)
is a product of functions (2–4) which strictly increase on the interval [1,∞), the
assertion follows.

We have actually proved that for given BC = 1, β = ABC∠ and p = la
lc

there is a unique triangle. If two triangles are similar then their corresponding
angle bisectors are proportionate. Using the similarity of triangles it can be easily
deduced that for given la, lc, β there is a unique triangle if and only if there exists
a triangle for given BC = 1, β and p = la

lc
. �

46 J. Bukor

References

[1] Coxeter, H.S.M., Greitzer, S.L., Geometry revisited, New York, Random House,
1967.

[2] Mironescu, P., Panaitopol, L., The existence of a triangle with prescribed angle
bisector lengths, Amer. Math. Monthly, 101 (1994) 58–60.

[3] Oxman, V., On the existence of triangles with given lengths of one side and two
adjacent angle bisectors, Forum Geom., 4 (2004) 215–218.

[4] Oxman, V., On the existence of triangles with given lengths of one side, the opposite
and one adjacent angle bisectors, Forum Geom., 5 (2005) 21–22.

[5] Zhukov, A., Akulich, I., Is the triangle defined uniquely? (Odnoznachno li opre-
delyaetsya treugolnik?) (Russian), Kvant, No. 1 (2003) 29–31.

József Bukor
Department of Mathematics
J. Selye University
P.O.Box 54
945 01 Komárno
Slovakia
e-mail: bukorj@selyeuni.sk

Annales Mathematicae et Informaticae
36 (2009) pp. 47–60
http://ami.ektf.hu

Inclusion properties of the intersection
convolution of relations

Judita Dascǎl, Árpád Száz

Institute of Mathematics, University of Debrecen

Submitted 9 November 2008; Accepted 25 February 2009

Abstract

For various relations F and G on one groupoid X with zero to another
Y , we establish several simple, but important inclusions among the relations
F , G, F ∗ G, F + G(0), and F (0) + G.

The latter relations are given here by
(
F + G(0)

)
(x) = F (x) + G(0),(

F (0) + G
)
(x) = F (0) + G(x), and

(
F ∗ G

)
(x) =

⋂{
F (u) + G(v) : x = u + v, F (u) 6= ∅, G(v) 6= ∅

}

for all x ∈ X. The intersection convolution ∗ allows of a natural generalization
of the Hahn-Banach type extension theorems.

Keywords: Groupoids, binary relations, intersection convolution.

MSC: Primary 20L13; Secondary 46A22.

1. A few basic facts on relations and groupoids

A subset F of a product set X × Y is called a relation on X to Y . For each
x ∈ X , the set F (x) = {y ∈ X : (x, y) ∈ F} is called the image of x under F , or
the value of F at x.

Now, the set DF = {x ∈ X : F (x) 6= ∅} may be naturally called the domain of
F . Moreover, if in particular DF = X , then we may say that F is a relation of X
to Y , or that F is a total relation on X to Y .

In particular, a relation f on X to Y is called a function if for each x ∈ Df

there exists y ∈ Y such that f(x) = {y}. In this case, by identifying singletons
with their elements, we may simply write f(x) = y.

If X is a set and + is a function of X2 to X , then the function + is called an
operation in X and the ordered pair X(+) = (X,+) is called a groupoid even if X
is void.

47

48 J. Dascǎl, Á. Száz

In this case, we may simply write x + y in place of +(x, y) for any x, y ∈ X .
Moreover, we may also simply write X in place of X(+) whenever the operation
+ is clearly understood.

In practical applications, instead of groupoids, it is usually sufficient to consider
only semigroups. However, several definitions and theorems on semigroups can be
naturally extended to groupoids.

For instance, if X is a groupoid, then for any A,B ⊂ X , we may naturally write
A+B = {a+ b : a ∈ A, b ∈ B}. Moreover, we may also write x+A = {x}+A and
A+ x = A+ {x} for any x ∈ X .

Note that if in particular X is a group, then we may also naturally write
−A = {−a : a ∈ A} and A − B = A + (−B) for any A,B ⊂ X . Though, the
family P(X) of all subsets of X is only a semigroup with zero.

Now, if F and G are relations on a set X to a groupoid Y , then the pointwise
sum F+G of F and G can be naturally defined such that (F+G)(x) = F (x)+G(x)
for all x ∈ X .

Note that if in particular X is also a groupoid, then the above pointwise sum
of the relations F and G may be easily confused with the global sum F ⊕ G ={
(x+ z, y + w) : (x, y) ∈ F, (z, w) ∈ G

}
.

2. The most important additivity properties of rela-
tions

Analogously to the usual definition of superadditive functions, we may naturally
consider the following

Definition 2.1. A relation F on one groupoid X to another Y is called superad-
ditive if for any x, y ∈ X we have

F (x) + F (y) ⊂ F (x+ y).

Remark 2.2. Note that thus F is superadditive if and only if F ⊕ F ⊂ F . That
is, F is a subgroupoid of X × Y .

Moreover, if in particular F is a reflexive, superadditive relation of X to itself,
then F is already a translation relation in the sense that x + F (y) ⊂ F (x+ y) for
all x, y ∈ X .

In addition to Definition 2.1, we may also naturally introduce the following

Definition 2.3. A relation F on one groupoid X to another Y is called

(1) subadditive if F (x+ y) ⊂ F (x) + F (y) for all x, y ∈ X ;

(2) semi-subadditive if F (x+ y) ⊂ F (x) + F (y) for all x, y ∈ DF ;

(3) quasi-subadditive if F (x + y) ⊂ F (x) + F (y) for all x, y ∈ X with either
x ∈ DF or y ∈ DF .

Inclusion properties of the intersection convolution of relations 49

Remark 2.4. Now, the relation F may, for instance, be naturally called quasi-
additive if it is both superadditive and quasi-subadditive.

In [9], by calling a relation F on one groupX to another Y quasi-odd if −F (x)∩
F (−x) 6= ∅ for all x ∈ DF , the second author has shown that a nonvoid, quasi-odd,
superadditive relation is already quasi-additive.

As some obvious generalizations of the above definitions, we may also naturally
introduce the following definitions.

Definition 2.5. A relation F on a groupoid X with zero to an arbitrary groupoid
Y is called

(1) zero-superadditive if F (x) + F (0) ⊂ F (x) and F (0) + F (x) ⊂ F (x) for all
x ∈ X ;

(2) zero-subadditive if F (x) ⊂ F (x) + F (0) and F (x) ⊂ F (0) + F (x)
for all x ∈ X .

Definition 2.6. A relation F on a group X to a groupoid Y is called

(1) inversion-superadditive if F (x) + F (−x) ⊂ F (0) for all x ∈ X ;

(2) inversion-subadditive if F (0) ⊂ F (x) + F (−x) for all x ∈ X ;

(3) inversion-quasi-subadditive if F (0) ⊂ F (x) + F (−x) for all x ∈ DF .

Remark 2.7. Note that, in the latter case, we also have F (0) ⊂ F (−x) + F (x)
for all x ∈ DF .

Namely, if F (0) 6= ∅, then by the inversion-quasi-subadditivity of F we also
have F (−x) 6= ∅, and thus −x ∈ DF for all x ∈ DF .

3. The intersection convolution of relations

Definition 3.1. If X is a groupoid, then for any x ∈ X and A,B ⊂ X , we define

Γ(x,A,B) =
{
(u, v) ∈ A×B : x = u+ v

}
.

Remark 3.2. Now, in particular, we may simply write Γ(x) = Γ(x,X,X). Thus,
Γ is just the inverse relation of the operation + in X . Moreover, we have

Γ
(
x,A,B

)
= Γ(x) ∩ (A×B).

Definition 3.3. If F and G are relations on one groupoid X to another Y , then
we define a relation F ∗G on X to Y such that

(
F ∗G

)
(x) =

⋂{
F (u) +G(v) : (u, v) ∈ Γ(x,DF , DG)

}

for all x ∈ X . The relation F ∗ G is called the intersection convolution of the
relations F and G.

50 J. Dascǎl, Á. Száz

Remark 3.4. If in particular F and G are relations ofX to Y , then we may simply
write

(
F ∗G

)
(x) =

⋂

x=u+v

(
F (u) +G(v)

)
=
⋂{

F (u) +G(v) : (u, v) ∈ Γ(x)
}
.

A particular case of Definition 3.3 was already considered in [6]. But, the
following theorems have only been proved in [9].

Theorem 3.5. If F , G, H, and K are relations on one groupoid X to another Y
such that

(1) DH ⊂ DF and F (u) ⊂ H(u) for all u ∈ DH ;

(2) DK ⊂ DG and G(v) ⊂ K(v) for all v ∈ DK ;

then F ∗G ⊂ H ∗K.

Now, as some immediate consequences of this theorem, we can also state

Corollary 3.6. If F , G, and H are relations on one groupoid X to another Y
such that DH ⊂ DF and F (u) ⊂ H(u) for all u ∈ DH , then F ∗G ⊂ H ∗G.

Corollary 3.7. If F , G, and H are relations on one groupoid X to another Y
such that DH ⊂ DG and G(v) ⊂ H(v) for all v ∈ DH , then F ∗G ⊂ F ∗H.

Theorem 3.8. If F and G are relations on a group X to a groupoid Y , then for
any x ∈ X we have

(F ∗G)(x) =
⋂{

F (x− v) +G(v) : v ∈ (−DF + x) ∩DG

}
=

=
⋂{

F (u) +G(−u+ x) : u ∈ DF ∩ (x−DG)
}
.

Hence, by using that −X + x = X and x − X = X for all x ∈ X , we can
immediately get

Corollary 3.9. If F and G are relations on a group X to a groupoid Y , then for
any x ∈ X we have

(1)
(
F ∗G)(x) =

⋂

v∈DG

(
F (x − v) +G(v)

)
whenever F is total;

(2)
(
F ∗G

)
(x) =

⋂

u∈DF

(
F (u) +G(−u+ x)

)
whenever G is total.

Hence, it is clear that in particular we also have

Corollary 3.10. If F and G are relations of a group X to a groupoid Y , then for
any x ∈ X we have

(F ∗G)(x) =
⋂

v∈X

(
F (x− v) +G(v)

)
=
⋂

u∈X

(
F (u) +G(−u + x)

)
.

Inclusion properties of the intersection convolution of relations 51

4. Convolutional inclusions for quite general rela-
tions

By using the corresponding definitions, we can easily prove the following

Theorem 4.1. If F and G are relations on a groupoid X with zero to an arbitrary
one Y , then

(1) (F ∗G)(x) ⊂
(
F +G(0)

)
(x) for all x ∈ DF if G(0) 6= ∅;

(2) (F ∗G)(x) ⊂
(
F (0) +G

)
(x) for all x ∈ DG if F (0) 6= ∅.

Proof. If x ∈ DF and G(0) 6= ∅, then (x, 0) ∈ Γ(x,DF , DG). Therefore,

(
F ∗G

)
(x) =

⋂{
F (u) +G(v) : (u, v) ∈ Γ(x,DF , DG)

}
⊂

⊂ F (x) +G(0) =
(
F +G(0)

)
(x). �

In addition to this theorem, it is also worth proving the following two theorems.

Theorem 4.2. If F and G are relations of one groupoid X with zero to another
Y , then

(1) F ⊂ F +G(0) if 0 ∈ G(0);

(2) G ⊂ F (0) +G if 0 ∈ F (0).

Proof. If the condition of (1) holds, then

F (x) = F (x) + {0} ⊂ F (x) +G(0) =
(
F +G(0)

)
(x)

for all x ∈ X . Therefore, the conclusion of (1) also holds. �

Theorem 4.3. If F and G are relations on one groupoid X with zero to another
Y , then

(1) F +G(0) ⊂ F if G(0) ⊂ {0};
(2) F (0) +G ⊂ G if F (0) ⊂ {0}.

Proof. If the condition of (1) holds, then
(
F +G(0)

)
(x) = F (x) +G(0) ⊂ F (x) + {0} = F (x)

for all x ∈ X . Therefore, the conclusion of (1) also holds. �

Now, as an immediate consequence of the latter two theorems, we can also state

Corollary 4.4. If F and G are relations on one groupoid X with zero to another
Y , then

(1) F = F +G(0) if G(0) = {0};
(2) G = F (0) +G if F (0) = {0}.

52 J. Dascǎl, Á. Száz

Moreover, as an immediate consequence of Theorems 4.1 and 4.3, we can also
state

Theorem 4.5. If F and G are relations on one groupoid X with zero to another
Y , then

(1) (F ∗G)(x) ⊂ F (x) for all x ∈ DF if G(0) = {0};
(2) (F ∗G)(x) ⊂ G(x) for all x ∈ DG if F (0) = {0}.

Hence, it is clear that in particular we also have

Corollary 4.6. If F is a relation on one groupoid X with zero to another Y such
that F (0) = {0}, then (F ∗ F)(x) ⊂ F (x) for all x ∈ DF .

5. Inclusions for zero-subadditive and zero-superad-
ditive relations

In addition to Theorems 4.2 and 4.3, we can also easily prove the following two
theorems.

Theorem 5.1. If F and G are relations on a groupoid X with zero to an arbitrary
one Y , then

(1) F ⊂ F +G(0) if F is zero-subadditive and F (0) ⊂ G(0);

(2) G ⊂ F (0) +G if G is zero-subadditive and G(0) ⊂ F (0).

Proof. If the conditions of (1) hold, then

F (x) ⊂ F (x) + F (0) ⊂ F (x) +G(0) =
(
F +G(0)

)
(x)

for all x ∈ X . Therefore, the conclusion of (1) also holds. �

Theorem 5.2. If F and G are relations on a groupoid X with zero to an arbitrary
one Y , then

(1) F +G(0) ⊂ F if F is zero-superadditive and G(0) ⊂ F (0);

(2) F (0) +G ⊂ G if G is zero-superadditive and F (0) ⊂ G(0).

Proof. If the conditions of (1) hold, then
(
F +G(0)

)
(x) = F (x) +G(0) ⊂ F (x) + F (0) ⊂ F (x)

for all x ∈ X . Therefore, the conclusion of (1) also holds. �

Now, as an immediate consequence of the latter two theorems, we can also state

Corollary 5.3. If F and G are relations on a groupoid X with zero to an
arbitrary one Y , then

(1) F = F +G(0) if F is zero-additive and F (0) = G(0);

(2) G = F (0) +G if G is zero-additive and G(0) = F (0).

Inclusion properties of the intersection convolution of relations 53

Moreover, combining Theorems 4.3 and 4.2 with Theorems 5.1 and 5.2, respec-
tively, we can also at once state the following two theorems.

Theorem 5.4. If F and G are relations on one groupoid X with zero to another
Y , then

(1) F = F +G(0) if F is zero-subadditive and F (0) ⊂ G(0) ⊂ {0};
(2) G = F (0) +G if G is zero-subadditive and G(0) ⊂ F (0) ⊂ {0}.

Theorem 5.5. If F and G are relations on one groupoid X with zero to another
Y , then

(1) F = F +G(0) if F is zero-superadditive and 0 ∈ G(0) ⊂ F (0);

(2) G = F (0) +G if G is zero-superadditive and 0 ∈ F (0) ⊂ G(0).

On the other hand, as an immediate consequence of Theorems 4.1 and 5.2, we
can also state

Theorem 5.6. If F and G are relations on a groupoid X with zero to an arbitrary
one Y , then

(1) (F ∗G)(x) ⊂ F (x) for all x ∈ DF if F is zero-superadditive and ∅ 6= G(0) ⊂
F (0);

(2) (F ∗G)(x) ⊂ G(x) for all x ∈ DG if G is zero-superadditive and ∅ 6= F (0) ⊂
G(0).

Hence, it is clear that in particular we also have

Corollary 5.7. If F is a zero-superadditive relation on a groupoid X with zero to
an arbitrary one Y such that F (0) 6= ∅, then (F ∗ F)(x) ⊂ F (x) for all x ∈ DF .

6. Convolutional inclusions for superadditive and
semi-subadditive relations

In addition to Theorem 5.6, it is also worth proving the following.

Theorem 6.1. If F , G, and H are relations on one groupoid X to another Y and
x ∈ DF +DG such that

F (u) +G(v) ⊂ H(u+ v)

for any u ∈ DF and v ∈ DG with x = u+ v, then

(F ∗G)(x) ⊂ H(x).

Proof. By the above assumptions, it is clear that
(
F ∗G

)
(x) =

⋂{
F (u) +G(v) : (u, v) ∈ Γ(x,DF , DG)

}
⊂

⊂
⋂{

H(u+ v) : (u, v) ∈ Γ(x,DF , DG)
}

=

=
⋂{

H(x) : (u, v) ∈ Γ(x,DF , DG)
}

= H(x). �

54 J. Dascǎl, Á. Száz

Now, as an immediate consequence of this theorem, we can also state

Corollary 6.2. If F and G are relations on one groupoid X to another Y and
x ∈ DF +DG, then

(1) (F ∗G)(x) ⊂ F (x) if F (u) +G(v) ⊂ F (u+ v) for any u ∈ DF and v ∈ DG

with x = u+ v;

(2) (F ∗ G) ⊂ G(x) if F (u) + G(v) ⊂ G(u + v) for any u ∈ DF and v ∈ DG

with x = u+ v.

Hence, it is clear that in particular we also have

Corollary 6.3. If F is a superadditive relation on one groupoid X to another Y ,
then (F ∗ F)(x) ⊂ F (x) for all x ∈ DF +DF .

Analogously to Theorem 6.1, we can also easily prove the following

Theorem 6.4. If F , G, and H are relations on one groupoid X to another Y and
x ∈ DG +DH such that

F (u + v) = G(u) +H(v)

for any u ∈ DG and v ∈ DH with x = u+ v, then

F (x) = (G ∗H)(x).

Now, as an immediate consequence of this theorem, we can also state

Corollary 6.5. If F and G are relations on one groupoid X to another Y and
x ∈ DF +DG, then

(1) F (x) = (F ∗G)(x) if F (u+ v) = F (u)+G(v) for any u ∈ DF and v ∈ DG

with x = u+ v;

(2) G(x) = (F ∗G)(x) if G(u+ v) = F (u) +G(v) for any u ∈ DF and v ∈ DG

with x = u+ v.

Hence, it is clear that in particular we also have

Corollary 6.6. If F is a semi-additive relation on one groupoid X to another Y ,
then F (x) = (F ∗ F)(x) for all x ∈ DF +DF .

Moreover, as a counterpart of Theorem 6.1, we can also prove the following

Theorem 6.7. If F , G, and H are relations on one groupoid X to another Y ,
then for any x ∈ X the following assertions are equivalent:

(1) F (x) ⊂ (G ∗H)(x);

(2) F (u+ v) ⊂ G(u) +H(v) for any u ∈ DG and v ∈ DH with x = u+ v.

Inclusion properties of the intersection convolution of relations 55

Proof. If (1) holds and u ∈ DG and v ∈ DH such that x = u+ v, then

F (u+ v) = F (x) ⊂ (G ∗H)(x) =

=
⋂{

G(s) +H(t) : (s, t) ∈ Γ(x,DG, DH)
}
⊂ G(u) +H(v)

since (u, v) ∈ Γ(x,DG, DH)
}
. Thus, (2) also holds.

While, if (2) holds, then for any (u, v) ∈ Γ(x,DG, DH) we have

F (x) = F (u+ v) ⊂ G(u) +H(v)

since u ∈ DG and v ∈ DH such that x = u+ v. Hence, it is clear that

F (x) ⊂
⋂{

G(u) +H(v) : (u, v) ∈ Γ(x,DG, DH)
}

= (G ∗H)(x).

Therefore, (1) also holds. �

Now, as an immediate consequence of this theorem, we can also state

Corollary 6.8. If F and G are relations on one groupoid X to another Y , then
for any x ∈ X we have:

(1) F (x) ⊂ (F ∗G)(x) if and only if F (u + v) ⊂ F (u) +G(v) for any u ∈ DF

and v ∈ DG with x = u+ v;

(2) G(x) ⊂ (F ∗G)(x) if and only if G(u + v) ⊂ F (u) +G(v) for any u ∈ DF

and v ∈ DG with x = u+ v.

Hence, it is clear that in particular we also have

Corollary 6.9. If F is a relation on one groupoid X to another Y , then for any
x ∈ X the following assertions are equivalent:

(1) F (x) ⊂ (F ∗ F)(x);
(2) F (u+ v) ⊂ F (u) + F (v) for any u, v ∈ DF with x = u+ v.

7. Convolutional equalities for semi-subadditive and
zero-superadditive relations

Now, as a useful characterization of semi-subadditivity, we can also state

Theorem 7.1. If F is a relation on one groupoid X to another Y , then the fol-
lowing assertions are equivalent:

(1) F ⊂ F ∗ F ;
(2) F is semi-subadditive.

Proof. If (1) holds, then in particular for any u, v ∈ DF , we have F (u+ v) ⊂ (F ∗
F)(u+v). Hence, by using Corollary 6.9, we can infer that F (u+v) ⊂ F (u)+F (v).
Therefore, (2) also holds.

Conversely, if (2) holds and x ∈ X , then in particular for any u, v ∈ DF , with
x = u+ v, we have F (u+ v) ⊂ F (u)+F (v). Hence, by using Corollary 6.9, we can
infer that F (x) ⊂ (F ∗ F)(x). Therefore, (1) also holds. �

56 J. Dascǎl, Á. Száz

From this theorem, by using Corollaries 3.6 and 3.7, we can immediately derive

Corollary 7.2. If F and G are relations on one groupoid X to another Y , then

(1) F ⊂ F ∗ G if F is semi-subadditive, DG ⊂ DF , and F (x) ⊂ G(x) for all
x ∈ DG;

(2) G ⊂ F ∗ G if G is semi-subadditive, DF ⊂ DG, and G(x) ⊂ F (x) for all
x ∈ DF .

Now, as an immediate consequence of Theorem 4.5 and Corollary 7.2, we can
also state

Theorem 7.3. If F and G are relations on one groupoid X with zero to another
Y , then

(1) F = F ∗G if F is total and subadditive, F (x) ⊂ G(x) for all x ∈ DG, and
G(0) = {0};

(2) G = F ∗G if G is total and subadditive, G(x) ⊂ F (x) for all x ∈ DF , and
F (0) = {0}.

Hence, it is clear that in particular we also have

Corollary 7.4. If F is a subadditive relation of one groupoid X with zero to an-
other Y such that F (0) = {0}, then F = F ∗ F .

Moreover, as an immediate consequence of Theorem 5.6 and Corollary 7.2, we
can also state

Theorem 7.5. If F and G are relations of a groupoid X with zero to an arbitrary
one Y , then

(1) F = F ∗G if F is total, subadditive, and zero-superadditive, F (x) ⊂ G(x)
for all x ∈ DG, and ∅ 6= G(0) ⊂ F (0);

(2) G = F ∗ G if G is total, subadditive, and zero-superadditive, G(x) ⊂ F (x)
for all x ∈ DF , and ∅ 6= F (0) ⊂ G(0).

Hence, it is clear that in particular we also have

Corollary 7.6. If F is a subadditive and zero-superadditve relation of a groupoid
X with zero to an arbitrary one Y , then F = F ∗ F .

On the other hand, from Corollary 6.5, we can immediately get

Theorem 7.7. If F and G are relations on one groupoid X to another Y such
that X = DF +DG, then

(1) F = F ∗G if F (u+ v) = F (u) +G(v) for all u ∈ DF and v ∈ DG;

(2) G = F ∗G if G(u + v) = F (u) +G(v) for all u ∈ DF and v ∈ DG.

Hence, it is clear that in particular we also have

Corollary 7.8. If F is a semi-additive relation on one groupoid X to another Y
such that X = DF +DF , then F = F ∗ F .

Inclusion properties of the intersection convolution of relations 57

8. Convolutional inclusions for zero-subadditive and
zero-superadditive relations

From Theorem 4.2, by using Corollaries 3.6 and 3.7, we can immediately get

Theorem 8.1. If F and G are relations on one groupoid X with zero to another
Y , then

(1) F ∗G ⊂
(
F +G(0)

)
∗G if 0 ∈ G(0);

(2) F ∗G ⊂ F ∗
(
F (0) +G

)
if 0 ∈ F (0).

Moreover, as an immediate consequence of Corollary 4.4, we can also state

Theorem 8.2. If F and G are relations on one groupoid X with zero to another
Y , then

(1) F ∗G =
(
F +G(0)

)
∗G if G(0) = {0};

(2) F ∗G = F ∗
(
F (0) +G

)
if F (0) = {0}.

On the other hand, from Theorems 5.1 and 5.2, by using Corollaries 3.6 and
3.7, we can immediately get the following theorems.

Theorem 8.3. If F and G are relations on a groupoid X with zero to an arbitrary
one Y , then

(1) F ∗G ⊂
(
F +G(0)

)
∗G if F is zero-subadditive and F (0) ⊂ G(0);

(2) F ∗G ⊂ F ∗
(
F (0) +G

)
if G is zero-subadditive and G(0) ⊂ F (0).

Theorem 8.4. If F and G are relations of a groupoid X with zero to an arbitrary
one Y , then

(1)
(
F +G(0)

)
∗G ⊂ F ∗G if F is zero-superadditive and ∅ 6= G(0) ⊂ F (0);

(2) F ∗
(
F (0) +G

)
⊂ F ∗G if G is zero-superadditive and ∅ 6= F (0) ⊂ G(0).

Now, as an immediate consequence of these theorems, we can also state

Corollary 8.5. If F and G are relations on a groupoid X with zero to an
arbitrary one Y such that F (0) = G(0) 6= ∅, then

(1) F ∗G =
(
F +G(0)

)
∗G if F is zero-additive;

(2) F ∗G = F ∗
(
F (0) +G

)
if G is zero-additive.

Moreover, as some immediate consequences of Theorems 5.4 and 5.5, we can
also state

Theorem 8.6. If F and G are relations on one groupoid X with zero to another
Y , then

(1) F ∗G =
(
F +G(0)

)
∗G if F is zero-subadditive and F (0) ⊂ G(0) ⊂ {0};

(2) F ∗G = F ∗
(
F (0) +G

)
if G is zero-subadditive and G(0) ⊂ F (0) ⊂ {0}.

58 J. Dascǎl, Á. Száz

Theorem 8.7. If F and G are relations on one groupoid X with zero to another
Y , then

(1) F ∗G =
(
F +G(0)

)
∗G if F is zero-superadditive and 0 ∈ G(0) ⊂ F (0);

(2) F ∗G = F ∗
(
F (0) +G

)
if G is zero-superadditive and 0 ∈ F (0) ⊂ G(0).

9. Convolutional inclusions for zero-additive and

inversion-additive relations

In addition to Theorem 8.3, we can also prove the following

Theorem 9.1. If F and G are relations on a groupoid X with zero to a semigroup
Y , then

(1) F ∗G ⊂
(
F +G(0)

)
∗G if G is zero-subadditive;

(2) F ∗G ⊂ F ∗
(
F (0) +G

)
if F is zero-subadditive.

Proof. If the condition of (1) holds, then

F (u) +G(v) ⊂ F (u) +G(0) +G(v) =
(
F +G(0)

)
(u) +G(v)

for all u, v ∈ X . Therefore, for any x ∈ X , we have

(
F ∗G

)
(x) =

⋂{
F (u) +G(v) : (u, v) ∈ Γ(x,DF , DG)

}
⊂

⊂
⋂{(

F +G(0)
)
(u) +G(v) : (u, v) ∈ Γ(x,DF , DG)

}
=

=
⋂{(

F +G(0)
)
(u) +G(v) : (u, v) ∈ Γ(x,DF+G(0), DG)

}
=

=
((
F +G(0)

)
∗G
)
(x)

provided that G(0) 6= ∅. Therefore, the conclusion of (1) also holds. Namely, if
G(0) = ∅, then

(
F +G(0)

)
∗G = ∅ ∗G = X × Y . �

Note that if G is zero-superadditive and G(0) 6= ∅, then just the converse
inclusion holds. Therefore, we can also state the following

Theorem 9.2. If F and G are relations on a groupoid X with zero to a semigroup
Y , then

(1)
(
F +G(0)

)
∗G ⊂ F ∗G if G is zero-superadditive and G(0) 6= ∅;

(2) F ∗
(
F (0) +G

)
⊂ F ∗G if F is zero-superadditive and F (0) 6= ∅.

Now, as an immediate consequence of the above theorems, we can also state

Corollary 9.3. If F and G are relations on a groupoid X with zero to a semigroup
Y , then

(1) F ∗G =
(
F +G(0)

)
∗G if G is zero-additive and G(0) 6= ∅;

(2) F ∗G = F ∗
(
F (0) +G

)
if F is zero-additive and F (0) 6= ∅.

Inclusion properties of the intersection convolution of relations 59

On the other hand, combining Theorems 8.1 with Theorems 9.2, we can also at
once state the following

Theorem 9.4. If F and G are relations on a groupoid X with zero to a semigroup
Y with zero, then

(1) F ∗G =
(
F +G(0)

)
∗G if G is zero-superadditive and 0 ∈ G(0);

(2) F ∗G = F ∗
(
F (0) +G

)
if F is zero-superadditive and 0 ∈ F (0).

Moreover, combining Theorems 8.4 and 8.3 with Theorems 9.1 and 9.2, respec-
tively, we can also at once state the following theorems.

Theorem 9.5. If F and G are relations on a groupoid X with zero to a semigroup
Y , then

(1) F ∗ G =
(
F + G(0)

)
∗ G if F is zero-superadditive, G is zero-subadditive,

and ∅ 6= G(0) ⊂ F (0);

(2) F ∗ G = F ∗
(
F (0) + G

)
if F is zero-subadditive, G is zero-superadditive,

and ∅ 6= F (0) ⊂ G(0).

Theorem 9.6. If F and G are relations on a groupoid X with zero to a semigroup
Y , then

(1) F ∗ G =
(
F + G(0)

)
∗ G if F is zero-subadditive, G is zero-superadditive,

and F (0) ⊂ G(0) 6= ∅;
(2) F ∗ G = F ∗

(
F (0) + G

)
if F is zero-superadditive, G is zero-subadditive,

and G(0) ⊂ F (0) 6= ∅.

Finally, we note that in addition to Theorem 4.1, we can also prove the following

Theorem 9.7. If F and G are relations on a group X to a semigroup Y , then
(1) F + G(0) ⊂ F ∗ G if F is superadditive, G is inversion-quasi-subadditive

and G ⊂ F ;

(2) F (0) + G ⊂ F ∗ G if G is superadditive, F is inversion–quasi-subadditive
and F ⊂ G.

Proof. If x ∈ X and the conditions of (1) hold, then we can easily see that
(
F +G(0)

)
(x) = F (x) +G(0) ⊂ F (x) +G(−v) +G(v) ⊂

⊂ F (x) + F (−v) +G(v) ⊂ F (x − v) +G(v)

for all v ∈ DG. Hence, by using Theorem 3.8, we can infer that

(
F +G(0)

)
(x) ⊂

⋂{
F (x− v) +G(v) : v ∈ (−DF + x) ∩DG

}
= (F ∗G)(x).

Therefore, the conclusion of (1) also holds. �

Now, as an immediate consequence of Theorems 4.1 and 9.7, we can also state

60 J. Dascǎl, Á. Száz

Theorem 9.8. If F and G are relations on a group X to a semigroup Y , then
(1) F ∗ G = F + G(0) if F is total and superadditive, G is inversion-quasi-

subadditive and G ⊂ F ;

(2) F ∗ G = F (0) + G if G is total and superadditive, F is inversion–quasi-
subadditive and F ⊂ G.

Hence, it is clear that in particular we also have

Corollary 9.9. If F is a superadditive and inversion-quasi-subadditive relation of
a group X to a semigroup Y , then

F ∗ F = F + F (0) and F ∗ F = F (0) + F.

References

[1] Beg, I., Fuzzy multivalued functions, Bull. Allahabad Math. Soc., 21 (2006), 41–104.

[2] Boros, Z. and Száz, Á., Reflexivity, transitivity, symmetry, and antisymmetry of
the intersection convolution of relations, Rostock. Math. Kolloq., 63 (2008), 55–62.

[3] Czerwik, S., Functional Equations and Inequalities in Several Variables, World
Scientific, London, 2002.

[4] Glavosits, T. and Száz, Á., Pointwise and global sums and negatives of binary
relations, An. St., Univ. Ovidius Constanta, 11 (2003), 87–94.

[5] Strömberg, T., The operation of infimal convolution, Dissertationes Math., 352
(1996), 1–58.

[6] Száz, Á., The intersection convolution of relations and the Hahn–Banach type the-
orems, Ann. Polon. Math., 69 (1998), 235–249.

[7] Száz, Á., Translation relations, the building blocks of compatible relators, Math.
Montisnigri, 12 (2000), 135–156.

[8] Száz, Á., An extension of an additive selection theorem of Z. Gajda and R. Ger,
Tech. Rep., Inst. Math., Univ. Debrecen 8 (2006), 1–24.

[9] Száz, Á., The intersection convolution of relations on one groupoid to another, Tech.
Rep., Inst. Math., Univ. Debrecen 2 (2008), 1–22.

[10] Száz, Á., Relationships between the intersection convolution and other important
operations on relations, Math. Pannon., 20 (2009), 99–107.

Judita Dascǎl
Árpád Száz
Institute of Mathematics
University of Debrecen
H-4010 Debrecen, Pf. 12
Hungary
e-mails: jdascal@math.klte.hu

szaz@math.klte.hu

Annales Mathematicae et Informaticae
36 (2009) pp. 61–69
http://ami.ektf.hu

A computational algorithm for the
CPP/M/c retrial queue

Tien Van Do

Department of Telecommunications
University of Technology and Economics, Budapest

Submitted 24 November 2008; Accepted 20 April 2009

Abstract

This paper introduces the retrial CPP/M/c queue, which is the general-
ization of the M/M/c retrial queue. The arrival process of jobs into the queue
follows the Compound Poisson Process (CPP). We present an efficient and
numerically stable computational algorithm for the steady state probabilities.

Keywords: retrial queue, computational algorithm

MSC: 60-08, 60J22

1. Introduction

Retrial queues have formed one of intensive research topics in the queueing
theory [1, 2, 3, 4, 8, 10, 12, 14, 16, 17]. The popularity of retrial queues is explained
by the fact that retrial queues can be used to model various problems in real systems
such as telecommunication networks, wireless networks and computer systems.

It is well-known that the main M/M/c retrial queue (where the retrial rate
depends on the number of customers in the orbit) with c > 2 is mathematically
untractable. The stationary distributions of the main M/M/c retrial queue with
c > 2 can be computed using approximation techniques [8]. Falin and Templeton
proposed a truncation model and a numerical tractable with a threshold in their
book [8].

This paper generalizes the numerical tractable M/M/c retrial queue (where the
retrial rate is independent of the number of customers in the orbit). We introduce
the retrial CPP/M/c queue with batch arrivals following the Compound Poisson
Process (CPP), where the interarrival times have the Generalized Exponential (GE)
distribution. Note that the GE is the only distribution of least bias [9], if only the
mean and variance are reliably computed from the measurement data. It has been

61

62 T.V. Do

shown in the recent work [7] that the CPP is accurate enough to model Internet
traffic (i.e.: CPP parameters were estimated from the captured Internet traffic)
and to be used for the performance evaluation in telecommunication systems. We
provide a stable computational algorithm for the proposed queue.

In Section 2 we give a description for the CPP/M/c retrial queue. In Section 3
we provide a computational algorithm. In Section 4 we show that our proposed
algorithm finds the eigenvalue when the existing approach fails.

2. The CPP/M/c Retrial Queue

Request arrivals follow the CPP with parameter (λ, ω) (0 6 ω < 1). That is,
the inter- arrival time probability distribution function is 1 − (1 − ω)e−λt. Thus,
the arrival point-processes can be seen as batch-Poisson, with batches arriving at
each point having geometric size distribution. The probability that a batch is of
size s is (1 − ω)ωs−1.

The following notations are introduced.

• c is the number of servers.

• I(t) denotes the number of busy servers at time t. Note that I(t) varies
within interval [0, c].

• J(t), which takes a value from 0 to ∞, represents the number of requests in
the orbit at time t.

Service times are exponentially distributed with parameter µ. Clients which
wait in the orbit retrial with rate ν (i.e.: the inter-repetition times are expo-
nentially distributed with parameter ν). As a consequence, the system is mod-
eled by Continuous Time Markov Chain (CTMC) Y = {I(t), J(t)} with state
space {0, 1, . . . , c} × {0, 1, . . .}. We denote the steady state probabilities by πi,j =
lim
t→∞

Prob(I(t) = i, J(t) = j), and introduce vj = (π0,j , . . . , πc,j).

The evolution of Y is driven by the following transitions.

(a) Aj(i, k) denotes a transition rate from state (i, j) to state (k, j) (0 6 i, k 6

c; j = 0, 1, . . .), which is caused by either the departure or the arrival of
customers. Matrix Aj is defined as the matrix with elements Aj(i, k).

Aj = A =

0 λ(1 − ω) λ(1 − ω)ω . . . λ(1 − ω)ωc−1

µ 0 λ(1 − ω) . . . λ(1 − ω)ωc−2

...
...

...
...

...
...

...
0 0 . . . (c− 1)µ 0 λ(1 − ω)
0 0 . . . 0 cµ 0

∀j > 0.

A computational algorithm for the CPP/M/c retrial queue 63

(b) Bj,s(i, k) represents s-steps upward transition from state (i, j) to state (k, j+
s) (0 6 i, k 6 c; s > 1; j = 0, 1, . . .), which is due to the arrival of customers.
In the similar way, matrix Bj,s (Bs) with elements Bj,s(i, k) is defined as

Bj,s = Bs =

0 0 0 . . . 0 0 λ(1 − ω)ωs+c−1

0 0 0 . . . 0 0 λ(1 − ω)ωs+c−2

...
...

...
...

...
...

...
0 0 . . . 0 0 λ(1 − ω)ωs

0 0 . . . 0 0 λ(1 − ω)ωs−1

∀j > 0; s > 1.

(c) Cj(i, k) is the transition rate from state (i, j) to state (k, j − 1) (0 6 i, k 6

c; j = 0, 1, . . .), which is due to the successful retry from the orbit. Matrix
Cj (∀j > 1) with elements Cj(i, k) is written as

Cj = C =

0 ν 0 . . . 0 0 0
0 0 ν . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . 0 0 ν
0 0 . . . 0 0 0

∀j > 1.

DA and DC denotes diagonal matrices whose diagonal elements are the sum of
the elements in the row of A and C. The following matrices are also introduced,

A∗ = A−DA,

Λ = Diag[λωc, . . . , λω, λ].

3. A Computational Procedure

For j > 1, the balance equations are written as follows

j∑

s=1

vj−sBs + vj
[
A∗ − Λ −DC

]
+ vj+1C = 0.

For j > 2, we have

j−1∑

s=1

vj−1−sBs + vj−1

[
A∗ − Λ −DC

]
+ vjC = 0,

therefore,

vj−1B1 + vj
[
A∗ − Λ −DC

]
+ vj+1C − vj−1

[
A∗ − Λ −DC

]
ω − vjCω = 0,

vj−1(B1 −
[
A∗ − Λ −DC

]
ω) + vj(

[
A∗ − Λ −DC

]
− Cω) + vj+1C = 0.

64 T.V. Do

So, we arrive at the Quasi-Birth-and-Death (QBD) form as follows

vj−1Q0 + vjQ1 + vj+1Q2 = 0 (j > 2), (3.1)

where Q0 = (B1 −
[
A∗ − Λ −DC

]
ω), Q1 = (

[
A∗ − Λ −DC

]
− Cω), Q2 = C.

Note that Q(x) = Q0 + Q1x + Q2x
2 is defined as the characteristic matrix poly-

nomial associated with equations (3.1). Due to the QBD form, the steady state
probabilities can be obtained with the existing methods like the matrix-geometric
and its variants [6, 11, 15], and the spectral expansion [13]. However, the existing
methods have the numerical problem (no results due to a very long-running time
of computer programs implementing these methods) when c is large (the problem
starts when c reaches a value of several hundreds). Therefore, in what follows we
present a fast computational procedure to find the steady state probabilities.

We have

Q(x) =

q11(x) (ω − x)(λ(−1 + ω) − νx) . . . λ(−1 + ω)ωc−2(ω − x)
µ(x − ω) q2,2(x) . . .

0 2µ(x − ω) (ω − x)(λ(−1 + ω) − νx)

.

.

.

.

.

.

.

.

.

.

.

.
0 (c − 1)µ(x − ω) qc,c(x) x(λ − λω + ν(−ω + x))
0 0 cµ(x − ω) qc+1,c+1(x)

where

q1,1(x) = (λ+ ν)(ω − x),

qi,i(x) = (λ+ iµ+ ν)(ω − x) (i = 2, . . . , c),

qc+1,c+1(x) = λ+ cµ(ω − x) − λx.

The steady state probabilities are closely related to the eigenvalue-eigenvector pairs
(x,ψ) of Q(x), which satisfy ψQ(x) = 0 and det[Q(x)] = 0 (c.f. [13]). Thus, the
straightforward way to obtain the steady state probabilities is to find the eigenval-
ues of Q(x) (see [5] for the methodology to find the eigensystem of the characteristic
matrix polynomial). However, there exists an efficient method.

It is easy to see that Q(x) has c eigenvalues of value ω. The corresponding inde-
pendent eigenvectors for c eigenvalues are ψ1 = {1, 0, . . . , 0}, ψ3 = {0, 1, 0, . . . , 0},
. . ., ψc = {0, 0, . . . , 1, 0}. Note that if the system is ergodic, then the number of
eigenvalues of Q(x), which are inside the unit disk, is c+1. Therefore, Q(x) should
have another eigenvalue called x0 inside the unit disk. Let ψ0 the corresponding
left-hand-side eigenvector of Q(λ) for the eigenvalue x0.

As a consequence, the steady state probabilities can be expressed as follows

vj = b0ψ0x
j
0 + ωj

c∑

i=1

biψi (j > 1)

= b0ψ0x
j
0 + ωjb, (3.2)

where bi are the coefficients to be determined and b =
c∑
i=1

biψi = {b1, b2, . . . , bc, 0}.

A computational algorithm for the CPP/M/c retrial queue 65

Since the probabilities are greater than or equal to zero, 0 < x0 < 1 holds.
Furthermore, x0 6= ω should hold to ensure that (c, j) states are reachable. It is
observed that the key step towards the steady state probabilities is to determine
x0 and the corresponding eigenvector ψ0.

Theorem 3.1. 0 < x0 < 1 is the root of lc+1(x), the last diagonal element of L(x)
when we make the LU decomposition of Q(x) = L(x)U(x).

Proof. Since Q(x0) is a tridiagonal matrix and qi,i(x0) 6= 0, the component ma-
trices of the LU decomposition of Q(x0) are written as

L(x0) =

l1(x0) 0 0 . . . 0 0 0
µx0 l2(x0) 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . (c− 1)µx0 lc(x0) 0
0 0 . . . 0 cµx0 lc+1(x0)

,

U(x0) =

1 u1,2 . . . u1,c−2 u1,c u1,c+1

0 1 u2,3 . . . u2,c u2,c+1

...
...

...
...

...
...

...
0 0 . . . 0 1 uc,c+1

0 0 . . . 0 0 1

,

where

l1(x0) = q1,1(x0) = (λ+ ν)(ω − x),

u1,i = q1,i(x0)/l1(x0) (i = 2, . . . , c+ 1),

uj,i = (qj,i(x0) − qj,j−1(x0)uj−1,i)/lj(x0); (i = 2, . . . , c+ 1; j = 2, . . . , i− 1),

li(x0) = qi,i(x0) − qi,i−1ui−1,i (i = 2, . . . , c+ 1).

Therefore, the determinant of Q(x0) is expressed as

Det[Q(x0)] = Det[L(x0)]Det[U(x0)] =

c+1∏

i=1

li(x0) (3.3)

As the consequence of equation (3.3), we have li(x0) 6= 0 (1 < i 6 c). Hence,
Det[Q(x0)] = 0 follows lc+1(x0) = 0. �

It is also easy to prove that lc+1(0) is positive and lc+1(1) is negative. Therefore,
a bisection algorithm in Figure 1 can be proposed to determine x0 and ψ0 =
{ψ0,1, ψ0,2, . . . , ψ0,c+1}.

In what follows, we present a method to determine b and b0. First, we prove
that b = 0 holds. We have ψ0Q(x0) = 0 because (x0,ψ0) is a eigenvalue/vector
pair of Q(x). This means,

ψ0(B1 − [A∗ − Λ −DC]ω + x0([A
∗ − Λ −DC] − Cω) + x2

0C) = 0.

66 T.V. Do

Algorithm 1 Bisection algorithm to determine x0 and the calculation of ψ0

Initialize the required accuracy ǫ
x0,u = 1.0, x0,d = 0
repeat
x0 =

x0,u+x0,d

2
calculate lc+1(x0) based on equation (3.3)
if lc+1(x0) > 0 then
x0,d = x0

else
x0,u = x0

end if
until |lc+1(x0)| < ǫ
ψ0,1 = 1
for i = 1 to c do

ψ0,i+1 =
∑ i

j=1 ψ0,iqj,i(x0)

iµ(ω−x0)

end for
return x0, ψ0

After a simple algebra, we obtain

ψ0B1 + (x0 − ω)ψ0([A
∗ − Λ −DC] + Cx0) = 0. (3.4)

ψ0B1 is a row vector with the first c zero-elements because B1 is the matrix with
the last nonzero-column. Therefore, due to (3.4), vector ψ0([A

∗ −Λ−DC] +Cx0)
should have the first c elements equal to zero.

We can write the balance equation for level 0 as

v0 [A∗ − Λ] + v1C = 0,

which follows

v0 = v1C[Λ −A∗]−1 (3.5)

= (b0ψ0x0 + ωb)C[Λ −A∗]−1.

Substituting (3.5) into the balance equation for level J = 1,

v0B1 + v1

[
A∗ − Λ −DC

]
+ v2C = 0,

we obtain
v1(C [Λ −A∗]

−1
B1 +

[
A∗ − Λ −DC

]
) + v2C = 0.

Using (3.2), we get the following expression for b after some algebraic steps

(b0ψ0x0 + ωb)(C[Λ −A∗]−1B1 +
[
A∗ − Λ −DC

]
) + (b0ψ0x

2
0 + ω2b)C = 0,

b0ψ0x0(C [Λ −A∗]
−1
B1 +

[
A∗ − Λ −DC

]
+ x0C)+

A computational algorithm for the CPP/M/c retrial queue 67

ωb(C [Λ −A∗]−1B1 +
[
A∗ − Λ −DC

]
+ ωC) = 0,

−b0ψ0x0(C[Λ −A∗]−1B1 +
[
A∗ − Λ −DC

]
+ x0C) =

ωb(C[Λ −A∗]−1B1 +
[
A∗ − Λ −DC

]
+ ωC),

b = −(b0/ω)ψ0x0(C[Λ −A∗]−1B1 +
[
A∗ − Λ −DC

]
+ x0C)

(C(Λ −A∗)−1B1 + (A∗ − Λ −DC) + ωC)−1.

It is observed that ψ0x0C[Λ − A∗]−1B1 is a row vector with the first c elements
equal to zero because B1 is the matrix with the last nonzero-column and recall
that vector ψ0([A

∗ − Λ − DC] + Cx0) has the first c elements equal to zero. As
consequence b is the vector with the first c elements equal to zero, which means b

is a zero-vector.
To determine coefficient b0, we use the normalisation equation

1 =

c∑

i=0

∞∑

j=0

πi,j = v0e +
b0x0

1 − x0
ψ0e = b0x0ψ0C[Λ −A∗]−1e +

b0x0

1 − x0
ψ0e.

4. Numerical Example

The proposed procedure is implemented in Mathematica (http://www.wolfram.
com). We compare our algorithm and the solution of equation det[Q(x)] = 0 (i.e.:
the direct way to determine the eigenvalues of the characteristic polynomial) with
the following parameter values ν = 20, ω = 0.26, λ = 2.3 and µ = 1.0. It is observed
that our algorithm gives a correct result for root x0 for all cases, while the direct
solution of equation det[Q(x)] = 0 in Mathematica using a built-in function is not
always correct.

• The built-in function of Mathematica finds that det[Q(x)] has roots x→ 0.26,
x→ 0.26, x→ 0.26, x→ 0.26, x→ 0.859258, x→ 1 and x→ 10.3527 when
c = 4 holds. Our algorithm finds x0 equal to 0.859258.

• With the built-in function of Mathematica det[Q(x)] has roots x → 0.26 −
1.63875 · 10−7i, x → 0.26 + 1.63875 · 10−7i, x→ 0.26, x→ 0.26, x→ 0.26,
x→ 0.736433, x→ 1, x→ 5.93992 and x→ 55.9869 when c = 5 holds. Note
that Q(x) does not have a complex eigenvalue in this case. Our algorithm
results in x0 = 0.736433.

The numerical results confirm a claim that we have developed a numerically stable
algorithm for the solution the CPP/M/c retrial queue.

References

[1] Almási, B., Roszik, J., Sztrik, J., Homogeneous finite-source retrial queues with
server subject to breakdowns and repairs, Mathematical and Computer Modelling,
(42):673–682, 2005.

68 T.V. Do

[2] Artalejo, J.R., Economou, A., Lopez-Herrero, M.J., Algorithmic approxima-
tions for the busy period distribution of the M/M/c retrial queue, European Journal
of Operational Research, 176:1687–1702, 2007.

[3] Artalejo, J.R., Pozo, M., Numerical Calculation of the Stationary Distribution
of the Main Multiserver Retrial Queue, Annals of Operations Research, 1-4:41–56,
2002.

[4] Artalejo, J.R., Gómez-Corral, A., Retrial Queueing Systems, Springer, 2008.

[5] Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., H. van der Vorst, editors,
Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide,
SIAM, Philadelphia.

[6] Bini, D., Meini, B., On the solution of a nonlinear matrix equation arising in
queueing problems, SIAM Journal on Matrix Analysis and Applications, 17(4):906–
926, 1996.

[7] Do, T.V., Chakka, R., Harrison, P.G., An integrated analytical model for com-
putation and comparison of the throughputs of the UMTS/HSDPA user equipment
categories, In MSWiM ’07: Proceedings of the 10th ACM Symposium on Modeling,
analysis, and simulation of wireless and mobile systems, pages 45–51, New York, NY,
USA, 2007. ACM.

[8] Falin, G.I., Templeton, J.G.C., Retrial Queues, Chapman & Hall, London, 1997.

[9] Kouvatsos, D., Entropy maximisation and queueing network models, Annals of
Operations Research, 48:63–126, 1994.

[10] Kumar, B., Raja, J., On multiserver feedback retrial queues with balking and
control retrial rate, Annals of Operations Research, 141:211–232(22), January 2006.

[11] Latouch, G., Ramaswami, V., A logarithmic reduction algorithm for quasi-birth-
death processes, Applied Probability, pages 650–674, 1993.

[12] Lopez-Herrero, M., A maximum entropy approach for the busy period of the
M/G/1 retrial queue, Annals of Operations Research, 141:271–281(11), January 2006.

[13] Mitrani, I., Chakka, R., Spectral expansion solution for a class of Markov mod-
els: Application and comparison with the matrix-geometric method, Performance
Evaluation, 23:241–260, 1995.

[14] Mushko, V., Jacob, M., Ramakrishnan, K., Krishnamoorthy, A., Dudin,
A., Multiserver queue with addressed retrials, Annals of Operations Research,
141:283–301(19), January 2006.

[15] Naoumov, V., Krieger, U., Wagner, D., Analysis of a Multi-server Delay-loss
System with a General Markovian Arrival Process. In S.R. Chakravarthy and A.S.
Alfa, editors, Matrixanalytical methods in Stochastic models, pages 43–66. Marcel
Dekker, 1997.

[16] Roszik, J., Sztrik, J., Performance analysis of finite-source retrial queues with
non-reliable heterogeneous servers, Journal of Mathematical Sciences, (146):6033–
6038, 2007.

[17] Sztrik, J., Tool supported performance modelling of finite-source retrial queues
with breakdowns, Publicationes Mathematicae, (66):197–211, 2005.

A computational algorithm for the CPP/M/c retrial queue 69

Tien Van Do
Department of Telecommunications
University of Technology and Economics
Budapest
Magyar tudósok krt. 2.
H-1117, Hungary
e-mail: do@hit.bme.hu

Annales Mathematicae et Informaticae
36 (2009) pp. 71–75
http://ami.ektf.hu

On the k -reversibility of finite automata

János Falucskai

College of Nyíregyháza, Institute of Mathematics and Informatics

Submitted 5 October 2009; Accepted 6 December 2009

Abstract

It is a famous result of Angluin (1982 [1]) that there exists a time poly-
nomial and space linear algorithm to identify the canonical automata of k-
reversible languages by using characteristic sample sets. This result has se-
veral applications. In this paper we characterise the class of all automata for
which her method is not applicable. In particular, the aim of this paper is to
characterise the family of finite automata which are not k-reversible for any
non-negative integer k.

Keywords: finite automata, k-reversible automata

MSC: 68Q45, 68T50

1. Introduction

Without any doubt, there is no formal model that can capture all aspects of
human learning. Nevertheless, the overall aim of researchers working in algorith-
mic learning theory has been to gain a better understanding of what learning really
is. Several models are on the basis of the so-called learning autamata. Learning
automata has a wide field of applications ranging over robotics and control sys-
tems, pattern recognition, computational linguistics, computational biology, data
compression, data mining, etc. (see [5], for an excellent survey). Recently, lear-
ning techniques have also become popular in the area of automatic verification.
They have been used [8] for minimizing (partially) specified systems and for model
checking black-box systems, proved helpful in compositional model checking and
in regular model checking. The general goal of learning algorithms employed in
verification is to identify a machine, usually of minimal size, that conforms with
an a priori fixed set of strings or a given machine. Nearly all algorithms learn
deterministic finite-state automata (DFA) or deterministic finite-state machines
(Mealy-/Moore machines), as the class of DFA has preferable properties in the

71

72 J. Falucskai

setting of learning. For every regular language, there is a unique minimal DFA
accepting it [6], which can be characterized by Nerode’s right congruence [10, 9].
This characterization is at the base of most learning algorithms [5].

It is a famous result of Angluin [1] that there exists a time polynomial and
space linear algorithm to identify the canonical automata of k-reversible languages
by using characteristic sample sets. This result has various applications. (For
example, the song learning of birds has similarity to the grammatical inference
from positive samples [13] which works as Angluin’s algorithm. Certain linguistic
subsystems may also well be learnable by inductive inference method [12]. Her
method is applicable in the natural language processing, too [4]).

The aim of this paper is to show the limitations of her method. In particular,
we characterise the class of all automata which are not k-reversible for any non-
negative integer k. The author did not find any paper studying or characterising
the class of automata having this property. In other words, it has a high likehood
that there are no related works regarding our results.

2. Preliminaries

We start with some standard concepts and notations. All concepts not defined
here can be found in [3, 6].

By an automaton we mean a finite Rabin-Scott automaton, i.e. a deterministic
finite initial automaton without outputs supplied by a set of final states which is a
subset of the state set. In more details, an automaton is an algebraic structure A =
(A, a0, AF ,Σ, δ) consisting of the nonempty and finite state set A, the nonempty
and finite input set Σ, a transition function δ : A×Σ → A, the initial state a0 ∈ A
and the (not necessarily nonempty) set AF ⊆ A of final states.

It is understood that δ is extended to δ∗ : A × X∗ → A with δ∗(a, λ) =
a, δ∗(a, xq) = δ(a, x)δ∗(δ(a, x), q), a ∈ A, x ∈ Σ, q ∈ Σ∗. In other words, δ∗(a, λ) =
a and for every nonempty input word x1x2 · · ·xs ∈ Σ+ (where x1, x2, . . . , xs ∈ Σ)
there are a1, . . . , as ∈ A with δ(a, x1) = a1, δ(a1, x2) = a2, . . . , δ(as−1, xs) = as
such that δ∗(a, x1 · · ·xs) = a1 · · · as.

Moreover, for every a ∈ A,w ∈ Σ∗, denote by a · w the last letter of δ∗(a,w).
The concept of acceptor is a natural generalization of the concept of automaton.
By an acceptor we mean a system A = (A, I, F,Σ, δ) such that A is a finite (not
necessarily nonempty) set, the set of states, I ⊆ A is the set of initial states, F ⊆ A
is the set of final or accepting states and δ : A×Σ → 2A is the transition function.
A is called deterministic if |I| 6 1 and for every a ∈ A, x ∈ X, |δ(a, x)| 6 1.
Thus an automaton can be considered as a special deterministic acceptor. The
reverse of an acceptor A = (A, I, F,Σ, δ) is the acceptor Ar = (A,F, I,Σ, δr)
having δr(a, x) = {b ∈ A | a ∈ δ(b, x)} for all a ∈ A, x ∈ Σ. An acceptor A is
called zero reversible if both of A and Ar are deterministic. A is k-reversible for a
positive integer k if A is deterministic, moreover, for any pair a1, a2 ∈ A, a1 6= a2,
if a1, a2 ∈ F or a1, a2 ∈ δr(a, x) for some a ∈ A and x ∈ Σ, then for every
w ∈ Σ∗, |w| = k, at least one of δr(a1, w), δr(a2, w) should be ∅. It is said that the

On the k-reversibility of finite automata 73

acceptor A accepts the empty word if there exists an a ∈ I with a ∈ F. Furthermore,
we say that A accepts a nonempty word x1 · · ·xs ∈ Σ+ (x1, . . . , xs ∈ Σ) if there
are a1, . . . , as+1 ∈ A with a1 ∈ I, as+1 ∈ F, and ai+1 ∈ δ(ai, xi), i = 1, . . . , s. The
language LA ⊆ Σ∗ consisting of all words in Σ∗ accepted by A is called the language
accepted by A. A language L ⊆ Σ∗ is said to be k-reversible for some nonnegative
integer k, if there exists a k-reversible acceptor A with L = LA. A deterministic
acceptor A = (A, I, F,Σ, δA) with |I| = 1 and ∀a ∈ A, x ∈ Σ : |δA(a, x)| = 1 can
be considered as the automaton A = (A, a0, AF ,Σ, δA) with {a0} = I, AF = F,
∀a ∈ A, x ∈ Σ : {δA(a, x)} = δA(a, x) and vice versa. Thus we can extend the
concept of k-reversibility to automata in a natural way.

3. Results

The following statement can be derived directly from the definition of k-reversi-
bility of automata (with the notations a = a1, b = a2, u = w, c = δr(a1, w), d =
δr(a2, w)).

Lemma 3.1. Given a nonnegative integer k, the automaton A = (A, a0, AF ,Σ, δ)
is k-reversible if and only if for every distinct a, b ∈ A, there do not exist c, d ∈ A,
u ∈ Σ∗ with |u| = k, having c·u = a, d·u = b whenever a, b ∈ AF or δ(a, x) = δ(b, x)
for some x ∈ Σ.

Next, we prove the following Theorem:

Theorem 3.2. Let A = (A, a0, AF ,Σ, δ) be an arbitrary automaton. There does
not exist a nonnegative integer k for which A is k-reversible if and only if there
are distinct states a, b ∈ A, a nonempty input word u ∈ Σ+, an input word v ∈ Σ∗,
such that a ·u = a, b · u = b, a · v 6= b · v, and either a · v, b · v ∈ AF or a · vx = b · vx
for some x ∈ Σ.

Proof. First, we suppose that there are distinct states a, b ∈ A, a nonempty input
word u ∈ Σ+, an input word v ∈ Σ∗ such that a · u = a, b · u = b, a · v 6= b · v,
and either a · v, b · v ∈ AF or a · vx = b · vx for some x ∈ Σ. Assume that,
contrary of our statement, A is k-reversible for some nonnegative integer k. By
a · u = a, b · u = b, a 6= b, u 6= λ and Lemma 3.1, this is impossible if a, b ∈ AF .
Therefore, at least one of a and b should be a non-final state. Thus, by our
conditions, there is an x ∈ Σ with a·vx = b·vx. On the other hand, by a·vx = b·vx,
it is clear that k > 0. Now, let k > 0 and consider the minimal nonnegative integer
ℓ with |uℓv| > k. First, we prove that for every prefix w of uℓv, a · w 6= b · w.
If u = wz for some z ∈ Σ∗, then a · w = b · w implies δ(a · wz) = δ(b · wz)
which leads to (a =) a · u = b · u (= b), which is a contradiction. Now, let
i, j be nonnegative integers such that w = ui+jz and ujz is a prefix of v. First,
a · ui = a 6= b = b · ui holds, because of a · u = a, b · u = b with a 6= b. On the
other hand, v = ujzr for some r ∈ Σ∗, because ujz is a prefix of v. Therefore,
using a · ui = a, b · ui = b, if a · ui+jz = b · ui+jz, then a · ujz = b · ujz leading to

74 J. Falucskai

a ·ujzr = b ·ujzr with ujzr = v, which is a contradiction. Consider w, z ∈ Σ∗ with
uℓv = wz and |z| = k. We have already proved a · w 6= b · w. On the other hand,
by our assumptions, a · wz 6= b · wz and δ(a · wzx) = δ(b · wzx). By Lemma 3.1,
considering a · w, b · w, a · wz, b · wz, z, x as c, d, a, b, u, x, we obtain that A is not
k-reversible. Now, we assume that for every nonnegative integer k, the automaton
A is not k-reversible. This means that A is not 0-reversible. Moreover, by Lemma
3.1, for every positive integer k, there are distinct a, b ∈ A, such that there exist
c, d ∈ A, u ∈ Σ∗ with |u| = k, c · u = a, d · u = b, where we have either a, b ∈ AF
or δ(a, x) 6= δ(b, x) for some x ∈ Σ. Without any restriction we may assume that
k > |A|2. Obviously, by a 6= b, for every prefix w of u, c · w 6= d · w. But then, by
(k =)|u| > |A|(|A|−1)

2 , u = x1 · · ·xk with x1, . . . , xk ∈ Σ, there exists a repetition in
the sequence (c, d), (δ(c, x1), δ(d, x1)), (c·x1x2, d·x1x2), . . . , (c·x1 · · ·xk, d·x1 · · ·xk)
having c 6= d and c·x1 · · ·xi 6= d·x1 · · ·xi, i = 1, . . . , k. Thus, there are p, r ∈ Σ∗, q ∈
Σ+ with u = pqr and c · p = c · pq, d · p = d · pq, c · pq 6= d · pq, c · pqr 6= d · pqr and
either c · pqr, d · pqr ∈ AF or c · pqrx = d · pqrx for some x ∈ Σ. By Lemma 3.1, this
shows that A is not k-reversible. �

4. Conclusion

It is well-known that, by using characteristic sample sets, the canonical au-
tomata of k-reversible languages can be identified applying a time polynomial and
space linear algorithm (this is a famous result of Angluin). In this paper the li-
mitations of her method are shown. In other words, the characterisation is given
for automata which are not k-reversible for any non-negative integer k. It is an
interesting fact that this property was not investigated so far in the literature.
Further work is to characterise classes of automata and their languages for which
other learning algorithms can not be applied [2, 14, 7, 11].

References

[1] Angluin, D., Inference of reversible languages, J. Assoc. Comput. Mach., 29 (1982)
741–765.

[2] Biermann, A. W., Feldman, J. A., On the synthesis of finite-state machines from
samples of their behaviour, IEEE Transactions on Computers, 21 (1972) 592–597.

[3] Dömösi, P., Nehaniv, C. L., Algebraic theory of automata networks. An intro-
duction. SIAM Monographs on Discrete Mathematics and Applications, 11 (2005).

[4] García, P., Vázquez de Parga, M., López, D., On the efficient construction of
quasi-reversible automata for reversible languages, Inform. Process. Lett., 107 (2008)
13–17.

[5] Higuera, C., A bibliographical study of grammatical inference. Pattern Recognition,
38 (9) (2005) 1332–1348.

[6] Hopcroft, J.E., Motwani, R., Ullman, J. D., Introduction to Automata Theory
(second edition), Addison-Wesley Series in Computer Science, (2001).

On the k-reversibility of finite automata 75

[7] Lang, K., Random DFA’s can be approximately learned from sparse uniform exam-
ples, COLT, (2001).

[8] Leucker, M., Learning meets verification, FMCO’07, LNCS, 4709 (2007) 127–151.

[9] Myhill, J., Finite automata and the representation of events, Tech. Rep. WADD
TR-57-624, Wright Patterson Air Force Base, Ohio, (1957).

[10] Nerode, A., Linear automaton transformations, Proc. of the American Mathema-
tical Society, 9 (1958) 541–544.

[11] [Oncina, J., Garcia P., Inferring regular languages in polynomial update time,
Pattern Recognition and Image Analysis, volume 1 of Series in Machine Perception
and Artificial Intelligence, (1992).

[12] Pilato, S., Berwick, R., Reversible automata and induction of the english auxi-
liary system. Proceedings of the ACL, (1985) 70–75.

[13] Sasahara, K., Kakishita, Y., Nishino, T., Takahasi M., Okanoya, K., Con-
structing song syntax by automata induction Lecture Notes in Artificial Intelligence,
4201 (2006) 351–353.

[14] Trakhtenbrot, B.A., Barzdin, J.M., Finite automata: behaviour and synthesis,
North-Holland, (1973).

János Falucskai
Nyíregyháza
Sóstói út 31/B
H-4400
Hungary
e-mail: falu@nyf.hu

Annales Mathematicae et Informaticae
36 (2009) pp. 77–84
http://ami.ektf.hu

Surface interpolation with local control by
linear blending

Imre Juhásza, Miklós Hoffmannb

aUniversity of Miskolc, Hungary
bKároly Eszterházy College, Hungary

Submitted 25 May 2009; Accepted 10 December 2009

Abstract

The purpose of this paper is to introduce an interactive surface interpo-
lation method by spline surfaces, which is a generalization of the method
presented in [2]. The technique is based on linear blending and works for
a large class of surfaces including bicubic Bézier, B-spline, NURBS surfaces
and the recently developed trigonometric surfaces as well. The interpolating
surface can be interactively modified by control points, meanwhile the inter-
polation property is preserved.

Keywords: interpolation, spline surface, linear blending

MSC: 65D17, 68U07

1. Introduction

Interpolation of an ordered set of points is one of the most widely used methods
in curve and surface modeling practice, hence there is a vast number of papers and
book chapters dealing with this topic (cf. the books [6, 15] and references therein).
Designers generally prefer splines, where most of the methods work globally. Even
in the case of B-spline or NURBS surfaces, which are standard description methods
in geometric design and have local control properties, the process of finding control
points of an interpolating surface is global and the resulted surface cannot be locally
controlled (see e.g. [1, 10, 13, 7]). To overcome this problem some methods have
been developed by means of which the shape of the interpolating curve or surface
can be adjusted by numerical techniques (see e.g. [8, 9, 16]). Shape parameters
and other numerical techniques, however, do not provide intuitive shape control
methods such as control point repositioning in approximation. Moreover, in these
global methods a large system of equations has to be solved at a relatively high

77

78 I. Juhász, M. Hoffmann

computational cost. Especially, for large set of data points, local methods have the
advantage of solving smaller systems, since the computation of each curve segment
is based on only a subset of data. Unfortunately, these local methods typically
attain only C1 continuity [11].

In the last couple of years a new local method has been developed for some
types of spline curves and surfaces that requires only local computation and yields
C2 continuous spline curves. This technique - which is based on linear blending -
has been implemented for NURBS in [17], for B-spline curve in [18] and for trigono-
metric C-B-spline curve in [14]. In this method the shape of the interpolating curve
can also be adjusted numerically by some shape parameters.

In [2] the authors generalized the linear blending interpolation method for a
large class of curves. The present contribution is the further generalization of
the linear blending curve concept for surfaces. Since designers generally prefer
geometric entities instead of numerical values, we provide intuitive, control point
based modification of the interpolating surface. We let the designer alter the shape
of the surface similarly to the approximating surfaces, meanwhile the interpolation
property is continuously preserved.

2. Linear blending surfaces

At first we describe a surface generating method which we will call linear blend-
ing. Consider the points pk,l, (k = 0, . . . , n; l = 0, . . . ,m) and the piecewisely de-
fined surface

b(u, v) =

n+1∑

k=−1

m+1∑

l=−1

Fk(u)Gl (v)pkl, u ∈ [u0, un], v ∈ [v0, vm], (2.1)

where pkl are called control points (they form the control net consisting of quadri-
lateral "faces"), Fk(u) and Gl (v) are basis functions of some space (not necessarily
of the same). The number of faces must be equal to the number of patches. Thus,
in case of open surfaces one has to define artificial control points, e.g. by doubling
the control points on the boundary of the control net. The only restriction is that
each patch of the surface has to be defined by 16 (4×4) neighboring control points,
that is patches of this surface can be written as

bi,j (u, v) =

i+2∑

k=i−1

j+2∑

l=j−1

Fk(u)Gl (v)pkl, u ∈ [ui, ui+1] , v ∈ [vj , vj+1]

i = 0, . . . , n− 1, j = 0, . . . ,m− 1

where the values ui, vj are called knots.
Now, consider the (i, j)th face of the control net determined by the control

points pi,j ,pi,j+1,pi+1,j ,pi+1,j+1 and interpolate this quadrilateral with the dou-
ble ruled surface that we obtain from the four corner points by bilinear combination

Surface interpolation with local control by linear blending 79

with some functions f(u) and g (v) in the form

hi,j(u, v) =
[
(1 − f(u)) f(u)

] [pi,j pi,j+1

pi+1,j pi+1,j+1

] [
(1 − g(v))
g(v)

]
,

u ∈ [ui, ui+1] , v ∈ [vj , vj+1] .

If the four points are coplanar this surface degenerates to a quadrilateral region in
their plane, otherwise it is a patch of a hyperbolic paraboloid (saddle).

For the sake of interpolation, functions f(u), g(v) have to fulfill conditions

f(ui) = g(vj) = 0, f(ui+1) = g(vj+1) = 1. (2.2)

Linearly blending the patches bi,j (u, v) with the corresponding double ruled
patches hi,j(u, v) we obtain the linear blending surface consisting of the patches

ci,j(u, v, α) = (1 − α)bi,j (u) + αhi,j(u),

where α is a global shape parameter of the surface.
To achieve more flexibility in shape modification, the shape parameter α can

also be the function of u and v. A natural way is to define them piecewisely by local
shape parameters α∗

i,j associated to each point pi,j , and to use the same blending
functions f(u) and g(v) like for the surface hi,j(u, v), i.e.,

αi,j(u, v) =
[
(1 − f(u)) f(u)

] [α∗
i,j α∗

i,j+1

α∗
i+1,j α

∗
i+1,j+1

] [
(1 − g(v))
g(v)

]
.

In this way each patch of the linear blending surface will have four local shape
parameters (these parameters initially can be defined to be equal to 1 and will be
modified in an interactive way)

ci,j(u, v, α
∗
i,j , α

∗
i,j+1, α

∗
i+1,j , α

∗
i+1,j+1) =

(1 − αi,j(u, v))bi,j (u, v) + αi,j(u, v)hi,j(u, v).
(2.3)

In order to obtain Cr(r > 0) continuity at joints of consecutive patches, func-
tions f(u), g(v) have to satisfy the conditions

f (k)(ui) = f (k)(ui+1) = 0 1 6 k 6 r, j = 0, . . . , n− 1

g(k)(vj) = g(k)(vj+1) = 0 1 6 k 6 r, j = 0, . . . ,m− 1
. (2.4)

Beside these conditions, the choice of these functions highly depends on the
base surface b(u, v), more precisely the type of its basis functions Fk (u) , Gl (v).
The possible choice and generalizations of these functions can be found in [2].

3. Interpolation by linear blending surfaces

Now, we generalize the idea of curve interpolation by linear blending described
in [17] for surfaces, and we modify the linear blending method defined above to in-
terpolate a given grid of points. Surface patch ci,j(u, v, α

∗
i,j , α

∗
i,j+1, α

∗
i+1,j , α

∗
i+1,j+1)

80 I. Juhász, M. Hoffmann

is "between" the patches bi,j (u, v) and hi,j(u, v), that is the patch approximates
the given points pi,j ,pi,j+1,pi+1,j ,pi+1,j+1. Note, that the method works in that
cases as well when the double ruled surface is determined by any four points. We
are going to specify such four corner points for the double ruled surface hi,j(u, v)
that the resulted blending patch ci,j will interpolate the given points.

Let the points pi,j , associated parameter values (ui, vj) and shape parameters
α∗
i,j , (i = 0, . . . , n, j = 0, . . . ,m) be given. The problem is to find a linear blending

patch that has the given shape parameters α∗
i,j and interpolates the given points

pi,j at the given parameter values (ui, vj).
Let us consider the approximating patch defined by the given points as control

points

bi,j (u, v) =

i+2∑

k=i−1

j+2∑

l=j−1

Fk(u)Gl (v)pkl, u ∈ [ui, ui+1] , v ∈ [vj , vj+1] ,

and the double ruled patch

hi,j(u, v) =
[
(1 − f(u)) f(u)

] [vi,j vi,j+1

vi+1,j vi+1,j+1

] [
(1 − g(v))
g(v)

]
,

u ∈ [ui, ui+1] , v ∈ [vj , vj+1]

where the points vi,j are unknown. Using the interpolation assumptions

ci,j(ui, vj , α
∗
i,j , α

∗
i,j+1, α

∗
i+1,j , α

∗
i+1,j+1) = pi,j

ci,j(ui, vj+1, α
∗
i,j , α

∗
i,j+1, α

∗
i+1,j , α

∗
i+1,j+1) = pi,j+1

ci,j(ui+1, vj , α
∗
i,j , α

∗
i,j+1, α

∗
i+1,j , α

∗
i+1,j+1) = pi+1,j

ci,j(ui+1, vj+1, α
∗
i,j , α

∗
i,j+1, α

∗
i+1,j , α

∗
i+1,j+1) = pi+1,j+1

(3.1)

we obtain

vi,j = pi,j +
1 − α∗

i,j

α∗
i,j

(pi,j − bi,j(ui, vj))

vi,j+1 = pi,j+1 +
1 − α∗

i,j+1

α∗
i,j+1

(pi,j+1 − bi,j(ui, vj+1))

vi+1,j = pi+1,j +
1 − α∗

i+1,j

α∗
i+1,j

(pi+1,j − bi,j(ui+1, vj))

vi+1,j+1 = pi+1,j+1 +
1 − α∗

i+1,j+1

α∗
i+1,j+1

(pi+1,j+1 − bi,j(ui+1, vj+1)) .

(3.2)

By means of these points, the corresponding linear blending patches will inter-
polate the given points at the given parameter values (see Fig.1).

Surface interpolation with local control by linear blending 81

Figure 1: The original base surface (below) and the interpolating
linear blending surface with the calculated four control points.

4. Interactive shape modification

Points vi,j depend on three parameters: the corresponding parameter values
ui, vj and the local shape parameter α∗

i,j . Instead of manipulating these values
numerically, calculating the points vi,j and finally the interpolating surface patch
ci,j(u, v, α

∗
i,j , α

∗
i,j+1, α

∗
i+1,j , α

∗
i+1,j+1), we intend to develop an interactive shape

modification tool. In this tool points vi,j shall be used analogously to the control
points of an approximating surface, meanwhile the interpolating property of the
surface is preserved. Although, these points are not "real" control points of the
surface, the geometric effect of dragging these points is quite similar to the effect
of control point repositioning.

When the position of the point vi,j is modified, we have to recalculate the
actual values of parameters ui, vj and α∗

i,j to preserve the interpolation. This
problem leads us to the following questions: what happens to the surface (and
especially to the point vi,j) if one of these parameters is changed? What are the
possible positions of the point vi,j?

At first let us fix the parameters ui, vj and alter the shape parameter α∗
i,j . It is

obvious from Eq. (3.2) that preserving the interpolation property the point vi,j will
move along a straight line connecting the given point pi,j and the point bi,j(ui, vj)
of the original surface patch.

Now, consider the case when the shape parameter α∗
i,j is fixed and the pa-

rameters ui, vj are altered. By Eqs. (3.1) the surface interpolates the point pi,j

82 I. Juhász, M. Hoffmann

at parameters (ui, vj), which may vary between ui−1, ui+1 and vj−1, vj+1, respec-
tively. These values, however also serve as knot values of the original base surface
(2.1). Therefore, the alteration of these parameters changes the shape of the orig-
inal surface patch bi,j(u, v) as well. The geometric description of the effect of
knot alteration is far from being trivial. For B-spline and NURBS surfaces it has
been described in detail in [3], [4], [12] and [5]. Using the results of these studies
we can conclude that the point bi,j(ui, vj) of the base surface will move along a
well-defined surface patch

e(ui, vj) = bi,j(ui, vj) ui ∈ [ui−1, ui+1], vj ∈ [vj−1, vj+1]. (4.1)

E.g., in case of a B-spline surface of degree (k, l), the surface e(ui, vj) is a B-
spline surface patch of degree (k− 1, l− 1), defined by the same control points and
knot values (except the knots ui and vj) as the original surface [3].

By means of Eqs. (3.2) it is easy to see that altering the parameters ui, vj the
point vi,j will move along a surface that can be obtained by a central similarity
from surface (4.1), where the center of similitude is the given point pi,j and the
ratio is

(
1 − α∗

i,j

)
/α∗

i,j .
Summarizing the above results one can see that the permissible positions of vi,j

is a volume bounded by a cone-like surface the apex of which is the given point
pi,j and its base is composed of the four boundary curves of the envelope surface
(4.1) (see Fig.2).

Figure 2: The original surface (below) and the interpolating linear
blending surface. The permissible positions of the upmost control

point is shown by a volume bounded by a cone-like surface.

For each actual position of vi,j within this region one has to recalculate the pa-
rameters ui, vj and α∗

i,j , and (by fixing the rest of the shape parameters) substitute
them into ci,j(u, v, α

∗
i,j , α

∗
i,j+1, α

∗
i+1,j , α

∗
i+1,j+1) in order to obtain the interpolating

surface.

Surface interpolation with local control by linear blending 83

5. Conclusions

An easy-to-compute interpolation method is presented in this paper, based on
linear blending of a base surface and a computed control mesh. The resulted
surface can interactively be modified by the points of this control mesh, meanwhile
the interpolation property continuously holds. The method works for a large class
of surfaces, including all the standard surface types (Bézier, B-spline, NURBS,
C-B-spline, etc.) of computer aided geometric design.

Acknowledgements. The authors wish to thank the National Office of Research
and Technology (Project CHN-37/2005) for their financial support of this research.
The second author is also supported by János Bolyai Scholarship of Hungarian
Academy of Sciences.

References

[1] Barsky, B.A., Greenberg, D.P., Determining a set of B-spline control vertices
to generate an interpolating surface, Computer Graphics and Image Processing, 14
(1980), 203–226.

[2] Hoffmann, M., Juhász, I., On interpolation by spline curves with shape parame-
ters, Lecture Notes in Computer Science, 4975 (2008), 205–214.

[3] Hoffmann M., Juhász I., Geometric aspects of knot modification of B-spline sur-
faces, Journal for Geometry and Graphics, 6 (2002), 141–149.

[4] Hoffmann, M., Juhász, I., On the family of B-spline surfaces obtained by knot
modification, Mathematical Communications, 11 (2006), 9–16.

[5] Hoffmann, M., Juhász, I., Constrained shape control of bicubic B-spline surfaces
by knots, in: Sarfraz, M., Banissi, E. (Eds.) Geometric Modeling and Imaging, Lon-
don, IEEE CS Press, 41–47, 2006

[6] Hoschek, J., Lasser, D., Fundamentals of CAGD, AK Peters, Wellesley, MA,
1993.

[7] Juhász, I., Hoffmann, M., On parametrization of interpolating curves, Journal of
Computational and Applied Mathematics, 216 (2008), 413–424.

[8] Kaklis, P.D., Sapidis, N.S., Convexity-preserving interpolatory parametric splines
of non-uniform polynomial degree, Computer Aided Geometric Design, 12 (1995), 1–
26.

[9] Kong, V.P., Ong, B.H., Shape preserving F3 curve interpolation, Computer Aided
Geometric Design, 19 (2002), 239–256.

[10] Lavery, J.E., Univariate cubic Lp splines and shape-preserving multiscale interpo-
lation by univariate cubic L1 splines, Computer Aided Geometric Design, 17 (2000),
319–336.

[11] Li, A., Convexity preserving interpolation, Computer Aided Geometric Design, 16
(1999), 127–147.

84 I. Juhász, M. Hoffmann

[12] Li, Y.-J., Wang, G.-Z., On knot modification of B-spline and NURBS surfaces. J.
of Computer-Aided Design and Computer Graphics, 15 (2005), 986–989.

[13] Ma, W., Kruth, J.P., NURBS curve and surface fitting and interpolation, in:
M. Daehlen, T. Lyche, L. Schumaker (Eds.), Mathematical Methods for Curves and
Surfaces, Vanderbilt University Press, Nashville & London, 1995.

[14] Pan, Y.-J., Wang, G.-J., Convexity-preserving interpolation of trigonometric poly-
nomial curves with shape parameter, Journal of Zhejiang University Science, 8
(2007), 1199–1209.

[15] Piegl, L., Tiller, W., The NURBS Book, Springer, Berlin. 1995

[16] Sapidis, N., Farin, G., Automatic fairing algorithm for B-spline curves, Computer-
Aided Design, 22 (1990), 121–129.

[17] Tai, C.-L., Barsky, B.A., Loe, K.-F., An interpolation method with weights and
relaxation parameters. In: Cohen, A., Rabut, C., Schumaker, L.L. (eds.): Curve and
Surface Fitting: Saint-Malo 1999. Vanderbilt Univ. Press, Nashville, Tenessee (2000)
393–402.

[18] Tai, C.-L., Wang, G.-J., Interpolation with slackness and continuity control and
convexity-preservation using singular blending, J. Comp. Appl. Math., 172 (2004),
337–361.

Imre Juhász
Department of Descriptive Geometry, University of Miskolc,
H-3515 Miskolc, Hungary
e-mail: agtji@uni-miskolc.hu

Miklós Hoffmann
Institute of Mathematics and Computer Science,
Károly Eszterházy College, Eger, Hungary
e-mail: hofi@ektf.hu

Annales Mathematicae et Informaticae

36 (2009) pp. 85–101
http://ami.ektf.hu

Introducing general redundancy criteria for
clausal tableaux, and proposing resolution

tableaux

Gergely Kovásznaia, Gábor Kusperb

aDepartment of Information Technology
Eszterházy Károly College, Eger, Hungary

bDepartment of Computing Science
Eszterházy Károly College, Eger, Hungary

Submitted 8 October 2008; Accepted 6 December 2009

Abstract

Hyper tableau calculi are well-known as attempts to combine hyper-res-
olution and tableaux. Besides their soundness and completeness, it is also
important to give an appropriate redundancy criterion. The task of such
a criterion is to filter out “unnecessary” clauses being attached to a given
tableau. This is why we investigate what redundancy criteria can be defined
for clausal tableaux, in general.

This investigation leaded us to a general idea for combining resolution
calculi and tableaux. The goal is the same as in the case of hyper-tableau
calculi: to split (hyper-)resolution derivations into branches. We propose
a novel method called resolution tableaux. Resolution tableaux are more
general than hyper tableaux, since any resolution calculus (not only hyper-
resolution) can be applied, like, e.g., binary resolution, input resolution, or
lock resolution etc. We prove that any resolution tableau calculus inherits the
soundness and the completeness of the resolution calculus which is being ap-
plied. Hence, resolution tableaux can be regarded as a kind of parallelization
of resolution.

1. Introduction

Hyper tableau calculi (e.g., hyper tableaux [2, 3], constrained hyper tableaux
[6], rigid hyper tableaux [11], and hyperS tableaux [8, 9] etc.) are well-known as
attempts to combine hyper-resolution and tableaux. Besides their soundness and

85

86 G. Kovásznai, G. Kusper

completeness1, it is also important to give an appropriate redundancy criterion.
The task of such a criterion is to filter out “unnecessary” clauses being attached
to a given tableau. This is why we investigate what redundancy criteria can be
defined for clausal tableaux, in general. A clausal tableau is actually a tableau
whose vertices are labeled with literals. Besides hyper tableau calculi, there are
other well-known tableau calculi which apply clausal tableaux as well, like, e.g.,
clause tableaux [7] and connection tableaux [12]. We give a detailed investigation
on appropriate redundancy criteria for clausal tableaux, and propose two possible
candidates. As it will be seen, the second criterion is more general than the first
one, and is also more general than the redundancy criterion for (purified) hyper
tableaux [2]. We illustrate how to employ our redundancy criteria, by examples.

Investigation on redundancy leaded us to a general idea for combining resolution
calculi and tableaux. The goal is the same as in the case of hyper-tableau calculi: to
split (hyper-)resolution derivations into branches. First, we propose a general way
of representing any resolution calculus (and illustrate it by examples), and then
we introduce a novel method called resolution tableaux. Resolution tableaux are
more general than hyper tableaux, since any resolution calculus (not only hyper-
resolution) can be applied, like, e.g., binary resolution, input resolution, or lock
resolution etc. We prove that any resolution tableau calculus inherits the soundness
and the completeness of the resolution calculus which is being applied. By the use
of resolution tableaux, any resolution derivation can be split into separate branches,
hence resolution tableaux can be regarded as a kind of parallelization of resolution,
as it will be illustrated by an example.

The structure of the paper is as follows. In Section 2, basic definitions and
concepts are introduced. After this, let us depart from the logical order written
above. First, let us propose resolution tableaux in Section 3, and then introduce
our results on redundancy criteria for clausal tableaux, in Section 4. As it will be
seen, the latter topic is in close connection with resolution tableaux, as detailed in
Section 5.

2. Preliminaries

In the followings, we assume that the reader is familiar with the basic concepts
of first-order logic. Nevertheless, let us present a few crucial concepts.

A literal is a formula either A or ¬A where A is an atomic formula. A is
classified as a positive, ¬A as a negative literal.

A clause is a formula L1 ∨ L2 ∨ . . . ∨ Ln where n > 0 and each Li is a literal
(i = 1, . . . , n). A clause can also be regarded as the set of its literals. The empty
clause is denoted by ⊥.

A clause is positive (negative) iff it consists of solely positive (negative) literals.
Two clauses are independent iff there is no variable that occurs in both of them.

1Constrained hyper tableaux and hyperS tableaux are sound and complete in first-order logic.
Hyper tableaux [2] without purifying substitutions are complete only in Horn logic (c.f. [3] for
improvement). Rigid hyper tableaux have not been proven to be complete yet.

Introducing general redundancy criteria for clausal tableaux. . . 87

Cσ is called an instance of a clause C where σ is a variable substitution. Cσ
is a new instance if σ is a variable renaming and its range consists solely of new
variables.

A clause C subsumes a clause D iff C has an instance Cσ such that Cσ ⊆ D.
Given a formula A, let ∀A denote the universal closure of A.
As usual, M |= A denotes the fact that a formula A is satisfied by a model M .

In the case of A being open, M |= A iff M |= ∀A.
Two formulas A and B are equivalent (denoted by A ∼ B) iff for any model M :

M |= A iff M |= B.
As it is well-known, the most general unifier (MGU) of two atomic formulas

A and B is the most general variable substitution σ such that Aσ = Bσ. Let us
generalize the definition of MGUs, as follows. The MGU of (A1, B1), (A2, B2), . . . ,
(An, Bn), where all Ai and Bi are atomic formulas, is the most general variable
substitution σ such that Aiσ = Biσ for all i = 1, . . . , n.

Tableaux are regarded as trees whose which vertices are labeled with formulas
[15, 7]. Sometimes, for the sake of briefness, we regard a tableau as the set of all
its branches. Similarly, a branch is often regarded as the sequence or the set of all
the vertices in the branch. Furthermore, let us introduce the following notation:

Notation 2.1. Let N be a vertex set from a tableau.
(1) Let N̂ denote the conjunction of all the labels (formulas) in N .
(2) Let

̂

N denote the disjunction of all the labels (formulas) in N .

Sometimes it is needed to regard a tableau as a sole formula. This is why we
need the following definition:

Definition 2.2 (Formula Represented by a Tableau). The formula F (T) repre-
sented by a tableau T is defined inductively as follows:
(1) If T consists of one single vertex labeled with a formula L, then

F (T) = L

(2) If T is a compound tableau, i.e., it is in the form as can be seen in Figure 1,
where L is a formula and each Ti is a tableau, then

F (T) = L ∧
(

n∨

i=1

F (Ti)

)

T1 T2
. . . Tn

L

Figure 1: Compound tableau.

Let us note the following obvious fact, which says that any tableau can be
regarded as the disjunction of its branches (as conjunctions).

88 G. Kovásznai, G. Kusper

Lemma 2.3. For any tableau T ,

F (T) =
∨

B∈T

B̂

3. Resolution tableaux

The aim is to introduce a general method for combining resolution calculi and
tableaux. This is why a general way of representing resolution calculi is required.
We regard a resolution calculus as a set of inference rules, which act on clauses.
Each resolution inference rule is represented as a function which can assign a clause
to one or more clauses. Every time when applying such a rule, it is needed to specify
a clause set (denoted by I and called the input clause set) and a sequence of clauses
(denoted by d and called the resolution derivation).

Definition 3.1 (Resolution Inference Rule). A resolution inference rule is a func-
tion resI,d : Dom 7→ C, where

• I is a finite set of clauses;

• d is a finite sequence of clauses;

• C is the set of all the clauses;

• Dom ⊆ P (C).

Let us illustrate by examples how well-known resolution calculi can be repre-
sented in this form. Of course, other resolution calculi could be represented in a
similar way2.

Example 3.2 (Binary Resolution). The resolution calculus, as was introduced by
Robinson [13], can be represented by the set of the following resolution inference
rules [1]:

(1) Binary Resolution:

binresI,d
(
A ∨C , ¬B ∨D

)
= (C ∨D)σ

where σ is the most general unifier (MGU) of the atomic formulas A and B.

(2) (Positive) Factoring:

factorI,d
(
C ∨A ∨B

)
= (C ∨A)σ

where σ is the MGU of the atomic formulas A and B.
2It is to be remarked that I may be defined as a clause sequence (instead of a clause set) in

the case of some resolution calculi, where the order of input clauses should not be neglected, like
in SLD-resolution [10] and in lock resolution [4, 1, 5].

Introducing general redundancy criteria for clausal tableaux. . . 89

Example 3.3 (Linear Input Resolution). The linear input resolution calculus [5]
can be represented by the same resolution inference rules as binary resolution, but
the rule “Binary Resolution” is restricted as follows:

• one of the clauses C ∨A and D ∨ ¬B must be the last element of d;

• the other one must be an element of I.

Example 3.4 (Hyper-Resolution). The (positive) hyper-resolution calculus, as
was introduced by Robinson [14], can be represented by the following resolution
inference rule:

hypresI,d(A1 ∨ C1 , . . . , An ∨ Cn , ¬B1 ∨ . . . ∨ ¬Bn ∨D)

‖
(C1 ∨ . . . ∨ Cn ∨D)σ

where

• n > 1;

• Ci is a positive or empty clause (i = 1, . . . , n);

• D is a positive or empty clause;

• Ai and Bi are atomic formulas (i = 1, . . . , n);

• σ is the MGU of (A1, B1), . . . , (An, Bn).

When a resolution calculus (as a set of resolution inference rules) is given, an
appropriate tableau can be constructed for a given input clause set I. Such a
tableau is called a resolution tableau, and can be constructed in a quite simple way.
In every deduction steps, some clauses are to be selected, each either from a given
branch of the tableau or from the input clause set I. To the selected clauses a
resolution inference rule is applied, resulting in a clause D. First D must be split
into independent subclauses, and then these subclauses are attached to the given
branch, forming distinct new branches.

Let us define resolution tableaux inductively, as follows:

Definition 3.5 (Resolution Tableaux). Let R be a set of resolution inference ru-
les. Let I be a clause set.

(1) One single vertex labeled with ⊤ is a resolution tableau for I w.r.t. R.

(2) – Let T be a resolution tableau for I w.r.t. R.

– Let B be a branch of T .

– Let C1, . . . , Cn be new instances of clauses in I ∪B.

– Let res ∈ R such that resI,B is defined on C1, . . . , Cn, and let

D = resI,B(C1, . . . , Cn)

90 G. Kovásznai, G. Kusper

– Let D = D1∨. . .∨Dk such that each distinct Di and Dj are independent
clauses (i, j = 1, . . . , k).3

The tableau that can be seen in Figure 2 is a resolution tableau for I w.r.t. R.

T
B

D1 D2
. . . Dk

Figure 2: Attaching a clause to a branch B of a resolution
tableau T .4

Let us point out that it is mandatory to generate new instances of the clauses
which have been selected. Note that resolution tableau branches can be regarded
(and are used) as separate resolution derivations.

A tableau calculus is regarded sound and complete in the following case: any
clause set I is unsatisfiable iff a closed tableau exists for I. A closed resolution
tableau is defined as follows:

Definition 3.6 (Closed Resolution Tableaux). A resolution tableau is closed iff
each of its branches contains ⊥.

Assume a resolution calculus R which is sound and complete in first-order logic
(or in a fragment of first-order logic). It is quite obvious that the resolution
tableau calculus applying R inherits soundness and completeness. For example,
since hyper-resolution is sound and complete in first-order logic, so is the hyper-
resolution tableau calculus5. The linear input resolution tableau calculus6 is sound
and complete in Horn logic.

Theorem 3.7. If a resolution calculus R is sound and complete (in a fragment of
first-order logic), then so is the resolution tableau calculus applying R.

Proof. Soundness: It is to show that if there is a closed resolution tableau for I
w.r.t. R, then I is unsatisfiable.

If R is sound, then each inference rule res ∈ R preserves satisfiability. Let

res(C1, . . . , Cn) = D1 ∨ . . . ∨Dk

where each distinct Di and Dj are independent. It can be seen that for any model
M :

3Furthermore, one can additionally demand that no Di can further be split into independent
subclauses (i = 1, . . . , k). In this case, decomposition of clauses is unique, and can easily be solved
algorithmically.

4New vertices labeled with D1, . . . , Dk are attached to the leaf of B.
5I.e., the resolution tableau calculus applying hyper-resolution.
6I.e., the resolution tableau calculus applying linear input resolution.

Introducing general redundancy criteria for clausal tableaux. . . 91

if M |= C1, . . . , Cn, then M |= D1 ∨ . . . ∨Dk.

Because of independence:

∀ (D1 ∨ . . . ∨Dk) ∼ ∀D1 ∨ . . . ∨ ∀Dk

Summing up, for any model M :

if M |= C1, . . . , Cn, then M |= D1 or M |= D2 or . . . or M |= Dk.

Hence, if I was satisfiable, then at least one branch could not be closed.

Completeness: It is to show that if I is unsatisfiable, then there is a closed
resolution tableau for I w.r.t. R. This fact is even more obvious than in the case
of soundness. Since R is complete, there is a resolution refutation from I. Each
tableau branch can actually be regarded as a “simplified” variant of that refutation,
i.e., only subclauses occuring in the refutation can occur in the branch. Since ⊥
is deduced in the refutation and all literals of the clauses can be resolved out,
obviously ⊥ can occur in each branch. �

Note that the fact that D1, . . . , Dk are pairwise independent has been employed
only in the soundness proof.

Example 3.8 (Linear Input Resolution Tableaux). Consider the following input
clause set:

I =

M(a, s(c), s(b))
P (a)

M(x, x, s(x)) ∨D(y, x)
¬M(x, y, z) ∨D(x, z)

¬P (x) ∨ ¬M(y, z, u) ∨ ¬D(x, u) ∨D(x, y) ∨D(x, v)
¬D(a, b)

a, b, c are constants, u, v, x, y, z are variables.
In Figure 3, a closed resolution tableau for I w.r.t. linear input resolution (c.f.

Example 3.3) can be seen.
First, the input clauses ¬P (x)∨¬M(y, z, u)∨¬D(x, u)∨D(x, y)∨D(x, v) and

¬D(a, b) are selected; the atomic formulas D(x′, y′) and D(a, b) are resolved upon
by MGU {x′/a, y′/b}. As can be seen, the resolvent is split into four independent
subclauses. Three branches can obviously get closed by resolving with the unit
input clauses P (a) and ¬D(a, b).

Let us focus on the branch which contains ¬M(b, z′, u′) ∨ ¬D(a, u′). Since the
basis is linear input resolution, this clause (as the label of the last vertex in the
branch) must be resolved with an input clause. Currently, that input clause is
M(x, x, s(x)) ∨D(y, x). The resolvent is split into two subclauses.

The consequent steps can be similarly performed.

92 G. Kovásznai, G. Kusper

⊤

¬P (a)

⊥

¬M(b, z′, u′) ∨ ¬D(a, u′) D(a, v′)

⊥¬D(a, s(b))

¬M(a, y′′, s(b))

⊥

D(y′, b)

⊥

1

2

3

Selected input clauses:

1: M(x, x, s(x)) ∨D(y, x)
2: ¬M(x, y, z) ∨D(x, z)
3: M(a, s(c), s(b))

Figure 3: Closed linear input resolution tableau.

4. Redundancy criteria for clausal tableaux

Hyper tableau calculi (e.g., hyper tableaux [2, 3], rigid hyper tableaux [11], con-
strained hyper tableaux [6], and hyperS tableaux [8, 9]) are well-known in theorem
proving. They combine hyper-resolution and tableaux. Why hyper-resolution? Be-
cause hyper-resolution is long known to be a key ingredient to success in theorem
proving (as written in [7]). Why tableaux? Because of the same purpose as in
resolution tableau calculi: to split hyper-resolution derivations into branches.

Hyper tableau calculi apply clausal tableaux as data structures representing the
branches of derivations. A clausal tableau is actually a tableau whose vertices are
labeled with literals. Besides hyper tableau calculi, there are other well-known
tableau calculi which apply clausal tableaux as well, like, e.g., clause tableaux [7]
and connection tableaux [12].

As usual, a clausal tableau is constructed by repeatedly “attaching” clauses to
its branches. Clausal tableaux can be defined inductively, as follows:

Definition 4.1 (Clausal Tableaux).

(1) One single vertex labeled with ⊤ is a clausal tableau.

(2) – Let T be a clausal tableau, and B a branch of T .

– Let E = L1 ∨ L2 ∨ . . . ∨ Lk be a clause.

The tableau that can be seen in Figure 4 is denoted by T+BE, and is also a
clausal tableau.

Introducing general redundancy criteria for clausal tableaux. . . 93

T
B

L1 L2
. . . Lk

Figure 4: Attaching a clause to a branch B of a clausal
tableau T .7

When a clause E is being attached to a branch B, the following question is
essential to be answered: is it “unnecessary” to attach E to B? In other words:
is E redundant w.r.t. B? Some clausal tableau calculi define so-called redundancy
criteria in order to give a precise answer, by regarding onlyE and B (and maybe T).

Example 4.2 (Redundancy Criterion for Hyper Tableaux). Hyper tableaux have
the following redundancy criterion [2]: a clause E is redundant w.r.t. a branch B
iff

∃L1 ∈ E and ∃L2 ∈ B such that L1 is an instance of a new instance of L2.

We are trying to investigate what redundancy criteria can be applied in con-
nection with clausal tableaux, in general. Besides we are extending our preceding
results [8, 9], we are going to show that this problem is in close connection with
resolution tableaux.

4.1. Preliminaries

First, it is essential to give a precise definition of redundancy for clausal table-
aux. Note that the definition regards tableaux as formulas, as it has been intro-
duced in Definition 2.2.

Definition 4.3 (Redundant Clause).

• Let T be a clausal tableau, and B a branch of T .

• Let E be a clause.

E is redundant w.r.t. B in T iff

F (T) ∼ F
(
T+BE

)

Let us prove two lemmas which will be essential for proving the soundness of the
redundancy criteria in the following sections.

Lemma 4.4 (Reducing Lemma).

7The only difference between Figure 4 and Figure 2 is that new vertices are now labeled only
with literals.

94 G. Kovásznai, G. Kusper

• Let T be a clausal tableau, and B a branch of T .

• Let M be a model.

• Let E be a clause.

It holds that

if M |= F
(
T+BE

)
, then M |= F (T).

Proof. It is to prove that M |= F
(
T+BE

)
θ implies M |= F (T) θ, for any valua-

tion θ. Assume, by Lemma 2.3, we haveM |= (B̂∧E)θ (the opposite case is obvious
to prove), i.e., M |= B̂θ ∧ Eθ. Thus, M |= B̂θ, which implies that M |= F (T) θ,
by Lemma 2.3. �

Lemma 4.5 (Extending Lemma).

• Let T be a clausal tableau, and B a branch of T .

• Let M be a model.

• Let E be a clause such that M |= E.

It holds that

if M |= F (T), then M |= F
(
T+BE

)
.

Proof. It is to prove that M |= F (T) θ implies M |= F
(
T+BE

)
θ, for any valua-

tion θ. Assume, by Lemma 2.3, we have M |= B̂θ (the opposite case is obvious to
prove). Since M |= E, it holds that M |= B̂θ ∧ E. Hence, M |= (B̂ ∧ E)θ, which
implies that M |= F

(
T+BE

)
θ, by Lemma 2.3. �

Note that E is an arbitrary clause in the Reducing Lemma in contrast with the
Extending Lemma, where E must fulfill the following stipulation: M |= E.

4.2. Redundancy Criterion I

When checking if a clause E is redundant w.r.t. a tableau branch, an appropri-
ate clause C is needed to be “extracted” from the tableau in order to “compare” C
with E via instantiation. A so-called branch clause is a suitable candidate for this
role.

Definition 4.6 (Branch Clause).

• Let T be a clausal tableau.

• Let N be a vertex set from T such that each branch of T contains exactly
one element of N .

The clause

̂

N is a branch clause in T .

Introducing general redundancy criteria for clausal tableaux. . . 95

The Extending Lemma is to be applied in the redundancy criterion proposed later
in this section. Therefore, each model of a clausal tableau T should be proven to
satisfy any branch clause in T .

Lemma 4.7 (Branch Clause Lemma).

• Let T be a clausal tableau.

• Let M be a model.

• Let C be a branch clause in T .

It holds that

if M |= F (T), then M |= C.

Proof. The statement can be proven by induction, as follows:
(1) If T consists of one single vertex, then the statement obviously holds.
(2) If T is a compound tableau (cf. Figure 1), then

F (T) ∼ L ∧
(

n∨

i=1

F (Ti)

)
(4.1)

There are two cases:
(a) If C = L, then the statement obviously holds.
(b) Otherwise, C = C1 ∨ . . . ∨ Cn where each Ci is a branch clause in Ti. By the
inductive hypothesis, if M |= F (Ti), then M |= Ci, for all i = 1, . . . , n. Thus,

if M |=
n∨

i=1

F (Ti), then M |= C.

By (4.1), the statement holds. �

The significance of the previous lemma is that a branch clause can be instanti-
ated “without restriction”, i.e., any instance (even a new instance) of a branch clause
is satisfied by any model of the given tableau. Based on this fact, the following
theorem on redundancy can be proven.

Theorem 4.8 (Redundancy Theorem I).

• Let T be a clausal tableau, and B a branch of T .

• Let C be a branch clause in T .

• Let C′ be a new instance of C, and E a clause such that C′ subsumes E.

It holds that

F (T) ∼ F
(
T+BE

)

96 G. Kovásznai, G. Kusper

Proof. The equivalence in the right-to-left direction is a direct consequence of the
Reducing Lemma. Let us prove the equivalence in the left-to-right direction, i.e.,
prove that for any model M :

if M |= F (T), then M |= F
(
T+BE

)
.

Assume that M |= F (T). By Lemma 4.7, M |= C. Thus, M |= C′ also holds. So
does M |= E. By the Extending Lemma, the proof is complete. �

Using this theorem, the following redundancy criterion can be proposed:

Definition 4.9 (Redundancy Criterion I). A clause E is redundant w.r.t. a clau-
sal tableau T iff there is a branch clause C in T such that E is subsumed by a new
instance of C.

Example 4.10 (Redundancy Criterion I). Let T be the clausal tableaux in Fig-
ure 5.

⊤

P (x) ¬Q(x)

R(y) P (y)

¬R(u)

¬Q(f(y)) P (z)

Figure 5: A clausal tableau.

When checking if a clause E is redundant w.r.t. T , Redundancy Criterion I
can be applied only if E consists of at least three literals, since any branch clause
instance in T consists of at least three literals (except for ⊤). For example, if

E = P (a) ∨R(a) ∨ ¬Q(f(a))

then E is redundant w.r.t. T since the new branch clause instance

P (x′) ∨R(y′) ∨ P (y′) ∨ ¬Q(f(y′)) ∨ P (z′)

subsumes E, via the variable substitution σ = {x′/a, y′/a, z′/a}.
Note that none of all the other branch clauses subsumes E, neither P (x) ∨

¬Q(x)∨¬R(u) nor P (x)∨R(y)∨P (y)∨¬R(u) nor P (x)∨¬Q(x)∨¬Q(f(y))∨P (z).

Note that Redundancy Criterion I is not very practicable. The problem is that a
branch clause usually contains a lot of literals, and a clausal tableau may have lots
of branch clauses. A more sophisticated redundancy criterion is needed.

Introducing general redundancy criteria for clausal tableaux. . . 97

4.3. Redundancy Criterion II

A restricted variant of a branch clause is needed, which can also be applied by
the Extending Lemma. The wanted clause is a subclause of a branch clause (hence,
it does not probably consist of too many literals) and does not have a common
variable with a considerable part of the tableau (hence, there exist probably not
too many such clauses). Let us define this clause as follows:

Definition 4.11 (Separate Branch Clause).

• Let T be a clausal tableau, and B a branch of T .

• Let N be a vertex set from T such that

– each branch of T contains at most one element of N ;

– B contains one element of N ;

– there is no variable occurring both in N and in a branch which does not
contain any element of N .

The clause

̂

N is a separate branch clause of B in T .

Such a clause is “separate” from the branches which do not contain it, by demanding
it not to share any variable with them. As proven in the following theorem, a
separate branch clause can also be used in redundancy criteria, similarly as a
branch clause was.

Theorem 4.12 (Redundancy Theorem II).

• Let T be a clausal tableau, and B a branch of T .

• Let C be a separate branch clause of B in T .

• Let C′ be a new instance of C, and E a clause such that C′ subsumes E.

It holds that

F (T) ∼ F
(
T+BE

)

Proof. Similarly as in the proof of Theorem 4.8, it is the most important to prove
that for any model M :

if M |= F (T), then M |= F
(
T+BE

)

The branches of T can be divided into two groups – those which contain any of the
nodes included by C, and those which do not. Let t denote the set of the branches
in the first group, and t the set of the ones in the second group8. First of all, notice
the following obvious facts:

F (T) ∼ F
(
t
)
∨ F (t) (4.2)

8t and t are subtableaux of T . It is important that the branches of t and t are also branches
in T .

98 G. Kovásznai, G. Kusper

F (T+BE) ∼ F
(
t
)
∨ F

(
t+BE

)
(4.3)

Assume that M |= F (T). Since C is a branch clause in t, (4.2) and Lemma 4.7
together imply that

M |= F
(
t
)
∨ C

I.e., M |= ∀
(
F
(
t
)
∨ C

)
. By the assumption that t and C do not share any variable

(since C is a separate branch clause), it holds that

M |= ∀F
(
t
)
∨ ∀C

Thus, there are two cases:
(1) M |= F

(
t
)
: It is obvious that M |= F

(
T+BE

)
, by (4.3).

(2) M |= C: Thus, M |= C′, and hence M |= E. Thus, M |= F
(
T+BE

)
, by the

Extending Lemma. �

The redundancy criterion based on this theorem can be formulated as follows:

Definition 4.13 (Redundancy Criterion II). A clause E is redundant w.r.t. a
branch B of a clausal tableau T iff there is a separate branch clause C of B in
T such that E is subsumed by a new instance of C.

Example 4.14 (Redundancy Criterion II). Consider the clausal tableau T in Fig-
ure 5. Check if

E = P (f(a)) ∨ ¬Q(f(f(a)))

is redundant w.r.t. T . When applying Redundancy Criterion I, the answer is no.
However, by applying Redundancy Criterion II, E can be shown to be redundant
w.r.t. the rightmost branch, since the new separate branch clause instance P (z′)
subsumes E, via the variable substitution z′/f(a).

Note that none of all the other separate branch clauses subsumes E, e.g., neither
P (x) ∨ ¬Q(x) (lack of an appropriate variable substitution) nor R(y) ∨ P (y) ∨
¬Q(f(y)). Note that E is redundant w.r.t. only the rightmost branch.

The following fact is quite interesting, and shows that some redundancy criteria in
literature are specialized variants of Redundancy Criterion II.

Example 4.15 (Redundancy Criterion II for Hyper Tableaux). Let us focus on
the redundancy criterion for hyper tableaux (c.f. Example 4.2, [2]). Note that
it can be regarded as a special case of Redundancy Criterion II. The literal L2 is a
separate branch clause because of the use of purifying substitutions [2].

Introducing general redundancy criteria for clausal tableaux. . . 99

5. Conclusion

Note that Theorem 4.12 is actually applied in resolution tableaux. In a reso-
lution tableau (however it is actually not a clausal tableau), each vertex label can
be regarded as a separate branch clause in itself, this is why its new instances can
be generated and used in any resolution inference step. Of course, Redundancy
Criterion II (c.f. Definition 4.13) is also appropriate to be used by any resolution
tableau calculus, and can be applied in a very direct way. The key is the fact that
any tableau literal belongs to exactly one separate branch clause (this fact does
not in general hold for clausal tableaux).

One can say that resolution tableaux have been defined according to plan. It is
not accidental that vertices can be labeled not solely with literals but clauses. It
is not accidental either that vertex labels are independent from each other. This
solution can be regarded as the golden mean between resolution calculi and clausal
tableau calculi, according to 4.12.

By the use of resolution tableaux, a resolution derivation can be split into
branches, and branches (as separate derivations) can be continued simultaneously.
I.e., resolution tableaux can be regarded as a kind of parallelization of resolution.
Nevertheless, one can ask if it is worth to apply an additional task (namely the
splitting of clauses into independent subclauses) in comparison with the advantage
of shortening resolution derivations. This question could only be answered by
empirical investigations.

5.1. Empirical investigations

In order to examine the practical usefulness of resolution tableaux, we imple-
mented four different resolution calculi: binary resolution, linear resolution, linear
input resolution, and hyper-resolution. Let us emphasize that purely the basic
variants of those calculi have been implemented. We also implemented improved
variants of the aforementioned calculi, only by applying resolution tableaux.

Then, we tested all the original and improved calculi on 1642 TPTP problems
[16] (from 232 files). As it had been expectable, those calculi could not solve most
of the problems in a reasonable time limit. What we primarily tried to investigate
are the following questions:

• How often an improved calculus can solve such a problem that the original
calculus cannot solve?

• If both an original calculus and its improved variant can solve a problem,
how much time is gained by using the improved calculus?

Table 1 contains all the statistical data we have collected. Let us give an overview
on the columns of the table:

• In connection with those cases when either an original calculus or its improved
variant does not provide a solution (in a reasonable time limit) for the same
problem, let us summarize the following data:

100 G. Kovásznai, G. Kusper

Solution Time
gained lost gained lost gained/lost

Binary 0.49% 0.59% 10.91% 29.09% 2.93%
Linear 12.3% 0% 7.45% 0.62% 626.67%
Linear input 27.57% 0% 4.48% 0% –
Hyper 2.01% 0.97% 46.46% 18.77% 310.43%

Table 1: Empirical results.

1. Gained answers: The frequency of those cases when the original cal-
culus does not provide a solution, but the improved calculus does.

2. Lost answers: The frequency of those cases when the original calculus
provides a solution, but the improved calculus does not.

• In connection with those cases when both an original calculus and its im-
proved variant provide a solution for the same problem, let us summarize the
following data:

1. Gained time: The frequency of those cases when the improved calculus
provides a solution in less time than the original calculus.

2. Lost time: The frequency of those cases when the improved calculus
provides a solution in more time than the original calculus.

3. Gained time/Lost time: We calculated the ratio of the length of the
gained time to the length of the lost time in order to illustrate how it is
worth to apply the improved calculus, in respect to execution time.

As it can be noticed, binary resolution tableaux do not seem very practical, in
contrast with linear resolution tableaux and linear input resolution tableaux, which
are absolutely worth to apply.

The conclusion in the case of hyper-resolution tableaux is quite ambiguous.
Since hyper-resolution itself can be regarded as a quite powerful proof method, only
in a few cases can hyper-resolution tableaux provide extra solutions. Nevertheless,
the frequency of the cases when hyper-resolution tableaux shorten execution time
is extremely high.

References

[1] Bachmair, L., Ganzinger, H., Resolution Theorem Proving, in: J. A. Robinson,
A. Voronkov, Handbook of Automated Reasoning, Elsevier and MIT Press, North-
Holland, Amsterdam, 2001, Vol. 1, Chapter 2, pp. 19–99.

[2] Baumgartner, P., Furbach, U., Niemelä, I., Hyper Tableaux, Lecture Notes in
Computer Science, Vol. 1126, 1996, pp. 1–17.

[3] Baumgartner, P., Hyper Tableaux – The Next Generation, Lecture Notes in Arti-
ficial Intelligence, Vol. 1397, 1998, pp. 60–76.

Introducing general redundancy criteria for clausal tableaux. . . 101

[4] Boyer, R.S., Locking: A Restriction of Resolution, PhD thesis, University of Thexas
at Austin, Austin, USA, 1971.

[5] Chang, C.L., Lee, R.C.T., Symbolic Logic and Mechanical Theorem Proving,
Academic Press, 1973.

[6] J. van Eijck, Constrained Hyper Tableaux, Lecture Notes in Computer Science,
Vol. 2142, 2001, pp. 232–246.

[7] Hähnle, R., Tableaux and Related Methods, in: J. A. Robinson, A. Voronkov,
Handbook of Automated Reasoning, Elsevier and MIT Press, North-Holland, Ams-
terdam, 2001, Vol. 1, Chapter 3, pp. 100–178.

[8] Kovásznai, G., HyperS Tableaux – Heuristic Hyper Tableaux, Acta Cybernetica,
Vol. 17, 2005, pp. 325–338.

[9] Kovásznai, G., Multi-Hyper Tableaux in Automated Theorem Proving, PhD thesis
(in Hungarian), University of Debrecen, Debrecen, Hungary, 2007.

[10] Kowalski, R.A., Logic for Problem Solving, Elsevier North Holland, Amsterdam,
1979.

[11] Kühn, M., Rigid Hypertableaux, Lecture Notes in Artificial Intelligence, 1997, Vol.
1303, pp. 87–98.

[12] Letz, R., Schumann, J., Bayerl, S., Bibel, W., SETHEO: A High-Performance
Theorem Prover, Journal of Automated Reasoning, Vol. 8(2), 1992, pp. 183–212.

[13] Robinson, J.A., A Machine-Oriented Logic Based on the Resolution Principle, Jour-
nal of the ACM, Vol. 12, 1965, pp. 23–41.

[14] Robinson, J.A., Automated Deduction with Hyper-Resolution, International Jour-
nal of Computer Mathematics, Vol. 1, 1965, pp. 227–234.

[15] Smullyan, R.M., First-Order Logic, Springer-Verlag, Berlin, Germany, 1968.

[16] Sutcliffe, G., The TPTP Problem Library and Associated Infrastructure: The
FOF and CNF Parts, v3.5.0, Journal of Automated Reasoning, Vol. 43(4), 2009, pp.
337–362.

Gergely Kovásznai
Department of Information Technology
Eszterházy Károly College
P.O. Box 43
H-3301 Eger
Hungary
e-mail: kovasz@aries.ektf.hu

Gábor Kusper
Department of Computing Science
Eszterházy Károly College
P.O. Box 43
H-3301 Eger
Hungary
e-mail: gkusper@aries.ektf.hu

Annales Mathematicae et Informaticae
36 (2009) pp. 103–110
http://ami.ektf.hu

Localization of touching points for
interpolation of discrete circles

Roland Kunkli

Department of Computer Graphics and Image Processing
University of Debrecen, Hungary

Submitted 17 February 2009; Accepted 8 May 2009

Abstract

Interpolation of an ordered set of discrete circles is discussed in this paper.
By interpolation here we mean the construction of two curves which touch
each of the circles and provide visually satisfactory result. Existing method
frequently fail, and the crucial problem is to find good touching points on the
circles. In this paper we will consider two possible solutions with pros and
drawbacks.

Keywords: interpolation, circles, cyclography

MSC: 68U05

1. Introduction

Interpolation of geometric data sets is of central importance in Computer Aided
Geometric Design. If geometric data consist of points, then we have standard meth-
ods to interpolate them [2, 3, 4] which give a uniquely defined fix curve. There are
also recently developed methods where one can alter the shape of the interpolating
curve [5, 6, 7, 8]. If, however, data set consists of other types of objects, interpo-
lation is transferred to skinning or enveloping, and there is no unified method to
solve the problem.

In this paper we address the problem of interpolation of a sequence of circles at
arbitrarily given positions and radii. By interpolation we mean the construction of
a pair of curves which touch the circles and the result is visually satisfactory, i.e.
there are no unnecessary oscillations, bumps and loops on the curves.

This or similar problem - beside its theoretical interest - frequently arises in ap-
plications like designing tubular structures, covering problems, molecule modeling,
sometimes in 3D [11], [12].

103

104 R. Kunkli

Figure 1: Position of circles where theoretically impossible to find
skinning envelopes (circle No. 2 and 4)

Figure 2: Position of circles where the existence of skinning enve-
lope is theoretically possible

The sequence of circles has to satisfy a natural condition: we exclude circles
which are entirely inside of other circles (c.f. Fig. 1). In Fig. 2, however we can see
that small changes yield permissible positions. Otherwise the positions and radii
of circles can arbitrarily be chosen.

From this point we exclude the numbering of circles from Figures - sequence
starts from left to right.

Two recent approaches of the problem can be found in [9] and [10]. The first
one is based on the theoretical results of envelope design of various families of
curves, but as we will show in the next section, the method basically works only
if one or two-parameter family of curves are given, for discrete sequences of curves
the method may provide unsatisfactory result. For discrete case Slabaugh et al.
provided a numerical, iterative method in [10], which works well if the radii and
positions of curves do not change suddenly, that is the given data are fairly smooth.
In Section 2 we will also show positions of curves for which the method simply fails,
providing unnecessary oscillations and singularities.

In interpolation of circles the crucial problem is to find the touching points. In
Section 3 we describe two alternative methods, each of which works well in most of
the cases, even if the above mentioned methods do not work, but may fail in some
extreme circumstances. Conclusions and possible further improvements close the
paper.

Localization of touching points for interpolation of discrete circles 105

2. Related works

Slabaugh’s method is an iterative way to construct the desired curves. Let the
discrete sequence of curves with centers ci and radii ri, (i = 1, . . . , n) be given. Ini-
tially pairs of Hermite arcs are defined between the consecutive circles. Considering
e.g. the ith and (i+1)th circles, two Hermite arcs are defined with touching points
pi,pi+1 and tangents ti, ti+1 for the two arcs, separately. The final positions of
these points and tangents are obtained by the end of the iteration steps.

Figure 3: A good result by Slabaugh’s method (from [10])

The iteration itself based on the minimization of a predefined energy function.
For computational reasons the positions of the touching points and the tangents
are transferred into one single variable, namely the angle αi between the x axis
and the radius pointing towards the touching point.

pi = ci +

[
ri cosαi
ri sinαi

]
,

ti =

[
−ki sinαi
ki cosαi

]
,

where ki is a predefined constant for each circle, half of the distance between the
centers ci and ci+1.

Figure 4: Automatic initial values of Slabaugh’s method can yield
unacceptable result even for simple data set (from [10]).

The method gives acceptable result if the sequence of curves form a "smooth"
data set (c.f. Fig. 3), but even this case the initialization of the iteration, that is

106 R. Kunkli

the starting values of the angles αi requires user interaction, otherwise automatic
values can yield obviously wrong result as one can observe in Fig. 4. A further
problem is that the convergence is not proved, the number of iteration can be over
100.

Figure 5: Peternell’s method applies cyclographic mapping and
spatial interpolation. Perspective and upper view of data circles

and interpolation curve

Peternell’s method is based on a cyclographic approach. Cyclography defines a
one-to-one correspondence between the oriented circles of the plane and the spatial
points by cones. This way the sequence of given circles can be transformed to a
sequence of spatial points (c.f. Fig. 5). An interpolating curve through these points
can be defined by any standard method and finally points of this spatial curve can
be transferred back to circles on the plane by he cones. The envelope of these
circles is obtained as the intersection of the plane and the envelope surface of the
cones. For a more detailed description, see [9], [13].

Figure 6: Classical interpolation may yields circles where the enve-
lope cannot be constructed (positions pointed by red arrows), that

is Peternell’s method cannot be applied

Although this method solves the problem theoretically, it works perfectly only
in the case if we know a one- or two-parameter set of circles, i.e. instead of the
discrete circles (ci, ri), i = 1, . . . , n, two functions c(t), r(t) are given.

Although these functions can be achieved from the set of discrete circles by
classical interpolating methods, but this way the method not necessarily gives ap-

Localization of touching points for interpolation of discrete circles 107

propriate result, as one can observe in Fig. 6. The interpolation curve is computed
by C1 continuous Hermite arcs.

3. New methods for determining touching points

As we have learned from the previous section, the localization of possible touch-
ing points on the given circles is essential for good interpolation. In this section
we discuss two methods to find these points. Although these techniques are not
perfect, the second one gives acceptable results even for some extreme positions of
data, for which the above mentioned methods may fail.

3.1. Planar curve driven method

The first and maybe the most natural approach is to start from a curve which
interpolates the centers ci, (i = 1, . . . , n) of the given curves. For these points C1

continuous Hermite arcs is constructed, using Bessel’s method to construct the
tangent vectors vi at the centers ci.

Figure 7: The planar curve driven method provides suitable touch-
ing in most cases

Now at each center consider a line orthogonal to the tangent line and consider
the intersection points of this line and the corresponding circle. This method gives
two points p1,i,p2,i at each circle:

p1,i = ci +
vi(90◦)

|vi|
ri,

p2,i = ci +
vi(−90◦)

|vi|
ri,

where vi(α) denotes the vector obtained by rotating the vector vi with angle α.
Thus to distinguish the points on one circle, we use the orientation derived from
the Hermite arcs.

108 R. Kunkli

Figure 8: Sometimes computed touching points can fall into other
circles

This way the two sequences of points p1,i and p2,i may serve us as touching
points of the future interpolation curves. This method gives satisfactory result
in several cases (Fig. 7), but sometimes the points p1,i or p2,i can fall into other
circles (Fig. 8).

3.2. Spatial curve driven method

As we have seen in Section 2, circles can be transformed to spatial points by the
cyclographical method. Applying this approach we can try to derive the touching
point from the spatial image of the curves.

The basic idea is the following. Each circle (ci, ri) is transformed into a spatial
point pi and an interpolating spatial curve from Hermite arcs is constructed to
these points, where the tangents are defined by Bessel’s method. Now at each
circle the spatial tangent line e of the Hermite arc has an intersection point Te
with the plane of the circles, from which we draw the planar tangent lines to the
given circle. This way we obtain two points, E1 and E2, which will be touching
points of the future interpolation curves (see Fig. 9).

Computationally we have to determine the angle between the line connecting
the center of the circle to the intersection point of the spatial tangent, and the line
connecting the center to the touching points of the planar tangents. The method
works well in some extraordinary situation as well, even when the planar curve
driven method would fail. This frequently happens if two neighboring circles are
close to each other meanwhile their radius are strongly different (Fig. 10).

4. Conclusion and further research

Localization of touching points for interpolation of given circles are discussed.
We considered two methods, which solves the problem in several cases, but none

Localization of touching points for interpolation of discrete circles 109

Figure 9: Planar tangent lines to the circle are drawn from the
intersection point of the plane and the tangent line of the spatial

curve. Perspective and upper view

Figure 10: Spatial curve driven method gives acceptable result
even in case of sudden changes of radius of neighboring circles

of them are perfect. Although the spatial curve driven method solves the problem
in most cases, in extreme positions of the given circles both methods can fail, thus
future improvements are required. One possibility is to change the simple Hermite
interpolation by some more sophisticated methods, but we think it cannot solve
the problem in general. Other geometric ways of finding touching points are under
development.

110 R. Kunkli

References

[1] Au, C.K., Yuen, M.M.F., Unified approach to NURBS curve shape modification,
Computer-Aided Design, 27 (1995), 85–93.

[2] Farin, G., Curves and Surface for Computer-Aided Geometric Design, 4th edition,
Academic Press, New York, 1997.

[3] Piegl, L., Tiller, W., The NURBS book, Springer–Verlag, 1995.

[4] Hoschek, J., Lasser, D., Fundamentals of CAGD, AK Peters, Wellesley, MA,
1993.

[5] Tai, C.-L., Barsky, B.A., Loe, K.-F., An interpolation method with weight and
relaxation parameters. In: Cohen, A., Rabut, C., Schumaker, L.L. (eds.): Curve
and Surface Fitting: Saint-Malo 1999. Vanderbilt Univ. Press, Nashville, Tenessee,
(2000), 393–402.

[6] Tai, C.-L., Wang, G.-J., Interpolation with slackness and continuity control and
convexity-preservation using singular blending, J. Comp. Appl. Math., 172 (2004),
337–361.

[7] Pan, Y.-J., Wang, G.-J., Convexity-preserving interpolation of trigonometric poly-
nomial curves with shape parameter, Journal of Zhejiang Univ. Sci., 8 (2007), 1199–
1209.

[8] Hoffmann, M., Juhász, I. On interpolation by spline curves with shape parame-
ters, Lecture Notes in Computer Science, 4975 (2008), 205–215.

[9] Peternell, M., Odehnal, B., Sampoli, M.L. On quadratic two-parameter fami-
lies of spheres and their envelopes, Comput. Aided Geom. Design 25 (2008), 342–355.

[10] Slabaugh, G., Unal, G., Fang, T., Rossignac, J., Whited, B., Variational
Skinning of an Ordered Set of Discrete 2D Balls, Lecture Notes on Computer Science,
4795 (2008), 450–461.

[11] Cheng, H., Shi, X., Quality mesh generation for molecular skin surfaces using
restricted union of balls. Proc. IEEE Visualization Conference (VIS2005), (2005),
399–405.

[12] Edelsbrunner, H., Deformable smooth surface design, Discrete and Computational
Geometry, 21 (1999), 87–115.

[13] Kruithof, N., Vegter, G., Envelope Surfaces, Proc. Annual Symposium on Com-
putational Geometry, (2006), 411–421.

Roland Kunkli
Department of Computer Graphics and Image Processing
University of Debrecen
H-4010 Debrecen
Hungary
e-mail: rkunkli@gmail.com

Annales Mathematicae et Informaticae
36 (2009) pp. 111–115
http://ami.ektf.hu

A note on integral clock triangles

Allan J. MacLeod

University of the West of Scotland

Submitted 12 September 2008; Accepted 20 January 2009

Abstract

Given two triangles with integer sides (a, b, c) and (a, b, d), and with the
corresponding angles C and D such that C 6= D and C+D 6= π, we show how
to find a, b, c, d from any rational values of cos C and cos D. For C + D = π
we show that solutions only exist for certain rational values of cos C.

Keywords: elliptic curves, triangles, rational points.

MSC: 11D09, 11D25, 11Y50.

1. Introduction

In 2000, Petulante and Kaja [2] showed how to generate integer triangles with a
specified value of one rational cosine. In 2007, Tengely [4] extended this to consider
“clock triangle pairs” where two sides of both triangles are common. In this short
note, we consider one aspect of this problem.

Let C and D be two angles of triangles, respectively with sides (a, b, c) and
(a, b, d), where we suppose a and b are integers. The cosine rule implies that, if c
and d are also integers, then cosC and cosD must be rational. Tengely, however,
considered situations which included common angles such as π/6 and π/4. This
gives sides which are possibly quadratic surds and led to the use of quadratic fields
in the analysis.

The problem we consider is:

Given rational values for cosC and cosD, find integer values for a, b, c, d, if
possible.

To simplify the analysis, set g = cosC and h = cosD. Thus we need to find
integer solutions to

a2 − 2gab+ b2 = c2 a2 − 2hab+ b2 = d2.

111

112 A. J. MacLeod

If we define y = c/b and x = a/b the first equation is of the form y2 = x2−2gx+1,
which has the obvious solution x = 0, y = 1. The tangent at this point y = 1+Mx
meets the curve again where x = 2(M +g)/(1−M2). Defining z = d/b, the second
quadratic is z2 = x2 − 2hx+ 1. Substituting the x value gives

w2 = M4 + 4hM3 + (4hg + 2)M2 + (8g − 4h)M + (4g2 − 4hg + 1)

if we define w = z(1 −M2).
The quartic, in this form, is birationally equivalent to an elliptic curve. Using

the standard transformations, as described in Mordell [1], we find the elliptic curve
Egh is given by

Egh : v2 = u3 + 2(1 − g h)u2 + (g2 − 1)(h2 − 1)u

with the transformation

M =
g(h2 − 1) − hu+ v

(u− h2 + 1)

and thus, to find rational M and hence x, we need rational points (u, v) on these
curves.

The curve Egh has clearly 3 points of order 2 where v = 0, namely u = 0, u =
(g−1)(h+1), u = (g+1)(h−1), and these points are distinct if g 6= h. Substituting
into the formula for M , gives x = 0 or x = ∞. Thus to find non-trivial solutions
we must consider other points.

The relation for M has zero denominator if u = h2 − 1, which we find gives a
rational value v = ±(g−h)(h2−1). Define the point P = ((h2−1), (g−h)(h2−1),
and the three order 2 points T1 = (0, 0), T2 = ((g + 1)(h − 1), 0) and T3 = ((g −
1)(h+ 1), 0). Note that −P = ((h2 − 1),−(g − h)(h2 − 1)).

Then P + T1 = ((g2 − 1),−(g − h)(g2 − 1)). For this to be distinct from P ,
we need g2 6= h2, implying C 6= D or C 6= π − D. We have M = −g so x = 0,
but using the negative of the v value gives M = (g2 − gh − 2)/(g + h) leading to
x = 4(g + h)/(4 − (g − h)2). Since g and h are both in (−1, 1), the denominator
is always strictly positive, so if g + h 6= 0, the value of x is non-zero, but possibly
negative, giving a solution of equation (1.1), but not real-life triangles.

As a numerical example, let g = cosC = 1/2 and h = cosD = 1/3, giving
x = a/b = 120/143, suggesting a = 120, b = 143. This easily gives c = 133 and
d = 153.

Looking at P + T2 and P + T3, we find trivial solutions or the above formula
for x or its inverse but no new original solutions.

We now look at 2P , which we find has u = (g + h)2/4 with v = (g + h)(4 −
(g − h)2)/8, which gives the above formula for x. Using the negative value of v,
however, leads to the following ratio

x =
4(g + h)(g2 + 2gh− 3h2 + 4)(3g2 − 2gh− h2 − 4)

(4 − (g − h)2))((g − h)2 + 4(g + h− 1))((g − h)2 − 4(g + h+ 1))

which gives x = −2441880/865007 for g = 1/2 and h = 1/3.

A note on integral clock triangles 113

A Heron triangle must have integer area, which then forces the sines of the angles
to be rational. Thus we can assume that cosC = (1−t2)/(1+t2), sinC = 2t/(1+t2)
and cosD = (1 − r2)/(1 + r2), sinD = 2r/(1 + r2). For example, t = 1/2, r = 2/3
give g = 3/5, h = 5/13, which lead to a = 260, b = 261, c = 233, d = 289 with the
two triangles having areas 27144 and 31320.

2. C + D = π

The assumption might be that, if C+D = π or h = −g, then no solutions exist.
This is not true - they only exist for certain g values.

Putting h = −g into equation (1.3) gives

v2 = u3 + 2(g2 + 1)u2 + (g2 − 1)2u

and, if we define g = m/n with 0 < m < n coprime integers, andX = n2u, Y = n3v,
we have

Y 2 = X3 + 2(m2 + n2)X2 + (m2 − n2)2X.

The roots of the right hand side show that the curve has 3 torsion points of order
2, (0, 0), (−(m− n)2, 0), (−(m+ n)2, 0).

For this curve, a point (P,Q) has the X-coordinate of 2(P,Q) equal to

(P 2 − (m2 − n2)2)2

4Q2

and so, if (P,Q) is of order 4 we must have P = ±(m2 − n2), giving the 4 points
of order 4, (m2 − n2,±2m(m2 − n2)), (n2 −m2,±2n(m2 − n2)).

Putting all of these through the various transformations we get x = a/b equal
to 0 or ∞.

This set of torsion points shows that the torsion subgroup is either isomorphic
to Z2×Z4 or to Z2×Z8. For the latter we need points of order 8. Since 0 < m < n,
we must have

(P 2 − (m2 − n2)2)2

4Q2
= n2 −m2 = r2

and by the Nagell-Lutz theorem r will be an integer, see Silverman and Tate [3].
Thus (r,m, n) must form a primitive Pythagorean triple, and so r = 2st,m =

s2 − t2, n = s2 + t2 for coprime integers s, t. Substituting into the above relation
reduces to the quartic equation

(P 2 − 8st(s2 + st+ t2)P + 16s4t4) (P 2 + 8st(s2 − st+ t2)P + 16s4t4) = 0

and, investigating the discriminant of the factors, we find that, for integer roots,
we must have s2 + t2 = �. Defining s = e2 − f2 and t = 2ef , we find the four
roots, which give the X-coordinates of the points of order 8 as

1. X = 16f3e(f − e)(e+ f)3,

114 A. J. MacLeod

2. X = 16e3f(e− f)(e+ f)3,

3. X = 16f3e(e+ f)(e− f)3,

4. X = 16e3f(e+ f)(f − e)3.

Using these X values and both the corresponding positive and negative Y val-
ues, we find that they all lead to a/b = ±1. Thus we have a solution with a and b
the same length. Now we have

g =
e4 − 6e2f2 + f4

(e2 + f2)2

and we find that a = b = e2 + f2, c = 4ef, d = 2(e2 − f2) is a solution as long as
the values are positive.

For g not of this form, to find possible solutions, we must have further rational
points on the curves, which means that the rank of the curve must be greater than
0. Note that the values g2− 1 and h2 − 1 giving rational points from section 1 lead
to the 4 points of order 4.

Running numerical experiments gives Table 1 for small (m,n) pairs. Thus,
solutions clearly do not exist for all g. For g = 5/6, the generator of the curve
leads to the lengths 72, 35, 47, 103.

m n Rank Generator
1 2 0
1 4 0
3 4 1 (49,-490)
1 5 0
4 5 0
1 6 1 (5,90)
5 6 1 (121/4,3025/8)

Table 1: Rank of curve for small m, n.

Further experimentation, using the Birch and Swinnerton-Dyer conjecture, see
Wiles [5], to estimate the heights of curve generators, shows that for 0 < m < n <
100 the largest height is predicted to occur for g = 30/97, with the height being
23.8 or 47.6, depending on the height normalization used.

Using some home-grown software, the generator is found to have

X =
7014779288782

47869451632
Y =

701477928878× 715985634093390721663175

47869451633

which lead to values of a, b, c, d all having roughly 40 digits. It should be noted
that John Cremona’s mwrank package finds this point in seconds.

Acknowledgement. The author would like to thank the referee for several very
helpful comments.

A note on integral clock triangles 115

References

[1] Mordell, L.J., Diophantine Equations, Academic Press, New York, 1968.

[2] Petulante N., Kaja, I., How to generate all integral triangles containing a given
angle, Int. J. Math. Math. Sci. 24 (2000), 569–572.

[3] Silverman, J.H., Tate J., Rational Points on Elliptic Curves, Undergraduate Texts
in Mathematics, Springer-Verlag, New York, 1992.

[4] Tengely S., Triangles with two integral sides, Ann. Math. Inform. 34 (2007), 89–95.

[5] Wiles A., The Birch and Swinnerton-Dyer Conjecture, available at The Clay Foun-
dation web-site www.claymath.org.

Allan J. MacLeod
Dept. of Mathematics and Statistics
University of the West of Scotland
High St., Paisley, Scotland. PA1 2BE
e-mail: allan.macleod@uws.ac.uk

Annales Mathematicae et Informaticae
36 (2009) pp. 117–121
http://ami.ektf.hu

A geometric proof to Cantor’s theorem and
an irrationality measure for some Cantor’s

series∗

Diego Marques

Departamento de Matemática, Universidade de Brasília

Submitted 18 November 2008; Accepted 22 May 2009

Abstract

Generalizing a geometric idea due to J. Sondow, we give a geometric proof
for the Cantor’s Theorem. Moreover, it is given an irrationality measure for
some Cantor series.

Keywords: Irrationality, irrationality measure, Cantor, Smarandache func-
tion.

MSC: Primary 11J72, Secondary 11J82

1. Introduction

In 2006, Jonathan Sondow gave a nice geometric proof that e is irrational.
Moreover, he said that a generalization of his construction may be used to prove
the Cantor’s theorem. But, he did not do that in his paper, see [2]. So we give a
geometric proof to Cantor’s theorem using a generalization to Sondow’s construc-
tion. After, it is given an irrationality measure for some Cantor series, for that we
generalize the Smarandache function. Also we give an irrationality measure for e
that is a bit better than the given one in [2].

2. Cantor’s Theorem

Definition 2.1. Let a0, a1, . . . , b1, b2, . . . be sequences of integers that satisfy the
inequalities bn > 2, and 0 6 an 6 bn − 1 if n > 1. Then the convergent series

θ := a0 +
a1

b1
+

a2

b1b2
+

a3

b1b2b3
+ . . . (2.1)

∗The author is supported by Capes.

117

118 D. Marques

is called Cantor series.

Example 2.2. The number e is a Cantor series. For see that, take a0 = 2, an =
1, bn = n+ 1 for n > 1.

We recall the following theorem due to Cantor [1].

Theorem 2.3 (Cantor). Let θ be a Cantor series. Suppose that each prime divides
infinitely many of the bn. Then θ is irrational if and only if both an > 0 and
an < bn − 1 hold infinitely often.

Proof. For proving the necessary condition, observe that if an = 0 for n > n0,
then the series is a finite sum, hence θ is rational. If an > 0 infinitely often, let
us to construct a nested sequence of closed intervals In with intersection θ. Let
I1 = [a0 + a1

b1
, a0 + a1+1

b1
]. Proceeding inductively, we have two possibilities, the

first one, if an = 0, so define In = In−1. When an 6= 0, divide the interval In−1

into bn − an + 1 (> 2) subintervals, the first one with length an

b1···bn
and the other

ones with equal length, namely, 1
b1···bn

, and let the first one be In. By construction,
|In| > 1

b1···bn
, for all n ∈ N and when an 6= 0, the length of In is exactly 1

b1···bn
. By

hypothesis on an, there exist infinitely many n ∈ N, such that |In| = 1
b1···bn

. Thus,
we have

In =
[
a0 + a1

b1
+ . . .+ an

b1···bn
, a0 + a1

b1
+ . . .+ an+1

b1···bn

]
=
[

An

b1···bn
, An+1
b1···bn

]

where An ∈ Z for each n ∈ N. Also θ ∈ In for all n > 1. In fact, by hypothesis
it is easy see that θ > An

b1···bn
, for all n > 1. For the other inequality, note that

am

bm
6 1 − 1

bm
, for all m ∈ N, therefore

b1 · · · bn(θ − (a0 +
a1

b1
+ . . .+

an
b1 · · · bn

)) 6 1. (2.2)

Now if an = bn− 1 for n > n0, then θ is the right-hand endpoint of In0−1, because
each In contains that endpoint and the lengths of the In tend to zero. Hence again
θ is rational. For showing the sufficient condition, note that if am < bm − 1, then
holds the strict inequality in (2.2), for each n < m. Since an > 0 holds infinitely
often,

∞⋂

n=1

In = θ.

Suppose that θ = p
q ∈ Q. Each prime number divides infinitely many bn, so there

exist n0 sufficiently large such that q|b1 · · · bn0 and an0 6= 0. Hence b1 · · · bn0 = kq
for some k ∈ N. Take N > n0, such that, aN+1 < bN+1 − 1. Hence θ lies in
interior of IN . Also IN = In0+k for some k > 0. Suppose IN = In0 . We can
write θ = kp

b1···bn0
, thus

An0

b1···bn0
< kp

b1···bn0
<

An0+1

b1···bn0
. But that is a contradiction.

If IN = In0+k, for k > 1, then we write θ =
kpbn0+1···bn0+k

b1···bn0+k
. But that is again a

contradiction. Therefore, it follows the irrationality of θ. �

A geometric proof to Cantor’s theorem . . . 119

3. Irrationality measure

The next step is to give an irrationality measure for some Cantor series. Now,
we construct an uncountable family of functions, where one of them is exactly a
well-known function for us.

Definition 3.1. Given σ = (b1, b2, . . .) ∈ N∞, satisfying

(∗) For all p prime number, the set {n ∈ N | p|bn} is infinite.

We define the function D(·, σ) : Z∗ → N, by

D(q, σ) := min{n ∈ N | q|b1 · · · bn}

Note that D(·, σ) is well defined, by condition (∗) and the well-ordering theorem.

In [2], J. Sondow showed that for all integers p and q with q > 1,

∣∣∣∣e−
p

q

∣∣∣∣ >
1

(S(q) + 1)!
, (3.1)

where S(q) is the smallest positive integer such that S(q)! is a multiple of q (the
so-called Smarandache function, see [3]). Note that if η = (1, 2, 3, . . .), then
D(q, η) = S(q). Since e is a Cantor series and D(·, σ) is a generalization of Smaran-
dache function, it is natural to think in a generalization or an improvement to the
inequality in (3.1).

Lemma 3.2. Given n ∈ N, we have

∣∣∣∣θ −
m

b1 · · · bn

∣∣∣∣ > min

{∣∣∣∣θ −
An

b1 · · · bn

∣∣∣∣ ,
∣∣∣∣θ −

An + 1

b1 · · · bn

∣∣∣∣
}

(3.2)

for all m ∈ Z.

Proof. Suppose that the result fail for some m ∈ Z. So, m
b1···bn

lies in interior of
In. Contradiction. Hence (3.2) holds for all m ∈ Z. �

Proposition 3.3. Suppose that a Cantor series θ, like in (2.1) and satisfying (∗),
is an irrational number. For all integers p ∈ Z and q ∈ Z∗, with D(q, σ) > 1, let
k be the smallest integer greater than D(q, σ) such that the interval Ik lies in the
interior of ID(q,σ). Then

∣∣∣∣θ −
p

q

∣∣∣∣ >
min{ak, bk − ak − 1}

b1 · · · bk
(3.3)

where σ = (b1, b2, . . .).

120 D. Marques

Proof. Let σ = (b1, b2, . . .). Set n = D(q, σ) and m = pb1···bn

q . Therefore m and
n are integers and

∣∣∣∣θ −
p

q

∣∣∣∣ =
∣∣∣∣θ −

m

b1 · · · bn

∣∣∣∣

> min

{∣∣∣∣θ −
An

b1 · · · bn

∣∣∣∣ ,
∣∣∣∣θ −

An + 1

b1 · · · bn

∣∣∣∣
}

(3.4)

>
min{ak, bk − ak − 1}

b1 · · · bk
. (3.5)

The inequalities (3.4) and (3.5) follow respectively by Lemma 3.2 and the hypoth-
esis on k. �

The result below gives a slight improvement to (3.1).

Corollary 3.3. If p and q are integers, with q 6= 0, then

∣∣∣∣e−
p

q

∣∣∣∣ >
1

(D(q, σ) + 2)!
, (3.6)

where σ = (2, 3, 4, . . .).

Proof. Since that minp∈Z |e− p| > 0.28 > 1
6 , then (3.6) holds in the case q = ±1.

In case q 6= ±1 the inequality also holds by Proposition 3.3 and Example 2.2.
Moreover, in this case we have S(q) − 1 ∈ {n ∈ N | q|(n + 1)!} and D(q, σ) + 1 ∈
{n ∈ N | q|n!}. Thus S(q) = D(q, σ) + 1. Hence

∣∣∣∣e−
p

q

∣∣∣∣ >
1

(D(q, σ) + 2)!
=

1

(S(q) + 1)!
.

�

Actually, the improvement happens only because (3.6) also holds for q = ±1.

Example 3.4. The number ξ := 1
(1!)5 + 1

(2!)5 + 1
(3!)5 +. . . = 1.031378 . . . is irrational,

moreover for p, q ∈ Z with q 6= 0, we have
∣∣∣∣ξ −

p

q

∣∣∣∣ >
1

(D(q, σ) + 2)!5

where σ = (25, 35, . . .).

Acknowledgements. The author would like to thank Jonathan Sondow, Luiz
Antônio Monte and Ana Paula Chaves for their helpful comments.

A geometric proof to Cantor’s theorem . . . 121

References

[1] Cantor, G., Ueber die einfachen Zahlensysteme, Zeitschrift fur Mathematik und
Physik, 14 (1869) 121–128.

[2] Sondow, J., A geometric proof that e is irrational and a new measure of its irra-
tionality, Amer. Math. Monthly, 113 (2006) 637–641.

[3] Weisstein, E, W., Smarandache function, MathWorld– A Wolfram Web Resource,
published electronically at http://mathworld.wolfram.com/SmarandacheFunction.

html.

Diego Marques
Universidade de Brasília,
Brasília, DF,
Brazil
e-mail: diego@mat.unb.br

Annales Mathematicae et Informaticae
36 (2009) pp. 123–132
http://ami.ektf.hu

An almost sure limit theorem for α-mixing
random fields

Tibor Tómács

Department of Applied Mathematics
Eszterházy Károly College, Eger, Hungary

Submitted 15 September 2009; Accepted 3 November 2009

Abstract

An almost sure limit theorem with logarithmic averages for α-mixing ran-
dom fields is presented.

Keywords: Almost sure limit theorem, multiindex, random field, α-mixing
random field, strong law of large numbers

MSC: 60F15, 60F17

1. Introduction

Let N be the set of the positive integers, R the set of real numbers and B the
σ-algebra of Borel sets of R. Let δx be the unit mass at point x, that is δx : B → R,
δx(B) = 1 if x ∈ B and δx(B) = 0 if x 6∈ B. Denote

w−→ µ the weak convergence
to the probability measure µ. In the following all random variables defined on a
fixed probability space (Ω,F ,P). Almost sure (a.s.) limit theorems state that

1

Dn

n∑

k=1

dkδζk(ω)
w−→ µ as n→ ∞, for almost every ω ∈ Ω,

where ζk (k ∈ N) are random variables. The simplest form of it is the so-called
classical a.s. central limit theorem, in which ζk = (X1 + · · · + Xk)/

√
k, where

X1, X2, . . . are independent identically distributed (i.i.d.) random variables with
expectation 0 and variance 1, moreover dk = 1/k, Dn = logn and µ is the standard
normal distribution N (0, 1). (See Berkes [1] for an overview.)

Let Nd be the positive integer d-dimensional lattice points, where d is a fixed
positive integer. In this paper k = (k1, . . . , kd),n = (n1, . . . , nd), . . . ∈ Nd. Rela-
tions 6, ≮, min, max, → etc. are defined coordinatewise, i.e. n → ∞ means that

123

124 T. Tómács

ni → ∞ for all i ∈ {1, . . . , d}. Let |n| =
∏d
i=1 ni and | logn| =

∏d
i=1 log+ ni, where

log+ x = log x if x > e and log+ x = 1 if x < e. The general form of the multiindex
version of the a.s. limit theorems is

1

Dn

∑

k6n

dkδζk(ω)
w−→ µ as n → ∞, for almost every ω ∈ Ω,

where {ζk,k ∈ Nd} is a random field (multiindex sequence of random variables).
In the multiindex version of the classical a.s. central limit theorem Xi, i ∈ Nd

i.i.d. random variables with expectation 0 and variance 1, ζk =
∑

i6k
Xi/

√
|k|,

dk = 1/|k|, Dn = 1/| logn| and µ = N (0, 1). It is well-known that generally the
multiindex cases are not direct consequences of the corresponding theorems for
ordinary sequences.

Fazekas and Rychlik proved in [5] a general a.s. limit theorem for multiindex
sequences of metric space valued random elements. Tómács proved in [8] an a.s.
central limit theorem for m-dependent random fields. In this paper we shall prove
an a.s. limit theorem with logarithmic averages for α-mixing random fields (The-
orem 2.5). Its onedimension version for µ = N (0, 1) is proved by Fazekas and
Rychlik (see [4, Proposition 3.2]). In the proof of Theorem 2.5 we shall use a mul-
tiindex strong law of large numbers (Theorem 2.1). In the proof of Theorem 2.3
we shall follow ideas of Berkes and Csáki [2].

Throughout the paper we use the following notation. Let R+ be the set of the
positive real numbers. If a1, a2, . . . ∈ R then in case A = ∅ let maxk∈A ak = 0 and∑
k∈A ak = 0. Let [A] be the closure of A ⊂ R and ∂A = [A] ∩ [A].
If ξ is a random variable, then let µξ denote the distribution of ξ, ‖ξ‖∞ =

inf{c ∈ R : P(|ξ| 6 c) = 1} and σ(ξ) = {ξ−1(B) : B ∈ B}.
In the following let {c(i)k ∈ R+, k ∈ N} be increasing sequences with c(i)k+1/c

(i)
k =

O(1), limn→∞ c
(i)
n = ∞ for each i = 1, . . . , d, and the sequences {d(i)

k ∈ R+, k ∈ N}
have the next properties: d

(i)
k 6 log(c

(i)
k+1/c

(i)
k) for all k ∈ N and i = 1, . . . , d,

moreover
∑∞

k=1 d
(i)
k = ∞ for each i = 1, . . . , d. Let dk =

∏d
i=1 d

(i)
ki

, Dn =
∑

k6n
dk

and D(i)
ni =

∑ni

k=1 d
(i)
k .

2. Results

Theorem 2.1. Let {ξi, i ∈ Nd} be a uniformly bounded random field, namely there
exists c ∈ R+ such that |ξi| 6 c a.s. for all i ∈ Nd. Assume that there exist
c1, c2, ε ∈ R+ and αk,l ∈ R (k, l ∈ Nd) such that

∑

l6n

∑

k6n

dkdlαk,l 6 c1D
2
n

d∏

i=1

(
logD(i)

ni

)−1−ε

(2.1)

An almost sure limit theorem for α-mixing random fields 125

for all enough large ni ∈ N, and

|E ξkξl| 6 c2

d∏

i=1

(
log+ log+

c
(i)
mi

c
(i)
hi

)−1−ε

+ αk,l

 (2.2)

for each k, l ∈ Nd, where h = min{k, l} and m = max{k, l}. Then

1

Dn

∑

k6n

dkξk → 0 as n → ∞ a.s.

Definition 2.2. The α-mixing coefficient of the random variables ξ and η is

α(ξ, η) = α
(
σ(ξ), σ(η)

)
= sup

A∈σ(ξ)
B∈σ(η)

|P(AB) − P(A) P(B)|.

Theorem 2.3. Let {ζk,k ∈ Nd} be a random field. Assume that there exist ran-
dom variables ζh,l (h 6 l) and c1, c2, c3, ε ∈ R+ such that

|ζk − ζh,k| > c1 a.s. ∀h,k ∈ Nd for which h 6 k, (2.3)

E min
{
(ζl − ζh,l)

2, 1
}

6 c2

d∏

i=1

(
log+ log+

c
(i)
li

c
(i)
hi

)−2−2ε

(2.4)

for all h, l ∈ Nd for which h 6 l, and

∑

l6n

∑

k6n

dkdlαk,l 6 c3D
2
n

d∏

i=1

(
logD(i)

ni

)−1−ε

(2.5)

for all enough large ni ∈ N, where αk,l = α(ζk, ζt,l) with t = min{k, l}. Then for
any probability distribution µ the following two statements are equivalent:

(1)
1

Dn

∑

k6n

dkδζk(ω)
w−→ µ as n → ∞, for almost every ω ∈ Ω;

(2)
1

Dn

∑

k6n

dkµζk
w−→ µ as n → ∞.

Definition 2.4. The α-mixing coefficient of the random field {Xn,n ∈ Nd} is

α(k) = sup
n

α

⋃

i6n

σ(Xi),
⋃

i≮n+k

σ(Xi)

 , k ∈ Nd.

126 T. Tómács

Theorem 2.5. Let {Xn,n ∈ Nd} be an α-mixing random field with mixing coeffi-
cient

α(k) 6
c

| logk| (2.6)

for all k ∈ Nd, where c ∈ R+ is fixed. Let Sn =
∑

k6n
Xk and σ2

n
= ES2

n
> 0.

Assume that EXi = 0 and EX2
i
< ∞ for all i ∈ Nd, moreover there exist c1, c2 ∈

R+ and β > 2/ log 2 such that

|Sl| > c1σk a.s. ∀l,k ∈ Nd for which l 6 k (2.7)

and

E min

{
S2

r

σ2
l

, 1

}
6 c2

(|h|
|l|

)β
∀h, l ∈ Nd for which h 6 l, (2.8)

where r = 2h if 2h < l and r = l otherwise. If µζn
w−→ µ as n → ∞, where

ζn = Sn/σn and µ is a probability distribution, then

1

| logn|
∑

k6n

1

|k|δζk(ω)
w−→ µ as n → ∞, for almost every ω ∈ Ω.

3. Lemmas

You can find the proof of the next lemma in [6].

Lemma 3.1 (Covariance inequality). If ξ and η are bounded random variables,
then

| cov(ξ, η)| 6 4α(ξ, η)‖ξ‖∞‖η‖∞.
The proof of the next lemma follows from that of Theorem 11.3.3 and Corol-

lary 11.3.4 in [3].

Lemma 3.2. Let BL denote the set of all bounded, real-valued Lipshitz function
on R. If µ and µn are distributions (n ∈ N), then there exists a countable set
M ⊂ BL (depending on µ) such that the following are equivalent:

(1) µn
w−→ µ as n→ ∞;

(2)
∫
g dµn →

∫
g dµ as n→ ∞ for all g ∈M .

Lemma 3.3 (Theorem 1 of [7], p. 309). If µ and µn are distributions (n ∈ N),
then the following are equivalent:

(1) µn
w−→ µ as n→ ∞;

(2) µn(A) → µ(A) as n→ ∞ for all A ∈ B for which µ(∂A) = 0.

Lemma 3.4. If µ and µn are distributions (n ∈ Nd) and µn

w−→ µ as n → ∞,
then

1

Dn

∑

k6n

dkµk

w−→ µ as n → ∞.

An almost sure limit theorem for α-mixing random fields 127

Proof. By
∑∞
ki=1 d

(i)
ki

= ∞ we have

1

Dn

∑

m6k6n

dk =

d∏

i=1

∑
mi6ki6ni

d
(i)
ki∑

ki6ni
d
(i)
ki

→ 1 as n → ∞ ∀m ∈ Nd,

which implies, that

1

Dn

∑

k6n

k�m

dk = 1 − 1

Dn

∑

m6k6n

dk → 0 as n → ∞ ∀m ∈ Nd. (3.1)

Let f : R → R be a bounded and continuous function and K = supx∈R |f(x)|. Then
∣∣∣∣
∫
f dµn −

∫
f dµ

∣∣∣∣ 6

∫
K dµn +

∫
K dµ = 2K, (3.2)

moreover by µn

w−→ µ and (3.1), for any ε > 0 there exists n(ε) ∈ Nd such that
∣∣∣∣
∫
f dµn −

∫
f dµ

∣∣∣∣ <
ε

2
(3.3)

and
1

Dn

∑

k6n

k�n(ε)

dk <
ε

4K
(3.4)

for all n > n(ε). With notation γn = 1
Dn

∑
k6n

dkµk the inequalities (3.2), (3.3)
and (3.4) imply, that

∣∣∣∣
∫
f dγn −

∫
f dµ

∣∣∣∣ 6
1

Dn

∑

k6n

dk

∣∣∣∣
∫
f dµk −

∫
f dµ

∣∣∣∣

=
1

Dn

∑

k6n

k�n(ε)

dk

∣∣∣∣
∫
f dµk −

∫
f dµ

∣∣∣∣+
1

Dn

∑

n(ε)6k6n

dk

∣∣∣∣
∫
f dµk −

∫
f dµ

∣∣∣∣

<
1

Dn

∑

k6n

k�n(ε)

dk · 2K +
1

Dn

∑

n(ε)6k6n

dk · ε
2
<
ε

2
+
ε

2
= ε

for all n > n(ε). This fact implies the statement. �

4. Proof of the theorems

Proof of Theorem 2.1. By (2.2) and (2.1) we have

E

∑

k6n

dkξk

2

6
∑

k6n

∑

l6n

dkdl |E ξkξl|

128 T. Tómács

6 c2
∑

k6n

∑

l6n

d∏

i=1

d
(i)
ki
d
(i)
li

(
log+ log+

c
(i)
mi

c
(i)
hi

)−1−ε

+ c2
∑

k6n

∑

l6n

dkdlαk,l

6 2c2

d∏

i=1

∑

ki6li6ni

d
(i)
ki
d
(i)
li

(
log+ log+

c
(i)
li

c
(i)
ki

)−1−ε

+ c2c1D
2
n

d∏

i=1

(
logD(i)

ni

)−1−ε

(4.1)

for all enough large ni. Now assume that (ki, li) ∈ A
(i)
ni , where

A(i)
ni

=
{

(ki, li) : ki 6 li 6 ni and c(i)li /c
(i)
ki

> exp
(√

D
(i)
ni

)}
.

Then log+ log+

(
c
(i)
li
/c

(i)
ki

)
> 1

2 logD
(i)
ni , which implies, that

∑

(ki,li)∈A
(i)
ni

d
(i)
ki
d
(i)
li

(
log+ log+

c
(i)
li

c
(i)
ki

)−1−ε

6 21+ε
(
logD(i)

ni

)−1−ε ∑

(ki,li)∈A
(i)
ni

d
(i)
ki
d
(i)
li

6 21+ε
(
D(i)
ni

)2 (
logD(i)

ni

)−1−ε

. (4.2)

If (ki, li) ∈ B
(i)
ni , where

B(i)
ni

=
{
(ki, li) : ki 6 li 6 ni and c(i)li /c

(i)
ki
< exp

(√
D

(i)
ni

)}
,

then with notation Mi = supk(c
(i)
k+1/c

(i)
k), we get

log
c
(i)
li+1

c
(i)
ki

= log
c
(i)
li+1

c
(i)
li

+ log
c
(i)
li

c
(i)
ki

< logMi +

√
D

(i)
ni .

Thus we have the following inequality, where B(i)
ni,ki

=
{
li : (ki, li) ∈ B

(i)
ni

}
.

∑

(ki,li)∈B
(i)
ni

d
(i)
ki
d
(i)
li

(
log+ log+

c
(i)
li

c
(i)
ki

)−1−ε

6
∑

(ki,li)∈B
(i)
ni

d
(i)
ki
d
(i)
li

6
∑

(ki,li)∈B
(i)
ni

d
(i)
ki

log
c
(i)
li+1

c
(i)
li

=

ni∑

ki=1

∑

li∈B
(i)
ni,ki

d
(i)
ki

log
c
(i)
li+1

c
(i)
li

6

ni∑

ki=1

d
(i)
ki

maxB
(i)
ni,ki∑

li=ki

log
c
(i)
li+1

c
(i)
li

=

ni∑

ki=1

d
(i)
ki

log

maxB
(i)
ni,ki∏

li=ki

c
(i)
li+1

c
(i)
li

=

ni∑

ki=1

d
(i)
ki

log

c
(i)

maxB
(i)
ni,ki

c
(i)
ki

<

ni∑

ki=1

d
(i)
ki

(
logMi +

√
D

(i)
ni

)
6

ni∑

ki=1

d
(i)
ki

2

√
D

(i)
ni = 2

(
D(i)
ni

)3/2

An almost sure limit theorem for α-mixing random fields 129

for all enough large ni. It follows from this inequality and (4.2) that

∑

ki6li6ni

d
(i)
ki
d
(i)
li

(
log+ log+

c
(i)
li

c
(i)
ki

)−1−ε

6 21+ε
(
D(i)
ni

)2 (
logD(i)

ni

)−1−ε

+ 2
(
D(i)
ni

)3/2

6 21+ε
(
D(i)
ni

)2
((

logD(i)
ni

)−1−ε

+
(
D(i)
ni

)−1/2
)

6 22+ε
(
D(i)
ni

)2 (
logD(i)

ni

)−1−ε

(4.3)

for all enough large ni. In the last step we use the inequality (D
(i)
ni)−1/2 6

(logD
(i)
ni)−1−ε, which follows from (D

(i)
ni)1/2/(logD

(i)
ni)1+ε → ∞ as ni → ∞. By

(4.1) and (4.3) we get

E

∑

k6n

dkξk

2

6 const.
d∏

i=1

(
D(i)
ni

)2 (
logD(i)

ni

)−1−ε

(4.4)

for all enough large ni. Let

ni(t) = min
{
ni : D(i)

ni
6 exp

(
t

1+ε/2
1+ε

)}

and n(t) =
(
n1(t1), . . . , nd(td)

)
. Since ni(ti) → ∞ as ti → ∞, thus by (4.4) there

exists T ∈ Nd, such that

E
∑

t>T

 1

Dn(t)

∑

k6n(t)

dkξk

2

6
∑

t>T

1

D2
n(t)

const.
d∏

i=1

(
D

(i)
ni(ti)

)2 (
logD

(i)
ni(ti)

)−1−ε

6
∑

t>T

1

D2
n(t)

const.
d∏

i=1

(
D

(i)
ni(ti)

)2

t
−1−ε/2
i = const.

d∏

i=1

∞∑

ti=Ti

t
−1−ε/2
i <∞,

which implies
1

Dn(t)

∑

k6n(t)

dkξk → 0 as t → ∞ a.s. (4.5)

For all n ∈ Nd there exists t ∈ Nd such that n(t) 6 n 6 n(t + 1), where 1 =
(1, . . . , 1) ∈ Nd. Thus the uniformly bounding implies

∣∣∣∣
1

Dn

∑

k6n

dkξk

∣∣∣∣ 6
∣∣∣∣

1

Dn(t)

∑

k6n(t)

dkξk

∣∣∣∣+
1

Dn

∑

k6n

k
n(t)

dk|ξk|

130 T. Tómács

6

∣∣∣∣
1

Dn(t)

∑

k6n(t)

dkξk

∣∣∣∣+
1

Dn

∑

k6n

k
n(t)

dk · c

6

∣∣∣∣
1

Dn(t)

∑

k6n(t)

dkξk

∣∣∣∣+ c

(
1 − Dn(t)

Dn(t+1)

)
a.s. (4.6)

The reader can easy verify that Dn(t)/Dn(t+1) → 1 as t → ∞, so by (4.5) and
(4.6) imply the statement of Theorem 2.1. �

Proof of Theorem 2.3. Let g ∈ M , where M is defined in Lemma 3.2. Then
there exists K > 1 such that

|g(x)| 6 K and |g(x) − g(y)| 6 K|x− y| ∀x, y ∈ R. (4.7)

We shall prove, that with notation ξk = g(ζk) − E g(ζk) the conditions of Theo-
rem 2.1 hold true. By (2.5) we get (2.1), moreover by (4.7) we have

|ξk| 6 |g(ζk)| + E |g(ζk)| 6 2K,

thus {ξk,k ∈ Nd} is a uniformly bounded random field. Now we turn to (2.2). Let
t = min{k, l}. Lemma 3.1 and (4.7) imply

∣∣E ξk
(
g(ζt,l) − E g(ζl)

)∣∣ =
∣∣cov

(
g(ζl), g(ζt,l)

)∣∣ 6 4K2αk,l. (4.8)

On the other hand with notation ηk,l = g(ζl) − g(ζt,l)

|E ξkηk,l| =
∣∣cov

(
g(ζk), ηk,l

)∣∣ 6
(
E g2(ζk) E η2

k,l

)1/2
. (4.9)

It is easy to see that
(
g(x) − g(y)

)2
6 4K2 min

{
(x− y)2, 1

}
, thus

E η2
k,l 6 4K2 min

{
(ζl − ζt,l)

2, 1
}
. (4.10)

By (4.7) and (2.3) we have g2(ζk) 6 K2(1 + 1/c1)
2 and

g2(ζk) < K2(c1 + 1)2 = K2

(
1 +

1

c1

)2

· c21 6 K2

(
1 +

1

c1

)2

(ζk − ζt,k)2,

which imply g2(ζk) 6 const. min
{
(ζk − ζt,k)2, 1

}
a.s. Using this inequality, (4.10),

(4.9) and (2.4) we get the following.

|E ξkηk,l| 6 const.
(
Emin

{
(ζk − ζt,k)2, 1

}
Emin

{
(ζl − ζt,l)

2, 1
})1/2

6 const.

(
d∏

i=1

log+ log+

c
(i)
ki

c
(i)
ti

· log+ log+

c
(i)
li

c
(i)
ti

)−1−ε

= const.

(
d∏

i=1

log+ log+

c
(i)
mi

c
(i)
ti

)−1−ε

, (4.11)

An almost sure limit theorem for α-mixing random fields 131

where m = max{k, l}. Since |E ξkξl| 6 |E ξkηk,l| +
∣∣E ξk

(
g(ζt,l) − E g(ζl)

)∣∣, using
(4.11) and (4.8) we have (2.2). Now applying Theorem 2.1 we get

1

Dn

∑

k6n

dkξk → 0 as n → ∞ a.s. (4.12)

Let µn = 1
Dn

∑
k6n

dkµζk and µn,ω = 1
Dn

∑
k6n

dkδζk(ω) (ω ∈ Ω).

First assume that (2) is true, that is µn

w−→ µ as n → ∞. Then Lemma 3.2
implies ∫

g dµn →
∫
g dµ as n → ∞, (4.13)

and (4.12) implies

∫
g dµn,ω −

∫
g dµn =

1

Dn

∑

k6n

dkξk(ω) → 0 (4.14)

as n → ∞, for almost every ω ∈ Ω. By (4.13) and (4.14) we get
∫
g dµn,ω →

∫
g dµ

as n → ∞, for almost every ω ∈ Ω, thus by Lemma 3.2 we get (1).
Finally assume that (1) is true, that is µn,ω

w−→ µ as n → ∞, for almost every
ω ∈ Ω. Let A ∈ B and µ(∂A) = 0. Then by Lemma 3.3 µn,ω(A) → µ(A) as
n → ∞, for almost every ω ∈ Ω. It follows that µn(A) =

∫
µn,ω(A) d P(ω) → µ(A)

as n → ∞. Thus using Lemma 3.3 we get (2). This completes the proof of
Theorem 2.3. �

Proof of Theorem 2.5. Let d(i)
k = 1/k, c(i)k = k1/ log 2, ε = (β log 2− 2)/2, ζk,l =

ζl−S2k/σl if 2k < l and ζk,l = 0 if k 6 l and 2k ≮ l. We shall prove that conditions
of Theorem 2.3 hold. It is easy to see that αk,l 6 α(k) for all k, l ∈ Nd, where αk,l

is defined in Theorem 2.3. Therefore by (2.6) we have

∑

l6n

∑

k6n

dkdlαk,l 6
∑

l6n

∑

k6n

c

|k| · |l| · | logk|

= c

d∏

i=1

(
ni∑

k=1

1

k log+ k

)(
ni∑

l=1

1

l

)
. (4.15)

It is well-known that
∑n

k=1
1
k ∼ logn and

∑n
k=1

1
k log+ k

∼ log logn, where an ∼ bn
iff limn→∞ an/bn = 1. So by (4.15) we have

∑

l6n

∑

k6n

dkdlαk,l 6 const.
d∏

i=1

log logni · logni 6 const.
d∏

i=1

(logni)
2(log logni)

−1−ε

6 const.
d∏

i=1

(log ni)
2(logD(i)

ni
)−1−ε

6 const.D2
n

d∏

i=1

(logD(i)
ni

)−1−ε

132 T. Tómács

for all enough large ni, which implies (2.5). Using (2.8)

E min
{
(ζl − ζh,l)

2, 1
}

= Emin
{
S2

r/σ
2
l , 1
}

6 const.
d∏

i=1

(
log+ log+

c
(i)
li

c
(i)
hi

)−2−2ε

for all h, l ∈ Nd for which h 6 l, where r = 2h if 2h < l and r = l if h 6 l and
2h 6< l, so we get (2.4). The reader can readily verify that (2.3) is hold as well.
Now applying Lemma 3.4 and Theorem 2.3, we have

1∑
k6n

1
|k|

∑

k6n

1

|k|δζk(ω)
w−→ µ as n → ∞, for almost every ω ∈ Ω.

Since
∑

k6n

1
|k| ∼ | logn|, we get the statement. �

References

[1] Berkes, I., Results and problems related to the pointwise central limit theorem,
In: Szyszkowicz, B. (Ed.) Asymptotic results in probability and statistics, Elsevier,
Amsterdam, (1998), 59–96.

[2] Berkes, I., Csáki, E., A universal result in almost sure central limit theory, Stoch.
Proc. Appl., 94(1) (2001), 105–134.

[3] Dudley, R.M., Real Analysis and Probability, Cambridge University Press, (2002).

[4] Fazekas, I., Rychlik, Z., Almost sure functional limit theorems, Annales Universi-
tatis Mariae Curie-Skłodowska Lublin, Vol. LVI, 1, Sectio A, (2002) 1–18.

[5] Fazekas, I., Rychlik, Z., Almost sure central limit theorems for random fields,
Math. Nachr., 259, (2003), 12–18.

[6] Lin, Z., Lu, C., Limit theory for mixing dependent random variables, Science Press,
New York–Beijing and Kluwer, Dordrecht–Boston–London (1996).

[7] Shiryayev, A.N., Probability, Springer-Verlag New York Inc. (1984).

[8] Tómács, T., Almost sure central limit theorems for m-dependent random fields, Acta
Acad. Paed. Agriensis, Sectio Mathematicae, 29 (2002) 89–94.

Tibor Tómács
Department of Applied Mathematics
Eszterházy Károly College
P.O. Box 43
H-3301 Eger
Hungary
e-mail: tomacs@ektf.hu

Annales Mathematicae et Informaticae
36 (2009) pp. 133–141
http://ami.ektf.hu

Limit theorems for the longest run

József Túri

University of Miskolc, Department of Descriptive Geometry

Submitted 21 June 2009; Accepted 5 October 2009

Abstract

Limit theorems for the longest run in a coin tossing experiment are ob-
tained.

Keywords: almost sure limit theorem for longest run.

MSC: 60F05 Central limit and other weak theorems, 60F15 Strong theorems.

1. Introduction

Problems connected to the longest head run in a coin tossing experiment have
been investigated for a long time. Erdős and Rényi (1970) proved for a fair coin
that for arbitrary 0 < c1 < 1 < c2 < ∞ and for almost all ω ∈ Ω there exists a
finite N0 = N0(ω, c1, c2) such that [c1 LogN] 6 µ(N) 6 [c2 LogN] if N > N0 (here
µ(N) denotes the length of the longest head run during the first N experiments,
[.] denotes the integer part, Log means logarithm of base 2). Erdős and Révész
(1975) improved the above upper and lower bounds, moreover they proved other
strong theorems for µ(N). Deheuvels (1985) Theorem 2 offers a.s. upper and lover
bounds for the k-th longest head run for a biased coin. Földes (1979) studied the
case of a fair coin and obtained limit theorems for the longest head run containing
at most T tails. Binswanger and Embrechts (1994) gave a review of the results on
the longest head run and their applications to gambling and finance. In the point
of view of applications recursive algorithms for the distribution of the longest head
run are important (see Kopociński (1991), Muselli (2000)). Fazekas and Noszály
(2007) studied the limit distribution of the longest T -interrupted run of heads and
recursive algorithms for the distribution in the case of a biased coin. Schilling
(1990) gave an overview of limit theorems, algorithms and applications. Schilling
(1990) studied pure head runs and runs of pure head or pure tails, too.

In this paper we study a coin tossing experiment. That is the underlying ran-
dom variables are X1, X2, We assume that X1, X2, . . . are independent and

133

134 J. Túri

identically distributed with P(Xi = 1) = p, P(Xi = 0) = q = 1 − p. I.e. we write
1 for a head and 0 for a tail. In Section 2 we study pure runs, i.e. runs containing
only heads or containing only tails. In Section 2 we prove limit theorems for the
longest run. Our theorems 2.5–2.8 are versions of theorems 1–4 in Földes [9]. These
are limit theorems for a fair coin. We consider the case of a biased coin in theorems
2.8 and 2.10.

Recently several papers are devoted to the study of almost sure limit theorems
(see Berkes, Csáki (2001), Berkes, Dehling and Móri (1991), Fazekas and Rychlik
(2002), Major (1998) and the references therein).

In Section 3 we obtain an almost sure limit theorem for the longest run (Theo-
rem 3.1). We remark that for the longest run there is no limiting distribution (in
Theorem 2.10 we give an accompanying sequence for it). However, for the loga-
rithmic average we obtain limiting distribution. Our Theorem 3.1 is a version of
Corollary 5.1 of Móri [16].

2. Limit theorems for longest runs

Consider N tossings of a coin. In this part we prove some limit theorems for
longest runs. The theorems concern arbitrary pure runs (i.e. pure head runs or
pure tail runs).

We shall use the next notation. Let ξ(n,N) = ξ(n,N, ω) denote the number of
pure head sequences having length n.

Let ξ∗(n,N) = ξ(n,N, ω) denote the number of pure head or pure tail sequences
having length n.

Let ξ̃(n,N) = ξ̃(n,N, ω) denote the number of disjoint pure head sequences
with length being at least n.

Let ξ̃∗(n,N) = ξ̃∗(n,N, ω) denote the number of disjoint pure head or pure tail
sequences with length being at least n.

Let τ(n) = τ(n, ω) denote the smallest number of casts which are necessary to
get at least one pure head run of length n, that is

τ(n) = min{N | ξ(n,N) > 0}.

Let τ∗(n) = τ∗(n, ω) denote the smallest number of casts which are necessary to
get at least one pure head or one pure tail run of length n, that is

τ∗(n) = min{N | ξ∗(n,N) > 0}.

Let µ(N) = µ(N,ω) denote the length of the longest pure head run in the first N
trials, that is

µ(N) = max{n | ξ(n,N) > 0}.
Let µ∗(N) = µ∗(N,ω) denote the length of the longest pure head or pure tail run
in the first N trials, that is

µ∗(N) = max{n | ξ∗(n,N) > 0}.

Limit theorems for the longest run 135

Here ω ∈ Ω, where (Ω,A,P) is the underlying probability space.
In this section we obtain analogues of Theorems 1−4 in Földes [9] for arbitrary

pure runs.
First consider the case of a fair coin. For convenience we quote the results of

Földes.

Theorem 2.1 (Theorem 1 in [9]). If N → ∞ and n→ ∞ such that

N

2n+1
→ λ > 0, (2.1)

then we hawe

lim
N→∞

P(ξ̃(n,N) = k) =
e−λλk

k!
, k = 0, 1, 2, (2.2)

Theorem 2.2 (Theorem 2 in [9]). Under the condition of Theorem 2.1 the distri-
bution of ξ(n,N) converges to a compound Poisson distribution, namely

E(zξ(n,N)) → exp

(
λ

(
(1 − 1

2)z

1 − 1
2z

− 1

))
. (2.3)

Theorem 2.3 (Theorem 3 in [9]). For 0 < x <∞

lim
n→∞

P

(
τ(n)

2n+1
6 x

)
= 1 − e−x. (2.4)

Theorem 2.4 (Theorem 4 in [9]). For any integer k we have

P(µ(N) − [LogN] < k) = exp(−2−(k+1−{LogN})) + o(1) (2.5)

where [a] denotes the integer part of a and {a} = a− [a].

We use the next connection between the pure head runs and pure runs (see, for
example, Schilling in [21]).

Remark 2.5. The next relation is true.

2 card{ξ̃(n− 1, N − 1) = k} = card{ξ̃∗(n,N) = k}, k = 0, 1, 2, (2.6)

Theorem 2.6. If N → ∞ and n→ ∞ such that

N

2n+1
→ λ > 0, (2.7)

then we hawe

lim
N→∞

P(ξ̃∗(n,N) = k) =
e−2λ(2λ)k

k!
, k = 0, 1, 2, (2.8)

136 J. Túri

Proof. If we use the (2.6.) connection we have for k = 0, 1, 2, . . .

P(ξ̃∗(n,N) = k) =
card{ξ̃∗(n,N) = k}

2N
=

2 card{ξ̃(n− 1, N − 1) = k}
2N

=

= P(ξ̃(n− 1, N − 1) = k).

If N
2n+1 → λ, then

N − 1

2(n−1)+1
= 2

N − 1

N

N

2n+1
→ 2λ.

By Theorem 2.1, we obtain that

lim
n→∞

P(ξ̃∗(n,N) = k) = e−2λ (2λ)k

k!
.

This completes the proof of Theorem 2.5. �

Theorem 2.7. Under the condition (2.1) the distribution of ξ∗(n,N) converges to
a compound Poisson distribution, namely

lim
N→∞

E(zξ
∗(n,N)) = exp

(
2λ

(
(1 − 1

2)z

1 − 1
2z

− 1

))
. (2.9)

Proof. By (2.6.), we have

Ezξ
∗(n,N) =

∞∑

k=0

zkP(ξ∗(n,N) = k) =

∞∑

k=0

zk card{ξ∗(n,N) = k}/2N =

=
∞∑

k=0

zk2 card{ξ(n− 1, N − 1) = k}/2N =
∞∑

k=0

zkP(ξ(n− 1, N − 1) = k) =

= Ezξ(n−1,N−1).

By Theorem 2.2

Ezξ(n−1,N−1) = exp

(
2λ

(
(1 − 1

2)z

1 − 1
2z

− 1

))
.

This completes the proof of Theorem 2.6. �

The next theorem state that the limit distribution of τ∗

2n+1 is exponential with
parameter 2.

Theorem 2.8. For 0 < x <∞

lim
n→∞

P

(
τ∗(n)

2n+1
6 x

)
= 1 − e−2x (2.10)

Limit theorems for the longest run 137

Proof. The theorem is the consequence of the calculation below and Theorem 2.3.

P

(
τ∗(n)

2n
> x

)
= P(from [2nx] trials there is no run of lenght n) =

=
card{ from [2nx] trials there is no run of lenght n}

2[2nx]
=

=
2 card{from [2nx] − 1 trials there is no head run of lenght n− 1)

2[2nx]
=

= P(τ(n − 1) > [2nx] − 1) = P

(
τ(n− 1)

2n
>

[2nx] − 1

2n

)
=

= P

(
τ(n− 1)

2n
> x+ an

)
= P

(
τ(n− 1)

2n
− an > x

)

where [2nx]−1
2n = x+ an and an → 0. If we use Slutsky’s theorem and Theorem 2.3,

we get that

lim
n→∞

P

(
τ(n− 1)

2n
− an > x

)
= e−x.

So

lim
n→∞

P

(
τ∗(n)

2n+1
6 x

)
= 1 − e−2x.

This completes the proof of Theorem 2.7. �

Theorem 2.9. For any integer k we have

P(µ∗(N) − [Log(N − 1)] < k) = exp(−2−(k−{Log(N−1)})) + o(1). (2.11)

Proof. By Remark 2.1, we have

P(µ∗(N) − [Log(N − 1)] < k) =

=
card{µ∗(N) − [Log(N − 1)] < k}

2N
=

= 2 card{µ(N − 1) − [Log(N − 1)] < k − 1}/2N =

= P(µ(N − 1) − [Log(N − 1)] < k) =

= exp
(
−2−(k−{Log(N−1)})

)
+ o(1),

where we applied Theorem 2.4. This completes the proof of Theorem 2.8. �

Now consider the case of a biased coin. Let p be the probability of tail and
q = 1 − p the probability of head. Let VN (p) denote the probability that the
longest run in N trials is formed by heads. Then, by Theorem 5 of Musselli [19],

lim
N→∞

VN (p) =

{
0 if 0 6 p < 1

2

1 if 1
2 < p 6 1.

(2.12)

138 J. Túri

Theorem 2.10. Let p > q. For 0 < x <∞

lim
n→∞

P(τ∗(n)qpn 6 x) = 1 − e−x. (2.13)

Proof. We have
lim
n→∞

P(τ(n)qpn 6 x) = 1 − e−x. (2.14)

(2.14) is mentioned in Móri [16] without proof and it is proved in Fazekas-Noszály
[8]. Using (2.12), (2.14) implies (2.13). �

Theorem 2.11. Let p > q. Let Log denote the logarithm of base 1/p. Then for
any integer k

P(µ∗(N) − [LogN] < k) = exp(−qpk−{LogN}) + o(1). (2.15)

Proof. By Gordon-Schilling-Waterman [11] or Fazekas-Noszály [8],

P(µ(N) − [LogN] < k) = exp(−qpk−{LogN}) + o(1). (2.16)

(2.12) and (2.16) implies (2.15). �

3. An a.s. limit theorem for the longest run

In this part we prove an a.s. limit theorem for the longest run. Our theorem is
a version of the following result of Móri. Let p be the probability of the head. Let
Log denote the logarithm of base 1/p. Let log denote the logarithm of base e.

Remark 3.1 (A particular case of Corollary 5.1 in Móri [16]).

lim
n→∞

1

logn

n∑

i=1

1

i
I(µ(i) − Log i < t) =

∫ t+1

t

exp(−qpz)dz a.s. (3.1)

Let us abbreviate E(τ∗(n)) by E(n) and P(τ∗(n) = n) by p(n). To prove the
a.s. limit theorem for the longest run we shall need the next results.

Remark 3.2 (See Lemma 2.2 in Móri [16]).

lim
n→∞

P

(
τ∗(n)

E(n)
> t

)
= e−t (3.2)

uniformly in t > 0.

Proposition 3.3 (A particular case of Theorem 3.1 in Móri [16]). Suppose that f
is a positive, increasing, differentiable function such that E(m) ∼ f(m) and the
limit

c = lim
t→∞

(log f(t))′ (3.3)

Limit theorems for the longest run 139

exists. Let g = f−1. Assume that 0 < c <∞. Then for every t ∈ R

lim
n→∞

1

logn

n∑

i=1

1

i
I(µ∗(i)) − g(i) < t) =

∫ 1

0

F (c(t+ z))dz a.s., (3.4)

where F (z) = exp(− exp(−z)).

The following result is the a.s. limit theorem for the longest run.

Theorem 3.4.

lim
n→∞

1

logn

n∑

i=1

1

i
I(µ∗(i) − Log i < t) =

{∫ t+1

t exp
[
−
(

1
2

)y]
dy if p = 1

2∫ t+1

t
exp [−qpy] dy if p > 1

2

almost sure.

Proof. We distinguish two cases. First let p = 1/2. By Theorem 2.7., τ∗(n)
2n+1 has

exponential limit distribution with expectation 1/2, that is P(τ
∗(n)
2n > t) = e−t.

Now we verify that Eµ∗(n) ∼ 2n. By Remark 3.2, limn→∞ P
(
τ∗(n)
E(n) > t

)
= e−t.

Using the convergence of types theorem (Theorem 2 in Section 10 of Gnedenko-
Kolmogorov [10]), we obtain that E(n)

2n → 1, if n→ ∞.
So we can choose in Proposition 3.1 f(x) = 2x, g(x) = Log x. We obtain that

c = limt→∞(log f(t))′ = log 2 ∈]0,∞[. Therefore we can apply Proposition 3.1.

lim
n→∞

1

logn

n∑

i=1

1

i
I(µ∗(i) − Log i < t) = lim

n→∞

1

logn

n∑

i=1

1

i
I(µ∗(i) − g(i) < t) =

∫ 1

0

exp [− exp(−c(t+ z))] dz =

∫ 1

0

exp

[
−
(

1

2

)t+z]
dz =

∫ t+1

t

exp

[
−
(

1

2

)y]
dy.

Now let p > 1/2. By Theorem 2.9,

lim
n→∞

P(τ∗(n)qpn > x) = e−x. (3.5)

By Remark 3.2,

lim
n→∞

P

(
τ∗(n)

E(n)
> x

)
= e−x. (3.6)

So E(n)
(qpn)−1 → 1, if n → ∞. Therefore E(n) ∼ (qpn)−1. So f(x) = q−1p−x =

1
q

(
1
p

)x
. So g(x) = Log x + Log q and c = log 1

p . This completes the proof of

Theorem 3.4. �

140 J. Túri

References

[1] Berkes, I. and Csáki, E., A universal result in almost sure central limit theory,
Stoch. Proc. Appl., 94(1), (2001), 105–134.

[2] Berkes, I., Dehling, H.I. and Móri, T.F., Counterexamles related to the a.s.
central limit theorem, Studia Sci. Math. Hungar., 26(1), (1991), 153–164.

[3] Binwanger, K., Embrechts, P., Longest runs in coin tossing, Mathematics and
Economics 15, (1994), 139–149.

[4] Csáki, E., Földes, A., Komlós, J., Limit theorems for Erdős-Rényi type prob-
lems, Studia Sci. Math. Hungar., 22, (1987), 321–332.

[5] Deheuvels, P., On the Erdős-Rényi theorem for random fields and sequences and
its relationships with the theory of runs spacings, Z. Wahrsch. Verw. Gebiete, 70,
no. 1, (1985), 91–115.

[6] Erdős, P., Révész, P., On the lenght of the longest head-run, Colloquia Mathemat-
ica Societatis János Bolyai (16. Topics in information theory, Keszthely (Hungary)),
(1975) 219–228.

[7] Fazekas, I. and Rychlik, Z., Almost sure functional limit theorems, Ann. Univ.
Mariae Curie-Skłodowska, Sect. A, 56, (2002), 1–18.

[8] Fazekas, I. and Noszály, Cs., Limit theorems for contaminated runs of heads,
(manuscript) 2007.

[9] Földes, A., The limit distribution of the lenght of the longest head-run, Periodica
Mathematica Hungarica, 10(4), (1979), 301–310.

[10] Gnedenko, B.V., Kolmogorov, A.N., Limit distributions for sums of indepen-
dent random variables, Addison-Wesley Publishing, London, 1968.

[11] Gordon, L., Schilling, M. F., Waterman, M. S., An extreme value theory for
long head runs, Probability Theory and Related Fields, 72, (1986), 279–287.

[12] Guibas, L.J. and Odlyzko, A.M., Long repetitive patterns in random sequences,
Z. Wahrsch. Verw. Gebiete, 53, (1980), 241–262.

[13] Komlós, J., Tusnády, G., On sequences of “pure heads”, The Annals of Probability,
3, (1975), 273–304.

[14] Kopociński, B., On the distribution of the longest succes-run in Bernoulli trials,
Mat. Stos., 34, (1991), 3–13.

[15] Major, P., Almost sure functional limit theorems, Part I. The general case, Studia
Sci. Math. Hungar., 34, (1998), 273–304.

[16] Móri, T.F., The a.s. limit distribution of the longest head run, Can. J. Math.,
45(6), (1993), 1245–1262.

[17] Móri, T.F., On long run of heads and tails, Statistics & Probability Letters, 19,
(1994), 85–89.

[18] Móri, T.F., On long run of heads and tails II, Periodica Mathematica Hungarica,
28(1), (1994), 79–87.

[19] Muselli, M., Useful inequalities for the longest run distribution, Statistics & prob-
ability letters, 46, (2000), 239–249.

Limit theorems for the longest run 141

[20] Philippou, I., Makri, F. S., Successes, Runs and Longest Runs, Statistics &
Probability Letters, 4, (1986), 211–215.

[21] Schilling, M.F., The longest run of heads, The College Mathematics Journal,
21(3), (1990), 196–207.

József Túri
University of Miskolc
Department of Descriptive Geometry
H–3515 Miskolc, Hungary
e-mail: TuriJ@abrg.uni-miskolc.hu

Annales Mathematicae et Informaticae
36 (2009) pp. 143–160
http://ami.ektf.hu

Investigating the mean response time
in finite-source retrial queues using the

algorithm by Gaver, Jacobs, and Latouche

Patrick Wüchnera, János Sztrikb, Hermann de Meera

aFaculty of Informatics and Mathematics, University of Passau, Germany
bFaculty of Informatics, University of Debrecen, Hungary

Submitted 18 August 2008; Accepted 1 December 2009

Abstract

In this paper, we discuss the maximum of the mean response time that
appears in finite-source retrial queues with orbital search when the arrival
rate is varied.

We show that explicit closed-form equations of the mean response time
can be derived by exploiting the block-structure of the finite Markov chain un-
derlying the model and using an efficient computational algorithm proposed
by Gaver, Jacobs, and Latouche.

However, we also show that already for the discussed relatively simple
model, the resulting equation is rather complex which hampers further eval-
uation.

Keywords: Performance evaluation, Finite-source retrial queues, Closed-form
solutions, Orbital search, Block-structured Markov chain, MOSEL-2

1. Introduction

Retrial queues are an important field of study, since in various scenarios, they
are able to capture certain behavior of real systems more accurately than classical
FCFS queues. Retrial queues are used to model, e.g., telephone traffic in [23],
load balancing in multiprotocol label switching (MPLS) networks in [19], Ethernet
systems in [2], wireless broadband networks in [20], active queue management of
Internet routers in [17], self-organizing peer-to-peer systems in [42], the dynamic
host configuration protocol (DHCP) in [24], and mobile communication in [3, 32,
34]. Further application examples are given in [6, 22, 43, 15].

143

144 P. Wüchner, J. Sztrik, H. de Meer

For example, consider a call center scenario with several agents and without a
waiting loop installed. If all agents are busy, an additional caller is not able to join
a queue, but has to hang up and retry to reach an agent later. Such a retrying
caller is said to be in orbit.

In addition, consider a call center that is able to log the phone numbers of
unserved customers. Then, if an agent gets idle, it may call back unserved orbiting
customers. This behavior is called orbital search.

In many situations it is unrealistic to assume that the calling population, i.e.,
the potential number of customers generating requests, is infinitely large. Then,
the arrival rate of incoming requests depends on the number of requests already
in the system and the arrival process is quasi-random, state-dependent, and non-
Poisson. Retrial queues with a finite population size are also known as finite-source
retrial queues. We are especially interested in models where infinite-source models
fail, i.e., models with a small number of sources.

During evaluation of finite-source retrial queues, for some parameter setups a
maximum of the mean response time of the system can be identified. Several pub-
lications noticed this maximum (e.g., [27, 4, 5, 40]) and gave informal reasons for
it (e.g., [40]). Since this maximum should be avoided in real-system configura-
tions by all means, we here try to provide closed-form equations that facilitate the
identification of such undesirable configurations during system design.

Our main contribution is the development of novel and explicit closed-form
equations for steady-state performance evaluation of the mean response time in
finite-source retrial queues with orbital search. To achieve this, we adopt an algo-
rithm introduced by Gaver, Jacobs, and Latouche in [29], which we refer to as GJL
Algorithm.

The main motivation for this research was to find exact mathematical expres-
sions of the maximum’s location in closed form. However, as is discussed later
in Section 7, this cannot be achieved, even for the relatively simple model under
study.

Previous results on various types of retrial queues are surveyed in [6, 15, 7, 8,
26, 28, 31].

Due to the complexity of finite-source and infinite-source retrial queues, pub-
lications on performance measures in closed form are quite rare. Instead, most
publications, e.g., the more recent ones [34, 15, 5, 38, 21, 10, 11, 12, 13, 35], employ
algorithmic or numerical analysis.

The search for customers immediately on termination of a service was first
discussed in the context of classical queues by [33]. More recently, infinite-source
retrial queueing systems where the server(s) search for customers after service have
been investigated in [21, 16, 25]. We recently introduced and discussed finite-source
retrial queues with orbital search by applying numerical analysis in [40] and [41].

There exist several publications discussing infinite-source retrial queues without
orbital search and presenting exact results (e.g., [17, 15, 28, 1, 9, 14, 30, 36]), or
approximations (e.g., [17, 3, 32, 15, 21]) of performance measures in closed form.
Regarding finite-source retrial queues without orbital search, [2] presents closed-

Investigating the mean response time in finite-source retrial queues. . . 145

form results including phase-type service and multiple servers. However, we are not
aware of any publications that present steady-state probabilities and performance
measures in closed form applicable to finite-source retrial queues with orbital search.

The remainder of this paper is structured as follows. In Section 2, the inves-
tigated model is introduced to fix the notations and preliminary numerical results
are presented to state the tackled problem in more detail. Starting from Section 3,
we exemplarily focus on the case of three sources and one server. Section 3 dis-
cusses the underlying continuous-time Markov chain, and in Section 4, the GJL
Algorithm is applied to obtain the steady-state probabilities of the Markov chain
in closed form. Based on these equations, in Section 5, mean response time is
obtained in closed form and validated in Section 6. In Section 7, we discuss the
presented approach with respect to the failure of providing closed-form equations
of the maximum’s location, and its applicability to derive further performance
measures in closed form and for models with a higher number of sources, multiple
servers, and phase-type distributed service times. Finally, in Section 8, a conclusion
and directions for future work are given.

2. Model description and preliminary numerical
analysis

Figure 1: High-level queueing model of finite-source retrial queue
with orbital search.

In Fig. 1, a queueing model illustrates theM/M/c/K/K (for Kendall’s notation,
see [18, p. 242]) finite-source retrial queue with orbital search. All inter-event
times involved in the model are assumed to be exponentially distributed. Model

146 P. Wüchner, J. Sztrik, H. de Meer

extensions by including phase-type distributions are discussed in Section 7.
Each of the K sources is generating primary requests to the retrial queue with

rate λ as long as the source is not waiting for a response to an active (i.e., in
service or orbiting) request. A primary request first checks whether an idle server
is available. If all c identical servers are busy, the primary request enters the orbit
instead and retries to get service with rate ν. If a request finds at least one server
idle, it starts to receive service with service rate µ. After being serviced, a response
is returned to the requesting source. With a probability of p, where 0 6 p 6 1,
at service completion instant, the server carries out orbital search and instantly
fetches a request, if available, directly from the orbit (denoted by the link symbol).

The finite-source retrial queue with orbital search can be evaluated numerically
quite easily by using the MOSEL-2 performance evaluation tool. The corresponding
MOSEL-2 model is shown in Listing 1. The interested reader is referred to [39]
for a short introduction to MOSEL-2. In [40, 41] similar models and discussion of
MOSEL-2’s scalability are presented in the context of finite-source retrial queues.

1 /∗∗∗ CONSTANTS AND PARAMETERS ∗∗/
2 CONST K := 3 ; // popu la t ion s i z e
3 CONST mu := 1 ; // s e rv i c e rat e
4 PARAMETER lambda := 0 .0001 , 0 .1 . . 1 STEP 0 . 1 ; // reques t gen . ra te
5 PARAMETER nu := 0.001 , 0 .0025 , 0 . 0 05 ; // r e t r i a l rat e
6 PARAMETER p := 1E−8, 0 . 5 , 1−1E−8; // search p r o ba b i l i t y
7
8 /∗∗∗ NODES ∗∗∗/
9 NODE Sources [K] := K; // the sources

10 NODE Request [1] := 0 ; // primary reques t s
11 NODE Server [1] := 0 ; // the server
12 NODE Orbit [K] := 0 ; // the o r b i t
13 NODE Fin i shed [1] := 0 ; // response
14
15 /∗∗∗ RULES ∗∗∗/
16 FROM Sources TO Request RATE Sources ∗lambda ; // primary reques t s
17 FROM Request TO Server PRIO 1 ; // to server i f i d l e
18 FROM Request TO Orbit PRIO 0 ; // to o r b i t i f busy
19 FROM Orbit TO Server RATE Orbit∗nu ; // r e t r i a l s
20 FROM Server TO Fin i shed RATE mu; // s e rv i c e
21 FROM Fini shed TO Sources WEIGHT 1−p ; // wi thout orb . search
22 FROM Finished , Orbit TO Server , Sources WEIGHT p ; // with o r b i t a l search
23
24 /∗∗∗ RESULTS ∗∗∗/
25 PRINT rho := UTIL(Server) ; // server u t i l i z a t i o n
26 PRINT M := MEAN(Orbit)+MEAN(Server) ; // mean # ac t i v e req .
27 PRINT S := K−M; // mean # ac t i v e sources
28 PRINT N := MEAN(Orbit) ; // mean # or b i t
29 PRINT ml := S∗lambda ; // mean throughput
30 PRINT T := M/ml ; // mean response time
31 PRINT To := N/ml ; // mean o r b i t time
32 PRINT R := nu∗To ; // mean # r e t r i a l s

Listing 1: MOSEL-2 model of finite-source retrial queue with
orbital search.

Fig. 2 shows the mean response time T as a function of request generation rate
λ for K = 3 sources, c = 1 server, service rate µ = 1. We chose different values
of retrial rate ν and orbital-search probability p. The curves labeled “num” are
obtained by using MOSEL-2’s numerical analysis.

These results show a maximum of the mean response time but they are not
detailed enough to estimate the exact location of the maximum (in the following
denoted as λpeak). This is achieved more accurately by the dashed curves (labeled
“expl”) which are, in fact, derived using the closed-form equations developed in

Investigating the mean response time in finite-source retrial queues. . . 147

Section 5. Hence, in the following, we aim at finding an explicit equation for the
mean response time T as a function of λ and further model parameters. Afterwards,
we discuss whether this equation can be differentiated with respect to λ and whether
is is possible to find the roots of the derivation which would lead to an explicit
equation of λpeak.

Figure 2: Mean response time T over request generation rate λ
for service rate µ = 1 and different values of retrial rate ν and

orbital-search probability p.

3. Underlying Markov chain

Theorem 3.1. The behavior of the finite-source retrial queue with orbital search as
described in Section 2 can be modeled by a bivariate continuous-time, finite-state
Markov chain (CTMC) with state variable X(t) = (N(t), C(t)), where variable
N(t) is the number of customers in the orbit and variable C(t) is the number of
busy servers at time t > 0. Furthermore, this CTMC has a unique steady-state
distribution π(i, j), with i = 0, . . . ,K − c, and j = 0, . . . , c.

Proof. Due to the memoryless property of the solely exponentially distributed
inter-event times, the sojourn times of X(t) are also exponentially distributed,
hence the process is a Markov chain.

It is easy to see that X(t) has a finite number of states and is irreducible for
all reasonable (i.e., strictly positive) values of λ, µ, and ν. Hence, the underlying
stochastic process is positive recurrent which also implies ergodicity. Ergodicity
again implies the existence and uniqueness of steady-state probabilities (see [18,
p. 69–70]). �

Note that the order of the variables N(t) and C(t) within X(t) is chosen to
reflect the structure (levels and phases) of the underlying Markov chain.

148 P. Wüchner, J. Sztrik, H. de Meer

In the following, we restrict our investigation to the case K = 3 and c = 1 to
preserve conciseness and traceability. Directions for K > 3 and c > 1 are given in
Section 7. The state transition diagram of the corresponding CTMC is shown in
Fig. 3.

Figure 3: State transition diagram of finite-source retrial queue
with orbital search for K = 3 and c = 1.

Note that for p = 0, Fig. 3 reduces to the state transition diagram of the
classical M/M/1/3/3 finite-source retrial queue without orbital search. On the
other hand, for p = 1, Fig. 3 reduces to the state transition diagram of the classical
M/M/1/3/3–First-Come-First-Served (FCFS) queue.

The CTMC shown in Fig. 3 can be structured according to levels reflecting
the number of customers in the orbit N(t). Each level consists of two phases
indicating the state of the server given by C(t). Moreover, the CTMC constitutes
a finite quasi-birth-death process (QBD), which is skip-free in both directions. This
structure is also reflected in the block-tridiagonal form of the infinitesimal generator
matrix Q of the CTMC given by

Q =

A(0) Λ(0) 0

M(1) A(1) Λ(1)

0 M(2) A(2)

 , (3.1)

where the sub-matrices

A(0) =

(
−3λ 3λ
µ −2λ− µ

)
, Λ(0) =

(
0 0
0 2λ

)
,

A(1) =

(
−2λ− ν 2λ
(1 − p)µ −λ− µ

)
, Λ(1) =

(
0 0
0 λ

)
,

A(2) =

(
−λ− 2ν λ
(1 − p)µ −µ

)
, M(1) =

(
0 ν
0 pν

)
,

0 =

(
0 0
0 0

)
, M(2) =

(
0 2ν
0 pν

)
,

can be obtained by inspecting the transition rates given in Fig. 3. Note that the
notation of the sub-matrices is chosen in accordance to [29].

Investigating the mean response time in finite-source retrial queues. . . 149

4. Application of the GJL algorithm

To obtain the steady-state probabilities in closed form, we apply the computa-
tional algorithm proposed in [29]. For this, we exploit the relatively simple struc-
ture of the underlying Markov chain as presented in Section 3. For a thorough
explanation and proof of the GJL algorithm, we refer the interested reader to [29].

The GJL Algorithm is applied to the structured CTMC (i.e., finite QBD) given
in Sect. 3, where K = 3:

1. Calculation of Cn with 0 6 n 6 2:

C0 = A(0) =

(
−3λ 3λ
µ −2λ− µ

)
, (4.1)

C1 = A(1) + M(1)
(
−C−1

0 Λ(0)
)

=

(
−2λ− ν 2λ+ ν
(1 − p)µ −λ− (1 − p)µ

)
, (4.2)

C2 = A(2) + M(2)
(
−C−1

1 Λ(1)
)

=

(
−λ− 2ν λ+ 2ν
(1 − p)µ −(1 − p)µ

)
. (4.3)

2. Obtaining π2: Since the system π2C2 = (0, 0) is linearly dependent, we can
replace one equation of the system by the normalization condition π2

(
1
1

)
= 1 and

solve

π2

(
−λ− 2ν 1
(1 − p)µ 1

)
= (0, 1), (4.4)

instead. This leads to

π2 = 1
λ+(1−p)µ+2ν

(
(1 − p)µ λ+ 2ν

)
. (4.5)

3. Obtaining Pn, n = 2, 1, 0, recursively:

P2 = π2

= 1
λ+(1−p)µ+2ν

(
(1 − p)µ λ+ 2ν

)
, (4.6)

P1 = P2M
(2)
(
−C−1

1

)

= 1
λ+(1−p)µ+2ν

·
(

(1−p)µ2(λp+2ν)
λ(2λ+ν)

µ(λp+2ν)
λ

)
, (4.7)

P0 = P1M
(1)
(
−C−1

0

)

= 1
λ+(1−p)µ+2ν

·
(
µ3(λp+2ν)(2λp+ν)

6λ3(2λ+ν)
µ2(2ν+λp)(2λp+ν)

2λ2(2λ+ν)

)
. (4.8)

150 P. Wüchner, J. Sztrik, H. de Meer

4. Re-normalizing vector P = (P0,P1,P2): For this, we derive the normalization

constant PN as follows:

PN = P0

(
1
1

)
+ P1

(
1
1

)
+ P2

(
1
1

)

= 1
λ+(1−p)µ+2ν

1
6λ3(2λ+ν) P̃N , (4.9)

where P̃N is given by the term

P̃N = 2µ3ν2 + 5µ3νλp+ 2µ3λ2p2 + 6µ2λν2

+ 3µ2λ2νp+ 12µ2λ2ν + 6µ2λ3pν

+ 30µλ3 + 12µλ2ν2 + 12µλ4 + 12λ5

+ 30λ4ν + 12λ3ν2. (4.10)

In the following, we denote by Pi,j , i ∈ {0, 1, 2}, j ∈ {0, 1}, the j-th element of
vector Pi and with π(i, j) the steady-state probability of state (i, j), i.e., phase j
in level i. With Pi given by Eqs. (4.6) through (4.8) and PN given by Eq. (4.9), the
desired steady-state probabilities of the CTMC depicted in Fig. 3 can be derived
in closed form as follows:

π(0, 0) =
P0,0

PN
=
µ3(λp+ 2ν)(2λp+ ν)

P̃N
, (4.11)

π(0, 1) =
P0,1

PN
=

3λµ2(λp+ 2ν)(2λp+ ν)

P̃N
, (4.12)

π(1, 0) =
P1,0

PN
=

6λ2(1 − p)µ2(λp+ 2ν)

P̃N
, (4.13)

π(1, 1) =
P1,1

PN
=

6λ2µ(λp+ 2ν)(2λ+ ν)

P̃N
, (4.14)

π(2, 0) =
P2,0

PN
=

6λ3(1 − p)µ(2λ+ ν)

P̃N
, (4.15)

π(2, 1) =
P2,1

PN
=

6λ3(λ+ 2ν)(2λ+ ν)

P̃N
. (4.16)

5. Mean response time in closed form

In Section 4, closed-form expressions of the steady-state probabilities of the
underlying Markov chain were derived. These expressions are now used to obtain
the mean response time T in closed form.

Mean number of active requests M : The mean number of requests located in
service or in orbit is given by

M = π(0, 1) + π(1, 0) + 2π(1, 1) + 2π(2, 0)

Investigating the mean response time in finite-source retrial queues. . . 151

+ 3π(2, 1)

=
3λ

P̃N
(µ2λpν + 2µ2ν2 + 2λ2µ2p+ 4λµ2ν

+ 20λ2µν + 8λµν2 + 8λ3µ+ 12λ4

+ 30λ3ν + 12λ2ν2). (5.1)

Mean system throughput λ: The mean throughput of the finite-source retrial
queue with orbital search can be obtained from

λ = (K −M)λ

= 3λ

(
1 − λ

P̃N
(µ2λpν + 2µ2ν2 + 2λ2µ2p

+ 4λµ2ν + 20λ2µν + 8λµν2 + 8λ3µ

+ 12λ4 + 30λ3ν + 12λ2ν2)

)

=
3λΛ̃

P̃N
, (5.2)

where Λ̃ is defined as follows:

Λ̃ = µ(2µ2λ2p2 + 5µ2λpν + 2µ2ν2 + 4λ3µp

+ 2λ2µpν + 8λ2µν + 4λµν2 + 4λ4

+ 10λ3ν + 4λ2ν2). (5.3)

Mean response time T : The mean time spent by each request in the orbit and
the server can also be calculated by applying Little’s Law as follows:

T =
M

λ

=
1

Λ̃
(µ2λpν + 2µ2ν2 + 2λ2µ2p+ 4λµ2ν

+ 12λ4 + 20λ2µν + 8λµν2 + 8λ3µ

+ 30λ3ν + 12λ2ν2) (5.4)

In Fig. 4, we exemplarily plot the mean response time T as a function of re-
quest generation rate λ and retrial rate ν for service rate µ = 1 and orbital-search
probability p = 0.5 by employing Eq. (5.4). The presented closed-form equations
facilitate the retrieval of fine-grained results since, in general, they can be imple-
mented more efficiently than numerical analysis.

152 P. Wüchner, J. Sztrik, H. de Meer

Figure 4: Mean response time T (z-axis) over request generation
rate λ (x-axis) and retrial rate ν (y-axis) for service rate µ = 1 and

orbital-search probability p = 0.5.

6. Validation of closed-form equations

In this section, the closed-form equations derived in Section 5 are validated
against numerical results and against well-known closed-form equations of
M/M/1/K/K–FCFS queueing systems.

6.1. Comparison to numerical results

Table 1 compares results obtained from numerical analysis using MOSEL-2
(see Section 2) to results obtained by using the closed-form expressions presented
in Section 5 for λ = 0.1, ν = 0.0025, µ = 1, and p = 0.5. It can be seen that the
numerical results are very close to the closed-form results.

6.2. Comparison to M/M/1/K/K–FCFS system

As already mentioned in Section 3, the state-transition diagram given in Fig. 3
takes the form of the CTMC underlying an M/M/1/3/3–FCFS queueing system
for p = 1. Such finite-population FCFS systems are also known as Machine Re-
pairman Models (see [18, p. 252]), for which performance measures are available in

Investigating the mean response time in finite-source retrial queues. . . 153

Perf. Measure Num. Analysis Closed-Form Expression
ρ 0.239555 0.2395547133
M 0.604453 0.6044528670
S 2.39555 2.395547133
N 0.364898 0.3648981538
λ 0.239555 0.2395547133
T 2.52324 2.523235126
TO 1.52324 1.523235126
R 0.00380809 0.003808087814

Table 1: Model results for λ = 0.1, ν = 0.0025, µ = 1,
and p = 0.5.

closed form.
According to [18], the mean response time T of an M/M/1/K/K–FCFS queue

is given by

TFCFS =
K

µ(1 − π0)
− 1

λ
, (6.1)

where the steady-state probability of an idle server π0 is given by

π0 =
1

K∑
k=0

(
λ
µ

)k
K!

(K−k)!

. (6.2)

In the current scenario, where K = 3, Eq. (6.1) can be rewritten as

TFCFS =
3

µ(1 − π0)
− 1

λ

=
6λ2 + 4µλ+ µ2

(λ2 + 2µλ+ µ2)µ
. (6.3)

When setting p = 1 in Eq. (5.4), we equivalently get

T =
(
5µ2λν + 2µ2ν2 + 2µ2λ2 + 20λ2µν

+ 8λµν2 + 8µλ3 + 12λ4 + 30λ3ν + 12λ2ν2
)

/(
µ
(
5µ2λν + 2µ2λ2 + 2µ2ν2 + 4µλ3

+ 10λ2µν + 4λµν2 + 4λ4 + 10λ3ν

+ 4λ2ν2
))

=
6λ2 + 4µλ+ µ2

(λ2 + 2µλ+ µ2)µ

= TFCFS. (6.4)

154 P. Wüchner, J. Sztrik, H. de Meer

Hence, the two closed forms match in the case of p = 1. For the sake of com-
pleteness, we compare the mean response time T p of an M/M/1/3/3 retrial queue
with orbital search (µ = 1, ν = 0.001, p = 0.1 . . . 0.9) with the mean response time
TFCFS of an M/M/1/3/3–FCFS queue (µ = 1) in Fig. 5.

Figure 5: Mean response times T p and TFCFS over request
generation rate λ.

As expected, T p gets close to TFCFS for p ≈ 1. It can also be seen that
all curves get close to each other for high values of the request generation rate
λ. High generation rates lead to high server utilization. The server is then kept
busy by primary requests even if the orbital search probability p is low. Also for
high values of ν (compared to µ), the behavior of finite-source retrial queues with
orbital search should be close to the behavior of an M/M/1/K/K–FCFS queueing
system. This statement is confirmed by Fig. 6, where the mean response times T ν
of an M/M/1/3/3 retrial queue with orbital search (µ = 1, ν = 0.1 . . . 20, p = 0.1),
and TFCFS of the M/M/1/3/3–FCFS queue (µ = 1) are compared.

It can be seen that for high values of ν, T ν gets close to TFCFS. Again, for high
server utilization, T ν becomes independent of ν.

Note that all results of Figs. 5 and 6 are obtained using Eqs. (5.4) and (6.3).

7. Discussion of approach

7.1. Location of maximum

To find an equation for λpeak, i.e., the arrival rate of the maximum mean re-

sponse time, in closed form, we need to find the roots of equation dT
dλ . However,

according to Eq. (5.4), T is quite complex already for this simple model. The re-
sulting equation derived from dT

dλ is a ratio of high order polynomials for which the
roots could be found numerically, but unfortunately not in a closed form.

Investigating the mean response time in finite-source retrial queues. . . 155

Figure 6: Mean response times T ν and TFCFS over request
generation rate λ.

7.2. Further performance measures

Unfortunately, our forseen goal to provide a closed-form equation for the max-
imum’s location cannot be achieved. However, by using the steady-state probabil-
ities presented in Section 4, further performance measures of the discussed retrial
queue can be derived in closed form.

For example, Eqs. (4.11) through (4.16) can be readily used together with the
equations provided in our previous work [40, Sec. 2.3] to obtain steady-state perfor-
mance measures like the server utilization, the mean number of orbiting customers,
the mean waiting time, etc. in closed form.

7.3. Model generalization

While in Sections 3 through 6, for the sake of clearness, the investigation is
restricted to K = 3 and c = 1 to show the principles, we now discuss the applica-
bility of the method for a higher number of sources and servers as well as phase-type
service.

7.3.1. Increasing the number of sources

The GJL Algorithm employed in Section 4 can be applied in principle also for
higher values of K. If K is increased, the number of levels of the underlying CTMC
(recall Fig. 3) increases, but the number of phases in each level stays the same,
i.e., two. As a consequence, matrix Q (recall Eq. (3.1)) will grow by one additional
column and one additional row of 2 × 2 sub-matrices per each additional source.
The number of the matrices Cn increases (0 6 n 6 K−1) but not their size (2×2).
This results in additional iteration steps in Steps 1 and 3 of the GJL Algorithm
but the matrices Cn can still be inverted explicitly in a relatively compact way.

156 P. Wüchner, J. Sztrik, H. de Meer

7.3.2. Increasing the number of servers

If the number of servers is increased, then also the size of square matrices Cn

increases. By using, e.g., Eq. (7.1) (cf. [37]):

C−1
n =

1

det(Cn)
adj(Cn), (7.1)

the matrices Cn can still be inverted explicitly. This, however, increases the effort
and leads to even more complex closed-form equations.

7.3.3. Increasing the number of service phases

The method can also be used in case of a single server which conducts phase-type
service with a finite number of service phases. Comparable to Section 7.3.2, this
results in additional phases within the Markov chain and in larger Cn matrices,
which can still be inverted explicitly. The proposed method cannot be applied
directly to multiple-server retrial queues with phase-type service, since this implies
higher-dimensional Markov chains.

8. Conclusion and future work

In this paper, we present steady-state probabilities and the mean response time
of single-server finite-source retrial queues with orbital search and three sources
in closed form. The equations are derived by adopting an algorithm introduced
in [29]. The results are validated against results obtained by numerical analysis
and against closed-form equations well-known for M/M/1/K/K–FCFS queueing
systems.

It could be shown that due to the high complexity of the derived equations,
it is not possible to derive the location of the mean response time’s maximum in
closed form. However, using the derived closed-form equations of the steady-state
probabilities gives raise to other interesting performance measures in closed-form
as well.

Our planned future work includes applying the algorithm to a higher number
of sources and servers, phase-type service, and unreliable servers. It may also be
worthwhile to study approximate solutions for higher numbers of sources, servers,
and service phases.

9. Acknowledgments

This research is partially supported by the German-Hungarian Intergovernmen-
tal Scientific Cooperation, HAS-DFG, 436 UNG 113/197/0-1, by the Hungarian
Scientific Research Fund, OTKA K60698/2006, by the AutoI project (STREP,
FP7 Call 1, ICT-2007-1-216404), by the ResumeNet project (STREP, FP7 Call 2,

Investigating the mean response time in finite-source retrial queues. . . 157

ICT-2007-2-224619), by the SOCIONICAL project (IP, FP7 Call 3, ICT-2007-3-
231288), and by the EuroNF Network of Excellence (FP7, IST 216366).

The first author is especially grateful to the participants of the Dagstuhl Semi-
nar on “Numerical Methods for Structured Markov Chains” (07461) for very fruitful
discussions.

References

[1] Aissani, A., Artalejo, J., “On the single server retrial queue subject to break-
downs,” Queueing Systems, vol. 30, (1998) 309–321.

[2] Alfa, A.S., Isotupa, K.S., “An M/PH/k retrial queue with finite number of
sources,” Computers and Operations Research, vol. 31, (2004) 1455–1464.

[3] Alfa, A.S., Li, W., “PCS networks with correlated arrival process and retrial phe-
nomenon,” IEEE Transactions on Wireless Communications, vol. 1, no. 4, (October
2002) 630–637.

[4] Almasi, B., Bolch, G., Sztrik, J., “Heterogeneous finite-source retrial queues,”
University of Erlangen-Nuremberg, Erlangen, Germany, Tech. Rep. TR-I4-02-04,
2004.

[5] Almasi, B., Roszik, J., Sztrik, J., “Homogeneous finite-source retrial queues with
server subject to breakdowns and repairs,” Mathematical and Computer Modelling,
vol. 42, (2005) 673–682.

[6] Artalejo, J.R., “Retrial queues with a finite number of sources,” J. Korean Math.
Soc., vol. 35, (1998) 503–525.

[7] Artalejo, J.R., “Accessible bibliography on retrial queues,” Mathematical and
Computer Modelling, vol. 30, (1999) 1–6.

[8] Artalejo, J.R., “A classified bibliography of research on retrial queues: Progress
in 1990-1999,” TOP, vol. 7, (1999) 187–211.

[9] Artalejo, J.R., “Stationary analysis of the characteristics of the M/M/2 queue
with constant repeated attempts,” Opsearch, vol. 33, no. 2, (1996) 83–95.

[10] Artalejo, J.R., Chakravarthy, S.R., “Computational analysis of the maximal
queue length in the MAP/M/c retrial queue,” Applied Mathematics and Computa-
tion, vol. 183, (2006) 1399–1409.

[11] Artalejo, J.R., Chakravarthy, S.R., “Algorithmic analysis of the maximum level
length in general-block two-dimensional Markov processes,” Mathematical Problems
in Engineering, vol. 2006, (2006) 1–15.

[12] Artalejo, J.R., Chakravarthy, S.R., “Algorithmic analysis of the MAP/PH/1
retrial queue,” TOP, vol. 14, no. 2, (2006) 293–332.

[13] Artalejo, J.R., Chakravarthy, S.R., Lopez-Herrero, M.J., “The busy pe-
riod and the waiting time analysis of a MAP/M/c queue with finite retrial group,”
Stochastic Analysis and Applications, vol. 25, (2007) 445–469.

[14] Artalejo, J.R., Economou, A., Lopez-Herrero, M.J., “Algorithmic analysis of
the maximum queue length in a busy period for the M/M/c retrial queue,” INFORMS
J. on Computing, vol. 19, no. 1, (2007) 121–126.

158 P. Wüchner, J. Sztrik, H. de Meer

[15] Artalejo, J.R., Gómez-Corral, A., Retrial Queueing Systems: A Computational
Approach. Springer Verlag, 2008.

[16] Artalejo, J.R., Joshua, V.C., Krishnamoorthy, A., “An M/G/1 retrial queue
with orbital search by the server,” in Advances in Stochastic Modelling, J. R. Artalejo
and A. Krishnamoorthy, Eds. NJ: Notable Publications Inc., (2002) 41–54.

[17] Avrachenkov, K., Yechiali, U., “Retrial networks with finite buffers and their
application to internet data traffic,” Probability in the Engineering and Informational
Sciences, vol. 22, (2008) 519–536.

[18] Bolch, G., Greiner, S., Meer, H., Trivedi, K., Queueing Networks and Markov
Chains, 2nd ed. New York: John Wiley & Sons, 2006.

[19] Chakka, R., Do, T.V., “The MM
∑K

k=1
CPPk/GE/c/L G-Queue and Its Appli-

cation to the Analysis of the Load Balancing in MPLS Networks.” in Proc. of 27th
Annual IEEE Conference on Local Computer Networks (LCN 2002), 6-8 November
2002, Tampa, FL, USA, (2002) 735–736.

[20] Chakka, R., Do, T.V., “The MM
∑K

k=1
CPPk/GE/c/L G-queue with heteroge-

neous servers: Steady state solution and an application to performance evaluation,”
Performance Evaluation, vol. 64, (March 2007) 191–209.

[21] Chakravarthy, S.R., Krishnamoorthy, A., Joshua, V., “Analysis of a multi-
server retrial queue with search of customers from the orbit,” Performance Evalua-
tion, vol. 63, no. 8, (2006) 776–798.

[22] Choi, B.D., Chang, Y., “Single server retrial queues with priority calls,” Mathe-
matical and Computer Modelling, vol. 30, (1999, invited paper) 7–32.

[23] Cohen, J.W., “Basic problems of telephone traffic theory and the influence of re-
peated calls,” Philips Telecommun. Rev., vol. 18, no. 2, (1957) 49–100.

[24] Do, T.V., “An efficient solution to a retrial queue for the performability eval-
uation of DHCP,” Computers and Operations Research, vol. In Press, Cor-
rected Proof, (2009) [Online]. Available: http://www.sciencedirect.com/science/

article/B6VC5-4WGVPXN-1/2/48b8e2e8550847fd28abec83ff41f72d

[25] Dudin, A.N., Krishnamoorthy, A., Joshua, V., Tsarenkov, G.V., “Analysis
of the BMAP/G/1 retrial system with search of customers from the orbit.” Eur. J.
Operational Research, vol. 157, no. 1, (2004) 169–179.

[26] Falin, G., “A survey of retrial queues,” Queueing Systems, vol. 7, no. 2, (1990)
127–167.

[27] Falin, G., Artalejo, J., “A finite source retrial queue,” Eur. J. Operational Re-
search, vol. 108, (1998) 409–424.

[28] Falin, G., Templeton, J., Retrial Queues. Chapman & Hall, 1997.

[29] Gaver, D., Jacobs, P., Latouche, G., “Finite birth-and-death models in ran-
domly changing environments,” Adv. Appl. Prob., vol. 16, (1984) 715–731.

[30] Hanschke, T., “Explicit formulas for the characteristics of the M/M/2/2 queue
with repeated attempts,” Appl. Prob., vol. 24, (1987) 486–494.

[31] Kulkarni, V.G., Liang, H.M., Frontiers in Queueing: Models and Applications
in Science and Engineering. CRC Press, 1997, ch. Retrial queues revisited, 19–34.

Investigating the mean response time in finite-source retrial queues. . . 159

[32] Marsan, M.A., Carolis, G., Leonardi, E., Lo Cigno, R., Meo, M., “Efficient
estimation of call blocking probabilities in cellular mobile telephony networks with
customer retrials,” IEEE Journal on Selected Areas in Communications, vol. 19,
no. 2, (February 2001) 332–346.

[33] Neuts, M.F., Ramalhoto, M.F., “A service model in which the server is required
to search for customers,” Appl. Prob., vol. 21, no. 1, (March 1984) 157–166.

[34] Roszik, J., Kim, C., Sztrik, J., “Retrial queues in the performance modeling of
cellular mobile networks using MOSEL,” International Journal of Simulation: Sys-
tems, Science and Technology, vol. 6, (2005) 38–47.

[35] Roszik, J., Sztrik, J., Virtamo, J., “Performance analysis of finite-source retrial
queues operating in random environments,” Int. J. Operational Research, vol. 2, no. 3,
(2007) 254–268.

[36] Sherman, N.P., Kharoufeh, J.P., “An M/M/1 retrial queue with unreliable
server,” Operations Research Letters, vol. 34, (2006) 697–705.

[37] Stewart, G.W., “On the adjugate matrix,” Linear Algebra and its Applications,
vol. 283, (1998) 151–164.

[38] Sztrik, J., Almasi, B., Roszik, J., “Heterogeneous finite-source retrial queues
with server subject to breakdowns and repairs,” Math. Sciences, vol. 132, (2006)
677–685.

[39] Wüchner, P., Meer, H., Barner, J., Bolch, G., “A brief introduction to
MOSEL-2,” in Proc. of MMB 2006 Conference, R. German and A. Heindl, Eds.,
GI/ITG/MMB, University of Erlangen. VDE Verlag, 2006.

[40] Wüchner, P., Sztrik, J., Meer, H., “Homogeneous finite-source retrial queues
with search of customers from the orbit,” in Proc. of 14th GI/ITG Conference on
Measurement, Modelling and Evaluation of Computer and Communication Systems
(MMB 2008), Dortmund, Germany, March 2008.

[41] Wüchner, P., Sztrik, J., Meer, H., “Finite-source M/M/S retrial queue with
search for balking and impatient customers from the orbit,” Computer Networks,
vol. 53, (2009) 1264–1273.

[42] Wüchner, P., Sztrik, J., Meer, H., “The impact of retrials on the performance
of self-organizing systems,” Praxis der Informationsverarbeitung und Kommunikation
(PIK), vol. 31, no. 1, (March 2008) 29–33.

[43] Yang, T., Templeton, J.G.C., “A survey on retrial queues,” Queueing Systems,
vol. 2, (1987) 201–233.

Patrick Wüchner, Hermann de Meer
Faculty of Informatics and Mathematics, University of Passau
Innstraße 43, 94032 Passau, Germany
e-mail: {patrick.wuechner,hermann.demeer}@uni-passau.de

János Sztrik
Faculty of Informatics, University of Debrecen
Egyetem tér 1, P.O. Box 12
4010 Debrecen, Hungary
e-mail: jsztrik@inf.unideb.hu

Methodological papers

Annales Mathematicae et Informaticae

36 (2009) pp. 163–174
http://ami.ektf.hu

Teaching programming language in
grammar schools

Zoltán Hernyák, Roland Király

Eszterházy Károly College, Department of Information Technology

Submitted 6 October 2009; Accepted 10 December 2009

Abstract

In Hungary algorithmical thinking is a part of teaching informatics both in
primary and secondary grammar schools. A teacher usually starts with some
everyday algorithm, taking examples from cooking or solving a mathematical
or physical problem. The steps of the solutions are usually represented in
a flow diagram. This diagram is a graphical representation of the algorithm
steps including decision symbols. With these decision symbols, selections and
iterations can be applied.

Unfortunately, the common ways of describing algorithms are far from
functional thinking, therefore it is rather difficult for teachers to find materials
on teaching functional programming. On the other hand, programming and
trying the algorithm in a functional way is much easier as in the imperative
way ([3], [4]).

The next step is usually the description of the algorithm by a sentence-
like language, which is very close to BASIC programming language. At this
point the teacher switches to a programming language, like Pascal, BASIC,
C# [17], or any OOP [9] supportive or OOP language [9], all of which are
imperative languages.

These languages were taught to teachers during their studies, and are
used in their workplaces, in grammar schools as well. We believe that the
functional programming paradigm is raising nowadays, and getting more and
more important. In this paper we are trying to show and prove that this pro-
gramming style is appropriate for teaching programming in grammar schools.

1. Introduction

The mathematical fundamentals of functional programming are based on
Church’s lambda-calculus theory which he invented in 1932–33. Turing proved

163

164 Z. Hernyák, R. Király

that the effectively evaluable functions interpreted on non-negative integers follow-
ing the lambda-calculus are the same as the ones that are computable by the Turing
machine commonly utilized by imperative languages. Thus every task which can
be solved by imperative languages are as well solvable in functional languages, and
vice versa.

There are several functional languages, which can be used to code the algo-
rithms. Most of them can be downloaded and use for free, and has some sort of
IDE (Integrated Development Environment).

Erlang is a development of Ericson and Ellemtel Computer Science Laborato-
ries. Erlang is a programming language in that it is possible to develop concurrent,
real-time, distributed and highly error-tolerant systems. Ericson uses the Open
Telecom Platform extension of Erlang to develop telecommunication systems. The
language has internal methods to achieve that without shared memory distributed
applications communicate through signaling among themselves. It supports inte-
grating components written in different programming languages, but is generally a
weakly typed language.

Haskell is an advanced purely functional programming language. An open
source product of more than twenty years of cutting edge research, it allows rapid
development of robust, concise, correct software. With strong support for integra-
tion with other languages, built-in concurrency and parallelism, debuggers, pro-
filers, rich libraries and an active community, Haskell makes it easier to produce
flexible, maintainable high-quality software.

Clean is a non-profit development as a functional programming language, with
many similarities to Haskell. With the ObjectIO library extension of Clean, one
can develop interactive applications having menus, and dialog windows.

In Hungary at Eötvös Lóránd University the functional programming paradigm
is used both in education and in scientific researches and projects. There are
attempts to include functional languages in education abroad too.

We use Clean functional programming language as a reference language to solve
some basic algorithmic problems. The Clean System is a software development sys-
tem for developing applications in Clean. The Clean System is available on many
platforms (PC, Mac, SUN) and operating systems (Windows’95/’98/2000/NT,
Linux, MacOS, Solaris). The main platforms are PC and Mac. The Clean System
is a full-fledged system that can be used in industrial environments. The Clean
System is a commercial product of Hilt–High Level Software Tools B.V. Clean can
be downloaded from its homepage, http://clean.cs.ru.nl/index.html.

We do not intend to give a full language reference here, as many information
is available in [5] and [15]. We give just a short introduction on how this language
(and other functional languages) can be used as a reference language in teaching
the implementation of simple algorithms.

Short introduction to Clean language. First we show how simple the usual
Hello World! program (see Example 1) is. A one-module Clean program starts
with the keyword “module” which is followed by the module name. It must be

Teaching programming language in grammar schools 165

equivalent with the file name, so if the module name is helloWorld, the source code
must be saved to helloWorld.icl. The second line imports the StdEnv (standard
environment), which holds the prototypes of the most important library functions
and type definitions.

The Start expression is the replacement of the C-like main function. The eval-
uation of the Start expression creates the result of the functional program itself.
The first program demonstrates how simple the Hello World! program is.

Clean source code

1 module helloWorld

2 import StdEnv

3

4 Start = "Hello World!"

Example 1: Hello World!

In the following examples the first two lines are not shown, we should concen-
trate on the significant lines. In example 2 we assign a numerical expression as
the result of the program. In a console application this expression is evaluated and
written on the screen.

Clean source code
1 Start = 3-2*4

Example 2: Numeric expression

In a functional program we do not have the usual variables, but we can use sim-
ple constant value functions similarly to the variables, or constants. In Example 3,
a and b are functions, which evaluate to the values 2 and 3. As local functions,
they are defined inside the Start expression’s scope, using the where keyword.

Clean source code
1 Start = a+b

2 where

3 a=2

4 b=3

Example 3: Using functions

The previous examples have demonstrated how easy the very first steps are in
the functional world. Not only simple, but also more complicated types can be
used as a result of the program. For example we can define lists easily, and use
them as result (see Example 4).

Clean source code

1 Start = resultList

2 where

3 resultList = [1,3,4,5,6,7,9,4,3,5,6,7,8,4,3]

Example 4: Define list

166 Z. Hernyák, R. Király

A special datatype called tuple can be found in functional languages. Tuples
can be imagined as records without defining its naming the fields. Tuples are values
keeping together. We can refer to the values of a tuple by their serial numbers only
(1st element, 2nd element, etc.). With tuples we can define functions that return
more than one value at a time. In example 5 the Start expression returns a tuple
of a string and an integer value. Running this program will show both elements on
the screen (separating by commas), writing 3+2=,5.

Clean source code
1 Start = ("3+2=",3+2)

Example 5: Returning tuple

Defining a function usually does not require the description of the function type,
it is inferred by the deduction system included in the compiler. We must give a
name to the parameter and define the result. In this example we define a function
called increment, which only has one argument, named a. We define the result of
this function as a+1. The type deduction system will know that the type of the a
can be anything that the additive operator with an integer value can interpret. We
call this function in the Start expression, and give the value of 3 to it. The type
deduction system will check if its type (integer) can be added to another integer,
and will generate an increment function with this specific type.

Clean source code
1 Start = increment 3

2

3 increment a = a+1

Example 6: User defined function

Note that calling a function means writing its name and after a space, defining
the value for its parameter. There’s no need for the C-style function to call oper-
ators (parentheses). Nor we use parentheses when a parameter value is a complex
expression (see Example 7).

Clean source code

1 Start = decrement (increment 3)

2

3 increment a = a+1

4 decrement a = a-1

Example 7: Calling a function

In example 7 we want to evaluate the inner expression first (increment 3), then
pass its value to function decrement.

We can use patterns to define different function bodies for different input argu-
ments. In this example we decrement every positive value by one, but decrementing
zero means returning the zero value itself (see Example 8).

When we write decrement 0 (it means “ if the first parameter’s value equals to
0”), we define the function result as 0. In other cases we define the function result

Teaching programming language in grammar schools 167

Clean source code
1 decrement 0 = 0

2 decrement a = a-1

Example 8: Using patterns

as a-1. Note that adding a negative value to the function will trigger the second
variant of the function body, as a negative value is not equal to 0. We can define
different cases for negative values, but not with the pattern match (as we cannot
write all the patterns for all the negative numbers), but we can write a guardian
term (see Example 9).

A guard is a boolean expression that can be inserted between the patterns of
a function alternative and the symbol =. The symbol | separates the patterns
and the guard. The alternative is only applied when the guards yield True. Each
function clause can have a sequence of guarded right-hand sides.

This time we first check if the value of n is less than m or not. If less, we
define the function result as the value of m, because it is the maximum of the two
numbers. In every other case we define the function result as n, as it holds the
maximum value.

Clean source code
1 maximum n m

2 | n<m = m

3 | otherwise = n

Example 9: Using guard

In example 9 we used the word otherwise and it seems as it would be a keyword
for these cases, but it is not. The word otherwise is a constant function, always
returning with the value of true. That means we could write the word True instead
(see Example 10). Note that we can define more than two cases at the same time,
writing more guard terms.

Clean source code
1 maximum n m

2 | n<m = m

3 | True = n

Example 10: Using True instead of otherwise

Pattern matching can be applied not only to simple values, but also to lists. In
example 11 the first pattern matches to the empty list, and returns zero. The second
pattern matches to a list containing one value only. In this case, the parameter
named x will holds the value of this element. The third pattern will match to a
list which has at least one element. The first element’s value will be represented
by x in this case, the remaining list goes to tail, which means that in this case x is
a simple element, and tail is a list of elements. Note that the last pattern matches
to a one-element list too, and in that case tail will be an empty list.

168 Z. Hernyák, R. Király

Clean source code
1 count [] = 0

2 count [x] = 1

3 count [x:tail] = 2

Example 11: Patterns of list

We use the colon operator to add (insert) an element to a list. Note that it will
not modify the original list, but will create a brand new list, as function side-effects
are denied in functional languages. Function insert in Example 12 will insert the
parameter value of a after the first element of the list by constructing a brand new
list.

Clean source code
1 insert a [x:tail] = [x:a:tail]

Example 12: Inserting a value into a list

2. Examples of using functional programming
methods

Element of a set. Now we will discuss the basic algorithm of determining if a
given value is an element of a set or not. The set is given as a list of integer values.
Normally it is given in imperative algorithm in 13.

Imperative algorithm
1 algorithm isElement

2 parameters x:integer, h:list of integer

3 start

4 i:=1

5 while i<=length of h and h[i]<>x

6 i := i+1

7 end of while

8 return (i<=length of h)

9 end of algorithm

Example 13: isElement as imperative algorithm

If the functional paradigm is used to write the previous program, the function
can be evaluated in two ways. The first clause is evaluated if the set is empty, so
value x cannot be element of this empty set. In the second case we separate the
set into two parts, an element of the set, and the remains of the set (tail). We can
say that x is an element of this set, if it equals to the separated element of the
set, or if it is an element of the remaining set (see Example 14). We can use this
isElementOf function as in the example 15.

Teaching programming language in grammar schools 169

Clean source code
1 isElementOf x [] = False

2 isElementOf x [a:tl]

3 | x==a = True

4 | otherwise = isElementOf x tl

Example 14: isElementOf function

Clean source code
1 Start = isElementOf 3 mySet

2 where

3 mySet = [1,2,3,5,6,8]

Example 15: Use of isElementOf

Counting of elements. Counting the elements can be carried out similarly to
the exampe above. The empty list has zero elements, in other cases we can define
the length of the list by counting one element at a time (see Example 16).

Clean source code
1 countingElements [] = 0

2 countingElements [x:tl] = 1 + countingElements tl

Example 16: countingElements function

When we want to count those elements only that have a P property (in this
example, the elements that are even), we should modify this function a little by
introducing a guard expression. With that we can separate two cases: whether the
first element of the list has P property or not (see Example 17).

Clean source code
1 countingElementsEvens [] = 0

2 countingElementsEvens [x:tl]

3 | isEven x = 1 + countingElementsEvens tl

4 | otherwise = countingElementsEvens tl

Example 17: counting of P property

Note that the isEven function is a library function, and its parameter type
must be Int, and its result has to be a boolean value (see Example 18). In Clean,
however, we do not need to define the type of a function, in simple cases the type
inference system will deduce that. If we want to define a function type explicitly, we
can use the double colon after which we can list the types of the input parameters.
After the arrow we can give the result type.

Clean source code
1 isEven::Int->Bool

Example 18: Prototype of isEven

We can define our own function that has one int parameter only and results

170 Z. Hernyák, R. Király

a bool, too. In example 19 we define an isGood function, which checks if the
parameter is in range of [4 . . . 8).

Clean source code
1 isGoodElement::Int->Bool

2 isGoodElement x = (4<x) && (x<8)

Example 19: User defined isGoodElement function

Fortunately, functions in Clean can be passed easily as a parameter, if their
names are given. We can define the counting of elements algorithm by using the
P property function as a parameter. If we want to define the type of countingEle-
mentsAny function, the first parameter is a list of integers, the second is a function
which needs one integer, and returns bool.

Clean source code

1 countingElementsAny:: [Int] (Int->Bool) -> [Int]

2 countingElementsAny [] isP = 0

3 countingElementsAny [x:tl] isP

4 | isP x = 1 + countingElementsAny tl isP

5 | otherwise = countingElementsAny tl isP

Example 20: Defining countingElementsAny function

Giving a function as a parameter is very simple, but its type matches only with
one parameter. Without explicitly defining the type of countingElementsAny, the
type inference system will deduce the same. In the Start expression we can call
this function by giving a list and a function as a parameter (see Example 21).

Clean source code
1 Start = countingElementsAny myList isGoodElement

2 where

3 myList = [1,3,4,5,6,7,9,4,3,5,6,7,8,4,3]

Example 21: Calling the countingElementsAny general function

Index of an element. Suppose to have a specific value and a list of values. We
need to know what the index of the specific value inside the list is. If it is not in
the list, the function must return with 0.

In the first case, the element cannot be found in the empty list, so it returns
with 0. In the second case, if the first element equals to the given one, we have its
index, and it can return it. Otherwise, we try to determine the index of the value
in the remaining list (tail). If we found a good index value (other than zero), we
must increase that with 1, because we removed the first element of the tail, and
therefore the indices in the tail are shifted by one. If we cannot found the element
in the tail, we return with 0 as well (see Example 22).

Teaching programming language in grammar schools 171

Clean source code
1 indexOf e [] = 0

2 indexOf e [x:tl]

3 | e==x = 1

4 | index>0 = 1+index

5 | otherwise = 0

6 where

7 index = indexOf e tl

Example 22: Calling the countingElementsAny general function

The maximum of elements. Let’s suppose we have a list of integers (a set of
integers), and need to determine their maximum value. We give a possible solution
for this problem as the myMaxList function in example 23. We have chosen this
name because a maxList function exists in the StdEnv standard library.

Clean source code
1 myMaxList [e] = e

2 myMaxList [e:tl]

3 | e>max = e

4 | otherwise = max

5 where

6 max = myMaxList tl

Example 23: myMaxList

Sum of elements. Let’s suppose we have a list of elements, and we have to
determine the sum of these elements. We can define a genSum function, which
takes a list of integers, and generates the sum of the elements recursively as we
show in example 24.

Clean source code

1 genSum [] = 0

2 genSum [x:tl] = x + genSum tl

Example 24: Clean program

Selecting of elements. Let’s suppose we have a list of elements, and we need
the sublist of the values, gathering the ones with a P property. Let’s say we have
an isP function which can decide whether an element has a P property or not. The
solution is very similar to the countingOfElementsAny (see in example 20). An
empty list has no elements with P properties. Otherwise, if the first element has
P property, we will insert it into result before the remaining selected elements, or
else it returns the selected elements of the tail (see Example 25).

172 Z. Hernyák, R. Király

Clean source code
1 selectingElementsAny [] isP = []

2 selectingElementsAny [x:tl] isP

3 | isP x = [x : selectingElementsAny tl isP]

4 | otherwise = selectingElementsAny tl isP

Example 25: Selecting elements

Merging two lists into one. Let’s suppose we have two ordered lists, and we
have to merge them into one list, keeping the ordering as well. The solution in
example 26 handles two different cases. When one of the lists is empty, the result
is the another (possibly not the empty) list. Otherwise, when either lists are not
empty, we can take the first element of both lists, and decide which is less. If the
first element of the first list is the least (named x in the function), insert it into
the beginning of the result, and process the remaining lists. The same is the case
when the first element of the second list is less.

Clean source code
1 merging [] b = b

2 merging a [] = a

3 merging [x:xtl] [y:ytl]

4 | x<y = [x : merging xtl [y:ytl]]

5 | otherwise = [y : merging [x:xtl] ytl]

Example 26: Merging elements

Intersect of two sets. Let’s suppose, we have two sets, and we have to determine
the intersection of the two sets. We can use the isElement function defined above,
and a solution is given in example 27.

Clean source code

1 intersect [] _ = []

2 intersect [x:tl] b

3 | isElement x b = [x : intersect tl b]

4 | otherwise = intersect tl b

Example 27: intersection of two sets

The underscore sign in the pattern matches to any value (like the joker char
matches to any file name). In this case, we can interpret the first pattern as follows:
if the first argument is an empty list, the second argument can be anything. This
function can be called from anywhere, as described in example 28.

Quick Sort. We can define the Quick Sort algorithm as in example 29. We use
a special list construction mode, which is very close to the mathematical way of
giving a set. The [x \\ x <- r | x<e] means: construct a list of elements
x, where x comes from a list named r, and x is less than the value of e. The ++

operator concatenates two lists together.

Teaching programming language in grammar schools 173

Clean source code
1 Start = intersect set1 set2

2 where

3 set1 = [1,2,3,5,6,8]

4 set2 = [1,3,4,5,7,8,9]

Example 28: Calling intersect

Clean source code
1 qsort [] = []

2 qsort [e:r] = qsort [x \\ x <- r | x<e]

3 ++ [e] ++

4 qsort [x \\ x <- r | x>=e]

Example 29: qsort function

3. Conclusion

The most important element of the functional languages is the function. As
all functional programs are built up of the composition of functions, it is simple
to write example algorithms with the help of functions. Experience shows that
students have a strong indisposition for using functions, list expressions or pattern
matching. The reason for this is that their way of thinking is based on imperative
grounds, and that technology is averse in imperative programs. As the use of
guards have grounds in imperative paradigms, they can be easily substituted by a
kind of switch control structure.

When writing simple functions, the variables, or rather the iterations are missing
from the imperative way of thinking. Despite considering them nice and elegant,
students do not like using recursive solutions because of their difficulty level. This
is so, because they use the already acquired imperative solutions as a starting point,
and cannot replace iterations with recursive functions. Most undergraduates find
the use of function parameters very exciting, and discover their advantages soon.

After acquiring the functional programming technology, they can view and use
algorithms on a higher level of abstraction. This has an impact on their imperative
programming style and development. The use of recursive functions often causes
problems for beginner programmers, because their training in that field is insuffi-
cient. They rarely come across functional thinking in other fields or subjects, like
mathematics.

They can hardly get used to regarding a function as a complete prototype while
writing it. At the same time, these properties of the functions drive them to learn,
as they know and feel that the solution is simple, and they know the principle (the
imperative algorithm). They work assiduously on their ideas because they know
that they will succeed.

174 Z. Hernyák, R. Király

References

[1] Joosten, S., Berg, K., Hoeven, G., Teaching functional programming to first-
year students Journal of Functional Programming (1993), 3:49–65 Cambridge Uni-
versity Press Cambridge University Press 1993 doi:10.1017/S0956796800000599.

[2] Thompson, S., Wadler, P., Functional programming in education? Introduction
Journal of Functional Programming (1993), 3:3–4 Cambridge University Press Cam-
bridge University Press 1993 doi:10.1017/S0956796800000563.

[3] Járdán T., Pomaházi S., Adatszerkezetek és algoritmusok Liceum Kiadó.

[4] Csőke L., Garamhegyi G., Adatszerkezetek és algoritmusok Liceum kiadó.

[5] Nyékiné Gaizler J. (szerk), Programozási Nyelvek, Kiskapu Kft, 2003.

[6] Barendregt, H.P., The lambda Calculus, its Syntax and Semantics, Amsterdam,
North-Holland, 1984.

[7] Csörnyei Zs., Lambda kalkulus - előadás jegyzet (kézirat). http://people.inf.

elte.hu/csz/lk-jegyzet.html.

[8] Horváth, Z., Kozsik, T., Teaching of Parallel and Distributed Software Design,
Hudák Stefan, Kollár Ján(ed.) in.: Proceedings of the Sixth International Scientific
Conference on Electronic Computers and Informatics, ECI 2004 September 22-24
Kosice-Herlány, Slovakia , ISBN.

[9] Porkoláb, Z., Zsók, V., Teaching Multiparadigm Programming Based on Object-
Oriented Programming, in.: 10th Workshop on Pedagogies and Tools for the Teach-
ing and Learning of Object-Oriented Concepts, TLOOC Workshop, ECOOP 2006,
Nantes Nantes, France.

[10] Horváth Z., Kozsik T., Lövei L., Szoftverrendszerek fejlesztésének oktatása pro-
jektfeladat keretén belül ELTE 2009.

[11] Erlang Consulting. 2008 Obfuscated Erlang Programming Competition homepage.
http://www.erlang-consulting.com/obfuscatederlang.html.

[12] Barklund, J., Virding, R., Erlang Reference Manual, 1999. Available from http:

//www.erlang.org/download/erl_spec47.ps.gz. 2007.06.01.

[13] Plasmeijer, R. Eekelen, M., Functional Programming and Parallel Graph
Rewriting, Addison-Wesley, 1993.

[14] Achten, P., Wierich, M., A Tutorial to the Clean Object I/O Library, University
of Nijmegen, 2000. http://www.cs.kun.nl/~clean.

[15] Plasmeijer, R., Eekelen, M., Clean Language Report v2.1, http://clean.cs.ru.
nl/download/Clean20/doc/CleanLangRep.2.1.pdf.

[16] http://www.haskell.org/.

[17] http://msdn.microsoft.com/en-us/library/aa645596.

Zoltán Hernyák
Roland Király
Eszterházy Károly College
Department of Information Technology
H-3300 Eger, Eszterházy tér 1.
e-mail: {hz,serial}@aries.ektf.hu

Annales Mathematicae et Informaticae

36 (2009) pp. 175–180
http://ami.ektf.hu

A purely geometric proof of the uniqueness
of a triangle with given lengths of one side

and two angle bisectors

Victor Oxman

Western Galilee College, Acre, Israel

Submitted 24 September 2009; Accepted 10 November 2009

Abstract

We give a proof of triangle congruence on one side and two angle bisectors
based on purely Euclidean geometry methods.

Keywords: Triangle, angle bisector, Steiner-Lehmus theorem

MSC: 51M04, 51M05, 51M25

1. Introduction

In [1, 2] the uniqueness of a triangle with given lengths of one side and two
angle bisectors was proven with the help of calculus methods. In this note we give
a purely geometric proof of this fact.

2. The uniqueness of a triangle with given lengths

of one side and two adjacent angle bisectors

Lemma 2.1. Suppose that triangles ABC and A’B’C’ have an equal side AB=A’B’
and equal angle bisectors AL=A’L’. Let ∠CAB < ∠C′A′B′. Then AC<A’C’.

Proof. Let LB = KB,L′B′ = K ′B′ (Figure 1). Then ∠AKB = ∠ALC and
∆ACL ∼ ∆ABK, AC/AB = AL/AK. Similarly A′C′/A′B′ = A′L′/A′K ′ =
AL/A′K ′. Let BN⊥AK,B′N ′⊥A′K ′. ∠CAB < ∠C′A′B′, then
∠LAB < ∠L′A′B′ and so AN > A′N ′.AK = 2AN −AL > A′K ′ = 2A′N ′ −AL.
Then AC/AB < A′C′/A′B′ and AC < A′C′ . �

175

176 V. Oxman

Figure 1

Theorem 2.2. If one side and two adjacent angle bisectors of a triangle ABC are
respectively equal to one side and two adjacent angle bisectors of a triangle A’B’C’,
then the triangles are congruent.

Proof. Denote the two angle bisectors of ∆ABC by AD and BE and let
AD = A′D′, BE = B′E′, AB = A′B′. If ∠ABC = ∠A′B′C′, then
∠ABE = ∠A′B′E′ ⇒ ∆ABE ∼= ∆A′B′E′ ⇒ ∠BAC = ∠B′A′C′ ⇒
∆ABC ∼= ∆A′B′C′.
Suppose that the triangles ABC and A′B′C′ have a common side AB and the
adjacent angle bisectors of ∆ABC are respectively equal to the adjacent angle
bisectors of ∆A′B′C′ (AD = A′D′, BE = B′E′). We have to consider two cases.
Case 1. ∠ABC > ∠A′B′C′ and ∠BAC > ∠B′A′C′. Let us suppose that C′ is in
the interior of the triangle ACF (CF is the altitude of the triangle ACB) or C′ is
on CF , C′ does not coincide with C (see Figure 2). We denote K = AD∩CF and

Figure 2

A purely geometric proof . . . 177

M = C′B ∩ CF .

AC′ < AC ⇒ AC

AB
=
CD

DB
>
AC′

AB
=
C′D′

D′B
>
MD′

D′B
,

so (DD′) ∩ (CF) = P and M is an interior point of interval CP . ∆DAD′ is
isosceles and therefore ∠KD′P > 90◦, but 90◦ > ∠AKF > ∠KD′P and so we
have a contradiction with ∠KD′P > 90◦. So C′ can not be in the interior of the
triangle ACF or on CF . Similarly we get that C′ can not be in the interior of the
triangle BCF .
So the Case 1 is impossible.
Case 2. ∠ABC < ∠A′B′C′ and ∠BAC > ∠B′A′C′ (Figure 3).
We have AC > AC′ and BC′ > BC (Lemma 2.1). So ∠CC′A > ∠ACC′ and

Figure 3

∠C′CB > ∠CC′B. But ∠ACC′ > ∠C′CB and ∠CC′B > ∠CC′A. Then we
again get a contradiction and this case is impossible too. �

3. The uniqueness of a triangle with given lengths
of one side, one adjacent angle bisector and the

opposite angle bisector

Lemma 3.1. Suppose that triangles ABC and A’B’C’ have an equal side AB=A’B’
and equal angle bisector AL=A’L’. Let ∠BAC < ∠B′A′C′. Then BC<B’C’.

Proof. By Lemma 2.1 we get AC < A′C′. Let BH⊥AC and B′H ′⊥A′C′ (Fig-
ure 4). So AH > A′H ′and BH < B′H ′. Then CH = |AH − AC| < C′H ′ =

Figure 4

178 V. Oxman

|A′H ′ − A′C′| and so we have two right-angled triangles CHB and C′H ′B′ with
CH < C′H ′ and BH < B′H ′. Let H ′F = HC and H ′K = HB (Figure 5). So

Figure 5

FK = CB. If FK||C′B′, then FK < C′B′. Suppose ∠FKH ′ > ∠C′B′H ′. Let
C′P ||FK. Then C′P > FK. ∠C′PB′ is an obtuse angle and so C′B′ > C′P >
FK = CB. �

Theorem 3.2. If one side, one adjacent angle bisector and the opposite angle
bisector of a triangle ABC are respectively equal to one side, one adjacent angle
bisector and the opposite angle bisector of a triangle A’B’C’, then the triangles are
congruent.

Proof. Denote the two angle bisectors of triangles ABC and A′B′C′ by AD,A′D′

and CE,C′E′ correspondently and let AD = A′D′, CE = C′E′, AB = A′B′. Sim-
ilarly to the proof of Theorem 2.2 we conclude that if ∠BAC = ∠B′A′C′ then the
triangles are congruent. Let ∠BAC < ∠B′A′C′, then A′C′ > AC and C′B′ > CB
(Lemma 2.1, 3.1). We prove that C′E′ > CE. Let ∠B”A′D′ = ∠C”A′D′ =
∠BAD,A′B” = AB,A′C” = AC (Figure 6), then ∆B”A′C′ ∼= ∆BAC (A′D′ is a
common angle bisector of the triangles B′A′C′ and B”A′C”).
We have to consider 3 cases.

Figure 6

Case 1. Point C” is in the interior of ∆C′A′D′ (include interval D′C′).

A purely geometric proof . . . 179

In [3 ,Theorem 3] it was proven that in this case C”E” = CE < C′E′.
Case 2. Point C” is in the exterior of ∆C′A′D′ and ∠A′C”B” = ∠ACB >
∠A′C′B′. Let C1A

′ = CA, ∠A′C1B1 = ∠ACB, ∠C1A
′B1 = ∠CA′B

(Figure 7).
So ∆C1A

′B1
∼= ∆CAB. According to [3, Lemma 1] the bisector of ∠A′C1B1

Figure 7

is less than the bisector of ∠A′C′B1. Let C′L be the triangle A′C′B1 bisec-
tor. ∠B1A

′C′ < ∠B′A′C′, so C′B1 < C′B′ (the purely geometric proof of this
fact was given in Euclid’s Elements, Book 1, proposition 24). Then B1L/LA

′ =
C′B1/C

′A′ < C′B′/C′A′ = B′E′/E′A′. A′B1 = A′B′ and so ∠B1LE
′ is an obtuse

angle and ∠C′LE′ > ∠B1LE
′ > 90◦. Then C′E′ > C′L > CE.

Case 3. Point C” is in the exterior of ∆C′A′D′ and ∠A′C”B” = ∠ACB <
∠A′C′B′. Let C′B2||C1B1 and let C′L1 be the angle bisector of the triangle
A′C′B2 (Figure 8). Then C′L1 > CE. C′B2 < C′B′ and again B2L1/L1A

′ =
C′B2/C

′A′ < C′B′/C′A′ = B′E′/E′A′, ∠C′L1E
′ is an obtuse angle and C′E′ >

C′L1 > CE. �

Figure 8

4. Notes

From each one of Theorem 2.1 and of [3,Theorem 3] the Steiner-Lehmus Theo-
rem obviously follows and so these theorems provide its pure geometric proof.

180 V. Oxman

References

[1] Oxman,V., On the existence of triangles with given lengths of one side and two
adjacent angle bisectors, Forum Geom., 4 (2004) 215–218.

[2] Oxman,V., On the Existence of Triangles with Given Lengths of One Side, the Op-
posite and One Adjacent Angle Bisectors, Forum Geom., 5 (2005) 21–22.

[3] Oxman,V., A Purely Geometric Proof of the Uniqueness of a Triangle With Pre-
scribed Angle Bisectors, Forum Geom., 8 (2008) 197–200.

Victor Oxman
Western Galilee College, Acre, Israel
e-mail: victor.oxman@gmail.com

