31 research outputs found

    High-level synthesis for FPGAs: From prototyping to deployment

    Get PDF
    Abstract-Escalating System-on-Chip design complexity is pushing the design community to raise the level of abstraction beyond RTL. Despite the unsuccessful adoptions of early generations of commercial high-level synthesis (HLS) systems, we believe that the tipping point for transitioning to HLS methodology is happening now, especially for FPGA designs. The latest generation of HLS tools has made significant progress in providing wide language coverage and robust compilation technology, platform-based modeling, advancement in core HLS algorithms, and a domain-specific approach. In this paper we use AutoESL's AutoPilot HLS tool coupled with domain-specific system-level implementation platforms developed by Xilinx as an example to demonstrate the effectiveness of state-of-art C-to-FPGA synthesis solutions targeting multiple application domains. Complex industrial designs targeting Xilinx FPGAs are also presented as case studies, including comparison of HLS solutions versus optimized manual designs. Index Terms-Domain-specific design, field-programmable gate array (FPGA), high-level synthesis (HLS), quality of results (QoR)

    A framework for assertion-based timing verification and PC-based restbus simulation of automotive systems

    Get PDF
    Innovation in der Automobilindustrie wird durch Elektronik und vor allem durch Software ermöglicht. In der Regel wird eine Vielzahl von verteilten Funktionen realisiert. Typischerweise, wird diese Software über mehrere Steuergeräte verteilt. Durch die Verteilung und die Vielzahl an Funktionen ensteht eine immer wachsende Komplexität, die den Verifikations- und Validierungsprozess anspruchsvoller und schwieriger gestaltet. Daher ist für Ingenieure in der Automobilindustrie die Entwicklung von effizienten und effektiven Design-Methoden von großem Interesse.Ein zentrales Element in der Entwicklung automobiler Software ist der komponentebasierten Ansatz. Derzeit ist AUTOSAR der wichtigste Standard, der dieses Paradigma unterstützt. Die Systembeschreibungssprache SystemC ist ebenfalls ein Mittel, um AUTOSAR-Komponenten simulieren zu können. Desweiteren stellt SystemC einen Satz von Bibliotheken zur Verfügung wie zum Beispiel die „SystemC Verification Library“ (SCV), und einen diskreten Event-Simulationskern. Inzwischen ist das Interesse an der Verwendung von SystemC in der automobile Softwareentwicklung stark gestiegen.In dieser Arbeit stellen wir eine SystemC-basierte Entwurfsmethodik für eine frühe Validierung zeitkritischer automobile Systeme vor. Die Methodik reicht von einer reinen SystemC-Simulation bis zu einer PC-basierten Restbussimulation. Um die Synchronisation bezüglich Überabtastung und Unterabtastung zwischen dem SystemC-Simulationsmodell und dem Restbus während der Restbussimulation zu gewährleisten, präsentieren wir ein Synchronisationsverfahren. Im Rahmen dieser Arbeit wurde für die Integration von SystemC-Komponenten IP-XACT als Modelierungsstandard verwendet. Um eine Zeitanalyse ermöglichen zu können, stellen wir Erweiterungen für den IP-XACT-Standard vor, mit deren Hilfe Zeitanforderungen anAutomotive system innovation is mainly driven by software which can be distributed over a large number of functions typically deployed over several ECUs. This growing design complexity makes the verification and validation process challenging and difficult. Therefore, the development of efficient and effective design methodologies is of great interest for automotive engineers.A central concept in the development of automotive software is the component-based approach. Currently, the most prominent approach that supports this design paradigm is the AUTOSAR. The SLDL SystemC provides means to simulate the behavior of AUTOSAR software components by means of a discrete-event simulation kernel. Additionally, SystemC comes with a set of libraries such as the SCV. Meanwhile, the interest of using SystemC has grown in the automotive software development community. In this thesis we present a SystemC-based design methodology for early validation of time-critical automotive systems. The methodology spans from pure SystemC simulation to PC-based Restbus simulation. To deal with synchronization issues (oversampling and undersampling) that arise during Restbus simulation between the SystemC simulation model and the remaining bus network, we also present a new synchronization approach. Finally, we make use IP-XACT for SystemC component integration. To capture timing constraints on the simulation model, we propose timing extensions for the IP-XACT standard. These timing constraints can then be used to verify the SystemC simulation model.Tag der Verteidigung: 11.09.2015Paderborn, Univ., Diss., 201

    SystemC Through the Looking Glass : Non-Intrusive Analysis of Electronic System Level Designs in SystemC

    Get PDF
    Due to the ever increasing complexity of hardware and hardware/software co-designs, developers strive for higher levels of abstractions in the early stages of the design flow. To address these demands, design at the Electronic System Level (ESL) has been introduced. SystemC currently is the de-facto standard for ESL design. The extraction of data from system designs written in SystemC is thereby crucial e.g. for the proper understanding of a given system. However, no satisfactory support of reflection/introspection of SystemC has been provided yet. Previously proposed methods for this purpose %introduced to achieve the goal nonetheless either focus on static aspects only, restrict the language means of SystemC, or rely on modifications of the compiler and/or parser. In this thesis, approaches that overcome these limitations are introduced, allowing the extraction of information from a given SystemC design without changing the SystemC library or the compiler. The proposed approaches retrieve both, static and dynamic (i.e. run-time) information

    A Problem-Oriented Approach for Dynamic Verification of Heterogeneous Embedded Systems

    Get PDF
    This work presents a virtual prototyping methodology for the design and verification of industrial devices in the field level of industrial automation systems. This work demonstrates that virtual prototypes can help increase the confidence in the correctness of a design thanks to a deeper understanding of the complex interactions between hardware, software, analog and mixed-signal components of embedded systems and the physical processes they interact with

    Pre-validation of SoC via hardware and software co-simulation

    Get PDF
    Abstract. System-on-chips (SoCs) are complex entities consisting of multiple hardware and software components. This complexity presents challenges in their design, verification, and validation. Traditional verification processes often test hardware models in isolation until late in the development cycle. As a result, cooperation between hardware and software development is also limited, slowing down bug detection and fixing. This thesis aims to develop, implement, and evaluate a co-simulation-based pre-validation methodology to address these challenges. The approach allows for the early integration of hardware and software, serving as a natural intermediate step between traditional hardware model verification and full system validation. The co-simulation employs a QEMU CPU emulator linked to a register-transfer level (RTL) hardware model. This setup enables the execution of software components, such as device drivers, on the target instruction set architecture (ISA) alongside cycle-accurate RTL hardware models. The thesis focuses on two primary applications of co-simulation. Firstly, it allows software unit tests to be run in conjunction with hardware models, facilitating early communication between device drivers, low-level software, and hardware components. Secondly, it offers an environment for using software in functional hardware verification. A significant advantage of this approach is the early detection of integration errors. Software unit tests can be executed at the IP block level with actual hardware models, a task previously only possible with costly system-level prototypes. This enables earlier collaboration between software and hardware development teams and smoothens the transition to traditional system-level validation techniques.Järjestelmäpiirin esivalidointi laitteiston ja ohjelmiston yhteissimulaatiolla. Tiivistelmä. Järjestelmäpiirit (SoC) ovat monimutkaisia kokonaisuuksia, jotka koostuvat useista laitteisto- ja ohjelmistokomponenteista. Tämä monimutkaisuus asettaa haasteita niiden suunnittelulle, varmennukselle ja validoinnille. Perinteiset varmennusprosessit testaavat usein laitteistomalleja eristyksissä kehityssyklin loppuvaiheeseen saakka. Tämän myötä myös yhteistyö laitteisto- ja ohjelmistokehityksen välillä on vähäistä, mikä hidastaa virheiden tunnistamista ja korjausta. Tämän diplomityön tavoitteena on kehittää, toteuttaa ja arvioida laitteisto-ohjelmisto-yhteissimulointiin perustuva esivalidointimenetelmä näiden haasteiden ratkaisemiseksi. Menetelmä mahdollistaa laitteiston ja ohjelmiston varhaisen integroinnin, toimien luonnollisena välietappina perinteisen laitteistomallin varmennuksen ja koko järjestelmän validoinnin välillä. Yhteissimulointi käyttää QEMU suoritinemulaattoria, joka on yhdistetty rekisterinsiirtotason (RTL) laitteistomalliin. Tämä mahdollistaa ohjelmistokomponenttien, kuten laiteajureiden, suorittamisen kohdejärjestelmän käskysarja-arkkitehtuurilla (ISA) yhdessä kellosyklitarkkojen RTL laitteistomallien kanssa. Työ keskittyy kahteen yhteissimulaation pääsovellukseen. Ensinnäkin se mahdollistaa ohjelmiston yksikkötestien suorittamisen laitteistomallien kanssa, varmistaen kommunikaation laiteajurien, matalan tason ohjelmiston ja laitteistokomponenttien välillä. Toiseksi se tarjoaa ympäristön ohjelmiston käyttämiseen toiminnallisessa laitteiston varmennuksessa. Merkittävä etu tästä lähestymistavasta on integraatiovirheiden varhainen havaitseminen. Ohjelmiston yksikkötestejä voidaan suorittaa jo IP-lohkon tasolla oikeilla laitteistomalleilla, mikä on aiemmin ollut mahdollista vain kalliilla järjestelmätason prototyypeillä. Tämä mahdollistaa aikaisemman ohjelmisto- ja laitteistokehitystiimien välisen yhteistyön ja helpottaa siirtymistä perinteisiin järjestelmätason validointimenetelmiin

    Re-use of tests and arguments for assesing dependable mixed-critically systems

    Get PDF
    The safety assessment of mixed-criticality systems (MCS) is a challenging activity due to system heterogeneity, design constraints and increasing complexity. The foundation for MCSs is the integrated architecture paradigm, where a compact hardware comprises multiple execution platforms and communication interfaces to implement concurrent functions with different safety requirements. Besides a computing platform providing adequate isolation and fault tolerance mechanism, the development of an MCS application shall also comply with the guidelines defined by the safety standards. A way to lower the overall MCS certification cost is to adopt a platform-based design (PBD) development approach. PBD is a model-based development (MBD) approach, where separate models of logic, hardware and deployment support the analysis of the resulting system properties and behaviour. The PBD development of MCSs benefits from a composition of modular safety properties (e.g. modular safety cases), which support the derivation of mixed-criticality product lines. The validation and verification (V&V) activities claim a substantial effort during the development of programmable electronics for safety-critical applications. As for the MCS dependability assessment, the purpose of the V&V is to provide evidences supporting the safety claims. The model-based development of MCSs adds more V&V tasks, because additional analysis (e.g., simulations) need to be carried out during the design phase. During the MCS integration phase, typically hardware-in-the-loop (HiL) plant simulators support the V&V campaigns, where test automation and fault-injection are the key to test repeatability and thorough exercise of the safety mechanisms. This dissertation proposes several V&V artefacts re-use strategies to perform an early verification at system level for a distributed MCS, artefacts that later would be reused up to the final stages in the development process: a test code re-use to verify the fault-tolerance mechanisms on a functional model of the system combined with a non-intrusive software fault-injection, a model to X-in-the-loop (XiL) and code-to-XiL re-use to provide models of the plant and distributed embedded nodes suited to the HiL simulator, and finally, an argumentation framework to support the automated composition and staged completion of modular safety-cases for dependability assessment, in the context of the platform-based development of mixed-criticality systems relying on the DREAMS harmonized platform.La dificultad para evaluar la seguridad de los sistemas de criticidad mixta (SCM) aumenta con la heterogeneidad del sistema, las restricciones de diseño y una complejidad creciente. Los SCM adoptan el paradigma de arquitectura integrada, donde un hardware embebido compacto comprende múltiples plataformas de ejecución e interfaces de comunicación para implementar funciones concurrentes y con diferentes requisitos de seguridad. Además de una plataforma de computación que provea un aislamiento y mecanismos de tolerancia a fallos adecuados, el desarrollo de una aplicación SCM además debe cumplir con las directrices definidas por las normas de seguridad. Una forma de reducir el coste global de la certificación de un SCM es adoptar un enfoque de desarrollo basado en plataforma (DBP). DBP es un enfoque de desarrollo basado en modelos (DBM), en el que modelos separados de lógica, hardware y despliegue soportan el análisis de las propiedades y el comportamiento emergente del sistema diseñado. El desarrollo DBP de SCMs se beneficia de una composición modular de propiedades de seguridad (por ejemplo, casos de seguridad modulares), que facilitan la definición de líneas de productos de criticidad mixta. Las actividades de verificación y validación (V&V) representan un esfuerzo sustancial durante el desarrollo de aplicaciones basadas en electrónica confiable. En la evaluación de la seguridad de un SCM el propósito de las actividades de V&V es obtener las evidencias que apoyen las aseveraciones de seguridad. El desarrollo basado en modelos de un SCM incrementa las tareas de V&V, porque permite realizar análisis adicionales (por ejemplo, simulaciones) durante la fase de diseño. En las campañas de pruebas de integración de un SCM habitualmente se emplean simuladores de planta hardware-in-the-loop (HiL), en donde la automatización de pruebas y la inyección de faltas son la clave para la repetitividad de las pruebas y para ejercitar completamente los mecanismos de tolerancia a fallos. Esta tesis propone diversas estrategias de reutilización de artefactos de V&V para la verificación temprana de un MCS distribuido, artefactos que se emplearán en ulteriores fases del desarrollo: la reutilización de código de prueba para verificar los mecanismos de tolerancia a fallos sobre un modelo funcional del sistema combinado con una inyección de fallos de software no intrusiva, la reutilización de modelo a X-in-the-loop (XiL) y código a XiL para obtener modelos de planta y nodos distribuidos aptos para el simulador HiL y, finalmente, un marco de argumentación para la composición automatizada y la compleción escalonada de casos de seguridad modulares, en el contexto del desarrollo basado en plataformas de sistemas de criticidad mixta empleando la plataforma armonizada DREAMS.Kritikotasun nahastuko sistemen segurtasun ebaluazioa jarduera neketsua da beraien heterogeneotasuna dela eta. Sistema hauen oinarria arkitektura integratuen paradigman datza, non hardware konpaktu batek exekuzio plataforma eta komunikazio interfaze ugari integratu ahal dituen segurtasun baldintza desberdineko funtzio konkurrenteak inplementatzeko. Konputazio plataformek isolamendu eta akatsen aurkako mekanismo egokiak emateaz gain, segurtasun arauek definituriko jarraibideak jarraitu behar dituzte kritikotasun mistodun aplikazioen garapenean. Sistema hauen zertifikazio prozesuaren kostua murrizteko aukera bat plataformetan oinarritutako garapenean (PBD) datza. Garapen planteamendu hau modeloetan oinarrituriko garapena da (MBD) non modeloaren logika, hardware eta garapen desberdinak sistemaren propietateen eta portaeraren aurka aztertzen diren. Kritikotasun mistodun sistemen PBD garapenak etekina ateratzen dio moduluetan oinarrituriko segurtasun propietateei, adibidez: segurtasun kasu modularrak (MSC). Modulu hauek kritikotasun mistodun produktu-lerroak ere hartzen dituzte kontutan. Berifikazio eta balioztatze (V&V) jarduerek esfortzu kontsideragarria eskatzen dute segurtasun-kiritikoetarako elektronika programagarrien garapenean. Kritikotasun mistodun sistemen konfiantzaren ebaluazioaren eta V&V jardueren helburua segurtasun eskariak jasotzen dituzten frogak proportzionatzea da. Kritikotasun mistodun sistemen modelo bidezko garapenek zeregin gehigarriak atxikitzen dizkio V&V jarduerari, fase honetan analisi gehigarriak (hots, simulazioak) zehazten direlako. Bestalde, kritikotasun mistodun sistemen integrazio fasean, hardware-in-the-loop (Hil) simulazio plantek V&V iniziatibak sostengatzen dituzte non testen automatizazioan eta akatsen txertaketan funtsezko jarduerak diren. Jarduera hauek frogen errepikapena eta segurtasun mekanismoak egiaztzea ahalbidetzen dute. Tesi honek V&V artefaktuen berrerabilpenerako estrategiak proposatzen ditu, kritikotasun mistodun sistemen egiaztatze azkarrerako sistema mailan eta garapen prozesuko azken faseetaraino erabili daitezkeenak. Esate baterako, test kodearen berrabilpena akats aurkako mekanismoak egiaztatzeko, modelotik X-in-the-loop (XiL)-ra eta kodetik XiL-rako konbertsioa HiL simulaziorako eta argumentazio egitura bat DREAMS Europear proiektuan definituriko arkitektura estiloan oinarrituriko segurtasun kasu modularrak automatikoki eta gradualki sortzeko

    A Holistic Approach to Functional Safety for Networked Cyber-Physical Systems

    Get PDF
    Functional safety is a significant concern in today's networked cyber-physical systems such as connected machines, autonomous vehicles, and intelligent environments. Simulation is a well-known methodology for the assessment of functional safety. Simulation models of networked cyber-physical systems are very heterogeneous relying on digital hardware, analog hardware, and network domains. Current functional safety assessment is mainly focused on digital hardware failures while minor attention is devoted to analog hardware and not at all to the interconnecting network. In this work we believe that in networked cyber-physical systems, the dependability must be verified not only for the nodes in isolation but also by taking into account their interaction through the communication channel. For this reason, this work proposes a holistic methodology for simulation-based safety assessment in which safety mechanisms are tested in a simulation environment reproducing the high-level behavior of digital hardware, analog hardware, and network communication. The methodology relies on three main automatic processes: 1) abstraction of analog models to transform them into system-level descriptions, 2) synthesis of network infrastructures to combine multiple cyber-physical systems, and 3) multi-domain fault injection in digital, analog, and network. Ultimately, the flow produces a homogeneous optimized description written in C++ for fast and reliable simulation which can have many applications. The focus of this thesis is performing extensive fault simulation and evaluating different functional safety metrics, \eg, fault and diagnostic coverage of all the safety mechanisms

    Moving Towards Analog Functional Safety

    Get PDF
    Over the past century, the exponential growth of the semiconductor industry has led to the creation of tiny and complex integrated circuits, e.g., sensors, actuators, and smart power systems. Innovative techniques are needed to ensure the correct functionality of analog devices that are ubiquitous in every smart system. The standard ISO 26262 related to functional safety in the automotive context specifies that fault injection is necessary to validate all electronic devices. For decades, standardizing fault modeling, injection and simulation mainly focused on digital circuits and disregarding analog ones. An initial attempt is being made with the IEEE P2427 standard draft standard that started to give this field a structured and formal organization. In this context, new fault models, injection, and abstraction methodologies for analog circuits are proposed in this thesis to enhance this application field. The faults proposed by the IEEE P2427 standard draft standard are initially evaluated to understand the associated fault behaviors during the simulation. Moreover, a novel approach is presented for modeling realistic stuck-on/off defects based on oxide defects. These new defects proposed are required because digital stuck-at-fault models where a transistor is frozen in on-state or offstate may not apply well on analog circuits because even a slight variation could create deviations of several magnitudes. Then, for validating the proposed defects models, a novel predictive fault grouping based on faulty AC matrices is applied to group faults with equivalent behaviors. The proposed fault grouping method is computationally cheap because it avoids performing DC or transient simulations with faults injected and limits itself to faulty AC simulations. Using AC simulations results in two different methods that allow grouping faults with the same frequency response are presented. The first method is an AC-based grouping method that exploits the potentialities of the S-parameters ports. While the second is a Circle-based grouping based on the circle-fitting method applied to the extracted AC matrices. Finally, an open-source framework is presented for the fault injection and manipulation perspective. This framework relies on the shared semantics for reading, writing, or manipulating transistor-level designs. The ultimate goal of the framework is: reading an input design written in a specific syntax and then allowing to write the same design in another syntax. As a use case for the proposed framework, a process of analog fault injection is discussed. This activity requires adding, removing, or replacing nodes, components, or even entire sub-circuits. The framework is entirely written in C++, and its APIs are also interfaced with Python. The entire framework is open-source and available on GitHub. The last part of the thesis presents abstraction methodologies that can abstract transistor level models into Verilog-AMS models and Verilog- AMS piecewise and nonlinear models into C++. These abstracted models can be integrated into heterogeneous systems. The purpose of integration is the simulation of heterogeneous components embedded in a Virtual Platforms (VP) needs to be fast and accurate

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues
    corecore