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1
I N T R O D U C T I O N A N D M O T I VAT I O N

We can only see a short distance
ahead, but we can see plenty there
that needs to be done.

Alan Turing [113]

The complexity of digital systems is increasing.
Ever since Gordon E. Moore projected that the amount of components

in integrated circuits would double every year in 1965 [75] (and later
revised that to every two years in 1975 [76]), his prediction would hold.
This exponential growth not only leads to faster and more complex sys-
tems, it also results in serious issues concerning their design: A current
18-core Intel Haswell Xeon chip consists of more than 5 billion transis-
tors [79] – nearly twice as many as there are base pairs in the human
DNA [115].

Being able to manufacture such large systems, while being an impres-
sive achievement by itself, still requires them to be designed in the first
place. This simple aspect is a serious problem for the development of
modern chips as the design tools must enable the designers to handle
such large systems: if these large systems cannot be designed, they can-
not be manufactured.

Classic Hardware Description Languages (HDLs) that have been de-
signed to model hardware are – by definition – close to the hardware
they describe. This also means that systems that are written using these
HDLs cannot easily be run and/or tested if the description is still incom-
plete. Thus, the development process becomes a bottom-up approach,
requiring designers to first build the system as a whole and then start
testing it. Issues with the overall architecture can therefore only be
found once the system has been fully implemented, making decisions
that need to revise architectural properties expensive and thus large sys-
tems tough to be designed.

Traditional HDLs hence struggle with the complexity of modern hard-
ware. In order to keep up with the manufacturing advances, the designs
are following a modular approach and the distinct parts are re-used. Es-
pecially in conjunction with well-scaling parts such as memory (which
can simply be “made larger” in order to gain the according benefits),
these larger designs can still be achieved – at least to a certain degree.
Still, complexity remains a key issue, especially for designs that cannot
be scaled easily or do not benefit from such a scaling. HDLs are there-
fore increasingly facing the issue of the design gap [35], i.e. the problem
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introduction and motivation

that systems cannot be designed in accordance to the available manufac-
turing capabilities due to their complexity.

In order to handle this complexity, more abstract description lan-
guages have been introduced. These so-called system level descriptions
are used to model the coarse structure using established features (such
as modules and signals) but use an underlying high-level programming
language (such as C++) to describe the detailed behaviour of these
parts. This means that a system can be prototyped more quickly and
the system as a whole may be tested before the actual hardware (or
software) parts have been implemented.

The current de-facto standard for system level design is SystemC [7].
Implemented as a C++ library and specified in an open standard [81],
it combines the benefits of an established high-level programming lan-
guage (such as tool chains, libraries, Integrated Development Environ-
ments (IDEs) etc.) with the ability to describe hardware designs on an
abstract level and simulate them despite being implemented in this ab-
stract way.

Although these system level languages strive to reduce the amount of
complexity needed to create a prototypical system design, the designs
still are considerably complex. To appropriately model all parts of a sys-
tem and their interactions, the design usually becomes quite large, even
when working on higher levels of abstraction. The sheer size of a de-
sign may make it difficult for new designers to join a project. Acquiring
knowledge about a design, either to introduce new members into a team
or to keep other people working on the project up to date with recent
changes, is therefore a critical part of the design process.

This Design Understanding can be approached in a variety of ways, de-
pending on the available sources of information. Reading the source
code of the design is usually inefficient and not an appropriate way of
starting to understand a design, especially for larger designs. While
a proper (manually created) documentation is usually the best way to
introduce designers to certain parts of the work, the creation and es-
pecially maintenance of a manual is a time-consuming (and therefore
expensive) process with no immediate benefit for a project, making it
sometimes infeasible to keep the documentation in an appropriate con-
dition.

Methods to automatically generate or retrieve more abstract represen-
tations of hardware designs to allow designers to quickly grasp impor-
tant structures are one way to approach the problem of imperfect, man-
ually created meta documents. The automatic generation of e.g. visual
representations of system designs is a common way to quickly allow
designers to take a glance at a system’s general structure. While this ap-
proach of course needs to address issues such as the complexity of the
resulting images [45] or the performance of the visualisation [58, 128],
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introduction and motivation

deriving the structure to be displayed from the source code has been a
straightforward procedure for classic HDLs.

System level descriptions in general and SystemC implementations
in particular level descriptions are, however, harder to analyse. The
hardware structures are not described statically as in classic HDLs but
instead are created dynamically at run-time, making a static analysis ap-
proach to extract the structure more difficult or even impossible. Addi-
tionally, C++ is an older language with lots of different dialects available
that is not even considered context-free. This means that writing a single
parser that could serve as a front end to analyse a design is an equally
futile task. Lastly, compilers are used to translate the system descrip-
tions into an executable form – in case of C++ binary code which can
directly be executed on a given computer. This means that once the pro-
gram has been processed to be executable, it is even harder or downright
impossible to analyse.

This work proposes new methods and approaches to analyse SystemC
designs despite these issues and without shifting the burden to the de-
signer (by e.g. requiring the source code to adhere to certain standards).
More precisely, the research question of this thesis is

How can the desired information from a given SystemC design be
extracted without assuming restricted language means and with-
out modifying the existing infrastructure like parsers or compilers?

This means that there are two core requirements to any solution. The
first is that the source code should be considered untouchable. If the
solution to the analysis problem is anything that requires major source
code alterations, the designers may as well simply add the required trac-
ing functionality to their code without utilizing another solution. As the
time required to use a solution can be directly translated to the money
that an engineer needs to be paid, the solution must be easily added in
order to prevent large costs for something like an analysis tool. The sec-
ond requirement is that the resulting method should be compatible to at
least all major C++ compilers (i.e. gcc, clang and Microsoft Visual C++
Compiler (MSVC++)). As SystemC adheres strictly to the C++ standard,
it can be used in any type of project, regardless of the code elements be-
ing used in them. This means that a SystemC project may use any C++
dialect to describe the system. Therefore, while an analysis tool may
not support each and every exotic framework available, any method to
analyse SystemC should at least be able to handle the source code used
on the major platforms.

These points are summarized as the trait of non-intrusiveness, describ-
ing that an existing project (encompassing both, infrastructure such as
compilers being used and the source code of the design itself) should not
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be altered by any analysis approach. It is an important issue concerning
the methods that can be used to analyse a system description and thus
represents a cornerstone of design decisions throughout this thesis.

The remainder of this thesis first gives an overview of existing HDLs
in general and SystemC in particular in Chapter 2. Afterwards, there
are four Chapters that provide the core contributions of this work.

• Chapter 3 illustrates how a static model describing the design can
be extracted from a SystemC description.

• Chapter 4 then shows how these techniques can be further refined
to be applied to running designs, allowing their behaviour to be
traced as well.

• Chapter 5 explains how information that was not retrieved using
the previous steps can be learned using approaches from the ma-
chine learning domain.

• Chapter 6 finally illustrates how these approaches can be applied
and shows the according use-cases.

Chapter 7 contains a brief summary of the thesis. It proposes several
research questions for potential future work as well.
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2
P R E L I M I N A R I E S

Simplicity does not precede
complexity, but follows it.

Alan Jay Perlis [86]

The physical elements that constitute a computer system are its Hard-
ware – as opposed to the Software, which is made up of the programs
and data which are executed and stored on a given hardware.

While the term hardware encompasses all physical parts of a com-
puter system [21] (i.e. including parts such as cases, keyboards, mounts
etc.), this work focuses on aspects of the design of Integrated Circuits
(ICs) (also referred to as microchips). These ICs are of electronic circuits
on a small plate of semiconductor material onto which the required parts
are applied [75].

Just like software (or any other system), hardware needs to be de-
signed. For small systems (as they were common during the early days
of computer systems), the hardware can be designed manually. In this
case, the elements and parts that are available in hardware (i.e. transis-
tors and connections) are set up and laid out until the system is ready
to be built. Figure 1 illustrates how this classic design on paper looks
like: parts of the design were simply drawn and described. While the
approach of doing this using pen and paper worked well for early, small
designs, modern ones consist of billions of transistors, each merely a few
nanometres in size.

Obviously, designing such systems manually, i.e. by simply laying out
hardware parts, is infeasible. To be able to handle designs of such scales,
several different hardware description languages were developed, each
with its own features and issues. The most distinct differences, how-
ever, can be seen regarding different abstraction layers. Hardware can
be described using various means. The available components that are
the obvious choice, leading to a fine-grained description of a hardware
design that can easily be manufactured. Another way is to use formu-
las that can be mapped to these components, allowing designers to use
mathematical constructs to describe a design. Various other abstraction
levels are also available, up to natural language: specifications written in
English are still hardware descriptions, albeit they may be inaccurate or
incomplete. This variety of description means allows designers to work
on systems using different granularities, depending on the precision,
speed and features being required for the process.
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preliminaries

Figure 1: The plan of a part of the Arithmetic and Logical Unit (ALU) of
Conrad Zuse’s Z11 [130].

This chapter gives an overview on hardware design paradigms, outlin-
ing different approaches to hardware design in Section 2.1. As this work
specifically focuses on aspects of designing hardware on the Electronic
System Level (ESL) using SystemC, Section 2.2 then focuses on this level
of abstraction and the SystemC library in particular.

hardware design approaches

Today’s approach to hardware design is layered, going from abstract
towards more detailed system descriptions. Each of these layers serves
a particular purpose, allowing designers to handle the respective design
tasks at the abstraction level that fits best a given goal.Different

abstraction
levels to
describe

hardware

transistors are the fundamental elements of current ICs. A tran-
sistor can be used to amplify or switch an electronic current. Combined
with the ability to manufacture them on small scales using modern pho-
tolithography (i.e. “printing” them onto semiconducting material), the
transistor has become the basic building block for all parts in an IC. The
Transistor Level is describing how these parts need to be connected for a
given circuit design, making it the lowest abstraction level.

When designing hardware systems, working on this lowest of all ab-
straction levels leads to large descriptions as even mundane systems
tend to require a large amount of transistors. Figure 1 illustrates the
complexity of these layouts. With even early computing machines suf-
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2.1 hardware design approaches

Battery

Battery
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b
z

Figure 2: AND gate built from transistors

Figure 3: Visualization of a hardware design at the gate level.

fering from the complexity of descriptions that relied on transistors as
their primary means of specification, it is obvious that designing systems
on this level is not a sustainable approach to hardware design. Instead,
while the translation to transistors (and their layout) is required for a
system to be built, this is usually done automatically in order to let de-
signers work on more abstract descriptions that allow them to handle a
given system’s complexity more easily.

the gate level is the first abstraction to the description of the tran-
sistors and their connections. As transistors can be used to model cer-
tain boolean functions, systems can be described using these and then
be directly mapped to their respective transistor counterparts. Figure 2

illustrates this relation, showing how an exemplary boolean AND can be
modelled using transistors. Figure 3 shows a visualization of a hardware
design at the gate level.

The advantage of this abstraction level is that there exists a direct
correspondence from a mathematical set of tools to a hardware design.
Thus, not only can formulas that are used to describe a system be trans-
lated into a hardware description but the methods developed in the field
of boolean algebra can directly be applied to improve a given design.

One approach to this abstraction level is the description of a combi-
natorial circuit using a truth table or Binary Decision Diagram (BDD),
both of which can easily be translated to a boolean function. Once this
is done, methods such as e.g. the Quine-McCluskey algorithm [67] can
be used to minimize this function. The resulting function is minimal,
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preliminaries

which means it uses fewer boolean operators and variables in order to
describe the same result. With boolean operations being implemented
as gates that can directly be translated to transistor descriptions, this
also means that the resulting circuit will use fewer transistors and thus
require less space (and thus be cheaper to produce). This illustrates
how the abstraction of using gates to describe a circuit can improve the
design process.

No registers in
boolean logic

Unfortunately though, using boolean functions to describe circuits not
only provides a rather small step concerning the abstraction of the de-
scription (and thus still results in large descriptions), it also practically
disregards the notion of persistent states. ICs can be divided into the
combinatorial logic (which can easily be described as a boolean func-
tion) and its registers that retain their state until specifically being set to
a new state. In order to make this defining feature of computer hardware
a core feature of the description as well (and thus be able to efficiently
design circuits that actually use it), another, even more abstract layer
was introduced.

the Register Transfer Level (RTL) focuses on the description
of registers and the logic that interconnects them (i.e. that transfers infor-
mation between registers – hence the name). This core idea of hardware
design on the Register Transfer Level (RTL) is therefore already close to
traditional (software) programming paradigms that rely on data and op-
erations. However, due to their intended usage as HDLs, languages that
describe hardware on the RTL have very distinct features that separate
them from modern high-level software programming languages. The
most prominent of these is their inherent parallelism. As hardware de-
scribes a set of transistors and intermediate wires, elements described in
these HDLs are not evaluated sequentially (as it is the case for software)
but instead represent a system where assignments happen in parallel.

The most famous examples of RTL HDLs are the VHSIC Hardware De-
scription Language (VHDL) [80] and Verilog [112].Verilog and

VHDL
Both of these were

regarded as “breakthroughs” [20] concerning the development of digi-
tal circuits after they were introduced as they finally enabled designers
to abstract from gate level designs. They both have been standardized
by the Institute of Electrical and Electronics Engineers (IEEE) [41, 42].
Figure 4 shows the visualization of an RTL hardware description.

Notice that these two languages have been extended over the years
and also include non-synthesizeable language constructs that allow de-
signers to more rapidly describe a circuit’s behaviour but require this
description to be altered or rewritten before it can actually translated
into hardware. While this seems to contradict the idea of RTL descrip-
tions being hardware descriptions, it illustrates the issue that hardware
design on the RTL faces: the level of abstraction no longer suffices to
describe hardware on the current level of complexity. However, larger
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2.1 hardware design approaches

Figure 4: Visualization of a hardware design at the RTL.

abstractions necessarily result in descriptions that may be executable but
not snythesizeable. Even simple means such as a loop that may be un-
bounded (i.e. has no well-defined upper bound concerning how often
it is executed) or a second wait statement in a process that lets a given
description wait for another signal in two different “locations” of its de-
scription are easy to execute but cannot be synthesized. This means that
the HDLs being used today offer designers the choice of (temporarily)
adding more abstract elements that limit the description to a simula-
tion for the sake of more quickly having a working prototype of a given
system.

the Electronic System Level (ESL) basically inverts this line of
thought. Instead of enriching RTL HDLs with abstract features, ESL de-
scriptions use already-abstract high-level programming languages and
add hardware-description capabilities to these.

This results in a much more “top-down” approach. As a system de-
scription can use all high-level constructs that are offered by its under-
lying programming language, a first prototype is usually established
quickly on the ESL. Especially the abundance of libraries for modern
software programming language helps speeding up this process: in-
stead of e.g. having to implement an image processing algorithm in a
language that is synthesizeable (or close to it), any existing library (such
as e.g. OpenCV [10] for an image processing problem) can be used to
add this functionality to a given ESL description. A “module”, i.e. a
block of the hardware design, is thus regarded as a black box – its inter-
nal workings remain hidden to the surrounding framework (and maybe
even the designer).

While certain parameters (such as the time that is required to calcu-
late a result in the final system) may need to be guessed or ignored for
the time being, this approach results in the ability to very rapidly see if
the architecture of a design works as intended. The detailed hardware
implementation is thus no longer part of the hardware description. ESL

descriptions
are executable
specifications

In-
stead, ESL designs give designers the ability to see if the anticipated
behaviour of the given parts of the design works as intended – and from
that point, gradually decrease the abstraction of the description until it
can be synthesized again. Generally, the ESL can thus be regarded as an
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executable specification: while it (mostly) cannot be synthesized, it can
simulate the desired behaviour and thus specifies in detail the interfaces
the final implementation needs to comply with.

the Formal Specification Level (FSL) adds another layer of
abstraction to even more rapidly design the cornerstones of a system.
Instead of providing an ESL-like executable specification, the Formal
Specification Level (FSL) focuses on the specifications of the system it-
self, sacrificing the executability to gain more abstraction and thus allow
designers to work more rapidly.

The Unified Modeling Language (UML) [9, 117] is the most promi-
nent example of a formal specification language. Focused on software
development, it allows designers to plan the structure of their applica-
tion, describe the desired behaviour or constrain the input and output
of functions using Object Constraint Language (OCL) constraints.

An adaption of the UML that instead focuses on the development
of hardware designs is the Systems Modeling Language (SysML). The
software-centric view of the UML is replaced with description means
for hardware designs, allowing designers to formally describe a system
before starting with an implementation on the ESL.

While these cannot be executed (and thus clearly offer fewer details
than the ESL designs), they enable designers to quickly develop unam-
biguous schematics for a given design. These can be used to e.g. com-
municate the design to other people who are part of the development
process (such as other designers, customers, management etc.) in an un-
derstandable fashion or even (due to their formal nature) locate errors
(such as deadlocks or oxymorons).

the Informal Specification Level (ISL) finally is the most ab-
stract way to describe a system. Using natural language and without
any further restrictions, the Informal Specification Level (ISL) is used to
draft out a system description as a first step.

While there are approaches to automatically analyse and process these
natural language specification [43], these approaches are neither com-
plete nor flawless and can in general only be considered an effort to
assist a manual translation to a less abstract description. Instead, any
natural language description on the ISL should be seen as a way to com-
municate between people, describing the system in the level of detail
that is required to achieve whatever aim the description serves.

The description means for hardware thus form a hierarchy from the
most abstract description to the least abstract one. Starting with the
ISL that has virtually no restrictions over the FSL that provides a for-
mal specification and the ESL that provides an executable specification,
the design is usually finalized on the RTL that provides a synthesize-
able description and can thus be automatically translated into hardware
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Figure 5: Today’s hardware design flow

schematics. Figure 5 illustrates these connections between the different
layers of hardware design approaches.

systemc

SystemC is a C++ library for modelling and simulating system designs
on the ESL. Like other ESL modelling frameworks, it provides means
to model hardware structures and a simulation kernel that provides
the needed logic to simulate the parallel behaviour that is inherent to
hardware designs. By providing descriptions means for both, hardware
concepts (like modules, signals, ports, etc.) and software concepts (like
class instantiations, function calls, memory allocation, etc.), it allows to
model and to execute hardware and software systems on various levels
of abstraction. While modules and their connections (both representing
parts of a hardware system) are instantiated, the logic behind those can
be both, made up of simulated hardware elements down to gate level or
just a software simulation of the behavior that is supposed to be realized
in hardware or software later on.

While a variety of ESL description libraries exist that extend most
major high-level languages with hardware description means (such as
Esys.net for developing in .net/mono [51, 52], Hardware Join Java for
developing in Java [46], Chisel for developing in Scala [2], and more),
SystemC has emerged as the “top of the pack”. By now, SystemC is
considered an “industry standard” [96], has been standardized [81] and
is widely used to prototype the structure of hardware/software systems
as well as their behaviour in both, academia and industry.

Example 1 Figure 6 shows a SystemC program that realizes a simple carry-
ripple adder. The bit-width of the adder is not statically defined, but will be
provided by the user when executing the program. This is realized by iteratively
instantiating new one-bit full adders.

When writing hardware designs in SystemC, designers have the full
spectrum of the underlying language at their disposal. Modules are class
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# include <systemc . h>

SC MODULE( fullAdder ) {
s c i n<bool> a , b , car ry In ;
sc out<bool> r e s u l t , carryOut ;

void c a l c u l a t e ( ) {
carryOut . wri te ( ( a && carryIn ) | | ( b && carryIn ) | | ( a && b ) ) ;
r e s u l t . wri te ( ( a && ! b && ! carry In ) | | ( ! a && b && ! carry In ) | |

( ! a && ! b && carryIn ) | | ( a && b && carryIn ) ) ;
}

SC CTOR( fullAdder ) : a (” a ” ) , b (” b ”) , r e s u l t (” r e s u l t ” ) , carryOut (”
carryOut ”) {

SC METHOD( c a l c u l a t e ) ;
s e n s i t i v e << a << b ;

}
} ;

i n t sc main ( i n t argc , char * argv [ ] ) {
i n t b i t s = 2 ;
i f ( argc > 1 )

b i t s = max( 0 , min ( 1 6 , a t o i ( argv [ 1 ] ) ) ) ;
ful lAdder * previous ;
f o r ( i n t i = 0 ; i < b i t s ; i ++) {

fullAdder * fa = new fullAdder (” fullAdder ”) ;
i f ( i > 0 ) {

s c s i g n a l<bool>* s i g = new s c s i g n a l<bool >(” c a r r y S i g n a l ” ) ;
previous−>carryIn ( * s i g ) ;
fa−>carryOut ( * s i g ) ;

}
previous = fa ;
}
re turn 0 ;

}

Figure 6: SystemC program
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instances, their internal states (registers, flip-flops etc.) can be modelled
using field variables and the internal logic is written using arbitrary C++
code.

This leads to a design paradigm that detaches the behaviour from its
implementation. Where RTL languages such as VHDL provide design-
ers with the ability to specify several implementations to choose from,
SystemC abstracts further from this concept and does not require any-
thing as long as the behaviour has been described properly. In VHDL,
designers e.g. need to decide which kind of adder should be used if
two numbers should be added – e.g. whether or not a carry lookahead
should be used and which one. SystemC on the other hand is focused on
the efficient simulation of these systems, leaving the question of imple-
mentation details for later in the design process: adding two numbers
is done, and while the designer may specify how much time the final
implementation supposedly will take, this is not necessary.

Hardware /
Software
Co-Design

The designer does not even need to decide whether a given func-
tionality should be implemented in software or hardware. Instead, the
behaviour that is specified may later be translated to hardware, soft-
ware or a mixture of both. This principle is called Hardware/Software
Co-Design [18] and allows designers to use SystemC to quickly develop
working prototypes of hardware/software systems without being re-
quired to implement all the details that would be needed in order to
have a working e.g. VHDL design.

This term reflects how the design process encompasses the develop-
ment of both, software and hardware parts, that later interact closely.
The SystemC design process may start with an arbitrary, abstract C++
implementation which is then iteratively translated into a combination
of RTL desriptions (which may be embedded into the SystemC simula-
tion) and C programs that are executed on the RTL parts until the whole
system becomes a set of synthesizeable parts and can thus be translated
into a single hardware / software implementation.

Beyond the classes that represent hardware structures, SystemC offers
a simulation kernel that manages the execution of the methods that rep-
resent a module’s internal logic SystemC

simulation
kernel

. Two concepts of the simulation kernel
are of special interest for this work:

• The simulation kernel splits the execution of a SystemC program
into two phases, the elaboration phase and the simulation phase. The
former is meant to create the system that is to be simulated, i.e.
all (virtual) hardware parts such as modules and signals are initial-
ized. The latter then simulates this system and actively prohibits
the creation of further SystemC objects.

• The simulation kernel manages an event queue that contains all pro-
cesses and threads that need to be executed at a later point in sim-
ulation time. This means that the SystemC kernel runs an event
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driven simulation, waking up those parts of the design that need
to be updated and letting all other elements of the design lay dor-
mant, thus saving computational power. This way, the simulation
kernel simulates the parallelism that is inherent to the hardware
parts that are modelled by SystemC. Note that the kernel, while it
simulates the parallelism of the simulated system, is not itself run-
ning in parallel but is instead a strictly sequential, single-threaded
software, thus avoiding issues that may arise from parallel execu-
tion such as race conditions at the cost of decreased performance.

Its design allows SystemC to separate the functionality (that needs
to be built in order to end up with an executable system) from the im-
plementation. In this case, the latter means either the hardware that
implements the desired behaviour or the combination of the hardware
platform and the software that is executed on it in order to end up with a
module that implements the given behaviour. The C++ implementation
that describes the behaviour for SystemC designs should be considered
an executable specification instead of an implementation though. As
the given source code that describes a thread’s behaviour can neither be
translated into software nor hardware automatically, it does not qualify
for being an implementation in the sense of embedded systems. How-
ever, while it is much more abstract than a hardware implementation or
the combination of an IC and the embedded software running on it (and
may ignore several other traits of an implementation such as timing), it
is of course still a C++ implementation that is executed to emulate the
module’s behaviour.

While these concepts are already focusing on shorter design cycles by
letting designers create executable prototypes as early as possible, the
concept of arbitrary C++ code includes libraries, which results in even
faster prototyping of certain modules. As there is a vast amount of C++
libraries available, they may all be used to quickly develop solutions
for a given problem. This means that development cycles are much
shorter, allowing for designers to quickly iterate design prototypes with
customers, start to write tests early on and validate design concepts at a
lower cost than using the traditional hardware design approach.

SystemC
performance

While this approach results in shorter development processes by al-
lowing designers to quickly build working (i.e. executable) prototypes,
it also has advantages when running the simulation itself. As the mod-
ule logic is implemented in arbitrary C++ code, no simulation kernel
call is required to calculate the result of an operation. Instead, after the
kernel wakes up e.g. a given method, the results are calculated at once
and the designer may instruct the simulation kernel to wait for a given
time frame in order to emulate how the module would require some
time to finish the given calculations. For the simulation, this means that
much less overhead is required in order to perform calculations as the
simulation kernel needs to be invoked less often.
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TLMTransaction Level Modeling (TLM) is the next step in this manner,
altering the way modules communicate in order to increase performance
by reducing the kernel activity associated with these operations. While
TLM had started as an optional extension to SystemC, it is now part
of the standard and serves the purpose of further increasing simulation
performance and unifying transactions between modules. It does so by
introducing two core concepts to the existing foundation of the SystemC
library:

1. Temporal Decoupling is the idea of letting different parts of the Sys-
temC model advance at different speeds. The traditional, event-
driven model relies on a single simulation time value that is ad-
vanced for all components. If anything is supposed to take time in
the simulation, the processes need to be stopped and the required
events to wake them up again communicated to the kernel. These
are then added to the event queue (and later have the kernel in-
voke them again). This process, if done repeatedly, takes time and
thus slows down the simulation speed.

TLM instead give designers the possibility to use functions as in-
terfaces that model a transaction and simply store the time that is
supposed to pass in a thread-specific variable. That means that in-
stead of invoking the scheduler that manages the consecutive exe-
cution of SystemC threads, functions in different modules call each
other and invoke the required actions, each time annotating that
simulation time should have passed (but did not yet) and at some
point wait for the simulation kernel to “catch up”. This results
in an even better performance, although certain concepts (such as
pipelining) cannot be translated into these transactions.

2. The Generic Payload is a generic transaction class that serves as a
common foundation to transfer information. Instead of having
different types for each port (such as boolean or integer), the
tlm generic payload class enables designers to use a single type
for various transactions, storing both data and meta information
for a given transaction. This results in better interoperability, al-
lowing modules to be interconnected easier – thus eliminating the
need for wrapper modules in a lot of cases and again speeding up
both, development and simulation time.

The advantages of the design approach on the ESL and the features
of SystemC in particular have turned SystemC into a “de-facto stan-
dard” [7]. SystemC is by now widely used, with the reference imple-
mentation being available under an open source license. While other
ESL solutions are available as well, the adaptation of SystemC is far
ahead of any contenders. This is the main reason for the focus of this
work: in order to ensure a scientific (and maybe industrial) relevance,
this work focuses on SystemC. While other solutions for design on the
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ESL may not share the same set of issues that need to be solved, the
degree of usage of SystemC justifies solving these using the given plat-
form.
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3
E X T R A C T I O N O F S Y S T E M C M E TA D ATA

Names and attributes must be
accommodated to the essence of
things, and not the essence to the
names, since things come first and
names afterwards.

Galileo Galilei

SystemC is implemented as a C++ library. This means that a design
implementation may use any C++ statements to describe both, the sys-
tem’s structure and behaviour. Any C++ libraries can be used to add
functionality to a design, vastly simplifying the design process espe-
cially for complex tasks that have been implemented in software before.
However, relying purely on C++ comes at a price as well: High level soft-
ware languages such as Java or C# include frameworks for introspection
and reflection of running programs. The former allows the designer to
write code that inspects the structures that were created by the running
program, the latter allows the designer to write code that modifies those
structures. E.g. in Java, retrieving an object’s type, getting a list of its
field variables and invoking one of its methods can be achieved using
a few lines of code that utilize the reflection framework. In C++, this
behaviour is not supported.

When compiling a C++ program, the compiler translates the program
into machine code, stripping it of all unnecessary information (such as
information about an object’s fields’ names and types), thereby making
it impossible to simply retrieve any information about the structures that
are present in a running program. However, as SystemC relies on C++
to create the simulated system in the first place, this run-time retrieval
would be needed for e.g. a generic visualization tool.

Simply put, the lack of native reflection/introspection in C++ renders
the extraction of any meta information about a SystemC design a far-
from-trivial problem. This chapter focuses on approaches to bypass this
shortcoming, presenting an approach to gather as much data as possible
to enable design understanding techniques for SystemC.

The remainder of this chapter gives an overview of existing
approaches to the extraction of SystemC features in Section 3.1,
introduces a novel and unintrusive approach in Section 3.2 and
gives details about its implementation in Sections 3.3 and 3.4 before
concluding in Section 3.5.
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SystemC
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Meta In-
formation
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Figure 7: Parsing SystemC

state of the art

Due to the lack of native support for reflection and introspection, re-
searchers developed several approaches concerning the extraction of in-
formation from a given SystemC design.

A common approach to the extraction issue was to parse the given
SystemC source code in order to extract the needed information. Figure
7 illustrates the corresponding procedure: As the source code does not
have to be executed, the analysis builds a model from reading the source
code alone. Several dedicated SystemC parsers have been implemented,
most of them being open and available for usage.Approaches

using parsers
to extract
SystemC

design
information

• ParSyC [31] is a SystemC parser based on the Purdue Compiler
Construction Tool Set (PCCTS) [85], the predecessor to ANother
Tool for Language Recognition (ANTLR) [84]. ParSyC has been
developed at the University of Bremen, the source code has not
been released publicly yet. ParSyC translates the SystemC descrip-
tion into an Abstract Syntax Tree (AST), builds an intermediate
representation from this AST which can be checked for semantic
consistency and finally synthesizes this intermediate result to a
netlist. This last step limits the parser to a synthesizeable subset
of C++/SystemC, limiting the available code elements to the inter-
section of the C++ constructs the parser can understand and those
that can be synthesized.

• The Karlsruhe SystemC Parser Suite (KaSCPar) [48] is another Sys-
temC parser, created using the Java Compiler Compiler (JavaCC)
and the according preprocessor JJTree. As being a user-created
parser for SystemC/C++, it has the same problems as ParSyC con-
cerning portability: KaSCPar does not support the whole C++ stan-
dard, so compiler-specific additions to the standard library are usu-
ally unsupported. The same is true for libraries or anything else
that does not have its source code embedded into the project. This
renders several patterns for SystemC development unavailable.

• SystemC to Verilog Synthesizable Subset Translator (sc2v) [14] is a
tool that does not primarily analyse a SystemC design but focuses
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on the translation from SystemC to Verilog, but as a detailed Sys-
temC analysis is a prerequisite to properly translate a given design
to Verilog, it fits well into this list. As the primary purpose of this
tool is the translation into Verilog, it limits itself to the analysis of
a synthesizeable subset of SystemC. While this is a reasonable de-
cision for a translation tool, it is limiting the analysis capabilities.

• SystemCXML [4] uses doxygen [114] as a foundation for its code
analysis. Using an existing solution instead of writing a custom
C++ parser certainly helps this approach in the analysis process as
C++ constructs are not as limited as a custom solution (that may
be incomplete). However, SystemCXML is limited to extracting
the behavioural properties of the code from the generated doxygen
files, basically limiting it to e.g. a list of module instanciations. The
interpretation of conditional statements such as loops only results
in an according syntax tree. SystemCXML does not generate the
according structures, limiting its application to e.g. visualizing the
source code instead of the system itself.

• SystemPerl [98] is a collection of Perl scripts that parse SystemC
using regular expressions. In order to properly parse the given
source code, SystemPerl requires the designer “to provide hints in
the program for the preprocessor to identify the constructs to be
expanded” [63], meaning that the original source code needs to be
modified and prepared for the tool to be able to properly interpret
it.

• Another (unnamed) parser, based on using Flex/Bison for lexical
and syntactical analysis was introduced in [11]. This tool relies
on processing the code with a C parser after its analysis though,
which will make it difficult to adopt it to handling the full C++
language.

• Scoot [8] focuses on generating a formal model from SystemC de-
signs. Just like the other parsers, it relies on a purely static analysis
of a given design. In order to make the parsing process more feasi-
ble, scoot requires the usage of a customized collection of SystemC
header files, which “declare only relevant aspects of the API” [8].
Scoot also uses a modified scheduler which performs better than
the standard scheduler that comes with the SystemC kernel. In-
terestingly, it also provides a way to translate the analysed design
back into a C++ project that does not depend on the SystemC li-
brary anymore, resulting (together with the scheduler modifica-
tions) in a better simulation performance. However, as scoot has
certain limitations concerning the available language constructs
and even modifies the SystemC kernel, utilizing it for an existing

21



extraction of systemc meta data

project may require some heavy refactoring of the given source
code, which might not always be possible.

All these parsers have in common that, by definition, they parse the
source code and use this result to extract the system that was described
in there.

Advantages of
parsers

The advantage of this approach is that the whole analysis process
remains in the hand of a single tool. Also, the static approach keeps the
architecture simple as no further execution of a given design is needed
in order to extract a synthesizeable description.

However, while the static parsing approach works well for designs
that describe one single, static system, this approach has some serious
drawbacks when it comes to more dynamic structures. Parsers, by defi-
nition, do not execute a given system. This quickly becomes a problem
when taking SystemC’s notion of design setup into account where the
design itself is created by executing the according C++ code during the
elaboration phase. Structures may be created by simply lining up calls
to module constructors which can easily be parsed.Limitations of

parsers.
However, elaborate

designs can be realized by creating structures in loops or recursions, cre-
ating lots of instances with just a few lines of code. Creation can also
be nested, with submodules being created within other modules, maybe
even hidden within macros or other code elements that may or may not
be active depending on how the compiler’s preprocessor modifies the
code. A design may even be created using e.g. user-defined input val-
ues, letting the designer specify e.g. the number of cores of a simulated
CPU or the amount of cache available to a system before running the
previously compiled executable file. Naturally, parsers are unable to
retrieve the correct design in this case.

Overall, parsers have serious issues when it comes to analysing com-
plex designs. At least the elaboration phase needs to be executed in
order to extract a particular system design from a SystemC implementa-
tion.

Hybrid
approaches

Hybrid approaches expand the parsing approach to extract a SystemC
design from its source code. First, just like the parsers discussed above,
they apply a static analysis of the source code to extract e.g. the structure
of a given module. Second, however, they solve the problem of analysing
the system’s elaboration phase by executing the program at least until
the start of the simulation.

However, while the general idea of this approach seems straightfor-
ward, extracting information about the structures inside a running C++
program is not easy. Compilers usually discard all the information that
is not needed to execute a given program. This includes information
about the created objects and their structure – in order to execute a C++
program, the program itself does not need the information that an ob-
ject contains a field called m internal state, it just needs to know that
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a value at address n needs to be changed, even disregarding the value’s
type.

As the compiler removes the unnecessary information during com-
pilation, it is the one element in the workflow that has access to the
information in the first place. Hybrid approaches use this fact to extract
the needed data before it is discarded by the compiler by modifying the
compilation workflow in a way that lets them extract the information
or prevent it from being removed in the first place. Basically, the idea
is simple: If the compiler gets rid of the information that is needed, it
needs to be modified not to do this anymore.

Separation of
static and
dynamic
information
extraction

The compiler needs to analyse the program’s static structure anyway
in order to compile it. This means that any structural information about
the source code is present in the compiler and just needs to be extracted.
Any constructs that are usually hard to parse (such as preprocessor di-
rectives) have been properly processed by the time the compiler has
analysed the program structure. Problems therefore either do not arise
from the language constructs being used or would also lead to compila-
tion problems when trying to compile the program in order to simulate
the system.

The dynamic information (e.g. what modules have been created in
the elaboration phase) cannot be extracted at compile-time as the elabo-
ration phase needs to be executed for this information to be present at
all. However, as the compiler is the one that translates the program into
an executable binary, it can just as well modify this binary to track and
later store the information about the system being set up.

Figure 8 shows how this static analysis of the program’s source code
combined with the ability to track the dynamic creation of objects at run-
time by modifying the resulting binary file results in a detailed model
of the given design. First, the SystemC source code is processed by the
compiler. Usually, this compiler would just translate the code into an

23



extraction of systemc meta data

executable file that could then be run. However, the compiler may be
configured or altered to emit and store intermediate results of process-
ing the code. The results of this static code analysis (i.e. the static meta
information) are the first part of the information needed to retrieve the
information present in a SystemC design. Second, the executable file the
compiler builds is modified in order to emit and store information that
is crucial for retrieving the structures from the running application that
cannot be retrieved statically. These two sets of retrieved information
represent a model of the design, which is the information that was de-
sired in the first place. There are a few implementations that follow this
idea:Hybrid

extraction
approaches • Pinapa [77] relies on the GNU Compiler Collection (gcc) to anal-

yse SystemC designs. The main advantage of the approach taken
is that the limitations of traditional parsers using their own C++
grammar are overcome by utilizing an off-the-shelf front end in-
stead. This idea, combined with the approach of executing the
compiled elaboration phase to retrieve the dynamic instances that
describe the actual system, makes Pinapa a much more robust tool
than the parsing approaches outlined above. However, in order to
extract the data, it uses a “slightly modified version of SystemC”
and requires “a patch to the GNU C++ compiler” [78]. As both, the
SystemC kernel and the compiler need to be modified for Pinapa
to work, this solution is not portable: projects either need to use
the given compiler or are simply unsupported. The SystemC ker-
nel modifications restrict projects to the SystemC reference imple-
mentation and even then problems may arise if the given project
needed some modifications to the given SystemC kernel by itself,
requiring the two SystemC kernels to be merged. Also, as SystemC
itself may be updated, this approach requires a constant mainte-
nance to keep up with the changes of the underlying SystemC
library.

• A development that improves the approach taken by ParSyC with
a dynamic execution of the elaboration phase was also suggested
[36]. While this approach solves the parser’s problem of not being
able to fully extract the elaboration phase’s result, the issue of re-
lying on custom parsers for the code interpretation is still present
in this approach. Unlike the other dynamic approaches, it does
not use an off-the-shelf front end for C++, thus limiting the avail-
able language features – which in turn might result in the need for
serious re-writing of the code.

• PinaVM [62] is the successor of Pinapa. Instead of using a patched
gcc, PinaVM relies on using the LLVM compiler framework via
its Application Programming Interface (API). Instead of using e.g.
a modified version of gcc (like Pinapa), PinaVM relies on using
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LLVM like a library to handle the given code base. While this
has the advantage of being more compatible with version changes
(“Although its API is not fully stable, it is clean, and the migra-
tion from a version of LLVM to another is a painless task” [62]), it
comes at the price of being dependent on what this API offers. As
a result of working on LLVM, PinaVM heavily relies on handling
the intermediate representation LLVM builds from the source code,
the so-called bitcode. This assembler-like language is much less ab-
stract than the original C++ code, resulting in each original state-
ment usually being translated into several new statements, which
makes the mapping from the used representation to the original
source code a non-trivial task. Also, PinaVM, just like Pinapa and
SHaBE (see below) relies on one single front end. As the method
itself cannot be transferred to other front ends, this makes this a
powerful but restricted solution: projects that use code that are
incompatible to LLVM are not supported by PinaVM either.

• SystemC Hierarchy and Behavior Extractor (SHaBE) [12] uses a
different approach that relies on a debugger instead. While both,
Pinapa and PinaVM are modifying the compilation process itself,
SHaBE instead uses a combination of the gcc and the correspond-
ing GNU Debugger (gdb), utilizing the latter to stop the execution
of a running SystemC program and extract the dynamic informa-
tion from the debugger. Using a predefined set of breakpoints,
SHaBE tracks e.g. the creation of SystemC modules by stopping
the execution in the constructor of the sc module class and inspect-
ing the call stack to get the inheritance hierarchy. At this point,
an object’s fields can also be retrieved, allowing SHaBE to also
extract an object’s static features. To retrieve information about
the system’s behaviour, SHaBE goes a way similar to Pinapa. It
hooks into the compiler to retrieve the program’s abstract syntax
tree, which contains detailed information about the system’s func-
tions and their interaction. Instead of modifying the gcc, a plu-
gin is used though, allowing SHaBE to be more robust concerning
changes of the underlying compiler, assuming that the plugin API
does not change frequently. Just like Pinapa and PinaVM, this ties
this approach to one specific compiler though. Not only is the plu-
gin written for gcc but other compilers simply do not offer a cor-
responding architecture. Thus, this approach is not portable and
relies heavily on the project being interoperable with the chosen
architecture. This even excludes projects that rely on workflows
based on older versions of the gcc, with the plugin API being a
rather recent addition to the project.

• Another approach that uses a debugger is presented in [93]. Al-
though the focus of this approach lies on the actual debugging of
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the system, it still handles the same issues to inspect the system in
the first place (i.e. the extraction of the given system’s properties).
Like SHaBE, this approach uses gdb to extract the data from the
running program and therefore suffers the same lock-in issues as
the former. While this tool comes with its own visualization to
control the debugging environment, it is using a proprietary en-
gine by Concept Engineering (a company based in Freiburg) to do
so, thus limiting the availability of the system.

While these approaches differ slightly, they share the same features of
a dynamic extraction.

Basically, the idea that a compiler has access to all structures and can
be used to modify the output in any way is sound. A design that is
handled using either of these tools can be analysed well: both, static
and dynamic structures are accessible to the tool and may be extracted,
so the output of these methods is thorough.

Hybrid
approaches are

tightly linked
to a specific

compiler

However, this information retrieval approach does still come with a
trade-off. The solutions are tightly intertwined with the compiler that
they are based on. Either because the compiler itself is modified (as
in Pinapa [77]) or because a plugin specific to that compiler needs to
be used during compilation (as in SHaBE [12]). This implies that no
other setup may be used in order for the respective implementation to
be applied.

The impact of this fact differs depending on the code base. Projects
that strictly stick to the C++ standard [81] should be portable enough.
As the build process differs from compiler to compiler, setting up the
build environment for a new compiler is usually a cumbersome but still
manageable task.

Language
dialects

therefore are
an issue

However, C++ comes with dialects and libraries that are not standard-
ized and which jeopardize the application of this approach in other build
environments. Different environments have access to different libraries
and tools. Microsoft e.g. offers several extensions to the standard C++
library that cannot simply be ported to other build environments [73].
The problem of dialects even exists within the same environment: up-
dating a compiler may break the compilation for some source constructs.

This is a problem for this approach, as the number of available com-
pilers is currently limited to those that can be modified through plug-ins
or source modifications, with closed-source compilers probably remain-
ing unsupported due to the missing ability to add features at will. The
solution to port an existing project to a supported build environment im-
plies that a potentially large part of the code base needs to be rewritten.
This is a time-consuming and therefore expensive task that should be
avoided if possible, especially considering that data extraction methods
are usually supposed to assist the designer instead of causing him even
more work.
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The hybrid approach therefore comes with the most promising, yet
also quite limiting notion of either supporting a given SystemC project
and being able to export the full design down to the abstract syntax tree
or not supporting it at all.

Overall, existing approaches either suffer from

• being focused on static aspects only,

• the need to use a customized adaption of SystemC and, therefore,
an inapplicability e.g. for future releases of SystemC and/or com-
bination with other methods that modify SystemC as well, or

• a dependency on customized compilers and/or parsers which lim-
its the usable language constructs.

debug symbol parsing

In order to address the research question, the data and interfaces that
are available in SystemC/C++ designs are exerted as much as possible.
In particular,

• debug symbols (that are generated by practically all compilers, al-
beit using differing standards) from which relevant (static) infor-
mation of the considered design can be obtained and

• the SystemC API that allows for an extraction e.g. of values from
data-structures during the execution of a program

are being used.
In this Section, an approach is proposed which exploits these existing

interfaces for a generic and flexible information extraction of SystemC
designs. More precisely, the debug symbols that are generated during
compilation anyway are used to extract the static meta information of
SystemC programs. Following this approach, modifying a compiler
(e.g. to dump the accumulated information) can be avoided as the de-
sired information can also be extracted from these symbols. Figure 9

illustrates the proposed workflow.
Dynamic information can obviously be retrieved only during the exe-

cution of a program as some values might not be known at compile-time.
But instead of trying to retrieve this information by modifying the given
design (e.g. to dump values currently assigned to signals) or by deduc-
tion from the static information, the existing infrastructure is used. In
fact, the SystemC API is exploited to extract the desired information dur-
ing run-time, making the solution for dynamic extraction independent
from the platform or the compiler being used.

Instead of modifying the compiler and working with a binary ex-
tended by additional information needed for data extraction only, the
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Figure 9: The SystemC build process.

existing data structures and interfaces are exploited (namely the debug
symbols and the SystemC API). By relying on this existing infrastruc-
ture, the proposed solution is flexible, quite independent from compiler
versions, and fully supports the whole range of SystemC.

In the next section, the proposed approach is described in detail. Two
different modules implement the ideas proposed above: The first mod-
ule reads the compiler-generated debug symbols and extracts static in-
formation of the design from it. The second module is a C++ library
which can be called during run-time to export SystemC objects that are
currently residing in memory. This allows for an extraction of the dy-
namic information. Afterwards, the extracted dynamic information is
matched with its static counterpart.

extraction of static information via debug symbols

Existing approaches for the extraction of static information rely on pars-
ing the code using a custom program or interpreting the intermediate
language of a given compiler. In the proposed solution, debug symbols
of the compiled program are exploited instead. Such debug symbols
are created by almost every modern compiler and contain meta infor-
mation of the code. This data is usually used to aid the designer in
developing and debugging his/her implementation. For this purpose,
the compilers collect and build extensive data about the program which,
after the compilation, is written to the disk so that the debugger can use
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. s t a b s ” fullAdder : Tt ( 0 , 4 8 7 2 ) =s5332 ! 1 , 0 2 0 , ( 0 , 1 9 2 7 ) ; a : ( 0 , 1 9 7 9 ) , 7 3 6 , 4 4 8 ; b
: ( 0 , 1 9 7 9 ) , 1 1 8 4 , 4 4 8 ; ca r ry In : ( 0 , 1 9 7 9 ) , 1 6 3 2 , 4 4 8 ; r e s u l t : ( 0 , 3 9 3 3 )
, 2 0 8 0 , 4 8 0 ; carryOut : ( 0 , 3 9 3 3 ) , 2 5 6 0 , 4 8 0 ; . . .

Figure 10: Debug symbols in the STABS format

them. However, in a similar fashion, the desired static information can
be extracted from these symbols.

Example 2 Figure 10 shows some debug symbols in the STABS format as they
have been generated by the GNU compiler using the example program intro-
duced in Figure 6. As can been seen, relevant static information of the design
(e.g. the fullAdder class and its fields) can be recognized. This kind of in-
formation is available to a very deep level, including access modifiers of fields,
a function’s lines in the source code, function parameter types, base class in-
formation, size of types, etc. Furthermore, many debug symbols are arranged
in a hierarchical manner, i.e. a debug symbol may be composed of several sub-
symbols.

The information available through these debug symbols can be ex-
ploited to extract the desired static information of a given system.

Two tools have been developed to illustrate how the debug symbols
can serve as a source of information:

Reading debug
data files

The first tool uses the Microsoft VC++ compiler and the Program
Database-files (PDB-files) generated by it [72]. Although the format it-
self is proprietary, using the Debug Interface Access (DIA) SDK [71], the
debug symbols that are collected in those files can be accessed.

The second tool is based on the DWARF debug symbols [27] and the
libdwarf/dwarfdump tools to read them. These open tools provide a
more streamlined access to the DWARF debug symbols that can be gen-
erated by both, gcc [101] and clang [53]. More specifically, the output
generated by dwarfdump is passed on to the tool that translates the
structures into the needed format.

Using these tools, the data from debug symbols can be obtained on all
platforms and all major compilers. To the best of my knowledge, there is
no compiler that does not generate the needed information in the form
of debug symbols and stores them for later usage, making this approach
unversally applicable.

Figure 11 shows the procedure of the extraction for the Microsoft data.
Given a PDB-file created by the VC++ compiler from a SystemC design,
all topmost debug symbols are loaded first (line 2). Afterwards, each
symbol is separately considered and analyzed (lines 3-5). The desired
information is thereby dumped into an XML-data structure representing
the static information of the system. Since the debug symbols are hier-
archically structured, the analysis is recursively conducted through the
function analyzeSymbol (line 8). Here, all the desired information of the

29



extraction of systemc meta data

1 func t ion analyzeDebugData ( f i lename ) begin
2 symbolTable = loadDataFromDebugFile ( f i lename )
3 f o r each symbol in symbolTable
4 analyzeSymbol ( symbol )
5 end f o r
6 end funct ion
7

8 func t ion analyzeSymbol ( currentSymbol ) begin
9 dumpAllData ( currentSymbol )

10 i f currentSymbol has typeInformation then
11 analyzeSymbol ( typeInformation )
12 end i f
13 i f currentSymbol has subSymbols AND
14 currentSymbol i s NOT baseClass AND
15 currentSymbol i s NOT typedef then
16 f o r each subsymbol in subsymbols
17 analyzeSymbol ( subsymbol )
18 end f o r
19 end i f
20 end funct ion

Figure 11: Pseudo code of debug information extraction

currently considered debug symbol are dumped to the XML-data struc-
ture first (line 9). Afterwards, it is checked whether further hierarchical
information is available (lines 10-19). If this is the case, the correspond-
ing sub-symbols are analyzed by recursively calling analyzeSymbol for
them. To avoid redundancies, lines 14 and 15 stop the recursion if types
are found that are also part of the symbolTable and would otherwise be
extracted several times.

Example 3 Consider again the SystemC code from Figure 6 to be analyzed.
Using the PDB-file generated by the VC++ compiler, the analysis of the first
debug symbol (line 8) results in an XML-tag like
<u s e r D e f i n e d T y p e name=” f u l l A d d e r ” a d d r e s s O f f s e t =”0”
a d d r e s s S e c t i o n =”0” c o n s t T y p e =”0” l e n g t h =”428”>

stating that the considered system contains the class fullAdder (an instance
of which occupies 428 bytes in memory). More information about this class
can be gained by the analysis of the corresponding sub-symbols through the
recursive calls (line 10-18). One of the fullAdder class’s sub-symbols contains
e.g. information about its field “a” (i.e. the full adder’s first input bit):
<d a t a name=”a ” [ . . . ] >

<type>
<u s e r D e f i n e d T y p e name=” s c c o r e : : s c i n\& l t ; b o o l\&gt ; ” } [ . . . ] >

Note the field’s name (“a”) and the field’s type (sc core::sc in<bool>

with “<” being replaced by “&lt;” and “>” by “&gt;” respectively to keep the
XML structure valid) in the description. This information is contained in its
own debug symbol that is part of the former symbol. The hierarchy is encom-
passed by the recursion. More information could be gained by searching for
the description of the given type itself. Other sub-symbols provide information
e.g. on inheritance, functions, their parameters, etc.
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3.4 extraction of dynamic information

The DWARF format, on the other hand, does not need the recursion
step that is required for the PDB file analysis (and shown in Figure 11).
Where the interface to read the PDB data is handing out references to
a given sub-symbol, the DWARF data is rather flat, with links between
symbols being stored in the form of unique identifiers that can just be
ported either as such or in the form of target names.

Using any of these procedures allows for an exploitation of debug
symbols, which are generated anyway, for the purpose of static informa-
tion extraction. ApplicabilityCompared to previously proposed solutions with their
respective constraints and requirements, this results in a near-to-none
setup as all the information is retrieved from existing compilers and
tools. The whole extraction step can be embedded transparently into
the compilation workflow and does not require any human interaction
after its initial setup.

Limited to the
information the
compiler stores

While the advantages of this method (being applicable to any setup,
being portable to any platform and being usable, as it doesn’t require
any interaction beyond the initial setup) are clear, it is limited to the
information that is stored by the compiler in the debug symbols. This
means that usually, the static information does not contain the full ab-
stract syntax tree. In most cases, the information is structural only, mean-
ing that e.g. the information that a certain class has a function is stored
but not the contents of said function.

This means that the advantages come with a price tag and the re-
trieved information, while being vast, is not complete. In the end, this
is a tradeoff that the designer needs to consider when chosing a method
to analyse SystemC code.

Especially for the use case of Design Understanding, the advantages
of the proposed approach far outweigh the information that cannot be
retrieved though. As this use case does not require complete informa-
tion but has its focus on the quick and simple retrieval of more abstract
information present in a design, this new approach suits this aim well by
being simple and unversal to apply. Basically, the usability is the point
the given approach excels in, as the required steps to use it are kept to a
minimum, making it suitable for a quick glance into a given system on
a more abstract level than the source code could provide.

extraction of dynamic information

The SystemC library comes with an API that provides not only means of
virtually creating and simulating systems, but also allows for accessing
and inspecting the created instances of a system during run-time. That
is, SystemC itself is, in principle, able to deliver an overview of the
dynamic information of the instantiated system. Existing approaches
exploiting this API for the extraction of dynamic information still rely on
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Figure 12: Diagram extracted using the SystemC API from the arbiter
example [23].

modifying the SystemC library [40] and, hence, only provide a limited
and restricted solution.

The proposed solution requires as few changes as possible to the ex-
isting setups by performing the following steps each time dynamic in-
formation should be retrieved:

accessing the instantiated objects The SystemC API
provides a function to get access to the simulation context (via
sc get curr simcontext()) through which an object manager

instance can be retrieved (via context->get object manager()).
The object manager in turn provides access to all instantiated
SystemC-objects that are being used in the current run of the SystemC
program. This means that objects that do not implement the sc object

class (and are thus not managed by the SystemC simulation kernel)
cannot be retrieved via this method, but all objects that are functioning
as stand-ins e.g. for a hardware module or a signal can be. Extracting
the objects that are available using this method returns the information
illustrated in Figure 12: Instanciated modules, their ports and signals
are all retrieved.

naming the retrieved objects To name the retrieved
objects, [40] named the instances based on the fields’ names. That is,
an object created by the SystemC line fullAdder faField("faName")
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would be named faField. While this approach seems obvious at first
sight, this leads to serious problems as

• field names may be used more than once (at different locations in
the program) and

• a single instance may be assigned to several fields and, hence, a sin-
gle instance might be referred to by several different field names.

In order to overcome these problems, the proposed solution uses the
respective SystemC name field for naming an instantiated object. That
is, an object created by the SystemC line fullAdder faField("faName")

would be named faName. As SystemC automatically renames duplicates
and assigns names to unnamed objects, this solves the above mentioned
problems. Moreover, as the name is chosen by the designer and is not
required to comply with the rules of C++ variable names, the naming of
the respective objects becomes more intuitive for the designer. Finally,
this solution makes any parsing of the SystemC source code obsolete.
Limiting modifications in the SystemC library (as done e.g. in [40]) can
be dropped.

mapping instances In order to retrieve a complete model of the
given design, in a last step the extracted dynamic information is mapped
to the static information gathered by the debug symbols1 and/or other
objects that are being used in the design. To comply with the non-
invasiveness principle, the C++ and SystemC APIs are exploited:

• The types of the modules are retrieved by Run Time Type Inspection
(RTTI) using the typeid operator (via typeid(*module).name()).
The RTTI information is only available for objects that have virtual
methods and therefore need a virtual function table (vtable) that
stores the according information. However, as SystemC objects al-
ready have virtual methods, all SystemC objects provide a vtable

during run-time, making the use of RTTI reasonable. This type
name is the same as in the debug symbols, mapping the instances
to their classes.

• Channels are differentiated from modules using an attempted cast
to sc interface* (via dynamic cast<sc interface*>(module)

!= 0). This allows for channels to be marked as such during
extraction albeit they usually behave like modules.

• Ports are matched either by the name of their channel (when being
connected to one) (via (dynamic cast<sc channel*>(chan))->

name()) or the memory address of the respective signal (via
reinterpret cast<int>(chan)). All ports that share the same

1 Note that e.g. [40] did not retrieve any static information and, hence, no such mapping
at all was considered there.
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signal address are considered to be connected depending on
being either input, output, or both. In contrast, ports that share
the same channel instance’s name are considered to be connected
to the given channel.

The type names that are extracted by the SystemC API in this fashion
exactly match those that are extracted from the debug symbols. Hence,
the remaining mapping between the extracted static information and the
extracted dynamic information is a simple comparison operation.

Incorporating these steps, the designer only has to specify at which
point during the execution of the project the dynamic information
should be extracted. This is realized by providing a function
dumpModulesToFile(string filename). Whenever this function is
called during the execution of a SystemC program, the respective
steps from above are performed and, similar to the extraction
of the static analysis, the determined information is stored in an
XML-data-structure.

Example 4 Consider again the SystemC code from Figure 6. Assuming the de-
signer is interested in all dynamic information available after the full adder has
completely been instantiated. Then the designer only has to add the command
dumpModulesToFile(string filename) after line 28 in the code from Fig-
ure 6. Then, during the execution of the program, the respective API calls are
conducted, eventually leading to the XML-tags as partially shown in Figure 14.
From this, the designer can obtain the desired information, e.g. that there is an
object called “fullAdder 0” of the type “fullAdder” with two inputs “a” and
“b”, each of which is of type sc core::sc in<bool>.

With the methods outlined above, a single, coherent model of the
structure and the behavior of the ESL design can be extracted. How-
ever, SystemC models do not necessarily consist only of objects that
inherit SystemC objects and represent e.g. modules or signals. Retriev-
ing these non-SystemC objects is not possible using the SystemC API as
they obviously are not handled by the SystemC kernel.

Due to the shortcomings of introspection and reflection in SystemC
(as discussed above), the idea of using debug symbols proposed in
chapters 3.3 and 3.4 needs to be expanded further to be able to extract
these generic objects. More precisely, an information extraction flow as
sketched in Figure 15 is applied.

First, static information on the SystemC implementation is
determined exploiting the compiler-generated debug symbols (1).
Afterwards, the original code is compiled so that the resulting binary
can be executed (2). Both steps do not assume any changes and
restrictions on the compiler. As discussed above, SystemC allows then
to retrieve information of the instantiated instances at run-time. By
additionally exploiting the static information, which is now available
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cells

public sc core::sc in¡bool¿ TICK
public sc core::sc in¡bool¿ req in
public sc core::sc in¡bool¿ tok in
public sc core::sc in¡bool¿ gra in
public sc core::sc in¡bool¿ ove in
public sc core::sc out¡bool¿ ack out
public sc core::sc out¡bool¿ gra out
public sc core::sc out¡bool¿ tok out
public sc core::sc out¡bool¿ ove out
enumerator state type{NORMAL, WAIT, TOKEN,
WAITTOKEN}
public sc core::sc signal¡RTLCell::state type,0¿ curr state
public sc core::sc signal¡RTLCell::state type,0¿ next state
...

clk
req i
tok i
gra i
ove i

ack o
gra o
tok o
ove o

<<block>>

Figure 13: Retrieved arbiter cell with static information mapped to its
dynamic instance.

<SystemCDesign>

<module name="fullAdder_0" type="struct fullAdder">

<In name="fullAdder.a"

type="class sc_core::sc_in<bool>"></In>

<In name="fullAdder.b"

type="class sc_core::sc_in<bool>"></In>

...

Figure 14: Result of the dynamic design extraction of SystemC for the
full adder.
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Figure 15: Proposed methodology.

through the debug symbols (3), the structure and current state of the
executed system can be derived (4). This does not only include which
classes/modules have been instantiated, but also the members these
classes are composed of (including referenced objects) and which values
they have been assigned with. During the execution of the SystemC
implementation, several such “snapshots” of the system states can be
conducted. From those, corresponding FSL descriptions (e.g. a block
definition diagram of the structure and a sequence diagram including
the respective object diagrams of the behavior) can be derived and
eventually compared to the originally given FSL specification (5). For
this purpose, existing modeling frameworks such as e.g. the Eclipse
Modeling Framework can be utilized as they offer corresponding model
checking capabilities out of the box. For this work, a simple checker
was implemented as a proof-of-concept that asserts all parts of the
specification are present in the implementation.

Especially step (4) expands upon and mixes the static/dynamic ap-
proaches outlined before.

In order to complete the “snapshot” of a currently considered pro-
gram state, the respective assignments to each member have to be de-
rived. This is accomplished by traversing the memory allocated by the
considered SystemC execution. A breadth-first-search along a running
program’s references is applied, starting with the objects that were re-
trieved via the API. The information contained in the debug symbols is
used to determine an individual object’s memory layout. All fields are
located and separated into

• base types (like integer, float, etc.) to extract their values and

• compound types and pointers, both of which are again enqueued
for later analysis.
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3.4 extraction of dynamic information

However, this traversal of allocated memory does have the following
issues:

• Bad Pointers

Null pointers are not analyzed further. A more serious problem
are bad pointers. For example, Figure 16a shows an instance with
a bad pointer. Although a field indicates that this pointer should
not be used, this semantic distinction cannot be recognized auto-
matically. Hence, the implementation assumes that all pointers are
valid and catches memory access violations at run-time. Due to
the read-only nature of the data extraction, the information stored
in the memory is not compromised by this.

• Unreferenced Memory

There might be parts in memory that are allocated and used but
not addressed. A common example is an array that is created
on the heap and addressed using a pointer while a second value
stores its size. As an example, see Figure 16b showing an instance
with an array of size 4. In this case, only the referred memory is
considered, i.e. only the graph that is formed by elements in mem-
ory and their connections is traversed. Elements that are separated
from this graph cannot be reached by the traversal algorithm and,
hence, are ignored. That is, in the example of Figure 16b arr[0]

is extracted as a single int value (as both, pointer and type, are
known), but arr[1] to arr[3] are ignored.

• Incorrectly Typed References

Objects referenced using an erroneous type also pose a problem
for the proposed extraction method. The approach assumes that
the type of a pointer corresponds to the type of data that is actually
stored at the given address. Due to C++’s lack of type safety, an
instance of type a may be stored in a part of the memory that
is referenced as being of a certain unrelated type b. The analysis
algorithm will then assume that the address contains an instance of
this type b and, therefore, extracts the data as if it would be of that
type b. This may result in missing or incorrectly extracted data.
For example, Figure 16c shows a pointer of type char that actually
points to an instance that contains much more data. However, the
approach treats this as a char and, hence only retrieves the first
byte.

• Multiple Type References

Although similar to the incorrectly typed references, this is more
a problem concerning established modeling languages: If a single
address in memory is addressed by two or more differently typed
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b: instance
m isValid: false
m ptr: #ffffffff

(a) Bad pointer: Although the
pointer will not be accessed in
the running program by check-
ing for the m isValid field first,
the algorithm is unable to make
this connection and will try to
access the memory address cur-
rently stored in m ptr.

b: instance
int* arr
int size = 4

0

3

1

7

2

7

3

7

(b) Unreferenced memory: While
there are four integers allocated,
the algorithm is unable to guess
that the size variable specifies
the length of an array located
behind the address of the given
integer pointer and will only re-
trieve the first element.

b: instance
char* module

Available data︷ ︸︸ ︷
Retrieved data

(c) Incorrectly typed references: A
pointer might be typed correctly.
In this example, although a
pointer is allegedly referencing
a char, it in fact references a
module. However, as the al-
gorithm assumes that the type
specified is correct, it retrieves
the first byte (depending on the
char size of the given system),
ignoring the rest of the allo-
cated data.

a: A

x: X y: Y
b: B c: C

(d) Multiple type references: Two
references may be addressing
the same area in memory but
do so with different types (that
may or may not be related). As
the type defines how the data is
to be interpreted, this leads to
an ambiguous extraction. Cur-
rently, both interpretations are
saved – which of the extractions
is the “correct” interpretation
cannot be determined though.

Figure 16: Special issues during program state extraction.
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Figure 17: Resulting program state. The area on the left is a close-up to
the upper-left corner of the diagram. While a manual compar-
ison would be hard due to the amount of data that is retrieved,
this data can be used as a foundation for an automated model-
checking approach.

variables (as illustrated in Figure 16d), a corresponding represen-
tation is usually not available in established modeling languages.
Currently, the approach just exports all interpretations of a certain
variable. Depending on the desired modeling language, these fea-
tures might need additional tweaking.

The result of this traversal is indicated in Figure 17 for the running
example, i.e. the arbiter implementation2. The resulting model does not
only contain the instances of the original, but also all instances of any
object that is referenced through these (directly or indirectly) and the
values that are currently assigned to the according member variables.
Although this is much more data than actually needed, it now provides
a precise “snapshot” of the current system state in terms of an FSL de-
scription. By sequentially applying this scheme for each system state
which shall be compared against an FSL specification, all the informa-
tion needed for this comparison is retrieved.

conclusion

In this chapter, a new method to extract SystemC designs from their
descriptions was proposed.

In contrast to previous approaches, this new method relies solely on
data that can be extracted from

• debug symbols (which are generated by compilers anyway) and

• the unmodified SystemC kernel during runtime (which needs to
be called anyway).

While other methods are limiting the available code elements in order
to parse the code or can only be applied for specific (sometimes modi-
fied) compilers and/or SystemC implementations, the proposed method

2 Please note that this figure is not supposed to provide detailed information but serves
as an illustration of the magnitude of the obtained information.
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has been developed with applicability in mind and can be used on all
major platforms without further restrictions. Additionally, the source
code does not have to be altered at all, allowing the presented approach
to be applied easily as it merely has to be integrated into the build pro-
cess. It thereby provides a straightforward way to take a look at SystemC
designs at virtually no cost.

Beyond, the method is able to extract field variable values at runtime
for generic C++ instances. It may therefore also server as a substitute
for C++’s missing introspection capabilities, with the potential of being
applied outside the SystemC scope of application.
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4
E X T R A C T I O N O F S Y S T E M C B E H AV I O U R

The only way to make sense out of
change is to plunge into it, move
with it, and join the dance.

Alan Watts [118]

The method described in Chapter 3 extracts information about a Sys-
temC design not only from its source code but as well from a point
during execution. As the elaboration phase is used to build the system,
the intuitive approach is to wait for it to finish and then extract the de-
sign to be able to extract all modules. The result of this approach is a
single model of the design, much like a description of a static hardware
system.

However, during its execution, a SystemC program may be perform-
ing quite complex tasks. This especially includes the simulation phase
where the system is being run, but also concerns the elaboration phase
where arbitrarily complex schemes may be used to construct the design
in the first place.

Due to SystemC’s C++ foundation, analysing this program behaviour
can be done using debuggers. These are used to stop the program at
certain points in order to allow the designer to inspect the program’s
state and e.g. step through the execution of certain statements. Another
approach, which is closer to the hardware aspect of SystemC, is to col-
lect traces of SystemC’s signals which can be stored in value change
dumpfiles. These then contain a list of timestamps and signals that were
altered at the respective times. However, the former’s use case is limited
to stopping the execution at one certain point to let the designer inspect
the system and then continue while the latter is limited to simple vari-
ables and signals.

This Chapter illustrates methods that are able to retrieve data about
a system’s behaviour, allowing the designer to inspect his system’s run-
time properties in more detail. Section 4.1 illustrates approaches that
utilize existing software analysis tools and highlights the issues that
arise when these are used. Section 4.2 then outlines how the techniques
illustrated in Chapter 3 can be exploited to extract behavioural informa-
tion as well. Section 4.4 finally shows how Aspect Oriented Programming
(AOP), an approach that refactors the source code before compilation
to modify the behaviour of a program, can be used to insert more de-
tailed extraction measures into existing projects before the Chapter is
concluded in Section 4.5.
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software-based approaches

Due to SystemC being “merely” a C++ library, techniques and
approaches that are used to analyse the behaviour of ordinary C++
programs can be applied to SystemC designs as well.

While these approaches usually have the disadvantage of ignoring
certain cases that are special to SystemC designs (such as the division
into elaboration and simulation phase and the rather static nature of
sc object instances that can neither be removed nor created after the
simulation started), they do offer readily-available means to analyse a
program. Two major approaches are outlined in this Section: Debuggers
that are used to inspect the state of running programs and Coverage tools
that are used to collect information about what parts of a program were
executed in order to afterwards present this information to the designer.

debuggers are usually utilized to locate errors (“bugs”) in a given
program (hence the name). Programs compiled specifically in Debug-
mode have their executable data mapped to the corresponding locations
in the original source code file.Behaviour

analysis using
debuggers

This is the information that is exploited
in the approach in Section 3.3 to retrieve the static program information.
When such a program is executed by a debugger, it can pause the exe-
cution, use the embedded mapping information to locate the program’s
current location in the source code and display information about e.g.
variable assignment or call stack.

A debugger is usually fit to perform its primary task though – it is
supposed to aid a designer in locating the source of an error. The major
use case is therefore to define a break point at some manually-set loca-
tion in the program (that usually indicates that an error is about to occur
or has already occured) and then manually see how this might have hap-
pened. While the designer may then step trough the program, he cannot
go back in time, leaving him with the options of either being able to tell
when an error is about to happen and place the breakpoints accordingly
(which usually means that there is already a strong indication towards a
source of a given error) or try and deduce how that error occured based
purely on the current (erroneous) state of the program.

Some debuggers also support watching certain variables and breaking
on changes (e.g. in gdb, designers can set watchpoints for certain vari-
ables or expressions, telling the debugger to stop the execution as soon
as certain values change or are set to a certain value) or even executing
arbitrary code upon certain conditions (which is usually used in trace-
points that e.g. log certain values as soon as certain conditions are met).
Gdb in particular is scriptable to a large degree. It not only allows writ-
ing complex statements to conditionally stop, resume and supervise the
execution of a program, it can load a predefined set of these commands
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as a script, allowing arbitrary programs to be analysed in a particular
way during execution.

SHaBE, which was described in Section 3.1, is an example of this ap-
proach: while it does not analyse the behaviour of SystemC files but
instead focuses on the extraction of the static design, it still uses this ap-
proach successfully. In SHaBE’s case, the creation of new modules and
other SystemC objects are recorded and traced. Conceptually, continu-
ing to trace the program’s execution and also focus on e.g. the modules’
field assignments would be one way to use this approach to retrieve data
about the system’s behaviour.

Still, this comes with the drawback of technology lock-in. Using
debuggers is
not a portable
approach

While Sys-
temC has been implemented standard-compliantly, allowing it to be
used on all major C++ platforms, gdb is limited to gcc and clang com-
piled programs. Even worse, the approach cannot even be transferred
to all platforms as e.g. the Visual Studio debugger cannot be automated.
Thus, using debuggers to retrieve information from running SystemC
models cannot even be ported to at least one major platform conceptu-
ally. This is a serious drawback to this method as it would severely limit
the applicability of any such approach.

All in all, debuggers are mainly tools to assist the designer in a manual
process of analysing the behaviour or the given program. Their purpose
is to offer a user a way to interact with the design at hand, not to give
an interface for automatic extraction or interaction to other tools. Those
debuggers that offer sophisticated interfaces to automate e.g. extraction
and analysis methods are not portable.

In order to analyse the behaviour beyond giving a designer the ability
to manually inspect what is going on at a specific point in time during
the execution of a program, debuggers therefore do not seem to be the
right choice. Instead, code-analysis tools that are not focused on single,
specific points in time during the execution but instead focus on retriev-
ing traces of whole programs should be considered in order to give the
designers a broad access to the execution data of their SystemC designs.

coverage tools focus on just that. Source code
coverage tools
to trace a
design’s
behaviour

Instead of stopping at specific
points or tracing certain values of specific variables, they collect data
concerning the execution of the whole program. The program is divided
into coverage items (CIs) which are then instrumented during execution.

The point of coverage metrics is usually to provide a measurement as
to how much of the program was actually run. This data is then used to
locate elements that have not yet been executed and thus adapt existing
or create new tests that cover all parts of the program.

There are different code coverage metrics available for C++ which can
directly be applied to SystemC designs:

• Existing
coverage
metrics for C++

Line Coverage counts how often each individual line of source code
has been executed. While it is readily available (gcc, clang and

43



extraction of systemc behaviour

MSVC++ all support instrumenting the code to retrieve line cover-
age), it suffers from the quite fundamental flaw that lines of code
do not necessarily have any fixed relation to the underlying logic.

Even a simple for-loop such as for (int i = 0; i < 4; i++)

contains three statements on a single line, each of which is
executed a different number of times (or maybe even not at all, as
a condition statement like i < 0 would lead to the increment i++
not being executed even once).

• Statement Coverage remedies this flaw by instead tracing the execu-
tion of each statement. However, while this would help concerning
the example above by reporting int i = 0 to be executed once, i
< 4 five times and i++ four times, this does not mean that a pro-
gram is error-free.

Especially, there may be parts of the program that only cause errors
if they are not executed as illustrated in Example 5.

Example 5 Consider the following pseudo-code program:
u s e r t y p e * t ;
i f ( c o n d i t i o n )

t = new u s e r t y p e ( ) ;
t . do ( ) ;

The variable t is a pointer that is not set during initialization, thus point-
ing at an arbitrary point in memory that might still contain data. Only
if the condition holds, it is initialized and set to a new instance, thus
pointing at a valid address in space (instead of 0 as before). Hence, run-
ning the program with a setup that lets condition hold, this part will
get 100 % statement coverage as all statements are executed while still
containing the error that t.do(); will result in undefined behaviour if
condition should not hold.

• Branch Coverage again remedies this particular issue by instead trac-
ing whether or not (or how often) a particular branch was executed.
In Example 5, two branches exist: one including the statement that
initializes t and one that skips directly to the final method call
t.do(). By tracing if each of these was executed, errors such as
the one above can be located as getting 100 % branch coverage
would mean that the erroneous branch needs to be taken.

However, just as a single branch may be the source of a certain be-
haviour (such as an error), it can also be a combination of branches
that need to be taken. Additionally, any error that does not result
from a specific path that is taken through the program but from the
data being passed through is inherently hard to discover: errors re-
sulting e.g. from an integer overflow are not easily located using
these coverage metrics. This means that even branch coverage is in
no way indicating whether or not a program is error-free.
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• While there are several other coverage metrics available such as
path coverage that counts whether or not all different combinations
of branches were taken (which is a problem with loops, as there
may be an infinite number of different paths through a program),
loop coverage that handles loops differently, condition coverage that
tests for different outcomes on conditions instead of branches and
others, the ones explained above are available in compiler suites
such as gcc.

Basically, all available coverage metrics have the advantage on focus-
ing on the analysis of a running program, which is needed for an analy-
sis of a given SystemC design as well. Issues with

applying
coverage
metrics to
SystemC
designs

However, they all suffer from the
flaw of being very software-centric and usually being tied to the source
code in one way or another. The applicability for a detailed run-time
analysis of a SystemC design is hence limited for several reasons:

• The results are aggregated. Instead of tracing what happened when
during the simulation, the gathered data is accumulated and re-
ported as a single value per coverage item (regardless of it being a
line, a statement or anything else). Instead of giving the designer
the information that a certain part of the design was triggered at a
particular point during the simulation, the final information is that
a certain coverage item was triggered n times as a whole, which
may not be helpful considering how a simulation may run for a
quite long time with all kinds of scenarios being run.

Coverage metrics always focus on giving the designer a single
value that indicates how “complete” the test cases are, which may
be helpful for fulfilling certain criteria but does not necessarily
provide any insight about the structure and behaviour of a sys-
tem. This foundational difference between coverage metrics and
the goal of design understanding is a large issue for the applica-
tion of coverage tools in the context of this work.

• Value assignments are disregarded. Especially for a simulated hard-
ware environment, the information which parts were active at a
certain point in time is just as important as what kind of data was
handled by those parts. The established software coverage tools
do not collect any information concerning which variables were
set to which values, disregarding particular states of the running
system for the sake of boiling down the runtime behaviour to a
single completeness value.

• They disregard ESL-specific features. Coverage tools are based in the
software domain and hence focus on the smallest common denom-
inator of software projects, which is the source code. Dividing
a system into control structures such as statements, branches or
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Figure 18: Extracting consecutive program states allows analysis of the
system’s behaviour.

paths may be a valid choice for defining CIs for plain software
projects. SystemC on the other hand e.g. has a set of very static
objects which are created during the elaboration phase and then
required to persist until the end of the simulation. While these are
a static part of the simulated hardware design, they are a dynamic
part of the program and not treated any differently.

In conclusion, existing tools for software behaviour analysis have
shortcomings that are limiting the usefulness of the given approaches
for ESL designs. While their availability makes them a straightforward
choice for a quick glance at the behaviour of a SystemC design, other
methods that focus on the application on SystemC implementations
and their peculiarities would be desirable.

The following Sections therefore propose two different approaches
that are focusing on the extraction of more detailed SystemC run-time
data in order to give the designer a better understanding of a given
design.

consecutive snapshot extraction

Extract
multiple

consecutive
states

As the extraction approaches that are described in Chapter 3 offer
various ways of extracting a system’s state, there is a simple approach to
behaviour extraction. The consecutive application of the method extracts
a set of consecutive states that describe altering system states over time.

This approach, illustrated in Figure 18, works well.
The resulting list of snapshots reflects how the system changes over

time. Due to the approach extracting not only SystemC-related data
(such as signal assignments) but information about any other datatypes
as well, these snapshots offer significantly more information than e.g.
a signal trace as offered by the SystemC implementation. Also, the ap-
proach remains just as applicable, allowing the snapshots to be extracted
without restrictions concerning the compiler or dialect being used.

The major issue of extracting these snapshots is not only the extraction
itself once it has been triggered, it is (once the extraction has been imple-
mented) the question of when to trigger this extraction. As the designer
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should know which part of a system needs supervision, invoking the ex-
traction at the crucial points can be regarded as a manual task. This way,
the designer would simply add the required code to arbitrary points in
the source code, hence extracting the data at just the right points in time.
However, if the designer does not want to specify the points in time at
which the states should be extracted, an automatic method should be
available. This basic requirement does not have an equally trivial solu-
tion though. The point during execution is neither trivial to pick nor
easy to use as an extraction point, assuming that the approach should
work automatically.

Triggering the extraction suffers from the same problem as the ex-
traction itself: C++ does not offer an easy way to work with the pro-
gram’s implementation from within the program itself. Java e.g. offers
not only its reflection package to gather information about the program
and modify the state at run-time, it also has a well-defined intermediate
representation, the Java Byte Code [5]. This common foundation can be
used to alter programs on a fundamental level, rewriting the program’s
instructions to include features that have not been present in the origi-
nal source code. C++ does not offer anything similar. The compiler’s
responsibility is the translation of source code into machine code, with
the result differing depending on the target platform and no constraints
concerning any intermediate steps to take. Hence, if the process should
not remain a manual one, the question of how to pick a valid extraction
point and how to automatically add the according logic to be executed
at that point, is a a crucial one.

An intuitive approach would be to extract the snapshots after clock
cycles. This way, the system’s distinct timing scheme could be exploited
to extract system states. Additionally, this would very well reflect the
traditional way of tracing waveforms during the simulation of a system
– simulating clock ticks and then logging how values change throughout
the system is a method that has been used on RT level designs for quite
some time. However, while this approach does seem obvious, it comes
with several pitfalls that should be considered before applying such a
pattern.

• SystemC designs do not neccessarily use clocks to synchronize
their modules, so assuming that clock signals are available for trig-
gering the extraction process might be presumptuous. SystemC
designs may as well rely on manually set stimuli, with the needed
time in between being hard-coded into the source.

• SystemC designs may contain an arbitrary amount of behaviour
contained in a single clock cycle that may be of interest for
analysing the given design.

A SystemC module may contain any amount of logic. The code
inside a module may be as complex as needed, with its execution
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not only covering what might later be a large part of a given design
but a considerable amount of time as well. As a module may cal-
culate a result and may be coded to e.g. wait a certain amount of
time to pass it on to simulate that the calculation took longer than
a single clock tick, this is not even a shortcoming of the framework
itself. Instead, modules doing complex calculations in an instant
(as far as the simulation kernel is concerned) is a result of how
SystemC works and can be considered a feature of the framework.
These calculations, however, could not be extracted in detail by a
tickwise snapshot extraction.

• Depending on the simulation parameters, there might be long
timeframes without any activity in the system. While such inac-
tive phases could be handled by the appropriate diffing algorithm,
executing the according code consecutively without any further
information gain for an arbitrary amount of clock cycles may be
considered an unneccessary performance hit.

With no definite point in time to extract the data, the issue would
have to be directed at the designer, who could then manually insert
extraction markers into the source code that would trigger the according
method. However, this approach would contradict the core idea of a non-
invasive analysis – after all, adding the according methods manually to
the required points could be a major amount of work.

Generally, the extraction should be triggered automatically. As the
executing program itself cannot log its own behaviour in detail though,
the solution should be an external one. One approach could be to use
the compilers to be able to access the program: modifying the program
during compilation or using existing methods to alter the resulting exe-
cutable in order to analyse its behaviour may be a way to insert the ex-
traction methods into the running program at arbitrary points. Another
viable approach could be the modification of the source code before com-
pilation, altering it in a way that makes the final program to be compiled
behave in the desired way.

compiler-based behaviour modification

As making a program analyse itself from within is an issue, one solution
may be to instead insert the required tracing functionality on the com-
piler level. As the code has to be processed by the compiler anyway in
order to be translated into an executable application, making the com-
piler add the according functionality at the appropriate insertion points
is a straightforward way.

This approach requires some way to specify how the behaviour should
actually be modified. Figure 19 illustrates the architecture of this ap-
proach: in addition to the SystemC source code, the compiler is also
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Figure 19: Using the compiler to insert the analysis functionality re-
quires some way to specify the required modifications.

instructed to somehow alter the resulting code, which then executes the
required analysis while the program is running.

Avoid
self-analysis of
the application
by modifying
the behaviour
at compile-time

The most important issue this approach fixes is that the program no
longer needs to analyse itself using the means available via the standard
C++ features. While C++ itself does not offer the ability to e.g. execute
arbitrary code upon the change of a variable or the execution of a func-
tion, simply inserting the required functionality around these points is
less of an issue. Being able to describe e.g. that with every function
call inside a module, the call should be logged for later analysis would
make the compiler insert the tracing functionality at each of these func-
tions, resulting in extensive modifications during compilation but with
no further requirements concerning the original source code.

Still, non-invasiveness in this case would not be an issue concerning
the source code modifications but of the available platforms. Not all
compilers offer an interface that allows altering the steps performed
during compilation. While e.g. clang offers extensive plugin capabilities,
gcc is more limited in this concern but is still an open-source solution,
which allows the modification of the compiler’s behaviour by patching
its sources. However, any closed-source compiler that does offer any
such plugin interfaces (such as e.g. the MSVC++ or Borland compilers)
would be excluded from an approach that relies on the modification of
the compilation workflow.

The similarity of this approach to the hybrid extraction approaches
introduced in Chapter 3 is obvious, basically the major difference is the
application: instead of extracting the static system models, the behaviour
is supposed to be logged. As extracting the design already requires
the analysis tool to analyse the run-time behaviour of the program (as
modules are only created when it is running), extending these methods
to somehow extract behavioural features is a logical next step. Still, the
portability issues remain for any approaches that extend these ideas:
something that requires or modifies a particular compiler requires the
designs to be compatible to that compiler and the compilation workflow
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to use it. This may be a deal-breaker for projects that rely on different
architectures and use their particularities.

In order to comply with the idea of non-invasiveness, these compiler-
based approaches are therefore unsuitable. Thus, a different approach
that has less requirements concerning the build environment of a given
project is inspected in detail.

aspect-oriented analysis insertion

Instead of raising awareness for a specific approache’s issues, overcom-
ing them should be a priority though. This section introduces the con-
cept of Aspect Oriented Programming (AOP) and how it can be used to
provide a solution to the issues of the previous approach.

The main goal is to overcome the limitations of previously proposed
solutions, i.e. the static focus and, hence, missing support for dynamic
descriptions. At the same time, the aim is keeping the proposed solution
as non-intrusive as possible, preventing the designer from having to
incorporate significant changes into their implementation just in order
to analyse their design.

The general solution in this case is a division of labour between the
method that analyses a design and its application.Differentiation

between the
extraction

method and its
application

required

If existing solutions
such as the statement extraction explained above or other generic soft-
ware coverage methods provide a sufficient metric, it may still be an
issue to actually use this metric for a given design. For the statement
extraction approach, the issue was already outlined in section 4.2: while
the retrieval method itself is sound, the question of where to insert the
according code fragments is important and may come down to a manual
process if certain constraints are not satisfied in the design. For software
coverage metrics, despite them being readily available and applicable
the question remains the same, especially for system designs that are
merely written in software: assuming that the behaviour of a design
should be analysed, describing not only how the data itself needs to be
extracted (e.g. line coverage) but also at which intervals and when it
should be done (e.g. for each function call, each clock cycle etc.) is a
crucial part of the analysis.

Use AOP to
define the

points when
the extraction

method should
be used

This division is accomplished by combining analysis metrics such as
the extraction schemes from Chapter 3.3 or e.g. the gcov coverage tool
for line coverage with the scheme of AOP [99]. The former provide the
extraction method, i.e. they implement a certain means of extracting
the required information from a running program. The latter is then
used for that method’s application, i.e. it determines the exact points
in the running program when the chosen method should be invoked to
actually retrieve the required data.

Existing coverage tools represent a valid foundation for behaviour
analysis tools for SystemC, being directly applicable to its C++ foun-
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dation. Line coverage e.g. provides a per-line-of-source listing of parts
of the program which have been executed in a given run. However, as
outlined in section 4.1, simply applying corresponding methods for line
coverage analysis such as gcov does not always provide a satisfactory
result. Corresponding analyses are static, providing merely the informa-
tion which coverage items (CIs) were triggered in a full run of a given
design. Therefore, while indeed pinpointing to respective lines of code,
e.g. the instance that is currently active and calling a given function
(and thus the precise component of the design dynamically generated
in the elaboration phase) remains unknown when using these tools, as
CIs are limited to the static program elements, which excludes the dy-
namic structures that are created during the execution. As no further
specification concerning the application of the given coverage metric is
given (except that it is collected at all), a single, large dataset is generated
for the elaboration and simulation phases of a system execution.

In order to address this, the insertion of another dimension when
performing line coverage analysis is proposed. A valid extraction goal
that is pursued as a proof-of-concept in this chapter is the collection of
CIs per module instance. Application

goal: extract
coverage
information
per instance

Instead of only providing the designer with the
total number of times a single line has been executed during a run, the
aim is to provide the designer with the total number of executions of a
line for each module of a given system.

Example 6 Let’s assume a system in which two components a and b are instan-
tiated from a common base class CLS. Furthermore, let’s assume that, during
simulation, only component a is triggered. A static analysis would only unveil
that the respective lines of the common code basis in CLS have been triggered n
times. In contrast, having the total number of executions per instance would
unveil that component a has been triggered n times while component b has not
been triggered at all.

Such a more elaborated result would lead to a much more accurate
analysis of the system’s behaviour. In the example, it gets obvious that
component a triggered the coverage item (and might include the feature
the designer is looking for) while component b seems irrelevant in this
case.

Generally, the information is available in the methods that are being
called: C++ functions that are members of a given class (such as an
sc object) are automatically supplied with a this parameter that can
be accessed from within the given function and points at the object that
is currently executing the function. This reference allows access to the
instance of the module which actually executes the respective function.
Using the this-pointer, one can track a unique identifier – e.g. the name-
field of the respective SystemC-object – and thus keep track of which
instance is currently executing a particular part of code.
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Figure 20: The proposed coverage analysis scheme.

Relying on these ideas, a scheme to extract the desired features is
outlined in Figure 20. Whenever a function is called (1), a common code
line analysis tool (e.g. gcov) is additionally invoked. This keeps track
of which lines are triggered when running the function (2) – as in any
existing feature localization tools. However, the tracked information is
not stored globally, but with respect to a unique identifier of the instance
which runs the function. For this purpose, the execution of the analyzer
is terminated together with the currently considered function (3), i.e.
either before calling another function or when exiting a function. In
order to determine the unique identifier, the this-pointer is read just
before the execution of the function is terminated.

Invoking a classic coverage tool at each of those points and mapping
the information from this tool to the currently active this reference
records the full line-based coverage and adds the information which
object instance the according lines were called from.

By this, dynamically generated components are explicitly considered
during the execution and tracking of coverage items.

AOP is applied to avoid the workload that a naive realization of this
solution would result in. A straight-forward, manual implementation
of the proposed scheme would require designers to perform significant
changes in their existing project. For each function, the respective addi-
tions for step (1) and step (3) from Figure 20 would have to be added
– something which should be avoided as it would introduce a lot of
modifications to the code that do not add any functionality and take a
considerable amount of time to write. AOP, on the other hand, can be
used to add this functionality to a given code base automatically, restruc-
turing the source code before compilation and adding the given scheme
without requiring further work from the designer.

AOP’s programming scheme is motivated by the following scenario
frequently occurring in system design: a new functionality shall be im-
plemented into an existing system which, however, would require an
extensive re-factoring of the existing implementation (or even an entire
re-development from scratch).
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<< block >>
SWITCH: mcast pkt switch

<< block >>
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<< block >>
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<< block >>
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Figure 21: Simplified representation of an initialized pkt switch system.

Example 7 Consider the pkt switch-system from Figure 21 which is taken
from the SystemC reference implementation. Each of the classes used in the
implementation contains an entry()-method that updates the state and output
of the respective module. Let’s assume that this design shall be enriched with a
tracing functionality which keeps track of each call of the respective entry()-
methods. Although all modules of that example share this method, they do not
inherit it from a common base class. Hence, there is no single location to add
the respective extensions to. The designer is left with the option of either

• enriching the entire system e.g. by an inheritance structure (which might
be a lot of work and may result in other designers having to adapt their
code as well) or

• adding the respective code into all classes (which results in redundant
structures or global methods that are supposed to be called only from a
certain context – both considered bad style which usually reduces main-
tainability).

For those cases, AOP provides the designer with an additional layer
which allows him/her to describe the new behaviour (almost) indepen-
dently from the existing implementation. Component

code and
aspect code are
merged using
the aspect
weaver

Following this scheme, design-
ers avoid huge re-factorings but need to provide the implementation of
the newly added behaviour and a description of the position it is sup-
posed to be executed at. More precisely, AOP distinguishes between
separate component code (which represents the existing object-oriented
programming scheme that is used to describe a certain structure and ba-
sic functionality) and a so-called aspect code (which describes additional
functionality that may be shared by several components and does not
fit into the existing structure). These two kinds of code are written in-
dependently and, before compilation, are merged by the so-called aspect
weaver. The aspect weaver takes the aspect code and inserts it into the
specified positions (so-called join points) in the original source code.
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# include <iostream>

aspect Tracer
{

advice execut ion ( ” % . . . : : % ( . . . ) ” ) : before ( )
{ std : : cout << ” before ” << t j p−>s ignature ( ) <<”\n” ;}

advice execut ion ( ” % . . . : : % ( . . . ) ” ) : a f t e r ( )
{ std : : cout << ” a f t e r ” << t j p−>s ignature ( ) <<”\n” ;}

} ;

Figure 22: Aspect code

Fig. 22 shows a simple aspect that illustrates how aspect code is to be
used and written.

• An aspect is named (in this case “Tracer”) and extends the concept
of classes. While an aspect may thus contain field variables and
functions, it may also contain

• advices that define where and how the existing project should be
altered during the weaving process. An advice is declared using
several constructs:

– The advice keyword.

– The pointcut that defines the join points where the code is
supposed to be altered. In this case, this is the predefined
function execution and a pattern to be matched (“%...::%(...)”,
which matches all function calls).

– The before or after keyword, defining how the code is to be
altered – in this case, the aspect code is inserted either before
or after the matching pointcuts.

– The aspect code that is inserted. Notice that join points intro-
duce a tjp object (of type JoinPoint) that allows accessing
information about the join point itself. In this case, this is
used to print the method signature before and after all func-
tion calls.

Fig. 23 illustrates a minimal SystemC program that merely writes a sin-
gle line to the console. When woven with the aspect code presented in
Fig. 22, however, its output is enriched with information about the func-
tion calls, as seen in Fig. 24. Notice that the original SystemC program
remains unchanged but the resulting program’s behaviour is altered.

Basically, the AOP workflow can be understood as a series of code
refacturing instructions that can be applied to any given code base. The
aspect code contains the instructions concerning how the given code
base should be refactored and running the weaver gives the designer
the result of applying the given rules.
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# include <s t d l i b . h>
# include <systemc . h>

SC MODULE ( hel lo world ) {
SC CTOR ( hel lo world ) { }
void s a y h e l l o ( ) {

cout << ” Hello World .\n” ;
}

} ;

i n t sc main ( i n t argc , char * argv [ ] ) {
hel lo world h e l l o ( ” hi ” ) ;
h e l l o . s a y h e l l o ( ) ;
return ( 0 ) ;

}

Figure 23: Minimal SystemC program

SystemC 2 .3 .1− A c c e l l e r a −−− Sep 18 2016 1 3 : 5 4 : 5 2

Copyright ( c ) 1996−2014 by a l l Contr ibutors ,
ALL RIGHTS RESERVED

before i n t sc main ( in t , char * * )
before void hel lo world : : s a y h e l l o ( )
Hello World .
a f t e r void hel lo world : : s a y h e l l o ( )
a f t e r i n t sc main ( in t , char * * )

Figure 24: Aspect code output

Example 8 Using AOP, the desired tracing functionality from Example 7 can
be realized by leaving the existing code as it is. Instead, the tracing function-
ality is separately realized in an aspect. This aspect code also specifies that all
classes inheriting the sc module-class and containing an entry()-method (i.e.
sender, receiver, and switch) should execute the newly added tracing implemen-
tation whenever entry() is called. The resulting code consists of the original
SystemC model as well as a description of additional functionality that describes
where in the design (i.e. “after calling the entry-method”) which functionality
(i.e. “trace the execution”) should be added.

The ability to transparently “weave in” aspect code just before compi-
lation allows for the insertion of additional functionality to large source
bases without further interaction. Other designers of a given system do
not even need to know about new features being added: functionality
that is needed at some other point in the workflow can remain hidden
from them. This results in less complexity as designers are only pre-
sented with implementations related to their respective tasks – a clear
separation of concerns.

In order to apply AOP in SystemC, or C++ in general, AspectC++ [99]
provides an implementation of the respective programming scheme. As-
pectC++ performs thereby two steps (which are illustrated in Figure 25):
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Figure 25: The workflow for AOP.

• First, weaving is applied, i.e. the original source code as well as the
respective aspect source code (which contains its own keywords to
specify the aspects but largely sticks to the C++’s syntax) is taken
and a corresponding woven source is created. This code includes
both, the original functionality and the parts introduced in the
aspects.

• Afterwards, the resulting source code (which is not necessarily
meant to be read or edited) is compiled; directly leading to a bi-
nary executable which allows to perform the new functionality.

Existing
approaches
that utilize

AOP for ESL
design analysis

Due to the promising traits of AOP, some approaches have already
utilized this approach for various aims.

• Although not combined in a single tool, [19] outlines the applica-
tion of AOP for metrics collection, functional verification, commu-
nication and the more specific use cases of a cache replacement
policy and the separation of control and data streams for given
examples.

• As SystemC designs are usually focussing on a system’s structure
and behaviour (especially in their early stages of development),
concerns such as power estimation are usually ignored at first and
hard to add later on. AOP provides an easy way to add the needed
code for power estimation throughout a design, adding the code
that implements the corresponding power model once the struc-
tural and functional description is done without the need for any
heavy refactoring [55].

• Usually, the resulting source code that is generated during the
weaving process is quite complex. This is not only a problem for
its readability and debugging but also for the synthesization of
hardware from a given SystemC design if the original design was
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composed from SystemC’s synthesizeable subset and meant to be
translated into hardware. ASystemC [30] is an AOP implementa-
tion that, unlike AspectC++, focuses on SystemC and its ties to
hardware design.

Although the focus on hardware development and synthesizeabil-
ity seems fitting, ASystemC relies on a custom parser for the in-
terpretation of the original SystemC code, sacrificing portability in
order to implement its own engine.

In order to comply with the notion of non-intrusiveness, ASys-
temC was therefore not considered to be used for the sake of ap-
plicability.

• CHIMP (CHIMP Handles Instrumentation for Monitoring of Properties)
[111] is a tool that monitors temporal SystemC properties. The
basic approach in this case is that certain properties are hard to
describe with standard C++ assertions (especially properties rely-
ing on temporal relations) and custom property checkers are hard
to embed into existing code bases. AOP, in this case, provides a
framework to embed this sophisticated monitor into existing Sys-
temC projects.

CHIMP adds another layer of abstraction above the usual writ-
ing of AOP advice code, taking instead properties and locations
in a custom language and generating the according aspect code.
Apart from providing a more abstract way to exploit AOP’s fea-
tures, CHIMP also adds functionality beyond the mere translation
of its own property expressions into aspects: in order to overcome
AspectC++’s limitation of being unable to match arbitrary syntax,
CHIMP allows matching any piece of code via regular expressions
as well. While this does not allow matching syntax on a seman-
tic basis (which might be a problem for statements that should be
matched but contain some unexpected character), it is a solution
that should work fine for most cases.

Hence, AOP represents a promising approach to integrate static met-
rics into existing system designs according to the scheme illustrated in
Figure 20.

Shortcomings
of the
AspectC++ im-
plementation

However, the API that is provided by AspectC++, while extensive,
does not provide the ability to describe arbitrary points in the source
code. While CHIMP attempts to remedy this by providing additional
expressions to describe certain code constructs, using features such as
information about the program flow to analyse a given design is a hard,
if not downright impossible task. While regular expressions could be
used to e.g. match if-statements, C++’s notoriety of relying on prepro-
cessor directives that modify the code just before compilation leaves a
string-matching based approach with the issue of also matching the ac-
cording macros. Generally, as regular expressions have no notion about
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the underlying program structure, pointcut statements such as “in a
class that inherits from sc module, match each variable declaration that
has a type that inherits from a particular class” become impossible to
achieve.

However, as AOP is – in this context – supposed to merely provide
the means to apply another analysis tool, such limitations are of no con-
cern as long as the chosen tool performs the given task as required using
the means AspectC++ offers. This means that the detailed, static analy-
sis (e.g. which lines were executed in particular, which branches were
taken etc.) can be left to the tool that was chosen to be inserted. The this
reference that is crucial for the division between the static information
(i.e. which part of the code is being executed) and the dynamic infor-
mation (i.e. which instance provides the context for a given execution)
can only change with each function call. As AOP does provide pointcut
functions to match function calls before and after their call and return
statements, using AOP to apply a given coverage tool to a given design
that can then be enriched with the information of its current context is a
viable approach that bypasses both,

• AOP’s shortcomings concerning the descriptions of pointcuts that
are neither namespace/class/structure declarations nor function
calls and

• issues of analysis methods concerning the tracing of dynamic fea-
tures of a given program.

Integrating
AOP and gcov

to extract
behaviour

information

It is thus a valid approach to integrate AOP and the gcov coverage tool
to accomplish the task of retrieving coverage items on a per-instance-
basis, allowing a more detailed extraction of a system’s modules’ be-
haviour.

Following the AOP-based programming scheme allows for a non-
intrusive integration, i.e. the proposed analysis functionality can easily
be integrated into existing SystemC projects. In fact, since SystemC is a
C++ library, AspectC++ itself can be used off-the-shelf, i.e. unchanged.
Only the existing project building process needs to be altered as the
weaver needs to be built into the existing compilation workflow. How-
ever, this is a one-time setup and works on all major platforms [100].
Afterwards, a set of aspects can be used to add the new tracing function-
ality to any given SystemC design.

This results in a system in which calls of functions f are conducted as
shown in Figure 26: first, information recorded thus far (by the respec-
tive line coverage analysis) is flushed prior to each function call. Thus,
all results of the analysis are saved (in the current implementation, they
are written to the hard drive) and associated with the current scope
(i.e. the instance which calls the function). Then, function f is executed.
Since the line coverage analysis is still running, new information is gath-
ered. Before the function terminates, another flush is executed, i.e. the
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statementa

call f ()

statementb

f ()

statement fa

return()

flush(this)

flush(this)

Figure 26: Integrated flow.

newly collected information is saved again (now associated to the in-
stance which hosts the function f , again by storing the this reference).

The result is a list of coverage analysis files – all associated to the
instances on which the respective code was executed. The chosen im-
plementation stores the information only in relation to modules, i.e. any
classes that inherit from sc module in any way for several reasons: Limiting the

AOP insertion
to objects
inheriting
sc module

• The implementation can safely assume that the object is a module
and its name field can be accessed.

As SystemC requires the names to be unique (and alters them ac-
cordingly if they are not), this field can be used as the unique
identifier to link the coverage data to. This essentially also means
that no other unique feature needs to be found – which would
not be a trivial problem as well, as e.g. memory addresses may be
reassigned and C++ objects do not have any means to uniquely
identify them in place. While AspectC++ could also be used to
rewrite any object to contain a unique identifier, this may result in
issues when the designer expects his objects to have their original
memory layout.

• Object creation does not need to be tracked during simulation.

As SystemC prohibits the creation of new objects that inherit
from sc object once the simulation has begun, assuming that
the tracked objects and chosen IDs remain unique and valid is
reasonable.

While AOP does provide pointcuts to match the construction and
destruction of new instances, these may be frequent if each and
every class’ and struct’s creation was tracked, requiring the trac-
ing method to constantly change the given context, which may be
a performance problem depending on the implementation of the
analysis method.
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• There is a direct connection to the simulated system for each traced
feature.

Objects that are created but not explicitly referenced may have
been set up somewhere deep within the program to provide a func-
tionality that is not directly relevant to the system itself. Hiding
such instances lets the designer focus on the objects that are parts
of the simulated system.

Notice that this does not mean that code that is part of non-SystemC-
objects is not traced. The suggested application of gcov e.g. results
in code that is part of other classes being traced appropriately but at-
tributed to the module that called the according function in the first
place.

Example 9 Assume that two modules a and b are created, both instances of
the CLS class. Both modules share a static reference to a single third object
generic object that is not inheriting any SystemC class and that provides a
public do() method. During simulation, a calls do() while b does not. The
resulting traces do not track the execution as belonging to generic object. In-
stead, the call is attributed to a as the SystemC object that was responsible for
calling the third instance’s method.

Overall, this leads to several advantages which make the proposed
solution very applicable for feature localization in SystemC designs:

Advantages of
applying AOP

in SystemC
designs

• The original source code does not need to be modified in any way.
Existing SystemC projects can easily be analyzed by only modify-
ing the compilation workflow to include the aspect weaving step.

• The existing compilation setup can be used for the resulting, wo-
ven code, as long as the given compiler offers the coverage mecha-
nisms that the designer wants to apply.

• The SystemC library does not need to be modified in any way. Un-
like approaches that analyze a running SystemC design by modi-
fying e.g. the simulation kernel, the given approach works purely
on the user-generated code base. This means that the approach
can be applied to future versions of SystemC without any further
changes and that it can be combined with setups that already rely
on a modified SystemC library.

• The proposed approach is flexible, i.e. various tools and/or
schemes for line coverage analysis can be chosen. Since tracking
the information obtained by these tools/schemes can be realized
using aspects, e.g. the time-consuming gcov operations can easily
be omitted if performance is crucial.
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• The proposed approach is platform-independent. As long as a cor-
responding line coverage analysis tool is available (which is the
case for all major platforms), the proposed solution can be imple-
mented. This is possible, because AOP-implementations such as
AspectC++ are available for all major platforms as well.

Using AOP does require the designer to make certain trade-offs
though.

Issues of
applying AOP
in SystemC
designs

• The compilation flow must be compatible to AspectC++.

While AspectC++ is available for all major compilers, it is still a
third party tool that does neither guarantee that it works in all
cases and will continue to do so. This issue can be seen with the
current switch toward C++11 and C++14 [33], updated versions of
the C++ standard that provide extensions to the C++ language and
its standard library. Both of these are unsupported as of now, with
C++11 being on the roadmap and C++14 not yet being considered.
The applicability of this approach is of course ultimately depend-
ing on the AOP implementation being available for the chosen
platform, which includes the supported code constructs. There-
fore, even with AspectC++ being open source, it is critical that this
framework is kept updated and in line with the C++ language for
it to remain applicable.

• Depending on the analysis method and the extraction frequency
defined by the aspects, performance may take a significant hit.

The gcov approach e.g. requires storing the coverage data on disk
for each inserted extraction point, consecutively mapping the files
to the according ID (which is, in this case, done by renaming the
file). Even when running this method on a RAMDisk (i.e. a part
of the computer’s RAM instead of a hard drive), the I/O becomes
a bottleneck that slows down the simulation speed. The simula-
tion of the pkt switch system shown in Figure 21 for the basic
system and the applied AOP/gcov combination on both, the hard
drive and a RAMDisk can be seen in Table 1. While the execution
time grows significantly by several orders of magnitude, storing
the data is the major culprit in this case as even simulating these
20 cycles results in the storage of more than 30, 000 files on the
hard drive.

Using alternative approaches that do not require the intermediate
files to be written to disk could be an option to improve perfor-
mance.

Generally speaking, tracing the program output results in a perfor-
mance penalty depending on the chosen extraction method. However,
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Table 1: pkt switch execution time for 20 simulated cycles

no coverage AOP/gcov on HD AOP/gcov in RAM
time 0.103s 135.767s 62.404s

factor 1 ≈ 1318 ≈ 606

due to the chosen approach, there are hardly any other drawbacks, apart
from the required alterations to the system’s build workflow in order to
add the weaving process before the program compilation.

The resulting workflow offers an applicable, non-intrusive way of in-
jecting analysis methods into a given design, allowing the behaviour of
the program to be altered without any further requirements concerning.

The given approaches, the extraction itself and the injection using
AOP, usually need to be adapted in order to work together. The aspect
code needs to know which code fragments need to be inserted where
and the analysis code needs to be adapted to work in the target source
code, woven into the project. Still, the AOP approach allows to transfer
these methods into a given C++ design easily – for the given insertion
of gcov, the coverage tool itself did not need to be altered at all and the
aspect code handled the required interactions with gcov in less than 200

lines of aspect code and scripts.
The proposed method therefore represents a sound approach for

analysing SystemC designs. It is non-intrusive and yet allows for
arbitrary analysis aproaches to be inserted into any given SystemC
design.

conclusion

This chapter presented methods to analyse and extract the behaviour of
SystemC designs.

It first outlined existing software approaches to analyse a system’s
behaviour. Afterwards, the simple case of applying the methods intro-
duced in Chapter 3 was suggested, which works but shifts the burden
of applying it to a given system to the designer, which may be a tedious
and time-consuming process.

The issue was then divided into two core parts – the extraction of the
data itself and the invocation of said extraction method. The former
could remain an application of the methods provided in Chapter 3 or
the usage of other methods such as the usage of coverage tools. The
latter was realized using Aspect Oriented Programming which allows
to specify the points at which the extraction methods should be invoked
without requiring the designer to alter the source code manually.

This separation of concerns allows the final program to extract de-
tailed information from a running SystemC program while remaining
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4.5 conclusion

non-invasive (i.e. not altering the original sources before the compila-
tion workflow starts) and works on all major compiler platforms.
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5
F I L L I N G T H E G A P S W I T H M A C H I N E L E A R N I N G

Maybe the only significant difference
between a really smart simulation
and a human being was the noise
they made when you punched them.

Terry Pratchett [87]

The approaches introduced in chapters 3 and 4 retrieve detailed data
about a design’s structure and behaviour. Still, some information re-
mains that cannot be extracted using these methods. Using the methods
from Chapter 3 the state of the model is retrieved, with the objects that
have been created and their values being the aspect that is retrieved.

Extracting the
internal state
may not be
enough

However, classic hardware models such as a Mealy [68] or Moore [74]
automata clearly indicate that a design’s state is but one aspect of a
circuit’s output. The other part is the logic itself, which (depending on
the model) together with the input determines the output of a system.
This part – the logic of the module – is not extracted by the structural
extraction features. Figure 27 illustrates the issue: the state which is
extracted does not solely define a system’s output, as the internal logic
is not handled by the given approaches.

That internal logic is a direct representation of the program’s source
code. For a detailed model of the logic, designers may therefore simply
look at the source code, especially when trying to understand a certain
module in detail. However, design understanding, albeit important, is
only one of many applications of detailed system models. Other use
cases may require complete models of the system, so analysing the logic
may be needed for some cases.

The source code is the element in a SystemC program that consti-
tutes the logic that defines both, the system’s output and its consecutive

Combinatorial Logic

State

Figure 27: The extraction methods so far only cover the system’s state
(bottom, grey) but not its modules’ internal logic (top, white).
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states. Especially for designs that utilize SystemC, the automaton model
from Figure 27 becomes obvious. As each module contains one or more
processes that are invoked by the simulation kernel and run until they
are finished (and the module has reached its next state and produced
the desired output), each of these processes (which are described us-
ing arbitrary C++ source code) can be regarded as the logic part of the
automaton.

This is again raising the issue outlined earlier. While C++ source
code is generally machine-readable (as it needs to be interpreted by a
compiler to be translated into machine-code), this is neither an easy task
nor is it possible to write a single cross-platform code parser that is
compatible to all dialects and frameworks that are built for C++.

Issues for
retrieving

module
connections in

SystemC
designs

Hence, while analysing the internal structure is easy for circuits pro-
vided at the RTL or the gate level, new obstacles are introduced if a
circuit or system is available at the ESL for several reasons:

• SystemC allows for a significant number of different description
means (the full expressive power of C++ including its dialects)
which need to be supported by the respective analyzer. This, of
course, can be addressed by altering the code so that it is com-
posed of supported constructs only. However, this might become
a time-consuming and, therefore, expensive task.

• The availability of source code usually stops at pre-compiled li-
braries, user inputs, file or network access, and all other possibili-
ties of the program interfacing with any other element other than
source code. For all these elements, it is unknown how to obtain
the respective internal structures.

• Global variables could be changed by any function or library call
at any time. Consequently, if the result of a structural analysis
includes a global variable, the number of further components pos-
sibly also being part of the respective dependencies increases sig-
nificantly. This results in the accumulation of dependencies that
might not be part of the logic behind the source code.

• In order to reduce these overestimations, an analyzer needs to de-
cide whether it should act conservatively or progressively, i.e. ei-
ther taking all possible value changes into account (and maybe end
up discovering much more dependencies than there are) or leaving
out those that it deems reasonable (and maybe end up not having
the one connection that is important for a certain case).

As a result, if source code is not or only partially available (which
might already be the case when using standard library calls), analysing
the internal logic at the ESL is restricted. Even if it is, retrieving the
information is not trivial though. Generally, there are two approaches
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to read the C++ source code. Either, a custom front end can be written
to specifically target e.g. SystemC (which still has to encompass the full
C++ language in order to be complete) or an existing compiler can be
used to leave the full pre-processing to an existing tool and focus on
retrieving the information from it. However, both of these options violate
the non-invasiveness principle as they are not portable and thus require
the source code to adhere to the constraints imposed by the tools that
are being used. The former does it by not being able to support all
compiler-specific additions to the language such as extended standard
libraries, the latter by not being applicable to certain compilers such as
MSVC++.

Figure 28b illustrates the extraction issues: while the respective con-
nections between SystemC modules can be extracted via an API (solid
lines), connections within a module (which are described using C++
source code) cannot be derived if the implementation of these modules is
not available, if the corresponding description means are not supported,
or if their respective values might be affected through side effects like
global variables. Consequently, e.g. the dependencies of signal o0 cannot
exactly be determined.

Knowing the dependencies within hardware systems has always been
a key issue in several design tasks though. The general idea is to take
only those parts of the circuit into consideration that are relevant to the
respective design task. Applications can e.g. be found in the following
domains:

• Design understanding [40]: If a designer wants to understand the
purpose of a signal, only the components triggering this signal
need to be inspected.

• Debugging [1]: If an erroneous behavior occurs on a signal, the
reason for this error must be within the components triggering
this signal.

• Verification [3, 17, 6]: If the correctness of a signal shall be veri-
fied, the verification engine only has to consider the components
triggering this signal.

These applications’ general idea is to ease the execution by taking only
those parts of the circuit into consideration that are relevant to the re-
spective design task.

At abstractions like RTL or gate level, components that influence a
certain signal can easily be obtained by a backward traversal starting
from the currently considered signal. At the ESL, however, this back-
ward search cannot be easily achieved as the internal structures are not
available as a graph structure. Instead, as the internal module logic may
be described using arbitrary C++ constructs, analysing these structures
is far from trivial, especially considering the non-invasiveness principle
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Figure 28: Module analysis at the RTL and the ESL

(which e.g. requires to not depend on a particular compiler – basically
rendering a reliable source code analysis unattainable).

Example 10 Consider the gate level circuit shown in Figure 28a and assume
the logic for the output signal o0 shall be determined. Since o0 depends on
gate g2 and its two inputs s0 and s1, these elements are added to the formula.
Since, in turn, s0 and s1 depend on gates g0 and g1 with their inputs i0, i1, i2,
and i3, also these components are added. In contrast, o0 does neither depend on
the gates g3 and g4 nor on their input signals. Hence, while the overall circuit
is composed of five gates in total, only three of them need to be considered in
order to observe o0.

The ESL model shown in Figure 28b, however, cannot be analysed in this
way. As the module interiors are not part of the structural information that can
be retrieved using the SystemC API, retrieving the information that the signal
o0 depends on the input i0 but not i5 is not easily possible.
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Figure 29: Deduction of links between stimuli and signals: While the
streams of stimuli might seem random at first, i3 correlates
with the considered output signal, indicating a dependency
between input and output.

Motivated by this consideration, an alternative to the “classical” ap-
proach of locating the dependencies is needed which supports the new
requirements at the ESL. Hence, instead of a structural analysis, a be-
havioural scheme is proposed. To this end, a set of stimuli is applied to
the system with the intent of triggering various behaviours. Afterwards,
the relations between the respective signal assignments are observed in
order to deduce the desired information. The following example illus-
trates the idea.

Example 11 Consider the abstract SystemC module as illustrated in Figure 29
and assume that the formula for the output signal o0 shall be determined by
means of a behavioral analysis. To this end, 19 input/output assignments are
provided. At a first glance, these assignments are merely detached streams of
Boolean values. However, at a second glance, certain characteristic relations can
be observed. For example, each time input i3 is set to 0, the considered signal o0

outputs 1. This may lead to the conclusion that the value of o0 depends on the
value of i3. In a similar fashion, further conclusions can be drawn.

In summary, this means that there is a variety of crucial applications
that require the structure of the modules’ internal logic but no way to
retrieve it that works in the desired manner. In order to fill this infor-
mation gap, this chapter proposes an approach based on established
algorithms in Section 5.1 and details ESL-specific issues and additions
in Section 5.2.

reverse-engineering module logic

The proposed approach determines the internal logic preceding a given
output from a thorough analysis of certain assignments to the signals
of the considered system from which characteristics of their relations
are automatically deduced. Consequently, the quality of the approach
significantly relies on the set of stimuli applied to the system. For the
machine learning algorithm to perform well, a number of “good” stimuli
to be considered need to be generated. To this end, different strategies
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may solely or in parallel be applied (see e.g. [126]). In particular, they
should incorporate the following two characteristics:

1. Diversity

An important indicator for a well-chosen set of stimuli is the di-
versity of the assignments to the considered signal that is sup-
posed to be classified. If these assignments rarely change, the ma-
chine learning algorithm will usually have trouble drawing help-
ful conclusions. For example, consider a simple system computing
c = a ∧ b. If only stimuli {a = 0, b = 0}, {a = 0, b = 1}, and{a =

1, b = 0} are applied, a possible conclusion could be that signal c
is always set to 0. In order to avoid that, stimuli leading to c = 1
should also be considered. Following the same reasoning, also
the assignments to the respective input signals should be diverse.
Otherwise, it is harder to determine which input signals actually
triggered a change in the signal.

In general, the machine learning algorithm attempts to “tidy up”
a given set of cluttered signal assignments and, by doing this,
extracts the desired information. Therefore, the provided set of
data should be as “untidy” or as diverse as possible. For the
considered signal, this is not easy to achieve since its values are
determined by the module’s inner, unknown structure. However,
many approaches for stimuli generation have been proposed in the
past, which can be exploited to satisfy these requirements includ-
ing approaches for simple random simulation or directed simula-
tion [126], or more elaborated methods like e.g. constraint-based
random simulation [123, 125].

2. Quantity

Apart from the assignments to be applied to the signals, the
amount of different assignments is also an important factor to the
quality of the result. In general, the more stimuli are generated,
the better results can be achieved. When using machine learning
algorithms to classify a given signal, the algorithms tend to suffer
from overfitting when they are exposed to too much information
(see e.g. [44]). The general issue is that instead of learning a
system’s generic structure, results that may be e.g. noise are
learned “by heart” and, in an attempt to use these to anticipate the
behaviour, worsen the resulting predictions. When deterministic
behaviour is considered (as it is the case for systems specified in
ESL), the applied machine learning approaches are usually hardly
affected by this as long as the algorithm can access all required
variables.

Example 12 Consider again the abstract SystemC module as illustrated in Fig-
ure 29. The depicted assignments already satisfy the characteristics discussed

70



5.1 reverse-engineering module logic

above very well. The assignments to both, the considered signal as well as the
inputs, are rather diverse. Furthermore, an adequate number of stimuli is avail-
able. As shown in the next section, this set leads to very precise conclusions on
a module’s internal structures.

Using the assignments generated in the first step, relations between
them from which the desired information can be deduced are deter-
mined next. To this end, a machine learning approach is utilized. Ba-
sically, the idea of machine learning is to locate those patterns in the
given set that provide the simplest explanation possible of the given
phenomenon. This follows Occam’s razor which states that, if there are
several theories that explain a given phenomenon, the one making the
least assumptions probably is the right one [44]. This idea of mere corre-
lation implying causation usually should be applied carefully. However,
especially in discrete and manageable environments like system designs,
the assumption that correlating signals are somehow connected certainly
is legitimate.

The C4.5
algorithm

While there are many algorithms that can be used to classify data
sets (see e.g. [49]), in this case the C4.5 algorithm introduced in [89] is
applied for the purpose of module analysis. This approach is widely
used and has been proven efficient in many applications as computer
vision [34], language processing [61], medical diagnosis [129], financial
analysis [65], general game playing [97], robotics [13], and others.

C4.5 takes a given data set and recursively splits this set into more
“tidy” sub-sets. To this end, all possible splits are previously evaluated
by means of the entropy function:

−(p0 log2(p0) + p1 log2(p1)) (1)

In this function, p0 (p1) denotes the probability of the considered sig-
nal being set to 0 (1) according to the data set. If no progress can be
obtained from further splitting anymore, the algorithm terminates. The
resulting tree gives an assumption of the internal structures that lead
to a certain signal setting. More precisely, the following steps are per-
formed:

1. Determine the entropy of the currently considered set.

2. Determine an input signal on which the currently considered
data set shall be split. To this end, apply the entropy function,
i.e. choose the input signal which would lead to two sub-sets
whose entropy (i.e. “tidiness”) is better than in the currently
considered set.

3. In case no such input signal could be determined, add a leaf node
to the decision tree and terminate. This happens if all available
stimuli (i.e. the given data set)
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Figure 30: Applying machine learning

• always lead to a constant assignment for the considered signal
or

• cannot further be refined through splitting.

4. Split the currently considered data set with respect to the chosen
signal. Afterwards create a decision node whose successors pin-
point to the newly created sub-sets.

5. Recursively start over at Step 1 using the newly created sub-sets.

The resulting decision tree represents an approximation of the internal
logic of a module that influences the considered signal. If more than one
output signal needs to be extracted, the approach can simply be applied
iteratively to all signals.

Example 13 The described scheme is applied to the example from Figure 29.
First, the entropy of the given set is calculated. To this end, the entropy func-
tion −(p0 log2(p0) + p1 log2(p1)) is applied. That is, using all stimuli from
Figure 29, an entropy of − 4

19 log2(
4

19 )−
15
19 log2(

15
19 ) ≈ 0, 742 results. Based on

this, it is determined which splitting on what signal would lead to sub-sets with
the best entropy. For example, if the data set from Figure 29 would be split with
respect to input i0, a sub-set of 10 stimuli and entropy of 0 (considered signal is
always 0) and a sub-set of 9 stimuli and entropy of 0.991 would result leading
to an average entropy of 10

19 · 0 + 9
19 · 0.991 = 0.469. Overall, splitting with

respect to the available inputs would lead to the following average entropies:

• i0: 10
19 · 0 +

9
19 · 0.991 = 0.469

• i1: 12
19 · 0.619 + 6

19 · 0.918 = 0.681

• i2: 9
19 · 0.619 + 11

19 · 0.946 = 0.547

• i3: 10
19 · 0 +

9
19 · 0.991 = 0.469
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• i4: 10
19 · 0.722 + 9

19 · 0.764 = 0.742

Hence, splitting with respect to i0 and i3 would lead to the most tidy sub-sets.
Assume the algorithm decides for i3. Then, a decision node and two new sub-
sets are added as shown in Figure 30. Here, it can be seen that the first sub-set
is only composed of stimuli setting the considered signal to 1, i.e. the entropy
is 0 and this sub-set is not further split. In contrast, the second sub-set can
further be refined. This is done in the remaining iterations eventually leading
to the complete decision tree as shown in Figure 30.

From this decision tree, it can now be deduced that the considered signal very
likely depends on the inputs i0, i2, and i3, i.e. the input signals that had the
most possible effect to it. In contrast, inputs i1 and i4 are not part of this tree
and, hence, probably do not influence the considered signal.

All in all, the machine-learning approach is non-invasive, does not
rely on the availability of the code, and performs fast, but does not guar-
antee exactness of the results. The method could be applied for design
understanding, speeding up tests and verification tasks and visualizing
an approximation of a module’s interior structure.

esl-specific additions

While the machine learning approach works nicely “off the shelf”, i.e.
without being altered in any way, it faces problems when certain Sys-
temC features are utilized or the design is done in a way that prohibits
further analysis. This chapter addresses the problems present and either
suggests viable approaches to solve the issues or outlines why they may
not be solvable when retaining the non-invasiveness principle.

Just as with the previously described methods, no a priori information
should be required for the approach to be applied. While a lot of the
required information could be supplied by the designer in e.g. a formal-
ized language of some kind, this would mean a major effort on top of
designing the system itself, which is undesirable at best and inconceiv-
able at worst. This point again reflects the non-intrusiveness, which is
a desired trait of any approach handling SystemC designs and a focus
of this work in particular: as the analysis should work on all given de-
signs without any further alteration being required, no knowledge can
be taken for granted that cannot be extracted from the standard inter-
faces that are available anywhere.

The application of the C4.5 algorithm generally works well as illus-
trated in Section 5.1. Despite this general applicability, depending on
the language features being used the algorithm may face certain prob-
lems, resulting in less precise results or the omission of certain traits of
a system. While one advantage of machine learning algorithms is that
they “make do” with whatever information they get and simply end up
with less precise (but still usable) results when they analyse incomplete
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sets of data, increasing the amount of information that is salvageable
from a design will still result in the algorithm being able to improve its
results.

Hence, in order to exploit certain traits of SystemC and to make this
generic approach work better in conjunction with arbitrary designs, is-
sues specific to the application of the algorithm to SystemC and ap-
proaches to handle them are described in this Section. The goal is to
analyse which of these features can be handled properly by an auto-
matic, non-invasive approach and which need to be communicated to
the designer as something that may lead to poor results when a machine
learning approach is used to analyse a given system.

Non-
invasiveness of

the machine
learning

approach

While especially the latter may be regarded as a breach of the non-
invasiveness, it is not – the general approach of machine learning re-
mains applicable even when guidelines are not followed, albeit at the
cost of decreased precision for the resulting models. Therefore, the idea
of doing both, providing technical solutions wherever they work while
still giving designers hints concerning design principles that they may
want to follow for the given approach seems a valid trade-off, resulting
in an approach that remains applicable and non-invasive for existing
systems but may offer better results when certain criteria are matched.

A major distinction between the simple application of the C4.5 algo-
rithm onto a given set of data and adapting it to SystemC’s features is
that, in order for it to be integrated into a given design, it needs to be run
in conjunction with a simulation and given access to the SystemC kernel.
Strictly speaking, simply applying a learning approach can even be done
using simulation traces alone, allowing the algorithm to be tested with
recorded values of a given simulation. In contrast, in order to retrieve all
required data from the simulation and the kernel at run-time, a module
was implemented that can be added to a simulation. This analysis mod-
ule is performing the required calls to the SystemC API and any other
methods that are required to retrieve the needed information.

While this may have a certain impact on the simulation performance
(depending on the size of the system and the operations that are per-
formed), this also means that the approach can be used to interact with
the design, allowing additional applications to be considered.

SystemC’s modularity

SystemC’s modularity is a concept that differs from the approach of
building a single decision tree for a given set of data.

SystemC designs usually contain several modules that interact via
ports and signals. While it would be possible to build a single, large
decision tree for the signal that is supposed to be set (which would have
to take all connections to the inputs into account), building smaller mod-
els for the modules has several advantages.
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• A better division of labour, allowing the machine learning ap-
proach to work on small, independent problems. While the C4.5 is
quite fast, Section 5.1 shows that an increased amount of variables
results in decreased precision. Generally, a smaller amount of in-
put stimuli enables the algorithm to provide better results. Using
the modularity to retrieve much smaller sets of input stimuli is
thus a viable way to increase the precision of the output result.

• Additionally, it allows re-using the data for modules that are
cloned throughout the circuit. If the circuit was analysed as a
whole, interconnected modules of the same type would increase
the complexity of the data. If instead the modules are recognized
as the same type, the algorithm can safely assume that their
internal logic is equal and thus can build a single, simple model
of the given module instead of building a larger, complex one.

SystemC allows for the retrieval of the modules via its own API, giv-
ing the proposed implementation access to the list of modules in order
to analyse them separately. Additionally, with the SystemC module base
class already utilizing virtual methods, Run-Time Type Inspection (RTTI)
can be used to retrieve a unique type specifier for each module as pre-
viously discussed in Chapter 3. This means that all module instances
being used in a design can be mapped to their types automatically, al-
lowing the given implementation to calculate separate decision trees for
each type and handling duplicates accordingly.

The approach therefore is to use this pre-defined modularity that is
described in the design to first divide the learning problem into smaller
parts, generate models for each individual class of modules and later
merge these parts to be able to generate the inputs that are needed for
a particular result. Figure 31 illustrates this method, building decision
trees for each module which can then serve as a foundation to calculate
a general formula for any given output signal.

In order to still provide a single model of an arbitrary system for a
given output signal, the proposed implementation takes the trees for
the desired result, translates them into boolean statements and merges
these. This gives any application both, simple models of modules or
a large one of the whole design while still utilizing the modularity to
simplify the calculation of the latter.

Time of extraction

A SystemC simulation does not have to follow the traditional clock
scheme.

While SystemC allows for clocks to be used, they are not required
for a system to work. Instead, the designer may e.g. simply tell the
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f = a · e = a · c · ((b · d) + (b · d))
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Figure 31: Several trees may be merged over module borders to retrieve
the formula for a single output.

simulation kernel to wake up a given thread after an arbitrary amount
of simulation time and generate new input for the design.

This makes it hard for any algorithm to determine any point in time
when a system’s status should be observed and logged for further anal-
ysis.

When a clock is attached to the stimuli generation module, it uses
the clock’s period information to invoke itself a δ-cycle (which denotes
the minimum amount of time that may pass in a SystemC simulation)
before the next clock edge is set in order to wait for the system to have
reached a stable state with all signals and variables being set coherently.

If the system does not rely on a clock to update its modules, the stim-
uli generator needs to be invoked manually (i.e. via a method call) each
time the system has reached its next state.

Example 14 A SystemC module asnycAdder that realizes an adder, accept-
ing two integers as inputs and providing a single integer output and another
boolean overflow output (that fires if the addition resulted in an integer over-
flow) is built around a single add method that is invoked as soon as any of the
inputs is altered. As the module is built asynchronously, it does not require
a clock signal. Instead, its output is computed as soon as the required inputs
change.

However, this computation neither means that the output change immediately
(as delays may be introduced in the method to simulate the module taking time
to compute the results) or at the same time (as – even if the signals are set
immediately after each other and without arbitrary delays being inserted – the
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simulation kernel picks an arbitrary one to be set first). Thus, the machine
learning module cannot deduce the point in time at which the module is done
with its computations and the results indeed reflect the proper output.

If a synchronized module uses a clock, this clock signal is used to bypass this
problem: due to SystemC simulative nature, the outputs can be read immedi-
ately before the next clock tick results in a recalculation of the module’s values,
assuming that the clock will only be toggled as soon as the system has reached
a stable state.

Time delays

These may result in a given signal to affect the output an arbitrary
amount of cycles after it has been set.

A module that is connected to certain signals may have any of its
methods set to be sensitive to any of these signals, meaning that the given
method will be executed if the given signal alters its value. This is usu-
ally used to calculate a module’s outputs when a certain input changes.
As an example, several modules may be connected in a straight line,
with all of them being connected to a clock. The method that recalcu-
lates a module’s output can be set to be sensitive to the signals an and bn

or the clock, triggering its behaviour when the respective signal is set to
a new value. Assume that all signals, an, bn and the clock, are set at time
t = 0. If the modules are set to be recalculated upon a change of signals
an or bn, a change in the respective signal will trigger a chain of recal-
culations that travel through the system as each module will recalculate
its output as soon as the result of the previous module is available. If,
however, the modules only react to changes in the clock signal, the result
will take one clock cycle per intermediate module to travel through the
system as the method will not be triggered when a previous module has
finished its calculations.

As this means that an arbitrarily large delay may be introduced in a
given system, the machine learning algorithm may not assume that a
result is available once all calculations have been performed.

However, unless a module stores a value internally, it cannot delay the
calculation and propagation for longer than a single time step.

The current solution to this issue is to feed the machine learning algo-
rithm for a module with the current and the previous signal assignments
as inputs. If the machine learning algorithm detects any dependency to
the previous time step, the formulas are generated with the additional
variables that represent the previous time step. The delay is propagated
backwards when merging the trees into formulas, rising with each re-
quired delay.

If the stimuli generator then targets a given signal and attempts to
assign a given value, it needs to start the according amount of steps in
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advance, assigning the according variables at the given steps until the
result can be read and compared to the expected one.

Internal states

SystemC programs may store values at arbitrary locations in the pro-
gram. Modules may contain internal variables, the program may contain
global variables that are accessed from anywhere, temporarily unrefer-
enced locations in memory may still be used e.g. using pointer arith-
metic etc.. In short, for arbitrary C++ it is next to impossible to retrieve
a simple, well-defined state for a given object such as a SystemC module.

The simplest solution is to require the program to adhere to certain
standards. If all internal values were stored using signals instead of
native variables, the stimuli generator finds them via the SystemC API
and retrieves the according values without any further intervention.

If, however, this approach cannot be applied (e.g. because an existing
design relies heavily on the usage of field variables and was not meant
to be refactored), the information can instead be gathered by reading the
object’s state from memory. While this approach works in many cases,
it is easy to come up with corner cases that are hard to cover appro-
priately: In order to read e.g. a pointer’s value instead of merely the
memory address, the stimuli generator needs to know the object’s struc-
ture. While this information can be gathered from the debug symbols
[108], the question still remains which of the information is required.
Iterating through memory, gathering all states that are somehow acces-
sible for a given module, regardless or being logically related or not,
results in a tremendous amount of data that could theoretically influ-
ence a module’s output, increasing both, the memory footprint and the
computation time for the machine learning algorithm.

Example 15 A SystemC module dsp has two inputs: a boolean setFilter

and an integer data input. Usually, the data input provides the module with
data to process, applying arbitrary signal processing methods. If, however, the
setFilter bit is set, it is instead supposed to change the filter being applied.
While the plan is to later send one of several yet-to-be-defined opcodes to the
module to switch its functionality, in this version, the integer being sent with
a positive setFilter-bit is interpreted as a pointer to a function that is stored
and invoked in the following cycles.

Such a setup relies on an internal state (the stored function reference) that
cannot be easily read or interpreted. The machine learning algorithm will thus
not be able to properly determine the module’s behaviour, as identical inputs to
the data port may, over several cycles, result in different output values being
computed without the machine learning module having access to the according
state.
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User-defined datatypes

As the designer may define any arbitrary type to be used for commu-
nication on a signal, the stimuli generator may be required to handle
these.

While the stimuli generator could provide the required signal assign-
ment by creating an object that simply has the required bits set to a
specific value, the current implementation does not offer this feature.
There are several reasons against the automatic generation of bitmasks
for user-defined types:

• The creation of new instances of these types from bitmasks is an
inherently unsafe operation as the resulting object may not adhere
to the constraints required by operations that work on this object.

• Pointers cannot easily be detected, so types that contain references
to other parts in memory can neither be analysed nor created au-
tomatically.

• The size of types may not be known at runtime as C++ is not type-
safe and the type information of objects is usually discarded by the
compiler.

We therefore suggest to supply the stimuli generator with methods to
handle the according types. This way, while requiring the designer to
write additional code, the underlying SystemC code base does not need
to be adapted. As the different amount of types that are used on signals
should be manageable, this can be considered an acceptable trade-off
to avoid the issues that arise from an automatic translation of arbitrary
types.

Example 16 A SystemC module is equipped with a single input sc in<cat>,
with cat being a user-defined class that contains a char* reference (called
name), a boolean value valid, another boolean value purring and a int*

reference hairs. While it is possible to retrieve this information from e.g. the
debug symbols, making use of it is not possible.

First of all, the char and int references can be read as such – it is even
possible to read the target address to actually retrieve the data. However, the
designer has actually used both these references for more than a single value,
using name as a 0-terminated string and – if the valid bit is set – hairs as
a large (fixed size) integer array to store the colours of each of the cat’s hairs.
Generating a cat instance automatically – as provided by the class description –
is very well possible. However, doing so according to the designer’s assumptions
is not. Creating single char and int values on the heap is not enough in this
case, as the designer has simply assumed both references to adhere to certain
standards (i.e. 0-termination or a certain fixed size). Without these, running the
program may result in undefined behaviour, possibly resulting in e.g. memory
corruption.
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Figure 32: Circles (gray modules, left) are not handled in the machine
learning algorithm’s first analysis iteration, with the process
stopping as soon as any element would appear the second
time (center). They are unrolled in a second step as far as
required to be on par with the elements going the furthest
back in time (dark gray module, right).

It is thus impossible to properly support user-defined datatypes, especially
references to the heap with an unknown size.

Circles

SystemC designs may contain circular structures.
This may pose a problem especially with regard to the idea of iterating

through the modules and combining their learned models into one large
formula over the consecutive time steps.

In order to handle circles appropriately, a method is proposed that
builds the model in two steps, illustrated in Figure 32:

First, the machine learning algorithm builds its models per module
and iterates backwards through the system to calculate the time delays
for its model, avoiding any circles. In this step, no circles are handled.
While this algorithm calculates a potentially incomplete model, it is guar-
anteed to terminate. The amount of timesteps for calculating the given
output is stored for the next step.

Second, the same algorithm is executed but circles are unrolled over
time just like the remaining circuit to a depth that matches the one cal-
culated in the previous step. This means that for a design that requires
the stimuli generator to plan n steps ahead, circles are unrolled exactly n
steps, enabling the generator to take circular dependencies into account
for its dependencies.

Summary

With the given methods combined, a stimuli generator can be written
that properly handles a given SystemC design. This generator is imple-
mented as a module that reads all signals of the ESL design it is part
of and hooks into all unused input ports before the simulation starts
in order to provide stimuli to the system. When a target is met (or
missed) it extends the model with the newly added information from
the behaviour since the last learning process and generates the next in-
put, which is then fed to the system (over an arbitrary amount of time)
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until the output can again be observed. It is able to target specific signals
deep within the system in order to e.g. boost coverage of certain signals
without any a priori knowledge about the system itself.

Issues for
applying C4.5

The proposed solution currently does not handle TLM designs. The
TLM framework that has been incorporated into the SystemC standard
and its reference implementation not only features generic payloads to
travel along the modules’ connections but more importantly offers tim-
ing modifications in order to be able to more quickly calculate certain
values [37]. This leads to designs that “drift apart” concerning the tim-
ing, with parts of the model waiting for other parts to catch up. It also
is a problem for the suggested time delay computation which requires
the model to provide intermediate results at the according points in the
simulation time. Extending the algorithm to be able to handle designs
using the TLM framework properly therefore remains an open question
that may hopefully be handled in a future work.

The usage of a machine learning algorithm that recursively splits a
given data set means that the input values need to have some kind of
natural order. C4.5 works best when the input data is an enumeration or
binary input (e.g. a boolean value or a set of just a few values that are not
connected in any way) and is able to handle e.g. floating point values as
they can be ordered, values such as strings essentially cannot be handled
well. However, due to the domain of hardware design, signals and states
usually rely less on such parameters than other programs, allowing the
approach to still be applied to a wide variety of designs.

Additionally, the approach relies on being able to actually learn a mod-
ule’s behaviour. A module that implements a function that is supposed
to be tough to guess or that contains a lot of inputs, outputs and accord-
ing interdependencies is inherently hard to learn and thus will not work
well with the presented approach. Especially trapdoor functions such
as hash value computation or encryption methods are basically incom-
patible to the given approach: as a hash function serves the purpose of
not allowing a specific output to be generated at will, trying to make an
Artificial Intelligence (AI) learn to do just that is a rather difficult task at
best.

Still, the proposed approach represents an easy-to-use implementa-
tion that is close to a “fire and forget” application, allowing the designer
to add the given stimuli generator to a design that connects itself as re-
quired and generates stimuli to boost a certain fitness criterion as long
as it is either connected to a clock or triggered when the system has
reached its next state.
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conclusion

This chapter illustrated two approaches to SystemC analysis using Ma-
chine Learning algorithms.

Section 5.1 illustrated how off-the-shelf algorithms are a viable solu-
tion by themselves, giving designers an easily applicable tool to analyse
their designs. Section 5.2 then illustrated how the results of these algo-
rithms can be improved by properly preparing the input data, taking
SystemC’s traits into account to avoid ambiguities in the data set.

While there is certainly room for improvements left (e.g. concerning
user-defined data types in the code or performance improvements for
the learning algorithm itself), this shows that the method’s concept is
working well.
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6
A P P L I C AT I O N

Equipped with his five senses, man
explores the universe around him
and calls the adventure Science.

Edwin Hubble

With various novel methods for SystemC analysis being available from
the previous chapters, another core question is what should be done
with them.

While information retrieval may be regarded as a valid goal by itself,
it also serves as a foundation for various applications. As for most users,
the applicability of methods is a core question regarding their usefulness,
several of these have been implemented in order to prove that the given
algorithms not only work but can be used for real-world purposes.

This Chapter illustrates several applications for the extracted data.
Each section in this Chapter focuses on a different one, motivating why
the data extraction is useful and serving as an example of the methods’
usefulness.

Generally, the applications being used are one of either category:

• Section 6.1 focuses on visualization techniques, allowing designers
to inspect their designs visually.

• Section 6.2 illustrates how the data can be used to determine con-
nections within SystemC modules in order to help designers locate
the causes of errors and better understand how data flows through
their design.

• Section 6.3 details how the approaches can be used to locate certain
features within existing projects, down to the line and instance of
their implementation.

• Sections 6.4 shows how the data retrieval may be used to validate
that a design adheres to the constraints that were set in its specifi-
cation.

• Finally, Section 6.5 automatically increases the performance of run-
time tests by applying the machine learning methods to a stimuli
generation tool.

These applications are therefore both, the justification as to why the
presented algorithms are needed in the first place and the front end that
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defines why end-users could and should be interested in the presented
techniques. Hence, despite not focusing on “hard” algorithmic research
topics, this chapter should be regarded as a crucial requirement that
gives meaning to the methods that would otherwise be interesting but
ultimately meaningless.

visualization

Visualization is an important issue for several tasks during the design
process. It can e.g. be used to more rapidly understand a system, to
locate errors in running systems, or to illustrate the project’s documen-
tation.

Conventional visualization techniques that focus on hardware design
do not cover the abstract layers and usually assume that the modeled
hardware is the only part of the system that needs to be displayed. ESL
designs, however, may have large software parts that cannot be trans-
lated to hardware elements and, hence, are not properly visualized thus
far. This mixture of hardware and software yields two main questions
that need to be addressed for visualizing an ESL design:

1. How can the information needed for this visualization be retrieved
and

2. how should the retrieved information become visualized?

The former question is a problem that is especially apparent in Sys-
temC: As C++ does not offer sophisticated reflection or introspection
methods, the extraction of program information at runtime is difficult at
best. While SystemC acknowledges this problem and provides an API
that allows the extraction of sc_object instances, user defined types that
are instantiated and/or referenced by the simulated system should also
be part of a visualization of the system. Also, unlike a hardware system
that has a distinct state for each clock cycle, ESL designs may execute cer-
tain functions without keeping trace of intermediate states, making the
location of certain errors by means of a visualization of clock-accurate
states impossible.

The latter question deals with the differences in paradigms between
hardware and software design. A hardware system usually consists of
a static architecture that changes its states to generate a certain result.
The state transitions are often synchronized using a clock, resulting in
systems that change their internal state at fixed intervals. ESL systems
do not follow such a pattern. Although they model hardware systems
that do behave similarly, that behavior is often generated by much less
homogeneous patterns. In case of SystemC, the non-restrictive permis-
sion of any C++ construct gives the designer the option to use all kinds
of behaviors that have no resemblance in classic hardware systems.
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Hardware/software co-visualization is a topic that – despite offering
vast potential benefits – is highly complex and has only recently been
brought up [24]. While there are visualization techniques for both, hard-
ware and software systems, not all methods of both domains may work
well together or show a consistent system. Both, the visualization itself
and the back-end to retrieve the needed data are non-trivial problems to
address, but a more accurate representation of ESL designs might help
to grasp the features of a given system more easily.

Having all desired information available, the next step is to properly
visualize them. In this section, existing approaches are briefly reviewed
before the concepts needed to visualize ESL designs are discussed.

Previous Work

Current visualization approaches focus on either software or hardware
designs. For each, there is a variety of methods or standards available.

Software visualizations have to deal with systems that are constantly
redesigned at runtime: Object instances, which resemble the concept of
a “thing” that does something like a hardware part, are created and
deleted at will. However, unlike hardware, the program logic itself
mostly follows strictly linear patterns. Although parallel algorithms
have started gaining traction with the widespread availability of multi-
core systems and have always been a focus of super computing systems,
they are still linear patterns that interact at certain points. UML as a stan-
dard to design and visualize software systems proposes several vastly
different views to grasp all aspects of a software system, all of which
statically represent either structure or behaviour. The main notion is
that UML is a language that was designed to be printed.

With the advances in computation power that is available on even
mediocre systems, more advanced solutions have been proposed: visu-
alizations such as gource [15] or CodeCity [120] use 3D engines to display
a software system. In order to visualize different properties at once, the
CodeCity-metaphor has received attention in the domain of software vi-
sualization. Here, different design properties are displayed in different
“dimensions” of the visualization, i.e. the number of attributes, meth-
ods, and lines of a Java class have been mapped to three-dimensional
cubes that represent buildings in a city. Classes from the same package
were placed in the same district to emphasize structural interrelation. As
an example, Figure 33 shows a picture of a CodeCity taken from [120].
Unproportional looking buildings immediately pinpoint the designer to
problematic classes in the software project. The visualization reveals
classes that are too complex in terms of code and may better be split
into subclasses, or classes that are not well-balanced in terms of their
number of attributes to number of methods ratio.
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Figure 33: Visualization as CodeCity

(a) RT level visualization

(b) Gate level visualization

Figure 34: Classic hardware visualization focuses on static, printable im-
ages of a system
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Despite the fact that the CodeCity-metaphor is easily comprehensible
for designers, the metrics that have been applied for Java source code
cannot be applied directly to system level programs written in SystemC.
Beside structural information such as lines of codes, number of signals,
number of attributes, number of methods, and connectivity, also quality
metrics such as complexity, maintainability, as well as test and verifica-
tion coverage are of high interest to the designer. In particular, the focus
lies in integrating quality metrics into the visualization. In software,
e.g. condition complexity [66] measures the number of linear indepen-
dent paths in a program. For hardware an entropy-based concept has
been presented in [69].

Overall, while the CodyCity-metaphor is a proper visualization tech-
nique allowing for a multi-dimensional visualization, its concepts need
to be redeveloped in order to explicitly support the requirements of ESL
designs.

Classic hardware visualization on the other hand usually evolves
around established descriptions for the various levels of design. This
starts on the transistor level, encompasses the gate level and ends on
the register transfer level (Figure 34 provides some examples). All
these visualizations evolve around the core concept of hardware: That
the system by itself is fixed and only the information being encoded
in it is changing. These values are often visualized using waveforms
that, while accurate, are not necessarily the best to see connections
between and patterns of the signals. While these concepts do represent
the hardware appropriately, they are not well suited to illustrate the
dynamics of ESL designs.

However, the combined hardware/software co-designed systems at
the ESL so far have not been visualized. Only recently, a single work
envisioned such systems but did not offer a prototypical implementa-
tion [24].

Realization

The goal is to present a working system visualization that displays differ-
ent visualization schemes in a coherent environment. Even if different
concepts require different visualization techniques, they should be an
integral part of each other. If viewing both in the same environment is
for some reason not feasible, at least going from one to the next should
be seamless in both directions. A single visualization for hardware, soft-
ware, and behaviour is anticipated to avoid repeated swapping of views
and to illustrate that the system in question is indeed a single whole and
not a collection of separated parts.

The proposed system uses CodeCity [120] as a baseline. The rep-
resentation of elements using simple geometric shapes (mostly boxes)
does not only keep the system requirements low but also all shapes on
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a common ground level. This simplifies the orientation in the three-
dimensional space. Generally, this semi-3D view (three-dimensional ob-
jects on a two-dimensional plane) also allows for a simplification of the
navigation: the camera requires less degrees of movement freedom to
view all objects (in the present case only a two-axes pan motion, a one-
axis rotation and a zoom), simplifying the controls to a degree where
it is possible to use it on a touch screen without losing any navigation
abilities.

Modules themselves are merely instantiated objects, albeit of a partic-
ular type. However, other objects that are referenced from the described
system should be displayed as well. Apart from the different semantics,
there is no real difference between these two, so displaying the objects
in a similar manner seems reasonable.

However, presenting all this information at once is usually too much
to be displayed on a single screen. Hence, a hierarchical view is ap-
plied that uses several levels level of details. By “zooming in”, more
details of the respective components will blend in. The application of
this technique results in an intuitive way to get more information about
something in particular: just get closer to it to see more about it.

To visualize important correlations of system metrics, such as lines
of code and complexity of each SystemC module, the designer should
be able to choose which metrics are important to him and how they
have to be visualized, for example as height or ground size of a box.
Maintainability could be a suitable metric for this purpose. It reflects the
adaptability and modifiability of a SystemC module which is required
to correct errors or to improve the performance. The maintainability
index as proposed in [119] already provides a proper definition for this.
The goal of such an individually customizable system representation is
to help the designer to obtain information she needs about certain parts
of the system quickly.

Another important part is the behavior of the system. Using time
as a dimension to display itself seems a more straightforward solution
than the classic idea of timelines or flowcharts, especially when it comes
to monitoring running ESL simulations. While displaying all of a sim-
ulation’s states is out of the question due to the discrepancy between
monitor refresh rate and simulation speed, several metrics can be used
to analyze and quantize the system changes over a certain timeframe.
Such metrics could visualize system changes e.g. by different colors
over time. As an example, one can show how often signals are used
in a simulation or the individual activity of each module. Furthermore,
non-functional properties can be considered if they are available such as
power consumption.

Showing the design’s behavior in a dynamic visualization for a longer
period of time allows the designer to detect correlations among compo-
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Figure 35: SystemC modules and connections visualized: modules are
represented by boxes, signals by connecting lines

nents and signals which help for a better design understanding and to
find bugs.

In conclusion, while there are visualization approaches for software
and hardware systems, especially the hardware visualizations do not
go far beyond classic paper drawings of circuits and therefore do not re-
ally make much use of the opportunities a computer-based visualization
provides. The visualization of hardware/software co-designed systems
which contain a mixture of both has not been done before beyond print-
able layouts (e.g. in SysML).

A prototype that shows several of the aspects outlined above was im-
plemented using LibGDX [127]. LibGDX is a cross platform framework
which allows to run the prototype on various systems.

The data representation, as seen in Figure 35, is fixed concerning its ba-
sic structure (e.g. a module is always a gray box), but different attributes
can be mapped to the parameters of the given object (e.g. a module’s
height may represent its memory consumption, the number of lines of
code of its corresponding class (as shown in Figure 36) or its class’s code
complexity). The connectors are smaller boxes attached to their belong-
ing modules. The color of each connector indicates its connector type:
Green represents input connectors and blue output connectors.

For the prototype, a simple layout solution that groups sub-modules
in squares was used. While this is just a quick and simple solution, it still
allows the concept to be illustrated. Also, there is currently no routing
solution used: Connections between ports are illustrated using Bézier
paths that evade other modules by describing a three-dimensional arc
above the ground plane.
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Figure 36: SystemC Design metrics: The height of the modules in this
image corresponds to the according class’s number of lines of
code their base area resembles their respective code complex-
ity

Figure 37: Visualization of the SystemC RISC CPU example. Module
height represents the size of a module in memory, module
width illustrates its amount of ports.
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The behavior of the system can be displayed by using the standard
log/dump-files created during a running simulation. The activity of the
system can be displayed in real-time while the simulation is running or
offline. While this limits the data to be displayed to that which can be
extracted using standard dump-file extraction methods (and therefore
e.g. excludes custom types), it is universally applicable for any SystemC
design and already widely used. Immediate compatibility to existing
project setups is in this case an important factor. Using other means to
retrieve changes that are usually not part of the manually selected fields
and signals would be an obvious next step for the visualization.

While the current state of the implementation does not cover all possi-
ble aspects and metrics, it illustrates the first steps towards a comprehen-
sive system visualization for ESL designs. This working proof of concept
offers an interactive view that enables the user to navigate through her
SystemC design in an innovative and intuitive way. As a result, a new
approach is provided which gives the designer a quick overview of a sys-
tem and aids the design understanding on a different level than source
code.

cone of influence extraction

Knowing the dependencies within hardware systems has always been a
key issue in several design tasks. As a prominent example, Cone of In-
fluence (CoI) analysis is an established method which is heavily applied
e.g. in design understanding [40], debugging [1], verification [3, 17, 6],
and more. The general idea is thereby to take only those parts of the
circuit into consideration that are relevant to the respective design task.
As long as circuits and systems are designed and verified at the RTL or
the gate level, the extraction of the CoI is simple.

On the ESL, however, the desired system is no longer implemented
through a netlist description which is composed of signals connected to
components or gates. Instead, the system is implemented in an algorith-
mic fashion from which, eventually, a binary to be executed is derived.
As a consequence, the “classical” structure of a hardware system is no
longer available, leading to crucial obstacles for CoI extraction.

Side effects harden the analysis further. For example, if a (partial) CoI
contains a global variable, the number of further components possibly
also being part of the CoI increases significantly – to any other compo-
nent of the design. Thus, CoI analysis becomes significantly harder at
the ESL.

In this section, an approach which addresses this problem is presented.
Instead of a structural analysis as commonly applied at RTL and gate
level, a behavioral scheme is proposed. That is, stimuli representing var-
ious executions of the system under consideration are analyzed. From
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the results, eventually, the desired information on the CoI for a consid-
ered signal are derived.

To this end, methods as outlined in Chapter 5 are being used. As
the proposed approach approximates the internal structures of modules,
these can be used to in turn retrieve the CoI. To determine how far the
approximation differs from the actual CoI, i.e. to evaluate the quality of
the approach, several case studies have been conducted.

For stimuli generation, a random scheme has been applied. The case
studies have been conducted on a AMD Phenom II X4 machine with
3.4 GHz and 8 GB of memory running Windows 7.

In order to ensure a precise analysis, the proposed approach was eval-
uated using specifically generated SystemC models that realize arbitrary
logic operations. More precisely, SystemC programs are generated that
instantiate a module with n inputs and a single output (representing
the considered signal for which a CoI shall be determined). The output
value is thereby triggered by a randomly generated functional polynom
based on an arbitrarily chosen set of inputs. By these means, the exact
CoI (which is constituted by the applied monoms of the polynom) is
tracked. At the same time, the solution provides a realistic scenario in
which the proposed approach can be evaluated.

Table 2 summarizes the results obtained in the case studies. The first
two columns provide the number of inputs of the considered SystemC
modules as well as the number of their operations. Afterwards, the
results of the proposed CoI analysis are presented which have been ob-
tained when either 10, 20, 50, 100, 200, 500, 1,000, 5,000, or 10,000 stimuli
were applied. Column 3 respectively denotes thereby the number of in-
put signals which have correctly been identified as being part of the CoI.
Column fp respectively denotes the number of incorrectly classified in-
put signals (i.e. the false positives), while column fn respectively denotes
the number of missed input signals (i.e. the false negatives). That is, in all
cases with fp = 0 and fn = 0, the exact CoI has been determined. In all
other cases, too many (if fp > 0) and/or too few (if fn > 0) input signals
have been classified to be in the CoI, i.e. an over-approximation and/or
and under-approximation resulted. The last two columns provide the
number of incorrectly classified input signals ( fp

Inp. ) and missed input

signals ( fn
Inp. ) as a percentage of the total number of inputs. All results

reported in Table 2 have been obtained in less than one CPU minute,
i.e. in negligible run-time.

The results confirm the discussions from the previous sections. The
following conclusions can be drawn:

• Applying machine learning indeed enables an efficient CoI approx-
imation for system descriptions at the ESL. All results have been
determined in negligible run-time.
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• The quality of the approximations ranges from very good to debat-
able. However, in more than two thirds of the cases, the exact CoI
was determined (all entries with fn = 0 and fp = 0).

• In the remaining cases, the results should be distinguished be-
tween false positives and false negatives. Any number of false
positives ( fp > 0) represents an over-approximation, i.e. more sig-
nals than necessary are considered. This is unwanted, but not
crucial. Much more relevant are false negatives ( fn > 0) as they
represent missed signals, i.e. signals which are entirely not consid-
ered although they influence the considered signal. As can be seen
in Table 2, in the few cases where no exact result has been achieved,
this number of false negatives is usually small. That is, even if it
was not possible to determine an exact result, an approximation
that may still be helpful for e.g. giving a rough idea where to look
for an error was obtained. Those few cases with a larger fn are all
tied to quite complex functions, indicating that the learning pro-
cess may need more stimuli to sufficiently retrieve the structures
or may be unable to generate an exact representation, maybe due
to C4.5 not performing any backtracking when splitting concern-
ing the wrong variable.

• Finally, the effect of the number of applied stimuli on the quality of
the approximations can be observed. The more stimuli are applied,
the closer the approximated cone on influence is to the exact one.
This particularly holds for larger designs which, obviously, require
more stimuli to get better approximations.

Overall, the proposed approach provides good approximations, in
many cases even the exact determination, of the desired CoI in SystemC
designs.

In order to test the behaviour of the algorithm if some of the vari-
ables remain hidden (e.g. because they are internal states of a library
and cannot be logged), the same test runs were also executed with
min( inp

5 · 2, op
3 · 2) of the used variables remaining hidden to the ML al-

gorithm. While the results suffer from an increasing number of false
positives as the amount of applied stimuli increases, the false negatives
remain unaffected (according to the Wilcoxon signed-rank test [121]).
This complies with the aim to keep the amount of missed signals low.

feature localization

Current chip designs are becoming more and more complex. As de-
signs tend to shift towards System-on-Chips (SoCs) and even Networks-on-
Chips (NoCs), both, the number of features realized in a single design
and the number of atomic elements needed to realize that functionality
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is growing significantly. As a consequence, such designs are increasingly
realized through the re-use of existing parts and external Intellectual
Property (IP) [64]. These parts may even form a hierarchy, with complex
functionality being implemented in blocks that, in turn, are composed of
several blocks themselves. This results in a complex functionality being
implemented in various layers across the design. Additionally, more de-
signers are usually collaborating to work on a single design. As designs
get larger, a separation of concerns is usually carefully organized for
both, the design and the people working on it – designers are not work-
ing on every part of the design but focus on their specific parts. Thus,
designers are enabled to work in large teams on a single system [22].

This development has long passed the point where a designer work-
ing on a project is able to know all the details about all the parts present
in the design. At the same time, they will not be able to design all com-
ponents by themselves from scratch anymore. Consequently, designers
e.g. frequently work on components which they did not create. This is a
severe problem, since designers frequently need to work on parts of an
implementation that they are not familiar with. Hence, establishing the
needed design understanding as quickly as possible is crucial [50].

Usually, a well-written documentation is supposed to be the first mea-
sure to transfer the knowledge needed to perform a particular task. But
since people tend to need different means for understanding and re-
sources for documentation are usually limited, alternatives are needed.
Methods for feature localization provide such an alternative. They aid de-
signers by pinpointing them to distinguished characteristics of a design
and thus allow them to quickly locate implementations of certain fea-
tures of a system. Supported in that way, the designer avoids a manual
inspection of large parts of the design and can directly focus on those
parts that matter for the currently considered design task.

Previous Work

Several methods for feature localization have been proposed (see e.g. [28,
59, 60]). The underlying techniques usually involve running several sim-
ulations which are marked as triggering certain features while tracing
which parts of the design were used in the respective run. Based on
that information, the implementation of a given feature can usually be
located in the given implementation. But while these feature localiza-
tion techniques provide an effective way to direct a designer to the part
of the design that is relevant for the current task, most of the existing
implementations can only be applied to designs at the RTL.

However, in order to meet the demand of shorter development cycles
and working prototypes early in the design process [92], systems are
increasingly also designed at the more abstract ESL – which motivates
the need for feature localization for this abstraction level. Unfortunately,
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corresponding support for implementations in SystemC – the current
de-facto language at the ESL [96] – is very limited. The only approach
for feature localization at the ESL has been proposed in [70]. Here, no
support for dynamically generated designs is provided.

Example 17 Consider a CPU which shall be extended so that it additionally
is capable of performing a vector multiplication operation. For this purpose,
the ALU needs to be extended. If the designer in charge is not familiar with
the given design (which might be composed of thousands of lines of code), pin-
pointing her to the respective parts in the implementation would significantly
support her during the development. In the considered scenario, useful features
to be located in the design might be the multiplication of integer or floating
point values.

Identifying those features and hence getting a sufficient understand-
ing of the design in acceptable time is a cumbersome task. Often, the
documentation is not as detailed as needed or became obsolete due to
changes in the implementation that have not entirely been propagated
to all parts of the documentation [83]. As a consequence, feature localiza-
tion is a crucial step within the design process which (up until now) has
mainly be conducted manually (e.g. by inspecting the HDL implementa-
tion). This added a time-consuming and, hence, cost-intensive step into
today’s design flows in which neither any new functionality is added
nor a single bug is fixed.

In order to aid this process, researchers developed automatic methods
for feature localization (see e.g. [28, 59, 60]). These means aid the de-
signer by automatically locating features based on so-called Coverage
Items (CIs), i.e. parts of the implementation whose execution can be
tracked. If the execution of these CIs is tracked, a designer can easily
check whether a particular feature does or does not depend on the re-
spective parts of the implementation. More precisely, if an execution (or
a run) triggering a CI includes the feature the designer is looking for,
he/she can conclude that the respective parts of the implementations
may relate to the considered feature. Performing several runs, possible
CIs and, by this, responsible parts of the implementation can further be
refined.

Example 18 Consider again the scenario from Example 17. The designer
wants to add the vector multiplication and, for this purpose, needs to locate the
implementations related to floating point multiplication. When running cor-
responding tests, obvious CIs are triggered which point to the implementation
of fetching and decoding of instructions and data, respectively. Performing fur-
ther runs that include integer multiplication and floating point addition unveils
that most CIs are also triggered in runs that do not perform the multiplication.
From that, the designer can conclude that there are items in the ALU which
are triggered if and only if a multiplication is executed: there is a distinct set
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of CIs that are executed for the floating point multiplication but not for float-
ing point addition or integer multiplication. Hence, when extending the CPU,
he/she should probably investigate these items of the ALU first.

Overall, methods for feature localization narrow down the items,
i.e. the parts of the implementation that need further inspection to a
tiny fraction. They thus significantly aid designers to quickly determine
the relevant parts of the implementation in order to conduct their
improvements, extensions, or bugfixes.

Existing approaches for feature localization of SoCs emerged from the
software domain [28] and mainly focused on the RTL and its correspond-
ing programming languages such as VHDL [59, 60]. Methods for the
analysis of code coverage form the foundation for almost all approaches
for feature localization [122, 94]. Automatic feature localization for Sys-
temC is limited significantly – particularly due to the missing support
of dynamic behavior in SystemC.

In fact the only approach for feature localization at the ESL has been
proposed in [70]. Here, motivated by the fact that SystemC is purely
based on C++ [82], existing C++ coverage tools such as gcov and the re-
spective coverage metrics have been applied. This approach is restricted
to the static code description of the given SoC though. The dynamic
behavior supported by SystemC – particularly differentiating between
multiple instantiations of the same type of class – are not supported.

This represents a severe limitation since different modules, even when
they have been derived from the same type of class, may implement
different features of a system. Moreover, although these instances are
dynamically created at run-time they are treated as a static component
of the given system. This is because SystemC divides the execution of
a system into a so-called elaboration phase and the simulation phase
[7]. The former allows the designer to create the design (using any C++
description means he/she deems necessary), while the latter performs
the actual simulation but does not allow any further modifications of the
design. Hence, components might dynamically be instantiated during
the elaboration phase, but are treated as static components during sim-
ulation. Previous approaches, entirely relying on a static source code
analysis, are not capable of distinguishing between a type of class and
its instantiations. As a consequence, features might not be trackable.

Example 19 Consider the simplified representation of the pkt switch system,
one of the standard examples which are provided by SystemC, as shown in Fig-
ure 21. The switch in the center distributes data and is connected to four senders
and receivers which generate and receive arbitrary packages, respectively. The
senders (receivers) are instances of a respective class sender (receiver) and,
therefore, rely on the same source code.

This leads to severe problems for automatic feature localization which entirely
relies on a static view of the source code. In fact, those methods are unable to
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differentiate between a feature that is statically defined in the source code and a
feature that is dynamically defined through the instantiation within the elabora-
tion phase. As an example, those approaches would not be able to differentiate
between the feature “send to 0” and “send to 1”.

Realization

To properly locate features in SystemC designs, a new technique based
on the approaches outlined in chapters 3 and 4 is proposed. For this pur-
pose, a smart combination of SystemC/C++ utilities for line coverage
analysis such as gcov together with the scheme of AOP [99] introduced
in Section 4.4 is applied. This way, a hybrid static/dynamic coverage
metric emerges that enables the designer to precisely get pinpointed
to features in existing SystemC designs. The proposed solution clearly
overcomes the limitations of previously proposed approaches, i.e. addi-
tionally considers dynamically generated designs, while remaining as
non-intrusive as possible and, hence, applicable to a wide variety of Sys-
temC projects.

As feature localization methods require tracing Coverage Items (CIs)
in order to retrieve any valid results, the AOP based data retrieval
should be working well. The required tracing methods can be injected
using AOP – regardless of whether they are the ones introduced in this
work, existing ones such as the coverage methods provided by gcov or
other, custom solutions for tracing the execution of a given system de-
sign.

This approach has been implemented and evaluated by a case study.
In this section, the results are representatively discussed and compared
to the approach presented in [70]. As representative, the pkt switch-
system – one of the standard examples in the SystemC-library which has
already been considered before in Figure 21/Example 19 – is considered.

The design realizes a system for distributing data packages and is as-
sumed to be instantiated with four sender and four receiver instances
– all of them connected to a central switch. The senders create packages
including a random payload which is distributed by the switch (running
on a slower clock) to the receivers.

The features a designer may look for in this system may be related to
the distribution of data. In particular which parts of the design are trig-
gered when a package is sent to a specific destination might be of inter-
est. For this purpose, features send to 0, send to 1, send to 2, and send to 3
are defined which are supposed to pin-point the designer to parts of the
implementations where the delivery of packages to receiver 0, receiver 1,
receiver 2, and receiver 3 are realized, respectively.

For the actual feature localization, five runs are performed. One run
simulates the original setup where packages with an arbitrary payload
are delivered to an arbitrary receiver. The other runs simulate the deliv-
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ery to one specific receiver (as there are four receivers, four additional
runs are required for this). The feature localization is configured so that
only coverage items are reported which are always triggered when also
the respectively feature was triggered and vice versa. This is sufficient
for the considered purpose; however, alternative criteria as discussed
e.g. in [29] could easily be considered as well (e.g. being sometimes trig-
gered in runs that do not contain said feature).

In the following, results of the feature localization obtained by both,
the approach previously proposed in [70] as well as the approach pro-
posed here, are discussed with respect to the runtime performance and
quality of the obtained results.

In the current implementation, the coverage data is stored before each
termination of a function on disk (as described above by means of Fig-
ure 26). This obviously results in a heavy disk usage and, hence, affects
the run-time performance. In fact, this increases the run-time for the
simulation from less than a second (using feature localization proposed
in [70]) to a total of 65.3 CPU seconds (using the proposed feature lo-
calization) for the considered pkt switch-system on an Intel i5-3320M
CPU at 2.60 GHz with 12 GB memory running Ubuntu 14.04.

While this performance impact is of course a drawback, this does not
neccessarily pose a serious issue which questions the applicability of the
proposed methodology. This is justified e.g. by the following arguments:

• The total execution time of approximately one minute is still
within the boundaries of being applicable in an interactive work
process.

• In order to narrow down the coverage of items that are not imple-
menting the desired feature, runs for feature localization are usu-
ally rather short. That is, run-times usually do not get significantly
larger than the minute reported above.

• If necessary, the amount of information to be tracked and stored
can easily be reduced e.g. to a certain namespace that is currently
of interest or a set of modules that need to be covered. This would
significantly reduce the required runtime and still would provide
designers with better results than obtained by the previously ap-
plied approach.

Moreover, as shown next, this increase in runtime allows for the deter-
mination of results which are of much better quality.

For all considered features, Table 3 provides the results obtained by
the approach previously proposed in [70] and obtained by the novel ap-
proach. As it can clearly be seen, the previously proposed approach
pin-points the designer only to parts of the code related to the switch-
module. This can easily be explained by the fact that the dynamically
instantiated receivers (where the feature that something is sent to them
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Table 3: Comparison between the results obtained by the approach pre-
viously proposed in [70] and the one outlined in this section.

Feature Coverage Items [70] proposed
File Instance (proposed only) Lines

send to 0

receiver.cpp RECEIVER0 40 – 41; 43; 45 – 51 7 3

switch.cpp SWITCH 194 – 195 3 3

send to 1

receiver.cpp RECEIVER1 40 – 41; 43; 45 – 51 7 3

switch.cpp SWITCH 201 – 202 3 3

send to 2

receiver.cpp RECEIVER2 40 – 41; 43; 45 – 51 7 3

switch.cpp SWITCH 207 – 208 3 3

send to 3

receiver.cpp RECEIVER3 40 – 41; 43; 45 – 51 7 3

switch.cpp SWITCH 213 – 214 3 3

is realized) are not considered by the purely static approach in [70]. In
contrast, the proposed methodology does not only pinpoint the designer
to the switch but to the respective parts of the receiver as well. Moreover,
even the precise instantiation of the receiver is provided (see column de-
noted by Instance). Obviously, this provides a much more comprehen-
sive feature localization.

validation of fsl specifications

The extracted models can e.g. be compared to a given FSL specifica-
tion. As the static and dynamic information that were extracted from the
memory can simply be translated e.g. to block definition diagrams (as
already illustrated above), checking for compliance with a given model
is simple. Existing modeling frameworks such as the Eclipse Modeling
Framework can be utilized for this purpose.

Validating the behavior instead requires some manual additions. As
the proposed method only extracts program states (“snapshots”) for cer-
tain points in the execution of the program and is unable to supervise
a certain behavior, checking if a certain protocol is adhered cannot be
performed fully automatically. In fact, the designer has to explicitly en-
force when a snapshot shall be retrieved. If e.g. the behavior is specified
by means of a sequence diagram, then a snapshot after each operation
call (which changes the state of the system) is appropriate. Thus, the
respective states of the implementation are retrieved and can be vali-
dated against the specification. This of course neither guarantees that
the change in state is a result of the communication nor that the given
communication was indeed the only behavior occurring between those
states, but valid checks in these places indicate whether an implementa-
tion complies with its formal specification.

The suggested method is able to extract a significant amount of in-
formation to be used for the validation of the structure and the behav-
ior of an ESL implementation against a corresponding FSL specification.
The performance depends thereby on what exactly is extracted. The de-
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termination of the static information of the considered arbiter required
e.g. approximately one minute on an AMD Phenom II X4 965 with 8GB
RAM – most of the time is thereby spent on writing the information
onto the disc (with output disabled, the process takes approximately 12

seconds). Retrieving a snapshot, e.g. the one from Figure 17, required ap-
proximately 14 CPU seconds. Note that, in the current proof-of-concept
implementation, information is stored in an external XML file that needs
to be parsed and searched during the dynamic extraction. Hence, fur-
ther improvements in the performance are very likely but were not in
the scope of this work. For a variety of SystemC designs, the respective
information was successfully retrieved.

Besides, the proposed solution

• can essentially be transferred to any setup, as long as readable
debug symbols and RTTI data are generated by the compiler,

• is able to extract not only the system’s modules but also any other
C++ objects to which they are connected to,

• relies on the SystemC API to retrieve the objects to be inspected
and analyzed, i.e. the user does not have to add any additional
code apart from the statement that denotes at which points during
the execution a snapshot is required,

• does not add any overhead to the execution until the extraction
statements are executed.

The proposed approach has been applied in order to validate the Sys-
temC implementation from [23] against its formal specification. For
this purpose, a simple model to state matcher was implemented which
utilizes the retrieved information and compares them to the originally
given FSL specification. This enabled the detection of the following in-
consistencies:

• Additional wrapper modules have been added to the SystemC
implementation of the respective cells. Furthermore, the original
specification does not contain the module Scalable_Arbiter that
hosts the cells within.

• The identifiers of the blocks and its corresponding modules did not
match. That is, identifiers Cell 0, Cell 1, . . . , Cell n-1 are used
in the specification, while the identifiers cells, cells_0, cells_1,
. . . , cells_n-2 are used in the SystemC counterpart. This is a
crucial issue as designers might likely map e.g. Cell 2 to cells_2

(though it should be mapped to cells_1).

• Similarly, the identifiers of the inputs and outputs did not match.
The implementation abbreviated the names, i.e. the identifier
override_out became an ove_o.
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Stimuli
Genera-

tor

Figure 38: The machine learning feedback loop

• The implementation contains inputs for the clock, several other
inputs for the wrapper module, and a StimGen-module that was
obviously added for testing the setup by generating signal stimuli.
All that is not part of the formal specification. In particular, the
addition of clock inputs is crucial as this changes the interface of
the module.

• A consecutive “snapshot” of the state after each clock cycle showed
that the implementation does not make the token of the arbiter
travel around the cells. This obviously is a serious design error
which needs to be inspected.

After explicitely pin-pointed to it, most of these issues can also be
seen by comparing the specification to the extracted data. Of course,
these issues are not necessarily errors. However, they clearly emphasize
parts of the design which are different from the original specification. In
particular, with increasing complexity of the designs, the proposed ap-
proach and the according implementation provide a helpful tool which
warns the designer about potential discrepancies and possible sources
for confusion later on in the design process.

stimuli generation via machine learning

The basic idea of the ESL Coverage Driven Stimuli Generation (CDSG)
scheme is to analyse a system’s structures in order to be able to generate
stimuli that trigger certain signals within the system.

Figure 38 illustrates this principle. While the original system remains
untouched, a new module is introduced into the design that observes
all other signals that are present. The module attaches itself to all unas-
signed input ports of the system, allowing it to generate the stimuli
that drive the design throughout the simulation. If a certain signal e.g.
falls behind for certain coverage criteria, the stimuli generator can then
attempt to generate the stimuli that are required to increase the given
signal, either
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6.5 stimuli generation via machine learning

• succeeding, thus improving the results or

• failing, thus improving its own model of the system by taking the
new data into account.

For SystemC in particular, due to the difficulties in analysing the de-
sign in the first place, but also due to the difficulties in attaching a stim-
uli generator to an arbitrary design, this scheme is hard to implement.
However, the methods suggested in Chapter 5 may be used to realize
this scheme despite the difficulties of analysing SystemC, especially at
run-time.

Previous Work

As dedicated ESL approaches for AI-supported CDSG are sparse, this
section also gives a brief overview over existing RTL approaches.

Several algorithms have been developed to generate test patterns for
a system simulation. However, only few of them focus on SystemC
in particular: most CDSG approaches focus on the RTL or Gate-Level,
generating stimuli for systems that are guaranteed to be synthesizeable.

These approaches all follow the same pattern of establishing a feed-
back loop that connects the observations of a system’s behaviour to new
stimuli that feed the system itself. This loop is then used to verify as-
sumptions about the system and refine the model that is generated from
the observations [47].

Currently, there are three major classes of approaches to generate test
patterns for the devices using machine learning:

• Evolutionary Algorithms (e.g. [124, 16]). These are based on meth-
ods that simulate evolutionary processes to optimize a set of indi-
viduals against a fitness criterion. The advantage of this approach
is that it corresponds nicely to a given coverage value: individuals
(corresponding to a certain set of stimuli) that have already gained
a better coverage are the ones that are used to generate the next
generation of individuals, resulting in an improving performance.

• Probabilistic models such as Bayesian Networks or Markov Models
(e.g. [32, 116]). These rely on probabilistic connections between
nodes in directed graphs, modelling the probabilities how a system
changes its state as labels for transitions between a graph’s nodes.

• Data Mining approaches that attempt to build comprehensive
models from a vast set of recorded data (e.g. [57]).

The resulting models are then used to generate new stimuli to test the
simulated device.

SystemC approaches in contrast focus on the generation of the
stimuli themselves, specifically not targeting signals within the
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model. Frameworks such as the Constrained RAndom Verification
Environment (CRAVE) [54] allow for a detailed specification of how
the stimuli are supposed to be generated but are not able to generate
stimuli that target a specific signal within the model.

While the general approach of watching the execution and generat-
ing stimuli based on this performance is portable, algorithms for other
levels of abstractions of course use the information available from the
according descriptions.

One defining feature of development on the ESL is that the designer
does not have to specify a synthesizeable system but may as well leave
decisions concerning implementation details for later. Hence, any algo-
rithm focusing on CDSG for the ESL can not rely on information such
as the final hardware structure and its connections as this information
does not exist yet.

To summarize, existing approaches either target synthesizeable lan-
guages in order to be able to set signals within the design or focus on
SystemC but do not support setting signals within the system.

Applying Machine Learning for CDSG

To test the given approach, scalable circuits were set up that could be
increased in size in order to see how the approach would perform.

treeDelayedn is a tree of SystemC modules, each realizing an arbitrary
boolean gate with inverters inserted at random locations. The amount
of inputs available to the stimuli generator is 2n, with the tree consist-
ing of n levels of modules. Each module (including the NOT gates) is
connected to a clock and only refreshes its outputs upon a clock tick, re-
sulting in varying amounts of ticks until the signal passed the tree and
the result is set. The test terminated as soon as the output signal on the
top of the tree was toggled 1000 times.

treeInternaln enriches this test with modules that have an internal
state that is toggled with each clock cycle and switches its behaviour
between being a NOR and an OR gate. For the machine learning algo-
rithm, this results in a circular dependency, with the signal depending
on its own previous state (or the clock, which also depends on its own
previous state) that needs to be handled.

The machine learning algorithm usually allows for an unlimited col-
lection of information about the system, which results in a certain over-
head when handling the data. Another setup was therefore limited to
collecting data from merely 32 cycles, allowing it to handle less data.
The former shows that the algorithm itself works, the latter serves as an
example to illustrate that a hybrid approach may yield faster results.

Table 4 illustrates the results. While the machine learning algorithm
always needs less simulated cycles than the random stimuli generator
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Table 4: Experimental Results

benchmark rnd cycles / s ml cycles / s ml32 cycles / s
treeDelayed2 3,283 / 0.08 2,445 / 1.33 2,445 / 0.20

treeDelayed4 10,211 / 1.06 5,045 / 17.46 6,018 / 1.98

treeDelayed6 40,683 / 17.24 9,485 / 242.41 26,340 / 19.15

treeDelayed8 167,799 / 301.90 15,197 / 2975.78 151,341 / 275.90
treeInternal2 2,279 / 0.06 2,101 / 3.45 2,085 / 0.74

treeInternal4 4,331 / 0.39 3,197 / 90.25 3,347 / 8.35

treeInternal6 9,375 / 4.24 5,733 / 1165.34 5,449 / 50.97

treeInternal8 14,471 / 25.02 — —

Amount of simulated cycles / real time until the model’s outputs were
toggled 1000 times using either random stimuli generation or the
proposed method, with unlimited data collection or limited to 32

stimuli sets. Best results are bold.

to reach the toggle goal, it is slower in real time when being allowed to
collect all the data it can retrieve from the simulation.

The test that contained internal states for all modules in large struc-
tures could not be completed – the interdependencies between these
values, including unrolling the timed dependencies over the required
amount of steps resulted in quite large structures that resulted in stack
overflows when handling the tree structures.

Generally though, the approach works. The toggle coverage, which
the algorithm is supposed to increase, grows faster when the stimuli
generator is applied to the system – on signals that are only indirectly
connected to the generator.

The CDSG approach is able to target certain signals but does so at a
cost. Signals that are e.g. toggled regularly by a random stimuli gener-
ator may be toggled more quickly by the machine learning module con-
cerning the system’s clock, but the computation of the stimuli results in
a slower simulation speed, which may result in a real time performance
decrease when relying solely on the given approach. The sensible ap-
proach thus is to use the proposed method only for signals that are
not easily toggled, starting with a broad random generation first, as it
is common practice on the RTL [56]. The proposed limitation of input
data serves the same purpose, requiring the algorithm to resort to ran-
dom generation more often.

The bottom line is that the approach is able to target given stimuli
at will, bypassing the issue of black boxes inbetween and setting sig-
nals within a given SystemC model by learning the modules’ behaviour
alone. It thus provides an easily applicable solution to analyse a system
and trigger a certain behaviour without requiring any manually made
system descriptions.
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conclusion

In this chapter, several applications for the previously explained analysis
methods were shown. Two core use cases were illustrated that SystemC
analysis methods can be used for:

• Design understanding applications that use the data to give design-
ers new insights into the given design. These can serve as tools for
designers joining a new team in order to “get into” a design and
more quickly start developing or for developers that are searching
for specific parts of the design, e.g. during the debugging process.

• Automated testing tools that check whether or not a given design
complies with certain constraints that have been formulated before.
This allows designers to catch errors earlier in the design process,
thus lowering the development cost and speeding up the design
process.

These applications show that the proposed methods work for SystemC
designs and have real-world use cases that are beneficial to the develop-
ment of ESL designs using SystemC. They thus form a proof-of-concept
framework for the beneficial usage of SystemC analysis methods.
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C O N C L U S I O N

This is the end
My only friend, the end
Of our elaborate plans, the end
Of everything that stands, the end

Jim Morrison

In this thesis, a novel take on SystemC analysis was presented. Exist-
ing methods focus on the analysis of the source code or the adaptation
of existing source code processing units such as compilers. While these
methods provide an insight into SystemC designs, their applicability is
limited by their ability to analyse existing SystemC projects.

The focus of this thesis is to provide designers with methods to anal-
yse arbitrary designs instead. Instead of focusing on the ability to ex-
tract more information from a design, the core issue is non-invasiveness
of the approaches, allowing them to be applied to a broader range of
designs. Three core

approaches
The presented methods can be classified into one of three core

approaches.

static analysis encompasses all methods that can be applied before
the given SystemC program is executed, i.e. at compile-time. This refers
to the information that can be retrieved from the source code such as the
fields of a certain type of module.

The major issue for the retrieval of this information is the diversity
of the underlying language. With C++ offering complex description
means, various compilers interpreting code differently and vendors each
including their own, extended versions of given libraries, even this static
information is not trivial to retrieve.

The presented extraction means rely on the compiler pre-processing
the source code and storing intermediate information on disk for later
debugging purposes, thus gaining additional reliability by using estab-
lished interfaces and being able to re-use the processing steps done
by the compiler that is being used in the existing compilation pipeline.
These points set this approach apart from parsers that rely on reading
the source code directly and hence suffer from discrepancies between
the custom tool that is used to interpret the design and the established
one that is used to build an executable simulation framework from it.

With proof-of-concept implementations that work with gcc, clang and
MSVC++, the major compilation platforms are already covered, illustrat-
ing that the approach works well for a diverse set of tools.
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dynamic analysis encompasses all methods that need to be ap-
plied at run-time, i.e. after the given SystemC program was compiled and
during its execution. The information that is retrieved using dynamic
analysis methods thus encompasses data such as e.g. the instances of
modules and their variable assignments over time.

There are several major issues for the retrieval of this information.
The core problem though is that C++ programs are usually translated
into native binary executables and being stripped of all information that is
not required for the execution in order to make them as small and fast as
possible. Most other issues arise from this fundamental design decision
of C++, as e.g. memory remains unmanaged and type information is, if
present, unreliable and sparse.

The presented methods to still extract the desired information at run-
time are divided in two parts.

• The extraction method itself that is used to extract the information
from a running program. For this purpose, existing analysis tools
may be used. If the information that is retrieved via these is too
sparse, a novel approach was presented that relies on the data
that is retrieved using the static analysis tools to build models of
the information present in memory for given types and is able to
extract detailed snapshots of a program at a given time.

• The method that is used to invoke the chosen method. An ap-
proach using AOP was presented that can be embedded into ex-
isting workflows and allows the invocation of the given methods
at various points in a given design without altering the underlying
source code.

This way, a detailed model of a design’s behaviour can be built. Un-
like existing methods that focus on the extraction of static structures
from a given model, the information thus contains not only dynamically
created (but static) SystemC structures but also their behaviour, e.g. al-
lowing developers to more deeply investigate their designs’ simulation
properties.

machine learning analysis finally is used for the remaining fea-
tures that are hard to cover even with the proposed methods. This is
mainly used for structural information that cannot be retrieved from the
debug symbols (which may contain more or less information depending
on the compiler).

While machine learning should always be used with caution as the re-
sults may be incomplete or wrong, the proposed methods were shown
to generate enough information to improve existing algorithms or give
helpful indications concerning design features to a designer. The ap-
proach of having an AI assist other algorithms or designers can thus be
applied safely in contexts that do not require precise information.
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The common denominator for all proposed methods is non-
invasiveness. None of them rely on specific compilers being used or the
source code being altered (or adhering to certain constraints). This eases
the application of the approaches as they can be used in conjunction
with virtually any SystemC setup.

Apart from this collection of novel methods for the analysis of Sys-
temC designs themselves, various applications were implemented as
well. These serve to illustrate use cases and examples as to how the
retrieved information could be used in practice.

While the scientific impact of the proposed methods will only show
over time, talks about a possible commercial usage of some of the meth-
ods are still underway with the German-based Electronic Design Au-
tomation (EDA) schematic generation and visualization company Con-
cept Engineering. While this is currently still in its infancy, it illustrates
how the issue of SystemC analysis is a very relevant and ongoing topic
for both, scientists and commercial players alike.

Open and
future
questions

Despite the given methods tackling basically all aspects of SystemC
analysis, there are of course still several questions left for future re-
search.

First and foremost, the AI, despite its successful application, remains
a makeshift solution. Any method that retrieves exact data about a given
part of the design should always be preferred to the imperfect approach
of resorting to educated guesses. While there are several approaches that
may be able to retrieve more precise information (e.g. with clang offer-
ing a much more sophisticated interface to its compilation pipeline than
e.g. gcc), utilizing these would result in sacrificing the non-invasiveness
for more precise results. Hence, while these methods would be worth re-
searching them in their own right, investigating how more information
could be retrieved while retaining the non-invasiveness of given results
would be a core question for any work that follows the idea of universal
applicability.

Another question is whether these methods could be used not only
for an extraction of the data but for an interface. As the data that is
being extracted currently is either used for offline applications that only
utilize the data after the simulation has ended or (in case of the stimuli
generation) does not leave the system, inserting an interface to manage
a simulation while it is running would be the next step.

As most of the problems that are handled in this work arise from the
underlying structure of C++ that is being used as a foundation for Sys-
temC, a rather fundamental question is whether or not using C++ is the
right approach or if modern system design should not rather be done
on more modern languages. These offer approaches for designing sys-
tems using languages that provide detailed reflection and introspection
methods, type safety, managed memory etc. SystemC was chosen as
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the core framework for this work because it is a “de-facto-standard” [7].
While this is a valid argument, especially with regard to the relevance
and impact of the proposed methods, it is of course a weak one when
considering the fundamental question of whether or not it was a good
decision in the first place to pick C++. Despite several arguments that
favour C++ (such as hardware designers being used to working on lower
abstraction levels, performance, a vast amount of libraries etc.), the core
issue remains that several of the analysis issues that are being handled
in this work would not even have occurred in more modern languages.
Concerning their analysis capabilities, utilizing other frameworks may
thus be a more favourable approach. Generally though, in order to even
be able to come to a qualified decision, an in-depth comparison of these
ESL HDLs would be required.

While these open questions are of course interesting research topics,
they neither quite fit the scope nor the topic of this work. Instead, this
thesis presented thorough and novel ways to analyse SystemC designs,
enabling developers to better understand the design they are working
on and providing them with more ways to locate errors or communicate
their design decisions.
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A C R O N Y M S

AI Artificial Intelligence.
ALU Arithmetic and Logical Unit.
ANTLR ANother Tool for Language Recognition.
AOP Aspect Oriented Programming.
API Application Programming Interface.
AST Abstract Syntax Tree.

BDD Binary Decision Diagram.

CDSG Coverage Driven Stimuli Generation.
CI Coverage Item.
CoI Cone of Influence.
CRAVE Constrained RAndom Verification Environment.

EDA Electronic Design Automation.
ESL Electronic System Level.

FSL Formal Specification Level.

gcc GNU Compiler Collection.
gdb GNU Debugger.

HDL Hardware Description Language.
HJJ Hardware Join Java.

IC Integrated Circuit.
IDE Integrated Development Environment.
ISL Informal Specification Level.

JavaCC Java Compiler Compiler.

KaSCPar Karlsruhe SystemC Parser Suite.

MSVC++ Microsoft Visual C++ Compiler.

PCCTS Purdue Compiler Construction Tool Set.

RTL Register Transfer Level.
RTTI Run-Time Type Inspection.
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Acronyms

sc2v SystemC to Verilog Synthesizable Subset Translator.
SHaBE SystemC Hierarchy and Behavior Extractor.

TLM Transaction Level Modeling.

VHDL VHSIC Hardware Description Language.
VHSIC Very High Speed Integrated Circuit.
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Kreislauf – Rechenwerk. http://museum.informatik.uni-kl.de/
Rechner/Zuse/Z11/Schaltbilder/, 1958. Accessed: 2015-11-29.

124

http://museum.informatik.uni-kl.de/Rechner/Zuse/Z11/Schaltbilder/
http://museum.informatik.uni-kl.de/Rechner/Zuse/Z11/Schaltbilder/

	Introduction and Motivation
	Preliminaries
	Hardware Design Approaches
	SystemC

	Extraction of SystemC Meta Data
	State of the Art
	Debug Symbol Parsing
	Extraction of Static Information via Debug Symbols
	Extraction of Dynamic Information
	Conclusion

	Extraction of SystemC Behaviour
	Software-Based Approaches
	Consecutive Snapshot Extraction
	Compiler-based Behaviour Modification
	Aspect-Oriented Analysis Insertion
	Conclusion

	Filling the Gaps with Machine Learning
	Reverse-Engineering Module Logic
	ESL-specific Additions
	SystemC's modularity
	Time of extraction
	Time delays
	Internal states
	User-defined datatypes
	Circles
	Summary

	Conclusion

	Application
	Visualization
	Previous Work
	Realization

	Cone of Influence Extraction
	Feature Localization
	Previous Work
	Realization

	Validation of FSL specifications
	Stimuli Generation via Machine Learning
	Previous Work
	Applying Machine Learning for CDSG

	Conclusion

	Conclusion

