
A framework for Assertion-Based Timing
Verification and PC-Based Restbus
Simulation of Automotive Systems

Dissertation

A thesis submitted to the Faculty of Computer Science,
Electrical Engineering and Mathematics of the University of Paderborn
in partial fulfillment of the requirements for the degree of Dr. rer. nat.

by

Gilles Bertrand Gnokam Defo

Paderborn, 2015

Supervisors:
Prof. Dr. Franz-Josef Rammig, University of Paderborn
Prof. Dr. Marco Platzner, University of Paderborn

Date of public examination: 11.09.2015

Abstract

Automotive system innovation is mainly driven by software which can be
distributed over a large number of functions typically deployed over several
Electronic Control Units (ECUs). This growing design complexity makes
the verification and validation process challenging and difficult. Therefore,
the development of efficient and effective design methodologies is of great
interest for automotive engineers.

A central concept in the development of automotive software is the component-
based approach. Currently, the most prominent approach that supports this
design paradigm is the AUTomotive Open System ARchitecture (AUTOSAR).

The System-Level Design Language (SLDL) SystemC provides means to
simulate the behavior of AUTOSAR software components by means of a
discrete-event simulation kernel. Additionally, SystemC comes with a set
of libraries such as the SystemC Verification Library (SCV). Meanwhile, the
interest of using SystemC has grown in the automotive software development
community.

In this thesis we present a SystemC-based design methodology for early val-
idation of time-critical automotive systems. The methodology spans from
pure SystemC simulation to PC-based Restbus simulation. To deal with syn-
chronization issues (oversampling and undersampling) that arise during Rest-
bus simulation between the SystemC simulation model and the remaining bus
network, we also present a new synchronization approach.

Finally, we make use IP-XACT for SystemC component integration. To cap-
ture timing constraints on the simulation model, we propose timing exten-
sions for the IP-XACT standard. These timing constraints can then be used
to verify the SystemC simulation model.

i

Abstract

ii

Kurzfassung

Innovation in der Automobilindustrie wird durch Elektronik und vor allem
durch Software ermöglicht. In der Regel wird eine Vielzahl von verteilten
Funktionen realisiert. Typischerweise, wird diese Software über mehrere
Steuergeräte verteilt.

Durch die Verteilung und die Vielzahl an Funktionen, ensteht eine immer
wachsende Komplexität, die den Verifikations- und Validierungsprozess an-
spruchsvoller und schwieriger gestaltet. Daher ist für Ingenieure in der Au-
tomobilindustrie die Entwicklung von effizienten und effektiven Design-Me-
thoden von großem Interesse.

Ein zentrales Element in der Entwicklung automobiler Software ist der kom-
ponentenbasierte Ansatz. Derzeit ist AUTOSAR der wichtigste Standard, der
dieses Paradigma unterstützt. Die Systembeschreibungssprache SystemC ist
ebenfalls ein Mittel, um AUTOSAR-Komponenten simulieren zu können.
Desweiteren stellt SystemC einen Satz von Bibliotheken zur Verfügung wie
zum Beispiel die “SystemC Verification Library“ (SCV), und einen diskreten
Event-Simulationskern. Inzwischen ist das Interesse an der Verwendung von
SystemC in der automobile Softwareentwicklung stark gestiegen.

In dieser Arbeit stellen wir eine SystemC-basierte Entwurfsmethodik für eine
frühe Validierung zeitkritischer automobile Systeme vor. Die Methodik re-
icht von einer reinen SystemC-Simulation bis zu einer PC-basierten Rest-
bussimulation. Um die Synchronisation bezüglich Überabtastung und Un-
terabtastung zwischen dem SystemC-Simulationsmodell und dem Restbus
während der Restbussimulation zu gewährleisten, präsentieren wir ein Syn-
chronisationsverfahren.

Im Rahmen dieser Arbeit, wurde für die Integration von SystemC-Komponen-
ten IP-XACT als Modelierungsstandard verwendet. Um eine Zeitanalyse
ermöglichen zu können, stellen wir Erweiterungen für den IP-XACT Stan-
dard vor, mit deren Hilfe Zeitanforderungen an das Simulationsmodell erfasst
werden können.

iii

Kurzfassung

iv

Acknowledgements

First and foremost, I would like to thank Prof. Dr. Franz-Josef Rammig
for his guidance, his continuous support and valuable suggestions and ideas
throughout the development of the concepts of this thesis. I also want to
thank Prof. Dr. Marco Platzner for co-supervising this thesis.

Moreover, I would like to thank Jun. Prof. Christian Plessl, Dr. Wolfgang
Müller, Dr. Stefan Sauer for being member of the examination board.

In C-LAB, I had the opportunity to contribute to several industrial research
projects under the auspices of Dr. Wolfgang Müller in a great research envi-
ronment. I thank him for his support and our numerous fruitful discussions.
I would like to thank all my former colleagues at C-LAB and the University
of Paderborn for the friendly and inspiring environment.

Furthermore, I would also like to thank Mr. Stefan Kuntz for the fruitful dis-
cussions and comments during the joint research projects, and for his support
in the final phase of this thesis.

I am most indebted to my parents Prof. Dr. Edmond Gnokam and Elise
Gnokam who have supported me not only during my studies but throughout
my whole life in every imaginable way.

Last but not least, I would like to thank Dr. Anna Barát for being an on-going
source of support and motivation during the time of this research and dedicate
this thesis to my children.

Gilles Bertrand Gnokam Defo

v

Acknowledgements

vi

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Automotive system innovation . 1
1.1.2 Simulation . 2
1.1.3 Modeling . 3

1.2 Problem statement . 3
1.2.1 Restbus simulation for early functional validation 3
1.2.2 Data synchronization between simulator and hardware 4
1.2.3 Specification of timing constraints . 5

1.3 Research contribution . 5
1.4 Structure of this thesis . 6

2 Foundation 9
2.1 Automotive Control Systems . 9

2.1.1 Open-Loop Control . 10
2.1.2 Closed-Loop Control . 11

2.2 Design of Automotive Control Systems . 12
2.2.1 Classification of Real-Time systems 12
2.2.2 Design Methodology (AUTOSAR) 14
2.2.3 Timing Modeling with TADL2 . 20
2.2.4 Testing and Verification . 26

2.3 Automotive Vehicle Netwoks . 28
2.3.1 Controller Area Network (CAN) . 28
2.3.2 FlexRay . 29

2.4 Design of Electronic Systems . 33
2.4.1 Design Modeling with IP-XACT . 33
2.4.2 Design Modeling Language with SystemC 37
2.4.3 Formal Property Specification Language with PSL 42

3 Related Work 49
3.1 IP-XACT . 49

3.1.1 Extensions of the IP-XACT Schema 49
3.2 Modeling and simulation of embedded automotive software 50

3.2.1 Restbus Simulation . 50
3.2.2 Modeling and simulation with SystemC 51

vii

CONTENTS

3.2.3 Design Framework for IP Reuse and Integration 52
3.2.4 AUTOSAR Vs. SystemC . 52

3.3 Verification of temporal properties . 53
3.3.1 Verifying SystemC using an Intermediate Verification Language and

Symbolic Simulation . 53
3.3.2 Verifying SystemC using a software model checking approach 53
3.3.3 Monitoring Temporal SystemC Properties 54
3.3.4 Dynamic Assertion-Based Verification 54
3.3.5 Assertion-based Verification of temporal properties 55

4 Methodology 57
4.1 Overall design flow . 58

4.1.1 Phase 1: Component assembly . 59
4.1.2 Phase 2: Timing requirements formalization and Code generation . . . 59
4.1.3 Phase 3: Timing verification . 63
4.1.4 Phase 4: Model equivalence check . 64
4.1.5 Phase 5: Restbus simulation . 64

4.2 Restbus simulator . 65
4.2.1 Architecture of the Restbus Simulator 65
4.2.2 The SystemC simulator . 65
4.2.3 Adapter . 67

5 Assertion-Based Timing Verification 71
5.1 Background . 72

5.1.1 Motivation . 72
5.1.2 PSL, Sequential Extended Regular Expression (SERE) 74
5.1.3 IP-XACT . 75
5.1.4 DataEvents and Event chains . 77
5.1.5 Timing Augmented Description Language 2 (TADL2): Notation 78

5.2 Formalizing Timing Requirements . 79
5.2.1 Reason for using both TADL2 and Property Specification Language (PSL) 80
5.2.2 RepeatConstraint . 82
5.2.3 StrongDelayConstraint . 83
5.2.4 RepetitionConstraint . 85
5.2.5 DelayConstraint . 87
5.2.6 SporadicConstraints . 89
5.2.7 Periodic constraints . 90
5.2.8 Synchronization Constraint . 92
5.2.9 Order Constraint . 95

5.3 Verification of the timing properties . 96
5.4 Summary . 97

6 Verification of timing properties: case study Brake-By-Wire 99
6.1 Functional decomposition of the BBW model 100
6.2 Instrumenting of the simulation model . 103

viii

CONTENTS

6.3 Reference model . 103
6.4 Specifying the timing requirements . 104
6.5 Evaluation results . 105

6.5.1 Repeat, StrongDelay and Repetition timing constraints 105
6.5.2 Evaluation of the AgeConstraint and ReactionConstraint 107
6.5.3 Evaluation of synchronization related timing Constraints 108

6.6 Summary and discussion . 109

7 Synchronization 111
7.1 Background . 111

7.1.1 Data smoothing: Robust LOWESS/LOESS 111
7.1.2 Multirate Systems . 115
7.1.3 Downsampling . 117

7.2 Our synchronization approach . 121
7.3 Upsampling . 123
7.4 Downsampling . 124

7.4.1 Main phase . 125
7.4.2 Initialization phase . 126
7.4.3 Downsampling with peak detection 127

7.5 Summary . 130

8 Evaluation of Synchronization approach 133
8.1 Evaluation platform . 133

8.1.1 System Overview . 133
8.1.2 Hardware architecture . 134
8.1.3 Software architecture . 136
8.1.4 Applied tools . 137

8.2 Evaluation results . 137
8.2.1 Impact of the SendQueue-size on transmission delay 140
8.2.2 Variation of the smoothing parameter of Robust LOWESS 140
8.2.3 Impact of the SendQueue size on peak sequence detection 141
8.2.4 Impact of the data processing rate ratio on data synchronization 144
8.2.5 Summary . 146

9 Conclusion 147
9.1 Summary . 147
9.2 Outlook . 149

9.2.1 Synchronization . 149
9.2.2 Timing verification . 149

A Verification unit 151

B Pictorial representation of the IP-XACT Schema Extensions 155
B.1 Diagrams . 155

B.1.1 Elements and sequences . 155
B.1.2 Elements and choices . 156

ix

CONTENTS

B.1.3 Elements, attributes, groups, and attributeGroups 157
B.1.4 Wildcards . 158

List of Acronyms 159

List of Figures 165

List of Tables 167

List of Own Publications and Bibliography 169

x

Chapter 1

Introduction

1.1 Motivation

1.1.1 Automotive system innovation

Meanwhile safety, security, driving dynamics, and comfort features have sig-
nificantly been improved in today’s automobile. This was made possible by
the availability of intelligent sensor and actuator technologies and powerful
ECUs, whereby some of the ECUs are nowadays equipped with multi-core
processors.

To keep up with the competition on the market, automotive Original Equip-
ment Manufacturers (OEMs) try to shorten their development cycle, whilst
keeping or enhancing their products quality.

Typically, these systems are complex real-time embedded systems composed
of a large number of functions deployed over several ECUs, whereby the
ECUs communicate among each other via network buses like FlexRay or
CAN. This leads to an ever growing design complexity, which makes the test
and validation process challenging.

Therefore, it is necessary to start the test and validation process as early as
possible in the design process.

1

Chapter 1. Introduction

1.1.2 Simulation

System level simulation

Usually, a significant amount of time is spent during the system architecture
design phase of the automotive development process. In this phase hardware-
and software partitioning is done. Hereby, the hardware architecture com-
prises elements such as ECUs, bus systems, sensors and actuators and energy
supply. The software infrastructure includes the operating system, bus drivers
and additional services.

Simulation can be used to speed up the system architecture design exploration
phase. It gives system designers the possibility to test their designs against
predefined functional requirements and therewith analyze communication in-
teractions and the overall system design in an early phase of the development
process.

SystemC [53] is a well deployed System Level Description Language (SLDL)
in the field of Embedded System level design. Strictly speaking, SystemC is
not a language but rather a C++ based class library, which is coupled with an
integrated verification library: the SystemC Verification Library (SCV) and
a discrete-event simulation kernel. Furthermore, SystemC provides means to
describe, analyze and verify both hardware and software models at various
levels of abstraction (see Section 2.4.2).

Hardware-in-the-Loop simulation

Since in-vehicle driving tests are often time-consuming, expensive and not
reproducible, Restbus simulation (RBS) and Hardware-In-the-Loop (HIL)
are applied in later phases of the development cycle. RBS and HIL are
widespread techniques. They allow developers to validate new hardware and
software solutions within their target environment.

HIL simulation provides an effective platform by adding the complexity of
the plant under control to the test platform. The complexity of the plant under
control is included in the test and development by adding a mathematical
representation of all related dynamics of the system. These mathematical
representations are referred to as the plant simulation. The embedded system
to be tested interacts with the plant during simulation.

Restbus simulation on the other hand is a special HIL variant, whereby this
method takes the bus network into account. A typical application for Restbus
simulation is the integration of any developed functionality (features) into
an existing bus network. To achieve this, the Restbus simulator has to pro-

2

Chapter 1. Introduction

vide messages from non-existing nodes to the rest of the system during the
simulation. It also has to consume message from existing nodes and react
accordingly.

1.1.3 Modeling

To benefit from the components-oriented approach when designing complex
embedded systems, several modeling languages have been proposed in the
literature. In the context of automotive system development there exists a va-
riety of modeling standards, the most prominent ones are the AUTOSAR and
the Systems Modeling Language (SysML). Another far but related modeling
standard from the field of Electronic Design Automation (EDA) is IP-XACT.

SysML [43] is a general-purpose modeling language for system engineering
applications. It supports the specification, analysis, design, verification and
validation of a broad range of systems and systems-of-systems. SysML was
originally developed by an open source specification project, and includes an
open source license for distribution and use.

The AUTOSAR [27] initiative was founded in 2003 and is a union of well-
known vehicle manufacturer and supplier of automotive systems with the
goal of having a common framework for the development of software compo-
nents. The AUTOSAR standard defines not only a comprehensive technical
infrastructure for these systems, but also one that builds upon the method-
ology and description formats for the development of AUTOSAR-compliant
systems. A further primary goal of AUTOSAR is the integration aspect.

IP-XACT [48] is an XML standard format for IP packaging, reuse and in-
tegration. This standard was originally created by Mentor Graphics [45]. It
defines a standard way for describing and handling multi-sourced electronic
IP components, enabling an automated design integration and configuration
within multi-vendor design flows.

1.2 Problem statement

1.2.1 Restbus simulation for early functional validation

SystemC has turned out to be suitable for the modeling and simulation of
automotive networks systems [63]. As aforementioned, it provides means to
describe both hardware and software and a simulation environment. Further-
more, several verification methodologies and libraries support the test and
verification of SystemC models. The most popular ones are: UVM [54] (Uni-

3

Chapter 1. Introduction

versal Verification Methodology), OVM [20] (Open Verification Methodol-
ogy) and PSL [52] (Properties Specification Language).

Several companies provide tools and hardware equipment for Hardware-in-
the-Loop and Restbus simulation. They all require the use of dedicated hard-
ware to run the design under test. In those simulation environments, the
standard PC is only used to host the test automation software. Up to now
there is no approach describing how to actually use the standard host PC as
execution platform for the design under test.

The main contributions of this thesis consists of providing a framework and
design methodology to support the use of a standard PC for the simulation
of the design under test during Restbus simulation. Moreover, the Restbus
simulator is implemented in SystemC.

1.2.2 Data synchronization between simulator and hard-
ware

The notion of time is one of the key concepts of SystemC, which enables the
simulation of concurrent processes. However, the standard SystemC simula-
tion kernel does not provide real-time simulation support. Mechanisms such
as preemption and priority based scheduling are not available. Therefore, it
is not possible to model the complete software behavior of a real-time critical
system.

There exist a wide range of SystemC-based Real-Time Operating System
(RTOS) modeling concepts. These concepts consist of implementing the op-
erating system features at a high abstraction level, and later during the re-
finement process, the RTOS model is typically replaced by a custom RTOS.
The simulation overhead introduced by RTOS models has been proven to be
negligible [77].

Nevertheless, none of those RTOS modeling concepts can be applied to Rest-
bus simulation or Hardware-in-the-Loop, since they only target the simula-
tion of a real-time environment and not simulation itself in real-time. Further,
SystemC simulation time differs from the real network time.

As a consequence, during the simulation of complex models, not all the data
generated by the real network nodes might be received and processed on time
by the corresponding components in the SystemC simulation. Oversampling
and Undersampling might be observed.

4

Chapter 1. Introduction

1.2.3 Specification of timing constraints

IP-XACT has been proven to be a well-defined standard for hardware de-
sign description. It provides a common language and vendor-neutral way
to describe IPs. Thus, we opted for its use as an exchange format for the
description of the individual Restbus and HIL components.

In this thesis we present a SystemC-based simulation approach, where the
SystemC simulation model interacts with the real hardware infrastructure.
In the context of the simulation of real-time critical systems, timing can be
considered as a functional property. Therefore, the model should be analyzed
in order to verify if it conforms to the specified timing requirements. This
analysis has to be done before exercising the actual test process.

For component abstraction representation, the IP-XACT standard does not
provide support for the entire range of abstraction levels usually considered
in the literature. However, Transaction Level Modeling (TLM) and Register
Transfer Level (RTL) are supported, which are the most important ones.

Further, the notion of timing constraints already exists in IP-XACT. Delay
timing constraints can be specified for RTL models. But unfortunately the
current standard does not provide similar elements for transactional models
and the standard needs to be extended by additional timing constraints to
enable a more detailed timing analysis of complex designs.

1.3 Research contribution

The aim of this thesis is to provide a framework for SystemC-based Restbus
simulation of automotive systems for early validation. For this purpose we
define a methodology for timing analysis of SystemC models in a pure Sys-
temC simulation environment, before starting the actual Restbus simulation
process. The defined methodology is depicted in Figure1.1.

The research contributions in this dissertation can be defined as follows:

1. Proposal of additional timing constraints for the IP-XACT standard
version IEEE 1685-2009 [48] to capture timing constraints.

2. Development of a property specification-based verification flow to ver-
ify and enhance the simulation models constructed. IEEE 1850 version
of PSL [52] (Property Specification Language) was used.

3. Derivation of PSL formulas from specified IP-XACT-timing-extensions.
This contribution consists of defining mapping rules from IP-XACT
timing constraint specifications into executable PSL formulas.

5

Chapter 1. Introduction

12 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderborn

Flow

Generation of pure

Simulation model

(SystemC)

Formalization of timing

requirements (PSL)

Timing verification

Functional equivalence

check

Component

Assembly (IP-XACT)

Restbus simulation

Design model

(IP-XACT)

Pure simulation

model

(SystemC)

Formal timing

specification

(PSL)

Generation of Restbus

simulation model

(SystemC)

Restbus simulation

Model

(SystemC)

Restbus simulation

Model

(SystemC)

Pure simulation

model

(SystemC)

1

2

3

4

5

Figure 1.1: Proposed design flow

4. Development of a synchronization algorithm to handle possible sam-
pling rate issues between simulator running on the host PC and the
real hardware. The synchronization approach depends on the possible
kind of application that can be simulated on the host PC. We classified
the applications into the following three categories: Open-loop control,
Monitoring, and Closed-loop control.

1.4 Structure of this thesis

Chapter 2 introduces the theoretical background of the fields involved in this
thesis. This includes the field of automotive control systems and the design
of such systems. Additionally, the automotive vehicle network communica-
tion protocols FlexRay and CAN are discussed. At last but not least a brief
introduction into the field of Electronic System Level design is given. Chap-
ter 3 briefly discusses research results related to the simulation of automotive
network and the design of electronic systems.

The chapters 4, 5 and 7 discuss the contributions of this thesis. Chapter 4
presents our methodology and simulation framework for functional verifica-
tion of real-time critical automotive systems developed in this thesis. The

6

Chapter 1. Introduction

methodology includes a timing analysis of the model under investigation,
that helps to verify that the model conforms to its timing requirements be-
fore starting the actual Restbus simulation process. Furthermore, the timing
requirements are captured using IP-XACT.

In Chapter 5, timing extensions for IP-XACT needed to capture timing con-
straints on the design will be introduced. Chapter 7 is explicitly dedicated to
one of the most important contributions of this thesis, which is the develop-
ment of an approach needed for data synchronization between our Restbus
simulator and the network bus.

The chapters 6 and 8 are dedicated to the evaluation of both the timing ver-
ification and the synchronization approach. Chapter 6 evaluates the timing
verification methodology. The system model used in this case study is a
SystemC model of an automotive Brake-By-Wire (BBW) application. The
application is distributed over a set of ECUs and includes Anti-lock Braking
System (ABS) functionality. Chapter 8 evaluates the synchronization ap-
proach. The approach was validated on a HIL test environment consisting
of a Steer-By-Wire system. This test environment has been used in several
projects [90, 49].

7

Chapter 1. Introduction

8

Chapter 2

Foundation

This chapter introduces the theoretical background of the domains involved
in this thesis. We will start by giving a brief introduction into the field of
automotive control systems and the design of such systems. Following, the
automotive vehicle network communication protocols FlexRay and CAN will
be discussed, and finally a brief introduction into the field of Electronic Sys-
tem Level design will be given.

2.1 Automotive Control Systems

In today’s automotive systems, control systems running on electronic control
units (ECU) are used to regulate the operation of other systems. From the
control application’s perspective, the system being controlled is referred to
as the system plant. In this sections we will describe the major types of
automotive control systems. A control system is described by its fundamental
elements, which are:

• Objectives of control

• System components

• Results/Outputs.

The objectives of a control system are the quantitative measures of the tasks
to be performed by the system. These describe the desired values of one or
more variables and are normally specified by the user [83].

The results are called outputs or controlled variables. Typically, the objective
of a control system is to regulate the values of the outputs in a prescribed

9

Chapter 2. Foundation

manner based on the inputs of the control system. A control system should
perform accurately, respond quickly, be stable and immune against noise.

The control system’s accuracy specifies the deviation between the system’s
output and the desired system’s output, with a constant-value input command.
A quick response describes how fast the control system will track or follow
changing input commands. A system’s stability specifies how a system be-
haves, when a sudden change is made by the input signal.

The output of an unstable control system will diverge from its intended value
based on its input. For any automotive application, a control system must be
stable and controllable over the entire desired operating range.

A good controller design will minimize the chance of unstable operation even
under extreme operating conditions. A system should maintain its accuracy
by responding only to valid inputs. When noise or other disturbances threaten
to change the system plant’s output, good design will eliminate response to
such inputs from system performance as much as possible [83].

A control system having small (ideally zero) response to noise inputs is said
to have good noise immunity. Accuracy, quick response, stability and noise
immunity are all determined by the control system configuration and param-
eters chosen for a particular plant. The purpose of a control system is to
determine the output of the system (plant) being controlled in relation to the
input and in accordance with the operating characteristics of the controller.

The relationship between the controller input and the desired plant output is
called the control law for the system. The desired value for the plant output
is often called the set point. The output of an electronic control system is an
electrical signal that must be converted to some physical (or other) action in
order to regulate the plant. A device that converts the electrical signal to the
desired mechanical action is called an actuator.

Although electronic controllers can, in principle, be implemented with either
analog or digital electronics, the trend in automotive control is digital. There
are two major categories of control systems: open-loop (or feedforward) and
closed-loop (or feedback) systems [83].

2.1.1 Open-Loop Control

Figure 2.1 depicts the generic structure of an open-loop control system. As
shown in the figure, the components of an open-loop control system include
an electronic controller, which has an output to an actuator. The actuator in
turn, regulates the plant in accordance with the desired relationship between

10

Chapter 2. Foundation

the reference input (input command) and the value of the controlled variable
(denoted by u) in the plant.

Electronics

Controller

Command
Input

Actuators Plant
i u

Disturbance

System
Output+

Signal

Processing
Sensor

X+

-

e

Feedback
Signal

Electronics

Controller

Command
Input Actuators Plant

i u

Disturbance

System
Output+

Figure 2.1: Block diagram of an open-loop control system

Many examples of open-loop control systems are encountered in automotive
electronic systems, such as fuel control in certain operating modes [83]. As
illustrated in Figure 2.1, the command input is sent to the electronic con-
troller, which performs a control operation on the input to generate an inter-
mediate electrical signal (denoted by i).

An open-loop control system is a system in which the computation of the
controlled variables only depends on the current state and its system model.
It does not use feedback to determine whether its output has achieved the ex-
pected goal or not. Thus, the operation of the plant is directly regulated by the
actuator. The system’s output may also be affected by external disturbances
that are not an inherent part of the plant, but are the result of the operating
environment.

One of the main drawbacks of the open-loop controller is its inability to com-
pensate for external changes that might occur in the plant or for any distur-
bances.

2.1.2 Closed-Loop Control

Closed-loop control systems are usually more robust than open-loop control
systems. In a closed-loop control system, the actual system output is com-
pared to the desired output value in accordance with the input. As shown
in Figure 2.2, the measurements of the output variable being controlled is
obtained via a sensor and feedback to the controller.

Each measured value of the controlled variable is compared with the desired
value based on a reference input. A deviation signal based on the difference
between desired and actual values of the output signal is created, and the
controller generates an actuator signal (u) that tends to reduce the error to
zero.

In addition to reducing this error to zero, feedback has other potential ben-
efits in a control system. It can affect the control system performance by

11

Chapter 2. Foundation

Electronics

Controller

Command
Input

Actuators Plant
i u

Disturbance

System
Output+

Signal

Processing
Sensor

X+

-

e

Feedback
Signal

Electronics

Controller

Command
Input Actuators Plant

i u

Disturbance

System
Output+

Figure 2.2: Block diagram of a closed-loop control system

improving system stability and suppressing the effects of disturbances in the
system.

The generic closed-loop control system illustrated in Figure 2.2 has some of
the components shown in an open-loop control system, including the plant to
be controlled, actuator(s), and control electronics. In addition, however, this
system includes one or more sensors and some signal-conditioning electron-
ics. The signal conditioning used in a closed-loop control system plays a role
similar to that played by signal processing in measurement instrumentation.

That is, it transforms the sensor output as required to achieve the desired
measurement of the plant output. Compensation for certain sensor defects
(e.g. limited bandwidth) is possible, and in some cases necessary, to en-
able the comparison between the plant output and the desired value. Elec-
tronic control systems are classified by the way in which the error signal
is processed to generate the control signal. The major control systems in-
clude proportional (P), proportional-integral (PI), and proportional-integral-
differential (PID) controllers [83].

2.2 Design of Automotive Control Systems

2.2.1 Classification of Real-Time systems

A real-time computer system is a system, where the correctness of the system
behavior depends not only on the logical results of the computations, but
also on the physical time, when these results are produced [61]. By system
behavior we mean the sequence of system’s outputs over time.

The classification of real-time systems depends on the design perspectives.
In [62] for instance, five different perspectives are defined and classified as
follows:

12

Chapter 2. Foundation

1. Hard Real-Time Vs Soft Real-Time

2. Fail-Safe Vs Fail-Operational

3. Guaranteed-Response Vs Best effort

4. Resource-adequate Vs Resource-inadequate

5. Event-triggered Vs Time-triggered.

The first two classifications are influenced by the characteristics of the envi-
ronment, that is, on the factors outside the computer system. The last three
classifications are based on the tightness and strictness of the deadlines within
the computer system, this means, on factors inside the computer system, such
as peak load and the fault scenario [62].

Hard real-time systems describe the category of systems, where it is abso-
lutely imperative for a system to provide its response within its required
deadline. Missing the deadline would lead to useless results or even dan-
gerous system state. In Soft real-time systems on the other hand, missing a
deadline will only lead to a deterioration of the system’s quality [62].

The classification Fail-safe Vs Fail-operational is related to the characteristics
of the controlled object and not the computer system itself. Fail-safe systems
are real-time systems, where one or more safe states can be reached in case of
system failure. Therefore, fail-safe systems are required to have a high error-
detection coverage. This high error-detection coverage is typically reached
by means of a special external device called watchdog. In case of failure,
the watchdog forces the controlled object into a safe state. Fail-operational
systems however are systems where a safe state cannot be identified, e.g.:
a flight control system on an airplane. In such systems, the computer must
remain operational and provide a minimal level of service in case of failure
to avoid a catastrophe [62].

Guaranteed-response systems are systems that make it possible to reason
about the adequacy of the design independently of probabilistic arguments
like peak loads and fault scenario. The probability of failure of a perfect
system with guaranteed response is reduced to the probability that the as-
sumptions about the peak load and the number and types of faults do not
hold in reality. This probability is called assumption coverage [78]. Guaran-
teed response systems require careful planning and extensive analysis during
the design phase. If such an analytic response guarantee cannot be given, we
speak of a best-effort design. Moreover best-effort systems are typically only
used for non safety-critical real-time systems. [62].

Guaranteed-response systems are based on the principle of resource ade-
quacy, i.e., there are enough computing resources available to handle the

13

Chapter 2. Foundation

specified peak load and the fault scenario. Many non safety-critical real-
time system designs are based on the principle of resource inadequacy. It is
assumed that the provision of sufficient resources to handle every possible
situation is not economically viable, and that a dynamic resource allocation
strategy based on resource sharing and probabilistic arguments about the ex-
pected load and fault scenarios are acceptable. Hard real-time systems must
be designed according to the guaranteed response paradigm that requires the
availability of adequate resources [62].

Event-triggered (ET) and Time-triggered (TT) real-time systems differentiate
themselves in the way they are internally triggered. They are not character-
ized by the behavior of their environment. A trigger hereby is a an event that
causes the start of some activity in the computer, such as, the execution of a
task (processing activity) or the transmission of a message (communication).
In an ET control system, all communication and processing activities are ini-
tiated whenever a significant event other than the regular event of a clock tick
occurs. In a TT system, all activities are initiated by the progression of time.
Further, every observation of the controlled object is time-stamped with this
global time [62].

2.2.2 Design Methodology (AUTOSAR)

The driving factors for the development of automotive systems are mainly
related to customer requests and related to the regulation entities. On the one
hand, customers express the need for more and more features whilst increas-
ing safety and security aspects. On the other hand, environmental constraints
have to be fulfilled from the regulation entity’s perspective. This leads to an
increasing design complexity.

Software is a driving factor for automotive innovation. A key concept in the
development of automotive software is the component-based approach and
the most prominent approach is AUTOSAR [27]. AUTOSAR is an initiative
of a union of well-known vehicle manufacturers and suppliers of the auto-
mobile industry and was founded in 2003. AUTOSAR provides a common
standard for the development of automobile software. Furthermore, the stan-
dard defines not only a comprehensive technical infrastructure for automotive
systems, but it also builds upon a methodology and description formats for
the development of AUTOSAR-compliant systems [73].

The development methodology is model-driven. The software architecture,
as well as the ECU hardware and the network topology, are modeled in a
formal way, which is defined by a metamodel that supports the software de-
velopment process. All available modeling elements are specified by the
AUTOSAR metamodel [27].

14

Chapter 2. Foundation

Figure 2.3 depicts the architecture of the AUTOSAR software layers. AU-
TOSAR distinguishes between three software layers, running on top of the
ECU hardware. These layers are: the Application layer, the Runtime Envi-
ronment (RTE) and the Basic Software (BSW).

ECU-Hardware

AUTOSAR Runtime Environment (RTE)

Actuator
Software

Component

AUTOSAR
Interface

Application
Software

Component

Sensor
Software

Component

Application
Software

Component

..............

AUTOSAR
Software

Basic Software

Standardized
Interface

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

Microcontroller
Abstraction

AUTOSAR
Software

Component

Standard
Software

Standardized
AUTOSAR
Interface

Services

Standardized
Interface

ECU
Abstraction

AUTOSAR
Interface

Standardized
Interface

Complex
Drivers

AUTOSAR
Interface

 VFB & RTE
relevant

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

 RTE
relevant

 BSW
relevant

S
ta

n
d

a
rd

iz
e

d

In
te

rfa
c

e

Possible interfaces
inside

Basic Software
(which are

not specified
within AUTOSAR)

Note: This figure is incomplete with respect to the possible interactions between the layers.

p
a
g
e
 i
d

:
9
4
ju

5

Interfaces:

Interface

Figure 2.3: AUTOSAR layered software architecture

Application Layer

The AUTOSAR Software layer consists of Software Components (SW-Cs)
that are mapped on to the ECU. A SW-C is the fundamental element in AU-
TOSAR. A SW-C can be either a Composition or Atomic.

While Atomic SW-C encapsulate the implementation of their functional-
ity and behavior and expose well-defined connection points, the purpose
of Composition SW-C is to allow the encapsulation of specific functional-
ity by aggregating existing SW-C. Software components can be refined into
Application-, Sensor/Actuator- and Service software component type [29].

Runtime Environment

From a system design level perspective, the AUTOSAR RTE acts as a mid-
dleware for inter- and intra-ECU communication.

The RTE provides a communication abstraction to the AUTOSAR Software
layer by providing standardized interfaces and services for both inter-ECU
and intra-ECU communication. The software components running on top of
the RTE are application dependent, therefore, the RTE layer is partly gener-

15

Chapter 2. Foundation

ated and partly configured. As a result, the RTE will differ from one ECU to
another [30].

Basic Software

The AUTOSAR BSW is a standardized software layer, which provides ser-
vices to the AUTOSAR SW-C and is required to run the functional part of
the software. It does not fulfill any functional task itself and is situated below
the AUTOSAR RTE (see Figure 2.3). The Basic Software contains stan-
dardized and ECU specific components. Furthermore, this layer provides
System, Memory and Communication related services to the application soft-
ware. Moreover, the BSW layer incorporates a Micro-controller- and ECU
abstraction layer [28].

AUTOSAR Timing Extensions

The AUTOSAR timing extension specification [31] provides consolidated
and consistent representation of relevant timing dependencies and correspond-
ing timing constraints. For the specification of the timing requirements, the
timing extension specification defines a timing model that can be used as
specification basis for a contract based development process, in which the
development can be carried out by different organizations at possibly dis-
tributed locations.

Basically, there are two different interpretation when dealing with timing in-
formation. It can either be a restriction for the timing behavior of the system
(TimingConstraint) or a TimingGuarantee for the timing behavior of the sys-
tem (TimingDescription). Minimum or maximum latency bound for a certain
sequence of timing events can be taken as constraint, for instance during
component integration. A component related timing event can be guaranteed
to occur periodically within a certain bound.

In the timing extension specification two basic elements play a key role,
namely the timing description event (TimingDescriptionEvent) and the tim-
ing description event chains (TimingDescriptionEventChain). In essence, a
TimingDescriptionEvent is an abstract representation of a specific observable
system behavior, which can be observed during the system’s operation, while
a TimingDescriptionEventChain describes a causal relationship between two
timing events. Each event chain has a well-defined stimulus and response,
where the stimulus and response elements describe the start and end point of
the event chain. These elements can be hierarchically decomposed into an
arbitrary number of chain segments.

16

Chapter 2. Foundation

Furthermore, by means of timing description event chains, the specification
of the interrelation between the stimulus of a system and its corresponding
response can be formalized and used to constrain the given system dynamic.
The AUTOSAR timing extension model [31] distinguishes at the highest
level between the following types of timing constraints:

EventTriggeringConstraints characterize a type of timing constraints that can
be used to describe the occurrence of the referenced timing event. This con-
straint can be further refined into:

• PeriodicEventTriggering: specifies the characteristics of a timing de-
scription event which occurs periodically.

• SporadicEventTriggering: specifies the characteristics of a timing de-
scription event which occurs sporadically.

• BurstPatternEventTriggering: describes a burst of occurrences of a sin-
gle event and its repetition.

• ConcretePatternEventTriggering: specifies the characteristics of a tim-
ing description event which occurs as a concrete pattern and its repeti-
tion.

LatencyTimingConstraints are used to specify the amount of time allowed to
elapses between the occurrences of any two timing description events. It is
always associated with a TimingDescriptionEventChain.

AgeConstraints are used to specify a minimum and maximum age that is
tolerated when data is received.

SynchronizationTimingConstraints are used to specify a synchronicity con-
straint among the occurrences of two or more timing description events.

OffsetTimingConstraints are used to specify an offset between the occur-
rences of two timing description events.

ExecutionOrderConstraints are used to specify the order of execution of exe-
cutable entities and ExecutionTimeConstraints are used to specify minimum
and maximum execution time constraints of executable entities.

AUTOSAR Timing Views

The AUTOSAR methodology is subdivided into well-defined process steps.
Furthermore, the methodology defines all artifacts needed by and provided
for each process step. The AUTOSAR timing extension specification groups

17

Chapter 2. Foundation

the timing related methodology steps by boundary in five views called Vfb-
Timing, SwcTiming, SystemTiming, BswTiming and EcuTiming.

VfbTiming: A key concept of AUTOSAR is the Virtual Functional Bus
(VFB). The VFB abstracts all communication layers encapsulating the under-
lying architecture of the ECUs and network topology. The concrete imple-
mentation of the VFB on an ECU is the RTE. At the modeling level, connec-
tions between the ports of the SW-Cs are modeled by means of the so-called
connectors.

This view deals with timing information at a logical level, and is related to the
interaction of the software components. End-to-end timing constraints can be
captured in this view, allowing an early formalization of timing constraints.

The physical distribution of the software components is not considered in
this view. A further restriction of the VfbTiming view is the fact that each
component is treated as black-box, which means the internal behaviour is not
considered. Thus, VFB timing description only refers to ports and connec-
tions of software components as depicted in Figure 2.4.

SW-C A
Required

Port
Provided

Port

Connection

SW-C B

Data flow of interest

SW-C A

RE 1

RE 2

RE 3

ECU 2ECU 1

SW-C A SW-C B SW-C C SW-C D

RTE RTE

C
o

m
 s

ta
c
k

C
o

m
 s

ta
c
k

Bus

Data flow of interest

RE #

Inter-runnable

Communication

(Data flow of interest)

Read/Write

Access

Runnable

Entity

BSW Module

BSWME 2

BSWME 1

Data flow of interest

BSWME #

Inter-runnable

Communication

(Data flow of interest)

Read/Write

Access

BSW Module

Entity

Data

ECU

RTE

BSWME 2

BSWME 3

Data flow of interest

BSWME 1

Figure 2.4: Virtual Functional Bus Timing

SwcTiming: The SwcTiming view is used to capture timing information re-
lated to the internal behavior (SwcInternalBehavior) of atomic software com-
ponents. The internal behavior of an atomic software component is modeled

SW-C A
Required

Port
Provided

Port

Connection

SW-C B

Data flow of interest

SW-C A

RE 1

RE 2

RE 3

ECU 2ECU 1

SW-C A SW-C B SW-C C SW-C D

RTE RTE

C
o

m
 s

ta
c
k

C
o

m
 s

ta
c
k

Bus

Data flow of interest

RE #

Inter-runnable

Communication

(Data flow of interest)

Read/Write

Access

Runnable

Entity

BSW Module

BSWME 2

BSWME 1

Data flow of interest

BSWME #

Inter-runnable

Communication

(Data flow of interest)

Read/Write

Access

BSW Module

Entity

Data

ECU

RTE

BSWME 2

BSWME 3

Data flow of interest

BSWME 1

Figure 2.5: Software Component Timing

using the so-called Runnable Entities (RE) element as depicted in Figure 2.5.

18

Chapter 2. Foundation

Thus, this view is useful for specification engineers that are interested in the
internal behavior of the atomic SW-C represented as black boxes in the Vf-
bTiming view. This can be achieved by referring to the activation, start, and
termination of the execution of runnable entities.

SystemTiming: In contrast to the VfbTiming and SwcTiming views, the Sys-
temTiming view considers additional information, such as the system topol-
ogy, software deployment and signal mapping. This additional information
is used as system configuration input. Based on that configuration, software
components can be mapped on to ECUs with corresponding communication
matrices. After the mapping step, the communication between two SW-Cs
might change. It can now be either local if both SW-Cs remain on the same
ECU and remote if they are mapped to different ECUs. In the latter case the
communication goes over the RTE, through the BSW communication stack
and the network bus (see Figure 2.6).

SW-C A
Required

Port
Provided

Port

Connection

SW-C B

Data flow of interest

SW-C A

RE 1

RE 2

RE 3

ECU 2ECU 1

SW-C A SW-C B SW-C C SW-C D

RTE RTE

C
o

m
 s

ta
c
k

C
o

m
 s

ta
c
k

Bus

Data flow of interest

RE #

Inter-runnable

Communication

(Data flow of interest)

Read/Write

Access

Runnable

Entity

BSW Module

BSWME 2

BSWME 1

Data flow of interest

BSWME #

Inter-runnable

Communication

(Data flow of interest)

Read/Write

Access

BSW Module

Entity

Data

ECU

RTE

BSWME 2

BSWME 3

Data flow of interest

BSWME 1

Figure 2.6: System Timing

BswTiming: The BswTiming view addresses timing details related to the
Basic software internal behavior of a single basic software module descrip-
tion. According to the AUTOSAR methodology, a BSW module descrip-
tion is generated for each BSW module during the ECU configuration phase.
BswTiming is similar to SwcTiming (see Figure 2.7) except for the fact that
it deals with the BSW module entities (BSWME) instead of dealing with
SW-C internal behavior. Therefore analogously, BswTiming focuses on the
activation, start and end of the execution of the BSW module entities.

19

Chapter 2. Foundation

SW-C A
Required

Port
Provided

Port

Connection

SW-C B

Data flow of interest

SW-C A

RE 1

RE 2

RE 3

ECU 2ECU 1

SW-C A SW-C B SW-C C SW-C D

RTE RTE

C
o

m
 s

ta
c
k

C
o

m
 s

ta
c
k

Bus

Data flow of interest

RE #

Inter-runnable

Communication

(Data flow of interest)

Read/Write

Access

Runnable

Entity

BSW Module

BSWME 2

BSWME 1

Data flow of interest

BSWME #

Inter-runnable

Communication

(Data flow of interest)

Read/Write

Access

BSW Module

Entity

Data

ECU

RTE

BSWME 2

BSWME 3

Data flow of interest

BSWME 1

Figure 2.7: Basic Software Timing

EcuTiming: The EcuTiming view addresses the timing description of all
software component instances deployed on a specific ECU. Additionally,
ECU related interaction is considered including bus communication and so
forth. This view is comparable to the SystemTiming view except for that the
focus lies on one specific ECU. The information is attached to the ECU con-
figuration description, which comprises information containing ECU related
extract from the system configuration. Figure 2.8 shows an example data
flow in the ECUTiming view.

SW-C A
Required

Port
Provided

Port

Connection

SW-C B

Data flow of interest

SW-C A

RE 1

RE 2

RE 3

ECU 2ECU 1

SW-C A SW-C B SW-C C SW-C D

RTE RTE

C
o

m
 s

ta
c
k

C
o

m
 s

ta
c
k

Bus

Data flow of interest

RE #

Inter-runnable

Communication

(Data flow of interest)

Read/Write

Access

Runnable

Entity

BSW Module

BSWME 2

BSWME 1

Data flow of interest

BSWME #

Inter-runnable

Communication

(Data flow of interest)

Read/Write

Access

BSW Module

Entity

Data

ECU

RTE

BSWME 2

BSWME 3

Data flow of interest

BSWME 1

Figure 2.8: ECU Timing

2.2.3 Timing Modeling with TADL2

The Timing Augmented Description Language 2 (TADL2) [80] is an out-
come of the ITEA2 1 project TIMMO-2-USE [49]. TADL2 is an extension
of Timing Augmented Description Language (TADL), which was defined in
the TIMMO project [90].

1ITEA is the EUREKA Cluster programme supporting innovative, industry-driven, pre-competitive R&D
projects in the area of Software-intensive Systems & Services (SiSS). (https://itea3.org/)

20

Chapter 2. Foundation

The goal of these projects was to master different types of timing require-
ments, and deal with dynamic behavior of complex real-time automotive sys-
tems throughout the different phases of the design process. TADL2 differs
from TADL in numerous ways: it introduces a clear semantic and adds new
concepts for multiple time bases, symbolic time expression and probabilistic
timing. In fact, the first version of the AUTOSAR timing model was defined
based on TADL, and during TIMMO-2-USE, a harmonization took place be-
tween TADL2 and the AUTOSAR timing extensions.

Moreover, TADL2 defines a set of basic and derived timing constraints in
hand with their syntax and semantic to avoid unambiguous interpretation.
These syntax and semantic definitions are complemented with a metamodel.
It introduces the notion of event occurrences in a running or simulated system
to specify the timing properties. These events reference to discrete observable
events or event chains of the system under investigation.

Event Occurrences and Event-Chains

Any form of state change in a running system that can be constrained with
respect to time is represented as an event (Event). The event takes place at
distinct points in time, and these points are called occurrences of the event.
This means, a running system can be observed by identifying the forms of
state changes that need to be monitored. The times when the changes occur
can then be logged for each observation point.

An event chain (EventChain) is a container for a pair of events, that must be
causally related.

This notion of observation also applies to a hypothetical predicted run of a
system or a system model. From a timing perspective, the only information
that needs to be in the output of such a prediction is a sequence of times for
each observation point, indicating the times at which each event is predicted
to occur.

In system models, events appear syntactically as names indicating the state
changes of interest. Semantically, an event name is a variable standing for
some statically unknown set of occurrences. Events represent state changes
that can be observed when a system is executed, or simulated, or perhaps
only mathematically predicted.

In the TADL2 semantics, an occurrence is a timestamp expressed using a real
value. However, for more complex timing constraints, TADL2 also makes
use of an additional information to specify an occurrence.

A color annotation can also be used. The color can be set by the producer
of an event, and may be utilized during the verification process to identify

21

Chapter 2. Foundation

TADL2 Notation Description
a∧b constraint a and constraint b are both true
a⇒ b a is false or a and b are both true
a⇔ b a and b have the same truth value
∀x : c c is true for all possible values of x
∃x : c c is true for at least one value of x
|X | number of elements in set X
X ⊆ Y all elements in X are also in Y
∀x ∈ Y : c for each x in Y , c is true
∃x ∈ Y : c there is an x in Y such that c is true
X ≤ Y X is a subsequence of Y
x≤ y x occurred earlier than y
x = Y (i) x is the element number i in Y counting from zero
[X] set of all occurrences between smallest and

greatest occurrences in X
λ([X]) the length of the continuous intervals in X
λ(X) the total length of all continuous intervals in X

Table 2.1: Notation used in the definition of the TADL2 semantics

related occurrences. Colors are drawn from some abstract, possibly infinite
types whose only restriction is that it must support an equality test on its
values. Thus, an event occurrence can also be semantically expressed using
a (timestamp, color) pair, although in some contexts the color information
might not be necessary.

Table 2.1 gives a list of operators used in the TADL2 notation. Syntactic and
semantic objects like events, constraints and time are referenced by simple
variable names such as ”c” for constraint, ”x” for an event occurrence, or
”Y” for a set or sequence of event occurrences.

The TADL2 provides a large set of constructs that can be used to constrain
time occurrence of events. These constructs basically specify the restrictions
for:

• recurring delays between a pair of events,

• repetition of a single event,

• and synchronicity of a set of events.

ArithmeticExpression and TimingExpression

An ArithmeticExpression, denoted by aexp, is a term built from literals, arith-
metic variables and arithmetic operators. It stands for a value in a set of real

22

Chapter 2. Foundation

numbers extended with positive and negative infinity. The grammar notation
used here is the standard BNF form, with keywords in boldface and non-
terminal symbols written using lower-case names.

A TimingExpression is identical to an arithmetic expression. However, its
grammar is extended to allow expressions to use alternative time bases and a
variety of time units.

TADL2 constraints

The concepts defined by TADL2 were taken as the basis for our approach for
dynamic assertion-based verification defined in Chapter 5. This section will
only highlight some of the timing constraints defined by the TADL2. A more
detailed description of the timing constraints chosen for our approach will be
given in Chapter 5.

Basically, TADL2 defines a bunch of basic and complex forms of timing con-
straints. Some of the basic timing constraints are for instance the so-called
RepeatConstraints and DelayConstraints. Most of the complex timing con-
straints can be expressed as a composition of other constraints. Examples of
such complex timing constraints are the so-called SynchronizationConstraint
and the SporadicConstraint.

Moreover, one basic attribute used for the definition of the timing constraints
is the so-called span attribute. The span attribute is used to define the index
of the correlated event occurrences.

The following descriptions of timing constraints are unchanged excerpts from [80].
Furthermore, the shaded areas in the respective figures highlight the event oc-
currences that are subject to the constraint specification.

The RepeatConstraint

A RepeatConstraint describes a repeated distribution of occurrences of a spe-
cific event. The semantic and attributes of this timing constraint are shown in
Table 2.2: This constraint defines the basic notion of repeated occurrences.
For a span attribute equal to 1 and for identical lower and upper attributes,
the accepted behavior must be strictly periodic. Further, if the span value is
1 but the value of lower is strictly smaller than the value of upper, then the
accepted behavior may deviate from a periodic one, making the time window
within which each event occurrence may appear as wide as upper− lower
time units. For a span value greater than 1 the constraint should be applied
to each span+1 event occurrence, but places no restriction on the distances
within shorter sequences [80].

23

Chapter 2. Foundation

RepeatConstraint
Attributes event: Event

lower: TimingExpression
upper: TimingExpression
span: int

Semantic ∀X ≤ event : |X |= span+1⇒ lower ≤ λ([X])≤ upper

Table 2.2: Semantic definition of the TADL2 RepeatConstraint.

Figure 2.9 depicts a set of event occurrences satisfying a RepeatConstraint
with span of 2. The corresponding TADL2 formula can be expressed as fol-
lows: ∀X ≤ event : |X | = 3⇒ lower ≤ λ([X]) ≤ upper, where the values
of the attributes lower and upper are to be defined. |X | denotes the number
of elements in the sub-sequence X of event occurrences and λ([X]) denotes
the length of the time interval in X . As it can be seen in the figure, only the

Deliverable D11 Version 1.2 20

A system behavior satisfies a RepeatConstraint c if and only if
for each subsequence X of c.event,
 if X contains span + 1 occurrences then
 e is the distance between the outermost
 occurrences in X
 and
 c.lower ≤ e ≤ c.upper

Logic equivalence

RepeatConstraint (event, lower, upper, span)

X ≤ event : |X| = span+1 lower ≤ λ([X]) ≤ upper

Note

This constraint defines the basic notion of repeated occurrences. If
the span attribute is 1 and the lower and upper attributes are
equal, the accepted behaviors must be strictly periodic. If span is
still 1 but lower is strictly less than upper, the pattern may deviate
from a periodic one in an accumulating fashion, making the
window within which occurrence number N may appear as wide as
N(upper-lower) time units. A span attribute greater than 1 similarly
constrains every sequence of span+1 occurrences, but places no
restriction on the distances within shorter sequences.

Figure 6. A set of event occurrences satisfying a RepeatConstraint with a span of 2.

3.6.4 RepetitionConstraint

Description

A RepetitionConstraint describes the distribution of the
occurrences of a single event, including the allowance for jitter.

Attributes

event : Event
lower : TimingExpression = 0
upper : TimingExpression = infinity
span : int = 1
jitter : TimingExpression = 0

Semantics

A system behavior satisfies a RepetitionConstraint c if and only if

Figure 2.9: A set of event occurrences satisfying a RepeatConstraint with span of 2

last event occurrence in the sub-sequence X is constrained. Furthermore, the
timing point of that occurrence can be referred to as λ[X].

The DelayConstraint

Looking at the communication between two components (a source and a tar-
get), a DelayConstraint specifies timing bounds between an event occurrence
at the source and a corresponding event occurrence at the target, so that each
event occurrences at the source must be matched by an event occurrence at
the target [80].

DelayConstraint
Attributes source: Event

target: Event
lower: TimingExpression
upper: TimingExpression

Semantic ∀x ∈ source : ∃y ∈ target : lower ≤ y− x≤ upper

Table 2.3: Semantic definition of the TADL2 DelayConstraint.

24

Chapter 2. Foundation

Deliverable D11 Version 1.2 18

Description

A DelayConstraint imposes limits between the occurrences of an
event called source and an event called target.

Attributes

source : Event
target : Event
lower : TimingExpression = 0
upper : TimingExpression = infinity

Semantics

A system behavior satisfies a DelayConstraint c if and only if
for each occurrence x of c.source,
 there is an occurrence y of c.target such that
 c.lower ≤ y – x ≤ c.upper

Logic equivalence

DelayConstraint (source, target, lower, upper)

x source : y target : lower ≤ y – x ≤ upper

Note

This notion of delay is entirely based on the distance between
source and target occurrences; whether a matching target
occurrence is actually caused by the corresponding source
occurrence is of no importance. This means that one-to-many and
many-to-one source-target patterns are allowed, and so are stray
target occurrences that are not within the prescribed distance of
any source occurrence.

Figure 4. A set of event occurrences satisfying a DelayConstraint. Note the stray target occurrences outside the
bounds set by the constraint.

3.6.2 StrongDelayConstraint

Description

A StrongDelayConstraint imposes limits between each indexed
occurrence of an event called source and the identically indexed
occurrence of an event called target.

Attributes

Figure 2.10: A set of event occurrences satisfying a DelayConstraint [80]

This notion of delay is entirely based on the duration between source and
target occurrences. One-to-many and many-to-one source-target patterns are
also possible. Figure 2.10 shows an example of a set of events satisfying a
DelayConstraint. The formal definition on the DelayConstraint can be seen
in Table 2.3.

The SynchronizationConstraint

A SynchronizationConstraint describes how tightly the occurrences of a group
of events shall follow each other. This form of timing constraint only speci-

SynchronizationConstraint
Attributes event: Event[2..*]

tolerance: TimingExpression = infinity
Semantic ∃X : ∀i : DelayConstraint(X ,eventi,0, tolerance)

∧DelayConstraint(eventi,X ,−tolerance,0)

Table 2.4: Semantic definition of the TADL2 SynchronizationConstraint. [80]

fies a time frame or tolerance window of each occurrence of a group of events.
The length of the tolerance window is specified by the tolerance attribute.

Deliverable D11 Version 1.2 22

event : Event [2..*]
tolerance : TimingExpression = infinity

Semantics

A system behavior satisfies a SynchronizationConstraint c if and
only if
there is a set of times X such that for each c.event index i, the
same system behavior concurrently satisfies
 DelayConstraint { source = X,
 target = c.eventi,
 lower = 0,
 upper = c.tolerance }
and
 DelayConstraint { source = c.eventi,
 target = X,
 lower = -c.tolerance,
 upper = 0}

Logic equivalence

SynchronizationConstraint (event1, …, eventn, tolerance)

X : i : DelayConstraint (X, eventi, 0, tolerance)
 DelayConstraint (eventi, X, -tolerance, 0)

Note

This form of synchronization only takes the width and
completeness of each occurrence cluster into account; it does not
care whether some events occur multiple times within a cluster or
whether some clusters overlap and share occurrences. In
particular, event occurrences are not partitioned into clusters
according to their role or what has caused them. Stray
occurrences of single events are not allowed, though, since these
would just count as incomplete clusters according to this
constraint.

Figure 8. A set of event occurrences of three events satisfying a SynchronizationConstraint.

3.6.6 StrongSynchronizationConstraint

Figure 2.11: A set of target event occurrences satisfying a SynchronizationConstraint. Overlap-
ping tolerance windows and multiple event occurrences [80]

Figure 2.11 shows a generic example of a group of event occurrences which
satisfy a SynchronizationConstraint. As shown in the figure, events may oc-

25

Chapter 2. Foundation

cur multiple times within the same tolerance window and the windows may
also overlap and thus share event occurrences. [80]

The formal definition on the SynchronizationConstraint can be seen in Ta-
ble 2.4. As it can be seen in the table, the SynchronizationConstraint is a
variant of the DelayConstraint that adds a tolerance attribute and changes the
target event link into a list of events. A system behavior satisfies a Synchro-
nizationConstraint if and only if there is a set of times X such that for all
events eventi, the same system behavior concurrently satisfies
DelayConstraint(X ,eventi,0, tolerance) and
DelayConstraint(eventi,X ,−tolerance,0).

2.2.4 Testing and Verification

The main purpose of a verification task is to check whether or not a model
or system is consistent with respect to its specification or requirement. Fur-
thermore, verification activities are performed several time during the design
phase according to the verification plan.

In the context of the verification of electronic design, a multitude of ap-
proaches have been proposed and are being applied in the EDA industry.
Basically, these approaches can be sorted in two main categories. Some of
them are static and others are dynamic.

Static verification techniques perform a thorough analysis on a certain aspect
of the design model. Static verification characterizes verification techniques,
where the design model under verification is investigated in an analytical way
by means of formal specifications. Theorem proving, Equivalence Checking
and Model Checking [13, 59] belong to this category.

Dynamic verification is usually associated with the simulation of the design
model at a certain abstraction level. Although simulation is not enough to
prove consistency of formal entities, as it is the case for formal verification
methods, it can be applied in situations where the model under investigation
cannot be formalized in a way as requested by the respective formal method.
Further, simulation-based based verification is typically performed using a
testbench as simulation environment. There are several methodologies spec-
ifying how to build such a testbench [20, 74, 7, 8].

The thesis focuses on dynamic verification in the context of Model-Based
Design (MBD). Throughout the different phases of MBD, several levels of
modeling of both the plant and controller are required, in order for the func-
tional behavior of the model to match that of the generated code [10].

26

Chapter 2. Foundation

To reduce development time and introduce technologies faster to the mar-
ket, many companies have been turning more and more to MBD. In MBD,
the development process centers around a system model, from requirements
capture and design to implementation and test.

Traditional design paradigms in the automotive industry often delay control
system design until late in the process. In some cases, control system design
requires several costly hardware iterations. To reduce costs and improve time
to market, emphasis is placed on modeling and simulation as early as possible
in the development process [97].

Different steps are supported by a variety of approaches from Model-In-the-
Loop (MIL), to Software-In-the-Loop (SIL), HIL, Rapid-Control-Prototyping
(RCP), or Component-In-the-Loop (CIL). Each process is used to address
different stages of the development process. The first step is the simulation,
where neither the controller nor the plant operates in real-time. This step,
usually used toward the beginning of the process, allows engineers to study
the performance of the system and design the control algorithm(s) in a vir-
tual environment, running computer simulations of the complete system, or
subsystem.

RCP provides the engineer with the ability to quickly test and iterate their
control strategies on a real-time computer with actual hardware. The control
strategy is simulated in real-time on a processor that augments or replaces
the real embedded controller, allowing the user to investigate and refine the
control algorithms while operating with the real system under control. RCP
is now a commonly used method to develop and test control strategies.

In the SIL phase, the actual Production Software Code is incorporated into a
mathematical simulation that contains models of the Physical System. This
is done to permit inclusion of software functionality for which no model(s)
exists or to enable faster simulation runs.

HIL is a technique for running a mathematical simulation model of a sys-
tem on a real-time computer, integrated with actual controller hardware and
software, such that the controller acts as though it were integrated into the
real system. This is used for testing and validation of embedded electronic
controllers, prior to testing in a vehicle.

CIL is used to assess the impact of an entire system (e.g., engine plant and
control) on other portions of the system (e.g., vehicle). The system to be
analyzed is real hardware while the rest of the components are emulated from
models.

27

Chapter 2. Foundation

2.3 Automotive Vehicle Netwoks

2.3.1 Controller Area Network (CAN)

The Controller Area Network (CAN) [17, 73, 89] is an International Stan-
dardization Organization (ISO) standard. The CAN standard is a serial com-
munications bus originally developed for the automotive industry to replace
the complex wiring harness with a two-wire bus. Its domain of application
ranges from high speed networks to low cost multiplex wiring. In automotive
electronics, engine control units, sensors, anti-skid-systems, etc. are typically
connected using a CAN bus with transmission rates ranging from 10 kbit/s up
to 1 Mbit/s. The transmission rate depends on the bus segment. For instance,
1 Mbit/s can only be reached at a maximum bus length of 40 meters.

The CAN protocol has a high immunity to electrical interference, and in-
cludes sophisticated mechanisms for self-diagnosis, error-detection and error
handling mechanism. These features have led to CAN’s popularity in a vari-
ety of industries beyond the automotive industries, such as: marine, medical,
manufacturing, and aerospace.

Furthermore, CAN is a multi-master bus with an open, linear structure with
one logic bus line and equal nodes. The number of nodes is not limited by
the protocol, and the bus nodes do not have a specific address. Instead, the
address information is contained in the identifiers of the transmitted mes-
sages (CAN Frame), indicating the message content and the priority of the
message.

Moreover, CAN supports multicasting and broadcasting. The error-detection
and error handling mechanism basically consists of automatically retrans-
mitting erroneous messages, that have been detected. Temporary errors are
recovered. Permanent errors are followed by autonomous deactivation of the
defect nodes. This approach therefore guarantees a system-wide data consis-
tency.

The bus access is handled via the advanced serial communications proto-
col Carrier Sense Multiple Access/Collision Detection with Arbitration on
Message Priority (CSMA/CD+AMP). CSMA means that each node on a bus
must wait for a prescribed period of inactivity before attempting a message
transmission.

In the CD+AMP communication protocol, collisions are resolved through a
bit-wise arbitration, based upon a configured priority of each message in the
identifier field of a CAN Frame. The higher priority identifier always wins
bus access. In the following section, the structure of CAN frame will be
described.

28

Chapter 2. Foundation

The CAN frame

The first version of the CAN standards was the so-called Low-Speed CAN
(ISO 11519). This version was intended for applications up to 125 kbit/s
with a standard 11-bit identifier. The following version, ISO 11898 with
the same indentifier length was later standardized in 1993. However, this
version provides a transmission rate ranging from 125 kbit/s to 1 Mbit/s. The
more recent amendment of the second version (ISO 11898) was published in
1995. This version introduces an extended 29-bit identifier. The ISO 11898
11-bit version is often referred to as Standard CAN Version 2.0A, while the
ISO 11898 amendment is referred to as Extended CAN Version 2.0. The
structure of the standard CAN frame format can be seen in Figure 2.12, while
Figure 2.13 depicts the various part of the extended CAN frame format [17,
89].

SLOA101

4 Introduction to the Controller Area Network (CAN)

In Figure 1, the application layer establishes the communication link to an upper-level
application specific protocol such as the vendor independent CANopen protocol. This protocol is
supported by the international users and manufacturers group, CAN in Automation (CiA).
Additional CAN information is located at the CiA website, can-cia.de. There are many similar
emerging protocols dedicated to particular applications like industrial automation or aviation.
Examples of industry-standard CAN-based protocols are KVASER’s CAN Kingdom,
Allen-Bradley’s DeviceNet and Honeywell’s Smart Distributed System (SDS).

3 Standard CAN or Extended CAN

The CAN communication protocol is a carrier-sense multiple-access protocol with collision
detection and arbitration on message priority (CSMA/CD+AMP). CSMA means that each node
on a bus must wait for a prescribed period of inactivity before attempting to send a message.
CD+AMP means that collisions are resolved through a bit-wise arbitration, based upon a
preprogrammed priority of each message in the identifier field of a message. The higher priority
identifier always wins bus access.

The first version of the CAN standards listed in Table 1, ISO 11519 (Low-Speed CAN) is for
applications up to 125 kbps with a standard 11-bit identifier. The second version, ISO 11898
(1993), also with 11-bit identifiers provides for signaling rates from 125 kbps to 1 Mbps while the
more recent ISO 11898 amendment (1995) introduces the extended 29-bit identifier. The ISO
11898 11-bit version is often referred to as Standard CAN Version 2.0A, while the ISO 11898
amendment is referred to as Extended CAN Version 2.0B. The Standard CAN 11-bit identifier
field in Figure 2 provides for 211, or 2048 different message identifiers, while the Extended CAN
29-bit identifier in Figure 3 provides for 229, or 537 million identifiers.

Table 1. CAN Versions

NOMENCLATURE STANDARD MAX. SIGNALING RATE IDENTIFIER

Low–Speed CAN ISO 11519 125 kbps 11-bit

CAN 2.0A ISO 11898:1993 1 Mbps 11-bit

CAN 2.0B ISO 11898:1995 1 Mbps 29-bit

3.1 The Bit Fields of Standard CAN and Extended CAN

3.1.1 Standard CAN

S
O
F

11-Bit Identifier
R
T
R

I
D
E

r0 DLC 0. . .8 Bytes Data CRC ACK
E
O
F

I
F
S

Figure 2. Standard CAN: 11-Bit Identifier

The meaning of the bit fields of Figure 2 are:

• SOF—The single dominant start of frame (SOF) bit marks the start of a message, and is
used to synchronize the nodes on a bus after being idle.

• Identifier—The Standard CAN 11-bit identifier establishes the priority of the message. The
lower the binary value, the higher its priority.

Figure 2.12: Standard CAN frame with 11-Bit identifier

SLOA101

5 Introduction to the Controller Area Network (CAN)

• RTR—The single remote transmission request (RTR) bit is dominant when information is
required from another node. All nodes receive the request, but the identifier determines the
specified node. The responding data is also received by all nodes and used by any node
interested. In this way all data being used in a system is uniform.

• IDE—A dominant single identifier extension (IDE) bit means that a standard CAN identifier
with no extension is being transmitted.

• r0—Reserved bit (for possible use by future standard amendment).

• DLC—The 4-bit data length code (DLC) contains the number of bytes of data being
transmitted.

• Data—Up to 64 bits of application data may be transmitted.

• CRC—The 16-bit (15 bits plus delimiter) cyclic redundancy check (CRC) contains the
checksum (number of bits transmitted) of the preceding application data for error detection.

• ACK—Every node receiving an accurate message overwrites this recessive bit in the original
message with a dominate bit, indicating an error-free message has been sent. Should a
receiving node detect an error and leave this bit recessive, it discards the message and the
sending node repeats the message after rearbitration. In this way each node acknowledges
(ACK) the integrity of its data. ACK is 2 bits, one is the acknowledgement bit and the second
is a delimiter.

• EOF—This end-of-frame (EOF) 7-bit field marks the end of a CAN frame (message) and
disables bit–stuffing, indicating a stuffing error when dominant. When 5 bits of the same logic
level occur in succession during normal operation, a bit of the opposite logic level is stuffed
into the data.

• IFS—This 7-bit inter-frame space (IFS) contains the amount of time required by the
controller to move a correctly received frame to its proper position in a message buffer area.

3.1.2 Extended CAN

S
O
F

11-Bit Identifier
S
R
R

I
D
E

18-Bit Identifier
R
T
R

r1 r0 DLC 0. . .8 Bytes Data CRC ACK
E
O
F

I
F
S

Figure 3. Extended CAN: 29-Bit Identifier

As shown in Figure 3, the Extended CAN message is the same as the Standard message with
the addition of:

• SRR—The substitute remote request (SRR) bit replaces the RTR bit in the standard
message location as a placeholder in the extended format.

• IDE—A recessive bit in the identifier extension (IDE) indicates that there are more identifier
bits to follow. The 18-bit extension follows IDE.

• r1—Following the RTR and r0 bits, an additional reserve bit has been included ahead of the
DLC bit.

Figure 2.13: Extended CAN frame with 29-Bit identifier

CAN Network Topology

The CAN protocol operates on a broadcast bus. There is no built-in sup-
port for other topologies. However, third-party solutions with gateways or
switches for star topologies exist [73]. In advanced applications, such as an
automotive system, several CAN bus segments are interconnected using one
or more gateways. A gateway is provided with software that knows which
data should be forwarded between the different bus segments it is connected
to.

2.3.2 FlexRay

FlexRay is a fast, deterministic and fault-tolerant vehicle network bus stan-
dard for automotive use. This standard was developed by a consortium of

29

Chapter 2. Foundation

well-known OEMs of the automotive industry. The consortium was dis-
banded in 2010 after the release of the actual protocol specification version
3.0. The core members of the consortium were: BMW, Bosch, Daimler-
Chrysler, General Motors, Ford, NXP Semiconductors, Philips Semiconduc-
tor, and Volkswagen. In the scope of this thesis, the version 2.1 Revision
A [41] was used for validation purposes.

Communication schedule

The FlexRay protocol is based on a periodically recurring communication cy-
cle. Within one communication cycle the standard offers the choice between
two media access schemes, that is: a static Time Division Multiple Access
(TDMA) scheme, and a dynamic mini-slotting based scheme referred to as
Flexible Time Division Multiple Access (FTDMA). Furthermore, the config-
uration of a FlexRay network schedule has to be done at design time. Then,
once configured the bus communication schedule cannot be changed at sys-
tem run-time.

FlexRay Protocol Specification

Version 2.1 Revision A 15-December-2005

Chapter 5: Media Access Control

Page 100 of 245

Chapter 5
Media Access Control

This chapter defines how the node shall perform media access control.

5.1 Principles

In the FlexRay protocol, media access control is based on a recurring communication cycle. Within one
communication cycle FlexRay offers the choice of two media access schemes. These are a static time
division multiple access (TDMA) scheme, and a dynamic mini-slotting based scheme.

5.1.1 Communication cycle
The communication cycle is the fundamental element of the media access scheme within FlexRay. It is
defined by means of a timing hierarchy.

The timing hierarchy consists of four timing hierarchy levels as depicted in Figure 5-1.

Figure 5-1: Timing hierarchy within the communication cycle.

The highest level, the communication cycle level, defines the communication cycle. It contains the static
segment, the dynamic segment, the symbol window and the network idle time (NIT). Within the static
segment a static time division multiple access scheme is used to arbitrate transmissions as specified in
section 5.3.2. Within the dynamic segment a dynamic mini-slotting based scheme is used to arbitrate trans-
missions as specified in section 5.3.3. The symbol window is a communication period in which a symbol can
be transmitted on the network as specified in section 5.3.4. The network idle time is a communication-free
period that concludes each communication cycle as specified in section 5.3.5.

The next lower level, the arbitration grid level, contains the arbitration grid that forms the backbone of
FlexRay media arbitration. In the static segment the arbitration grid consists of consecutive time intervals,
called static slots, in the dynamic segment the arbitration grid consists of consecutive time intervals, called
minislots.

macrotick

arbitration
grid level

macrotick
level

microtick
level

communication
cycle level

static segment dynamic segment

minislot

microtick

symbol window

t

action point

static slot static slot minislot

action point action point

network
idle time

R
eg

is
te

re
d

co
py

 fo
r

de
fo

@
c-

la
b.

de
Figure 2.14: Timing hierarchy within the communication cycle [41]

The communication cycle is a fundamental notion for the media access scheme.
As illustrated in Figure 2.14, the FlexRay communication cycle can be bro-
ken into four segments. The segments are the static segment, the dynamic
segment, the symbol window and the Network Idle Time. Furthermore, the
timing hierarchy can be decomposed in four timing hierarchy levels (see Fig-
ure 2.14).

Within the static segment, communication is arbitrated based on the TDMA
scheme. Whereas FTDMA is applied in the dynamic segment to arbitrate
transmission. The symbol window is a communication period within which
special control information can be transmitted on the network. The network
idle time is a communication-free period that concludes the communication

30

Chapter 2. Foundation

cycle. This period can be used by the nodes (ECUs) for synchronization or
internal computation for instance.

The next lower level, the arbitration grid level, contains the arbitration grid
that forms the backbone of FlexRay media arbitration. In the static segment
the arbitration grid consists of consecutive time intervals, called static slots,
in the dynamic segment the arbitration grid consists of consecutive time in-
tervals, named minislots.

The arbitration grid level builds on the so-called macrotick level that is de-
fined by the so-called Macrotick. Designated macrotick boundaries are called
action points. These are specific instants at which transmissions shall start in
all segments of the communication cycle. In the dynamic segment, the action
point also specifies the instant at which a transmission shall end. For more
detailed information about the remaining levels, please refer to [41].

FlexRay frame format

The FlexRay protocol supports a data transmission rate of up to 20 Mbit/s.
Figure 2.15 depicts the structure of a FlexRay frame. As depicted in the fig-
ure, a FlexRay frame consists of three main parts. These parts are the header,
the payload segment containing up to 254 bytes of data, and the Trailer seg-
ment containing CRC information of 24 bits.

The header of 5 bytes includes the identifier of the frame and the length of
the data payload. The use of the identifier field allows to move a function-
ality implemented by a software component, that generates a frame X, from
one ECU to another ECU without having to change the configuration of the
receiving ECU. The configuration of the sending node needs to be modified
since frame are dedicated to specific communication slots.

However, this is only possible for configurations, where messages produced
by distinct software components are not packed into the same frame. In
FlexRay, different messages can be packed into a single Frame for the pur-
pose of saving bandwidth. This procedure is referred to as frame-packing or
protocol data unit (PDU)-multiplexing (see [41]).

FlexRay network topology

As aforementioned, the FlexRay communication protocol is fault-tolerant.
Fault-tolerance can be achieved by using a dual-channel bus network. In a
dual-channel configuration, the second channel can be either used as a redun-
dant channel as to increase the system throughput.

31

Chapter 2. Foundation

FlexRay Protocol Specification

Version 2.1 Revision A 15-December-2005

Chapter 4: Frame Format

Page 90 of 245

Chapter 4
Frame Format

4.1 Overview

An overview of the FlexRay frame format is given in Figure 4-1. The frame consists of three segments.
These are the header segment, the payload segment, and the trailer segment.

Figure 4-1: FlexRay frame format.

The node shall transmit the frame on the network such that the header segment appears first, followed by
the payload segment, and then followed by the trailer segment, which is transmitted last. Within the
individual segments the node shall transmit the fields in left to right order as depicted in Figure 4-1, (in the
header segment, for example, the reserved bit is transmitted first and the cycle count field is transmitted
last).

4.2 FlexRay header segment (5 bytes)

The FlexRay header segment consists of 5 bytes. These bytes contain the reserved bit, the payload
preamble indicator, the null frame indicator, the sync frame indicator, the startup frame indicator, the frame
ID, the payload length, the header CRC, and the cycle count.

4.2.1 Reserved bit (1 bit)
The reserved bit is reserved for future protocol use. It shall not be used by the application.

• A transmitting node shall set the reserved bit to logical '0'.

• A receiving node shall ignore the reserved bit.35

CRC CRC

24 bits

Data nFrame ID

7 bits 0 ... 254 bytes

Cycle
count CRC

FlexRay Frame 5 + (0 ... 254) + 3 bytes

Payload
length

11 bits 6 bits

S
yn

c
fr

am
e

in
d

ic
at

o
r

11 bits

Header
CRC

N
u

ll
fr

am
e

in
d

ic
at

o
r

Header Segment Payload Segment Trailer Segment

Header CRC
Covered Area

P
ay

lo
ad

 p
re

am
b

le
 in

d
ic

at
o

r

R
es

er
ve

d
 b

it

11111

S
ta

rt
u

p
 f

ra
m

e
in

d
ic

at
o

r

Data 0 Data 1 Data 2

R
e

g
is

te
re

d
 c

o
p

y
fo

r
d

e
fo

@
c-

la
b

.d
e

Figure 2.15: FlexRay frame format [41]

FlexRay supports two basic network topologies, namely, the bus- and star-
network. Both topologies can be applied to single and dual channel config-
urations. Furthermore, various hybrid combinations of these topologies are
also possible [73, 12, 84, 41].

There is a large number of possible hybrid topologies: Figure 2.16 depicts
an example for one type of hybrid topology. The example shows a cluster
of seven communication nodes denoted by Node A, B, C, D, E, F, G. The
nodes A, B, C, and D are connected using point-to-point connections to a
star coupler. Whereas, the remaining nodes (Node E, F, and G) are connected
to each other using a bus topology. This bus is also connected to the star
coupler, allowing nodes E, F, and G to communicate with the other nodes.

FlexRay Protocol Specification

Version 2.1 Revision A 15-December-2005

Chapter 1: Introduction

Page 24 of 245

1.8.3 Active star topology combined with a passive bus topology
In addition to topologies that are composed either entirely of a bus topology or entirely of a star topology, it
is possible to have hybrid topologies that are a mixture of bus and star configurations. The FlexRay system
supports such hybrid topologies as long as the limits applicable to each individual topology are not
exceeded. For example, the limit of two cascaded star couplers also limits the number of cascaded star
couplers in a hybrid topology.

There are a large number of possible hybrid topologies, but only two representative topologies are shown
here. Figure 1-5 shows an example of one type of hybrid topology. In this example, some nodes (nodes A,
B, C, and D) are connected using point-to-point connections to a star coupler. Other nodes (nodes E, F, and
G) are connected to each other using a bus topology. This bus is also connected to a star coupler, allowing
nodes E, F, and G to communicate with the other nodes.

Figure 1-5: Single channel hybrid example.

A fundamentally different type of hybrid topology is shown in Figure 1-6. In this case, different topologies
are used on different channels. Here, channel A is implemented as a bus topology connection, while
channel B is implemented as a star topology connection.

Star
1A

Star
2A

Node B Node C

Node DNode A

Node GNode FNode E

R
eg

is
te

re
d

co
py

 fo
r

de
fo

@
c-

la
b.

de

Figure 2.16: Active star topology combined with a passive bus topology [41]

32

Chapter 2. Foundation

2.4 Design of Electronic Systems

2.4.1 Design Modeling with IP-XACT

IP-XACT is an IEEE standard exchange format originally developed by the
SPIRIT consortium [48]. The standard comes along with an XML schema
definition that prescribes how to document electronic designs and compo-
nents in order to facilitate automated configuration and integration of Intel-
lectual Propertys (IPs) in a tool chain.

Its current version was approved as IEEE 1685-2009. The typical structure
of an IP-XACT design environment is illustrated in Figure 2.17. IP-XACT

IEEE
Std 1685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

2 Copyright © 2010 IEEE. All rights reserved.

1.2 Purpose

This standard enables the creation and exchange of IP in a highly automated design environment.

1.3 Design environment

The IP-XACT specification is a mechanism to express and exchange information about design IP and its
required configuration.2 While the IP-XACT description formats are the core of this standard, describing the
IP-XACT specification in the context of its basic use model, the design environment (DE), more readily
depicts the extent and limitations of the semantic intent of the data. The DE coordinates a set of tools and IP,
or expressions of that IP (e.g., models), through the creation and maintenance of meta-data descriptions of
the system on chip (SoC) such that its system design and implementation flows are efficiently enabled and
reuse centric.

The use of the IP-XACT specified formats and interfaces are shown, in bold, in Figure 1 and described in
the following subclauses.

1.3.1 IP-XACT design environment

A DE enables the designer to work with IP-XACT design IP through a coordinated front-end and IP design
database. These tools create and manage the top-level meta-description of system design and may provide
two basic types of services: design capture, which is the expression of design configuration by the IP

2IP-XACT uses the World Wide Web Consortium (W3C®) standard for the XML version 1.0 data (http://www.w3.org/TR/2000/REC-
xml-20001006). The valid format of that XML data is described in a schema by using the Schema Description Language described
therein. W3C is a registered trademark of the World Wide Web Consortium.

Generator

TGI

protoco
l

�P

system_bus

Compone
nt IP

UART GPIO

mem

IP-XACT

IP-XACT Compliant
Generators

IP-XACT Compliant
Design Environment

addres
sinterface

IP-XACT IP
Import
Export

IP-XACT Compliant
Object Descriptions

protocol
buswidth

�PCompone
nt IP

UART GPIO

mem

�PComponent
IP

UART GPIO

mem

address
interface
registers

Generator

Bus
Definitions

Bus
Definitions

Bus
Definitions

Abstraction
Definitions

C
onfigured

IP

Design
XML

Design
Configuration

Component
XML

Component
IP

Abstractor
XML

Abstractor
IP

Bus
Definitions
Generator

Chains

Point
Tools

G
enerated
O

utput

IP-XACT Compliant
Object Descriptions

Figure 1—IP-XACT design environment
Figure 2.17: IP-XACT design environment (source: [48])

can be used for design capture, which is the documentation of design config-
uration and design intent. It can also be used to build a design, which is the
creation of a design (or design model) [48].

The four central elements defined by the standard are bus definition, abstrac-
tion definition, component and design. This well-defined data format enables
the creation of vendor-independent tools for automated IP- reuse and integra-
tion. Figure 2.18 depicts the basic architecture of an IP-XACT design.

33

Chapter 2. Foundation

Bus Definition and Abstraction Definition

The bus definition element is used to describe high level aspects of a bus
while abstraction definitions describe low level aspects. The bus definition
defines the protocol. It defines whether connections of a bus interface can be
direct or not. Direct means that a master bus interface, for example, can be
connected directly to a slave interface, and not direct means that an additional
decoding or adaption is required. An abstraction definition defines the level
of abstraction like for example RTL or SystemC.

IP-XACT Component

An IP-XACT component description can define one or more views of its
implementation, or an interconnect infrastructure in the form of a bridge or
a channel. RTL and TLM are the predefined model views but user-defined
views can also be added. As depicted in Figure 2.18 the basic structure of an
IP-XACT component includes a model, a bus interface and a portmap.

The model element is used to describe the views, the physical ports and the
configuration parameters of a component. A model may have more than one
view and each view element specifies a representation level of the component
(e.g.: TLM).

A component may have multiple bus interfaces of the same or different types.
Each busInterface element defines properties of this specific interface in a
component. Among other attributes of the busInterface, the busType should
be defined. It specifies the bus definition that this bus is referring to. It can
also specify the abstraction definition where this bus interface is referenced.

The portmap element is actually part of the busInterface and is used to map
the component’s physical ports to the corresponding abstraction definition’s
logical ports.

IP-XACT Port

IP-XACT components might have an unbounded list of ports. A single IP-
XACT port element can be specified either as wire or transactional. Wired
ports are typically used for RTL model and transactional ports for TLM. IP-
XACT provides a list of implementation constraints that can be specified for
wired ports. These constraints can be used to document requirements to be
fulfilled by an implementation of an RTL component. The constraints are
grouped into so-called constraintSets.

34

Chapter 2. Foundation

Figure 2: IP-XACT Design example

2.2 AUTOSAR + TIMING EXTENSIONS

A central concept in the development of automotive software is the component-based approach. Currently the
most important approach that aims in this direction is AUTOSAR (Automotive Open System Architecture).

The AUTOSAR initiative is a union of well-known manufacturer and supplier of automotive tools and systems and
was founded in 2003. The goal is to provide a common framework for the development and sharing of both
software and hardware components. The AUTOSAR standard defines not only a comprehensive technical
infrastructure for automotive systems, but also one that builds upon the methodology and description formats for
the development of AUTOSAR-compliant systems [AUTOSAR].

The AUTOSAR software stack is shown in Figure 3. The architecture is subdivided into three layers running on top of
the ECU hardware: application layer (AUTOSAR software), the AUTOSAR runtime environment (RTE) and the
AUTOSAR basic software (BSW).

Component1 Component2

Model1 Model2

Inter-
connection

addHocConnection

portMap

physicalPort logicalPorts busInterface

Design

Figure 2.18: IP-XACT simplified Design structure.

Three different types of constraints can be optionally specified, namely drive-
Constraint, loadConstraint and timingConstraint. A timingConstraint speci-
fies a delay constraint and is always relative to a certain clock. Each con-
straints can be further associated with different model views of the compo-
nent (see [48]).

The timingConstraint specifies a delay type relative to a clock for the associ-
ated port. The delay type restricts the constraint to applying to only best-case
(minimum) or worst-case (maximum) timing analysis. By default, the con-
straint can be applied to both. The delayType attribute may have two values
min or max.

A component port can be specified as transactional if it uses or implements a
service. A service can be implemented with functions or methods. In contrast
to wired ports, transactional ports do not have timing constraints. Thus the
current version of the IP-XACT schema does not provide means to define
timing constraint at TLM.

Figure 2.19 depicts the structure of an IP-XACT Ports element. As it can
be seen, the ports element is an unbounded list of port elements. Each port
element defines the logical port information for the containing abstraction
definition. It contains the following elements:

logicalName (mandatory) gives a name to the logical port that can be used
later in component description when the mapping is done from a logical ab-
straction definition port to the components physical port. The logicalName
shall be unique within the abstractionDefinition. The type of this element is
Name.

displayName (optional) allows a short descriptive text to be associated with
the port. The type of this element is string.

35

Chapter 2. Foundation

IEEE
Std 1685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

32 Copyright © 2010 IEEE. All rights reserved.

5.4.2 Description

The ports element is an unbounded list of port elements. Each port element defines the logical port
information for the containing abstraction definition. It contains the following elements.

a) logicalName (mandatory) gives a name to the logical port that can be used later in component
description when the mapping is done from a logical abstraction definition port to the components
physical port. The logicalName shall be unique within the abstractionDefinition. The type of this
element is Name.

b) displayName (optional) allows a short descriptive text to be associated with the port. The type of
this element is string.

c) description (optional) allows a textual description of the port. The type of this element is string.
d) Each port also requires a wire element or a transactional element to further describe the details

about this port. See 5.5 or 5.10, respectively. A wire style port is a port that carries logic values or an
array of logic values. A transactional style port is a port that carries any other type of information,
typically used for TLM.

e) vendorExtensions (optional) contains any extra vendor-specific data related to the port. See C.10.

5.4.3 Example

See 5.3.3 for an example.

5.5 Wire ports

5.5.1 Schema

The following schema details the information contained in the wire element, which may appear as part of
the port element within an abstraction definition (abstractionDefinition/ports/port).

This is a list of logical ports
defined by the bus.

spirit:ports spirit:port

1 �..

The assigned name of this port
in bus specifications.

spirit:logicalName
type xs:Name

Element name for display
purposes. Ty pically a few words
prov iding a more detailed and/or
user-friendly name than the
spirit:name.

spirit:displayName
type xs:string

Full description string, ty pically
for documentation

spirit:description
type xs:string

Port sty le.

A port that carries logic or an
array of logic v alues

spirit:w ire

A port that carries complex
information modeled at a high
lev el of abstraction.

spirit:transactional

C ontainer for v endor specific
extensions.

spirit:vendorExtensions

Figure 2.19: Tree view of the xml schema definition of an IP-XACT Ports

description (optional) allows a textual description of the port. The type of
this element is string.

Each port also requires a wire element or a transactional element to further
describe the details about this port. A wire style port is a port that carries
logic values or an array of logic values. A transactional style port is a port
that carries any other type of information, typically used for TLM.

vendorExtensions (optional) contains any extra vendor-specific data related
to the port. The vendorExtensions element is a place in the description in
which any vendor specific information can be stored. The vendorExtensions
element allows any well-formed description.

IP-XACT Design

Figure 2.18 shows the basic structure of an IP-XACT design. The design
element can be used as top level element for the assembly of component
instances. A design contains a description of components including their
configuration and interconnections. Hereby, three kinds of connection are
available:

• Interconnections that describe connections between subcomponent’s
interfaces,

36

Chapter 2. Foundation

• AddHocConnections that describe connections between two compo-
nents pins,

• HierConnections that describe connections between a busInterface of a
sub component and the bus interface of the encompassing component.

For further details please refer to [48].

2.4.2 Design Modeling Language with SystemC

SystemC [53] was defined by the Open SystemC Initiative (OSCI), and is
now promoted by the Accellera Systems Initiatives, and has been approved
by the IEEE Standards Association as IEEE 1666-2005 [55].

SystemC is a system design and modeling language. This language was de-
veloped to meet the system designer’s requirements for designing and inte-
grating complex electronic systems very quickly while assuring that the final
system will meet performance expectations [14].

The application areas are system-level modeling, architectural exploration,
performance modeling, software development, functional verification, and
high-level synthesis. Therefore, SystemC facilitates the co-development of
hardware and software within a tight schedule. Thorough functional and ar-
chitectural verification is required to avoid expensive and sometimes catas-
trophic failures in the device. Because of these features, the SystemC lan-
guage is currently the de-facto industry standard for Electronic System-Level
(ESL) design among the C++ based SLDLs.

Basically, SystemC builds on top of C++ and comes with a set of libraries like
the SystemC Verification Library (SCV) and a discrete-event simulation ker-
nel. Additionally, the SystemC language covers several levels of abstraction
from Transaction Level Modeling (TLM) down to Register Transfer Level
(RTL). Meanwhile, the interest of using SystemC has grown in the automo-
tive industry. For instance, the affinities of some concepts of AUTOSAR and
SystemC were outlined in [63].

Architecture of the SystemC language

As aforementioned, SystemC supports the modeling of both hardware and
software. The primary application area for SystemC is the design of elec-
tronic systems. However, the language also provides generic modeling con-
structs that can be applied to non-electronic systems [15].

37

Chapter 2. Foundation

19

The previous chapters gave a brief context for the application of SystemC. This
chapter presents an overview of the SystemC language elements. Details are dis-
cussed in-depth in subsequent chapters.

Despite our best efforts not to use any part of the language before it is fully explained,
some chapters may occasionally violate this goal due to the interrelated nature of
SystemC. This chapter briefly discusses the major components of SystemC and their
general usage and interactions as a way of giving context for the subsequent chapters.

The following diagram, Fig. 2.1, illustrates the major components of SystemC.
As a form of roadmap, we have included a duplicate of this diagram at the beginning
of each new chapter. Bolded type indicates the topics discussed within that chapter.

For the rest of this chapter, we will discuss all of the components within the
figure that are outlined in bold; but first, we will discuss the mechanics of the
SystemC development environment.

SystemC addresses the modeling of both hardware and software using C++.
Since C++ already addresses most software concerns, it should come as no surprise
that SystemC focuses primarily on non-software issues. The primary application
area for SystemC is the design of electronic systems. However, SystemC also pro-
vides generic modeling constructs that can be applied to non-electronic systems1

Chapter 2
Overview of SystemC

1 For example, the book, Microelectrofluidic Systems: Modeling and Simulation by Tianhao Zhang
et al., CRC Press, ISBN: 0849312760, describes applying SystemC to a non-electronic system.

D.C. Black et al., SystemC: From the Ground Up, Second Edition,
DOI 10.1007/978-0-387-69958-5_2, © Springer Science+Business Media, LLC 2010

Fig. 2.1 SystemC language architectureFigure 2.20: SystemC language architecture [15]

The overall architecture of the SystemC class library can be seen in Fig-
ure 2.20. The simulation kernel is the heart of the implementation. In fact,
it’s a lightweight scheduler responsible for the activation and suspension of
SystemC processes (Threads and Methods). Furthermore, the architecture of
SystemC incorporates an event mechanism, which forms the basis for syn-
chronization. Both the simulation kernel and the event mechanism build the
foundation for the communication elements: interfaces, channels, and ports.

SystemC provides means to separate functionality from communication. Func-
tionality is implemented in Modules, whereas communication of implemented
in channels. The communication mechanism is based on the Interface-Method-
Call (IMC) scheme. Essentially, ports can only access channels through in-
terfaces. An interface describes a collection of a fixed set of communication
methods and a channel implements one or more interfaces. Moreover, hier-
archical and other user-defined channels can be built on the top layer.

SystemC constructs

Figure 2.21 highlights the most important concepts provided by SystemC
to model a component. A component can be represented in SystemC using
a SystemC module (SC MODULE). In practice, a typical SystemC module
will not contain all of the illustrated concepts. The figure shows a SystemC
module that may contain instances of other modules. Further, a SystemC
method (SC METHOD) and a SystemC thread (SC THREAD) can also be
defined within a SystemC module. Communication between modules and
simulation processes is realized through various combinations of ports, in-
terfaces, and channels. Coordination among simulation processes is also ac-
complished by means of events [15].

38

Chapter 2. Foundation

28 2 Overview of SystemC

2.3.6 Summary of SystemC Components

Now, it is time to tie together all of the basic concepts that we have just discussed
into one illustration, Fig. 2.5 This illustration is used many times throughout
the book when referring to the different SystemC components. It can appear
rather intimidating since it shows almost all of the concepts within one diagram.
In practice, a SystemC module typically will not contain all of the illustrated
components.

The figure shows the concept of an sc_module that can contain instances of
another sc_module. An SC_METHOD or SC_THREAD can also be defined within
an sc_module.

Communication among modules and simulation processes (SC_METHOD and
SC_THREAD) is accomplished through various combinations of ports, interfaces,
and channels. Coordination among simulation processes is also accomplished
through events.

We will now give a brief initial overview of the SystemC simulation kernel that
coordinates and schedules the communications among all of the components illus-
trated in Fig. 2.5

Fig. 2.5 SystemC components
Figure 2.21: Artifacts of SystemC [15]

SystenC simulation kernel

SystemC uses a co-operative multitasking model where an executing process
cannot be pre-empted by any other process. A SystemC process hands over
control back to the scheduler either by explicitly calling a wait function in
the case of a thread (SC THREAD), or returning to the kernel in the case of
a method (SC METHOD).

Figure 2.22 gives a brief overview of the SystemC simulation kernel. It co-
ordinates the communications among all components (see Figure 2.21). The
SystemC simulator has two major phases of operation: elaboration and ex-
ecution. A third, often minor, phase occurs at the end of the execution; this
phase could be characterized as post-processing or cleanup. Execution of
statements prior to the sc start() function call are known as the elaboration
phase. This phase is characterized by the initialization of data structures,
the establishment of connectivity, and the preparation for the second phase,
execution.

The execution phase hands control over to the SystemC simulation kernel,
which orchestrates the execution of processes in order to create an illusion of
concurrency. After the sc start() function call, the simulation processes are
invoked in a random order during initialization.

After initialization, simulation processes are run when events occur to which
they are sensitive. The SystemC simulator implements a cooperative multi-
tasking environment. Once started, a running process continues to run until

39

Chapter 2. Foundation

292.4 SystemC Simulation Kernel

2.4 SystemC Simulation Kernel

The SystemC simulator has two major phases of operation: elaboration and execu-
tion. A third, often minor, phase occurs at the end of execution; this phase could be
characterized as post-processing or cleanup.

Execution of statements prior to the sc_start() function call are known as the
elaboration phase. This phase is characterized by the initialization of data structures, the
establishment of connectivity, and the preparation for the second phase, execution.

The execution phase hands control to the SystemC simulation kernel, which
orchestrates the execution of processes to create an illusion of concurrency.

The illustration in Fig. 2-6 should look very familiar to those who have studied
Verilog and VHDL simulation kernels. Very briefly, after sc_start(), all simu-
lation processes (minus a few exceptions) are invoked in unspecified deterministic
order 5 during initialization.

After initialization, simulation processes are run when events occur to which
they are sensitive. The SystemC simulator implements a cooperative multitasking
environment. Once started, a running process continues to run until it yields con-
trol. Several simulation processes may begin at the same instant in simulator time.
In this case, all of the simulation processes are evaluated and then their outputs are
updated. An evaluation followed by an update is referred to as a delta cycle.

If no additional simulation processes need to be evaluated at that instant (as a
result of the update), then simulation time is advanced. When no additional simulation
processes need to run, the simulation ends.

This brief overview of the simulation kernel is meant to give you an overview
for the rest of the book. This diagram will be used again to explain important

sc_main()

Elaborate

sc_start()

While
processes
Ready

Execute code possibly
issuing events or
updates. Either suspend
waiting or exit entirely.

.notify()
immediate

.notify(SC_ZERO
_TIME)delayed

.notify(t)
timed

SystemC Simulation Kernel

Initialize Evaluate
Advance

Time

Cleanup Update

Delta
Cycle

Fig. 2.6 SystemC simulation kernel

5 Discussed later.

Figure 2.22: SystemC simulation kernel [15]

it yields control. Several simulation processes may begin at the same instant
in simulator time.

The simulation kernel of SystemC follows the evaluate-update paradigm that
is common in Hardware Description Languages (HDLs). In this case, all
simulation processes are evaluated and then their outputs are updated. An
evaluation followed by an update is referred to as a delta cycle. The concept
of delta cycles, where multiple evaluate-update phases can occur at the same
simulation time, is supported.

If no additional simulation processes need to be evaluated at that instant (as
a result of the update), then simulation time is advanced. When no addi-
tional simulation processes need to run, the simulation ends [15]. For a full
description of the SystemC simulation kernel please refer to [55, 15].

Transaction-level modeling: TLM-2.0

TLM is a high-level modeling approach widely used in the field of digital
systems. The basic idea behind TLM is to separate details of communication
among modules from the details of functional implementation.

Models can be categorized according to a range of criteria, including gran-
ularity of time, frequency of model evaluation, functional abstraction, com-
munication abstraction and use cases.

As depicted in Figure 2.23, the TLM-2.0 standard defines a variety of use
cases and coding styles. The coding styles are appropriate for, but not manda-
tory to, the various use cases. Additionally, the standard provides a set of
programming mechanisms for the implementation of the coding styles.

40

Chapter 2. Foundation

The definitions of the standard TLM-2.0 interfaces are independent from the
descriptions of the coding styles. The TLM-2.0 interfaces form the normative
part of the standard and ensure interoperability.

Each coding style can support a range of abstraction across functionality,
timing and communication. In principle, users can create their own coding
styles.

An untimed functional model consisting of a single software thread can be
written as a C function or as a single SystemC process, and is sometimes
termed as algorithmic model. Such a model is not transaction-level per def-
inition, because by definition a transaction is an abstraction of communica-
tion, and a single-threaded model has no inter-process communication.

A transaction-level model requires multiple SystemC processes to simulate
concurrent execution and communication.

Contents
• Interfaces for Loosely-Timed (LT) Modeling
• Interfaces for Approximately-Timed (AT) Modeling
• Generic Payload for Memory-Mapped Buses
• Direct Memory Interface (DMI)
• Debug Transacti on Interface
• Users Manual, Training Materials, Examples

In case you haven’t heard, the
Open SystemC Initi ati ve (OSCI) announced the new
transacti on-level modeling (TLM) standard, TLM-2.0, at this
year’s DAC. The result of several years of intensive work
by the OSCI TLM Working Group, the standard represents
a milestone for the SystemC community to deliver a truly
viable standard for model interoperability and reuse of
intellectual property.

Why is TLM-2.0 so important? TLM-2.0 standard interfaces
for SystemC provides an essenti al framework needed for
model exchange within companies and across the IP supply
chain for architecture analysis, soft ware development
and performance analysis, and hardware verifi cati on. It
explicitly addresses virtual prototyping in which SystemC
models can easily be exchanged and
arranged within a system. By providing
a strong modeling foundati on for virtual
prototyping, the standard enables
opti mal reuse of models and modeling
eff ort across diff erent use cases.

And why is the completi on of TLM-2.0 so
noteworthy? The demand for standards-
based modeling guidelines is strong,
and adopti on by the industry will be
swift – and in fact is already underway
today. More than 2,100 SystemC users
and OSCI members parti cipated in a
public review initi ated late last year,
providing feedback on the second draft
of the standard and leading to signifi cant
enhancements. Some of the key changes
in TLM-2.0 include new unifi ed interfaces
for the loosely-ti med and approximately-
ti med modeling styles and increased support for extended
protocol defi niti ons using the generic payload.

OSCI is currently developing a SystemC TLM-2.0 language
reference manual (LRM) that should be completed by the
end of 2008. This OSCI LRM will then be used to drive the
IEEE standardizati on process for TLM-2.0.

The Making of a Standard
As model interoperability has become a fundamental
necessity across the electronics supply chain, so has the
tremendous amount of eff ort expended to defi ne and
support a viable standard to address the issue. Members
of the TLM Working Group represent a cross secti on of ESL,
EDA, IP, Semiconductor, and Systems companies who bring
a bring a wealth of TLM experti se and broad perspecti ve to
aligning on a modeling standard.

An Insider’s View on the Making
of the New TLM-2.0 Standard
Bart Vanthournout, TLM Working Group Chairman, OSCI

Use Cases, Coding Styles and Mechanisms

Use Cases

Coding Styles, Abstractions

Software
development

Software
performance

Architectural
analysis

Loosely-timed

Hardware
verification

Approximately-timed

Mechanisms

Blocking
interface

Non-blocking
interfaceDMI Sockets Phases

Generic
payload

Quantum Extensions

OSCI TLM-2.0
Advancing Model Interoperability and
Reuse for Transacti on-Level Modeling

Figure 2.23: TLM2 Use Case, Codingstyles and Mechanisms [96]

Synchronization may be strong in the sense that the sequence of communi-
cation events is precisely determined in advance, or weak in the sense that
the sequence of communication events is partially determined by the detailed
timing of the individual processes. Strong synchronization is easily imple-
mented in SystemC using FIFOs or semaphores, allowing a completely un-
timed modeling style where in principle simulation can run without advanc-
ing simulation time.

Untimed modeling in this sense is outside the scope of TLM-2.0. On the other
hand, a fast virtual platform model allowing multiple embedded software
threads to run in parallel may use either strong or weak synchronization. In

41

Chapter 2. Foundation

this standard, the appropriate coding style for such a model is termed loosely-
timed.

A more detailed transaction-level model may need to associate multiple protocol-
specific timing points with each transaction, such as timing points to mark the
start and the end of each phase of the protocol. By choosing an appropriate
number of timing points, it is possible to model communication to a high de-
gree of timing accuracy without the need to execute the component models
on every single clock cycle. In this standard, such a coding style is termed
approximately-timed [96, 50].

2.4.3 Formal Property Specification Language with PSL

The PSL is an IEEE standard [52] that has been published in 2005. PSL is
based on the Sugar language created at IBM Haifa Research Labs and pub-
lished in 1994. It was developed to provide engineers a concise syntax and
mathematically precise well-defined formal semantics for the specification of
design properties. PSL is a declarative language for the formal specification
of concurrent systems particularly suitable but not limited to the description
of hardware designs. The standard is currently supported by the Accellera
Systems Initiative [51].

Furthermore, it provides an interoperable specification language to exchange
hardware specifications and develop seamless tool integration. It enables the
developer to capture design intent in a verifiable form, while enabling the
verification engineer to validate that the implementation satisfies its specifi-
cation through static or dynamic verification [70].

PSL is a layered, multi-purpose, multi-level and multi-flavor assertion lan-
guage. At its lowest-level, PSL uses references to signals, variables and
values that exist in the design description. This ensures that each com-
ponent’s full range of behavior will be consistent, and apparent to various
industry-standard verification tools, as the component moves through the de-
sign chain [70, 47].

PSL can express both properties that use linear semantics as well as those that
use branching semantics. The first category of properties consists of proper-
ties of the PSL Foundation Language, while the second one belongs to the
Optional Branching Extension. Properties with linear semantics reason about
computation paths in a design and can be checked in simulation, as well as in
formal verification. Properties with branching semantics reason about com-
putation trees and can be only checked using formal verification. While the
linear semantics of PSL are mostly used in properties, the branching seman-
tic adds an important expressive power. For instance, branching semantics

42

Chapter 2. Foundation

are sometimes required to reason about deadlocks. In this thesis, we restrict
ourselves to the simple subset of PSL, which is its linear-time temporal logic.

PSL layers and flavors

Jasper Design Automation© 2005 17

Boolean

Temporal

Verification

Modeling

PSL is a Layered Language

Figure 2.24: PSL is a Layered Language [58]

As shown in Figure 2.24, PSL is structured in four layers: the boolean layer,
which contains the boolean expressions used in properties; the temporal layer,
which contains the temporal properties and Sequential Extended Regular Ex-
pressions (SEREs); the verification layer for directing the use of PSL by a
tool; and the modeling layer, for modeling behavior of inputs and auxiliary
variables.

Based on this layered structure, several flavors of PSL have been defined.
The most generic one is the gdl-flavor, which is based on the General De-
scription Language (GDL). GDL was designed especially for the use in the
PSL modeling layer and can be used for modeling systems in diverse problem
domains, at various levels of abstraction.

Other PSL flavors are based on HDLs. The supported hardware descrip-
tion languages are SystemVerilog, Verilog, VHDL, SystemC. In each flavor,
the Boolean and modeling layers conform to the syntax of the underlying
HDL) (or GDL). The temporal and verification layers are not affected by
flavors [44].

In the scope of this thesis we make use of the SystemC flavor. In the SystemC
flavor, all expressions of the Boolean layer, as well as modeling layer code,
are written in SystemC syntax. The SystemC flavor also has limited influence
on the syntax of the temporal layer. For further details on the PSL syntax
and its various layers, we recommend readers to read the IEEE Standard
1850 [52].

43

Chapter 2. Foundation

PSL operators

For a given flavor of PSL, the operators of the underlying HDL have the high-
est precedence. This includes logical, relational, and arithmetic operators of
the HDL. Various PSL provide various operators. Each operator has a prece-
dence relative to other flavors operators. In general, operators with a higher
relative precedence are associated with their operands before operators with
a lower relative precedence.

Operator class Associativity Operators
Union operator left union
Clocking operator left @

Table 2.5: Union and Clocking operators

An HDL name that is a PSL keyword cannot be referenced directly by its
simple name in an HDL expression used in a PSL property. However, such
a name can be referenced indirectly, using a hierarchical name or qualified
name as allowed by the underlying HDL. An overview of the PSL operators
is given in the following tables.

The foundation language operator with the next highest precedence after the
HDL operators is the union operator. This operator is used to indicate a
non-deterministic expression. It is followed by the clocking operator (see
Table 2.5). The clocking operator, can be used to associate a clock expression
with a property or sequence (see Section 2.4.3).

Operator class Associativity Operators
Consecutive operators left [*], [+]
Non-consecutive operator left [=]
Goto operator left [→]

Table 2.6: SERE Repetition operators

Repetition operators (as listed in Table 2.6) describe another class of founda-
tion language operators. These kind of operators allow to build more sophis-
ticated SEREs using variations on the SERE repetition operators.

Consecutive repetition operators ([*], [+]) provide a shortcut to typing the
same sub-SERE a certain number of times. The [*] operator stands for an
arbitrary number of repetitions of the SERE it is applied to, including none.
To specify any non-zero number of repetitions the operator [+] should be
used. A specific number of repetitions can also be specified if needed. For
instance, instead of typing busy;busy;busy, the following abbreviation can be
used: busy[∗3] [36].

44

Chapter 2. Foundation

The nonconsecutive repetition operator ([=]) can be applied to Boolean ex-
pressions to describe repetitions that should happen on not necessarily con-
secutive cycles. The non-consecutive repetition operator [=n] will match any
sequence of cycles in which there are n not necessarily consecutive repe-
titions of the Boolean expression being repeated. For example busy[= 3]
will match any sequence of cycles in which the signal busy being repeated 3
times [36].

The Goto repetition operator ([→]) is similar to the nonconsecutive repe-
tition operator, except that the sequence of cycles being described end with
an assertion of the Boolean expression being repeated. It will match any se-
quence of cycles starting at the current cycle and ending after you go to the
nth occurrence of the Boolean expression [36].

Operator class Associativity Operators
Within operator left within
Non-length-matching conjunction operator left &
Length-matching conjunction operator left &&
Disjunction operator left |
Fusion operator left :
Concatenation operator left ;
Implication operators right 7→ |=>

Table 2.7: Sequence operators

Sequence operators (see Table 2.7) represent the next group of PSL operators.
This group includes the so-called within operator, which is used to describe
a behavior in which one sequence occurs during the course of another, or
within a time-bounded interval. Furthermore, this group of classes includes
conjunction operator, which are used to describe behaviors consisting of par-
allel paths. These operators are: non-length-matching sequence conjunction
(&) and length-matching sequence conjunction (&&).

The sequence disjunction (|) operator, which is used to describe a behavior
consisting of alternative paths. The fusion (:) operator can be used to de-
scribe a behavior in which a later sequence starts in the same cycle in which
a previous sequence completes.

The sequence concatenation operator can be used to describe a behavior in
which one sequence is followed by another one. The sequence implication
operator can be used to describe behaviors consisting of a property that holds
at the end of a given sequence. PSL distinguishes between overlapping suffix
implication (7→) and non-overlapping suffix implication (|=>).

Table 2.8 shows further foundation language operators. The table includes
the termination operator, occurrence operator, bounding operators and in-
variance operators.The termination operators is used to describe a behavior

45

Chapter 2. Foundation

Operator class Associativity Operators
termination operators left abort, sync abort, async abort
occurrence operators right next*, eventually!
bounding operators right until*, before*
invariance operators right always, never

Table 2.8: Further foundation language operators

in which a condition causes both current and future obligations to be can-
celed. Regarding the termination operator, it can be either synchronous with
respect to a clock event (sync abort) or independent of the clock event (abort
or async abort).

A behavior in which an operand holds in the future can also be specified by
means of the eventually! and the next* operators. The eventually! opera-
tor states that the right operand holds at some time in the indefinite future,
while the operator next* operator states that the right operand holds at some
specified future time or range of future times.

PSL also provide means to describe behaviors in which one property holds in
some cycle or in all cycles before another property holds. The until* operator
states that the left operand holds at every time until the right operand holds,
whereas the before* operator states that the left operand holds at some time
before the right operand holds.

Furthermore, the foundation language also include the always and never op-
erators. Both operators can be used to describe behavior in which a property
does or does not hold globally. With the always operator, the right operand
always holds, whereas the never operator can be used to specify a behavior
in which the right operand does never holds.

Operator class Associativity Operators
Implication operators right →
Implication operators right ↔

Table 2.9: Boolean operators

Table 2.9 shows implication operators that can be used to describe a behav-
ior consisting of a boolean, a sequence, or a property that holds if another
boolean, sequence, or property holds. Hereby, PSL distinguishes between
the logical if implication (→) and the logical if and only if implication (↔).

46

Chapter 2. Foundation

PSL Sequences and Properties

While the Boolean layer forms the foundation of PSL, the real power of PSL
comes from its temporal layer. The term Temporal refers to the design behav-
ior expressed as a series of Boolean expressions over multiple clock cycles.
To support this, PSL has two major components in the temporal layer: Se-
quences and Properties.

Sequences are built from basic Boolean expressions and using sequence op-
erators such as repetition operators.

A PSL Sequence is a sequential expression that may be used directly within
a property or directive. A sequence declaration defines a sequence and gives
it a name as shown in the following Listing.

1 sequence BusArb (boolean br, bg; const n) =
2 { br; (br && !bg)[*0:n]; br && bg };

As it can be seen in the listing, the named sequence BusArb represents a
generic bus arbitration sequence involving formal parameters. br (bus re-
quest) and bg (bus grant), as well as a formal parameter n that specifies the
maximum delay in receiving the bus grant.

As shown in the following Listing, the named sequence ReadCycle represents
a generic read operation involving a bus arbitration sequence and Boolean
conditions bb (bus busy), ar (address ready), and dr (data ready).

1 sequence ReadCycle (sequence BusArb; boolean bb, ar, dr) =
2 { BusArb; {bb[*]} && {ar[->]; dr[->]}; !bb };

There is no requirement to use formal parameters in a sequence declaration.
A declared sequence may refer directly to signals in the design as well as to
formal parameters.

On the other hand, Properties express temporal relationships among Boolean
expressions, sequential expressions, and subordinate properties. They are
built on top of sequences and can include Boolean expressions, sequences
and other sub-ordinate properties. Various operators are defined to express
various temporal relationships. A property declaration defines a property and
gives it a name as shown in the following example.

1 property ResultAfterN
2 (boolean start; property result; const n; boolean stop) =
3 always ((start -> next[n] (result)) @ (posedge clk)
4 async_abort stop);

This property could also be declared as follows:

1 property ResultAfterN
2 (boolean start , stop; property result; const n) =

47

Chapter 2. Foundation

3 always ((start -> next[n] (result)) @ (posedge clk)
4 async_abort stop);

Both declaration types have slightly different interfaces (i.e., different formal
parameter orders), but they both declare a property called ResultAfterN.

Simple PSL Examples

Let’s consider a system that accepts requests of some sort and processes them.
The assumption is that the system has some definition of time points, which
may be points at which a system clock ticks (if the system is synchronous), or
points at which certain chosen events occur. PSL only requires that we have a
sequence (finite or infinite) of discrete time points. Our system has variables
such as req, ack, start, busy, and done. Each variable is true at certain time
points. We demonstrate how each of the following English statements, which
describe system behavior, can be formulated in PSL.

• Whenever start is true at a time point, busy will be true at the following
time point.

always(start−> nextbusy)

• For every occurrence of req that is immediately followed by ack, pro-
cessing of the acknowledged request begins at the next time point after
the ack. The processing sequence begins with start, which is followed
by busy for some number of time points, and ends with done.

[∗];req;ack|=> start;busy[∗];done

PSL is mathematically rigorous, therefore the properties in PSL are precise
and unambiguous. However, they are also easy to read. Thus, a specification
written in PSL can be used as input for automatic tools and may also serve as
part of a human readable specification document.

A more detailed description of the PSL constructs and operators can be found
in [52]. The PSL operators are based on Linear-time Temporal Logic (LTL)
operators, Computational Tree Logic (CTL) operators. Other PSL constructs
are based on SEREs. SEREs are a type of regular expression (see 5.1.2).

An assertion is a conditional statement that checks for specific behavior and
displays a message if it does not occur. The assertion definition starts at Sys-
tem Level, when only requirements are defined. At this level only a few infor-
mation about the final implementation are available, e.g., system interfaces,
but the functional details provide the engineers with sufficient information
for supporting the definition of temporal assertions.

48

Chapter 3

Related Work

3.1 IP-XACT

3.1.1 Extensions of the IP-XACT Schema

Many of today’s embedded multiprocessor systems are heterogeneous sys-
tems, consisting of hardware and software components. The IP-XACT stan-
dard was defined to facilitate the automation of the composition and integra-
tion of multiprocessor systems. IP-XACT is a well-defined standard format
for documenting IPs and is currently supported by many EDA tools.

However, there is no standard that covers all possible aspects in a design
domain. For this purpose, the IP-XACT standard schema provides extension
mechanisms to capture additional domain specific meta-information. This
enables, for instance, the implementation of vendor specific tool features.
Such extensions can then be submitted to the IP-XACT working group as
candidate for future releases. For example, extensions in the design areas:
analog-mixed signal, physical design planning, and power have recently been
published by the Accellera Systems Initiatives [51].

To capture meta-information related to Hardware-dependent Software (HdS),
IP-XACT extensions have been introduced in [79] and [72]. HdS basically
describes the low level software layer that builds on top of the hardware plat-
form in an embedded system. It closely interacts with the hardware infras-
tructure and provides the application software with an API (Application Pro-
gramming Interface) that enables access to hardware devices [85].

In [79], extensions are defined to enable HdS integration in executable sys-
tem models. The main goal of the extension was to enable the representation
of driver specific information in order to facilitate the automatic generation
of the corresponding simulation model of the system design. In addition to

49

Chapter 3. RelatedWork

the IP-XACT schema extensions, the authors defined guidelines for system
level design integration and optimization. These guidelines include software,
hardware platform and hardware-dependent-software optimization and inte-
gration, focusing in one of the fundamental stages of the design flow for com-
plex MultiProcessor System-on-Chips (MPSoCs): the HW/SW simulation.
Furthermore, these extensions enable system level simulation of the whole
platform, whilst taking into account the influence of the design components
that impact the performance, the power consumption, the functionality and
the reliability of the system. The guidelines described in this document are
used to define a system-level optimization methodology. The validity of the
approach in achieving the reduction of power consumption, improvement of
performance and development of scalable and reliable systems was demon-
strated.

In [72] the authors elaborate on the expressiveness of IP-XACT for describ-
ing HdS meta-data to address the automation of HdS generation in the field
of reconfigurable computing, where IPs and their HdS are generated on the
fly, and therefore, are not fully predefined. Their approach combines IP-
XACT-based design description with additional HdS meta-information to au-
tomatically integrate different architectural templates used in reconfigurable
computing systems. Furthermore, the authors propose several IP-XACT ex-
tensions that enable the automatic generation and integration of the HdS.
Moreover, they validate these specific extensions and demonstrate the inter-
operability of the approach based on an H.264 decoder application case study.

3.2 Modeling and simulation of embedded automotive
software

3.2.1 Restbus Simulation

The number of ECUs in vehicles is constantly increasing, the software run-
ning on the ECUs has also become very complex. These facts make testing a
central task within the development of automotive electronics. This task has
a high degree of complexity.

In-vehicle-driving-tests are often time-consuming, expensive and often not
reproducible, especially when some parts of the system are not available.
Restbus Simulation (RBS) is a widespread technique typically applied in
later phases of the development process before the complete ECU-network is
available.

A typical application for RBS is the validation of a new ECU functionality.
The Restbus simulation device simulates the remaining part of the bus net-

50

Chapter 3. RelatedWork

work by providing messages from the non-existing nodes to the rest of the
network during the simulation. RBS can greatly reduce testing time and cost
by allowing companies to simulate new ECU functionality under real-world
conditions in order to investigate the response of an ECU without having to
set up an entire vehicle network or perform expensive field tests [57, 98].

During simulation, the RBS device and the ECU under test are connected to
a network bus. Therefore, the Restbus simulator must fully support the bus
communication protocol used. Furthermore, monitoring capabilities of the
ECU under test should be provided. Missing protocol-specific control data
will cause the ECU to leave the functional state and go into an error state [57].

Up to now, only a few academic publications address the topic of RBS. How-
ever, it is a widely used method in the industrial sector. Several companies
offer tools, tool chains and hardware equipment to support RBS for various
network communication buses, mainly CAN and FlexRay [41]. But they all
have one thing in common, which is the fact that a) the RBS simulation de-
vice is used to simulate the remaining part of the bus network, b) the system
under test runs on a real ECU and c) the PC is only used to host the test
automation software.

In contrast to existing RBS frameworks, we present in this thesis an RBS
approach where the ECU functionality under test also runs on the simulation
PC in addition to the test automation software. Our approach only requires
the corresponding bus communication controller to communicate with to the
remaining part of the bus network.

3.2.2 Modeling and simulation with SystemC

SystemC (Section 2.4.2) is widely used for the simulation of designs consist-
ing of hardware and software components. In [99], an approach for generat-
ing executable SystemC models from software designs captured in a component-
based modeling language (Component Language (COLA)) is presented. The
approach follows the paradigm of synchronous data flow.

COLA has rigorous semantics and specification mechanisms. Due to its well-
founded semantics, it is possible to establish an integrated development pro-
cess. The resulting COLA models remain abstract and cannot be executed
immediately. This allows an early validation and performance analysis of
the design during the design process. The models can be formally processed
using a model checker or a SystemC code generator.

In this thesis, we make use of IP-XACT for the description of the design
components. The design components are provided together with their imple-

51

Chapter 3. RelatedWork

mentation. Based on their IP-XACT description a SystemC Top-Level file is
generated in which the components are instantiated.

3.2.3 Design Framework for IP Reuse and Integration

In [9], we presented an IP-XACT based framework for automated design
integration of mixed-level IPs. The functionality implemented in the frame-
work realizes the key concepts behind IP auto-assembly. Two examples are
presented to illustrate the application of the framework, one with the Core-
ConnectTM SoC [86] architecture and a second example with a self imple-
mented FlexRay bus simulation library.

The investigations were based on the release version 1.4 of IP-XACT. Our
modeling framework was created by applying the automatic framework gen-
eration process of the Eclipse Modeling Framework (EMF) [88]. EMF en-
ables developers to rapidly construct robust applications based on simple
models or meta-models. Thus, our graphical IP-XACT editor was generated
with EMF using the XML schema of IP-XACT version 1.4. The functionality
directly generated by EMF are the creation, manipulation, and validation of
any type of IP-XACT XML files. Since Eclipse is widely used for framework
generation, this supports the incorporation of further extensions.

The basic editor was extended by code generation capability. The code gen-
erator handles SystemC IPs and their integration, at both RTL and TLM. The
interconnections of modules are mainly done at the TLM level, although RTL
ports are also dealt with. On hand with such extension efforts and the accom-
panying experiments, we were able to identify some lacks of IP-XACT for a
full automation of design integration, especially at the TLM level, which was
rarely addressed at that time.

3.2.4 AUTOSAR Vs. SystemC

As introduced in Section 2.2.2, the AUTOSAR standard specifies a generic
architecture and methodology for automotive applications. However, the en-
gineering steps to be taken to move from a logical to a technical architecture
or to a concrete implementation, are still not well supported by tools yet.

SystemC offers a comprehensive way to simulate, analyze, and verify soft-
ware. It also enables the simulation of the timing behavior of underlying
hardware and communication channels into account. The similarities be-
tween the SystemC and AUTOSAR concepts with respect to architecture
modeling are presented in [63]. Additionally, the paper discusses approaches

52

Chapter 3. RelatedWork

on how to use SystemC during the design process of AUTOSAR-conform
systems.

3.3 Verification of temporal properties

3.3.1 Verifying SystemC using an Intermediate Verification
Language and Symbolic Simulation

SystemC has become a widely used standard for the development of embed-
ded systems. The verification of SystemC designs is critical, since it can
prevent error propagation down to the hardware. However, formal verifica-
tion of SystemC models is challenging.

In [64], an approach is proposed consisting of verifying SystemC models us-
ing an Intermediate Verification Language (IVL) and symbolic simulation.
Before dealing with symbolic inputs and the concurrency semantics, the au-
thors propose an isolated approach by using an IVL. The approach decouples
the development of the SystemC-to-IVL translator from the IVL verifier.

Additionally, an extensive benchmark set is presented and an efficient sym-
bolic simulator integrating partial order reduction is proposed. The potential
of the approach is validated by means of experimental comparison with other
existing approaches.

As opposed to this approach, we propose a timing verification concept that
does not require the translation of the SystemC model to an another verifica-
tion language. In our approach the SystemC model under verification only
requires a simple instrumentation consisting of making the Interface being
monitored accessible to an external tool that co-simulates the model under
test and the verification unit.

3.3.2 Verifying SystemC using a software model checking
approach

Although, SystemC allows very efficient simulations, formal verification is
still at a preliminary stage. Recent work translate SystemC into the input
language of finite-state model checkers, but they abstract away relevant se-
mantic aspects, and show limited scalability. In [22], another approach of
formal verification of SystemC is presented. The approach is based on the
reduction to software model checking. The authors explore two directions.

53

Chapter 3. RelatedWork

First, they rely on a translation from SystemC to a sequential C program,
that contains both the mapping of SystemC threads in form of C functions,
and the coding of relevant semantic aspects (e.g. the SystemC kernel). With
regard to verification, this enables the off-the-shelf use of model checking
techniques for sequential software, such as lazy abstraction.

The second approach exploits the intrinsic structure of SystemC. In particu-
lar, each SystemC thread is translated into a separate sequential program and
explored with lazy abstraction, while the overall verification is orchestrated
by the direct execution of the SystemC scheduler. The technique can be seen
as generalized lazy abstraction applied to the case of multi-threaded software
with exclusive threads and cooperative scheduling.

The two approaches were implemented in a software model checker. An
experimental evaluation was carried out on several case studies taken from
the SystemC distribution and from the literature to demonstrate the potential
of the approach [22].

As opposed to this formal verification approach, we propose a simulation
based verification approach.

3.3.3 Monitoring Temporal SystemC Properties

In [91] a temporal monitoring framework for the SystemC specification lan-
guage is described. The framework uses a very minimal modification of
the SystemC kernel, by exposing event notifications and simulation phases.
Moreover, the user code is instrumented to allow observation of the relevant
parts of the model state.

To validate the approach, the framework is used to specify and check prop-
erties of two case studies. The validation activities showed that monitoring
SystemC properties using the framework had a reasonable overhead and a
marginal cost. Finally, the authors demonstrate that monitoring at different
levels of abstraction requires slight changes to the specification and the gen-
erated monitors.

3.3.4 Dynamic Assertion-Based Verification

Assertion-Based Verification (ABV) methodologies and tools do not apply to
hardware and software components in the same way [33]. Regarding hard-
ware components, both static ABV and dynamic ABV are widely used. Soft-
ware components, on the other hand, are traditionally verified by means of

54

Chapter 3. RelatedWork

static ABV. Furthermore, these assumptions cannot be controlled by the as-
sertion language.

In [33] the exploitation of model-driven design for guaranteeing such sim-
ulation assumptions is proposed. The paper describes an ABV framework
for embedded software that automatically synthesizes assertion checkers to
verify the embedded software according to the simulation assumptions.

3.3.5 Assertion-based Verification of temporal properties

The verification of temporal properties is one of the main challenges in em-
bedded software. Formal property verification using model checking often
suffers from the state space explosion problem when a large software de-
sign is considered. In [65], two new approaches to integrate assertions in the
verification of embedded software using simulation-based verification are in-
troduced.

The first approach consists of extending a SystemC hardware temporal checker
with interfaces in order to monitor the embedded software variables and func-
tions that are stored in a microprocessor memory model. Whereas the second
approach consists of deriving a SystemC model from the original C program
in order to integrate directly with the SystemC temporal checker.

Both approaches are validated using a case study on an embedded software
from the automotive industry which is responsible for controlling read and
write requests to a non-volatile memory.

55

Chapter 3. RelatedWork

56

Chapter 4

Methodology

This chapter presents our methodology and simulation framework. It is a
SystemC-based Restbus simulation framework for early validation of auto-
motive systems. The aim of our approach is to provide a Restbus simulation
framework for functional verification of real-time critical automotive sys-
tems.

Before exercising the actual Restbus simulation process, we first perform
some preliminary timing analysis of the SystemC model, in order to verify
that our design under verification conforms to its timing requirements.

The focus during timing analysis lies on the synchronization between the
components of the model with respect to data communication. To address
these issues, we propose a methodology for assertion-based verification of
the timing constraints on the SystemC simulation model and we make use
IP-XACT to document the design components and model the platform of the
design under verification.

Further, the discussion in this chapter mainly focuses on the specification of
the generic architecture of the Restbus simulator, the extension of IP-XACT
by timing constraints and the derivation of executable PSL assertions.

The derivation of executable PSL assertions is done according the the TADL2
semantic. TADL2 is a result of the European research project TIMMO2USE [49].
The main goal of the project was to address and propose practical solutions
for relevant automotive system design use cases that require special consid-
eration of timing aspects. Further, the language comes with a meta-model
describing the attributes of the timing properties and provides the semantic
behind the timing constraints.

Therefore, it is a logical step to define the PSL properties in compliance with
the provided TADL2 semantic definition.

57

Chapter 4. Methodology

In fact both specification languages PSL and TADL2 are similar with re-
spect to their expressiveness for formalizing timing constraints. However,
in contrast to TADL2, PSL is supported by several SystemC simulation and
verification tools, which better fits into our methodology.

4.1 Overall design flow

Our design flow provides modeling guidelines that define how to generate
a Restbus simulation model running on a common off-the-shelf PC using a
discrete event simulator. SystemC is our simulation language of choice. As
discussed in Chapter 2 (Section 2.4.2), SystemC is a system level descrip-
tion language that comes with an event driven simulation kernel. Among
other features, SystemC also introduces the notion of time which is crucial
for modeling real-time critical systems. Furthermore, we use the IP-XACT
standard for the documentation of design components and the platform. PSL
is used as formal language for the specification of the timing requirements.

The Restbus simulator can be used in two ways. It can either be applied to
simulate the Design Under Test (DUT) or to run a testbench. The usage as
testbench is needed when the system under test is a real component. During
this design integration phase, timing constraints can be introduced into the
model using the provided IP-XACT timing extensions. A detailed discussion
on the timing extensions will be made in Chapter 5.

Figure 4.1 illustrates an IP-XACT design example. To differentiate between
real and simulated components, we introduce two additional IP-XACT-views
namely HIL (for real components) and RBS (for Restbus components). This
information is useful during code generation. As depicted in the figure, it
is a generic structure that includes both real (Model view: HIL) and simu-
lated components (Model view: RBS). Depending the phase of the design
process two different versions of the simulation model are generated. For
timing verification, a pure system model of the complete design is generated.
This includes SystemC models needed for the simulation of the real compo-
nents. In the Restbus simulation phase, the generated SystemC model will
only include components that implement the functionality under test, since
the remaining part of the overall system is physically available.

Furthermore, the example depicts a design composed of five components:
four components and an interconnect component. The Interconnect is a generic
component of our framework that acts as a middleware. A more detailed de-
scription of the Restbus simulator will be given in Section 4.2.

The overall design flow consists of five phases, which are depicted in Fig-
ure 4.2. As a starting point, the following inputs are assumed to be available:
a) SystemC implementation of all design components, b) the corresponding

58

Chapter 4. Methodology

SteeringWheel

(IP-XACT Component)

(Model view: RBS)

TransmCtrl

(IP-XACT Component)

(Model view: RBS)

Wheel

(IP-XACT Component)

(Model view: RBS)

wforce

rposition

wposition

rforce

wcolumnPos

rcolumnVelS_W

wcolumnVel

rcolumnVel

rcolumnPos

rcolumnVel

rcolumnPos

wcolumnVelS_W

Design:

(IP-XACT Design)

Interconnect

(IP-XACT Component)

(Model view: RBS)

Wheel

(IP-XACT Component)

(Model view: HIL)

Figure 4.1: Graphical view of an IP-XACT design example

IP-XACT descriptions and finally c) timing requirements on the design under
test. In the following, a more detailed description of the phases of the design
flow will be given.

4.1.1 Phase 1: Component assembly

The first step consists of integrating all components into a design. As afore-
mentioned, our modeling standard of choice is IP-XACT. The integration is
based on the description of the individual components IPs provided in form
of IP-XACT components. In the scope of this thesis, IP-XACT components
are used to describe modules encapsulating functional models.

4.1.2 Phase 2: Timing requirements formalization and Code
generation

In order to verify the timing properties of the design model, requirements
need to be translated into a formal specification language. The formalized
requirements can then be used to check if the design model is compliant to
its specification. ABV is a well-known approach that provides verification

59

Chapter 4. Methodology

12 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderborn

Flow

Generation of pure

Simulation model

(SystemC)

Formalization of timing

requirements (PSL)

Timing verification

Functional equivalence

check

Component

Assembly (IP-XACT)

Restbus simulation

Design model

(IP-XACT)

Pure simulation

model

(SystemC)

Formal timing

specification

(PSL)

Generation of Restbus

simulation model

(SystemC)

Restbus simulation

Model

(SystemC)

Restbus simulation

Model

(SystemC)

Pure simulation

model

(SystemC)

1

2

3

4

5

Figure 4.2: Restbus simulation design flow

60

Chapter 4. Methodology

engineers with means to formally capture the intended requirement specifi-
cations [42]. By means of assertions the model under investigation can then
be checked in the following phase 3. In this phase of the design process
PSL assertions are derived from the timing information contained within the
IP-XACT descriptions. The transformation is based on the rules defined in
Chapter 5.

Concerning code generation, it is important to first recall the behavior of
the SystemC simulation kernel (see Section 2.4.2), which is a typical event-
driven simulator. The scheduler of the SystemC simulation kernel is a coop-
erative non-preemptive scheduler that runs at most one SystemC process at
a time. A running SystemC process runs until completion (SC METHODS)
or until it gives control back to the scheduler (SC THREAD). All runnable
processes are executed one at a time in a single delta cycle while postponing
channel updates made by those running processes. After all runnable pro-
cesses have been executed, the scheduler materializes the channel updates
and wakes up sleeping processes that are sensitive to the updated channels. If
there are runnable processes available, the scheduler moves to the next delta
cycle. Otherwise, it accelerates the simulated time to the nearest time point
in the future, where sleeping processes or events can be woken up [23].

In a Restbus simulation environment however, the SystemC simulator com-
municates with physical devices, and as a consequence, real-time here means
the time measurements done at the physical environment. Figure 4.3 depicts
the possible divergence between the time simulated in SystemC and the time
measured on the physical system. As illustrated in Figure 4.3, SystemC can
simulate faster or slower than real-time, depending on the complexity of the
SystemC simulation model.

FlexRay

Bus

Data is read twice Oversampling

SystemC

Simulation Simulated

time

T T+1 T+2 T+3 ...

FlexRay

Bus Real-time

T T+1 T+2 T+3 T+4

Figure 4.3: Divergence between simulated time and real-time

Since SystemC time and real time might diverge during simulation, it makes
more sense to verify the timing properties in a homogeneous environment
(with respect to time). Therefore, a pure SystemC simulation model is gener-
ated in addition to the Restbus simulation model. An example of the the two
model variants can be seen in Figure 4.4. Obviously, the assumption made
here is that SystemC models for all design components are available; how-

61

Chapter 4. Methodology

ever, both model variants should be functionally equivalent. This equivalence
check analysis is performed in the next design phase. Moreover, the use of

SystemC Simulator (RT Task)

TransmCtrlWheel

Interconnect

Adapter

(RT Task)

Restbus

Simulator

(PC)

RTOS

Wheel

FlexRay Bus

SteeringWheel

Wheel TransmCtrl

SteeringWheel

FlexRay bus (SystemC)

Pure SystemC

simulation

Wheel

(a) Pure SystemC simulation model

SystemC Simulator (RT Task)

TransmCtrlWheel

Interconnect

Adapter

(RT Task)

Restbus

Simulator

(PC)

RTOS

Wheel

FlexRay Bus

SteeringWheel

Wheel TransmCtrl

SteeringWheel

FlexRay bus (SystemC)

Pure SystemC

simulation

Wheel

(b) Restbus simulation model

Figure 4.4: Simulation models used during the design process

a pure SystemC model gives the possibility to investigate and identify pos-
sible design flaws with respect to timing; provided the fact that both model
variants are functionally equivalent, we can then make sure that the design
model complies to the requirements before moving on to the actual Restbus
simulation process.

The generic structure of an example of our IP-XACT design can be seen in
Figure 4.1. The Interconnect is a logical component. For the pure SystemC
simulation model, this component is substituted by a bus network model as
depicted in Figure 4.4a. Whereas for Restbus simulation, a bus network inter-

62

Chapter 4. Methodology

face, the so-called Adapter will additionally be generated (see Figure 4.4b).
The reason for having two different implementations of the generic IP-XACT
design is the fact that Restbus simulation includes the communication with
real hardware components. Therefore, we then face the challenge depicted
in Figure 4.3. To cope with this challenge we introduce an additional com-
ponent(Adapter) that will handle synchronization and hardware communica-
tion.

In [9] we presented an IP-XACT design integration framework for IP-XACT
components and designs modeling. The front-end of the framework provides
import and export functionality of IP-XACT descriptions. Furthermore, it
includes a SystemC code generator. The code generator can be used for the
generation of the SystemC top-level component in which the existing com-
ponents are instantiated and connected. This code generator can be extended
by additional features.

As already mentioned, we make use of IP-XACT Views to distinguish be-
tween real and virtual components. This information is useful for code gen-
eration. The View element in IP-XACT is an attribute that describes an im-
plementation of a component. Components may have multiple views, each
associated with its own function in the design flow (see Section 2.4.1). To
differentiate between real and simulated ECUs, we introduce two additional
views namely HIL (for real components) and RBS (for Restbus components).

4.1.3 Phase 3: Timing verification

As aforementioned, the timing requirements are formalized using PSL [52].
The PSL language is structured into four distinct layers: the Boolean, tempo-
ral, verification and modeling layers. The temporal layer of PSL constitutes
the major part of the language. This layer includes expressions from the un-
derlying boolean layer, temporal operators and Sequential Extended Regular
Expressions or SEREs [34]. PSL is suitable for designs with synchronous
timing, where temporal expressions are typically sampled using a clock (see
Section 2.4.3 for further details).

Thus, PSL assertions can be used for formal verification by means of model
checking (static ABV) or in simulation-based verification (dynamic ABV).
Formal verification approaches require a formal model of the design under
verification. Static ABV methods exhaustively check the assertions against
the formal model, they provide verification engineers with high confidence
in system reliability. However, they tend to suffer from the state-space explo-
sion problem that limits their applicability to relatively small/medium size de-
signs [60]. Therefore, dynamic ABV techniques are typically used for large

63

Chapter 4. Methodology

designs because they are scalable [47]. However, the drawback of dynamic
ABV techniques is the fact that they cannot guaranty complete correctness.

In this stage or the design process, we perform dynamic ABV of the design
model using the derived PSL assertions. Several verification tools can be
used for this purpose [100, 45, 19].

4.1.4 Phase 4: Model equivalence check

Before proceeding to the timing verification stage, it should first be checked
whether the aforementioned simulation model variants are functionally equiv-
alent. There are several approaches for equivalence checking of SystemC
models. These approaches are all either formal or simulation-based.

Grosse et al. [46], for instance, introduced a simulation based framework
for equivalence checking between SystemC models. The models can be de-
scribed at different levels of abstraction. The framework mainly focuses on
TLM designs, and the solution provides mechanisms to easily compare vari-
able accesses by co-simulating the models under investigation using a special
client-server architecture.

Cimatty et al. [23] proposed a formal approach for the verification of Sys-
temC models by reduction to software model checking. Their approach ex-
ploits the intrinsic structure of SystemC, where each SystemC thread is trans-
lated into a separate sequential program and explored by constructing an ab-
stract reachability tree. Additionally, they claim to provide a precise formal
model of the SystemC scheduler.

Formal models for the pure SystemC simulation and Restbus simulation mod-
els need to be extracted in order to perform a formal functional equivalence
checking. This can be done using the formalization technique described
in [23]. Having both formal models, the problem can be reduced to a stan-
dard equivalence checking problem. Several approached are described in the
literature [24].

4.1.5 Phase 5: Restbus simulation

Once the pure SystemC simulation model has been checked and it has been
proven that it fulfills its timing requirements, Restbus simulation can be per-
formed using a model similar to the one depicted in Figure 4.4b. As shown in
the figure, the Restbus simulator runs on top of a real-time operating system.
Both the SystemC simulation process and the bus interface module (Adapter)

64

Chapter 4. Methodology

are executed as real-time tasks. The architecture of the Restbus simulator will
be described in more detail in Section 4.2.

As already mentioned, data synchronization is a crucial issue during the Rest-
bus simulation process. Therefore, Restbus simulation only starts after the
pure SystemC simulation model has passed the previous analysis phase. Fur-
thermore, we propose in this thesis a synchronization approach for early val-
idation (see Chapter 7). During the Restbus simulation process, functional
verification can be conducted. In this case the design under test can either be
the components running on the host machine of the simulator, usually a PC
or they can be the real network of ECUs. In the second case the simulator
will be used to run the testbench.

4.2 Restbus simulator

4.2.1 Architecture of the Restbus Simulator

The architecture of the Restbus simulator is shown in Figure 4.5. In contrast
to existing Restbus simulation infrastructures (see Chapter 3), our approach
is based on the use of a standard PC for simulation. One advantage of this
approach is the possibility to reuse (test-) components throughout the differ-
ent levels of abstraction of the DUT. The second advantage is the fact that the
bus network interface can easily be adapted to new network buses by simply
changing the bus communication controller hardware on the simulation PC.

The framework basically consists of two main parts which are the actual sim-
ulator of the SystemC models (SystemC simulator) and an Adapter compo-
nent. This architecture enables a clear separation between hardware specific
functionality and the simulation of the DUT. Interaction with the communi-
cation controller hardware is made via hardware device drivers and is realized
by the Adapter component.

4.2.2 The SystemC simulator

The SystemC simulator provides the runtime environment for the simulation
of the DUT. As discussed in Section 2.4.2, SystemC models can be imple-
mented at different levels of granularity/abstraction (see [14]). The levels
of abstraction with respect to functionality and communication supported by
SystemC can be seen in Figure 4.6.

Theoretically, there is no restriction on the kind of models that can be simu-
lated by the SystemC simulator. Regarding functionality, a differentiation is

65

Chapter 4. Methodology

SystemC Simulator

Restbus Simulation PC

Adapter

Functional

model and/or

Testbench

Interconnect

Synchronization

Buffer

Hardware

Interface

Hardware

B
u
s

n
e
tw

o
rk

E
C

U
n

E
C

U
1

..
.

Figure 4.5: System Architecture of Restbus simulation framework

made between four accuracy levels, from RTL as the most accurate models to
Un-Timed (UT) models as the most abstract level via Approximately Timed
(AT) and Loosely Timed (LT) moving upwards. Concerning communication,
models are also categorized into four groups spanning from UT via LT fol-
lowed by AT and PCA (Pin and Cycle Accurate) as model accuracy increases.
Moreover, there are two basic modeling abstraction techniques namely TLM
and RTL. TLM can be refined into further categories as discussed in [21].

The choice of the design abstraction level depends on the current verifica-
tion or test objectives. It is always a tradeoff between simulation speed and
model accuracy. In early stages of the design process, typically TLM models
are used, since they can be simulated much faster than RTL models [39]. As
shown in Figure 4.6, the TLM modeling technique can be used at almost all
levels of abstraction with respect to functionality and communication. Fur-
thermore, TLM models can be used for architectural modeling, algorithmic
modeling, virtual software development platform, functional verification or
hardware refinement.

Additionally, System Architectural Model (SAM) and Bus Functional Model
(BFM) models can also be used. SAMs are typically written in C, java or
a similar language, and serve as communication vehicle between algorithm,
hardware, and software groups. BFMs can be used to encapsulate the bus
functionality of a processor for instance during architectural specification.

66

Chapter 4. Methodology

Abstraction Terminology

AT PCA

SAM

RTL

TLM

TLM

TLM TLMUT

AT

RTL

F
u
n
c
ti
o
n
a
lit

y

Communication

More Accurate

More

Accurate

LTUT

TLM

LT TLM

TLM

TLM

BFM

TLM TLM

Figure 4.6: Abstraction refinement and TLM mapping source: [14]

The implementation of the DUT can either be hand-written or automatically
generated using a Behavioral Modeling Tool (BMT) like Matlab/Simulink or
Targetlink. Further, the component Interconnect acts as a middleware during
Restbus simulation, by basically routing communication data from or to the
components of the DUT.

4.2.3 Adapter

The Adapter is the hardware dependent part of the Restbus simulator, it acts
as a middleware between the SystemC model and the bus network. In addi-
tion to hardware communication, this component synchronizes the SystemC
simulator with the bus network. For this, it implements a synchronization
mechanism that deals with potential oversampling and undersampling issues
that might arise during bus communication. The synchronization approach
will be described in more details in Chapter 7. As aforementioned, the sep-
aration between the simulation of the functional model and the execution of
hardware dependent functionally brings more flexibility to the framework.
Thus, it is much easier to adapt to new network communication buses. In
contrast to existing Restbus simulation devices that have a predefined set
of supported bus network interfaces, only the corresponding communication
controller device together with its device driver would need to be plugged
into and installed on the simulation PC.

Figure 4.7 displays the behavior of the main process of the Adapter compo-
nent. As depicted in the figure, the process starts with the initialization and
configuration of the communication controller. This is done via the device

67

Chapter 4. Methodology

66 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderborn

Adapter: Synchronization process

 Generic component

 Adapter - Driver Interface
 Provided Interface:

• -

 Required Interface
• Configure (if configurable)

• getFromHw (receive)

• SendToHW (transmit)

• Terminate

 Simulator – Adapter Interface
 Provided interface:

• -

 Requided interface:
• sendToSim (transmit)

• getFromSim (receive)

init

configure

Execute (Loop)

1. GetFromSim

2. Synchronize

3. SendToHw

4. GetFromHw

5. Synchronize

6. SendToSim

Terminate

terminate

if (configuration

needed)

else

Figure 4.7: Generic behavior of the adapter component

driver that comes along with the communication controller device. Moreover,
the routines to be executed are also specified in the Application Programming
Interface (API) documentation of the device driver.

The input file format needed for the configuration of the Communication
Controller (CC) depends on the type of network bus being used. Typical
automotive buses are FlexRay, CAN, LIN, MOST and meanwhile Ethernet
is getting more and more application. The bus configuration parameters are
provided by means of a database file. Current standard formats are Field Bus
EXchange Format (FIBEX) [12], CANdb and AUTOSAR also provides its
own database configuration file format. The CANdb is the quasi-standard
for the description of CAN communication data and is supported by Vector
Informatik GmbH.

With respect to configuration, there are two different possibilities. The first
one occurs when building up the whole test environment and the second and
most challenging one, regarding network configuration is the integration of
virtual network nodes into an already existing infrastructure. In the second
case, the starting point is the existing network configuration.

The network configuration is influenced by the communication scenario. We
distinguish between monitoring and control applications. For monitoring ap-
plications only the Restbus simulation node would need to be configured.
However, for control applications the related physical nodes would also need

68

Chapter 4. Methodology

to be reconfigured since they have to be aware of the nodes simulated by
the Restbus simulator. The configuration is done by a bus configuration tool
(e.g.: [38]).

69

Chapter 4. Methodology

70

Chapter 5

Assertion-Based Timing Verification

Mastering the design challenges of today’s automotive systems has become
extremely complex. The verification of timing properties is of great impor-
tance. In today’s cars, functions are distributed over several ECUs. For in-
stance, an Adaptive Cruise Control (ACC) system requires at least 5 ECUs to
control and operate engine, gearbox, braking, MMI-Interface and the radar
system [87].

In this chapter, we will introduce timing extensions for IP-XACT. By means
of these extensions, timing constraints on the design can be captured in a
formal way to specify temporal correctness. This can be useful for instance
for the specification of end-to-end delays during component integration. A
design is said to be temporally feasible, if it meets all specified timing con-
straints. The constraints themselves are identified during the design process.

In conjunction with the introduction of timing extensions, we will provide
transformation pattern from each timing constraint into executable PSL for-
mulas1. The timing extensions were inspired by TADL2 [80]. TADL2 is an
outcome of the ITEA2 project TIMMO2USE [76].

Our transformation pattern were defined according to the semantics specified
by TADL2 [80]. Thus, based on these transformation patterns, timing re-
quirements on a Design Under Verification (DUV) can be expressed in PSL,
which is supported by several verification tools. As described in Chapter 4,
the DUV considered in this thesis is a pure SystemC simulation model.

The main contributions of this chapter are the definition of timing constraints
for IP-XACT and the corresponding executable PSL assertions for dynamic
ABV.

1PSL is a formal language developed by the Accellera Systems Initiative [51] that can be used to specify
properties or assertions for designs (see Section 2.4.3).

71

Chapter 5. Timing verification

5.1 Background

5.1.1 Motivation

78 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderbornlles Bertrand Defo

port: portC

constraint: Periodic

period: 2ms

port: portA

constraint: Periodic

period: 2ms

Control

Algorithm

SensorA

SensorB

Actuator

a

b

c

source: SensorB.PortB

target: Actuator.PortC

constraint: Delay

delay: 4ms

stimulus: portA, portB

response: portC

constraint: Synchronization

tolerance window: 2ms

port: portB

constraint: Periodic

period: 2ms

Figure 5.1: Simple example illustrating the need for the specification of timing constraints

Figure 5.1 depicts a basic example that motivates the need to augment the
design description with timing requirements, in order to facilitate the design
verification process. This rather simple example depicts the logical view of a
control system, where a control algorithm receives sensor data (a and b) from
two distinct sensor components (SensorA and SensorB). The sensor data are
then further processed by the algorithm in order to compute the output data
(c) needed by an actuator component (Actuator).

In a real-time critical system the reaction time of such a control system is
crucial. Therefore, the design has to be thoroughly investigated, which means
tested and verified. As discussed in Chapter 2, one approach is to attach
timing requirements to observable points in the design, using our introduced
timing constraints.

Let’s consider a situation where the sensor values a and b are provided with
a transmission period of 2ms. Further, let the data acquisition period of the
control algorithm also be 2ms and the data acquisition period of the Actuator
component be 4ms. Then, a maximum duration of 4ms from the transmission
of sensor data a and b to the reception of the value c by the actuator compo-
nent can for instance be derived. Additionally, a periodic timing constraint
of 2ms can also be specified for each sensor component to later verify if it is
really the case during the simulation process.

72

Chapter 5. Timing verification

76 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderbornlles Bertrand Defo

Communication cycle

a b - c

Static segment Network Idle Time

Static Slots

SensorA SensorB
Control

Algorithm
Actuator

FlexRay bus

ca b ba c

Figure 5.2: Resulting network topology after deployment

Figure 5.2 depicts the network topology of the control system resulting from
the deployment of the system’s components over a network of four ECUs.
The configured FlexRay communication schedule can be seen in Figure 5.3.
As discussed in Chapter 2, FlexRay communication is based on the TDMA
and FTDMA protocols. The schedule depicted in this figure only uses the
static segment of the communication cycle. The static segment is subdivided
into four static slots, whereas the sensor components are assigned the first and
second slots for data transmission. The control algorithm uses the fourth slot
to transmit the computed actuator value c. Further, the components Control
algorithm and Actuator are also assigned the respective reception slots.

76 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderbornlles Bertrand Defo

Communication cycle

a b - c

Static segment Network Idle Time

Static Slots

Figure 5.3: FlexRay communication schedule configuration

Obviously, due to the introduction of the bus network into the design, further
timing requirements can be derived. Figure 5.4 depicts an analysis window
showing event occurrences related to data transmission and reception of the
ECUs in the network. In the figure, event occurrences are depicted horizon-
tally for each component using small stripes. Furthermore, txi denotes the i-th
event occurrence of transmission of data x, while rxi denotes the i-th event oc-
currence of the reception of data x. The age of the data being processed by
the controller ECU is identified in the respective cycle, thus the notation xi is
used.

Moreover, a simplified view of the bus communication schedule can be seen
at the bottom of the figure.

Figure 5.4 basically outlines further timing constraints that can be derived.
The verification process could also include a check if sensor data are pro-
vided on time to the ECU hosting the control algorithm. This can be done by
defining a tolerance window that specifies the time frame within which the

73

Chapter 5. Timing verification

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

sensorA

Algorithm

sensorB

-

ta1 ta2 ta3

tb1 tb2 tb3

ra1 rb1

ta4

tb4

ra2 rb2 ra3 rb3 ra4 rb4

rc2 rc3 rc4

tc2 tc3 tc4

79 Gilles Bertrand Defo© Atos and University of Paderbornlles Bertrand Defo

Cycle2 Cycle3Cycle1

Actuator

Time (FlexRay cycles)
cycle duration = 2 mstolerance = 2 ms,

ci = f(a(i-1),b(i-1))

-

a3 b3 c3a1 b1 - a2 b2 c2 a4 b4 c4

rc2 rc3 rc4

Figure 5.4: Analysis window of the distributed system events

data needed by the control algorithm should be provided (e.g.: c3 = f (a2,b2)
at communication cycle 3).

5.1.2 PSL, Sequential Extended Regular Expression (SERE)

As discussed in Section 2.4.3, PSL can be used as a formal language to spec-
ify temporal properties of synchronous systems using the temporal layer. PSL
includes a special type of regular expressions called Sequential Extended
Regular Expression (SERE). SEREs provide means to describe the relation
between Boolean layer expressions over time.

The simplest type of SERE is a sequence of Boolean expressions separated
by semicolons. For instance, the SERE {req; !ack;ack} describes a scenario
occurring over three timing points (or cycles), in which a req signal holds at
the first timing point, the acknowledgment signal (ack) does not hold at the
second, but holds at the third timing point.

SEREs may also be used to describe more complex event sequences. For ex-
ample, the operator [*] indicates an interval from zero to more timing points,
at which any event may occur. Thus, the SERE {start; [∗];done} describes
any scenario that begins with a start signal and ends with a done signal. The
[∗] operator may also be attached to a Boolean expression. The expression
busy[∗] describes for instance an interval from zero to more timing points at
which the signal busy is true.

Further operators serve as shorthands for more complex constructions. For
any natural number n, the expression busy[∗n] describes a sequence of exactly

74

Chapter 5. Timing verification

n timing points. For example, busy[∗4] is equivalent to {busy;busy;busy;busy}.
SEREs may be used as building blocks of PSL properties.

Typically, a property may be composed of SEREs using the temporal suffix
implication operator |=>. For instance:

{[∗];req;ack}|=> {start;busy[∗];done}.

This property specifies that any occurrence of the left-hand side scenario
must be followed by an occurrence of the right-hand side scenario. In this
particular case, {[∗];req;ack} describes a sequence where req is immediately
followed by ack, which may occur at any point in time (due to the [∗] at the
beginning of the SERE). Additionally, the property specifies that such a se-
quence must immediately be followed (i.e. starting at the next timing point)
by a sequence matching {start;busy[∗];done}.

Moreover, PSL offers temporal operators such as always and eventually,
which specify when a Boolean expression must always hold. The combi-
nation of these temporal operators with SEREs thus enables PSL to express
and specify timing related properties. In order to specify appropriate tim-
ing constraints, it is necessary to provide a timing specification, that clearly
defines a time base for the simulation clock.

As a summary, PSL is a language that can be used to formulate standard
temporal logics formulas LTL and CTL. PSL formula can be compiled down
to a formula of pure LTL (respectively, CTL).

Specified PSL formulas can then be used to automatically generate checks
of simulations. This can be done, for example, by directly integrating the
checks in the simulation tool; by interpreting PSL properties in a testbench
automation tool that drives the simulator; by generating HDL monitors that
are simulated alongside the design, or by analyzing the traces produced at the
end of the simulation [52].

5.1.3 IP-XACT

As discussed in Section 2.4.1, IP-XACT is an IEEE standard that provides
standardized structures for packaging, integrating, and reusing IPs within
EDA tool chains. IP-XACT is a well established standard in the EDA indus-
try. The intent of IP-XACT is not to provide means for behavioral modeling,
but rather to provide the description of component structures and interfaces.

In the context of this thesis we make use of the powerful capabilities of IP-
XACT to model the hardware baseline of the DUV. Figure 5.5 illustrates the
basic structure of an IP-XACT design as specified by its schema.

75

Chapter 5. Timing verification

Figure 2: IP-XACT Design example

2.2 AUTOSAR + TIMING EXTENSIONS

A central concept in the development of automotive software is the component-based approach. Currently the
most important approach that aims in this direction is AUTOSAR (Automotive Open System Architecture).

The AUTOSAR initiative is a union of well-known manufacturer and supplier of automotive tools and systems and
was founded in 2003. The goal is to provide a common framework for the development and sharing of both
software and hardware components. The AUTOSAR standard defines not only a comprehensive technical
infrastructure for automotive systems, but also one that builds upon the methodology and description formats for
the development of AUTOSAR-compliant systems [AUTOSAR].

The AUTOSAR software stack is shown in Figure 3. The architecture is subdivided into three layers running on top of
the ECU hardware: application layer (AUTOSAR software), the AUTOSAR runtime environment (RTE) and the
AUTOSAR basic software (BSW).

Component1 Component2

Model1 Model2

Inter-
connection

addHocConnection

portMap

physicalPort logicalPorts busInterface

Design

Figure 5.5: A simplified design structure of IP-XACT

IP-XACT supports design modeling at different abstraction levels, mainly
RTL and TLM. Furthermore, IP-XACT distinguishes between wired and
transactional ports depending of the abstraction level of the model (see Chap-
ter 2, Section 2.4). The current standard (IEEE 1685-2009 [48]) provides
means to specify delay constraints on wired ports, which are intended for use
in RTL models (see [48], page 38). However, besides the fact that only one
type of timing constraint is supported, there are still, to our knowledge, no
means to specify timing constraints for transactional level models.

As depicted in Figure 5.5, the BusInterface element allows for grouping to-
gether ports that collaborate to a single protocol. Components communicate
with each other through their bus interfaces. Bus interfaces map the physical
ports of the component to the logical ports of the abstraction definition.

The IP-XACT port on a component (logicalPort), can be specified as either
of type wire or transactional. A wire type port can be used to specifiy RTL
information, whereas the transactional type of port is the type of port that can
be used to specify the TLM and SystemC information for ports that have user
defined interfaces.

The IP-XACT standard provides means to integrate user defined informa-
tion by means of the so-called Vendor-extensions2. Our proposed timing
extensions can be applied on both types of IP-XACT ports, this means not
only on wired ports but also on transactional ports. As aforementioned, the
theoretical background for the proposed timing extensions can be found in
TADL2 [80]. TADL2 is an outcome of the ITEA2 project TIMMO2USE [82].

2The IP-XACT extension mechanism supports the definition of vendor specific features to implement specific
tool or flow features, such as the storage of vendor-specific IP meta-data. [51]

76

Chapter 5. Timing verification

The language defines not only a meta-model but also provides a semantic def-
inition for the specified timing constraints.

The diagrams used throughout this chapter for the introduction of the timing
extensions give a graphical view on the organization of their elements and
attributes. They were all generated using the Extended Markup Language
(XML) Schema Editor XMLSpy [11]. A description to the semantic behind
the pictorial representation of the tool XMLSpy ist presented in Appendix B.

5.1.4 DataEvents and Event chains

Before going into the details of the IP-XACT timing extensions, let’s first
introduce the XML schema elements DataEvent and EventChain, that are
two basic elements that build the foundation our timing constraint schema
extension.

As mentioned in the previous section, the structure of the timing constraints is
depicted using a pictorial representation of the new XML Schema elements
(see Appendix B). This kind of graphical representation shows a tree-like
view of the structure of the XML schema elements. The hierarchy of the
structure can be read from left to right. Each subElement is represented by
a branch and can be mandatory or optional. A branch element may contain
further elements inside and is indicated by the small plus sign (+) in the small
box on the right.

Moreover, we focused on the subset of the TADL2 timing constraints (Sec-
tion 2.2.3) related to data transmission (send/write) and reception events (re-
ceive/read). Generally speaking, a timing event denotes any form of identifi-
able state change of a system at run-time, that can be constrained with respect
to timing. These changes can occur at distinct points in time; referred to as
occurrences of the event.

In this thesis, we focus on the timing constraint subset related to data trans-
mission. We refer to data transaction primitives as DataEvent. As depicted in
Figure 5.6, a DataEvent basically points to the Port of a Component through
which the data is sent or received. This is realized via the schema element
“PortRef”.

15 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderborn

Event(-chains)

Figure 5.6: DataEvent contains a reference to the schema element PortRef

Therefore, simulation traces can be captured as specified in the following
Formula 5.1.

DataEvente = ei, . . . ,en, . . . (5.1)

77

Chapter 5. Timing verification

where ei is a timing point, that denotes the i-th occurrence of the DataEvent
e. Event occurrences are expressed using timestamps.

Furthermore, causally related DataEvents can be expressed by means of the
so-called EventChain element (highlighted by the yellow boxes in Figure 5.7).

15 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderborn

Event(-chains)

Figure 5.7: Event chain

5.1.5 TADL2: Notation

The timing augmented description language TADL2 uses First-Order logic
formulas to express the logic equivalence of the timing constraints. The his-
tory of First-Order Logic (FOL) has been described by Ferreiros in [40]. FOL
is widely used in areas such as mathematics, and computer science. It is also
referred to in the literature as First-Order Predicate Calculus, Lower Predi-
cate Calculus, or Predicate Logic [95].

First-Order logic assumes that the world contains objects, relations and func-
tions. The basic elements are Symbols, Atomic sentences and Terms. The
alphabet consists of the following symbols:

• Constants: e.g.: d, c, c1

• Predicates: e.g.: P, Q, ItIsRaining

• Functions: e.g.: f , g

• Variables: e.g.: x, y, a, b, ...

• Connectives: e.g.: ∧,⇒, ∀, ∃, ...

• Auxiliary symbols: e.g.: (,) ;

Atomic sentences can be built as follows: Predicate(term1, ..., termn) or
term1 = term2. A term can be a function (f unction(term1, ..., termn)), a con-
stant or a variable [95].

78

Chapter 5. Timing verification

TADL2 Notation Description
a∧b constraint a and constraint b are both true
a⇒ b a is false or a and b are both true
a⇔ b a and b have the same truth value
∀x : c c is true for all possible values of x
∃x : c c is true for at least one value of x
|X | number of elements in set X
X ⊆ Y all elements in X are also in Y
∀x ∈ Y : c for each x in Y , c is true
∃x ∈ Y : c there is an x in Y such that c is true
X ≤ Y X is a subsequence of Y
x≤ y x occurred earlier than y
x = Y (i) x is the element number i in Y counting from zero
[X] set of all occurrences between smallest and

greatest occurrences in X
λ([X]) the length of the continuous intervals in X
λ(X) the total length of all continuous intervals in X

Table 5.1: Notation used in the definition of the TADL2 semantics

Table 5.1 gives a list of the operators used by TADL2. Syntactic and seman-
tic objects like events, constraints and time, are referenced by simple variable
names such as ”c” for constraint, ”x” for an event occurrence, or ”Y” for a
set or sequence of event occurrences. To denote attributes of such objects
TADL2 makes use of an object-oriented notation, where for instance c.jitter
denotes the attribute jitter of constraint c. Variable x thus stands for a partic-
ular occurrence, which in all arithmetic contexts simply means its timestamp
value [80]. Since event occurrences are ordered according to their times-
tamps, a set of occurrences can be seen as a sequence. Thus, sub-sequence
relations between such sets, as well as the notion of indexing are also used.

5.2 Formalizing Timing Requirements

As discussed in Chapter 4, the first step of the design process consists of as-
sembling all components needed for the design. The architecture design is
based on the IP-XACT component description. One of the activities of the
second stage of the design process consists of formalizing timing require-
ments, that will guide through the timing verification process. Timing re-
quirements can typically be derived from the design requirement specifica-
tion.

To facilitate the automation of the design verification process, it is more con-
venient to have all required timing information included in the design model.

79

Chapter 5. Timing verification

The current IP-XACT standard (IEEE 1685) [48] does not provide means to
define timing constrains on IP-XACT components. Therefore, we propose
the introduction of timing extensions for the standard consisting of a set of
timing properties.

5.2.1 Reason for using both TADL2 and PSL

As already mentioned, the proposed timing properties represent a subset of
the Timing Augmented Description Language (TADL2). TADL2 is a result
of the European research project TIMMO2USE [49]. The main goal of the
project was to address and propose practical solutions for a group of auto-
motive system design use-cases that require special consideration of timing
aspects. Therefore, it is a logical step to use TADL2 as a starting point for
our automotive design and verification process and to consider not only the
timing properties defined in TADL2, but also the semantic behind the timing
constraint modeling elements.

One of the core contribution of this thesis is the development of a concept
for automated timing verification of SystemC design models. The reason for
using PSL is the fact that, there is to our knowledge no existing tool support
for the verification of TADL2 timing constraint during SystemC simulation.
Thus, we opted in the context of this thesis for PSL.

Moreover, our verification approach is realized using a commercial verifica-
tion tool that supports PSL as formal property specification language. As
a consequence, the timing properties contained within the IP-XACT model
are formalized using PSL. However, the transformation rules from the tim-
ing properties to PSL specifications are compliant to the semantic defined by
TADL2 . Furthermore, this transformation is more or less straightforward,
since both languages are based on the same formalism.

Since our timing constraints are related to data communication, the exten-
sions are attached to the Port-description of the IP-XACT component ele-
ment. Figure 5.8 gives an overview of the type of timing constraints sup-
ported by our extension. As depicted in the figure, a timing should constrain
one of the following: Delay, Order, Periodic, Sporadic, Input- or Output syn-
chronization constraint. This is indicated by the symbol being drawn with a
dashed line and the choice box symbolB.1.2. The element typeOfConstraint
is a mandatory element, that specifies the kind of timing constraint that has
been defined.

As part of the contribution of this thesis, we define transformation pattern
from the timing properties contained in the IP-XACT model to executable
PSL assertions. These transformation rules could then be used as a basis for
the implementation of a pattern based PSL code generator.

80

Chapter 5. Timing verification

84 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderbornlles Bertrand Defo

Figure 5.8: Proposed timing extensions for IP-XACT

TADL2 distinguishes between basic and derived timing constraints together
with corresponding semantic definition (see [80]). Derived timing constraints
are expressed by means of the basic ones. The chosen subset of basic timing
constraints used in the scope of this thesis are: RepeatConstraint, DelayCon-
straint and RepetitionConstraint.

As introduced in Section 2.4.3, PSL has two major components in the tempo-
ral layer: Sequences and Properties. Sequences are built from basic Boolean
expressions and using sequence operators such as repetition operators.

A PSL Sequence is a sequential expression that may be used directly within a
property or a directive. A sequence declaration defines a sequence and gives
it a name. A declared sequence may refer directly to signals in the design as
well as to formal parameters.

Properties, on the other hand, can be used to express various temporal rela-
tionships among Boolean expressions, sequential expressions, and subordi-
nate properties. A property declaration defines a property and gives it a name.
Analogously to PSL Sequences, PSL Properties may also refer to formal pa-
rameter. The advantage of using formal parameter is the fact that it promotes
reuse.

An instantiation of a PSL declaration creates an instance of the named dec-
laration and provides an actual parameter for each formal parameter. In the
instance created by the instantiation, each actual parameter expression in the
actual parameter list of the instantiation replaces all references to the formal

81

Chapter 5. Timing verification

parameter in the corresponding position of the formal parameter list of the
named declaration [52].

In the remaining part of this chapter, each timing constraint will first be intro-
duced using a first order logic formula as specified by the TADL2 semantic
definition, followed by our proposed PSL formula.

Furthermore, the named sequences and properties are generic and involve all
formal parameters needed to express the specific timing constraints. In the
scope of this thesis we focus only on the definition of timing constraints for
span = 1. Consequently, this simplifies their formalization in PSL.

To be able to specify the timing constraints in PSL, we make use of logical
signals to notify the occurrence of the data related events (dataEvent) during
the SystemC simulation.

5.2.2 RepeatConstraint

The RepeatConstraint is a basic timing constraint that describes a repeated
distribution of occurrences of a single event. It is characterized by four at-
tributes, namely, a reference to the component port through which the event
under observation occurs, lower- and upper-bounds and a span attribute. The
attributes lower and upper are timing points, that specify the range of ac-
cepted durations between the occurrences of the referenced DataEvent.

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

REPEAT

time

stimulus s1 s2

t1

s4s3

t2 t3 t4 t5 t6

t3 – t1 = lower

span = 2 span = 2

81 Gilles Bertrand Defo© Atos and University of Paderbornlles Bertrand Defo

t4 – t1 = upper

t6 – t2 = upper

t5 – t2 = lower

stimulus: event
si: i-th event occurrence

Figure 5.9: A set of event occurrences satisfying a RepeatConstraint for span=2.

As illustrated in Figure 5.9, data event occurrences are depicted by upward
oriented arrows, and the span attribute is used to define the index of the cor-
related event occurrences. Furthermore, the figure depicts a set of event oc-
currences satisfying a RepeatConstraint with span = 2. The corresponding
TADL2 expression can be specified using Formula 5.2,

∀X = {si, ...,si+2} ≤ S : |X |= 3⇒ lower ≤ si+2 ≤ upper (5.2)

82

Chapter 5. Timing verification

where si denotes the i-th event occurrence of the stimulus event. For span= 2
the RepeatConstraint constrains the event occurrences si and si+2.

The usage of the span attribute can be important for the design of a FlexRay
bus network for instance, where a specific transmission slot can be used by
a network node for the transmission of different kind of data. This notion is
usually referred to as Cycle Multiplexing. Cycle Multiplexing is a concept
provided by the FlexRay communication protocol to increase the number of
different messages that can be transmitted within the same dedicated trans-
mission slot (see Section 2.3.2).

As specified in [80], the RepeatConstraint is satisfied if and only if, for each
sub-sequence of event occurrences X containing span+1 event occurrences,
the distance between the first and last event occurrences in X lies between
the lower and upper bounds. This constraint is generalized in TADL2 using
Formula 5.3.

∀X ≤ dataEvent : |X |= span+1⇒ lower ≤ λ([X])≤ upper (5.3)

In the formula, λ([X]) (see Table5.1) basically denotes the timing point of
the last event occurrences in the sub-sequence X . dataEvent denotes the
complete set of observed event occurrences.

As previously mentioned, we focus in this chapter on the timing constraint
specification with span = 1, where the span attribute is relevant. Therefore,
λ([X]) will always denote the next occurrence of given dataEvent. Thus, we
propose the following PSL declaration, to express the RepeatConstraint:

1 sequence repeatSequence (boolean dataEvent; const lower , upper) =
{[*lower:upper]; rose(dataEvent)};

2 property repeatConstraint(boolean timingEvent; const lower ,
upper , span) = always(repeatSequence (timingEvent , lower ,
upper))@(posedge clock);

The PSL sequence declaration above states that the dataEvent should re-
peatedly occur within a time window specified by the timing points lower
and upper. Further, the property declaration states that the sequence should
always hold in every evaluation cycle of the PSL assertion, which is compli-
ant to the TADL2 semantic specified by Formula 5.2. Furthermore, (posedge
clock) denotes the default PSL clock.

5.2.3 StrongDelayConstraint

The StrongDelayConstraint is used to specify that a response has to happen
within some time interval after its respective stimulus has been raised.

83

Chapter 5. Timing verification

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

STRONGDELAY

target r2

source,target: data event
si, ri: event occurrences

source s1 s2

r1

83 Gilles Bertrand Defo© Atos and University of Paderbornlles Bertrand Defo

t6t1 t2 t3 t4 t5 time

target r2

t3 – t1 = upper

t2 – t1 = lower t5 – t4 = upper

t6 – t4 = lower

r1

Figure 5.10: A set of event occurrences satisfying a StrongDelayConstraint [80]

Figure 5.10 depicts a system behavior that satisfies a StrongDelayConstraint.
The picture shows two communicating nodes (source and target); the stripes
on the time line indicate the timing points of the communication events of
the nodes.

A StrongDelayConstraint can be used to constrain the occurrence of stimulus
event (generated by the source node) and its corresponding response occur-
rence (generated by the target node) to occur in lock-steps. Stray response
occurrences are not allowed, this means, only one response occurrence for
each stimulus occurrence is allowed.

The StrongDelayConstraint is characterized by four attributes, which are: the
references to the stimulus, response ports and lower- and upper-bounds to
constrain the occurrences of the response. Formula 5.4 gives the equivalent
logic formula as specified in TADL2.

∀i : ∀x = stimulus(i)⇒∃y : y = response(i)∧ lower≤ y−x≤ upper (5.4)

In the formula, stimulus and response denote the events at the source and
target port respectively, whereas the index i is used to match the i-th stimu-
lus event occurrence with its corresponding response event occurrence. The
TADL2 expression for the example illustrated in Figure 5.10 can be defined
using Formula 5.5.

∀i : ∀t j = si⇒∃tk : tk = ri∧ lower ≤ tk− t j ≤ upper (5.5)

Where t j denotes the timing point of the event-occurrence si and tk denotes
the timing point of event-occurrence ri.

The following PSL property declaration can used to express Formula 5.4:

1 property StrongDelayConstraint (boolean stimulus , response; const
lower , upper) = always ({rose(stimulus)} |=> {[*lower:upper];
rose(response)}) @(posedge clock);

84

Chapter 5. Timing verification

The proposed PSL property declaration states that an occurrence of the dataEvent
is always expected within a time frame defined by the timing points lower
and upper after the occurrence of the stimulus event. Furthermore, the prop-
erty holds in a given cycle if and only if either the Sequence that is the left
operand of the implication operator (|=>) ({rose(stimulus)}) does not hold
at the given cycle, or the sequence that is the right operand ({[*lower:upper];
rose(response)}) immediately holds in a cycle following any cycle in which
the sequence that is the left operand holds.

5.2.4 RepetitionConstraint

So far, we have introduced two basic timing constraints needed to formally
express our timing extensions. The RepetitionConstraint describes the third
basic timing constraint. In fact, this constraint extends the notion of repeated
event occurrences by allowing local deviations from the ideal repetitive pat-
tern specified by the RepeatConstraint.

Strictly speaking, the RepetitionConstraint is a timing constraint, that can be
expressed using the RepeatConstraint and the StrongDelayConstraint [80].
The RepetitionConstraint is expressed as follows:

RepetitionConstraint (dataEvent, lower, upper, span, jitter) =
RepeatConstraint (X, lower, upper) and
StrongDelayConstraint (X, dataEvent, 0, jitter)

Where jitter, lower and upper are formal parameters needed to specify the
allowed time window for each dataEvent-occurrence. dataEvent refers to
the event occurrences at a specific port of the component under investigation.
Furthermore, X denotes reference timing points that are needed to constraint
the event under observation (dataEvent). Moreover, X must satisfy the Re-
peatConstraint, and both X and dataEvent must satisfy the StrongDelayCon-
straint.

Given the definitions of the RepeatConstraint in Formula 5.3 and the StrongDe-
layConstraint in Formula 5.4, the following logic formula can be derived for
the RepetitionConstraint:{

(∀Y ≤ X : |Y |= span+1⇒ lower ≤ λ([Y])≤ upper)∧
(∀i : ∀x = X(i)⇒∃y : y = dataEvent(i)∧0≤ y− x≤ jitter)

(5.6)

Figure 5.11 illustrates an example showing a system behavior that satisfies
a RepetitionConstraint. The event-occurrences of the stimulus are the ac-
tual timing events under observation. These event occurrences are correlated

85

Chapter 5. Timing verification

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

REPETITION

jitter

Time (t)

Stimulus S s1 s2

x1

s4s3

x2 x3 x4 x5X

s4

jitter jitter jitter jitter

82 Gilles Bertrand Defo© Atos and University of Paderbornlles Bertrand Defo

Time (t)

upper

lower
stimulus: data event S
si: i-th event occurrence of S
span=2

upper

lower

Figure 5.11: A set of event occurrences satisfying a RepetitionConstraint with span = 2

with occurrences of a reference event called X . After the occurrence of the
reference event X , the stimulus should occur within a timing window speci-
fied by the parameter jitter. Furthermore, the reference event must fulfill the
RepeatConstraint. The TADL2 expression satisfied by this example can be
expressed using Formula 5.7.{

(∀Y = {xi, ...,xi+2} ≤ X : |Y |= 3⇒ lower ≤ xi+2 ≤ upper)∧
(∀i : ∀t j = xi⇒∃tk : tk = si∧0≤ tk− t j ≤ jitter)

(5.7)

For span = 1, we propose the following PSL sequence and property declara-
tion to express the RepetitionConstraint:

1 property RepetitionConstraint (boolean refEvent , dataEvent; const
lower , upper , jitter) = always (({[*lower:upper];
rose(refEvent)}) && ({rose(refEvent)} |=> {[*0:jitter];
rose(dataEvent)}))@(posedge clock);

The SERE length-matching and operator (&&), constructs a so-called com-
pound SERE in which the two compound SEREs ([∗lower : upper];rose(re f Event))and
(rose(re f Event)|=> [∗0 : jitter];rose(dataEvent)) both hold and complete
in the given cycle.

The following sections introduce our IP-XACT extensions. The figures used
for the description of these extensions were all generated from the extended
IP-XACT XML-schema using the XML schema editor tool XMLSpy[11].

86

Chapter 5. Timing verification

Furthermore, the figures are used to depict the attributes of our timing con-
straints.

5.2.5 DelayConstraint

The DelayConstraint is one of the most important timing constraints. It is
basically needed to constrain delays between the occurrence of a stimulus
and its corresponding response. An ACC system is a typical example, where
the duration could be specified between the reception of the desired vehicle
speed requested by the driver and the observation of the current vehicle speed
being equal to that desired speed.

Figure 5.12 shows the structure of the DelayConstraint element. This timing
constraint always associates two causally related data events namely a stim-
ulus with a response. Furthermore, the attributes maximum and minimum as
shown in the uppermost box symbol need to be defined to be able to specify
the range of acceptable delays between the occurrences of an event at the
source port and the corresponding response at the target port. This informa-
tion is crucial for time budgeting for instance during the integration of new
components into existing designs. (see Section B.1.3 for further details about
the notation)

20 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderborn

Delay

Figure 5.12: Graphical representation of the XML schema of the DelayConstraint element

87

Chapter 5. Timing verification

Furthermore, we distinguish between two types of delay constraints, namely
the Age- and the Reaction-Constraint. Both delay types have different se-
mantics. This information can be specified using the attribute typeOfDelay.
The AgeConstraint requires the latest occurrence of the stimulus to lie within
the prescribed time bounds, whereas a ReactionConstraint restricts the earli-
est occurrence of the response to lie within the prescribed time bounds. In
other words, a ReactionConstraint specifies a time window for the occurrence
of each response.

The AgeConstraint is logically formulated TADL2 using Formula 5.8.

∀y ∈ scope.response,∃x ∈ scope.stimulus∧minimum≤ y− x≤ maximum
(5.8)

where scope is an eventChain containing the reference to the stimulus and
response ports, as depicted in Figure 5.7. x and y denote the occurrence of the
stimulus event and response event, respectively. In an airbag control system
where various sensors values such as accelerometers need to be updated at a
specific rate, an AgeConstraint can be specified using the following TADL2
expression:

∀y ∈ collisionDetected,∃x ∈ AccelValueRec∧0≤ y− x≤ 5ms (5.9)

The ReactionConstraint is formulated in TADL2 using Formula 5.10.

∀x ∈ scope.stimulus,∃y ∈ scope.response∧minimum≤ y− x≤ maximum
(5.10)

In the formula, y denotes the first occurrence of the response event. A typical
example is the activation time of an airbag control system after a collision
has been detected. This constraint can be expressed in TADL2 as follows:

∀x∈ collisionDetected,∃y∈ gasGenPropellantIgnited∧10ms≤ y−x≤ 20ms
(5.11)

Age- and Reaction-Constraints can be formalized and expressed with PSL as
follows:

1 property ageConstraint(boolean stimulus , response; const minimum ,
maximum) = always ({stimulus[*]; [*minimum:maximum];
response})@(posedge clock);

2 property reactionConstraint(boolean stimulus , response; const
minimum , maximum) = always ({stimulus; [*minimum:maximum]
response [*]})@(posedge clock);

The named properties ageConstraint and reactionConstraint involve the for-
mal parameters stimulus and response. Additionally, the formal parameters
minimum and maximum specify the minimum and maximum delay allowed
respectively. Furthermore, these property-declarations describe behaviors in

88

Chapter 5. Timing verification

which the response must occur within a certain number of clock cycles after
the occurrence of the stimulus which is the enabling condition. As specified
in TADL2, it is the last occurrence of the stimulus that is used as the en-
abling condition for the ageConstraint (stimulus[∗]), whereas in the case of
the reactionConstraint, it is the first occurrence of the stimulus that is relevant
(stimulus).

5.2.6 SporadicConstraints

Figure 5.13 shows the structure of the SporadicConstraint element. As it can
be seen in the attribute block, the attributes lower, upper, jitter and minimum
are required in order to specify a SporadicConstraint. A SporadicConstraint
can be expressed using both the Repeat- and RepetitionConstraint [80].

The main difference here is the fact that, the RepetitionConstraint is ap-
plied here with a default span attribute of span = 1. Moreover, the effective
minimum distance λ([Y]) between two event occurrences must be greater
or equal than the value given by the attribute minimum of the constraint,
even if the constraint attributes lower− jitter would suggest a smaller value.
SporadicConstraints are useful for event-triggered systems or bus networks

25 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderborn

Sporadic

Figure 5.13: Sporadic constraint

such as CAN. Events that occur sporadically can be constrained using the
SporadicConstraint.

In TADL2, the SporadicConstraint can be expressed as follows:

SporadicConstraint (dataEvent, lower, upper, jitter, minimum) =
RepetitionConstraint(dataEvent, lower, upper, jitter) and
RepeatConstraint(dataEvent, minimum, infinity)

89

Chapter 5. Timing verification

Therefore, the following logic formula for the SporadicConstraint can be de-
rived by combining both Formula 5.6 and Formula 5.3:

(∀Y ≤ X : |Y |= 2⇒ lower ≤ λ([Y])≤ upper)∧
(∀i : ∀x = X(i)⇒∃y : y = dataEvent(i)∧0≤ y− x≤ jitter)∧
(∀Y ≤ dataEvent : |Y |= 2⇒ λ([Y])≥ minimum)

(5.12)

Thus, we propose the following PSL property declaration to formalize and
express a SporadicConstraints:

1 property sporadicConstraint (boolean refEvent , dataEvent; const
lower , upper , jitter , minimum) = always (({[*lower:upper];
rose(refEvent)}) && ({rose(refEvent)} |=> {[*0:jitter];
rose(dataEvent)}) && ({[*lower:inf];
rose(dataEvent)}))@(posedge clock);

In the property declaration of the SporadicConstraint, the formal parameter
refEvent specifies a reference signal that satisfies a RepeatConstraint. Fur-
thermore, both refEvent and dataEvent must satisfy the RepetitionConstraint.
The transformation of the SporadicConstraint into PSL is correct, since it is
basically a combination of Formulas 5.6 and 5.3.

5.2.7 Periodic constraints

PeriodicConstraints can be very useful in time-triggered bus networks such
as FlexRay, where communication data is sent periodically based on the
TDMA schedule. Loosely speaking, a PeriodicConstraint describes an ac-
tivity that occurs periodically. This type of timing constraint can be applied
in monitoring applications for example, where environment data such as tem-
perature need to be periodically checked.

In fact, a PeriodicConstraint is a variant of SporadicConstraint where the
attributes lower and upper are equal and denoted by the period attribute [80].
The attributes of the PeriodicConstraint can be seen in Figure 5.14. Thus, a
PeriodicConstraint can be expressed using a SporadicConstraint as follows:

PeriodicConstraint (dataEvent, period, jitter, minimum) =
SporadicConstraint (dataEvent, period, period, jitter, minimum)

90

Chapter 5. Timing verification

24 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderborn

Periodic

Figure 5.14: Periodic constraint

Formula 5.13 can therefore be derived from Formula 5.12
(∀Y ≤ X : |Y |= span+1⇒ λ([Y]) = period)∧
(∀i : ∀x = X(i)⇒∃y : y = dataEvent(i)∧0≤ y− x≤ jitter)∧
(∀Y ≤ dataEvent : |Y |= 2⇒ λ([Y])≥ minimum)

(5.13)

Let’s consider a brake-by-wire system where a specific wheel speed value is
periodically sent on the FlexRay bus. The sampled wheel speed sensors val-
ues have to be written in the message buffer of the communication controller
within a specified time window. The corresponding TADL2 expression can
be specified as follows:
(∀Y = {cycleStarti,cycleStarti+1} ≤ cycleStart : |Y |= 2⇒ cycleStarti+1 = period)∧
(∀i : ∀t j = cycleStarti⇒∃k : tk = wheelSpeedi∧0≤ tk− t j ≤ jitter)∧
∀X = {wheelSpeedi,wheelSpeedi+1} ≤ wheelSpeed : wheelSpeedi+1 ≥ minimum

(5.14)

Thus, we propose the following PSL property declaration:

1 property periodicConstraint (boolean refEvent , dataEvent; const
period , jitter , minimum) = always (({[*period];
rose(refEvent)}) && ({rose(refEvent)} |=> {[*0:jitter];
rose(dataEvent)}) && ({[*period:inf];
rose(dataEvent)}))@(posedge clock);

Since the named property-declaration periodicConstraint is just a variant of
the sporadicConstraint, the derived PSL formula also semantically equivalent
to the corresponding TADL2 expressions specified by Formula 5.13.

91

Chapter 5. Timing verification

5.2.8 Synchronization Constraint

Basically, a synchronization constraint refers to an unbounded list of ports
and specifies how tight the occurrences of a group of events should follow
each other. Generally speaking, a system behavior satisfies a Synchroniza-
tion constraint if and only if all associated events occur within a specified
tolerance window, from a reference point in time. Multiple occurrences of
the event within the tolerance window are allowed. Moreover, the aim of the
synchronization constraint is to keep a consistent interaction between differ-
ent components of a system. The importance of a Synchronization constraint
has been described in Section 5.1.1 by means of the scenario depicted in
Figure 5.1.

We distinguish between input- and output-synchronization constraints. Fig-
ure 5.1 illustrates an application example of the InputSynchronizationCon-
straint, that associates the stimuli a and b with the response c. As shown in
the figure, the computation of the actuator value c requires the input values a
and b. Therefore the events associated to a and b must occur before the event
associated to c.

For meta-modeling reasons, we introduce two variations of the EventChain
element, namely EventChainIn and EventChainOut. As depicted in Fig-
ure 5.15, an EventChainIn expresses the correlation between two or more
stimuli and a response, whereas an EventChainOut correlates one stimulus
with two or more responses (see Figure 5.16).

16 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderborn

EventChainIn

Figure 5.15: EventChainIn: constrains two or more stimuli with one response

Input Synchronization Constraint

The InputSynchronizationConstraint specifies how far apart correlated stim-
uli should occur. With this timing constraint, it is the latest of the event
occurrences for each stimulus that is required to lie within the tolerance win-

92

Chapter 5. Timing verification

17 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderborn

EventChainOut

Figure 5.16: EventChainOut: constrains two or more responses with one stimulus

21 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderborn

Input Synchronization

Figure 5.17: Input synchronization constraint

dow. The structure of the InputSynchronizationConstraint is depicted in Fig-
ure 5.17. The corresponding logic formula is defined in Formula 5.15.

(∀y ∈ scope.response : ∃t : ∀i : ∃x ∈ scope.stimulusi)∧
(∀i;∀x′ ∈ scope.stimulusi : x′ ≤ x)∧
(0≤ x− t ≤ tolerance)

(5.15)

where t is a reference point in time and scope is from type eventChainIn
(see Figure 5.15). Formula 5.15 states that a system behavior satisfies an
InputSynchronizationConstraint c if and only if for each occurrence of a
response y (c.scope.response), there is a time t such that for all stimuli
(c.scope.stimulusi), there is an occurrence of stimulusi (x) such that for all
other occurrences x′ of stimulusi x is maximal (x′ ≤ x) and the occurrence of
x lies within the interval window (0≤ x− t ≤ tolerance).

Let’s consider a BBW system where rotational wheel speed data must be si-
multaneous acquired by all ABS controllers within a time window of 360µs
after each bus communication cycle start. The corresponding TADL2 expres-
sion can be formulated as follows:
(∀y ∈ wheelSpeedProcessed : ∃t : ∀i ∈ { f r, f l,rr,rl} : ∃x ∈ wheelSpeedi)∧
(∀i ∈ { f r, f l,rr,rl};∀x′ ∈ wheelSpeedi : x′ ≤ x)∧
(0≤ x− t ≤ tolerance)

(5.16)

93

Chapter 5. Timing verification

Given an EventChainIn with n = 2 stimuli and a reference event occurrence,
that can be used as a reference timing point t, the InputSynchronizationCon-
straint can be expressed in PSL as follows:

1 property InputSynchronizationConstraint (boolean refEvent ,
stimulus_1 , stimulus_2; const offset , tolerance) = always
(({rose(refEvent)} |=> {[*offset:tolerance];
rose(stimulus_1)}) && ({rose(refEvent)} |=>
{[*offset:tolerance]; rose(stimulus_2)}))@(posedge clock);

The proposed InputSynchronizationConstraint is semantically equivalent to
the TADL2 specification defined by Formula 5.15, since it also specifies a be-
havior, where all stimulus events should concurrently occur within the same
tolerance window, from a reference point in time denoted by t. In the PSL
formula, the dataEvent refEvent is used as reference event occurrence.

Output Synchronization Constraint

An OutputSynchronizationConstraint specifies how far apart the responses
that belong to a specific stimulus must occur. All responses must refer to
the same stimulus event. It is the earliest of the event occurrences for each
response that is required to lie within the tolerance window.

A typical application example of this constraint is the ABS in a car, where
the individual brake activations should be applied simultaneously on the four
wheels. Figure 5.18 and Formula 5.17 show the attributes and the logic equiv-
alence of the OutputSynchronizationConstraint respectively.

22 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderborn

Output Synchronization

Figure 5.18: Synchronization Constraint

(∀y ∈ scope.stimulus : ∃t : ∀i;∃y ∈ scope.responsei)∧
(∀i;∀y′ ∈ scope.responsei : y≤ y′)∧
(0≤ y− t ≤ tolerance)

(5.17)

where t denotes a reference point in time and scope is of type EventChainOut.

The OutputSynchronizationConstraint can be use to specify a system behav-
ior, where the ABS torque values must be sent by all ABS controllers within

94

Chapter 5. Timing verification

a time frame of 360µs after each bus communication cycle start. This can be
done using the following TADL2 expression.

(∀y ∈ cycleStart : ∃t : ∀i ∈ { f r, f l,rr,rl};∃y ∈ absCtrli)∧
(∀i ∈ { f r, f l,rr,rl};∀y′ ∈ absCtrli : y≤ y′)∧
(0≤ y− t ≤ tolerance)

(5.18)

Given an EventChainOut that composed of one stimulus and n= 2 responses,
the OutputSynchronizationConstraint can be formalized and expressed with
PSL as follows:

1 property outputSynchronizationConstraint (boolean stimulus ,
response_1 , response_2; const offset , tolerance) = always
(({rose(stimulus)} |=> {[*offset:tolerance];
rose(response_1)}) && ({rose(stimulus)} |=>
{[*offset:tolerance]; rose(response_2)}))@(posedge clock);

The proposed outputSynchronizationConstraint constraint is semantically equiv-
alent to the TADL2 specification defined in Formula 5.17, since it also spec-
ifies a behavior, where the response-events should concurrently occur within
the same tolerance window after each occurrence of the stimulus.

5.2.9 Order Constraint

74 Gilles Bertrand Defo

Cooperative Computing & Communication LaboratoryCooperative Computing & Communication Laboratory

© Atos and University of Paderbornlles Bertrand Defo

Figure 5.19: Order constraint

The OrderConstraint can basically be seen as a precedence constraint (see
Figure 5.19). It imposes an order between the occurrence of two events. This
timing constraint is particularly important for data synchronization, where
the order of occurrence of read and write transactions should be maintained.
Formula 5.19 shows the logical expression of the order constraint.

∀i : (∃x : x = le f t(i)⇒∃y : y = right(i))∧ (x < y) (5.19)

95

Chapter 5. Timing verification

Formula 5.20 gives an example for the application of the OrderConstraint,
where x and y denote the timing point of the occurrences of the events wheelSpeedi
and absCtrli respectively. The formula states that the wheelSpeed value has
to be read before computing the ABS torque value.

∀i : (∃x : x = wheelSpeedi⇒∃y : y = absCtrli)∧ (x < y) (5.20)

An OrderConstraint can be formalized and expressed with PSL using the
before directive as follows:

1 property orderProperty (boolean left; boolean right) = always
({left before! right})@(posedge clock);

The orderConstraint can be expressed in PSL using the before operator. In
PSL, a before property holds in the current cycle of a given path if and only
if either the left operand holds at the current cycle or at some future cycle,
or the left operand holds strictly before the right operand holds, or the right
operand never holds. Therefore, this directive is suitable to express a prece-
dence constraint.

5.3 Verification of the timing properties

In a concrete simulation model, each PSL declaration will directly refer to
signals of the DUV as well as to formal parameters. This will be realized
by instantiating the PSL declaration. The instantiation of a PSL declaration
creates an instance of the named declaration and provides an actual parameter
for each formal parameter. In the instance created by the instantiation, each
actual parameter expression in the actual parameter list of the instantiation
replaces all references to the formal parameter in the corresponding position
of the formal parameter list of the named declaration (please refer to [52],
page 104 for further details).

The verification of the timing properties takes place in the third phase of our
design flow (see Chapter 4). In this phase, the design model is verified using
the specified timing properties.

The timing verification step is a tool dependent process step. Therefore, this
process step will be explained in Chapter 6 using a case study. The case study
discusses the verification of the SystemC model of a brake by wire system.

96

Chapter 5. Timing verification

5.4 Summary

The main contributions in this chapter are a) the extension of the IP-XACT
standard with timing extensions, b) the elaboration and definition of trans-
formation rules from defined IP-XACT-timing-constraints to executable PSL
formulas. Hereby, the transformation rules are compliant to the TADL2 se-
mantic. The provided transformation rules could then be implemented by a
PSL code generator, for instance.

The chosen timing constraints are originated from the Timing Augmented
Description Language 2 (TADL2)(see Section 2.2.3). TADL2 is an output of
the European funded research project TIMMO2USE. I was part of the project
team that worked out the constraints definition and validation [82, 80].

Moreover, the focus lied here on the subset of the TADL2 timing constraints
related to data transmission (send/write) and reception (receive/read). Gen-
erally speaking, a timing event denotes any form of identifiable state change
of a system at run-time, that can be constrained with respect to timing. These
changes can occur at distinct points in time; referred to as occurrences of the
event.

Since the main focus of this thesis is the data synchronization, the presented
set of timing constraints are typical for the application area considered in this
thesis which the design of automotive bus network.

The semantic behind the timing constraint elements defined by TADL2 is
specified using a first order logic notation, which make the transformation
to PSL a lot easier since PSL is a language that can be used to formulate
standard temporal logics formulas [52].

As mentioned in the previous section, the verification of the timing properties
takes place in the third phase of our design flow (see Chapter 4). Timing
verification is a tool dependent process step. Therefore, this process step will
be demonstrated in Chapter 6 using a case study. The case study discusses
the verification of the SystemC model of a brake by wire system.

In the chapter we do not provide a proof of correctness of our transformation
rules. Therefore the example used in Chapter 6 will also help validate our
transformation rules.

97

Chapter 5. Timing verification

98

Chapter 6

Verification of timing properties: case
study Brake-By-Wire

This chapter describes the timing verification approach by means of an auto-
motive Brake-By-Wire example. This helps evaluate the third phase of our
Restbus simulation design flow.

In order to evaluate this phase of the design flow, the model under verifica-
tion will first be described. Afterward, timing requirements will be specified.
Based on the specification of the timing requirements to be verified, corre-
sponding PSL formulas will be derived. Finally, the results obtained after the
verification process will be presented.

The system model used in this case study is a SystemC model of an auto-
motive BBW application. The model was developed in C-LAB for research
purposes. The application is distributed over a set of ECUs and includes ABS
functionality. Using this simulation model, the following timing constraints
could be specified:

• RepeatConstraint

• StrongDelayConstraint

• RepetitionConstraint

• InputSynchronizationConstraint

• OutputSynchronizationConstraint

• DelayConstraint

99

Chapter 6. EvaluationPSL

6.1 Functional decomposition of the BBW model

The control algorithms of the BBW model was modeled using MATLAB/Simulink [68].
The block diagram of the Simulink model is depicted in Figure 6.1.

Generally speaking, x-By-Wire characterizes the replacement of traditional
components such as pumps, hoses, fluids, belts, vacuum servos and master
cylinders with electronic sensors and actuators [16]. All brake components
are electronically controlled.

A typical BBW system is composed of two main functions that are imple-
mented by the Brake- and ABS-Controller. The Brake controller reads the
wheel speed and brake pedal sensor data to compute the desired brake torque
to be applied at the four wheels. The second functionality realized by the
ABS controller is needed to adapt the brake force applied on each wheel if
the speed of one wheel is significantly smaller than the estimated vehicle
speed. In this case, the brake force is reduced on that wheel until it regains
a speed that corresponds to the estimated vehicle speed. The ABS controller
acquires wheel sensor data from each wheel and determines the estimated
vehicle speed [81].

The SystemC simulation model was built from C code generated using the
MATLAB tool Real-Time Workshop [69] from a Simulink model developed
within the department. Basically the C code of the BBW model was wrapped
into SystemC modules.

Afterward, a simulation model of the FlexRay bus communication network
was added to the overall simulation model. The topology of the simulation
model can is depicted in Figure 6.2.

As shown in the figure, the application is distributed over a network of five
controller nodes: four ABS controllers and a so-called CarEnvModel node.
Each ABS node implements the aforementioned functionality for a specific
wheel. In our simulation model, the CarEnvModel node implements the
Brake controller functionality for all wheels. Moreover, its functionality in-
corporates both the simulation of the vehicle dynamics and a stimulus genera-
tor. The Stimulus generator basically generates data representing the pressure
applied on the brake and acceleration pedals.

The verification of the timing properties is an activity performed in phase 3
of the design methodology (see Chapter 4). However, the timing constraints
to be verified first need to be defined, which is part of phase 2 of the design
process. Since our focus lies on data synchronization, detailed knowledge
about the communication matrix specifying which nodes communicate with
each other and the underlying communication schedule is necessary (see Sec-
tion 2.3.2).

100

Chapter 6. EvaluationPSL

abs_asr

Accel

Brake

ABS

ze

mu

x

Fz

sx

w

v

CAR

1
ze_FR

2
ze_FL

3
ze_RR

4
ze_RL

1
x

2
Fz

3
sx

4
ABS out

ABS on/off

w [rad/s]

v [m/s]

ABS

ABS-Controller FR

ABS on/off

w [rad/s]

v [m/s]

ABS

ABS-Controller FL

ABS on/off

w [rad/s]

v [m/s]

ABS

ABS-Controller RR

ABS on/off

w [rad/s]

v [m/s]

ABS

ABS-Controller RL

5
v out

6
w out

5
mu_FR

6
mu_FL

7
mu_RR

8
mu_RL

9
Accel

10
Brake

11
ABS on/off

12
ABS in

13
v in

14
w in

w (signal 4)

w (signal 2)

w (signal 3)

w (signal 1)

?abs_asr file:///C:/LegacyApp/MATLAB13a/R2013a_64bit/abs_asr_slwebview_files/slwebview.svg

1 of 1 21.11.2014 14:50

Figure 6.1: Block diagram of the ABS system, Source: C-Lab

101

Chapter 6. EvaluationPSL

ABS_FL ABS_FR

ABS_RRABS_RL
CarEnvModel

(Stimulus

Generator)

FlexRay Bus

ABS_FL

FlexRay bus

Brake-By-Wire

ABS_FR ABS_RL ABS_RR

CarEnvModel

(Stimulus

generator)

Figure 6.2: Network topology of the functional components of the BBW model

Based on this information, timing requirements can then be derived. Ta-
ble 6.1 shows the communication matrix and FlexRay schedule of the BBW
simulation model. The data provided by the CarEnvModel node are wheel
speed (w XX) for each wheel and the actual vehicle speed (V). These data
are required by each ABS controller node to compute the actual brake torque
(abs XX) to be applied on each wheel.

Moreover, the configuration of the FlexRay network was done using the
FlexRay network configuration tool flexConfig [38]. The bus communica-
tion cycle duration was set to one millisecond (gdCycle = 1ms) [41], which
was the sampling rate of the MATLAB models.

The FlexRay communication cycle was segmented into a static segment with
a duration of 400us and a Network Idle Time (NIT) with a duration of 600us.
No dynamic segment nor symbol window were used1. The static segment is
further subdivided into 10 communication slots.

Slots 1 2 3 4 5 6 7 8 9 10
Data V w FR w FL w RR w RL abs FR abs FL abs RR abs RL -
CAR w w w w w r r r r -

ABSCtrlFR r r - - - w - - - -
ABSCtrlFL r - r - - - w - - -
ABSCtrlRR r - - r - - - w - -
ABSCtrlRL r - - - r - - - w -

Table 6.1: BBW communication matrix

1See Section 2.3.2 for more detail on the definition of the FlexRay communication schedule

102

Chapter 6. EvaluationPSL

6.2 Instrumenting of the simulation model

The goal of the verification process in this case study was to find out if net-
work data are sent and received “on time” by the respective controller nodes
according to the predefined FlexRay communication schedule depicted in Ta-
ble 6.1. Since our main application scenario in this thesis is the integration
and reuse of existing components, the design under verification should dis-
pose of appropriate interfaces in order to monitor and analyze the design.

This section describes a possible approach that can be used to make data
relevant transaction visible in the overall test-environment. In this case study,
the interfaces of the controller nodes were extended to be able to signal read
and write transactions related to the specified timing events.

For instance, to notify the transmission of the brake torque by an ABS con-
troller, the signal absCtrlVR sent was added to the ABS controller model.
Following this approach, interfaces of all network nodes were systematically
extended.

6.3 Reference model

Concerning the actual validation of the derived PSL formulas, we generated a
reference waveform displaying event traces from the expected design behav-
ior during a simulation run. The generated waveform is shown in Figure 6.3.
As depicted in the figure, the waveform reflects the predefined FlexRay com-
munication schedule presented in Table 6.1. The generation of the event
traces figure was performed using the EDA tool QuestaSim [45].

Thus, this waveform provides a golden model that will be used later during
the comparison of the simulated behavior with the expected behavior. Ad-
ditionally, this also helps us validate our defined PSL transformation rules.

Moreover, Figure 6.3 displays all related events that should occur during one
communication cycle of the predefined FlexRay cycle. Furthermore, event
occurrences are depicted by a rising edge in the signal path. As already men-
tioned, our communication cycle has a duration of 1ms.

The clock used by the components for the notification of the transaction
events was configured with a period of 40us which corresponds to the du-
ration of the slot duration within the FlexRay schedule.

103

Chapter 6. EvaluationPSL

Figure 6.3: Waveform of the simulation run showing traces of all data events under observation

6.4 Specifying the timing requirements

The timing requirements were derived from the bus communication sched-
ule. In this case study, only the static segment of the FlexRay communica-
tion schedule defined in Section 2.3.2 was used to configure the network bus
communication. As a result, the bus communication cycle is composed of
the static segment subdivided into 10 equal slots with a slot duration of 40µs
and a NIT of 600µs. This results in a communication cycle duration of 1ms.
The communication matrix can be seen in Table 6.1.

The following requirements were derived:

1. RepeatConstraint: The wheel speed value must be repeatedly transmit-
ted by the CarEnvModel to the ABS FR controller. Therefore, the no-
tification of transmission by means of the event (w Sent To VR) must
always occur once within a time range of [0 : 1] milliseconds. Since
the clock used for the evaluation of of the PSL properties is configured
with a period of 40µs, this corresponds to the following range: [0 : 25]
clock ticks.

2. StrongDelayConstraint: The notification of the event absCtrlVR sent
must always occur within a range of [0 : 1] milliseconds ([0 : 25] clock
ticks) immediately after the notification of the event vA sent.

104

Chapter 6. EvaluationPSL

3. RepetitionConstraint: The notification of the event w Sent To VR can
and must always occur within a range of [0 : 1] milliseconds ([0 : 25]
clock ticks).

4. AgeConstraint: The vehicle speed data processed by the ABS Con-
troller must be at most 1 milliseconds old. This corresponds to the bus
communication cycle duration.

5. ReactionConstraint: After the reception of the vehicle speed value, the
ABS torque value must be computed and transmitted within a time
frame of [0 : 200]µs

6. InputSynchronizationConstraint: The wheel speed data must be simul-
taneous acquired by all ABS controllers within a time window of 360µs
after each bus communication cycle start.

7. OutputSynchronizationConstraint: The ABS torque values must be sent
by all ABS controllers within a time frame of 360µs after each bus
communication cycle start.

6.5 Evaluation results

The evaluation was performed using the EDA tool QuestaSim [45]. Ques-
tasim is an electronic design verification tool from Mentor Graphic that pro-
vides an advanced verification platform with multi-language simulation sup-
port. The languages supported are SystemVerilog, SystemC, VHDL, Verilog
and PSL. The verification unit used used to group all verification directives
and PSL statements is shown in Appendix A.

The evaluation results are presented using the following structure: For each
timing requirement, the corresponding PSL assertion directive will be shown,
additionally waveforms displaying each assertion directive will be shown. Fi-
nally, a table summarizing the number of assertion passes and fails will be
given. The waveform window can be interpreted as follows: triangles point-
ing downwards (red) indicate that the given assertion of the PSL property has
failed, whereas the triangles pointing upwards (green) indicate that the asser-
tion has passed. The simulation of the BBW model was done for a duration
of 81ms, which corresponds to the simulation of 81 FlexRay communication
cycles.

6.5.1 Repeat, StrongDelay and Repetition timing constraints

The following Property definitions and assertions list the basic timing con-
straints derived from the requirements specification. Figure 6.4 depicts a

105

Chapter 6. EvaluationPSL

waveform showing an extract of the event traces that resulted the simulation
run.

1 property RepeatConstraint;
2 RepeatConstraint = always {[*0:25];

rose(w_Sent_To_VR)}@(posedge clock);
3 assert RepeatConstraint;

1 property StrongDelayConstraint;
2 StrongDelayConstraint = always {rose(vA_sent)} |=> {[*0:25];

rose(absCtrlVR_sent)}@(posedge clock);
3 assert StrongDelayConstraint;

1 property RepetitionConstraint;
2 RepetitionConstraint = always (({[*0:25]; rose(vA_Rec_By_VR)})

&& ({rose(vA_Rec_By_VR)} |=> {[*0:8];
rose(absCtrlVR_sent)}))@(posedge clock);

3 assert RepetitionConstraint;

As a reference timing point for the definition of the RepetitionConstraint,
the event vA Rec By VR was chosen (denoted by X in Formula 5.6). Con-
cerning the RepeatConstraint, the specified range ([0 : 1]milisecond) was
imposed on the event vA Rec By VR, and a StrongDelayConstraint with
the range [0 : 400]µs was imposed between the occurrences of the events
vA Rec By VR and the actual event under observation absCtrlVR sent.

Figure 6.4: Assertion analysis window for the basic timing constraints

The waveform depicted in Figure 6.4 shows an extract of the event traces. All
circles highlight some possible assertion results. Concerning the StrongDe-
layConstraint, the first circle highlights the occurrence of the stimulus event

106

Chapter 6. EvaluationPSL

(vA Sent) whereas the second one highlights the occurrence of the response
event (absCtrlVR sent). In the third windows of the figure, the expected oc-
currences of the timing events are highlighted. The overall results of the
analysis generated by the verification tool is summarized in Table 6.2. All
specified basic constraints were satisfied.

Assertion Results Repeat StrongDelay Repetition
Failure 0 0 0
Passes 2010 80 2002

Table 6.2: Assertion analysis results for Repeat-, StrongDelay-, and RepetitionConstraint

6.5.2 Evaluation of the AgeConstraint and ReactionCon-
straint

The following Listings show the PSL property instantiations of the AgeCon-
straint and ReactionConstraint derived from the requirements specification.

1 property AgeConstraint;
2 AgeConstraint = always {vA_Sent[*0:inf]; [*0:25];

absCtrlVL_sent}@(posedge clock)
3 assert AgeConstraint;

1 property ReactionConstraint;
2 ReactionConstraint = always {vA_Rec_By_HL; [*0:5];

absCtrlHL_sent [*0:inf]}@(posedge clock)
3 assert ReactionConstraint;

Figure 6.5: Assertion analysis window for Age- and ReactionConstraints

Figure 6.5 depicts an extract of the recorded timing event traces related to
the AgeConstraint and ReactionConstraint. Furthermore, the figure shows
for illustrative purposes some correlated event occurrences. Table 6.3 shows

107

Chapter 6. EvaluationPSL

the overall results obtained after the simulation run. For the AgeConstraint,
all assertions passed, whereas 1941 assertions out of 2026 failed for the Re-
actionConstraint. The evaluation of the ReactionConstraint could help detect
timing errors, which is an indication that the FlexRay schedule configuration
needs to be optimized.

Assertion results AgeConstraint ReactionConstraint
Failure 0 1941
Passes 2004 85

Table 6.3: Assertion analysis results for AgeConstraint and ReactionConstraint

6.5.3 Evaluation of synchronization related timing Constraints

The assertion directives derived for the synchronization constraint can be
viewed in the following Listings. As derived for the timing requirements,
the InputSynchronizationConstraint was specified on the wheel speed values
received by all ABS controllers. The OutputSynchronizationConstraint was
specified on the ABS torque values sent by all ABS controllers. Both con-
straints had a tolerance window of 360us starting from the notification of the
bus communication cycle start event.

1 property InputSynchronizationConstraint;
2 InputSynchronizationConstraint = always ({rose(busCycleStart)}

|=> {[*0:9]; rose(w_Rec_By_VR)}) && ({rose(busCycleStart)}
|=> {[*0:9]; rose(w_Rec_By_VL)}) @(posedge clock));

3 assert InputSynchronizationConstraint;

1 property OutputSynchronizationConstraint;
2 OutputSynchronizationConstraint = always ({rose(busCycleStart)}

|=> {[*0:9]; rose(absCtrlVR_sent)}) && ({rose(busCycleStart)}
|=> {[*0:9]; rose(absCtrlVL_sent)}) @(posedge clock));

3 assert OutputSynchronizationConstraint;

As shown in Table 6.4 no assertion failed during the simulation run. The
corresponding waveform is depicted in Figure 6.6. The circles highlight some
correlated event occurrences.

Assertion Results InputSynchronization OutputSynchronization
Failure 0 0
Passes 80 80

Table 6.4: Assertion result analysis for Synchronization related constraint

108

Chapter 6. EvaluationPSL

Figure 6.6: Assertion analysis window for SynchronizationConstraints

6.6 Summary and discussion

As one of the main contributions of this thesis we have developed an ap-
proach how to conduct the timing verification process. This was performed
using the EDA tool QuestaSim [45].

In this chapter, we have demonstrated the feasibility of our timing verification
approach by a case study consisting of a SystemC model of a Brake-By-Wire
system including die ABS functionality. Since the design model used was al-
ready correct with respect to the FlexRay communication schedule as shown
by the generated simulation traces in Figure 6.3, this model was also used as
a reference model. To be able to apply this approach, the design interfaces
under observation shall be made visible to the verification environment of
the simulation tool. In some cases depending on the model of the design un-
der verification, this step might require a prior instrumentation of the design
model, which is a relatively simple task.

Some timing errors regarding the ReactionConstraints were detected. The vi-
olation of the ReactionConstraints was related to the granularity of the model.
All timing constraints related to the communication schedule were fulfilled
by the SystemC model as expected. Therefore, no contradiction regarding
the correctness of the transformation rules were found.

This chapter also demonstrates the correctness of the transformation rules
from TADL2 to PSL as introduced in Chapter 5. However, it does not provide
a formal proof of the correctness of the transformation rules.

109

Chapter 6. EvaluationPSL

110

Chapter 7

Synchronization

7.1 Background

7.1.1 Data smoothing: Robust LOWESS/LOESS

Before going into the details of data smoothing, let’s first specify what we
mean with the term data sequence. Data that come as paired observations
are usually displayed by drawing an x− y plot. Plots of y versus x show at a
glance how x and y are related to each other. When the x-values are equally
spaced, their structure is so simple and regular that y often receives most
of the attention. A list of such data may even omit the x-values in favor of
reporting the interval at which the data were recorded.

In this thesis, the term data sequence refers to the y-values. Monthly unem-
ployment rate or daily high and low temperatures at a weather station are typi-
cal examples. When the sequence comes about by recording a value for each
successive time interval, as in these examples, the y-values are also called
time series, since the order of the data values in the sequence is defined by
time. In this thesis, the data sequences in question are sequences where the
x-values are equally spaced. We refer to [94] for further details.

LOWESS/LOESS 1 is an acronym for “Locally Weighted Scatter-plot Smooth-
ing”. This data smoothing technique is also known as locally weighted poly-
nomial regression and was introduced by Cleveland in 1979 [25]. It is a very
popular curve fitting technique that works well on large, and densely sampled
data sets.

1The differentiation between LOWESS and LOESS is ambiguous. Beside the fact that they both use locally
weighted linear regression for data smoothing, they are referred to in some documents as being two different names
describing the same method [26, 71], but in others they are differentiated by the model they use for the regression
process. In [93] for instance, LOWESS is described as a method that uses a linear polynomial, while LOESS uses
a quadratic polynomial. In this thesis, the LOWESS variant will be used.

111

Chapter 7. Synchronization

Let Nn
i=1 = {X1, . . . ,Xn} denote a data sequence of n two-dimensional data

points Xi = (xi,yi) with i = 1, . . . ,n. Further, let the smoothing parameter
be f with 0 < f ≤ 1 and let the span L = f · n be rounded up to the next
larger integer, where L denotes the number of data points to be used for the
computation of each fitted value. Moreover, increasing f also increases the
size of the smoothing window, hence the neighborhood of influential points
and therefore, the smoothness of the smoothed points.

The data smoothing procedure Robust LOWESS is based on robust locally
weighted regression.

During the simple locally weighted regression process, weights (also referred
to as horizontal weights) wk(xi) are computed for all data points Xk, k =
1, . . . ,n in the neighborhood of Xi using a weight function W . The weight
function has to be chosen in such a way that wk(xi) becomes zero for all xk
that are out of the data smoothing window defined by the span L.

1 910 14 1819 27
0

1

i = 1
di = 8

i = 14
di = 4

i = 27
di = 8

xi

w
k(

x i
)

Figure 7.1: Weight function example wk(xi) for leftmost (i = 1), interior (i = 14) and rightmost
(i = 27) data points (span L = 9, f = 0.3, n = 29)

Figure 7.1 depicts the weight function for end- and for interior data point with
a span of L= 9. As depicted in the figure, the weight function is symmetric, if
the smooth calculation involves the same number of neighboring data points
on both sides of the data point to be fitted. Furthermore, the value smoothing
parameter never changes during the whole data smoothing process. For the
leftmost (i = 1) and rightmost (i = 27) data points respectively, the shape of
the weight function is truncated by half. Moreover, for k = i, wk(xi) is the
maximum weight.

On the other hand, the robust locally weighted regression variant includes an
additional calculation of robust weights (also referred to as vertical weights),
which makes the overall process more resistant to outliers. The computation

112

Chapter 7. Synchronization

of the robust weights is based on the value of the residuals yi− ỹi, where ỹi
is the smoothed value obtained from a previous smoothing iteration. Large
residuals result in small weights and small residuals in large weights.

Figure 7.2 depicts the difference between both locally weighted regression
approaches. As it can be seen, the robust regression variant depicted with
blue triangles, is more resistant to outliers in contrast to the standard vari-
ant (depicted with red squares). The original data sequence is depicted with
points.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−2

0

2

Time

Si
gn

al
va

lu
e

raw data (n = 141); lowess; robust lowess (robustIter = 3)

Figure 7.2: Locally weighted regression vs robust locally weighted regression, L = 15, f = 0.1)

Basically, the data smoothing procedure is designed to accommodate data for
which

yi = g(xi)+ εi

holds, where g(x) is the smooth function and εi is a random variable [25]. ỹi
is an estimate of g(xi).

For each i let di be the distance along the x-axis from xi to the outermost data
point within the smoothing window. Thus, the Robust LOWESS algorithm
procedure is defined by the following steps:

Step 1 For each data point xi compute the estimates β̃ j(xi), j = 0, ...,n, of the
parameters in a polynomial regression of degree d using the weighted
least square method 2 with weights wk(xi) for Xk = (xk,yk). The β̃ j(xi)
are the values of β j that minimize

n

∑
k=1

wk(xi)(yk−β0−β1xk− ...−βdxk
d)2.

where

wk(xi) =W
(

xk− xi

di

)
2A least square method minimizes the square distance of every data point and the line of best fit and finds the

coefficients of a polynomial P(X) of degree d that fits the data.

113

Chapter 7. Synchronization

for k = 1, . . . ,n.

Typically, the following tri-cube function is used as weight function:

W (x) =

{
(1−|x|3)3 for |x|< 1
0 for |x| ≥ 1.

(7.1)

Furthermore, a polynomial of degree d = 1 (local linear regression) or
degree d = 2 (local quadratic regression) is typically used, but higher
order polynomials are also possible. Thus, the smoothed data point
at Xi = (xi,yi) is X̃i = (xi, ỹi) where ỹi is the smoothed value of the
regression at xi and

ỹi =
d

∑
j=0

β̃ j(xi)xi
j.

Step 2 Let B be the bi-square weight function that is defined by

B(x) =

{
(1− x2)2, for |x|< 1
0, for |x| ≥ 1,

(7.2)

and let εi = yi − ỹi be the residuals from the current smoothed val-
ues. Let MAD be the median of the absolute deviations |εi|. In statis-
tics, Median Absolute Deviation (MAD) is a robust alternative for the
estimation of the standard-deviation [67]. For an univariate data set
x1, · · · ,xn the MAD is computed as follows:

MAD = Mediani(|xi−Median j(x j)|) ,with 1≤ i, j ≤ n. (7.3)

The robustness weights are defined by

δk = B
(

εk

6MAD

)
.

Step 3 Compute new ỹi for each i by fitting a d-th degree polynomial using
weighted least square method with weight δk ·wk(xi) at (xk,yk).

Step 4 Repeatedly carry out steps 2 and 3 a total of robustIter times. The
final smoothed value ỹi is the robust locally weighted regression fitted
value for each i= 1,2, · · · ,n and the parameter robustIter that specifies
the number of iterations should be specified.

Using the LOWESS method with a span of five, the smoothed values and
associated regressions for the first four data points of a generated data set are
shown in Figure 7.3. Notice that the span does not change as the smoothing

114

Chapter 7. Synchronization

process progresses from data point to data point. However, depending on
the number of nearest neighbors, the regression weight function might not be
symmetric about the data point to be smoothed. In particular, plots (a) and (b)
use an asymmetric weight function, while plots (c) and (d) use a symmetric
weight function.

1 5

xi = 1

(a) i=1

1 5

xi = 2

(b) i=2

1 5

xi = 3

(c) i=3

2 6

xi = 4

(d) i=4
Original(Xi); Smoothed(X̃i)

Figure 7.3: Weighted regression example for i = 1, . . . ,4 and L = 5

7.1.2 Multirate Systems

This section gives a rough introduction into the principles and techniques that
can be used to adapt the sample rate of Multirate systems. For a more detailed
description please refer to [92, 32, 75].

Basically, there exist two types of signals, namely discrete and continuous-
time signals. A continuous-time signal is a time function x(t), which is de-
fined for all time t in an interval, usually an infinite interval. Whereas dis-
crete time signals only have values at discrete points in time n (denoted by
x[n], where n is an integer value).

As shown in Figure 2.3, each sample maintains its voltage level during the
sampling interval T to give the ADC enough time to convert it. This process is
called sample and hold. Since there exists one amplitude level for each sampling
interval, we can sketch each sample amplitude level at its corresponding sam-
pling time instant shown in Figure 2.2, where 14 samples at their sampling time
instants are plotted, each using a vertical bar with a solid circle at its top.

For a given sampling interval T, which is defined as the time span between
two sample points, the sampling rate is therefore given by

fs ¼
1

T
samples per second (Hz):

For example, if a sampling period is T ¼ 125 microseconds, the sampling rate is
determined as fs ¼ 1=125� s ¼ 8,000 samples per second (Hz).

After the analog signal is sampled, we obtain the sampled signal whose
amplitude values are taken at the sampling instants, thus the processor is able
to handle the sample points. Next, we have to ensure that samples are collected
at a rate high enough that the original analog signal can be reconstructed or
recovered later. In other words, we are looking for a minimum sampling rate to
acquire a complete reconstruction of the analog signal from its sampled version.

Analog
filter

ADC DSP DAC
Reconstruction

filter

Analog
input

Analog
output

band-limited
signal

Digital
signal

Processed
digtal signal

Output
signal

F IGURE 2.1 A digital signal processing scheme.

0 2T 4T
−5 nT

6T 8T 10T 12T

Analog signal/continuous-time signal

Signal samplesx (t)

Sampling interval T5

0

F IGURE 2 .2 Display of the analog (continuous) signal and display of digital samples
versus the sampling time instants.

Tan: Digital Signaling Processing 0123740908_chap02 Final Proof page 14 21.6.2007 10:57pm Compositor Name: MRaja

14 2 S I G N A L S A M P L I N G A N D Q U A N T I Z A T I O N

Figure 7.4: Display of the analog (continuous) signal and display of digital samples versus the
sampling time instants [92].

115

Chapter 7. Synchronization

Computers or Digital Signal Processors (DSPs) typically work with discrete-
time signals. This is due to the fact that continuous-time signals contain
infinite number of points. Infinite number of points are not appropriate to
be processed by DSPs or computers, since they would require an infinite
number of memory and processing power for computation [32]. As shown in
Figure 7.4, discrete-time signals result from the sampling of continuous-time
signals, but there are also signals that are discrete by nature like the stock
market for instance.

Since there exists one amplitude level for each sampling interval, each sample
amplitude level can be sketched at its corresponding sampling time instant
(see Figure 7.4) where 14 samples at their sampling time instants are plotted,
each using a vertical bar with a solid circle at its top.

Moreover, the dynamics of continuous-time signals is represented using dif-
ferential equations (derivatives and integrals). The analysis of the dynamic of
such continuous-time signals is done using the Laplace transforms, if they are
Linear Time Invariant (LTI)3. Furthermore, to do frequency domain analysis
Fourier Transforms (FT) is typically used. Whereas, the dynamic of discrete
time signals is represented by means of difference equations (differences and
sums); analysis is done using Z-transforms, and finally Discrete time Fourier
Transforms (DFT) is typically used for frequency domain analysis.

The choice of the domain (time or frequency) for signal analysis depends
on the type of application context. For example, looking at continuous-time
signals, both Laplace transforms and FT are very closely related. Laplace
transforms are more suitable for the analysis of control systems, while FTs
are more suitable for communication systems where signal frequency values
are important.

For frequency domain analysis, the representation of a digital discrete signal
is given in terms of its frequency components. For this purpose, the signal
spectrum needs to be developed. The algorithm transforming time domain
signal samples into the frequency domain components is known as DFT. The
DFT establishes a relationship between the time domain representation and
the frequency domain representation [75].

As shown in Figure 7.5, spectral plots are more adequate to display frequency
information of digital signals. The figure illustrates the time domain repre-
sentation of a sinusoid characterized by 32 samples and sampled at a rate
of 8000Hz; the bottom plot shows the frequency domain representation (sig-
nal spectrum). The signal spectrum clearly shows that the amplitude peak is
located at the frequency of 1000Hz in the calculated spectrum.

3LTI systems can be specified in terms of its impulse, transfer function, or frequency response [75].

116

Chapter 7. Synchronization

0 5 10 15 20 25 30
−5

0

5

Sample number n

x
(n

)

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

Frequency (Hz)

S
ig

n
a

l
S

p
e

c
tr

u
m

Figure 7.5: Example of the digital signal and its amplitude spectrum [92]. The signal is sampled
at a rate of 8000Hz.

Multirate systems are complex systems composed of several interconnected
sub-components operating with different sampling rates (sampling frequen-
cies). The sampling rate defines the number of samples per unit of time
(usually seconds). Speech and audio processing are typical application areas.
To keep the system synchronized, rising or lowering of the sample rates is
required. Basically, the sampling rate of a signal can be manipulated in three
different ways [32]:

• Decimation/Downsampling: reduction of the sampling rate by an inte-
ger factor M.

• Interpolation/Upsampling: increase of the sampling rate by an integer
factor L.

• Resampling: changing the sampling rate by a non-integer factor (L/M).
This is a combination of both decimation and interpolation, and de-
scribes the interpolation with factor L followed by a decimation with
Factor M.

7.1.3 Downsampling

Downsampling refers to the reduction of a sequence of data by an integer
factor M > 0 as shown in Equation 7.4 [92].

y(m) = x(mM). (7.4)

117

Chapter 7. Synchronization

Equation 7.4 denotes the downsampling of a data sequence x(n) by an inte-
ger factor M, where y(m) denotes the downsampled sequence resulting from
the selection of every M-th data point (sample). This is illustrated in the
following example.

Let’s consider an original data sequence x(n) : 9,8,5,9,10,7,5,3,−1,−4,−6,
− 6,−5,−3, · · · with a sampling period T = 0.1 seconds (sampling rate is
fs =

1
T = 10 samples per second) and a downsampling factor of M = 3.

Hence, the resulting downsampled sequence is y(m) = 9,9,5,−4,−5, · · ·
with a corresponding sampling period of T = 3 ∗ 0.1 = 0.3 seconds (sam-
pling rate of 3.33 samples per second).

This rather trivial example is adequate to illustrate the basic idea behind
downsamling. However, the reduction of the sampling frequency may lead to
the distortion of the original signal in the time domain and to an overlapping
of the signal spectrum in the frequency domain. This is referred to as Alias-
ing [66]. To overcome this problem, the conditions stated in Formula 7.5
must be fulfilled.

fs ≥ 2 · fsignal. (7.5)

Formula 7.5 is the Nyquist sampling criterion derived from the Nyquist-
Shannon sampling theorem [66]. The theorem basically states that for a uni-
formly sampled system, the original signal can perfectly be recovered if the
sampling frequency is at least twice as large as the highest frequency compo-
nent of the original signal to be sampled [92].

After the downsampling operation, the new sampling frequency is

fsM =
1

MT
=

fs

M
, (7.6)

where fs denotes the original sampling rate.

Hence, the Nyquist frequency 4 is defined as follows:

fsM

2
=

fs

2M
. (7.7)

4The Nyquist frequency is named after the electronic engineer Harry Nyquist [18] and is sometimes referred to
as the folding frequency of a sampling system.

118

Chapter 7. Synchronization

Formula 7.7 states that the Nyquist frequency is half of the sampling rate of a
discrete signal processing system. Therefore, to avoid aliasing noise into the
downsampled data sequence, the following equation should hold

fmax <
fsM

2
, (7.8)

where fmax denotes the highest frequency component of the original signal in
the frequency domain.

0

0

1

0
−2fsM f sM 2f sM

Anti-aliasing

filter H(z)
↓M

f

−

f

−

f

−

fs s s s

/ 2

−f s / 2

f s / 2

f s / 2

f

f

f

fs

s

s

sM =

f sM = f / Ms

f

M
s

x(n)

X(f)

W(f)

Y(f)

H(f)

w(n) y(m)

f (Hz)

f (Hz)

f (Hz)

f (Hz)

−
2

f sM

2

f sM

0−f −fs s / 2 f s / 2 f

−f

s

sM

2

f sM

2

f sM

2

f sM−

2

f sM−

Figure 7.6: Frequency domain: spectrum after downsampling [92]

Figure 7.6 depicts a general block diagram for a typical downsampling pro-
cess. As shown in the figure, the original signal x(n) is first processed by
an anti-aliasing filter H(z) before downsampling. Typically, an anti-aliasing
filter is a Low-pass filter that passes low-frequency signals and reduces the
amplitude of signals with higher frequencies than the cutoff frequency5. The
filtered output can be written as

W (z) = H(z)X(z). (7.9)

Where X(z) is the z-transform of the original data sequence x(n), and H(z) is
the Low-pass filter transfer function. After anti-aliasing filtering, the down-
sampled signal y(m) takes its value from the filter output as:

y(m) = w(mM). (7.10)

5A cutoff frequency is a boundary in a system’s frequency response at which energy flowing through the system
begins to be reduced rather than passing through.

119

Chapter 7. Synchronization

The corresponding spectral plots for x(n)(|X(f)|), w(n)(|W (f)|) and y(m)(|Y (f)|)
and H(z) (H(f)) are shown on the right hand side of the figure. Basically, H(f)
filters out all frequencies above fsM

2 .

Interpolation, Upsampling

Upsampling describes the process of increasing the sampling rate by a pos-
itive integer factor L [92]. This process is typically described as follows:

y(m) =

{
x(m

L), m = nL
0, otherwise

(7.11)

where n = 0,1,2, · · · . x(n) is the data sequence to be upsampled by a factor of
L, and y(m) is the upsampled sequence. The basic scheme behind upsampling
is illustrated in Figure 7.7.

As an example, let x(n) : 8,8,4,−5,−6, · · · and L= 3. Upsampling is done by
adding L−1 zeros between the samples of the original data sequence. The re-
sulting upsampled sequence is: w(m) : 8,0,0,8,0,0,4,0,0,−5,0,0,−6,0,0, · · · .
Afterward, the upsampled signal w(m) is smoothed using an interpolation fil-
ter.

m

m

n

0 2 4 6 8 10 12 14 16

0 2 4 6 8 10 12 14 16

0 1 2 3 4

Interpolation

filter H(z)

x(n)

x(n)

w(m)

w(m)

y(m)

y(m)

↑L

5

f Lf Lfs s s

A

(a) Time domain

0

1

0

0

Interpolation

filter H(z)
↑L

x(n)

X(f)

H(f)

Y(f)

W(f)

w(m) y(m)

f Lf fs s sL = Lf

−

Lf fs s

sL = Lf

−

f −fs s s

/ 2 f s / 2 f

−

f −fs s s

0/ 2

−f −fs s / 2

−f s / 2 f sL / 2−f sL / 2

f s / 2

f s / 2

f s / 2

f

f f

f

−

f

−

fs

s sL

sL

sL sL

f (Hz)

f (Hz)

f (Hz)

f (Hz)

B

(b) Frequency domain

Figure 7.7: Interpolation [92]

120

Chapter 7. Synchronization

Analogously to downsampling, assuming that the data sequence has a current
sampling period T , the Nyquist frequency is given by fmax =

fs
2 . The new

sampling period is T
L , and the new sampling frequency is changed to:

fsL = L fs. (7.12)

The upsampling operation causes the introduction of unwanted spectral repli-
cas in the frequency range from 0 Hz to the new Nyquist limit (L fs = 2 Hz).
Those included spectral replicas are then removed using the interpolation fil-
ter. To remove those included spectral replicas, an interpolation filter with
a stop frequency edge of fs = 2 Hz must be attached, where the normalized
stop frequency edge is given by

Ωstop = 2π

(
fs

2

)
∗
(

T
L

)
=

π

L
radians. (7.13)

As shown on the right hand side of Figure 7.7, the desired spectrum for y(n)
is obtained after the filtering process. For further details see [92].

7.2 Our synchronization approach

Synchronization is fundamental for a wide range of applications. It refers
to two distinct, but related concepts: synchronization of processes, and syn-
chronization of data. Process synchronization refers to the general idea that
multiple processes are to join or handshake at a certain point in time.

Data synchronization, on the other hand, describes the process of establishing
data consistency between a source and a target process and the continuous
harmonization of data over time. Since data is collected at different points in
time and possibly from different sources, accurate reconstruction of data is
necessary to ensure its integrity.

The synchronization approach presented in this thesis makes use of tech-
niques applied in the field of Multirate systems described in Section 7.1.2.

As discussed in Chapter 2, electronic systems can be organized into three
main categories: control, measurement and communication. Control systems
are further subdivided into open-loop control and closed-loop control.

One application of the developed synchronization approach is depicted in
Figure 7.8, it mainly targets Restbus simulation of measurement and control
applications. This is particularly suitable for realistic situations where the
Restbus simulator has a lower data processing rate than the bus network. In
that case, at run-time, the bus network will generate much more data than the

121

Chapter 7. Synchronization

simulator can process (Undersampling) and inversely the simulator will not
produce network data fast enough (Oversampling).

Hardware

ECU
under test

Testbench

Restbus Simulator (Host PC)

Synchronization

ECU 1 ECU n

real-time bus

Slow System

Synchronization

Fast System

Figure 7.8: Application scenario of the synchronization algorithm

Our synchronization mechanism ensures a continuous communication be-
tween the Restbus simulator (RBS) and the bus network by dynamically
adapting to the variation of the data processing speed of the simulated model.

The approach makes use of a special downsampling method during which
special values such as peaks are detected. Peaks can be very important for
the simulation of systems like steer-by-wire, where a peak represents the
maximum steering angle, or an active damping system where a peak value
can result from the shock of a wheel on a ramp. In those cases they are not
outliers but specific values that need to be kept during our synchronization
procedure.

The detected values can then be forwarded to the Restbus simulator. Fur-
thermore, only values that do not affect the waveform of a data sequence are
suppressed. Since the data exchanged between the Restbus simulator and
the bus network is only used for functional testing or validation, the slight
distortion of the waveform of the original data sequence resulting from the
downsampling procedure is neglected. This distortion is caused by the viola-
tion of the Shannon-Nyquist sampling theorem discussed in Section 7.1.2.

To increase the data processing rate of the Restbus simulator (upsampling),
our approach uses a simple interpolation technique, that consists of repeating

122

Chapter 7. Synchronization

the last value produced by the Restbus simulator. More complex interpolation
techniques could also be applied, especially when the behavioral characteris-
tics of the simulated components is given [32].

In the following sections, a detailed description of the Up- and Downsam-
pling procedures will be given.

7.3 Upsampling

Figures 7.9 and 7.10 illustrate the oversampling problem. The example in
Figure 7.9 shows two communicating components, a sender and a receiver
where TR denotes the sampling period of the receiver, and TS the data trans-
mission rate of the sender. Here, the sender is assumed to have a lower data
transmission rate than the sampling period of the receiver (i.e.: TS ≤ TR). As
shown in Figure 7.10 the receiver will not always get valid data.

Sender (TS) Synchronization (TS ≤ TR) Receiver (TR)

Figure 7.9: Synchronization problem, Receiver faster than sender

0 1 2 3 4
−1

−0.5

0

0.5

1

TS

TR[ms]

Si
gn

al
va

lu
e

data sent data received

Figure 7.10: Problem: missing data at time 2 ms during communication between a slow sender
and a fast receiver

A possible approach is to fill the missing values by mean of interpolation.
The simplest interpolation technique is to repeat the last valid value. This is
depicted in Figure 7.11. Complex interpolation functions can also be used if
the behavior of the sender (simulated node) is known. Based on that behavior
future values can be predicted.

123

Chapter 7. Synchronization

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

TR[ms]

Si
gn

al
va

lu
e

data received interpolated

Figure 7.11: Interpolation: repetition of last valid value received

7.4 Downsampling

Figure 7.12 shows the structure of the buffer used for the synchronization
process. As depicted in the figure, the buffer consists of a three level FIFO-
based queuing mechanism. After the initialization phase of the buffer, in-
coming date migrate from the top to the bottom, that is, from the receive-
Queue down to the SendQueue over the ProcessQueue. Both ProcessQueue
and SendQueue have the same fixed-size, whereas the ReceiveQueue has a
dynamically growing size.

Synchronization buffer (TS ≤ TR)
Sender

(period TS) ReceiveQueue
dynamic

ProcessQueue

SendQueue

Receiver
(period TR)

Figure 7.12: Synchronization buffer: 3 level queuing mechanism sender faster than receiver.

A buffer is instantiated for each data exchanged between sender and receiver.
Complex data structures combining more than one data can also be built for
more efficiency. The synchronization process itself is triggered each time
data is received from the sender; in the case of Restbus simulation, at the
end of each bus communication cycle. The procedure is subdivided into an
initialization and a main phase where each phase consists of several steps.

124

Chapter 7. Synchronization

7.4.1 Main phase

As depicted in Figure 7.13, during the main phase of the synchronization
process, incoming data is always inserted into the ReceiveQueue. The Pro-
cessQueue is only used in the main phase as an intermediate buffer between
the ReceiveQueue and the SendQueue, in order to maintain a seamless fluid
communication between the sender and the receiver. Thus, the main phase of
the synchronization process is structured as follows:

Step1 After the newly received data has been stored into the ReceiveQueue,
try to send oldest data from the SendQueue to the receiver. If the
SendQueue is empty then go immediately to Step2. If the receiver
is not ready, wait for the next communication cycle and try sending the
oldest data again. This Step is depicted in Figure 7.13

Synchronization Buffer
Sender
(fast)

1 dynamicReceiveQueue

ProcessQueue

SendQueue

Receiver
(slow)

2

Figure 7.13: Incoming data are inserted into the ReceiveQueue (1). Data are taken form the
SendQueue and sent to the receiver based on the FIFO principle (2)

Step2 Move content of the ProcessQueue to the SendQueue, then go imme-
diately to Step3 (see Figure 7.14a (3)).

Step3 As depicted in Figure 7.14a, after the the content of the ProcessQueue
has been moved (3), start the downsampling procedure on the con-
tent of the ReceiveQueue (4), then go to Step1 and wait for the next
communication cycle. The downsampling process runs in a parallel
process.

The result of the downsampling procedure in Step3 is stored into the Pro-
cessQueue. Moreover, the downsampling process does not have to complete
within the same synchronization step, since it runs as a separate process.
However, it should yield before the SendQueue gets empty in order to main-
tain a seamless continuous communication. If this happens, the downsampled
data sequence is discarded and the SendQueue is filled with the content of the
ReceiveQueue based on the FIFO principle.

125

Chapter 7. Synchronization

Synchronization Buffer
Sender
(fast)

1 dynamic

4 downsampling*

3 move

ReceiveQueue

ProcessQueue

SendQueue

Receiver
(slow)

2

(a) As soon as SendQueue is emptied

Synchronization Buffer
Sender
(fast)

dynamicReceiveQueue

ProcessQueue

SendQueue

Receiver
(slow)

(b) Synchronization buffer after the downsampling operation

Figure 7.14: Downsampling during the main phase of the synchronization process

7.4.2 Initialization phase

Figure 7.15a illustrates the first step of the initialization phase. Each time
new data is received from the sending node, the synchronization process
first tries to forward it to the receiving node. In case of failure the data is
stored into the SendQueue, which is a FIFO queue. This goes on until the
SendQueue becomes full. Afterward, incoming data will are inserted into the
ProcessQueue (as depicted in Figure 7.15b). After completion of the initial-
ization phase, the ProcessQueue will only be used as an intermediate buffer
between the ReceiveQueue and SendQueue at run-time and as target for the
downsampling process. This enables a continuous communication between
sending and receiving nodes.

The initialization phase of the synchronization process ends as soon as the
ProcessQueue becomes full (Figure 7.16).

126

Chapter 7. Synchronization

Synchronization Buffer
Sender
(fast)

dynamic

1

ReceiveQueue

ProcessQueue

SendQueue

Receiver
(slow)

2

(a) Incoming data are inserted into and processed out of the SendQueue
based on the FIFO principle

Synchronization Buffer
Sender
(fast)

dynamic

1

ReceiveQueue

ProcessQueue

SendQueue

Receiver
(slow)

2

(b) Incoming data are inserted into the ProcessQueue and processed out
of the SendQueue based on the FIFO principle

Figure 7.15: Initialization phase of the synchronization process

7.4.3 Downsampling with peak detection

Downsampling

This approach targets the synchronization between two nodes with different
data processing rates. Further, our synchronization approach was particu-
larly developed for situations where the sending node operates at a higher
frequency than the receiving node.

Synchronization Buffer
Sender
(fast)

dynamic

1

ReceiveQueue

ProcessQueue

SendQueue

Receiver
(slow)

2

Figure 7.16: End of the initialization phase, ProcessQueue is full

127

Chapter 7. Synchronization

We use a special downsampling approach that favors special values during
the data reduction process. In our case peaks are favored. Nonetheless other
selection criteria can also be specified. For instance, the age of the data might
be specified if only the most recent values are relevant.

As discussed in Section 7.1.3, downsampling describes the process of re-
ducing a larger sequence of data Nn

1 = {y1, . . . ,yn} containing n data points
to a smaller data sequence Ňm

1 = {y̌1, . . . , y̌m} containing m data points with
m < n. To achieve this, the data sequence Nn

1 is subdivided into m equal in-
tervals of the length l = n−1

m . For 1≤ i < m, each data point y̌i is chosen out
of the i-th interval based on the following rule:

y̌i =

{
n̂i , if peak n̂ in interval i

y = 1
l ∑y j ∈ Nb(i+l)c

die , else.
(7.14)

Formula 7.14 means that peak values are preferred, otherwise the mean value
is computed in the interval. The following section will discuss the process of
peak detection.

Peak detection

As discussed in Section 7.1, robust data smoothing methods are typically

0 50 100 150 200 250 300 350 400 450

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Data-sequence n = 49

rlowess L = n · 30%
peak value> 6MAD

Figure 7.17: Outliers are filtered out during the data smoothing process

applied to reconstruct the original signal in noisy environments. They are
robust against outliers and can filter out outliers during the data smoothing
process. Figure 7.17 illustrates the result of such a data smoothing process.
The smoothed data sequence is represented using crosses and the original
sequence is represented by points. Peak values are emphasized using circles.

In the context of this thesis, we deal with discrete-time signals, since the
discretization of the continuous-time signal provided by the network bus has
already been conducted by the bus communication controller. Thus, we can

128

Chapter 7. Synchronization

assume that the input data sequence is not noisy. For peak value detection
we make use of the smoothing method Robust LOWESS, that will usually
handle peak values as outliers. The aim here is to keep those values during
the downsampling process in order to have a better approximation of the
original data sequence.

Hence, before starting the actual data reduction process, the input data set is
smoothed. After completion of the smoothing procedure, the difference Dn

1
between the original sequence of data points Nn

1 = y1, . . . ,yn and the robust-
smoothed data sequence Ñn

1 = ỹ1, . . . , ỹn. is built as follows:

Dn
1 = Nn

1 − Ñn
1 =

ε1 = y1− ỹ1
...

εn = yn− ỹn

 , n: number of data points. (7.15)

A data point n̂i is detected as peak value if the following formula holds

n̂i = yi if |εi|> threshold, with i = 1, · · · ,n, (7.16)

where threshold = 6 ·MAD. |εi| denotes the absolute value of the residual
εi. The threshold value used here is the same value used by Robust LOWESS
during the computation of the robust weights (see Equation 7.2). This enables
the recognition of the suppressed data points.

As aforementioned, the downsampling process is applied on the data se-
quence contained by the ReceiveQueue and is triggered, when the SendQueue
gets empty. This process does not have to yeild within the same bus commu-
nication cycle, since the content of the ProcessQueue has been moved to the
SendQueue before starting the process. However, in order to keep a seamless
continuous communication, it should terminate before the SendQueue gets
empty again. This would otherwise cause a distortion of the overall signal
path.

Different factors might influence the quality of the peak detection process. In
addition to the choice of the right smoothing parameter, which is required by
the smoothing method, the size of the queues in the synchronization buffer
also has an impact on both the duration of the downsampling process and the
quality of the peak detection algorithm.

As aforementioned, the ReceiveQueue has a dynamically growing size (de-
noted by size(RQ)), but due the limited amount of memory available on the
simulation PC this size should be minimized.

SendQueue and ProcessQueue have an equal fixed maximum capacity. Choos-
ing the right size for the SendQueue (size(SQ)) and ProcessQueue (size(PQ))
is of great importance, because on the one hand a small queue size would

129

Chapter 7. Synchronization

lead to a situation where the downsampling process will be triggered too of-
ten, and on the other hand choosing a large queue size would increase the
duration of the downsampling process.

Let TS and TR be the respective sampling periods of the sender (bus network)
and the receiver (Restbus simulator), with TS < TR. However, since the data
processing speed (sampling period) of the Restbus simulator is assumed to
be unknown, and the correlation between the size of the Synchronization
buffer and the sampling period ratio cannot be mathematically determined,
the choice of the right parameter con only be experimentally determined by
means of empirical analysis.

The evaluation of the synchronization approach will be discussed in Chap-
ter 8.

7.5 Summary

In this chapter, we have presented a synchronization approach that handles
possible oversampling and undersampling issues that may occur during the
communication between an event-based simulator and a network bus. Fur-
thermore, the proposed synchronization approach is dedicated but not limited
to early validation of open-loop control systems.

As depicted in Figure 4.4, our synchronization approach enables the connec-
tion of a SystemC simulation model to a real bus network or a HIL test plat-
form. Therefore, the approach provides an infrastructure for early validation
of new functionality.

In this thesis we focused on the worst-case scenario where the Restbus sim-
ulator has a lower data processing rate than the hardware bus. This might be
the case for the simulation of complex SystemC models. We use a special
downsampling approach that favors specific values during the data reduction
process in case of oversampling. In the scope of this thesis, peak values were
favored in order to achieve a good approximation of the input signal after
downsampling. Nonetheless other selection criteria can also be specified.

As introduced in Section 7.4.3, our downsampling algorithm incorporates the
data smoothing technique Robust LOWESS [25] for the detection of peak se-
quences. Robust LOWESS is a popular data smoothing technique that works
well on large, and densely sampled data sets. Furthermore, the technique is
robust against outliers.

Since the input signal received from the bus network is always preprocessed
by the bus network communication controller, the resulting data sequence
can be assumed to be noiseless. Therefore, in order to be able to detect peak

130

Chapter 7. Synchronization

sequences, the data smoothing algorithm is configured in such a way that
those peak values are detected as outliers. After their detection they are kept
instead of being suppressed. In case there are no peak values in the data
sequence, the mean value is built.

The presented approach has some limitations. Due to the timing restrictions,
this strongly depends on the complexity of the SystemC model being sim-
ulated on the host-PC. The choice of the configuration parameters for the
synchronization buffer also plays an important role. This key configuration
factors includes the choice of the queue sizes in the synchronization buffer
and the configuration of the data smoothing algorithm.

As already mentioned, since the data processing rate (sampling period) of the
Restbus simulator cannot be determined in most of the cases, and the corre-
lation between the size of the synchronization buffer and the sampling period
ratio cannot be mathematically determined, the choice of the right parameter
needs to be experimentally investigated by means of empirical analysis. The
evaluation of the approach will be done in Chapter 8.

Provided that the size of the synchronization buffer has been correctly set,
the three buffer synchronization approach enables a seamless fluid commu-
nication since the processing queue is only used as intermediate buffer.

Concerning the data processing rate ratio, since our goal is only to approxi-
mate the input signal, the violation of the Nyquist-Shannon can be neglected.

131

Chapter 7. Synchronization

132

Chapter 8

Evaluation of Synchronization ap-
proach

This chapter demonstrates the application of our synchronization approach
described in Chapter 7. The approach was validated on a HIL test environ-
ment consisting of a Steer-By-Wire system. This test environment has been
used in several projects [90, 49].

The chapter is structured as follows: first an overview of the test platform will
be given followed by the presentation of evaluation results. The evaluation
includes the investigation of the impact of the size of synchronization buffer
on communication delay during run-time simulation, and the impact of dif-
ferent configurations of the synchronization algorithm on peak sequence de-
tection. Furthermore, the influence of the sampling rate ratio between sender
and receiver on signal distortion is also investigated.

8.1 Evaluation platform

8.1.1 System Overview

The evaluation platform is composed of a Steer-By-Wire system as real-
world application with hard real-time constraints, and a Restbus simulator
implemented in SystemC running on a PC. During Restbus simulation, bus
messages are exchanged between the physical network nodes and the virtual
ones (i.e., simulated nodes). In such a simulation environment, one or more
simulation PCs can be connected to the bus network.

The architecture of the overall system can be seen in Figure 8.1. The Rest-
bus simulator communicates with the physical network through a FlexRay

133

Chapter 8. Evaluation

device. Figure 8.1 also depicts the two main parts of the Restbus simulator,
which are of the SystemC simulator, that simulates the components under
investigation and the the so-called Adapter component. The Adapter compo-
nent executes tasks like accessing the communication controller (CC) (here
FlexRay PCI Card) using the corresponding CC device driver.

Deliverable D14 1.0 94

In
te

rc
on

ne
ct

H
a

rd
w

a
re

Figure 42: Overview of the steer-by-wire architecture.

6.2.2 Hardware Architecture

6.2.2.1 Steer-By-Wire System

The Steer-By-Wire hardware is composed of two main hardware
components. The first component is an active steering wheel from
Stirling Dynamics (see Figure 43). The wheel is equipped with
sensors and an electric engine as an actuator, which provides the
realistic simulation and measurement of forces and values like
torque, velocity, and rotation angle. The communication of the
steering wheel with other components is realized by a CAN interface.

Figure 8.1: Overview of the steer-by-wire architrecture

8.1.2 Hardware architecture

Steer-By-Wire System

Figure 8.2 shows the platform used for the evaluation of the synchronization
approach. The Steer-By-Wire hardware is composed of two main hardware
components. The first component is an active steering wheel from Stirling
Dynamics [35] (see Figure 8.3). The steering wheel is equipped with sensors
and an electric engine as an actuator, which provides the realistic simula-
tion and measurement of forces and values like torque, velocity, and rotation

134

Chapter 8. Evaluation

Figure 8.2: Test environment

angle. The communication of the steering wheel with other components is
realized by a CAN interface. The second component is a steering and damp-
ing test bed (see Figure 8.4) composed of a ramp with a tire and axle and
an active damping system. There are two electrical actuators that realize the
steering and the active suspension and a load cell to measure feedback forces
of the wheel. For communication, the actuators have a CAN Interface and
analog I/O where the load cell provides analogue values.

Deliverable D14 1.0 95

Figure 43: Active steering wheel.

Figure 44: Steering and damping testbed.

The second component is an in-house setup of a steering and
damping test bed (see Figure 44). The test bed is composed of a
ramp with a tire and axle and an active damping system. There are
two electrical actuators that realize the steering and the active
suspension and a load cell to measure feedback forces of the wheel.
For communication, the actuators have a CAN Interface (CANOpen)
and analog I/O where the load cell provides analogue values.

6.2.2.2 Restbus simulator

The restbus simulator is a standard open source SystemC V2.2
simulator, which runs on a standard simulation host PC. For bus
access, the PC is equipped with a FlexRay communication controller
FlexCard PMC/PCI card from Eberspächer Electronics (Figure 42).

Figure 8.3: Active steering wheel

135

Chapter 8. Evaluation

Deliverable D14 1.0 95

Figure 43: Active steering wheel.

Figure 44: Steering and damping testbed.

The second component is an in-house setup of a steering and
damping test bed (see Figure 44). The test bed is composed of a
ramp with a tire and axle and an active damping system. There are
two electrical actuators that realize the steering and the active
suspension and a load cell to measure feedback forces of the wheel.
For communication, the actuators have a CAN Interface (CANOpen)
and analog I/O where the load cell provides analogue values.

6.2.2.2 Restbus simulator

The restbus simulator is a standard open source SystemC V2.2
simulator, which runs on a standard simulation host PC. For bus
access, the PC is equipped with a FlexRay communication controller
FlexCard PMC/PCI card from Eberspächer Electronics (Figure 42).

Figure 8.4: Wheel and damping testbed

Restbus simulator

The Restbus simulator runs on a standard host PC. For network bus access,
the PC is equipped with a FlexRay communication controller FlexCard PM-
C/PCI card from Eberspaecher Electronics [37] (Figure 8.1). Furthermore,
the host PC used for the Restbus simulation is equipped with a Pentium 4
3GHz processor with 1GB of RAM and a Linux kernel 2.6.24.2, with Debian
4.0 as operating system.

8.1.3 Software architecture

Restbus simulator

The main focus of our Restbus simulation process lies on functional veri-
fication. Timing verification is only done on the pure SystemC simulation
model, which also includes the simulation of the real nodes. As discussed
in Chapter 4, this verification step is done to make sure that the simulated
ECU-nodes are extracted from a consistent SystemC design model from the
timing perspective.

For online simulation, the simulated ECU-nodes are functional SystemC mod-
els implemented at the TLM abstraction level. Therefore, used TLM models
were used to speed up the SystemC simulation process. In fact, we focused

136

Chapter 8. Evaluation

on the simulation of SW-Cs and made used the SystemC features for ECU
hardware abstraction.

In general, the behaviour of a SW-C under test can either be handwritten
or generated using a behavioural modeling tool like Matlab/Simulink [68],
where the generated C-code is integrated in SystemC using SystemC mod-
ules [53]. Communication between modules of our SystemC simulator is re-
alized with TLM 2.0 library. As introduced in Chapter 2, TLM 2.0 is part of
the SystemC IEEE standard [56] . It provides two ways for timing modeling
(coding styles): loosely-time and approximately-time. These coding styles
offer different level of accuracy for timing modeling and simulation. The
choice of the corresponding timing model depends on the desired accuracy.
The modules Interconnect and the Adapter play the role of the middleware
and basically abstract the AUTOSAR basic software (BSW) [28] and Run-
time Environment (RTE) [30] layers. Therefore, the inputs required for our
Restbus simulator design process are the implementation code of the SW-Cs
and the network bus configuration data including communication matrix.

8.1.4 Applied tools

The tools applied for the design of the Steer-By-Wire system were TTX-
Plan and TTX- Build from TTTech Automotive GmbH. The cluster design
tool TTX-Plan was applied to generate communication schedules based on
communication requirements. These communication requirements, whereas
TTX-Build was used for the generation of the AUTOSAR communication
stacks.

For the integration of the Restbus simulator into the existing FlexRay net-
work, the tool FlexConfig Developer from Eberspaecher Electronics [38] was
applied. The tools Eclipse CDT was used as an integrated development envi-
ronment in combination with the SystemC simulation kernel reference library
Version 2.2. Alternatively, the tools Microsoft Visual C++ or QuestaSim
could also be used. The synthesis tools TargetLink from dSpace or Mat-
lab/Simulink /Real-Time-Workshop suite from MathWorks can be applied
for the generation of the software components behaviour from the Simulink
model.

8.2 Evaluation results

This section presents the evaluation results of our synchronization approach.
Hereby, we focused on the application scenario, where the simulated com-
ponent performs a monitoring task. Further, we considered a situation where

137

Chapter 8. Evaluation

the Restbus simulator has a lower data processing rate than the FlexRay bus
network.

As discussed in Chapter 7, our synchronization algorithm incorporates a data
smoothing step. Therefore, the choice of the configuration parameters for
the data smoothing process has a direct impact on the performance and the
quality of the synchronization process. Furthermore, the size of queues in the
synchronization buffer also influence the quality of the downsampled input
signal.

Therefore, both the size of the synchronization buffer and the configuration
of the data smoothing process were identified as the key factors that have
a strong impact on the synchronization process. Since the SendQueue and
ProcessQueue of the synchronization buffer are both of the same size, it
follows that the impact of the parameter size(SQ) on the synchronization
process needs to be investigated. Additionally, the smoothing parameter
(L) of the data smoothing process LOcally WEighted Scatterplot Smoothing
(LOWESS) will also be investigated.

For a good approximation of the discretized input signal, data points with
high amplitude should to be detected and preserved during the downsam-
pling process. Our Synchronization algorithm is configured in such a way
that those specific data points are identified as peaks. In this chapter we in-
vestigated the impact of the data processing rates ratio on peak detection.
Moreover, the impact of the aforementioned parameters on transmission de-
lay during run-time simulation was also investigated.

In order to establish a common basis for the comparison of the different
parameter settings during offline simulation, network data provided by the
real FlexRay nodes were first recorded online in order to generate simulation
traces. Afterward, the recorded data were then transmitted to the Restbus
simulator using a stimulus generator as depicted in Figure 8.5.

Testbench (PC)

SystemC Simulator (Process) Adapter (Process) Stimulus
Generator
(Process)

WheelCtrl

In
te

rc
on

ne
ct

Synchroni-
zation

TracesTracesInterprocess
communication
(Boost library)

Interprocess
communication
(Boost library)

Transmis-
sionCtrl

In
te

rc
on

ne
ct

Interprocess
communication
(Boost library)

Interprocess
communication
(Boost library)

Figure 8.5: Architecture of the testbench used for the evaluation

138

Chapter 8. Evaluation

0 2 4 6 8 10 12
-100

-80

-60

-40

-20

0

20

40

60

80

100

Time [s]

S
te

er
in

g
an

gl
e

[°
]

Transmission delay for SQ = 20

Original samples
Samples after downsampling

(a) Transmission delay for size(SQ)max = 20

0 2 4 6 8 10 12
-100

-80

-60

-40

-20

0

20

40

60

80

100

Time [s]

S
te

er
in

g
an

gl
e

[°
]

Transmission delay for SQ = 50

Original samples
Samples after downsampling

(b) Transmission delay for size(SQ)max = 50

0 2 4 6 8 10 12
-100

-80

-60

-40

-20

0

20

40

60

80

100

Time [s]

S
te

er
in

g
an

gl
e

[°
]

Transmission delay for SQ = 100

Original samples
Samples after downsampling

(c) Transmission delay for size(SQ)max = 100

0 2 4 6 8 10 12
-100

-80

-60

-40

-20

0

20

40

60

80

100

Time [s]

S
te

er
in

g
an

gl
e

[°
]

Transmission delay for SQ = 200

Original samples
Samples after downsampling

(d) Transmission delay for size(SQ)max = 200

Figure 8.6: Delay caused be the downsampling process depending on the SendQueue size

139

Chapter 8. Evaluation

8.2.1 Impact of the SendQueue-size on transmission delay

In this section we present some of the evaluation results regarding the inves-
tigation of the impact of the size of the synchronization buffer (i.e.: the size
of the SendQueue (size(SQ)max)) on the quality of the approximated input
signal and on transmission delay. For this purpose, network communication
data transmitted by the physical steering wheel of the steer-by-wire system
were used. Hereby, with transmission delay we denote the time that elapses
between the reception of the network data sent by the bus communication
controller (before starting the synchronization process) to the reception of
the data by the Restbus simulator (after the synchronization process). There-
fore, communication data was recorded within the Adapter component and
Interconnect component, respectively.

The following figures highlight the results of the investigation. They all dis-
play an interval of 7s, where the waveform of the input signal is depicted by
“x” symbols, whereas the resulting waveform after the synchronization pro-
cess is represented by circles. The values on the Y-axis have a range from -90
to 90 degrees, which corresponds to the steering angle of the steering wheel,
whereas time was measured on the X-axis in terms of seconds.

As it can be observed in the figures, both the input signal waveform and
the resulting signal waveform after downsampling are similar, which is suf-
ficient for early functional validation. This demonstrates the correctness of
the downsampling approach. However, the experiments also showed that
with increasing SendQueue size the transmission delay also increased (see
Figure 8.6d). A better performance of the algorithm could be observed for
size(SQ)max = 20 (see Figure 8.6a).

8.2.2 Variation of the smoothing parameter of Robust LOWESS

0 1000 2000 3000 4000 5000 6000 7000 8000
-3

-2

-1

0

1

2

3
Input data sequence

FlexRay-Cycle (cycle duration = 2 milliseconds)

W
he

el
-F

or
ce

Figure 8.7: Wheel raw data

140

Chapter 8. Evaluation

Figure 8.7 depicts the reference data sequence used for the remaining part
of our experiments. The waveform displayed in the figure represents wheel-
Force value transmitted by the physical wheel ECU to the physical steering
wheel ECU as Force-Feedback information. The data sequence was recorded
over a time period of 8451 FlexRay communication cycles with a cycle du-
ration of 2 milliseconds this corresponds to a time window of approximately
17 seconds.

In order to investigate the influence of the smoothing parameters f on peak
sequence detection, the maximum capacity of the SendQueue and Process-
ingQueue was set to size(SQ)max = size(PQ)max = 10. Additionally, the sam-
pling period of the Restbus simulator was set to TR = 150 milliseconds. The
results of the experiments are shown in the Figures 8.8a 8.8b 8.8c.

Three different smoothing parameter configurations were investigated: f =
0,1, f = 0,3, f = 0,6. This choice of these parameters was based on the
fact that f = 0,3, is the configuration typically recommended in the litera-
ture [71]. Looking at the results of these experiments we could not draw any
conclusion. Figure 8.8 shows as an example a time interval of 2s between
bus communication cycle 1300 and 3300.

8.2.3 Impact of the SendQueue size on peak sequence de-
tection

Since the SystemC simulation kernel uses a discrete event simulator (see
Chapter 2), the dynamics of a specific Restbus simulation model strongly
depends on the complexity of the model under investigation. Therefore, a
general recommendation regarding the optimal size of the synchronization
buffer cannot be given. However, given a concrete model, the optimal size
can be empirically determined.

In contrast to the experiments conducted in Section 8.2.1, this section inves-
tigates the quality of the approximated input data sequence. Moreover, we
mainly focused here on the quality of the approximated peak sequences (e.g.:
time intervals [1400,1600], [1900,2100], [2400,2600]).

For this experiment, the value of the smoothing parameter was set to f = 0.3.
Figures 8.9a 8.9b 8.9c 8.9d show for illustrative purposes, an time window
between the FlexRay communication cycles 1300 and 5200 of the recorded
samples (see Figure 8.7).

Four different SendQueue sizes were chosen (5,10,50,100). Again, as a
general observation, the investigation showed that the original data sequence
could be reconstructed by the synchronization process. Additionally, the ex-
periments also showed a better approximation for the SendQueue size 50.

141

Chapter 8. Evaluation

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200
-3

-2

-1

0

1

2

3

FlexRay-Cycles

W
he

el
-F

or
ce

Input data
Output data after downsampling with smoothing parameter (f) = 0.1

(a) Variation of the smoothing parameter of R. LOWESS with size(SQ)max = 10 L = 0.1.

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200
-3

-2

-1

0

1

2

3

FlexRay-Cycles

W
he

el
-F

or
ce

Input data
Output data after downsampling with smoothing parameter (f) = 0.3

(b) Variation of the smoothing parameter of R. LOWESS with size(SQ)max = 10 L = 0.3.

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200
-3

-2

-1

0

1

2

3

FlexRay-Cycles

W
he

el
-F

or
ce

Input data
Output data after downsampling with smoothing parameter (f) = 0.6

(c) Variation of the smoothing parameter of R. LOWESS with size(SQ)max = 10 L = 0.6.

Figure 8.8: Variation of the smoothing parameter of R. LOWESS

142

Chapter 8. Evaluation

1500 2000 2500 3000 3500 4000 4500 5000
-3

-2

-1

0

1

2

FlexRay-Cycle

W
he

el
-F

or
ce

Input data [1300,5200]
Output data, SQ=5, f=0.3

(a) Peak sequence detection for SQ = 5 and f = 0,3

1500 2000 2500 3000 3500 4000 4500 5000
-3

-2

-1

0

1

2

FlexRay-Cycle

W
he

el
-F

or
ce

Input data [1300,5200]
Output data, SQ=10, f=0.3

(b) Peak sequence detection for SQ = 10 and f = 0,3

1500 2000 2500 3000 3500 4000 4500 5000
-3

-2

-1

0

1

2

FlexRay-Cycle

W
he

el
-F

or
ce

Input data [1300,5200]
Output data, SQ=50, f=0.3

(c) Peak sequence detection for SQ = 50 and f = 0,3

1500 2000 2500 3000 3500 4000 4500 5000
-3

-2

-1

0

1

2

FlexRay-Cycle

W
he

el
-F

or
ce

Input data [1300,5200]
Output data, SQ=100, f=0.3

(d) Peak sequence detection for SQ = 100 and f = 0,3

Figure 8.9: Impact of the SendQueue size on peak sequence detection

143

Chapter 8. Evaluation

As depicted in Figure 8.9d, the synchronization process did not perform well
for SendQueue size 100. This is an indication that this queue size was not
appropriate. Basically, a large SendQueue size would lead to a large Receive-
Queue at the moment the downsampling process starts. As a consequence,
the downsampling process would not finish on time.

The processing speed ratio between the Restbus simulator and the bus net-
work is also has an influence on the synchronization process. This investiga-
tion will be made in Section 8.2.4.

8.2.4 Impact of the data processing rate ratio on data syn-
chronization

Figures 8.10 highlight additional observations made during our investigation.
Hereby, the goal was to find out the limitations of our synchronization ap-
proach with respect to the adaptation of the synchronization algorithm to the
variation of the data processing rate of the Restbus simulator.

Basically, these experiments can be seen as stress test of the synchroniza-
tion algorithm. For this purpose, the data processing rate ratio between the
Restbus simulator (TR) and the physical bus network (TS) was incrementally
increased in order to better observe the impact on the quality of the data se-
quence received by the Restbus simulator.

Important to mention here is that these figures only display the comparison
of the input data sequence with the data sequence resulting from the syn-
chronization process. The timing point at which the data points were sent or
received by the respective components were not in the scope of the investiga-
tion.

As highlighted by the Figures 8.10a and 8.10b, we could observe a good
performance of the synchronization algorithm regarding the quality of the
approximated input data sequence. However, beyond a data processing rate
ratio of 25 (see 8.10c and 8.10d), we could observe a deterioration of the
performance of the synchronization algorithm. This is due to the fact that the
transmission delay increases as the size of the SendQueue increases, an that
the simulation was stopped as soon as the stimulus generator terminated (see
Figure 8.5).

As a conclusion, for this concrete given Restbus simulation model a data
processing rate ratio beyond 25 would not work.

144

Chapter 8. Evaluation

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
-3

-2

-1

0

1

2

3

FlexRay-Cycles

W
he

el
-F

or
ce

 f = 0.3, SQ = 100, TR=10*TS

Input data
Output data after downsampling

(a) Impact of the data processing rate ratio for TR = 10TS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
-3

-2

-1

0

1

2

3

FlexRay-Cycles

W
he

el
-F

or
ce

f = 0.3, SQ = 100, TR=25*TS

Input data
Output data after downsampling

(b) Impact of the data processing rate ratio for TR = 25TS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
-3

-2

-1

0

1

2

3
f = 0.3, SQ = 100, TR=50*TS

FlexRay-Cycles

W
he

el
-F

or
ce

Input data
Output data after downsampling

(c) Impact of the data processing rate ratio for TR = 50TS

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
-3

-2

-1

0

1

2

3
f = 0.3, SQ = 100, TR=75*TS

FlexRay-Cycles

W
he

el
-F

or
ce

Input data
Output data after downsampling

(d) Impact of the data processing rate ratio for TR = 75TS

Figure 8.10: Impact of the processing rate ratio on peak sequence detection

145

Chapter 8. Evaluation

8.2.5 Summary

The experiments in this chapter have demonstrated the correctness of our
synchronization approach concerning the approximation of an input signal
provided a bus network in a Restbus simulation environment. Based on the
investigation regarding the configuration of the incorporated data smoothing
procedure Robust LOWESS no conclusion could be made. Furthermore, we
could observe that the size of the synchronization buffer has a strong im-
pact on the quality of the approximated input data sequence. Therefore, the
size of the SendQueue has to be carefully chosen. However, since the data
processing rate of the Restbus simulator may vary at runtime, the optimal
configuration of the Synchronization buffer needs to be experimentally de-
fined.

As an overall conclusion, our approach has proven to be applicable for func-
tional validation purposes in early phases of a system design process.

146

Chapter 9

Conclusion

9.1 Summary

In this thesis we have presented a framework for Restbus simulation. In con-
trast to existing Restbus simulation solutions available on the market, we in-
troduced an approach that only requires a common off-the-shelf PC equipped
with a bus network communication controller. This approach can be used for
the simulation of monitoring or control automotive systems.

Furthermore, the Restbus simulator can either be applied to simulate the DUT
or to run a testbench. The usage as testbench is needed when the system under
test is a real (physical) component.

To guide through the development of the Restbus simulation model, we have
introduced a design methodology (see Chapter 4) that covers aspects such
as design modeling, timing analysis and simulation. The Restbus simulation
framework supports the simulation of SystemC models.

To model the components of the Restbus simulation design, we make use the
IP-XACT standard. Besides the introduction of the simulation framework, a
further contribution of this thesis was the definition of timing extensions for
IP-XACT to capture timing constraints and therefore enhance the IP-XACT
component descriptions (see Chapter 5).

The captured timing information can then help verify that the simulation
model conforms to its timing requirements before starting the actual Rest-
bus simulation process.

PSL is used as formal specification language for the timing requirements.
Hereby, our contribution is the definition of transformation rules from each
timing constraint element of the timing extensions to executable PSL formu-
las.

147

Chapter 9. Conclusion

Based on these transformation rules, timing requirements can be formalized
in order to conduct a preliminary timing verification step on the simulation
model that will run on the PC.

As aforementioned, our Restbus simulation framework supports the simula-
tion of SystemC models. Since SystemC uses a discrete event simulator, the
data processing rate of the Restbus simulation processes cannot always be
determined, specially for complex simulation model (see Section 7.2).

As a core contribution of this thesis, we introduced a synchronization algo-
rithm that handles potential data processing rate issues between the Restbus
simulator running on the host PC and the bus network. The applicability of
our synchronization approach depends on the complexity of the design to be
simulated on the host PC.

Our synchronization approach makes use of data processing techniques ap-
plied in the field of Multirate systems. This is particularly useful for realistic
situations where the Restbus simulator has a lower data processing rate than
the bus network. In that case, at run-time, the bus network will generate much
more data than the simulator can process and inversely the simulator will not
produce network data fast enough.

Both the feasibility of the timing verification step and the performance of
the synchronization approach have been evaluated in the Chapters 6 and 8
respectively.

The Evaluation of the timing verification approach was done using a case
study consisting of a SystemC model of an automotive BBW application.
The application is distributed over a set of virtual ECUs and includes ABS
functionality. The implementation of the BBW model was done in our lab
(C-Lab). The overall simulation model also includes a SystemC model of
the FlexRay communication controller. By means of these experiments, we
could demonstrate the use of the derived PSL formulas in commercial verifi-
cation tool and thus the feasibility of our timing verification approach.

The evaluation of the synchronization approach was done in Chapter 8. The
approach was validated on a HIL test environment consisting of a Steer-By-
Wire system. This test environment has also been used in several projects [90,
49].

The steer-by-wire system setup consisted of tree communicating nodes namely:
the Restbus simulator running on the PC and two real ECUs (steering wheel
and wheel). The PC was connected to the bus network via FlexRay PCI Card.

Key parameters for the configuration of the synchronization algorithm buffer
were identified. The experiments have demonstrated the appropriateness of
our synchronization approach concerning the approximation of an input sig-

148

Chapter 9. Conclusion

nal provided a bus network in a Restbus simulation environment where the
Restbus simulator has a lower data processing rate than the bus network. We
could observe that the size of the synchronization buffer has a strong impact
on the quality of the approximated input data sequence. Therefore, the size
of the SendQueue has to be carefully chosen.

However, since the data processing rate of the Restbus simulator may vary at
runtime, the optimal configuration of the Synchronization algorithm needs to
be experimentally defined.

9.2 Outlook

9.2.1 Synchronization

As discussed in Chapter 7, the proposed Synchronization approach incor-
porates the data smoothing technique Robust LOWESS. Investigations re-
garding the configuration of the data smoother did not come up with a clear
conclusion. Further investigations could be made in that direction.

However, there are other data smoothing methods such as splines and wavelets.
These methods could also be investigated in future work.

In this thesis, our focus lied on the application scenario monitoring, where the
system running in the Restbus simulator has lower data processing rate than
the bus network and needs to perform some monitoring tasks. This was to
our opinion the more complex application scenario. However, other scenarios
could also be investigated.

9.2.2 Timing verification

Concerning the proposed timing extensions, further timing constrains speci-
fied by TADL2 could also be included into the verification process.

The correctness of our transformation rules have only been validated using a
reference model. In future work these transformation rules could be formally
proven.

149

Chapter 9. Conclusion

150

Appendix A

Verification unit

In PSL, a verification unit, is used to group verification directives and other PSL statements.
The PSL Identifier following the keyword vunit is the name, by which this verification unit is
known to the verification tools. A verification unit may contain HDL declarations, including
declarations of signal names that are also declared in the design module or instance to which
the verification unit is bound. This allows a verification unit to import a design signal written in
one HDL into a verification unit written using another HDL flavor. It also allows a verification
unit to give new behavior to a signal in the design under verification [52].
The following declaration of the verification unit shows the definition of the verification unit
used for our timing verification experiments.

vunit abs_cc(abs_cc_vif)
{

default clock = (posedge clock);

//---
//-- Basic sequences declaration
//---
sequence repeatSequenceDefaultSpan (

boolean dataEvent; const lower, upper) =
{[*lower:upper]; rose(dataEvent)};

sequence repeatSequenceDefaultSpanUpper (
boolean dataEvent; const lower) =

{[*lower:inf]; rose(dataEvent)};

sequence strongDelaySequence (
boolean stimulus, response; const lower, upper) =

{rose(stimulus); [*lower:upper]; rose(response)};

//---
//-- Basic properties declaration
//---

151

Chapter A. Verification unit

property repeatConstraintDefaultSpan (
boolean timingEvent; const lower, upper, span) =

always (repeatSequenceDefaultSpan (timingEvent, lower, upper));

property strongDelayConstraint (
boolean stimulus, response; const lower, upper) =

always {rose(stimulus)} |=> {[*lower:upper]; rose(response)};

property repetitionConstraint (
boolean refEvent, timingEvent; const lower, upper, span, jitter) =

always ({[*lower:upper]; rose(refEvent)}) && ({rose(refEvent)} |=>
{[*0:jitter]; rose(timingEvent)});

//-- 1. AgeConstraint
property ageConstraint (boolean stimulus, response; const minimum, maximum) =
always {stimulus[*]; [*minimum:maximum]; response};

//-- 2. ReactionConstraint
property reactionConstraint (

boolean refEvent, stimulus, response; const minimum, maximum) =
always {stimulus; [*minimum:maximum]; response[*]};

//-- 3. SporadicConstraint
property sporadicConstraint (

boolean refEvent, timingEvent; const lower, upper, jitter, minimum) =
always ({[*lower:upper]; rose(refEvent)}) &&

({refEvent; [*0:jitter]; timingEvent}) &&
({[*minimum:inf]; timingEvent});

//-- 4. InputSynchronizationConstraint
property inputSynchronizationConstraint (

boolean refEvent, stimulus1, stimulus2; const offset, tolerance) =
always ({rose(refEvent)} |=> {[*offset:tolerance]; rose(stimulus1)}) &&

({rose(refEvent)} |=> {[*offset:tolerance]; rose(stimulus2)});

//-- 5. OutputSynchronizationConstraint
property outputSynchronizationConstraint (

boolean stimulus, response1, response2; const offset, tolerance) =
always ({rose(stimulus)} |=> {[*offset:tolerance]; rose(response1)}) &&

({rose(stimulus)} |=> {[*offset:tolerance]; rose(response2)});

//-- 6. OrderConstraint
property orderConstraint (boolean refEvent, left, right) =
always (left; [*]; left before right);

152

Chapter A. Verification unit

//--
//--- Verification unit
//--
REPEATCONSTRAINT: assert repeatConstraintDefaultSpan(w_Sent_To_VR, 0, 25, 1);

STRONGDELAYCONSTRAINT:
assert strongDelayConstraint(vA_Sent, absCtrlVR_sent, 0, 25);

REPETITIONCONSTRAINT:
assert repetitionConstraint(vA_Rec_By_VR, absCtrlVR_sent, 0, 25, 1, 8);

INPUTSYNCCONSTRAINT:
assert inputSynchronizationConstraint(busCycleStart, w_Rec_By_VR, w_Rec_By_VL,
0, 9);

OUTPUTSYNCCONSTRAINT:
assert outputSynchronizationConstraint(busCycleStart, absCtrlVR_sent,
absCtrlVL_sent, 0, 9);

AGECONSTRAINT:
assert ageConstraint(vA_Sent, absCtrlVL_sent, 0, 25);

REACTIONCONSTRAINT:
assert reactionConstraint(busCycleStart, vA_Rec_By_HL, absCtrlHL_sent, 0, 5);

}

153

Chapter A. Verification unit

154

Appendix B

Pictorial representation of the IP-XACT Schema
Extensions

The graphics for this document have been generated by taking screen-shots of the various files
as they are displayed in Altova’s XML environment XMLSpy. XMLSpy is a registered trade-
mark of Altova GmbH. Within this document, pictorial representations of the information in the
schema files illustrate the structure of the schema and define any constraints of the standard.

B.1 Diagrams

The diagrams used throughout this standard graphically detail the organization of the elements
and attributes.

B.1.1 Elements and sequences

Figure B.1 shows the sequence-compositor. At the left is a branch element, element1, with
some descriptive text below. element1 is connected to a sequence-compositor. The sequence-
compositor defines the order the subelements appear in the branch element. subElement1 shall
appear first inside of element1. This is followed by subElement2, subElement3, subElement4,
and subElement5 before closing element1.
a) subElement1 is a mandatory element, as indicated by the solid line of the containing box.
The type of the data contained in this element is set to string and it has a default value of ip-xact
if the element is present, but left empty. b) subElement2 is an optional element, as indicated
by the dashed-line of the containing box. c) subElement3 is an mandatory element that may
appear multiple times, indicated by the doublesolid line of the containing box. The number
of times the element may appear is indicated by the range of the numbers listed below the
element. d) subElement4 is an optional element that may appear multiple times, as indicated by
the doubledashed line of the containing box. The number of times the element may appear is
indicated by the range of the numbers listed below the element. e) subElement5 is a mandatory
branch element that contains further elements inside, as indicated by the small plus sign (+) in
the small box on the right.

155

Chapter B. Pictorial representation of the IP-XACT Schema Extensions

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1685-2009

Copyright © 2010 IEEE. All rights reserved. 9

whereas the standard uses spirit. Within the text of this standard, the namespace is not written when
describing an item; it is only shown in examples.

1.5.4.5 Diagrams

The diagrams used throughout this standard graphically detail the organization the elements and attributes.

1.5.4.5.1 Elements and sequences

Figure 3 shows the sequence-compositor. At the left is a branch element, element1, with some descriptive
text below. element1 is connected to a sequence-compositor. The sequence-compositor defines the order the
subelements appear in the branch element. subElement1 shall appear first inside of element1. This is
followed by subElement2, subElement3, subElement4, and subElement5 before closing element1.

a) subElement1 is a mandatory element, as indicated by the solid line of the containing box. The type
of the data contained in this element is set to string and it has a default value of ip-xact if the ele-
ment is present, but left empty.

b) subElement2 is an optional element, as indicated by the dashed-line of the containing box.
c) subElement3 is an mandatory element that may appear multiple times, indicated by the double-

solid line of the containing box. The number of times the element may appear is indicated by the
range of the numbers listed below the element.

d) subElement4 is an optional element that may appear multiple times, as indicated by the double-
dashed line of the containing box. The number of times the element may appear is indicated by the
range of the numbers listed below the element.

e) subElement5 is an mandatory branch element that contains further elements inside, as indicated by
the small plus sign (+) in the small box on the right.

Descriptiv e text here.

xyz:element1

sequence

xyz:subElement1
type xs:string

xyz:subElement2

xyz:subElement3

1 �..

xyz:subElement4

0 �..

xyz:subElement5

Figure 3—Sequence-compositorFigure B.1: Sequence-compositor

Figure B.2 shows variations of a sequence-compositor. root1 is connected to an optional se-
quencecompositor, as indicated by the symbol being drawn with a dashed line. The element1
may appear first inside of root1; if it does, it shall be followed by element2. Each subelement is
connected to a sequence-compositor.

IEEE
Std 1685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

10 Copyright © 2010 IEEE. All rights reserved.

Figure 4 shows variations of a sequence-compositor. root1 is connected to an optional sequence-
compositor, as indicated by the symbol being drawn with a dashed line. element1 may appear first inside of
root1; if it does, it shall be followed by element2. Each subelement is connected to a sequence-compositor.

— element1 may contain one or more of the following sequences in the following order: subElement1
and subElement2 and subElement3. The number of times the sequence-compositor may appear is
indicated by the range of the numbers listed below the symbol. If the range is greater than 1, the
sequence-compositor symbol is drawn with double lines.

— element2 is optional and may contain one or more of the following sequences in the following order:
subElement1 and subElement2 and subElement3. The number of times the sequence-compositor
may appear is indicated by the range of the numbers listed below the symbol. If the range starts at 0
and the maximum is greater then 1, the sequence-compositor symbol is drawn with double-dashed
lines.

1.5.4.5.2 Elements and choices

Figure 5 shows the variations of the choice-compositor. root is connected to a choice-compositor. The
choice-compositor specifies that one of the elements on the right side shall be chosen. root may contain one
of the following: element1, element2, or element3. Each subelement is connected to a choice-compositor.

a) element1 may contain one of the following: subElement1, subElement2, or subElement3, as indi-
cated by the symbol being drawn with a dashed line.

b) element2 may contain any (0 or more) of the following: subElement1, subElement2, or
subElement3 in any order. The number of times the choice-compositor may appear is indicated by

xyz:root1

xyz:element1

1 �..

xyz:subElement1

xyz:subElement2

xyz:subElement3

xyz:element2

0 �..

xyz:subElement1

xyz:subElement2

xyz:subElement3

Figure 4—Sequence-compositor variations

xyz:root

choice

xyz:element1

choice

xyz:subElement1

xyz:subElement2

xyz:subElement3

xyz:element2

choice

0 �..

xyz:subElement1

xyz:subElement2

xyz:subElement3

xyz:element3

1 �..

xyz:subElement1

xyz:subElement2

xyz:subElement3

Figure 5—Choice-compositor variations

Figure B.2: Sequence-compositor variations

element1 may contain one or more of the following sequences in the following order: subEle-
ment1 and subElement2 and subElement3. The number of times the sequence-compositor may
appear is indicated by the range of the numbers listed below the symbol. If the range is greater
than 1, the sequence-compositor symbol is drawn with double lines. element2 is optional and
may contain one or more of the following sequences in the following order: subElement1 and
subElement2 and subElement3. The number of times the sequence-compositor may appear is
indicated by the range of the numbers listed below the symbol. If the range starts at 0 and
the maximum is greater then 1, the sequence-compositor symbol is drawn with double-dashed
lines.

B.1.2 Elements and choices

Figure B.3 shows the variations of the choice-compositor. The root is connected to a choice-
compositor. The choice-compositor specifies that one of the elements on the right side shall

156

Chapter B. Pictorial representation of the IP-XACT Schema Extensions

be chosen. root may contain one of the following: element1, element2, or element3. Each
subelement is connected to a choice-compositor.

IEEE
Std 1685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

10 Copyright © 2010 IEEE. All rights reserved.

Figure 4 shows variations of a sequence-compositor. root1 is connected to an optional sequence-
compositor, as indicated by the symbol being drawn with a dashed line. element1 may appear first inside of
root1; if it does, it shall be followed by element2. Each subelement is connected to a sequence-compositor.

— element1 may contain one or more of the following sequences in the following order: subElement1
and subElement2 and subElement3. The number of times the sequence-compositor may appear is
indicated by the range of the numbers listed below the symbol. If the range is greater than 1, the
sequence-compositor symbol is drawn with double lines.

— element2 is optional and may contain one or more of the following sequences in the following order:
subElement1 and subElement2 and subElement3. The number of times the sequence-compositor
may appear is indicated by the range of the numbers listed below the symbol. If the range starts at 0
and the maximum is greater then 1, the sequence-compositor symbol is drawn with double-dashed
lines.

1.5.4.5.2 Elements and choices

Figure 5 shows the variations of the choice-compositor. root is connected to a choice-compositor. The
choice-compositor specifies that one of the elements on the right side shall be chosen. root may contain one
of the following: element1, element2, or element3. Each subelement is connected to a choice-compositor.

a) element1 may contain one of the following: subElement1, subElement2, or subElement3, as indi-
cated by the symbol being drawn with a dashed line.

b) element2 may contain any (0 or more) of the following: subElement1, subElement2, or
subElement3 in any order. The number of times the choice-compositor may appear is indicated by

xyz:root1

xyz:element1

1 �..

xyz:subElement1

xyz:subElement2

xyz:subElement3

xyz:element2

0 �..

xyz:subElement1

xyz:subElement2

xyz:subElement3

Figure 4—Sequence-compositor variations

xyz:root

choice

xyz:element1

choice

xyz:subElement1

xyz:subElement2

xyz:subElement3

xyz:element2

choice

0 �..

xyz:subElement1

xyz:subElement2

xyz:subElement3

xyz:element3

1 �..

xyz:subElement1

xyz:subElement2

xyz:subElement3

Figure 5—Choice-compositor variationsFigure B.3: Choice-compositor variations

a) element1 may contain one of the following: subElement1, subElement2, or subElement3,
as indicated by the symbol being drawn with a dashed line. b) element2 may contain any
(0 or more) of the following: subElement1, subElement2, or subElement3 in any order. The
number of times the choice-compositor may appear is indicated by the range of the numbers
listed below the symbol. If the range starts at 0, the choice-compositor is drawn with dashed
lines. c) element3 may contain one or more of the following: subElement1, subElement2, or
subElement3 in any order. The number of times the choice-compositor may appear is indicated
by the range of the numbers listed below the symbol. If the range is greater than 1, the choice-
compositor is drawn with double lines.

B.1.3 Elements, attributes, groups, and attributeGroups

Figure B.4 shows the use of attributes, groups, and attributeGroups. element1 contains two
attributes, shown in the tab shaped box labeled attributes. attribute1 is optional, as indicated
by the dashed containing box. attribute1 also has a type defined of integer and a default value
of 7 if the attribute is not present. attribute2 is a required attribute, as indicated by the solid
containing box, and is of type boolean with no default. The ordering in which attribute1 and
attribute2 appear inside element1 is irrelevant.
a) eGroup1 is an element group inside element1. This group contains three subelements and
the group symbol can be replaced by a solid line. The name of the group has no representa-
tion in the resulting output description. An element group can be optional, as indicated by a
dashed outline (not shown) and it can also have a range, as indicated by numbers below the
group symbol (not shown). b) aGroup1 is an attributeGroup inside element2 and element3.
This attributeGroup contains two attributes, attribute7 and attribute8. Inside element2, the at-
tributeGroup is shown in its collapsed form, as indicated by the small plus sign (+) inside the
small box. Inside element3 the attribute- Group is shown in it expanded form, as indicated by

157

Chapter B. Pictorial representation of the IP-XACT Schema Extensions

IEEE
PACKAGING, INTEGRATING, AND REUSING IP WITHIN TOOL FLOWS Std 1685-2009

Copyright © 2010 IEEE. All rights reserved. 11

the range of the numbers listed below the symbol. If the range starts at 0, the choice-compositor is
drawn with dashed lines.

c) element3 may contain one or more of the following: subElement1, subElement2, or subElement3
in any order. The number of times the choice-compositor may appear is indicated by the range of the
numbers listed below the symbol. If the range is greater than 1, the choice-compositor is drawn with
double lines.

1.5.4.5.3 Elements, attributes, groups, and attributeGroups

Figure 6 shows the use of attributes, groups, and attributeGroups. element1 contains two attributes, shown
in the tab shaped box labeled attributes. attribute1 is optional, as indicated by the dashed containing box.
attribute1 also has a type defined of integer and a default value of 7 if the attribute is not present.
attribute2 is a required attribute, as indicated by the solid containing box, and is of type boolean with no
default. The ordering in which attribute1 and attribute2 appear inside element1 is irrelevant.

a) eGroup1 is an element group inside element1. This group contains three subelements and the group
symbol can be replaced by a solid line. The name of the group has no representation in the resulting
output description. An element group can be optional, as indicated by a dashed outline (not shown)
and it can also have a range, as indicated by numbers below the group symbol (not shown).

b) aGroup1 is an attributeGroup inside element2 and element3. This attributeGroup contains two
attributes, attribute7 and attribute8. Inside element2, the attributeGroup is shown in its collapsed
form, as indicated by the small plus sign (+) inside the small box. Inside element3 the attribute-
Group is shown in it expanded form, as indicated by the small minus sign (-) inside the small box.
element2 contains four attributes: attribute3, attribute4, attribute7, and attribute8. element3
also contains four attributes: attribute5, attribute6, attribute7, and attribute8. The name of the
attributeGroup has no representation in the resulting description.

xyz:topElement

xyz:element1

attributes

xyz:attribute1
type xs:integer
default 7

xyz:attribute2
type xs:boolean

xyz:eGroup1

xyz:subElement1

xyz:subElement2

xyz:subElement3

xyz:element2

attributes

xyz:attribute3

xyz:attribute4

xyz:aGroup1grp

xyz:element3

attributes

xyz:attribute5

xyz:attribute6

xyz:aGroup1grp

xyz:attribute7

xyz:attribute8

Figure 6—Attributes, groups, and attributeGroupsFigure B.4: Attributes, groups, and attributeGroups

the small minus sign (-) inside the small box. element2 contains four attributes: attribute3, at-
tribute4, attribute7, and attribute8. element3 also contains four attributes: attribute5, attribute6,
attribute7, and attribute8. The name of the attributeGroup has no representation in the resulting
description.

B.1.4 Wildcards

Figure B.5 shows the use of wildcards. A wildcard is depicted by the rounded box with the any
##any text. Wildcards indicate that any well-formed attribute or element may be inserted into
the containing element.

IEEE
Std 1685-2009 IEEE STANDARD FOR IP-XACT, STANDARD STRUCTURE FOR

12 Copyright © 2010 IEEE. All rights reserved.

1.5.4.5.4 Wildcards

Figure 7 shows the use of wildcards. A wildcard is depicted by the rounded box with the any ##any text.
Wildcards indicate that any well-formed attribute or element may be inserted into the containing element.

1.6 Use of color in this standard

This standard uses a minimal amount of color to enhance readability. The coloring is not essential and does
not affect the accuracy of this standard when viewed in pure black and white. The places where color is used
are the following:

— Cross references that are hyperlinked to other portions of this standard are shown in underlined-blue
text (hyperlinking works when this standard is viewed interactively as a PDF file).

— Syntactic keywords and tokens in the formal language definitions are shown in boldface-red text.

1.7 Contents of this standard

The organization of the remainder of this standard is as follows:

— Clause 2 provides references to other applicable standards that are assumed or required for this
standard.

— Clause 3 defines terms, acronyms, and abbreviations used throughout the different specifications
contained in this standard.

— Clause 4 defines the interoperability use model.

— Clause 5 defines the bus and abstraction definitions.

— Clause 6 defines the component and interconnect models.

— Clause 7 defines the designs and their connections.

— Clause 8 defines the abstractor model between abstraction definitions.

— Clause 9 defines the generator chain.

— Clause 10 defines the design and generator chain configuration.

— Clause 11 defines addressing and data visibility.

— Annexes. Following Clause 11 are a series of annexes.

xyz:element5

attributes

##anyany

xyz:subElement1

xyz:subElement2

##anyany

Figure 7—Wildcards
Figure B.5: Wildcards

158

List of Acronyms

ABS Anti-lock Braking System. 7, 94, 99, 100, 108, 109, 148

ABV Assertion-Based Verification. 54, 55, 59, 71

ACC Adaptive Cruise Control. 71, 87

API Application Programming Interface. 68

AT Approximately Timed. 66

AUTOSAR AUTomotive Open System ARchitecture. i, 3, 14–17, 21, 52, 68

BBW Brake-By-Wire. 7, 93, 99, 100, 102, 105, 148, 164, 167

BFM Bus Functional Model. 66

BMT Behavioral Modeling Tool. 67

BSW Basic Software. 15, 16, 19

CAN Controller Area Network. 28, 29, 51, 89

CC Communication Controller. 68

CIL Component-In-the-Loop. 27

COLA Component Language. 51

CSMA/CD+AMP Carrier Sense Multiple Access/Collision Detection with Arbitration on Mes-
sage Priority. 28

CTL Computational Tree Logic. 48, 75

DFT Discrete time Fourier Transforms. 116

DSP Digital Signal Processor. 116

DUT Design Under Test. 58, 65, 67, 147

DUV Design Under Verification. 71, 75, 96

159

List of Acronyms

ECU Electronic Control Unit. i, 1, 2, 7, 14–16, 18–20, 31, 50, 51, 71, 73, 99, 136, 137, 141,
148

EDA Electronic Design Automation. 3, 26, 49, 75, 103, 105, 109

EMF Eclipse Modeling Framework. 52

ESL Electronic System-Level. 37

ET Event-triggered. 14

FIBEX Field Bus EXchange Format. 68

FOL First-Order Logic. 78

FT Fourier Transforms. 116

FTDMA Flexible Time Division Multiple Access. 30, 73

GDL General Description Language. 43

HDL Hardware Description Language. 40, 43, 44

HdS Hardware-dependent Software. 49, 50

HIL Hardware-In-the-Loop. 2, 5, 7, 27, 58, 63, 130, 133, 148

IMC Interface-Method-Call. 38

IP Intellectual Property. 33, 49

ISO International Standardization Organization. 28

IVL Intermediate Verification Language. 53

LOWESS LOcally WEighted Scatterplot Smoothing. 138

LT Loosely Timed. 66

LTI Linear Time Invariant. 116

LTL Linear-time Temporal Logic. 48, 75

MAD Median Absolute Deviation. 114

MBD Model-Based Design. 26, 27

MIL Model-In-the-Loop. 27

MPSoC MultiProcessor System-on-Chip. 50

160

List of Acronyms

NIT Network Idle Time. 102, 104

OEM Original Equipment Manufacturer. 1, 30

PSL Property Specification Language. viii, 42–48, 57, 58, 61, 63, 71, 74, 75, 80–86, 90, 91,
94, 96, 97, 99, 103, 105, 107, 109, 147, 148, 151

RBS Restbus Simulation. 50, 51, 58, 63, 122

RCP Rapid-Control-Prototyping. 27

RE Runnable Entities. 18

RTE Runtime Environment. 15, 16, 18, 19

RTL Register Transfer Level. 5, 52, 66, 76

RTOS Real-Time Operating System. 4

SAM System Architectural Model. 66

SCV SystemC Verification Library. i

SERE Sequential Extended Regular Expression. 43, 44, 48, 74, 75, 86, 167

SIL Software-In-the-Loop. 27

SLDL System-Level Design Language. i, 37

SW-C Software Component. 15, 16, 18, 19, 137

SysML Systems Modeling Language. 3

TADL Timing Augmented Description Language. 20, 21

TADL2 Timing Augmented Description Language 2. viii, 20–25, 57, 58, 71, 76–84, 86, 88,
89, 91, 93–95, 97, 109, 149, 167

TDMA Time Division Multiple Access. 30, 73

TLM Transaction Level Modeling. 5, 40, 52, 64, 66, 76, 136, 137

TT Time-triggered. 14

UT Un-Timed. 66

VFB Virtual Functional Bus. 18

XML Extended Markup Language. 77, 86

161

List of Acronyms

162

List of Figures

1.1 Proposed design flow . 6

2.1 Block diagram of an open-loop control system 11
2.2 Block diagram of a closed-loop control system 12
2.3 AUTOSAR layered software architecture . 15
2.4 Virtual Functional Bus Timing . 18
2.5 Software Component Timing . 18
2.6 System Timing . 19
2.7 Basic Software Timing . 20
2.8 ECU Timing . 20
2.9 A set of event occurrences satisfying a RepeatConstraint with span of 2 24
2.10 A set of event occurrences satisfying a DelayConstraint [80] 25
2.11 A set of target event occurrences satisfying a SynchronizationConstraint. Over-

lapping tolerance windows and multiple event occurrences [80] 25
2.12 Standard CAN frame with 11-Bit identifier . 29
2.13 Extended CAN frame with 29-Bit identifier 29
2.14 Timing hierarchy within the communication cycle [41] 30
2.15 FlexRay frame format [41] . 32
2.16 Active star topology combined with a passive bus topology [41] 32
2.17 IP-XACT design environment (source: [48]) 33
2.18 IP-XACT simplified Design structure. 35
2.19 Tree view of the xml schema definition of an IP-XACT Ports 36
2.20 SystemC language architecture [15] . 38
2.21 Artifacts of SystemC [15] . 39
2.22 SystemC simulation kernel [15] . 40
2.23 TLM2 Use Case, Codingstyles and Mechanisms [96] 41
2.24 PSL is a Layered Language [58] . 43

4.1 Graphical view of an IP-XACT design example 59
4.2 Restbus simulation design flow . 60
4.3 Divergence between simulated time and real-time 61
4.4 Simulation models used during the design process 62
4.5 System Architecture of Restbus simulation framework 66
4.6 Abstraction refinement and TLM mapping source: [14] 67
4.7 Generic behavior of the adapter component 68

163

LIST OF FIGURES

5.1 Simple example illustrating the need for the specification of timing constraints . 72
5.2 Resulting network topology after deployment 73
5.3 FlexRay communication schedule configuration 73
5.4 Analysis window of the distributed system events 74
5.5 A simplified design structure of IP-XACT . 76
5.6 DataEvent contains a reference to the schema element PortRef 77
5.7 Event chain . 78
5.8 Proposed timing extensions for IP-XACT . 81
5.9 A set of event occurrences satisfying a RepeatConstraint for span=2. 82
5.10 A set of event occurrences satisfying a StrongDelayConstraint [80] 84
5.11 A set of event occurrences satisfying a RepetitionConstraint with span = 2 . . . 86
5.12 Graphical representation of the XML schema of the DelayConstraint element . 87
5.13 Sporadic constraint . 89
5.14 Periodic constraint . 91
5.15 EventChainIn: constrains two or more stimuli with one response 92
5.16 EventChainOut: constrains two or more responses with one stimulus 93
5.17 Input synchronization constraint . 93
5.18 Synchronization Constraint . 94
5.19 Order constraint . 95

6.1 Block diagram of the ABS system, Source: C-Lab 101
6.2 Network topology of the functional components of the BBW model 102
6.3 Waveform of the simulation run showing traces of all data events under obser-

vation . 104
6.4 Assertion analysis window for the basic timing constraints 106
6.5 Assertion analysis window for Age- and ReactionConstraints 107
6.6 Assertion analysis window for SynchronizationConstraints 109

7.1 Weight function example wk(xi) for leftmost (i = 1), interior (i = 14) and right-
most (i = 27) data points (span L = 9, f = 0.3, n = 29) 112

7.2 Locally weighted regression vs robust locally weighted regression, L = 15, f =
0.1) . 113

7.3 Weighted regression example for i = 1, . . . ,4 and L = 5 115
7.4 Display of the analog (continuous) signal and display of digital samples versus

the sampling time instants [92]. 115
7.5 Example of the digital signal and its amplitude spectrum [92]. The signal is

sampled at a rate of 8000Hz. 117
7.6 Frequency domain: spectrum after downsampling [92] 119
7.7 Interpolation [92] . 120
7.8 Application scenario of the synchronization algorithm 122
7.9 Synchronization problem, Receiver faster than sender 123
7.10 Problem: missing data at time 2 ms during communication between a slow

sender and a fast receiver . 123
7.11 Interpolation: repetition of last valid value received 124
7.12 Synchronization buffer: 3 level queuing mechanism sender faster than receiver. 124

164

LIST OF FIGURES

7.13 Incoming data are inserted into the ReceiveQueue (1). Data are taken form the
SendQueue and sent to the receiver based on the FIFO principle (2) 125

7.14 Downsampling during the main phase of the synchronization process 126
7.15 Initialization phase of the synchronization process 127
7.16 End of the initialization phase, ProcessQueue is full 127
7.17 Outliers are filtered out during the data smoothing process 128

8.1 Overview of the steer-by-wire architrecture 134
8.2 Test environment . 135
8.3 Active steering wheel . 135
8.4 Wheel and damping testbed . 136
8.5 Architecture of the testbench used for the evaluation 138
8.6 Delay caused be the downsampling process depending on the SendQueue size . 139
8.7 Wheel raw data . 140
8.8 Variation of the smoothing parameter of R. LOWESS 142
8.9 Impact of the SendQueue size on peak sequence detection 143
8.10 Impact of the processing rate ratio on peak sequence detection 145

B.1 Sequence-compositor . 156
B.2 Sequence-compositor variations . 156
B.3 Choice-compositor variations . 157
B.4 Attributes, groups, and attributeGroups . 158
B.5 Wildcards . 158

165

List of Tables

2.1 Notation used in the definition of the TADL2 semantics 22
2.2 Semantic definition of the TADL2 RepeatConstraint. 24
2.3 Semantic definition of the TADL2 DelayConstraint. 24
2.4 Semantic definition of the TADL2 SynchronizationConstraint. [80] 25
2.5 Union and Clocking operators . 44
2.6 SERE Repetition operators . 44
2.7 Sequence operators . 45
2.8 Further foundation language operators . 46
2.9 Boolean operators . 46

5.1 Notation used in the definition of the TADL2 semantics 79

6.1 BBW communication matrix . 102
6.2 Assertion analysis results for Repeat-, StrongDelay-, and RepetitionConstraint . 107
6.3 Assertion analysis results for AgeConstraint and ReactionConstraint 108
6.4 Assertion result analysis for Synchronization related constraint 108

167

List of Own Publications

[1] Markus Becker, Gilles Bertrand Gnokam Defo, Wolfgang Müller, and et al. “MOUSSE:
scaling MOdelling and verification to complex heterogeneoUS embedded Systems Evo-
lution”. In: Design, Automation and Test in Europe (DATE 2012). Dresden, Mar. 2012.

[2] Gilles Bertrand Gnokam Defo, Christoph Kuznik, and Wolfgang Mueller. “Verification
of a can bus model in SystemC with functional coverage”. In: Proceedings of the fifth
IEEE Symposium on Industrial Embedded Systems (SIES2010). 2010.

[3] Gilles Bertrand Gnokam Defo and Wolfgang Müller. “Synchronisation eines SystemC
Restbus-Simulators mit einem Hardware-In-the-Loop FlexRay Netzwerk”. In: Meth-
oden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen
und Systemen (MBMV). MBMV 2011. Feb. 2011.

[4] Wolfgang Mueller Kay Klobedanz Gilles Bertrand Defo. “Distributed Coordination of
Task Migration for Fault-Tolerant FlexRay Networks”. In: Proceedings of the fifth IEEE
Symposium on Industrial Embedded Systems (SIES2010). 2010.

[5] K. Klobedanz, Gilles Bertrand Gnokam Defo, Henning Zabel, and et al. “Task Migra-
tion for Fault-Tolerant FlexRay Networks”. In: IFIP Working Conference on Distributed
and Parallel Embedded Systems (DIPES 2010). Brisbane, Australia: Springer, 2010.

[6] Tobias Knieper, Gilles Bertrand Gnokam Defo, Paul Kaufmann, and Marco Platzner.
“On Robust Evolution of Digital Hardware”. In: 2nd IFIP Conference on Biologically
Inspired Collaborative Computing (BICC 2008). Milano, Italy: Springer, Sept. 2008,
pp. 213–222.

[7] Christoph Kuznik, Marcio F. S. Oliveira, Gilles Bertrand Gnokam Defo, and Wolfgang
Müller. “Systematic Application of UCIS to Improve the Automation on Verification
Closure”. In: Proceedings of DVCON (2013).

[8] Christoph Kuznik, Gilles Bertrand Gnokam Defo, and Wolfgang Müller. “Semi-auto-
matische Generierung von Überdeckungsmetriken mittels methodischer Verikations-
plan Verarbeitung”. In: 17. Workshop Methoden und Beschreibungssprachen zur Mod-
ellierung und Verifikation von Schaltungen und Systemen (MBMV 2014) (Mar. 2014).

[9] Tao Xie, Gilles Bertrand Gnokam Defo, and Wolfgang Mueller. “An Eclipse-based
Framework for the IP-XACT-enabled Assembly of Mixed-Level IPs”. In: First Work-
shop on Hands-on Platforms and tools for model-based engineering of Embedded Sys-
tems (HoPES). HoPES 2010 within ECMFA 2010. Paris, 2010.

169

LIST OF OWN PUBLICATIONS

170

Bibliography

[10] Melih Çakmakci A. Galip Ulsoy Huei Peng. Automotive Control Systems. Cambridge
University Press, 2012.

[11] Altova. XMLSpy XML Editor. 2013. URL: http://www.altova.com/xmlspy.html.

[12] ASAM Association for Standardisation of Automation and Measuring Systems. FIBEX
Field Bus Exchange Format. www.asam.net. 2010.

[13] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008. ISBN: 026202649X, 9780262026499.

[14] D.C. Black, J. Donovan, B. Bunton, and A. Keist. SystemC: From the Ground Up, Sec-
ond Edition. Springer, 2009. ISBN: 9780387699578. URL: http://books.google.
de/books?id=YGDqjwEACAAJ.

[15] David C. Black, Jack Donovan, Bill Bunton, and Anna Keist. SystemC: From the Ground
Up. Ed. by Kyle Smith and Richard Whitfield. Second. Springer Science+Business Me-
dia, LLC, 2010.

[16] R. Bosch. Automotive Electrics Automotive Electronics. Bentley Pub, 2004. ISBN: 9780837610504.
URL: http://books.google.de/books?id=-hMCAAAACAAJ.

[17] R. Bosch. CAN Specification Version 2.0. 1991. URL: www.bosch-semiconductors.
de/media/pdf_1/canliteratur/can2spec.pdf.

[18] James E. Brittain. “Electrical Engineering Hall of Fame: Harry Nyquist [Scanning Our
Past].” In: Proceedings of the IEEE 98.8 (2010), pp. 1535–1537. URL: http://dblp.
uni-trier.de/db/journals/pieee/pieee98.html#Brittain10f.

[19] Cadence Design Systems, Inc. Incisive Formal Verifier. 2013. URL: http : / / www .
cadence.com/products/ld/formal_verifier/pages/default.aspx.

[20] Cadence Design Systems, Inc. OVM-SC Library Reference Version 2.0.1. February,
2009. URL: http://www.cadence.com.

[21] Lukai Cai and Daniel Gajski. “Transaction level modeling: an overview”. In: Proceed-
ings of the 1st IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis. CODES+ISSS ’03. Newport Beach, CA, USA: ACM, 2003,
pp. 19–24. ISBN: 1-58113-742-7. DOI: 10.1145/944645.944651. URL: http://doi.
acm.org/10.1145/944645.944651.

[22] A Cimatti, A Micheli, I Narasamdya, and M. Roveri. “Verifying SystemC: A software
model checking approach”. In: Formal Methods in Computer-Aided Design (FMCAD),
2010. 2010, pp. 51–59.

171

http://www.altova.com/xmlspy.html
http://books.google.de/books?id=YGDqjwEACAAJ
http://books.google.de/books?id=YGDqjwEACAAJ
http://books.google.de/books?id=-hMCAAAACAAJ
www.bosch-semiconductors.de/media/pdf_1/canliteratur/can2spec.pdf
www.bosch-semiconductors.de/media/pdf_1/canliteratur/can2spec.pdf
http://dblp.uni-trier.de/db/journals/pieee/pieee98.html#Brittain10f
http://dblp.uni-trier.de/db/journals/pieee/pieee98.html#Brittain10f
http://www.cadence.com/products/ld/formal_verifier/pages/default.aspx
http://www.cadence.com/products/ld/formal_verifier/pages/default.aspx
http://www.cadence.com
http://dx.doi.org/10.1145/944645.944651
http://doi.acm.org/10.1145/944645.944651
http://doi.acm.org/10.1145/944645.944651

BIBLIOGRAPHY

[23] Alessandro Cimatti, Andrea Micheli, Iman Narasamdya, and Marco Roveri. “Verifying
SystemC: A software model checking approach.” In: FMCAD. Ed. by Roderick Bloem
and Natasha Sharygina. IEEE, 2010, pp. 51–59. URL: http://dblp.uni-trier.de/
db/conf/fmcad/fmcad2010.html#CimattiMNR10.

[24] Edmund M. Clarke Jr., Orna Grumberg, and Doron A. Peled. Model checking. Cam-
bridge, MA, USA: MIT Press, 1999. ISBN: 0-262-03270-8.

[25] William S. Cleveland. “Robust Locally Weighted Regression and Smoothing Scatter-
plots”. In: Journal of the American Statistical Association 74 (1979), pp. 829–836.

[26] William S. Cleveland and Susan J. Devlin. “Locally Weighted Regression: An Approach
to Regression Analysis by Local Fitting”. English. In: Journal of the American Statisti-
cal Association 83.403 (1988), pp. 596–610. URL: http://www.jstor.org/stable/
2289282.

[27] AUTOSAR Consortium. AUTomotive Open System ARchitecture. www.autosar.org. 2009.

[28] AUTOSAR Consortium. General Specification of Basic Software Modules. www.autosar.org.
2013.

[29] AUTOSAR Consortium. Software Component Template. http://www.autosar.org/download/R4.1/AUTOSAR TPS SoftwareComponentTemplate.pdf.
2013.

[30] AUTOSAR Consortium. Specification of RTE. www.autosar.org. 2013.

[31] AUTOSAR Consortium. Specification of Timing Extensions. www.autosar.org. 2011.

[32] Ronald E. Crochiere and Lawrence R. Rabiner. Multirate digital signal processing.
Prentice-Hall, 1983.

[33] G. Di Guglielmo, L. Di Guglielmo, F. Fummi, and G. Pravadelli. “Enabling dynamic
assertion-based verification of embedded software through model-driven design”. In:
Design, Automation Test in Europe Conference Exhibition (DATE), 2012. 2012, pp. 212–
217. DOI: 10.1109/DATE.2012.6176430.

[34] Doulos. PSL The golden reference guide, Version 2 supporting PSL v1.1. 2013. URL:
http://www.doulos.com/content/products/golden_reference_guides.php#
anchor_psl.

[35] Stirling Dynamics. Stirling Dynamics Products. 2014. URL: http://www.stirling-
dynamics.com/.

[36] Cindy Eisner and Dana Fisman. A Practical Introduction to PSL. 1st ed. Springer US,
2006. ISBN: 978-0-387-36123-9.

[37] Eberspaecher Electronics. FlexCard PMC/PCI, getting started. www.eberspaecher.com.
2007.

[38] Eberspaecher Electronics. FlexConfig user manual. www.eberspaecher.com. 2009.

[39] Jack Erickson. TLM Driven Design and Verification Time For a MethodologyShift. Ca-
dence Design, Systems, Inc., 2012. URL: http://www.cadence.com.

[40] José Ferreirós. “The road to modern logic-an interpretation”. In: Bulletin of Symbolic
Logic 7.4 (2001), pp. 441–484.

172

http://dblp.uni-trier.de/db/conf/fmcad/fmcad2010.html#CimattiMNR10
http://dblp.uni-trier.de/db/conf/fmcad/fmcad2010.html#CimattiMNR10
http://www.jstor.org/stable/2289282
http://www.jstor.org/stable/2289282
http://dx.doi.org/10.1109/DATE.2012.6176430
http://www.doulos.com/content/products/golden_reference_guides.php#anchor_psl
http://www.doulos.com/content/products/golden_reference_guides.php#anchor_psl
http://www.stirling-dynamics.com/
http://www.stirling-dynamics.com/
http://www.cadence.com

BIBLIOGRAPHY

[41] Consortium FlexRay. FlexRay Communications System Protocol Specification Version
2.1 Rev. A. www.flexray.com. 2005.

[42] Harry D. Foster, Adam C. Krolnik, and David J. Lacey. Assertion-Based Design. 2nd.
Springer Publishing Company, Incorporated, 2010. ISBN: 1441954627, 9781441954626.

[43] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to SysML: Sys-
tems Modeling Language. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2008. ISBN: 0123743796, 9780080558363, 9780123743794.

[44] Ziv Glazberg et al. PSL: Beyond Hardware Verification.

[45] Mentor Grapics. QuestaSim. 2013. URL: http://www.mentor.com/products/fv/
questa-verification-platform.

[46] Daniel Grosse, Markus Gross, Ulrich Kuehne, and Rolf Drechsler. “Simulation-based
equivalence checking between SystemC models at different levels of abstraction”. In:
Proceedings of the 21st edition of the great lakes symposium on Great lakes symposium
on VLSI. GLSVLSI ’11. Lausanne, Switzerland: ACM, 2011, pp. 223–228. ISBN: 978-
1-4503-0667-6. DOI: 10.1145/1973009.1973054. URL: http://doi.acm.org/10.
1145/1973009.1973054.

[47] Giuseppe Di Guglielmo et al. “On the integration of model-driven design and dynamic
assertion-based verification for embedded software”. In: Journal of Systems and Soft-
ware 86.8 (2013), pp. 2013 –2033. ISSN: 0164-1212. DOI: http://dx.doi.org/10.
1016/j.jss.2012.08.061. URL: http://www.sciencedirect.com/science/
article/pii/S0164121212002506.

[48] IP-XACT IEEE. IEEE Standard for IP-XACT, Standard Structure for Packaging, Inte-
grating, and Reusing IP within Tool Flows. www.accellera.org. 2009.

[49] ITEA2. TIMMO-2-USE Project. 2009. URL: http://www.timmo-2-use.org.

[50] Accelera Systems Iniciative. TLM-2.0 Language Reference Manual. Accelera Systems
Iniciative, 2007.

[51] Accellera Systems Initiative. Available IEEE Standards. http://www.accellera.org/home/.

[52] Accellery Systems Initiative. Standard for Property Specification Language (PSL). 2007.
URL: http://www.accellera.org.

[53] Accellery Systems Initiative. SystemC Language Reference Manual. 2012. URL: http:
//www.accellera.org/home/.

[54] Accellery Systems Initiative. Universal Verification Methodology (UVM). 2012. URL:
http://www.accellera.org/downloads/standards/uvm.

[55] Open SystemC Initiative. IEEE 1666 Open SystemC Language Reference Manual. IEEE
Standard Association, 2005.

[56] Open SystemC Initiative. OSCI TLM2 USER MANUAL, Software version TLM 2.0
Draft 2, Dcument version 1.0.0. 2007.

[57] National Instruments. Fundamentals of Restbus Simulation. http://www.ni.com/white-
paper/13726/en. 2012.

173

http://www.mentor.com/products/fv/questa-verification-platform
http://www.mentor.com/products/fv/questa-verification-platform
http://dx.doi.org/10.1145/1973009.1973054
http://doi.acm.org/10.1145/1973009.1973054
http://doi.acm.org/10.1145/1973009.1973054
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2012.08.061
http://dx.doi.org/http://dx.doi.org/10.1016/j.jss.2012.08.061
http://www.sciencedirect.com/science/article/pii/S0164121212002506
http://www.sciencedirect.com/science/article/pii/S0164121212002506
http://www.timmo-2-use.org
http://www.accellera.org
http://www.accellera.org/home/
http://www.accellera.org/home/
http://www.accellera.org/downloads/standards/uvm

BIBLIOGRAPHY

[58] Jasper Design Automation. Property Specification Language (PSL). URL: http : / /
jasper-da.com/.

[59] Christoph Kern and Mark R. Greenstreet. “Formal Verification in Hardware Design:
A Survey”. In: ACM Trans. Des. Autom. Electron. Syst. 4.2 (Apr. 1999), pp. 123–193.
ISSN: 1084-4309. DOI: 10.1145/307988.307989. URL: http://doi.acm.org/10.
1145/307988.307989.

[60] Moonzoo Kim, Yunho Kim, and Hotae Kim. “A Comparative Study of Software Model
Checkers as Unit Testing Tools: An Industrial Case Study”. In: Software Engineering,
IEEE Transactions on 37.2 (2011), pp. 146–160. ISSN: 0098-5589. DOI: 10.1109/TSE.
2010.68.

[61] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications. 1st. Norwell, MA, USA: Kluwer Academic Publishers, 1997. ISBN: 0792398947.

[62] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications. 2nd. Springer, 2011. ISBN: 978-1-4419-8236-0.

[63] Matthias Krause, Oliver Bringmann, Gökhan Hergenhan André andTabanoglu, and Wolf-
gang Rosentiel. “Timing simulation of interconnected AUTOSAR software-components”.
In: Proceedings of the conference on Design, automation and test in Europe (DATE 07).
2007, pp. 474–479.

[64] H.M. Le, D. Grosse, V. Herdt, and R. Drechsler. “Verifying SystemC using an interme-
diate verification language and symbolic simulation”. In: Design Automation Confer-
ence (DAC), 2013 50th ACM / EDAC / IEEE. 2013, pp. 1–6.

[65] Djones Lettnin et al. “Verification of Temporal Properties in Automotive Embedded
Software”. In: Proceedings of the Conference on Design, Automation and Test in Eu-
rope. DATE ’08. Munich, Germany: ACM, 2008, pp. 164–169. ISBN: 978-3-9810801-
3-1. DOI: 10.1145/1403375.1403417. URL: http://doi.acm.org/10.1145/
1403375.1403417.

[66] R. J. Marks. Introduction to Shannon Sampling and Interpolation Theory. Springer,
1991. ISBN: 978-1-4613-9708-.

[67] Ricardo A. Maronna, R. Douglas Martin, and Victor J. Yohai. “Robust Statistics: The-
ory and Methods”. In: ed. by David J. Balding et al. Wiley Series in Probability and
Statistics, 2006. Chap. 1.2, pp. 2–5.

[68] MathWorks. URL: http://www.mathworks.com/products/simulink.

[69] MathWorks. URL: http : / / www . mathworks . de / products / simulink - coder /
index.html.

[70] Deepak A. Mathaikutty. “Metamodeling Driven IP Reuse for System-on-chip Integra-
tion and Microprocessor Design”. dissertation. Virginia Polytechnic Institute and State
University, 2007.

[71] A. I. McLeod. Robust Loess: S lowess Introduction and Summary. course notes. 2004.
URL: http://www.stats.uwo.ca/faculty/aim/2004/04-259/notes/default.
htm.

174

http://jasper-da.com/
http://jasper-da.com/
http://dx.doi.org/10.1145/307988.307989
http://doi.acm.org/10.1145/307988.307989
http://doi.acm.org/10.1145/307988.307989
http://dx.doi.org/10.1109/TSE.2010.68
http://dx.doi.org/10.1109/TSE.2010.68
http://dx.doi.org/10.1145/1403375.1403417
http://doi.acm.org/10.1145/1403375.1403417
http://doi.acm.org/10.1145/1403375.1403417
http://www.mathworks.com/products/simulink
http://www.mathworks.de/products/simulink-coder/index.html
http://www.mathworks.de/products/simulink-coder/index.html
http://www.stats.uwo.ca/faculty/aim/2004/04-259/notes/default.htm
http://www.stats.uwo.ca/faculty/aim/2004/04-259/notes/default.htm

BIBLIOGRAPHY

[72] Razvan Nane et al. IP-XACT Extensions for Reconfigurable Computing. 2011.

[73] Nicolas Navet and Francoise Simonot-Lion. Automotive Embedded Systems Handbook.
1st. Boca Raton, FL, USA: CRC Press, Inc., 2008. ISBN: 084938026X, 9780849380266.

[74] Marcio F. S. Oliveira et al. “A SystemC Library for Advanced TLM Verification”. In:
Proceeding of Design and Verification Conference (DVCON). Mar. 2012.

[75] Alan V. Oppenheim, Ronald W. Schafer, and John R. Buck. Discrete-time Signal Pro-
cessing (2Nd Ed.) Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1999. ISBN: 0-13-
754920-2.

[76] Marie-Agnès Peraldi-Frati et al. “The TIMMO-2-USE project: Time modeling and anal-
ysis to use”. In: ERTS2012 International Congres on Embedded Real Time Software and
Systems. Toulouse, France, Feb. 2012.

[77] H. Posadas et al. “RTOS modeling in SystemC for real-time embedded SW simulation:
A POSIX model”. English. In: Design Automation for Embedded Systems 10.4 (2005),
pp. 209–227. ISSN: 0929-5585. DOI: 10.1007/s10617-006-9725-1. URL: http:
//dx.doi.org/10.1007/s10617-006-9725-1.

[78] David Powell. Failure Mode Assumptions and Assumption Coverage. 1995.

[79] SCALOPES Project. SCALOPES Deliverable DT4.3.6(M24) Guidelines for System-
level design integration and optimization. Deliverable. 2010.

[80] TIMMO-2-USE Project. Deliverable D11. 2012.

[81] TIMMO-2-USE Project. TIMMO-2-USE: Deliverable D14: Brake-by-Wire Validator.
2012.

[82] TIMMO-2-USE Project. TIMMO-2-USE: TIMing MOdel - TOols, algorithms, languages,
methodology, and USE cases. 2012.

[83] W.B. Ribbens and N.P. Mansour. Understanding Automotive Electronics, Sixth Edition.
Newnes, 2003. ISBN: 9780768012217.

[84] A. Schedl. Goals and Architecture of FlexRay at BMW. slides presented at the Vector
FlexRay Symposium. 2007.

[85] G. Schirner, A. Gerstlauer, and R. Domer. “Automatic generation of hardware depen-
dent software for MPSoCs from abstract system specifications”. In: Design Automation
Conference, 2008. ASPDAC 2008. Asia and South Pacific. 2008, pp. 271 –276. DOI:
10.1109/ASPDAC.2008.4483954.

[86] Satnam Singh. “Design and Verification of CoreConnectTM IP Using Esterel”. English.
In: Correct Hardware Design and Verification Methods. Ed. by Daniel Geist and Enrico
Tronci. Vol. 2860. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2003, pp. 283–288. ISBN: 978-3-540-20363-6. DOI: 10.1007/978-3-540-39724-
3_26. URL: http://dx.doi.org/10.1007/978-3-540-39724-3_26.

[87] Friedhelm Stappert, Jan Jonsson, Jürgen Mottok, and Rolf Johansson. “A design frame-
work for end-to-end timing constrained automotive applications”. In: ERTS Embedded
Real Time Software and System 2010. Vol. 2. 2010.

175

http://dx.doi.org/10.1007/s10617-006-9725-1
http://dx.doi.org/10.1007/s10617-006-9725-1
http://dx.doi.org/10.1007/s10617-006-9725-1
http://dx.doi.org/10.1109/ASPDAC.2008.4483954
http://dx.doi.org/10.1007/978-3-540-39724-3_26
http://dx.doi.org/10.1007/978-3-540-39724-3_26
http://dx.doi.org/10.1007/978-3-540-39724-3_26

BIBLIOGRAPHY

[88] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework. 2nd ed. Boston, MA: Addison-Wesley, 2009. ISBN: 978-0-321-
33188-5. URL: http://my.safaribooksonline.com/9780321331885.

[89] Corrigan Steve. Introduction to the Controller Area Network (CAN). 2002.

[90] ITEA2 Project TIMMO. Timmo: Timing model. 2007-2009.

[91] D. Tabakov and M.Y. Vardi. “Monitoring temporal SystemC properties”. In: Formal
Methods and Models for Codesign (MEMOCODE), 2010 8th IEEE/ACM International
Conference on. 2010, pp. 123–132. DOI: 10.1109/MEMCOD.2010.5558640.

[92] Li Tan. Digital Signal Processing: Fundamentals and Applications. Academic Press,
2008.

[93] Inc. The MathWorks. MATLAB Curve Fitting Toolbox 3.0. www.mathworks.com.

[94] John W. Tukey. “Exploratory Data Analysis”. In: Addison Wesley, 1977. Chap. 7.

[95] Dirk Van Dalen. Logic and structure. Springer, 2013.

[96] Bart Vanthournout. An Insider’s View on the Making of the New TLM-2.0 Standard.
2008.

[97] R. Vijayagopal, L. Michaels, A. Rousseau, and S. Halbach. “Automated Model Based
Design Process to Evaluate Advanced Component Technologies”. In: SAE Technical
Paper 2010-01-0936 (2010).

[98] Thomas Waggershauser and Dr. Robert von Höfen. Restbussimulation für FlexRay-
Netzwerke. www.ixxat.de. 2008.

[99] Zhonglei Wang, Wolfgang Haberl, Stefan Kugele, and Michael Tautschnig. “Automatic
Generation of Systemc Models from Component-based Designs for Early Design Val-
idation and Performance Analysis”. In: Proceedings of the 7th International Workshop
on Software and Performance. WOSP ’08. Princeton, NJ, USA: ACM, 2008, pp. 139–
144. ISBN: 978-1-59593-873-2. DOI: 10.1145/1383559.1383577. URL: http://
doi.acm.org/10.1145/1383559.1383577.

[100] STM CASE s.r.l. The radCHECK Tool. 2013. URL: http://www.verificationsuite.
com.

176

http://my.safaribooksonline.com/9780321331885
http://dx.doi.org/10.1109/MEMCOD.2010.5558640
http://dx.doi.org/10.1145/1383559.1383577
http://doi.acm.org/10.1145/1383559.1383577
http://doi.acm.org/10.1145/1383559.1383577
http://www.verificationsuite.com
http://www.verificationsuite.com

	Introduction
	Motivation
	Automotive system innovation
	Simulation
	Modeling

	Problem statement
	Restbus simulation for early functional validation
	Data synchronization between simulator and hardware
	Specification of timing constraints

	Research contribution
	Structure of this thesis

	Foundation
	Automotive Control Systems
	Open-Loop Control
	Closed-Loop Control

	Design of Automotive Control Systems
	Classification of Real-Time systems
	Design Methodology (AUTOSAR)
	Timing Modeling with TADL2
	Testing and Verification

	Automotive Vehicle Netwoks
	Controller Area Network (CAN)
	FlexRay

	Design of Electronic Systems
	Design Modeling with IP-XACT
	Design Modeling Language with SystemC
	Formal Property Specification Language with PSL

	Related Work
	IP-XACT
	Extensions of the IP-XACT Schema

	Modeling and simulation of embedded automotive software
	Restbus Simulation
	Modeling and simulation with SystemC
	Design Framework for IP Reuse and Integration
	AUTOSAR Vs. SystemC

	Verification of temporal properties
	Verifying SystemC using an Intermediate Verification Language and Symbolic Simulation
	Verifying SystemC using a software model checking approach
	Monitoring Temporal SystemC Properties
	Dynamic Assertion-Based Verification
	Assertion-based Verification of temporal properties

	Methodology
	Overall design flow
	Phase 1: Component assembly
	Phase 2: Timing requirements formalization and Code generation
	Phase 3: Timing verification
	Phase 4: Model equivalence check
	Phase 5: Restbus simulation

	Restbus simulator
	Architecture of the Restbus Simulator
	The SystemC simulator
	Adapter

	Assertion-Based Timing Verification
	Background
	Motivation
	PSL, Sequential Extended Regular Expression (SERE)
	IP-XACT
	DataEvents and Event chains
	tadl2: Notation

	Formalizing Timing Requirements
	Reason for using both tadl2 and psl
	RepeatConstraint
	StrongDelayConstraint
	RepetitionConstraint
	DelayConstraint
	SporadicConstraints
	Periodic constraints
	Synchronization Constraint
	Order Constraint

	Verification of the timing properties
	Summary

	Verification of timing properties: case study Brake-By-Wire
	Functional decomposition of the BBW model
	Instrumenting of the simulation model
	Reference model
	Specifying the timing requirements
	Evaluation results
	Repeat, StrongDelay and Repetition timing constraints
	Evaluation of the AgeConstraint and ReactionConstraint
	Evaluation of synchronization related timing Constraints

	Summary and discussion

	Synchronization
	Background
	Data smoothing: Robust LOWESS/LOESS
	Multirate Systems
	Downsampling

	Our synchronization approach
	Upsampling
	Downsampling
	Main phase
	Initialization phase
	Downsampling with peak detection

	Summary

	Evaluation of Synchronization approach
	Evaluation platform
	System Overview
	Hardware architecture
	Software architecture
	Applied tools

	Evaluation results
	Impact of the SendQueue-size on transmission delay
	Variation of the smoothing parameter of Robust LOWESS
	Impact of the SendQueue size on peak sequence detection
	Impact of the data processing rate ratio on data synchronization
	Summary

	Conclusion
	Summary
	Outlook
	Synchronization
	Timing verification

	Verification unit
	Pictorial representation of the IP-XACT Schema Extensions
	Diagrams
	Elements and sequences
	Elements and choices
	Elements, attributes, groups, and attributeGroups
	Wildcards

	List of Acronyms
	List of Figures
	List of Tables
	List of Own Publications and Bibliography

