818 research outputs found

    Tasking Event-B: An Extension to Event-B for Generating Concurrent Code

    No full text
    The Event-B method is a formal approach for modelling systems in safety-, and business-critical, domains. Initially, system specification takes place at a high level of abstraction; detail is added in refinement steps as the development proceeds toward implementation. Our aim has been to develop a novel approach for generating code, for concurrent programs, from Event-B. We formulated the approach so that it integrates well with the existing Event-B methodology and tools. In this paper we introduce a tasking extension for Event-B, with Tasking and Shared Machines. We make use of refinement, decomposition, and the extension, to structure projects for code generation for multitasking implementations. During the modelling phase decomposition is performed; decomposition reduces modelling complexity and makes proof more tractable. The decomposed models are then extended with sufficient information to enable generation of code. A task body describes a taskā€™s behaviour, mainly using imperative, programming-like constructs. Task priority and life-cycle (periodic, triggered, etc.) are also specified, but timing aspects are not modelled formally. We provide tool support in order to validate the practical aspects of the approach

    Circus Models for Safety-Critical Java Programs

    Get PDF
    Safety-critical Java (SCJ) is a restriction of the real-time specification for Java to support the development and certification of safety-critical applications. The SCJ technology specification is the result of an international effort from industry and academia. In this paper, we present a formalization of the SCJ Level 1 execution model, formalize a translation strategy from SCJ into a refinement notation and describe a tool that largely automates the generation of the formal models. Our modelling language is part of the Circus family; at the core, we have Z, communicating sequential processes and Morganā€™s calculus, but we also use object-oriented and timed constructs from the OhCircus and Circus Time variants. Our work is an essential ingredient for the development of refinement-based reasoning techniques for SCJ

    A timeband framework for modelling real-time systems

    Get PDF
    Complex real-time systems must integrate physical processes with digital control, human operation and organisational structures. New scientific foundations are required for specifying, designing and implementing these systems. One key challenge is to cope with the wide range of time scales and dynamics inherent in such systems. To exploit the unique properties of time, with the aim of producing more dependable computer-based systems, it is desirable to explicitly identify distinct time bands in which the system is situated. Such a framework enables the temporal properties and associated dynamic behaviour of existing systems to be described and the requirements for new or modified systems to be specified. A system model based on a finite set of distinct time bands is motivated and developed in this paper

    Safety-Critical Java: : level 2 in practice

    Get PDF
    Safety-Critical Java (SCJ) is a profile of the Real-Time Specification for Java that brings to the safety-critical industry the possibility of using Java. SCJ defines three compliance levels: Level 0, Level 1 and Level 2. The SCJ specification is clear on what constitutes a Level 2 application in terms of its use of the defined API but not the occasions on which it should be used. This paper broadly classifies the features that are only available at Level 2 into three groups: nested mission sequencers, managed threads and global scheduling across multiple processors. We explore the first two groups to elicit programming requirements that they support. We identify several areas where the SCJ specification needs modifications to support these requirements fully; these include the following: support for terminating managed threads, the ability to set a deadline on the transition between missions and augmentation of the mission sequencer concept to support composibility of timing constraints. We also propose simplifications to the termination protocol of missions and their mission sequencers. To illustrate the benefit of our changes, we present excerpts from a formal model of SCJ Level 2 written in Circus, a state-rich process algebra for refinement. Copyright ƂĀ© 2016 John Wiley & Sons, Ltd

    SCJ-Circus : a refinement-oriented formal notation for Safety-Critical Java

    Get PDF
    Safety-Critical Java (SCJ) is a version of Java whose goal is to support the development of real-time, embedded, safety-critical software. In particular, SCJ supports certification of such software by introducing abstractions that enforce a simpler architecture, and simpler concurrency and memory models. In this paper, we present SCJ-Circus, a refinement-oriented formal notation that supports the specification and verification of low-level programming models that include the new abstractions introduced by SCJ. SCJ-Circus is part of the family of state-rich process algebra Circus, as such, SCJ-Circus includes the Circus constructs for modelling sequential and concurrent behaviour, real-time and object orientation. We present here the syntax and semantics of SCJ-Circus, which is defined by mapping SCJ-Circus constructs to those of standard Circus. This is based on an existing approach for modelling SCJ programs. We also extend an existing Circus-based refinement strategy that targets SCJ programs to account for the generation of SCJ-Circus models close to implementations in SCJ

    Laws of mission-based programming

    Get PDF

    Integrating formal methods into medical software development : the ASM approach

    Get PDF
    Medical devices are safety-critical systems since their malfunctions can seriously compromise human safety. Correct operation of a medical device depends upon the controlling software, whose development should adhere to certification standards. However, these standards provide general descriptions of common software engineering activities without any indication regarding particular methods and techniques to assure safety and reliability. This paper discusses how to integrate the use of a formal approach into the current normative for the medical software development. The rigorous process is based on the Abstract State Machine (ASM) formal method, its refinement principle, and model analysis approaches the method supports. The hemodialysis machine case study is used to show how the ASM-based design process covers most of the engineering activities required by the related standards, and provides rigorous approaches for medical software validation and verification
    • ā€¦
    corecore